This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.82 199.76 199.75 299.77 799.87 1699.71 999.77 899.76 1899.52 399.80 399.79 2199.91 199.56 1399.83 499.75 599.86 1099.75 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.74 299.75 299.73 1199.92 699.67 1399.76 1099.84 1199.59 199.52 2499.87 1199.91 199.43 2799.87 199.81 399.89 699.52 10
test_part199.72 399.79 199.64 1299.95 299.88 199.71 1699.83 1299.58 299.48 2899.79 2199.78 998.98 6699.86 299.85 199.88 899.82 1
SixPastTwentyTwo99.70 499.59 599.82 299.93 499.80 299.86 299.87 698.87 1299.79 599.85 1499.33 6499.74 599.85 399.82 299.74 2399.63 5
v7n99.68 599.61 499.76 899.89 1399.74 899.87 199.82 1399.20 799.71 699.96 199.73 1399.76 399.58 1899.59 1499.52 4299.46 15
anonymousdsp99.64 699.55 799.74 1099.87 1699.56 2099.82 399.73 2198.54 1799.71 699.92 499.84 699.61 999.70 799.63 799.69 2899.64 3
UniMVSNet_ETH3D99.61 799.59 599.63 1499.96 199.70 1099.53 3399.86 899.28 699.48 2899.44 5299.86 499.01 6499.78 599.76 499.90 299.33 20
WR-MVS99.61 799.44 999.82 299.92 699.80 299.80 499.89 198.54 1799.66 1399.78 2399.16 8499.68 799.70 799.63 799.94 199.49 13
PEN-MVS99.54 999.30 1699.83 199.92 699.76 599.80 499.88 397.60 5899.71 699.59 3699.52 4499.75 499.64 1399.51 1799.90 299.46 15
TDRefinement99.54 999.50 899.60 1799.70 6399.35 3999.77 899.58 4599.40 599.28 4899.66 2799.41 5499.55 1599.74 699.65 699.70 2599.25 24
DTE-MVSNet99.52 1199.27 1799.82 299.93 499.77 499.79 699.87 697.89 4099.70 1199.55 4499.21 7699.77 299.65 1199.43 2099.90 299.36 18
PS-CasMVS99.50 1299.23 1999.82 299.92 699.75 799.78 799.89 197.30 7099.71 699.60 3499.23 7299.71 699.65 1199.55 1699.90 299.56 8
WR-MVS_H99.48 1399.23 1999.76 899.91 1099.76 599.75 1199.88 397.27 7399.58 1799.56 4099.24 7199.56 1399.60 1699.60 1399.88 899.58 7
pm-mvs199.47 1499.38 1099.57 2099.82 2599.49 2499.63 2299.65 3398.88 1199.31 4299.85 1499.02 10399.23 4499.60 1699.58 1599.80 1699.22 31
MIMVSNet199.46 1599.34 1199.60 1799.83 2299.68 1299.74 1499.71 2498.20 2599.41 3499.86 1399.66 2699.41 3099.50 2299.39 2299.50 4799.10 42
TransMVSNet (Re)99.45 1699.32 1499.61 1599.88 1599.60 1799.75 1199.63 3799.11 899.28 4899.83 1898.35 13999.27 4199.70 799.62 1199.84 1199.03 50
ACMH97.81 699.44 1799.33 1299.56 2199.81 2899.42 3299.73 1599.58 4599.02 999.10 7499.41 5699.69 1999.60 1099.45 2699.26 3299.55 3899.05 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet99.39 1899.04 2899.80 699.91 1099.70 1099.75 1199.88 396.82 9499.68 1299.32 5998.86 11299.68 799.57 1999.47 1899.89 699.52 10
COLMAP_ROBcopyleft98.29 299.37 1999.25 1899.51 2899.74 5399.12 6899.56 3099.39 8298.96 1099.17 6199.44 5299.63 3499.58 1199.48 2499.27 3199.60 3498.81 74
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS97.88 499.33 2099.15 2399.53 2799.73 5899.05 7699.49 3899.40 8098.42 2099.55 2199.71 2599.89 399.49 1999.14 3898.81 6099.54 3999.02 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test99.32 2199.33 1299.31 5399.87 1699.65 1699.63 2299.75 2097.76 4297.29 19199.87 1199.63 3499.52 1699.66 1099.63 799.77 2099.12 37
UA-Net99.30 2299.22 2199.39 4099.94 399.66 1598.91 10599.86 897.74 4898.74 11299.00 8699.60 3999.17 5099.50 2299.39 2299.70 2599.64 3
ACMH+97.53 799.29 2399.20 2299.40 3999.81 2899.22 5699.59 2799.50 6398.64 1698.29 14599.21 7199.69 1999.57 1299.53 2199.33 2799.66 2998.81 74
Vis-MVSNetpermissive99.25 2499.32 1499.17 6399.65 7499.55 2299.63 2299.33 9898.16 2699.29 4599.65 3099.77 1097.56 13899.44 2899.14 3799.58 3599.51 12
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet99.23 2598.91 3599.61 1599.81 2899.45 2899.47 4099.68 2797.28 7299.39 3599.54 4599.08 9999.45 2299.09 4498.84 5799.83 1299.04 48
