This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.82 199.76 199.75 199.77 799.87 1699.71 1099.77 899.76 1999.52 299.80 399.79 2199.91 199.56 1399.83 399.75 499.86 999.75 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.74 299.75 199.73 1199.92 599.67 1599.76 1099.84 1199.59 199.52 2499.87 1199.91 199.43 2799.87 199.81 299.89 699.52 10
SixPastTwentyTwo99.70 399.59 499.82 299.93 399.80 199.86 299.87 698.87 1199.79 599.85 1499.33 6599.74 599.85 299.82 199.74 2499.63 5
v7n99.68 499.61 399.76 899.89 1299.74 799.87 199.82 1399.20 699.71 699.96 199.73 1399.76 399.58 2099.59 1699.52 4799.46 15
anonymousdsp99.64 599.55 699.74 1099.87 1699.56 2599.82 399.73 2398.54 1699.71 699.92 499.84 799.61 999.70 999.63 999.69 3399.64 3
UniMVSNet_ETH3D99.61 699.59 499.63 1399.96 199.70 1199.53 3599.86 899.28 599.48 3099.44 5499.86 599.01 6999.78 499.76 399.90 299.33 21
WR-MVS99.61 699.44 899.82 299.92 599.80 199.80 499.89 198.54 1699.66 1399.78 2299.16 8699.68 799.70 999.63 999.94 199.49 13
PEN-MVS99.54 899.30 1599.83 199.92 599.76 499.80 499.88 397.60 6299.71 699.59 3699.52 4399.75 499.64 1599.51 1999.90 299.46 15
TDRefinement99.54 899.50 799.60 1799.70 6799.35 4599.77 899.58 5199.40 499.28 4999.66 2699.41 5499.55 1599.74 899.65 899.70 3099.25 26
DTE-MVSNet99.52 1099.27 1699.82 299.93 399.77 399.79 699.87 697.89 4499.70 1199.55 4599.21 7799.77 299.65 1399.43 2399.90 299.36 19
PS-CasMVS99.50 1199.23 1999.82 299.92 599.75 699.78 799.89 197.30 7399.71 699.60 3499.23 7399.71 699.65 1399.55 1899.90 299.56 8
WR-MVS_H99.48 1299.23 1999.76 899.91 999.76 499.75 1199.88 397.27 7699.58 1799.56 4199.24 7299.56 1399.60 1899.60 1599.88 899.58 7
pm-mvs199.47 1399.38 999.57 2199.82 2899.49 2999.63 2399.65 3998.88 1099.31 4399.85 1499.02 10599.23 4699.60 1899.58 1799.80 1599.22 33
MIMVSNet199.46 1499.34 1099.60 1799.83 2399.68 1499.74 1499.71 2798.20 2699.41 3599.86 1399.66 2599.41 3099.50 2499.39 2699.50 5299.10 44
TransMVSNet (Re)99.45 1599.32 1399.61 1599.88 1499.60 2099.75 1199.63 4399.11 799.28 4999.83 1898.35 14099.27 4399.70 999.62 1399.84 1099.03 52
ACMH97.81 699.44 1699.33 1199.56 2299.81 3299.42 3699.73 1599.58 5199.02 899.10 7399.41 5999.69 1999.60 1099.45 2899.26 3699.55 4399.05 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet99.39 1799.04 2899.80 699.91 999.70 1199.75 1199.88 396.82 9799.68 1299.32 6298.86 11499.68 799.57 2199.47 2099.89 699.52 10
COLMAP_ROBcopyleft98.29 299.37 1899.25 1799.51 3099.74 5899.12 7399.56 3299.39 8798.96 999.17 6199.44 5499.63 3299.58 1199.48 2699.27 3599.60 4098.81 78
