This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1796.01 3887.53 197.69 196.81 197.33 195.34 4
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11286.35 6593.60 3778.79 1895.48 391.79 293.08 2697.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1697.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
USDC81.39 10683.07 12679.43 9681.48 12878.95 12382.62 13566.17 10987.45 5290.73 482.40 13393.65 8466.57 12783.63 13877.97 15689.00 11277.45 151
MTMP90.54 595.16 59
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 1998.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9289.65 784.89 11792.40 9975.97 6390.88 7089.70 5892.58 6589.03 60
TinyColmap83.79 7686.12 8281.07 7883.42 10981.44 9985.42 11468.55 9088.71 4289.46 887.60 8792.72 9570.34 10889.29 8681.94 13189.20 10881.12 125
MTAPA89.37 994.85 66
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4489.17 1087.00 9796.34 3083.95 1095.77 1194.72 795.81 1793.78 10
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10378.78 12485.35 11668.42 9192.69 1089.03 1191.94 3896.32 3281.80 2194.45 2686.86 8290.91 8883.69 100
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5888.75 1289.00 7394.38 7784.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3088.53 1389.54 6595.57 4784.25 795.24 2094.27 1295.97 1193.85 8
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8788.62 4390.62 5864.22 12989.15 3788.05 1478.83 14893.71 8276.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ambc88.38 6091.62 1787.97 5284.48 12388.64 4387.93 1587.38 9194.82 6874.53 7689.14 8883.86 11585.94 15186.84 76
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2287.80 1690.42 5692.05 10879.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3487.73 1790.04 5891.80 11278.71 3894.36 2893.82 1794.48 3794.32 6
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7087.67 1887.02 9695.26 5683.62 1295.01 2393.94 1595.79 1993.40 20
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5587.66 1987.89 8592.07 10680.28 3090.97 6991.41 4393.17 5791.69 37
v124083.57 8084.94 9981.97 7084.05 9881.27 10189.46 7866.06 11081.31 11087.50 2091.88 4195.46 5176.25 6081.16 15680.51 14388.52 12482.98 108
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2787.40 2186.86 9996.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2187.24 2289.71 6392.07 10678.37 4294.43 2792.59 2795.86 1391.35 41
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6387.23 2390.45 5597.35 1783.20 1495.44 1693.41 2096.28 892.63 27
v192192083.49 8284.94 9981.80 7283.78 10581.20 10389.50 7765.91 11381.64 10287.18 2491.70 4395.39 5375.85 6481.56 15480.27 14588.60 11982.80 110
XVS91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5387.14 2578.98 14694.53 7176.47 5795.25 1994.28 1195.85 1493.55 16
RE-MVS-def87.10 28
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2886.88 2987.32 9296.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5197.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4786.87 3087.24 9496.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
v119283.61 7885.23 9381.72 7384.05 9882.15 9489.54 7666.20 10881.38 10986.76 3291.79 4296.03 3674.88 7481.81 15180.92 13988.91 11482.50 114
v7n87.11 5090.46 4883.19 5685.22 8583.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 66
v14419283.43 8384.97 9881.63 7583.43 10881.23 10289.42 7966.04 11281.45 10886.40 3491.46 4695.70 4675.76 6682.14 14780.23 14688.74 11682.57 113
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8982.56 9190.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
v114483.22 8585.01 9681.14 7783.76 10681.60 9788.95 8265.58 11881.89 9985.80 3691.68 4495.84 4174.04 8082.12 14880.56 14288.70 11881.41 123
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4085.76 3785.74 10986.92 14578.02 4593.03 4092.21 3495.39 2592.21 34
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 4985.68 3880.05 14195.74 4584.77 694.28 2992.68 2695.28 2692.45 31