CSCG99.23 2599.15 2399.32 5299.83 2299.45 2898.97 9799.21 11898.83 1399.04 8499.43 5499.64 3299.26 4298.85 7098.20 9899.62 3299.62 6
Gipumacopyleft99.22 2798.86 3899.64 1299.70 6399.24 5099.17 8099.63 3799.52 399.89 196.54 16999.14 8899.93 199.42 2999.15 3699.52 4299.04 48
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tfpnnormal99.19 2898.90 3699.54 2499.81 2899.55 2299.60 2699.54 5498.53 1999.23 5298.40 10598.23 14299.40 3199.29 3399.36 2599.63 3198.95 62
Baseline_NR-MVSNet99.18 2998.87 3799.54 2499.74 5399.56 2099.36 5299.62 4296.53 11599.29 4599.85 1498.64 12999.40 3199.03 5599.63 799.83 1298.86 70
thisisatest051599.16 3098.94 3399.41 3499.75 4799.43 3199.36 5299.63 3797.68 5499.35 3799.31 6098.90 10999.09 5898.95 6099.20 3399.27 7999.11 38
APDe-MVS99.15 3198.95 3099.39 4099.77 3899.28 4799.52 3499.54 5497.22 7799.06 7899.20 7299.64 3299.05 6299.14 3899.02 4699.39 6099.17 35
FC-MVSNet-train99.13 3299.05 2799.21 5899.87 1699.57 1999.67 1799.60 4496.75 10098.28 14699.48 4899.52 4498.10 11799.47 2599.37 2499.76 2299.21 32
NR-MVSNet99.10 3398.68 5399.58 1999.89 1399.23 5399.35 5599.63 3796.58 10899.36 3699.05 8098.67 12799.46 2099.63 1498.73 7199.80 1698.88 69
DVP-MVS99.09 3499.07 2699.12 7199.55 9699.40 3499.36 5299.44 7997.75 4598.23 14999.23 6899.80 798.97 6799.08 4698.96 4799.19 8799.25 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet (Re)99.08 3598.69 5199.54 2499.75 4799.33 4299.29 6399.64 3696.75 10099.48 2899.30 6298.69 12399.26 4298.94 6298.76 6799.78 1999.02 52
ACMMPR99.05 3698.72 4799.44 2999.79 3399.12 6899.35 5599.56 4897.74 4899.21 5497.72 13199.55 4299.29 3998.90 6898.81 6099.41 5999.19 33
DU-MVS99.04 3798.59 5799.56 2199.74 5399.23 5399.29 6399.63 3796.58 10899.55 2199.05 8098.68 12599.36 3599.03 5598.60 7899.77 2098.97 57
TSAR-MVS + MP.99.02 3898.95 3099.11 7499.23 15298.79 11299.51 3598.73 15997.50 6298.56 12299.03 8399.59 4099.16 5299.29 3399.17 3599.50 4799.24 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v1099.01 3998.66 5499.41 3499.52 10799.39 3599.57 2999.66 3197.59 5999.32 4199.88 999.23 7299.50 1897.77 13497.98 10898.92 12198.78 79
EG-PatchMatch MVS99.01 3998.77 4399.28 5799.64 7798.90 10598.81 11799.27 10996.55 11299.71 699.31 6099.66 2699.17 5099.28 3599.11 3899.10 9498.57 95
PVSNet_Blended_VisFu98.98 4198.79 4199.21 5899.76 4499.34 4099.35 5599.35 9497.12 8399.46 3199.56 4098.89 11098.08 12099.05 4998.58 8099.27 7998.98 56
HFP-MVS98.97 4298.70 4999.29 5599.67 6898.98 8899.13 8599.53 5797.76 4298.90 9898.07 11999.50 5099.14 5698.64 8198.78 6499.37 6299.18 34
UniMVSNet_NR-MVSNet98.97 4298.46 6899.56 2199.76 4499.34 4099.29 6399.61 4396.55 11299.55 2199.05 8097.96 15099.36 3598.84 7198.50 8699.81 1598.97 57
SED-MVS98.94 4498.95 3098.91 9699.43 12399.38 3799.12 8799.46 7397.05 8698.43 13799.23 6899.79 897.99 12399.05 4998.94 4999.05 10799.23 29
ACMMP_NAP98.94 4498.72 4799.21 5899.67 6899.08 7199.26 6899.39 8296.84 9198.88 10298.22 11299.68 2298.82 7699.06 4898.90 5299.25 8299.25 24
zzz-MVS98.94 4498.57 6099.37 4799.77 3899.15 6599.24 7199.55 5097.38 6899.16 6496.64 16599.69 1999.15 5499.09 4498.92 5199.37 6299.11 38
v114498.94 4498.53 6399.42 3399.62 8199.03 8299.58 2899.36 9197.99 3199.49 2799.91 899.20 7899.51 1797.61 13997.85 11598.95 11698.10 135
v898.94 4498.60 5599.35 5099.54 10099.39 3599.55 3199.67 3097.48 6399.13 7099.81 1999.10 9599.39 3397.86 12997.89 11398.81 13098.66 86
SteuartSystems-ACMMP98.94 4498.52 6499.43 3299.79 3399.13 6799.33 5999.55 5096.17 13199.04 8497.53 13799.65 3099.46 2099.04 5498.76 6799.44 5499.35 19
Skip Steuart: Steuart Systems R&D Blog.