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS97.88 499.33 1999.15 2399.53 2999.73 6399.05 8199.49 4099.40 8598.42 1999.55 2199.71 2499.89 399.49 1999.14 4398.81 6799.54 4499.02 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test99.32 2099.33 1199.31 5799.87 1699.65 1899.63 2399.75 2197.76 4697.29 19699.87 1199.63 3299.52 1699.66 1299.63 999.77 2099.12 40
UA-Net99.30 2199.22 2199.39 4499.94 299.66 1798.91 11199.86 897.74 5298.74 11599.00 8999.60 3799.17 5499.50 2499.39 2699.70 3099.64 3
ACMH+97.53 799.29 2299.20 2299.40 4399.81 3299.22 6299.59 2999.50 6898.64 1598.29 14999.21 7499.69 1999.57 1299.53 2399.33 3199.66 3498.81 78
Vis-MVSNetpermissive99.25 2399.32 1399.17 6799.65 7899.55 2799.63 2399.33 10398.16 2799.29 4699.65 3099.77 1097.56 14499.44 3099.14 4199.58 4199.51 12
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet99.23 2498.91 3599.61 1599.81 3299.45 3399.47 4299.68 3097.28 7599.39 3699.54 4699.08 10199.45 2299.09 4998.84 6499.83 1199.04 50
CSCG99.23 2499.15 2399.32 5699.83 2399.45 3398.97 10399.21 12498.83 1299.04 8399.43 5699.64 3099.26 4498.85 7598.20 10399.62 3899.62 6
Gipumacopyleft99.22 2698.86 3999.64 1299.70 6799.24 5699.17 8599.63 4399.52 299.89 196.54 17599.14 9099.93 199.42 3199.15 4099.52 4799.04 50
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tfpnnormal99.19 2798.90 3699.54 2699.81 3299.55 2799.60 2799.54 5998.53 1899.23 5398.40 11098.23 14399.40 3199.29 3699.36 2999.63 3798.95 64
Baseline_NR-MVSNet99.18 2898.87 3799.54 2699.74 5899.56 2599.36 5799.62 4896.53 11899.29 4699.85 1498.64 13299.40 3199.03 6099.63 999.83 1198.86 73
thisisatest051599.16 2998.94 3399.41 3899.75 5299.43 3599.36 5799.63 4397.68 5899.35 3899.31 6398.90 11199.09 6398.95 6599.20 3799.27 8399.11 41
CS-MVS-test99.16 2998.78 4499.60 1799.80 3799.72 999.69 1699.73 2395.88 14099.51 2698.53 10799.54 4199.21 4899.24 3999.43 2399.66 3499.15 39
CS-MVS99.15 3198.75 4699.62 1499.76 4899.73 899.60 2799.75 2195.67 14799.50 2798.53 10799.39 5999.29 4099.21 4199.46 2299.79 1899.29 24
APDe-MVS99.15 3198.95 3099.39 4499.77 4399.28 5399.52 3699.54 5997.22 8099.06 7799.20 7599.64 3099.05 6799.14 4399.02 5199.39 6599.17 37
FC-MVSNet-train99.13 3399.05 2799.21 6299.87 1699.57 2499.67 1899.60 5096.75 10398.28 15099.48 5099.52 4398.10 12299.47 2799.37 2899.76 2299.21 34
NR-MVSNet99.10 3498.68 5699.58 2099.89 1299.23 5999.35 6199.63 4396.58 11199.36 3799.05 8398.67 13099.46 2099.63 1698.73 7799.80 1598.88 72
DVP-MVS++99.09 3599.25 1798.90 10199.53 10799.37 4399.17 8599.48 7398.28 2497.95 17099.54 4699.88 498.13 12199.08 5098.94 5599.15 9699.65 2