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5185.33 3988.91 7697.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6185.32 4088.23 8294.67 6982.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
v2v48282.20 9684.26 11179.81 9382.67 12080.18 11287.67 9263.96 13681.69 10184.73 4191.27 4996.33 3172.05 9581.94 15079.56 15087.79 13078.84 143
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3184.61 4293.33 2294.22 7880.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7888.30 4591.24 5169.10 8282.36 9584.45 4377.56 15690.40 12672.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CNLPA85.50 6188.58 5781.91 7184.55 9187.52 5690.89 5463.56 13988.18 4584.06 4483.85 12691.34 11876.46 5891.27 6089.00 6691.96 7488.88 61
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3883.89 4589.40 6790.84 12180.26 3190.62 7290.19 5392.36 7092.03 35
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 5983.72 4675.92 17292.39 10077.08 5391.72 5390.68 4892.57 6791.30 42
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3283.70 4792.97 2892.22 10386.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v1083.17 8785.22 9480.78 8183.26 11182.99 8688.66 8566.49 10679.24 12783.60 4891.46 4695.47 5074.12 7882.60 14680.66 14088.53 12384.11 97
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8188.84 4188.86 8368.70 8887.06 5683.60 4879.02 14490.05 12777.37 5290.88 7089.66 5993.37 5286.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3383.50 5089.06 7294.44 7581.68 2294.17 3094.19 1395.81 1793.87 7
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 8983.48 5178.65 15093.54 8672.55 8986.49 11185.89 9592.28 7290.95 46
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 5995.14 6178.71 3891.45 5888.21 7295.96 1293.44 19
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4583.43 5393.48 2095.19 5781.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14782.88 5485.13 11393.35 8872.55 8988.62 9187.69 7491.93 7588.05 70
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11882.71 5686.92 9893.32 8975.55 6791.00 6889.85 5693.47 4989.71 53
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3482.70 5789.90 6095.37 5477.91 4791.69 5490.04 5493.95 4492.47 29
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3698.35 780.29 2995.28 1892.34 3195.52 2290.43 48
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7987.69 5490.50 6570.60 7286.40 6082.33 5989.69 6492.52 9874.01 8187.53 10086.84 8389.63 10287.80 72
RPSCF88.05 4692.61 1782.73 6584.24 9688.40 4490.04 7266.29 10791.46 1382.29 6088.93 7596.01 3879.38 3295.15 2194.90 694.15 3993.40 20
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6282.25 6182.96 12992.15 10476.04 6291.69 5490.69 4792.17 7391.64 39
MAR-MVS81.98 9982.92 12780.88 8085.18 8685.85 6789.13 8069.52 7671.21 16182.25 6171.28 19388.89 13769.69 10988.71 8986.96 7989.52 10487.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8682.21 6381.69 13792.14 10575.09 7287.27 10384.78 10692.58 6589.30 57
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6482.16 6486.05 10691.99 11075.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18682.28 9682.11 6588.48 8095.27 5563.95 13989.41 8588.29 7086.45 14481.01 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4881.83 6692.92 2995.15 6082.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3681.79 6792.68 3195.08 6283.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
v882.20 9684.56 10779.45 9582.42 12181.65 9687.26 9864.27 12879.36 12681.70 6891.04 5295.75 4473.30 8782.82 14279.18 15387.74 13182.09 117
anonymousdsp85.62 5990.53 4679.88 9264.64 20876.35 14396.28 1253.53 19285.63 6781.59 6992.81 3097.71 1286.88 294.56 2592.83 2496.35 693.84 9
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8894.47 3174.22 5381.71 10081.54 7089.20 7192.87 9478.33 4390.12 7988.47 6892.51 6989.04 59
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11778.23 12889.61 7565.23 12082.08 9781.19 7185.31 11192.04 10975.22 6989.50 8385.90 9490.24 9284.23 94