v119298.91 5098.48 6799.41 3499.61 8599.03 8299.64 1999.25 11397.91 3799.58 1799.92 499.07 10199.45 2297.55 14397.68 12998.93 11898.23 125
FMVSNet198.90 5199.10 2598.67 12099.54 10099.48 2599.22 7499.66 3198.39 2397.50 17999.66 2799.04 10296.58 16099.05 4999.03 4399.52 4299.08 44
ACMM96.66 1198.90 5198.44 7299.44 2999.74 5398.95 9499.47 4099.55 5097.66 5699.09 7596.43 17199.41 5499.35 3798.95 6098.67 7499.45 5299.03 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121198.89 5398.79 4198.99 8999.82 2599.41 3399.18 7999.31 10496.92 8898.54 12598.58 10298.84 11597.46 14099.45 2699.29 2999.65 3099.08 44
v192192098.89 5398.46 6899.39 4099.58 8999.04 8099.64 1999.17 12497.91 3799.64 1599.92 498.99 10799.44 2597.44 15097.57 13898.84 12898.35 115
GeoE98.88 5598.43 7599.41 3499.83 2299.24 5099.51 3599.82 1396.55 11299.22 5398.76 9499.22 7598.96 6898.55 8498.15 10099.10 9498.56 98
v14419298.88 5598.46 6899.37 4799.56 9599.03 8299.61 2599.26 11097.79 4199.58 1799.88 999.11 9399.43 2797.38 15597.61 13498.80 13298.43 110
SMA-MVScopyleft98.87 5798.73 4699.04 8299.72 5999.05 7698.64 12899.17 12496.31 12698.80 10799.07 7899.70 1898.67 8498.93 6598.82 5899.23 8599.23 29
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP96.54 1398.87 5798.40 7899.41 3499.74 5398.88 10699.29 6399.50 6396.85 9098.96 9097.05 15299.66 2699.43 2798.98 5998.60 7899.52 4298.81 74
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet98.86 5998.57 6099.19 6199.86 2099.67 1399.39 4899.71 2497.53 6198.69 11595.85 18298.48 13397.75 13299.57 1999.41 2199.72 2499.48 14
v124098.86 5998.41 7799.38 4599.59 8799.05 7699.65 1899.14 12997.68 5499.66 1399.93 398.72 12299.45 2297.38 15597.72 12798.79 13398.35 115
CP-MVS98.86 5998.43 7599.36 4999.68 6698.97 9299.19 7799.46 7396.60 10699.20 5597.11 15199.51 4899.15 5498.92 6698.82 5899.45 5299.08 44
v2v48298.85 6298.40 7899.38 4599.65 7498.98 8899.55 3199.39 8297.92 3699.35 3799.85 1499.14 8899.39 3397.50 14597.78 11898.98 11397.60 149
DPE-MVScopyleft98.84 6398.69 5199.00 8699.05 17099.26 4899.19 7799.35 9495.85 13998.74 11299.27 6499.66 2698.30 10998.90 6898.93 5099.37 6299.00 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS98.84 6398.59 5799.12 7199.52 10798.50 13699.13 8599.22 11697.76 4298.76 10998.70 9699.61 3798.90 7198.67 7998.37 9299.19 8798.57 95
test20.0398.84 6398.74 4598.95 9299.77 3899.33 4299.21 7699.46 7397.29 7198.88 10299.65 3099.10 9597.07 15299.11 4198.76 6799.32 7297.98 139
casdiffmvs98.84 6398.75 4498.94 9599.75 4799.21 5799.33 5999.04 14098.04 2997.46 18299.72 2499.72 1598.60 8898.30 10498.37 9299.48 4997.92 141
LGP-MVS_train98.84 6398.33 8499.44 2999.78 3698.98 8899.39 4899.55 5095.41 14798.90 9897.51 13899.68 2299.44 2599.03 5598.81 6099.57 3698.91 65
RPSCF98.84 6398.81 4098.89 9899.37 13198.95 9498.51 14098.85 15297.73 5098.33 14298.97 8899.14 8898.95 6999.18 3798.68 7399.31 7398.99 55
ACMMPcopyleft98.82 6998.33 8499.39 4099.77 3899.14 6699.37 5199.54 5496.47 11999.03 8696.26 17599.52 4499.28 4098.92 6698.80 6399.37 6299.16 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
V4298.81 7098.49 6699.18 6299.52 10798.92 10099.50 3799.29 10697.43 6698.97 8899.81 1999.00 10699.30 3897.93 12598.01 10698.51 15698.34 119
LS3D98.79 7198.52 6499.12 7199.64 7799.09 7099.24 7199.46 7397.75 4598.93 9697.47 13998.23 14297.98 12499.36 3099.30 2899.46 5098.42 111
MP-MVScopyleft98.78 7298.30 8699.34 5199.75 4798.95 9499.26 6899.46 7395.78 14299.17 6196.98 15699.72 1599.06 6198.84 7198.74 7099.33 6999.11 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.77 7398.45 7199.15 6799.68 6698.94 9899.49 3899.31 10497.95 3398.91 9799.65 3099.62 3699.18 4797.99 12397.64 13398.33 16197.38 155
SD-MVS98.73 7498.54 6298.95 9299.14 16198.76 11598.46 14499.14 12997.71 5298.56 12298.06 12199.61 3798.85 7598.56 8397.74 12499.54 3999.32 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS98.72 7598.60 5598.87 10099.67 6899.33 4299.15 8299.26 11096.99 8797.90 16998.19 11499.74 1298.29 11097.69 13798.96 4798.96 11499.27 23
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS98.69 7698.09 10399.39 4099.76 4499.07 7299.30 6299.51 6194.76 15899.18 6096.70 16399.51 4899.20 4598.79 7598.71 7299.39 6099.11 38
pmmvs-eth3d98.68 7798.14 9999.29 5599.49 11298.45 13999.45 4499.38 8797.21 7899.50 2699.65 3099.21 7699.16 5297.11 16297.56 13998.79 13397.82 145
EU-MVSNet98.68 7798.94 3398.37 14099.14 16198.74 11799.64 1998.20 18598.21 2499.17 6199.66 2799.18 8199.08 5999.11 4198.86 5395.00 19798.83 71