DVP-MVScopyleft99.09 3599.07 2699.12 7499.55 10099.40 3899.36 5799.44 8497.75 4998.23 15399.23 7199.80 898.97 7199.08 5098.96 5299.19 9199.25 26
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet (Re)99.08 3798.69 5499.54 2699.75 5299.33 4899.29 6999.64 4296.75 10399.48 3099.30 6598.69 12599.26 4498.94 6798.76 7399.78 1999.02 54
ACMMPR99.05 3898.72 5099.44 3299.79 3899.12 7399.35 6199.56 5497.74 5299.21 5597.72 13799.55 4099.29 4098.90 7398.81 6799.41 6499.19 35
DU-MVS99.04 3998.59 6099.56 2299.74 5899.23 5999.29 6999.63 4396.58 11199.55 2199.05 8398.68 12799.36 3599.03 6098.60 8499.77 2098.97 59
TSAR-MVS + MP.99.02 4098.95 3099.11 7799.23 15798.79 11799.51 3798.73 16597.50 6698.56 12699.03 8699.59 3899.16 5699.29 3699.17 3999.50 5299.24 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v1099.01 4198.66 5799.41 3899.52 11299.39 3999.57 3199.66 3797.59 6399.32 4299.88 999.23 7399.50 1897.77 14097.98 11498.92 12698.78 83
EG-PatchMatch MVS99.01 4198.77 4599.28 6199.64 8198.90 11098.81 12399.27 11496.55 11599.71 699.31 6399.66 2599.17 5499.28 3899.11 4399.10 9898.57 99
PVSNet_Blended_VisFu98.98 4398.79 4299.21 6299.76 4899.34 4699.35 6199.35 9997.12 8699.46 3299.56 4198.89 11298.08 12699.05 5498.58 8699.27 8398.98 58
HFP-MVS98.97 4498.70 5299.29 5999.67 7298.98 9399.13 9199.53 6297.76 4698.90 9898.07 12599.50 4999.14 5998.64 8798.78 7199.37 6799.18 36
UniMVSNet_NR-MVSNet98.97 4498.46 7099.56 2299.76 4899.34 4699.29 6999.61 4996.55 11599.55 2199.05 8397.96 15199.36 3598.84 7698.50 9299.81 1498.97 59
casdiffmvs_mvgpermissive98.96 4698.87 3799.07 8099.82 2899.36 4499.36 5799.22 12198.13 2997.74 17799.42 5799.46 5298.59 9498.39 9998.95 5499.71 2998.39 117
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet98.96 4698.45 7399.56 2299.88 1499.70 1199.68 1799.78 1694.15 18198.97 8798.26 11799.21 7799.35 3799.30 3599.14 4199.73 2599.40 18
SED-MVS98.94 4898.95 3098.91 10099.43 12899.38 4199.12 9399.46 7897.05 8998.43 14199.23 7199.79 997.99 12999.05 5498.94 5599.05 11299.23 31
ACMMP_NAP98.94 4898.72 5099.21 6299.67 7299.08 7699.26 7499.39 8796.84 9498.88 10298.22 11899.68 2198.82 8099.06 5398.90 5899.25 8699.25 26
v114498.94 4898.53 6599.42 3699.62 8599.03 8799.58 3099.36 9697.99 3599.49 2999.91 899.20 8099.51 1797.61 14597.85 12198.95 12198.10 140
v898.94 4898.60 5899.35 5399.54 10499.39 3999.55 3399.67 3497.48 6799.13 6999.81 1999.10 9799.39 3397.86 13597.89 11998.81 13598.66 92
SteuartSystems-ACMMP98.94 4898.52 6699.43 3599.79 3899.13 7299.33 6599.55 5696.17 13399.04 8397.53 14399.65 2999.46 2099.04 5998.76 7399.44 5999.35 20
Skip Steuart: Steuart Systems R&D Blog.