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6581.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9480.41 7373.82 18384.69 15675.19 7091.58 5789.90 5591.87 7686.48 78
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8980.29 11190.51 6468.05 9684.07 8180.38 7484.74 12091.37 11774.23 7790.37 7587.25 7890.86 8984.59 90
MSDG81.39 10684.23 11378.09 10482.40 12282.47 9285.31 11860.91 16179.73 12480.26 7586.30 10288.27 14069.67 11087.20 10584.98 10389.97 9680.67 128
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2680.21 7690.21 5796.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2380.15 7794.21 1594.51 7476.59 5692.94 4191.17 4593.46 5093.37 22
CS-MVS83.57 8084.79 10382.14 6883.83 10481.48 9887.29 9766.54 10572.73 15380.05 7884.04 12493.12 9380.35 2889.50 8386.34 8894.76 3486.32 81
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 3979.80 7993.01 2793.53 8783.17 1592.75 4592.45 2991.32 8293.59 13
Effi-MVS+82.33 9483.87 11880.52 8884.51 9481.32 10087.53 9468.05 9674.94 14579.67 8082.37 13492.31 10172.21 9185.06 12386.91 8191.18 8584.20 95
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12486.01 6688.03 8871.23 6876.05 14079.54 8183.88 12583.44 15877.49 5187.38 10184.93 10491.41 8087.40 75
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8279.47 8291.48 4594.85 6681.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
v14879.33 12382.32 13075.84 11880.14 13575.74 14881.98 13957.06 17881.51 10679.36 8389.42 6696.42 2771.32 9981.54 15575.29 17385.20 15876.32 153
DPM-MVS81.42 10482.11 13180.62 8687.54 6485.30 7190.18 7168.96 8481.00 11479.15 8470.45 19983.29 16067.67 12182.81 14383.46 11790.19 9388.48 64
FA-MVS(training)78.93 12880.63 13776.93 11179.79 13975.57 15285.44 11361.95 15377.19 13578.97 8584.82 11882.47 16366.43 13084.09 13580.13 14789.02 11180.15 137
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8289.79 3587.04 10474.39 5185.17 7278.92 8677.59 15593.57 8582.60 1793.23 3691.88 3989.42 10792.46 30
TPM-MVS86.18 7783.43 8487.57 9378.77 8769.75 20384.63 15762.24 14889.88 9888.48 64
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15778.73 8884.49 12290.70 12469.54 11287.65 9986.17 9089.87 9985.84 83
APDe-MVS89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8993.44 2195.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
CS-MVS-test83.59 7984.86 10182.10 6983.04 11481.05 10591.58 4767.48 10272.52 15478.42 9084.75 11991.82 11178.62 4191.98 5087.54 7693.48 4884.35 93
MDTV_nov1_ep13_2view72.96 16475.59 16869.88 15771.15 18964.86 19182.31 13754.45 18776.30 13778.32 9186.52 10091.58 11361.35 15076.80 17466.83 19471.70 18966.26 185
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9386.75 10564.02 13484.24 7878.17 9289.38 6895.03 6478.78 3789.95 8186.33 8989.59 10385.65 85
EC-MVSNet83.70 7784.77 10482.46 6687.47 6682.79 8785.50 11272.00 6369.81 16577.66 9385.02 11689.63 12878.14 4490.40 7487.56 7594.00 4188.16 67
V4279.59 12083.59 12374.93 12969.61 19277.05 13986.59 10755.84 18178.42 13177.29 9489.84 6295.08 6274.12 7883.05 13980.11 14886.12 14781.59 122
tpm62.79 19463.25 20262.26 19170.09 19153.78 20671.65 19347.31 20365.72 18376.70 9580.62 13856.40 21848.11 19764.20 21158.54 20559.70 20963.47 191
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9696.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 71
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14384.61 7387.18 9961.02 16085.65 6676.11 9785.07 11585.38 15470.96 10487.22 10486.47 8591.66 7788.12 69
gm-plane-assit71.56 16969.99 18473.39 13884.43 9573.21 16490.42 6851.36 19984.08 8076.00 9891.30 4837.09 22659.01 15973.65 18870.24 18779.09 18060.37 201
GeoE81.92 10083.87 11879.66 9484.64 8879.87 11389.75 7465.90 11476.12 13975.87 9984.62 12192.23 10271.96 9686.83 10883.60 11689.83 10083.81 99
GA-MVS75.01 15376.39 16173.39 13878.37 15175.66 15080.03 15158.40 17470.51 16375.85 10083.24 12876.14 18663.75 14077.28 17376.62 16783.97 16575.30 160