PMVScopyleft92.51 1798.66 7998.86 3898.43 13599.26 14798.98 8898.60 13498.59 16997.73 5099.45 3299.38 5798.54 13295.24 17899.62 1599.61 1299.42 5698.17 132
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepC-MVS_fast97.38 898.65 8098.34 8399.02 8599.33 13598.29 14698.99 9598.71 16197.40 6799.31 4298.20 11399.40 5798.54 9698.33 10198.18 9999.23 8598.58 93
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator98.16 398.65 8098.35 8299.00 8699.59 8798.70 12098.90 10999.36 9197.97 3299.09 7596.55 16899.09 9797.97 12598.70 7898.65 7699.12 9398.81 74
TSAR-MVS + ACMM98.64 8298.58 5998.72 11499.17 15998.63 12598.69 12499.10 13697.69 5398.30 14499.12 7699.38 5998.70 8398.45 8797.51 14198.35 16099.25 24
DELS-MVS98.63 8398.70 4998.55 13199.24 15199.04 8098.96 9898.52 17296.83 9398.38 13999.58 3899.68 2297.06 15398.74 7798.44 8899.10 9498.59 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM98.62 8498.40 7898.89 9899.57 9498.80 11198.63 12999.35 9496.82 9498.60 11998.85 9399.08 9998.09 11998.31 10298.21 9699.08 10098.72 81
EPP-MVSNet98.61 8598.19 9599.11 7499.86 2099.60 1799.44 4599.53 5797.37 6996.85 19598.69 9793.75 18399.18 4799.22 3699.35 2699.82 1499.32 21
3Dnovator+97.85 598.61 8598.14 9999.15 6799.62 8198.37 14499.10 8899.51 6198.04 2998.98 8796.07 17998.75 12198.55 9498.51 8698.40 8999.17 8998.82 72
X-MVS98.59 8797.99 10999.30 5499.75 4799.07 7299.17 8099.50 6396.62 10498.95 9293.95 19899.37 6099.11 5798.94 6298.86 5399.35 6799.09 43
MVS_111021_HR98.58 8898.26 8998.96 9199.32 13898.81 10998.48 14298.99 14596.81 9699.16 6498.07 11999.23 7298.89 7398.43 8998.27 9598.90 12398.24 124
MVS_030498.57 8998.36 8198.82 10799.72 5998.94 9898.92 10399.14 12996.76 9999.33 4098.30 10999.73 1396.74 15698.05 12097.79 11799.08 10098.97 57
PM-MVS98.57 8998.24 9198.95 9299.26 14798.59 12899.03 9298.74 15896.84 9199.44 3399.13 7598.31 14198.75 8198.03 12198.21 9698.48 15798.58 93
PHI-MVS98.57 8998.20 9499.00 8699.48 11498.91 10298.68 12599.17 12494.97 15499.27 5098.33 10799.33 6498.05 12198.82 7398.62 7799.34 6898.38 113
HPM-MVS++copyleft98.56 9298.08 10499.11 7499.53 10398.61 12799.02 9499.32 10296.29 12899.06 7897.23 14699.50 5098.77 7998.15 11697.90 11198.96 11498.90 66
TSAR-MVS + GP.98.54 9398.29 8898.82 10799.28 14598.59 12897.73 18399.24 11595.93 13798.59 12099.07 7899.17 8298.86 7498.44 8898.10 10299.26 8198.72 81
UGNet98.52 9499.00 2997.96 16299.58 8999.26 4899.27 6799.40 8098.07 2898.28 14698.76 9499.71 1792.24 20598.94 6298.85 5599.00 11299.43 17
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023120698.50 9598.03 10699.05 8099.50 11099.01 8599.15 8299.26 11096.38 12499.12 7299.50 4799.12 9198.60 8897.68 13897.24 15298.66 14197.30 159
CLD-MVS98.48 9698.15 9898.86 10399.53 10398.35 14598.55 13797.83 19496.02 13698.97 8899.08 7799.75 1199.03 6398.10 11997.33 14899.28 7798.44 109
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet98.47 9798.30 8698.67 12099.65 7498.87 10798.82 11699.01 14396.14 13299.29 4598.86 9199.01 10496.54 16198.36 9598.08 10398.72 13798.80 78
APD-MVScopyleft98.47 9797.97 11099.05 8099.64 7798.91 10298.94 10099.45 7894.40 16998.77 10897.26 14599.41 5498.21 11398.67 7998.57 8399.31 7398.57 95
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Vis-MVSNet (Re-imp)98.46 9998.23 9298.73 11399.81 2899.29 4698.79 11999.50 6396.20 13096.03 20198.29 11096.98 16598.54 9699.11 4199.08 3999.70 2598.62 89
Fast-Effi-MVS+98.42 10097.79 11699.15 6799.69 6598.66 12398.94 10099.68 2794.49 16399.05 8098.06 12198.86 11298.48 9998.18 11397.78 11899.05 10798.54 101
ETV-MVS98.41 10197.76 11799.17 6399.58 8999.01 8598.91 10599.50 6393.33 18899.31 4296.82 16098.42 13798.17 11699.13 4099.08 3999.54 3998.56 98
MVS_111021_LR98.39 10298.11 10198.71 11699.08 16798.54 13498.23 16498.56 17196.57 11099.13 7098.41 10498.86 11298.65 8698.23 11197.87 11498.65 14398.28 121
pmmvs598.37 10397.81 11599.03 8399.46 11698.97 9299.03 9298.96 14795.85 13999.05 8099.45 5198.66 12898.79 7896.02 17997.52 14098.87 12598.21 128
OMC-MVS98.35 10498.10 10298.64 12698.85 17897.99 16698.56 13698.21 18397.26 7598.87 10498.54 10399.27 7098.43 10198.34 9997.66 13098.92 12197.65 148
canonicalmvs98.34 10597.92 11298.83 10599.45 11899.21 5798.37 15199.53 5797.06 8597.74 17396.95 15895.05 18098.36 10498.77 7698.85 5599.51 4699.53 9
CHOSEN 1792x268898.31 10698.02 10798.66 12299.55 9698.57 13199.38 5099.25 11398.42 2098.48 13399.58 3899.85 598.31 10895.75 18295.71 17796.96 18498.27 123