v119298.91 5398.48 6999.41 3899.61 8999.03 8799.64 2099.25 11897.91 4199.58 1799.92 499.07 10399.45 2297.55 14997.68 13598.93 12398.23 130
FMVSNet198.90 5499.10 2598.67 12699.54 10499.48 3099.22 7999.66 3798.39 2297.50 18499.66 2699.04 10496.58 16599.05 5499.03 4899.52 4799.08 46
ACMM96.66 1198.90 5498.44 7599.44 3299.74 5898.95 9999.47 4299.55 5697.66 6099.09 7496.43 17799.41 5499.35 3798.95 6598.67 8099.45 5799.03 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121198.89 5698.79 4298.99 9399.82 2899.41 3799.18 8499.31 10996.92 9198.54 12898.58 10598.84 11797.46 14699.45 2899.29 3399.65 3699.08 46
v192192098.89 5698.46 7099.39 4499.58 9399.04 8599.64 2099.17 13097.91 4199.64 1599.92 498.99 10999.44 2597.44 15697.57 14498.84 13398.35 120
GeoE98.88 5898.43 7899.41 3899.83 2399.24 5699.51 3799.82 1396.55 11599.22 5498.76 9799.22 7698.96 7298.55 9098.15 10599.10 9898.56 102
v14419298.88 5898.46 7099.37 5199.56 9999.03 8799.61 2699.26 11597.79 4599.58 1799.88 999.11 9599.43 2797.38 16197.61 14098.80 13698.43 114
SMA-MVScopyleft98.87 6098.73 4999.04 8699.72 6499.05 8198.64 13499.17 13096.31 12898.80 10999.07 8199.70 1898.67 8898.93 7098.82 6599.23 8999.23 31
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP96.54 1398.87 6098.40 8199.41 3899.74 5898.88 11199.29 6999.50 6896.85 9398.96 9097.05 15999.66 2599.43 2798.98 6498.60 8499.52 4798.81 78
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet98.86 6298.57 6399.19 6599.86 2099.67 1599.39 5199.71 2797.53 6598.69 11895.85 18898.48 13597.75 13899.57 2199.41 2599.72 2699.48 14
v124098.86 6298.41 8099.38 4999.59 9199.05 8199.65 1999.14 13597.68 5899.66 1399.93 398.72 12499.45 2297.38 16197.72 13398.79 13798.35 120
CP-MVS98.86 6298.43 7899.36 5299.68 7098.97 9799.19 8299.46 7896.60 10999.20 5697.11 15899.51 4799.15 5898.92 7198.82 6599.45 5799.08 46
v2v48298.85 6598.40 8199.38 4999.65 7898.98 9399.55 3399.39 8797.92 4099.35 3899.85 1499.14 9099.39 3397.50 15197.78 12498.98 11897.60 156
DPE-MVScopyleft98.84 6698.69 5499.00 9099.05 17699.26 5499.19 8299.35 9995.85 14298.74 11599.27 6799.66 2598.30 11498.90 7398.93 5799.37 6799.00 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS98.84 6698.59 6099.12 7499.52 11298.50 14299.13 9199.22 12197.76 4698.76 11198.70 9999.61 3598.90 7598.67 8598.37 9799.19 9198.57 99
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test20.0398.84 6698.74 4898.95 9699.77 4399.33 4899.21 8199.46 7897.29 7498.88 10299.65 3099.10 9797.07 15699.11 4698.76 7399.32 7697.98 144
casdiffmvspermissive98.84 6698.75 4698.94 9999.75 5299.21 6399.33 6599.04 14598.04 3197.46 18799.72 2399.72 1598.60 9298.30 11198.37 9799.48 5497.92 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LGP-MVS_train98.84 6698.33 8799.44 3299.78 4198.98 9399.39 5199.55 5695.41 15298.90 9897.51 14499.68 2199.44 2599.03 6098.81 6799.57 4298.91 68