CMPMVSbinary55.74 1871.56 16976.26 16266.08 18068.11 19663.91 19463.17 21050.52 20168.79 17375.49 10170.78 19885.67 15163.54 14381.58 15377.20 16375.63 18385.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10296.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2575.31 10395.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4175.16 10494.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10595.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7074.79 10688.83 7788.90 13678.67 4096.06 795.45 496.66 395.58 2
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12380.62 10787.72 9163.51 14073.01 14974.75 10783.80 12792.70 9673.44 8688.15 9885.26 10090.05 9483.17 104
QAPM80.43 11184.34 10975.86 11779.40 14282.06 9579.86 15561.94 15483.28 8574.73 10881.74 13685.44 15370.97 10384.99 12884.71 10888.29 12588.14 68
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9374.52 10985.09 11487.67 14279.24 3391.11 6490.41 5091.45 7989.45 55
EPNet79.36 12279.44 14179.27 9889.51 4677.20 13788.35 8777.35 3168.27 17474.29 11076.31 16579.22 17359.63 15585.02 12785.45 9986.49 14384.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest051581.18 10984.32 11077.52 11076.73 16974.84 15885.06 11961.37 15781.05 11373.95 11188.79 7889.25 13375.49 6885.98 11584.78 10692.53 6885.56 86
OpenMVScopyleft75.38 1678.44 13081.39 13574.99 12780.46 13379.85 11479.99 15258.31 17577.34 13473.85 11277.19 15982.33 16668.60 11684.67 13181.95 13088.72 11786.40 80
IterMVS-SCA-FT77.23 13479.18 14374.96 12876.67 17079.85 11475.58 18461.34 15873.10 14873.79 11386.23 10379.61 17279.00 3680.28 16375.50 17283.41 17079.70 139
pmmvs-eth3d79.64 11882.06 13276.83 11280.05 13672.64 16687.47 9566.59 10480.83 11573.50 11489.32 6993.20 9067.78 11980.78 15981.64 13585.58 15676.01 154
EIA-MVS78.57 12977.90 14979.35 9787.24 6980.71 10686.16 10964.03 13362.63 20073.49 11573.60 18476.12 18773.83 8288.49 9384.93 10491.36 8178.78 144
PVSNet_BlendedMVS76.45 14178.12 14674.49 13076.76 16378.46 12579.65 15663.26 14365.42 18673.15 11675.05 17788.96 13466.51 12882.73 14477.66 15987.61 13278.60 146
PVSNet_Blended76.45 14178.12 14674.49 13076.76 16378.46 12579.65 15663.26 14365.42 18673.15 11675.05 17788.96 13466.51 12882.73 14477.66 15987.61 13278.60 146
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8386.57 6488.40 8668.28 9369.04 17273.13 11876.26 16791.11 12074.74 7588.40 9487.76 7392.84 6384.57 91
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11980.54 10883.50 12764.49 12783.40 8372.53 11992.15 3795.40 5265.84 13284.69 13081.89 13290.59 9081.86 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test76.72 13879.40 14273.60 13478.85 14974.99 15679.91 15361.56 15669.67 16672.44 12085.98 10790.78 12263.50 14478.30 16975.74 17185.33 15780.31 135
CR-MVSNet69.56 17668.34 18970.99 14972.78 18467.63 18264.47 20867.74 9959.93 20672.30 12180.10 13956.77 21565.04 13671.64 19372.91 17983.61 16869.40 179
Patchmtry56.88 20464.47 20867.74 9972.30 121
PatchT66.25 18766.76 19365.67 18355.87 21460.75 19870.17 19759.00 17159.80 20872.30 12178.68 14954.12 22065.04 13671.64 19372.91 17971.63 19169.40 179
DI_MVS_plusplus_trai77.64 13379.64 14075.31 12279.87 13876.89 14081.55 14363.64 13876.21 13872.03 12485.59 11082.97 16266.63 12679.27 16777.78 15888.14 12778.76 145
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 2971.92 12595.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
PM-MVS80.42 11283.63 12276.67 11378.04 15572.37 16887.14 10060.18 16680.13 12071.75 12686.12 10593.92 8177.08 5386.56 11085.12 10285.83 15381.18 124
ETV-MVS79.01 12777.98 14880.22 9186.69 7279.73 11688.80 8468.27 9463.22 19571.56 12770.25 20173.63 19373.66 8490.30 7886.77 8492.33 7181.95 119
FPMVS81.56 10284.04 11778.66 10082.92 11575.96 14786.48 10865.66 11784.67 7671.47 12877.78 15383.22 16177.57 5091.24 6190.21 5287.84 12985.21 87