xxxxxxxxxxxxxcwj98.28 10798.23 9298.35 14199.43 12398.42 14297.05 20599.09 13796.42 12198.13 15597.73 12999.65 3097.22 14698.36 9598.38 9099.16 9198.62 89
CPTT-MVS98.28 10797.51 12999.16 6599.54 10098.78 11398.96 9899.36 9196.30 12798.89 10193.10 20399.30 6799.20 4598.35 9897.96 10999.03 11098.82 72
TinyColmap98.27 10997.62 12699.03 8399.29 14397.79 17598.92 10398.95 14897.48 6399.52 2498.65 9997.86 15298.90 7198.34 9997.27 15098.64 14495.97 179
diffmvs98.26 11098.16 9698.39 13799.61 8598.78 11398.79 11998.61 16797.94 3497.11 19499.51 4699.52 4497.61 13696.55 17196.93 15898.61 14697.87 143
USDC98.26 11097.57 12799.06 7799.42 12797.98 16898.83 11398.85 15297.57 6099.59 1699.15 7498.59 13098.99 6597.42 15196.08 17698.69 14096.23 177
SF-MVS98.25 11298.16 9698.35 14199.43 12398.42 14297.05 20599.09 13796.42 12198.13 15597.73 12999.20 7897.22 14698.36 9598.38 9099.16 9198.62 89
MCST-MVS98.25 11297.57 12799.06 7799.53 10398.24 15298.63 12999.17 12495.88 13898.58 12196.11 17799.09 9799.18 4797.58 14297.31 14999.25 8298.75 80
IterMVS-LS98.23 11497.66 12298.90 9799.63 8099.38 3799.07 8999.48 6997.75 4598.81 10699.37 5894.57 18297.88 12996.54 17297.04 15598.53 15398.97 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAPA-MVS96.65 1298.23 11497.96 11198.55 13198.81 18098.16 15698.40 14897.94 19296.68 10298.49 13198.61 10098.89 11098.57 9297.45 14897.59 13699.09 9998.35 115
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS98.22 11697.76 11798.76 11199.33 13598.26 15098.48 14298.88 15196.22 12998.47 13595.79 18399.33 6498.35 10598.37 9497.99 10799.03 11098.38 113
IS_MVSNet98.20 11798.00 10898.44 13499.82 2599.48 2599.25 7099.56 4895.58 14493.93 21397.56 13696.52 16998.27 11199.08 4699.20 3399.80 1698.56 98
DeepPCF-MVS96.68 1098.20 11798.26 8998.12 15597.03 21698.11 15998.44 14697.70 19696.77 9898.52 12798.91 8999.17 8298.58 9198.41 9198.02 10598.46 15898.46 106
MSDG98.20 11797.88 11498.56 13099.33 13597.74 17698.27 16198.10 18697.20 8098.06 16098.59 10199.16 8498.76 8098.39 9297.71 12898.86 12796.38 174
testgi98.18 12098.44 7297.89 16499.78 3699.23 5398.78 12199.21 11897.26 7597.41 18497.39 14299.36 6392.85 20298.82 7398.66 7599.31 7398.35 115
CS-MVS98.13 12197.25 13999.16 6599.71 6299.44 3098.80 11899.49 6893.16 19199.19 5793.95 19898.47 13598.19 11598.30 10498.78 6499.56 3798.66 86
Effi-MVS+98.11 12297.29 13599.06 7799.62 8198.55 13298.16 16799.80 1594.64 15999.15 6896.59 16697.43 15898.44 10097.46 14797.90 11199.17 8998.45 108
HyFIR lowres test98.08 12397.16 14599.14 7099.72 5998.91 10299.41 4699.58 4597.93 3598.82 10599.24 6695.81 17598.73 8295.16 19395.13 18698.60 14897.94 140
EIA-MVS98.03 12497.20 14298.99 8999.66 7199.24 5098.53 13999.52 6091.56 20699.25 5195.34 18798.78 11897.72 13398.38 9398.58 8099.28 7798.54 101
train_agg97.99 12597.26 13698.83 10599.43 12398.22 15498.91 10599.07 13994.43 16797.96 16696.42 17299.30 6798.81 7797.39 15396.62 16498.82 12998.47 104
MSLP-MVS++97.99 12597.64 12598.40 13698.91 17698.47 13897.12 20398.78 15696.49 11798.48 13393.57 20199.12 9198.51 9898.31 10298.58 8098.58 15098.95 62
CDPH-MVS97.99 12597.23 14098.87 10099.58 8998.29 14698.83 11399.20 12093.76 18298.11 15896.11 17799.16 8498.23 11297.80 13297.22 15399.29 7698.28 121
FMVSNet297.94 12898.08 10497.77 17098.71 18499.21 5798.62 13199.47 7096.62 10496.37 20099.20 7297.70 15494.39 18997.39 15397.75 12399.08 10098.70 83
PVSNet_BlendedMVS97.93 12997.66 12298.25 14899.30 14098.67 12198.31 15697.95 19094.30 17398.75 11097.63 13398.76 11996.30 16898.29 10697.78 11898.93 11898.18 130
PVSNet_Blended97.93 12997.66 12298.25 14899.30 14098.67 12198.31 15697.95 19094.30 17398.75 11097.63 13398.76 11996.30 16898.29 10697.78 11898.93 11898.18 130
OpenMVScopyleft97.26 997.88 13197.17 14498.70 11799.50 11098.55 13298.34 15499.11 13493.92 18098.90 9895.04 19198.23 14297.38 14398.11 11898.12 10198.95 11698.23 125
pmmvs497.87 13297.02 14998.86 10399.20 15397.68 17998.89 11099.03 14196.57 11099.12 7299.03 8397.26 16298.42 10295.16 19396.34 16898.53 15397.10 166
NCCC97.84 13396.96 15198.87 10099.39 13098.27 14998.46 14499.02 14296.78 9798.73 11491.12 20698.91 10898.57 9297.83 13197.49 14299.04 10998.33 120
Effi-MVS+-dtu97.78 13497.37 13398.26 14699.25 14998.50 13697.89 17799.19 12394.51 16198.16 15395.93 18098.80 11795.97 17198.27 11097.38 14599.10 9498.23 125
MDA-MVSNet-bldmvs97.75 13597.26 13698.33 14399.35 13498.45 13999.32 6197.21 20197.90 3999.05 8099.01 8596.86 16799.08 5999.36 3092.97 19695.97 19396.25 176