RPSCF98.84 6698.81 4198.89 10399.37 13698.95 9998.51 14698.85 15897.73 5498.33 14698.97 9199.14 9098.95 7399.18 4298.68 7999.31 7798.99 57
ACMMPcopyleft98.82 7298.33 8799.39 4499.77 4399.14 7199.37 5499.54 5996.47 12299.03 8596.26 18199.52 4399.28 4298.92 7198.80 7099.37 6799.16 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
V4298.81 7398.49 6899.18 6699.52 11298.92 10599.50 3999.29 11197.43 7098.97 8799.81 1999.00 10899.30 3997.93 13198.01 11298.51 16198.34 124
LS3D98.79 7498.52 6699.12 7499.64 8199.09 7599.24 7799.46 7897.75 4998.93 9697.47 14698.23 14397.98 13099.36 3299.30 3299.46 5598.42 115
MP-MVScopyleft98.78 7598.30 8999.34 5599.75 5298.95 9999.26 7499.46 7895.78 14699.17 6196.98 16399.72 1599.06 6698.84 7698.74 7699.33 7399.11 41
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.77 7698.45 7399.15 7099.68 7098.94 10399.49 4099.31 10997.95 3798.91 9799.65 3099.62 3499.18 5197.99 12997.64 13998.33 16697.38 161
test111198.75 7798.14 10299.46 3199.86 2099.63 1999.47 4299.68 3098.34 2398.76 11199.66 2690.92 19599.23 4699.77 599.71 599.75 2398.95 64
ECVR-MVScopyleft98.74 7898.15 10099.42 3699.83 2399.58 2299.37 5499.67 3498.02 3398.85 10699.59 3691.66 19399.10 6199.77 599.70 699.72 2698.73 85
SD-MVS98.73 7998.54 6498.95 9699.14 16698.76 12098.46 15099.14 13597.71 5698.56 12698.06 12799.61 3598.85 7998.56 8997.74 13099.54 4499.32 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS98.72 8098.60 5898.87 10599.67 7299.33 4899.15 8899.26 11596.99 9097.90 17398.19 12099.74 1298.29 11597.69 14398.96 5298.96 11999.27 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS98.69 8198.09 10799.39 4499.76 4899.07 7799.30 6899.51 6694.76 16399.18 6096.70 17099.51 4799.20 4998.79 8198.71 7899.39 6599.11 41
pmmvs-eth3d98.68 8298.14 10299.29 5999.49 11798.45 14599.45 4799.38 9297.21 8199.50 2799.65 3099.21 7799.16 5697.11 16897.56 14598.79 13797.82 150
EU-MVSNet98.68 8298.94 3398.37 14699.14 16698.74 12299.64 2098.20 19098.21 2599.17 6199.66 2699.18 8399.08 6499.11 4698.86 6095.00 20398.83 75
PMVScopyleft92.51 1798.66 8498.86 3998.43 14299.26 15298.98 9398.60 14098.59 17497.73 5499.45 3399.38 6098.54 13495.24 18399.62 1799.61 1499.42 6198.17 137
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepC-MVS_fast97.38 898.65 8598.34 8699.02 8999.33 14098.29 15298.99 10198.71 16797.40 7199.31 4398.20 11999.40 5798.54 10198.33 10898.18 10499.23 8998.58 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator98.16 398.65 8598.35 8599.00 9099.59 9198.70 12598.90 11599.36 9697.97 3699.09 7496.55 17499.09 9997.97 13198.70 8498.65 8299.12 9798.81 78
TSAR-MVS + ACMM98.64 8798.58 6298.72 12099.17 16498.63 13198.69 12999.10 14297.69 5798.30 14899.12 7999.38 6098.70 8798.45 9497.51 14798.35 16599.25 26
DELS-MVS98.63 8898.70 5298.55 13899.24 15699.04 8598.96 10498.52 17796.83 9698.38 14399.58 3999.68 2197.06 15798.74 8398.44 9499.10 9898.59 96