IterMVS-LS79.79 11582.56 12976.56 11681.83 12677.85 13079.90 15469.42 8078.93 12971.21 12990.47 5485.20 15570.86 10580.54 16180.57 14186.15 14684.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet-bldmvs76.51 13982.87 12869.09 16350.71 21974.72 16084.05 12560.27 16581.62 10371.16 13088.21 8391.58 11369.62 11192.78 4477.48 16178.75 18173.69 167
EU-MVSNet76.48 14080.53 13871.75 14567.62 19870.30 17381.74 14154.06 18975.47 14271.01 13180.10 13993.17 9273.67 8383.73 13777.85 15782.40 17283.07 105
ET-MVSNet_ETH3D74.71 15474.19 17475.31 12279.22 14575.29 15382.70 13464.05 13265.45 18570.96 13277.15 16057.70 21365.89 13184.40 13381.65 13489.03 11077.67 150
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10276.47 3881.46 10770.49 13393.24 2395.56 4868.13 11790.43 7388.47 6893.78 4583.02 106
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10278.35 1980.64 11670.49 13392.67 3296.91 2168.13 11791.79 5189.29 6493.20 5583.02 106
tttt051775.86 14776.23 16375.42 12075.55 17574.06 16282.73 13360.31 16369.24 16870.24 13579.18 14358.79 21172.17 9284.49 13283.08 12491.54 7884.80 88
EPNet_dtu71.90 16873.03 18070.59 15278.28 15261.64 19782.44 13664.12 13063.26 19469.74 13671.47 19182.41 16451.89 19278.83 16878.01 15577.07 18275.60 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1364.96 18964.77 19765.18 18567.08 20162.46 19675.80 17851.10 20062.27 20169.74 13674.12 18062.65 20255.64 17468.19 20362.16 20271.70 18961.57 199
thisisatest053075.54 14975.95 16775.05 12475.08 17673.56 16382.15 13860.31 16369.17 16969.32 13879.02 14458.78 21272.17 9283.88 13683.08 12491.30 8384.20 95
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11169.29 13992.63 3496.83 2269.07 11491.23 6289.60 6093.97 4384.00 98
DELS-MVS79.71 11683.74 12175.01 12679.31 14382.68 8984.79 12160.06 16775.43 14369.09 14086.13 10489.38 13167.16 12385.12 12283.87 11489.65 10183.57 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9676.75 3485.47 6868.99 14195.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 109
NR-MVSNet82.89 8987.43 7277.59 10883.91 10283.59 8187.10 10178.35 1980.64 11668.85 14292.67 3296.50 2454.19 18087.19 10688.68 6793.16 5882.75 111
CVMVSNet75.65 14877.62 15273.35 14071.95 18569.89 17583.04 13160.84 16269.12 17068.76 14379.92 14278.93 17573.64 8581.02 15781.01 13881.86 17583.43 102
Fast-Effi-MVS+-dtu76.92 13677.18 15476.62 11479.55 14079.17 12084.80 12077.40 2964.46 19068.75 14470.81 19786.57 14763.36 14681.74 15281.76 13385.86 15275.78 157
CANet_DTU75.04 15278.45 14471.07 14777.27 16077.96 12983.88 12658.00 17664.11 19168.67 14575.65 17488.37 13953.92 18282.05 14981.11 13684.67 16179.88 138
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 13078.99 12282.95 13262.90 14781.53 10468.60 14691.94 3896.03 3665.84 13282.89 14177.07 16488.59 12080.34 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pmmvs475.92 14577.48 15374.10 13378.21 15470.94 17084.06 12464.78 12375.13 14468.47 14784.12 12383.32 15964.74 13875.93 18179.14 15484.31 16373.77 166
PatchMatch-RL76.05 14476.64 15975.36 12177.84 15969.87 17681.09 14663.43 14171.66 15968.34 14871.70 18981.76 16774.98 7384.83 12983.44 11886.45 14473.22 169
canonicalmvs81.22 10886.04 8575.60 11983.17 11383.18 8580.29 15065.82 11685.97 6567.98 14977.74 15491.51 11565.17 13588.62 9186.15 9191.17 8689.09 58
SCA68.54 18167.52 19169.73 15867.79 19775.04 15476.96 17268.94 8566.41 17967.86 15074.03 18160.96 20465.55 13468.99 20165.67 19571.30 19461.54 200
gg-mvs-nofinetune72.68 16575.21 17169.73 15881.48 12869.04 17970.48 19676.67 3586.92 5767.80 15188.06 8464.67 20142.12 20577.60 17173.65 17679.81 17766.57 184
diffmvspermissive76.74 13781.61 13471.06 14875.64 17474.45 16180.68 14857.57 17777.48 13267.62 15288.95 7493.94 8061.98 14979.74 16476.18 16882.85 17180.50 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15883.44 8390.58 5969.49 7881.11 11267.10 15389.85 6191.48 11671.71 9891.34 5989.37 6289.48 10590.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15187.81 9074.97 4881.53 10466.84 15494.71 1296.46 2566.90 12591.79 5183.37 12285.83 15382.09 117