CDS-MVSNet97.75 13597.68 12197.83 16899.08 16798.20 15598.68 12598.61 16795.63 14397.80 17199.24 6696.93 16694.09 19497.96 12497.82 11698.71 13897.99 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CNLPA97.75 13597.26 13698.32 14598.58 19297.86 17197.80 17998.09 18796.49 11798.49 13196.15 17698.08 14598.35 10598.00 12297.03 15698.61 14697.21 163
PLCcopyleft95.63 1597.73 13897.01 15098.57 12999.10 16497.80 17497.72 18498.77 15796.34 12598.38 13993.46 20298.06 14698.66 8597.90 12797.65 13298.77 13597.90 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_Test97.69 13997.15 14698.33 14399.27 14698.43 14198.25 16299.29 10695.00 15397.39 18698.86 9198.00 14997.14 15095.38 18896.22 17098.62 14598.15 134
GBi-Net97.69 13997.75 11997.62 17198.71 18499.21 5798.62 13199.33 9894.09 17695.60 20398.17 11695.97 17294.39 18999.05 4999.03 4399.08 10098.70 83
test197.69 13997.75 11997.62 17198.71 18499.21 5798.62 13199.33 9894.09 17695.60 20398.17 11695.97 17294.39 18999.05 4999.03 4399.08 10098.70 83
CANet_DTU97.65 14297.50 13197.82 16999.19 15698.08 16198.41 14798.67 16394.40 16999.16 6498.32 10898.69 12393.96 19697.87 12897.61 13497.51 18097.56 151
IterMVS-SCA-FT97.63 14396.86 15398.52 13399.48 11498.71 11998.84 11298.91 14996.44 12099.16 6499.56 4095.54 17797.95 12695.68 18595.07 18996.76 18597.03 169
TSAR-MVS + COLMAP97.62 14497.31 13497.98 16098.47 19897.39 18398.29 15898.25 18296.68 10297.54 17898.87 9098.04 14897.08 15196.78 16696.26 16998.26 16497.12 165
MS-PatchMatch97.60 14597.22 14198.04 15998.67 18897.18 18797.91 17598.28 18195.82 14198.34 14197.66 13298.38 13897.77 13197.10 16397.25 15197.27 18297.18 164
PCF-MVS95.58 1697.60 14596.67 15498.69 11899.44 12198.23 15398.37 15198.81 15493.01 19498.22 15097.97 12599.59 4098.20 11495.72 18495.08 18799.08 10097.09 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP-MVS97.58 14796.65 15798.66 12299.30 14097.99 16697.88 17898.65 16494.58 16098.66 11694.65 19599.15 8798.59 9096.10 17795.59 17898.90 12398.50 103
DI_MVS_plusplus_trai97.57 14896.55 15998.77 11099.55 9698.76 11599.22 7499.00 14497.08 8497.95 16797.78 12891.35 19098.02 12296.20 17596.81 16098.87 12597.87 143
AdaColmapbinary97.57 14896.57 15898.74 11299.25 14998.01 16498.36 15398.98 14694.44 16698.47 13592.44 20497.91 15198.62 8798.19 11297.74 12498.73 13697.28 160
baseline97.50 15097.51 12997.50 17599.18 15797.38 18498.00 17198.00 18996.52 11697.49 18099.28 6399.43 5395.31 17795.27 19096.22 17096.99 18398.47 104
IterMVS97.40 15196.67 15498.25 14899.45 11898.66 12398.87 11198.73 15996.40 12398.94 9599.56 4095.26 17997.58 13795.38 18894.70 19195.90 19496.72 172
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet97.38 15297.39 13297.37 17898.58 19297.72 17798.70 12397.42 19997.21 7895.95 20299.46 5093.31 18697.38 14397.60 14097.78 11896.18 19098.66 86
new-patchmatchnet97.26 15396.12 16798.58 12899.55 9698.63 12599.14 8497.04 20398.80 1499.19 5799.92 499.19 8098.92 7095.51 18787.04 20597.66 17793.73 195
MIMVSNet97.24 15497.15 14697.36 17999.03 17198.52 13598.55 13799.73 2194.94 15794.94 21097.98 12497.37 16093.66 19797.60 14097.34 14798.23 16796.29 175
PatchMatch-RL97.24 15496.45 16298.17 15298.70 18797.57 18297.31 19898.48 17594.42 16898.39 13895.74 18496.35 17197.88 12997.75 13597.48 14398.24 16695.87 180
thisisatest053097.20 15695.95 17198.66 12299.46 11698.84 10898.29 15899.20 12094.51 16198.25 14897.42 14085.03 20597.68 13498.43 8998.56 8499.08 10098.89 68
tttt051797.18 15795.92 17298.65 12599.49 11298.92 10098.29 15899.20 12094.37 17198.17 15197.37 14384.72 20897.68 13498.55 8498.56 8499.10 9498.95 62
MDTV_nov1_ep13_2view97.12 15896.19 16698.22 15199.13 16398.05 16299.24 7199.47 7097.61 5799.15 6899.59 3699.01 10498.40 10394.87 19690.14 19993.91 20094.04 194
MAR-MVS97.12 15896.28 16598.11 15698.94 17497.22 18697.65 18899.38 8790.93 21298.15 15495.17 18997.13 16396.48 16497.71 13697.40 14498.06 17098.40 112
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+-dtu96.99 16096.46 16197.61 17398.98 17397.89 16997.54 19299.76 1893.43 18696.55 19994.93 19298.06 14694.32 19296.93 16496.50 16698.53 15397.47 152
FPMVS96.97 16197.20 14296.70 19597.75 20896.11 19997.72 18495.47 20797.13 8298.02 16297.57 13596.67 16892.97 20199.00 5898.34 9498.28 16395.58 182
TAMVS96.95 16296.94 15296.97 19099.07 16997.67 18197.98 17397.12 20295.04 15295.41 20699.27 6495.57 17694.09 19497.32 15797.11 15498.16 16996.59 173
FMVSNet396.85 16396.67 15497.06 18497.56 21199.01 8597.99 17299.33 9894.09 17695.60 20398.17 11695.97 17293.26 20094.76 19896.22 17098.59 14998.46 106
GA-MVS96.84 16495.86 17497.98 16099.16 16098.29 14697.91 17598.64 16695.14 15097.71 17498.04 12388.90 19396.50 16396.41 17496.61 16597.97 17497.60 149
CHOSEN 280x42096.80 16596.30 16497.39 17699.09 16596.52 19198.76 12299.29 10693.88 18197.65 17598.34 10693.66 18496.29 17098.28 10897.73 12693.27 20395.70 181
gg-mvs-nofinetune96.77 16696.52 16097.06 18499.66 7197.82 17397.54 19299.86 898.69 1598.61 11899.94 289.62 19188.37 21397.55 14396.67 16298.30 16295.35 183
DPM-MVS96.73 16795.70 17797.95 16398.93 17597.26 18597.39 19798.44 17795.47 14697.62 17690.71 20798.47 13597.03 15495.02 19595.27 18398.26 16497.67 147
baseline196.72 16895.40 17998.26 14699.53 10398.81 10998.32 15598.80 15594.96 15596.78 19896.50 17084.87 20796.68 15997.42 15197.91 11099.46 5097.33 158
N_pmnet96.68 16995.70 17797.84 16799.42 12798.00 16599.35 5598.21 18398.40 2298.13 15599.42 5599.30 6797.44 14294.00 20288.79 20094.47 19991.96 201
pmnet_mix0296.61 17095.32 18098.11 15699.41 12997.68 17999.05 9097.59 19798.16 2699.05 8099.48 4899.11 9398.32 10792.36 20687.67 20295.26 19692.80 199
new_pmnet96.59 17196.40 16396.81 19298.24 20495.46 20897.71 18694.75 21096.92 8896.80 19799.23 6897.81 15396.69 15796.58 17095.16 18596.69 18693.64 196
PMMVS96.47 17295.81 17597.23 18097.38 21395.96 20397.31 19896.91 20493.21 19097.93 16897.14 14997.64 15695.70 17395.24 19196.18 17398.17 16895.33 184
EPNet96.44 17396.08 16896.86 19199.32 13897.15 18897.69 18799.32 10293.67 18398.11 15895.64 18593.44 18589.07 21196.86 16596.83 15997.67 17698.97 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres600view796.35 17494.27 18298.79 10999.66 7199.18 6298.94 10099.38 8794.37 17197.21 19387.19 20984.10 20998.10 11798.16 11499.47 1899.42 5697.43 153
EPNet_dtu96.31 17595.96 17096.72 19499.18 15795.39 20997.03 20799.13 13393.02 19399.35 3797.23 14697.07 16490.70 21095.74 18395.08 18794.94 19898.16 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs396.30 17695.87 17396.80 19397.66 21096.48 19297.93 17493.80 21193.40 18798.54 12598.27 11197.50 15797.37 14597.49 14693.11 19595.52 19594.85 188
PMMVS296.29 17797.05 14895.40 20598.32 20396.16 19698.18 16697.46 19897.20 8084.51 21999.60 3498.68 12596.37 16598.59 8297.38 14597.58 17991.76 202
thres20096.23 17894.13 18398.69 11899.44 12199.18 6298.58 13599.38 8793.52 18597.35 18786.33 21485.83 20397.93 12798.16 11498.78 6499.42 5697.10 166
thres40096.22 17994.08 18598.72 11499.58 8999.05 7698.83 11399.22 11694.01 17997.40 18586.34 21384.91 20697.93 12797.85 13099.08 3999.37 6297.28 160
tfpn200view996.17 18094.08 18598.60 12799.37 13199.18 6298.68 12599.39 8292.02 20097.30 18986.53 21186.34 20097.45 14198.15 11699.08 3999.43 5597.28 160
CMPMVSbinary74.71 1996.17 18096.06 16996.30 19997.41 21294.52 21294.83 21495.46 20891.57 20597.26 19294.45 19798.33 14094.98 18098.28 10897.59 13697.86 17597.68 146
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IB-MVS95.85 1495.87 18294.88 18197.02 18799.09 16598.25 15197.16 20097.38 20091.97 20397.77 17283.61 21697.29 16192.03 20897.16 16197.66 13098.66 14198.20 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 195.81 18395.77 17695.85 20499.20 15398.15 15897.49 19698.50 17392.24 19692.74 21696.82 16092.70 18788.60 21297.31 15997.01 15798.57 15196.19 178
thres100view90095.74 18493.66 19498.17 15299.37 13198.59 12898.10 16898.33 18092.02 20097.30 18986.53 21186.34 20096.69 15796.77 16798.47 8799.24 8496.89 170
ET-MVSNet_ETH3D95.72 18593.85 19097.89 16497.30 21498.09 16098.19 16598.40 17894.46 16598.01 16596.71 16277.85 21996.76 15596.08 17896.39 16798.70 13997.36 156
baseline295.58 18694.04 18797.38 17798.80 18198.16 15697.14 20197.80 19591.45 20797.49 18095.22 18883.63 21094.98 18096.42 17396.66 16398.06 17096.76 171
PatchT95.49 18793.29 19598.06 15898.65 18996.20 19598.91 10599.73 2192.00 20298.50 12896.67 16483.25 21196.34 16694.40 19995.50 17996.21 18995.04 186
CR-MVSNet95.38 18893.01 19698.16 15498.63 19095.85 20597.64 18999.78 1691.27 20998.50 12896.84 15982.16 21296.34 16694.40 19995.50 17998.05 17295.04 186
MVSTER95.38 18893.99 18997.01 18898.83 17998.95 9496.62 20899.14 12992.17 19897.44 18397.29 14477.88 21891.63 20997.45 14896.18 17398.41 15997.99 137
MVS-HIRNet94.86 19093.83 19196.07 20097.07 21594.00 21394.31 21599.17 12491.23 21198.17 15198.69 9797.43 15895.66 17494.05 20191.92 19792.04 21089.46 210
test-LLR94.79 19193.71 19296.06 20199.20 15396.16 19696.31 20998.50 17389.98 21394.08 21197.01 15386.43 19892.20 20696.76 16895.31 18196.05 19194.31 191