IterMVS73.62 15776.53 16070.23 15571.83 18677.18 13880.69 14753.22 19372.23 15666.62 15585.21 11278.96 17469.54 11276.28 18071.63 18379.45 17874.25 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm cat164.79 19162.74 20567.17 17374.61 17865.91 18976.18 17659.32 16964.88 18966.41 15671.21 19453.56 22159.17 15861.53 21358.16 20767.33 20363.95 189
PatchmatchNetpermissive64.81 19063.74 20166.06 18169.21 19358.62 20173.16 19060.01 16865.92 18166.19 15776.27 16659.09 20860.45 15366.58 20661.47 20467.33 20358.24 206
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet59.74 20158.74 21760.92 19257.74 21345.81 21756.02 21758.69 17355.69 21265.17 15870.86 19671.66 19556.75 16661.11 21453.74 21371.17 19552.28 212
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 14082.41 693.84 664.43 15995.41 798.76 163.72 14193.63 3389.74 5789.47 10682.74 112
IB-MVS71.28 1775.21 15177.00 15673.12 14176.76 16377.45 13383.05 13058.92 17263.01 19664.31 16059.99 21587.57 14368.64 11586.26 11482.34 12987.05 13882.36 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 9085.56 11170.02 7480.11 12163.52 16187.28 9381.18 16867.26 12291.08 6789.33 6394.82 3183.42 103
RPMNet67.02 18563.99 20070.56 15371.55 18767.63 18275.81 17769.44 7959.93 20663.24 16264.32 21047.51 22459.68 15470.37 19869.64 18983.64 16768.49 182
EPP-MVSNet82.76 9286.47 7878.45 10286.00 8084.47 7485.39 11568.42 9184.17 7962.97 16389.26 7076.84 18372.13 9492.56 4890.40 5195.76 2087.56 74
CostFormer66.81 18666.94 19266.67 17672.79 18368.25 18179.55 16155.57 18265.52 18462.77 16476.98 16160.09 20756.73 16765.69 20962.35 19872.59 18869.71 178
UGNet79.62 11985.91 8672.28 14373.52 17983.91 7686.64 10669.51 7779.85 12362.57 16585.82 10889.63 12853.18 18488.39 9587.35 7788.28 12686.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11681.11 10480.44 14966.06 11085.01 7362.53 16678.84 14794.43 7658.51 16188.66 9085.91 9390.41 9185.73 84
HyFIR lowres test73.29 15974.14 17572.30 14273.08 18178.33 12783.12 12962.41 15163.81 19262.13 16776.67 16478.50 17671.09 10174.13 18577.47 16281.98 17470.10 176
baseline268.71 18068.34 18969.14 16275.69 17369.70 17776.60 17355.53 18360.13 20562.07 16866.76 20860.35 20660.77 15176.53 17974.03 17584.19 16470.88 173
dps65.14 18864.50 19865.89 18271.41 18865.81 19071.44 19461.59 15558.56 20961.43 16975.45 17552.70 22258.06 16369.57 20064.65 19671.39 19364.77 187
Anonymous2023121179.37 12185.78 8771.89 14482.87 11879.66 11778.77 16463.93 13783.36 8459.39 17090.54 5394.66 7056.46 16887.38 10184.12 11189.92 9780.74 127
baseline69.33 17775.37 17062.28 19066.54 20466.67 18773.95 18848.07 20266.10 18059.26 17182.45 13186.30 14854.44 17874.42 18473.25 17871.42 19278.43 148
MVSTER68.08 18369.73 18566.16 17866.33 20670.06 17475.71 18252.36 19555.18 21458.64 17270.23 20256.72 21657.34 16579.68 16576.03 16986.61 14180.20 136
tpmrst59.42 20260.02 21258.71 19567.56 19953.10 20866.99 20651.88 19663.80 19357.68 17376.73 16356.49 21748.73 19656.47 21755.55 21059.43 21058.02 207
pmmvs362.72 19568.71 18855.74 20050.74 21857.10 20270.05 19828.82 21561.57 20457.39 17471.19 19585.73 15053.96 18173.36 19069.43 19073.47 18762.55 195
CHOSEN 1792x268868.80 17971.09 18266.13 17969.11 19468.89 18078.98 16354.68 18461.63 20256.69 17571.56 19078.39 17767.69 12072.13 19272.01 18269.63 19973.02 170
test-mter59.39 20361.59 20756.82 19853.21 21554.82 20573.12 19126.57 21753.19 21556.31 17664.71 20960.47 20556.36 16968.69 20264.27 19775.38 18465.00 186
pmmvs568.91 17874.35 17362.56 18967.45 20066.78 18671.70 19251.47 19867.17 17656.25 17782.41 13288.59 13847.21 20073.21 19174.23 17481.30 17668.03 183
test111179.67 11784.40 10874.16 13285.29 8479.56 11881.16 14473.13 5984.65 7756.08 17888.38 8186.14 14960.49 15289.78 8285.59 9788.79 11576.68 152
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9180.37 10979.63 15873.23 5782.64 9055.98 17987.50 8886.85 14659.61 15690.35 7686.46 8688.58 12175.26 161
pmmvs680.46 11088.34 6371.26 14681.96 12577.51 13277.54 16768.83 8693.72 755.92 18093.94 1898.03 955.94 17089.21 8785.61 9687.36 13580.38 130
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 11075.99 14677.54 16763.98 13590.68 2455.84 18194.80 1096.06 3553.73 18386.27 11383.22 12386.65 13979.61 140
test250675.32 15076.87 15873.50 13684.55 9180.37 10979.63 15873.23 5782.64 9055.41 18276.87 16245.42 22559.61 15690.35 7686.46 8688.58 12175.98 155
PMMVS61.98 19965.61 19557.74 19645.03 22051.76 21169.54 20135.05 21255.49 21355.32 18368.23 20578.39 17758.09 16270.21 19971.56 18483.42 16963.66 190
FMVSNet178.20 13284.83 10270.46 15478.62 15079.03 12177.90 16667.53 10183.02 8755.10 18487.19 9593.18 9155.65 17385.57 11783.39 11987.98 12882.40 115
MS-PatchMatch71.18 17273.99 17667.89 17277.16 16171.76 16977.18 17056.38 18067.35 17555.04 18574.63 17975.70 18862.38 14776.62 17675.97 17079.22 17975.90 156
pm-mvs178.21 13185.68 8969.50 16180.38 13475.73 14976.25 17565.04 12187.59 5054.47 18693.16 2595.99 4054.20 17986.37 11282.98 12686.64 14077.96 149
MIMVSNet173.40 15881.85 13363.55 18772.90 18264.37 19284.58 12253.60 19190.84 2053.92 18787.75 8696.10 3345.31 20185.37 12179.32 15270.98 19669.18 181
test-LLR62.15 19859.46 21465.29 18479.07 14652.66 20969.46 20262.93 14550.76 21753.81 18863.11 21258.91 20952.87 18666.54 20762.34 19973.59 18561.87 197
TESTMET0.1,157.21 20659.46 21454.60 20450.95 21752.66 20969.46 20226.91 21650.76 21753.81 18863.11 21258.91 20952.87 18666.54 20762.34 19973.59 18561.87 197
FMVSNet274.43 15579.70 13968.27 16776.76 16377.36 13475.77 17965.36 11972.28 15552.97 19081.92 13585.61 15252.73 18880.66 16079.73 14986.04 14880.37 131
thres600view774.34 15678.43 14569.56 16080.47 13276.28 14478.65 16562.56 14977.39 13352.53 19174.03 18176.78 18455.90 17285.06 12385.19 10187.25 13674.29 163
CDS-MVSNet73.07 16377.02 15568.46 16681.62 12772.89 16579.56 16070.78 7169.56 16752.52 19277.37 15881.12 16942.60 20384.20 13483.93 11283.65 16670.07 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpnnormal77.16 13584.26 11168.88 16481.02 13175.02 15576.52 17463.30 14287.29 5352.40 19391.24 5093.97 7954.85 17785.46 12081.08 13785.18 15975.76 158
thres40073.13 16276.99 15768.62 16579.46 14174.93 15777.23 16961.23 15975.54 14152.31 19472.20 18877.10 18254.89 17582.92 14082.62 12886.57 14273.66 168
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9777.67 13185.68 11064.11 13182.90 8852.22 19592.57 3593.69 8349.52 19588.30 9686.93 8090.03 9581.95 119
GBi-Net73.17 16077.64 15067.95 17076.76 16377.36 13475.77 17964.57 12462.99 19751.83 19676.05 16877.76 17952.73 18885.57 11783.39 11986.04 14880.37 131
test173.17 16077.64 15067.95 17076.76 16377.36 13475.77 17964.57 12462.99 19751.83 19676.05 16877.76 17952.73 18885.57 11783.39 11986.04 14880.37 131
FMVSNet371.40 17175.20 17266.97 17475.00 17776.59 14174.29 18664.57 12462.99 19751.83 19676.05 16877.76 17951.49 19376.58 17777.03 16584.62 16279.43 141
thres20072.41 16676.00 16668.21 16878.28 15276.28 14474.94 18562.56 14972.14 15851.35 19969.59 20476.51 18554.89 17585.06 12380.51 14387.25 13671.92 171
thres100view90069.86 17472.97 18166.24 17777.97 15672.49 16773.29 18959.12 17066.81 17750.82 20067.30 20675.67 18950.54 19478.24 17079.40 15185.71 15570.88 173
tfpn200view972.01 16775.40 16968.06 16977.97 15676.44 14277.04 17162.67 14866.81 17750.82 20067.30 20675.67 18952.46 19185.06 12382.64 12787.41 13473.86 165
ADS-MVSNet56.89 20761.09 20852.00 20859.48 21148.10 21558.02 21554.37 18872.82 15149.19 20275.32 17665.97 20037.96 20959.34 21654.66 21252.99 21751.42 213
baseline169.62 17573.55 17865.02 18678.95 14870.39 17271.38 19562.03 15270.97 16247.95 20378.47 15168.19 19947.77 19979.65 16676.94 16682.05 17370.27 175
Vis-MVSNet (Re-imp)76.15 14380.84 13670.68 15183.66 10774.80 15981.66 14269.59 7580.48 11946.94 20487.44 9080.63 17053.14 18586.87 10784.56 10989.12 10971.12 172
EMVS58.97 20562.63 20654.70 20366.26 20748.71 21461.74 21242.71 20772.80 15246.00 20573.01 18771.66 19557.91 16480.41 16250.68 21753.55 21641.11 218