RPMNet94.72 19292.01 20197.88 16698.56 19595.85 20597.78 18099.70 2691.27 20998.33 14293.69 20081.88 21394.91 18392.60 20494.34 19398.01 17394.46 190
gm-plane-assit94.62 19391.39 20398.39 13799.90 1299.47 2799.40 4799.65 3397.44 6599.56 2099.68 2659.40 22394.23 19396.17 17694.77 19097.61 17892.79 200
test-mter94.62 19394.02 18895.32 20697.72 20996.75 18996.23 21195.67 20689.83 21693.23 21596.99 15585.94 20292.66 20497.32 15796.11 17596.44 18795.22 185
FMVSNet594.57 19592.77 19796.67 19697.88 20698.72 11897.54 19298.70 16288.64 21795.11 20886.90 21081.77 21493.27 19997.92 12698.07 10497.50 18197.34 157
SCA94.53 19691.95 20297.55 17498.58 19297.86 17198.49 14199.68 2795.11 15199.07 7795.87 18187.24 19696.53 16289.77 20987.08 20492.96 20590.69 205
MDTV_nov1_ep1394.47 19792.15 19997.17 18198.54 19796.42 19398.10 16898.89 15094.49 16398.02 16297.41 14186.49 19795.56 17590.85 20787.95 20193.91 20091.45 204
TESTMET0.1,194.44 19893.71 19295.30 20797.84 20796.16 19696.31 20995.32 20989.98 21394.08 21197.01 15386.43 19892.20 20696.76 16895.31 18196.05 19194.31 191
ADS-MVSNet94.41 19992.13 20097.07 18398.86 17796.60 19098.38 15098.47 17696.13 13498.02 16296.98 15687.50 19595.87 17289.89 20887.58 20392.79 20790.27 207
tpm93.89 20091.21 20497.03 18698.36 20196.07 20097.53 19599.65 3392.24 19698.64 11797.23 14674.67 22294.64 18792.68 20390.73 19893.37 20294.82 189
PatchmatchNetpermissive93.88 20191.08 20597.14 18298.75 18396.01 20298.25 16299.39 8294.95 15698.96 9096.32 17385.35 20495.50 17688.89 21085.89 20891.99 21190.15 208
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS93.67 20290.82 20696.99 18998.62 19196.39 19498.40 14899.11 13495.54 14597.87 17097.14 14981.27 21694.97 18288.54 21286.80 20692.95 20690.06 209
MVEpermissive82.47 1893.12 20394.09 18491.99 21090.79 21782.50 21893.93 21696.30 20596.06 13588.81 21798.19 11496.38 17097.56 13897.24 16095.18 18484.58 21793.07 197
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CostFormer92.75 20489.49 20896.55 19798.78 18295.83 20797.55 19198.59 16991.83 20497.34 18896.31 17478.53 21794.50 18886.14 21384.92 20992.54 20892.84 198
tpmrst92.45 20589.48 20995.92 20398.43 20095.03 21097.14 20197.92 19394.16 17597.56 17797.86 12781.63 21593.56 19885.89 21482.86 21090.91 21588.95 212
dps92.35 20688.78 21196.52 19898.21 20595.94 20497.78 18098.38 17989.88 21596.81 19695.07 19075.31 22194.70 18688.62 21186.21 20793.21 20490.41 206
E-PMN92.28 20790.12 20794.79 20898.56 19590.90 21595.16 21393.68 21295.36 14895.10 20996.56 16789.05 19295.24 17895.21 19281.84 21290.98 21381.94 214
EMVS91.84 20889.39 21094.70 20998.44 19990.84 21695.27 21293.53 21395.18 14995.26 20795.62 18687.59 19494.77 18594.87 19680.72 21390.95 21480.88 215
tpm cat191.52 20987.70 21295.97 20298.33 20294.98 21197.06 20498.03 18892.11 19998.03 16194.77 19477.19 22092.71 20383.56 21582.24 21191.67 21289.04 211
test_method77.69 21085.40 21368.69 21142.66 21955.39 22082.17 21952.05 21592.83 19584.52 21894.88 19395.41 17865.37 21492.49 20579.32 21485.36 21687.50 213
GG-mvs-BLEND65.66 21192.62 19834.20 2131.45 22293.75 21485.40 2181.64 21991.37 20817.21 22187.25 20894.78 1813.25 21895.64 18693.80 19496.27 18891.74 203
testmvs9.73 21213.38 2145.48 2153.62 2204.12 2216.40 2223.19 21814.92 2187.68 22322.10 21713.89 2256.83 21613.47 21610.38 2165.14 22014.81 216
test1239.37 21312.26 2156.00 2143.32 2214.06 2226.39 2233.41 21713.20 21910.48 22216.43 21816.22 2246.76 21711.37 21710.40 2155.62 21914.10 217
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def99.88 2
9.1498.83 116
SR-MVS99.62 8199.47 7099.40 57
Anonymous20240521198.44 7299.79 3399.32 4599.05 9099.34 9796.59 10797.95 12697.68 15597.16 14999.36 3099.28 3099.61 3398.90 66
our_test_399.29 14397.72 17798.98 96
ambc97.89 11399.45 11897.88 17097.78 18097.27 7399.80 398.99 8798.48 13398.55 9497.80 13296.68 16198.54 15298.10 135
MTAPA99.19 5799.68 22
MTMP99.20 5599.54 43
Patchmatch-RL test32.47 221
tmp_tt65.28 21282.24 21871.50 21970.81 22023.21 21696.14 13281.70 22085.98 21592.44 18849.84 21595.81 18194.36 19283.86 218
XVS99.77 3899.07 7299.46 4298.95 9299.37 6099.33 69
X-MVStestdata99.77 3899.07 7299.46 4298.95 9299.37 6099.33 69
abl_698.38 13999.03 17198.04 16398.08 17098.65 16493.23 18998.56 12294.58 19698.57 13197.17 14898.81 13097.42 154
mPP-MVS99.75 4799.49 52
NP-MVS93.07 192
Patchmtry96.05 20197.64 18999.78 1698.50 128
DeepMVS_CXcopyleft87.86 21792.27 21761.98 21493.64 18493.62 21491.17 20591.67 18994.90 18495.99 18092.48 20994.18 193