E-PMN59.07 20462.79 20454.72 20267.01 20247.81 21660.44 21443.40 20672.95 15044.63 20670.42 20073.17 19458.73 16080.97 15851.98 21554.14 21542.26 217
pmnet_mix0262.60 19670.81 18353.02 20666.56 20350.44 21362.81 21146.84 20479.13 12843.76 20787.45 8990.75 12339.85 20770.48 19757.09 20858.27 21160.32 202
Anonymous2023120667.28 18473.41 17960.12 19376.45 17263.61 19574.21 18756.52 17976.35 13642.23 20875.81 17390.47 12541.51 20674.52 18269.97 18869.83 19863.17 193
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17169.07 17885.33 11764.97 12284.87 7541.95 20993.17 2487.04 14447.78 19891.09 6685.56 9885.06 16074.34 162
EPMVS56.62 20859.77 21352.94 20762.41 20950.55 21260.66 21352.83 19465.15 18841.80 21077.46 15757.28 21442.68 20259.81 21554.82 21157.23 21353.35 211
FMVSNet556.37 20960.14 21151.98 20960.83 21059.58 19966.85 20742.37 20852.68 21641.33 21147.09 21854.68 21935.28 21173.88 18670.77 18565.24 20662.26 196
MIMVSNet63.02 19269.02 18756.01 19968.20 19559.26 20070.01 19953.79 19071.56 16041.26 21271.38 19282.38 16536.38 21071.43 19567.32 19366.45 20559.83 203
test20.0369.91 17376.20 16462.58 18884.01 10067.34 18475.67 18365.88 11579.98 12240.28 21382.65 13089.31 13239.63 20877.41 17273.28 17769.98 19763.40 192
testgi68.20 18276.05 16559.04 19479.99 13767.32 18581.16 14451.78 19784.91 7439.36 21473.42 18595.19 5732.79 21476.54 17870.40 18669.14 20064.55 188
TAMVS63.02 19269.30 18655.70 20170.12 19056.89 20369.63 20045.13 20570.23 16438.00 21577.79 15275.15 19142.60 20374.48 18372.81 18168.70 20157.75 208
CHOSEN 280x42056.32 21058.85 21653.36 20551.63 21639.91 22069.12 20438.61 21156.29 21136.79 21648.84 21762.59 20363.39 14573.61 18967.66 19260.61 20763.07 194
test0.0.03 161.79 20065.33 19657.65 19779.07 14664.09 19368.51 20562.93 14561.59 20333.71 21761.58 21471.58 19733.43 21370.95 19668.68 19168.26 20258.82 204
new-patchmatchnet62.59 19773.79 17749.53 21076.98 16253.57 20753.46 21954.64 18585.43 6928.81 21891.94 3896.41 2825.28 21676.80 17453.66 21457.99 21258.69 205
tmp_tt13.54 21716.73 2236.42 2248.49 2252.36 22028.69 22127.44 21918.40 22113.51 2283.70 22033.23 21836.26 21822.54 223
test_method22.69 21626.99 21817.67 2162.13 2244.31 22527.50 2234.53 21937.94 21924.52 22036.20 22051.40 22315.26 21829.86 21917.09 21932.07 22112.16 220
MVEpermissive41.12 1951.80 21360.92 20941.16 21235.21 22234.14 22248.45 22241.39 20969.11 17119.53 22163.33 21173.80 19263.56 14267.19 20461.51 20338.85 21957.38 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet52.29 21263.16 20339.61 21358.89 21244.70 21848.78 22134.73 21365.88 18217.85 22273.42 18580.00 17123.06 21767.00 20562.28 20154.36 21448.81 214
N_pmnet54.95 21165.90 19442.18 21166.37 20543.86 21957.92 21639.79 21079.54 12517.24 22386.31 10187.91 14125.44 21564.68 21051.76 21646.33 21847.23 215
DeepMVS_CXcopyleft17.78 22320.40 2246.69 21831.41 2209.80 22438.61 21934.88 22733.78 21228.41 22023.59 22245.77 216
PMMVS248.13 21464.06 19929.55 21444.06 22136.69 22151.95 22029.97 21474.75 1468.90 22576.02 17191.24 1197.53 21973.78 18755.91 20934.87 22040.01 219
GG-mvs-BLEND41.63 21560.36 21019.78 2150.14 22766.04 18855.66 2180.17 22357.64 2102.42 22651.82 21669.42 1980.28 22364.11 21258.29 20660.02 20855.18 210
test1231.06 2171.41 2190.64 2180.39 2250.48 2260.52 2280.25 2221.11 2231.37 2272.01 2231.98 2290.87 2211.43 2211.27 2200.46 2251.62 222
testmvs0.93 2181.37 2200.41 2190.36 2260.36 2270.62 2270.39 2211.48 2220.18 2282.41 2221.31 2300.41 2221.25 2221.08 2210.48 2241.68 221
uanet_test0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
sosnet-low-res0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
sosnet0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
9.1489.43 130
SR-MVS91.82 1380.80 795.53 49
Anonymous20240521184.68 10583.92 10179.45 11979.03 16267.79 9882.01 9888.77 7992.58 9755.93 17186.68 10984.26 11088.92 11378.98 142
our_test_373.27 18070.91 17183.26 128
Patchmatch-RL test4.13 226
mPP-MVS93.05 395.77 43
NP-MVS78.65 130