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM98.62 8998.40 8198.89 10399.57 9898.80 11698.63 13599.35 9996.82 9798.60 12298.85 9699.08 10198.09 12498.31 10998.21 10199.08 10498.72 86
EPP-MVSNet98.61 9098.19 9799.11 7799.86 2099.60 2099.44 4899.53 6297.37 7296.85 20198.69 10093.75 18699.18 5199.22 4099.35 3099.82 1399.32 22
3Dnovator+97.85 598.61 9098.14 10299.15 7099.62 8598.37 14999.10 9499.51 6698.04 3198.98 8696.07 18598.75 12398.55 9998.51 9298.40 9599.17 9398.82 76
X-MVS98.59 9297.99 11399.30 5899.75 5299.07 7799.17 8599.50 6896.62 10798.95 9293.95 20499.37 6199.11 6098.94 6798.86 6099.35 7199.09 45
MVS_111021_HR98.58 9398.26 9298.96 9599.32 14398.81 11498.48 14898.99 15096.81 9999.16 6498.07 12599.23 7398.89 7798.43 9698.27 10098.90 12898.24 129
MVS_030498.57 9498.36 8498.82 11299.72 6498.94 10398.92 10999.14 13596.76 10299.33 4198.30 11499.73 1396.74 16198.05 12697.79 12399.08 10498.97 59
PM-MVS98.57 9498.24 9498.95 9699.26 15298.59 13499.03 9898.74 16496.84 9499.44 3499.13 7898.31 14298.75 8598.03 12798.21 10198.48 16298.58 97
PHI-MVS98.57 9498.20 9699.00 9099.48 11998.91 10798.68 13099.17 13094.97 15999.27 5198.33 11299.33 6598.05 12798.82 7998.62 8399.34 7298.38 118
HPM-MVS++copyleft98.56 9798.08 10899.11 7799.53 10798.61 13399.02 10099.32 10796.29 13099.06 7797.23 15399.50 4998.77 8398.15 12297.90 11798.96 11998.90 69
TSAR-MVS + GP.98.54 9898.29 9198.82 11299.28 15098.59 13497.73 18999.24 12095.93 13998.59 12399.07 8199.17 8498.86 7898.44 9598.10 10799.26 8598.72 86
UGNet98.52 9999.00 2997.96 16799.58 9399.26 5499.27 7399.40 8598.07 3098.28 15098.76 9799.71 1792.24 21198.94 6798.85 6299.00 11799.43 17
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023120698.50 10098.03 11099.05 8499.50 11599.01 9099.15 8899.26 11596.38 12699.12 7199.50 4999.12 9398.60 9297.68 14497.24 15898.66 14597.30 165
CLD-MVS98.48 10198.15 10098.86 10899.53 10798.35 15098.55 14397.83 19996.02 13898.97 8799.08 8099.75 1199.03 6898.10 12597.33 15499.28 8198.44 113
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet98.47 10298.30 8998.67 12699.65 7898.87 11298.82 12299.01 14896.14 13499.29 4698.86 9499.01 10696.54 16698.36 10398.08 10998.72 14198.80 82
APD-MVScopyleft98.47 10297.97 11499.05 8499.64 8198.91 10798.94 10699.45 8394.40 17498.77 11097.26 15299.41 5498.21 11898.67 8598.57 8999.31 7798.57 99
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Vis-MVSNet (Re-imp)98.46 10498.23 9598.73 11999.81 3299.29 5298.79 12499.50 6896.20 13296.03 20798.29 11596.98 16698.54 10199.11 4699.08 4499.70 3098.62 94
Fast-Effi-MVS+98.42 10597.79 12099.15 7099.69 6998.66 12998.94 10699.68 3094.49 16899.05 7998.06 12798.86 11498.48 10498.18 11997.78 12499.05 11298.54 105
ETV-MVS98.41 10697.76 12199.17 6799.58 9399.01 9098.91 11199.50 6893.33 19499.31 4396.82 16798.42 13898.17 12099.13 4599.08 4499.54 4498.56 102
MVS_111021_LR98.39 10798.11 10598.71 12299.08 17398.54 14098.23 17198.56 17696.57 11399.13 6998.41 10998.86 11498.65 9098.23 11797.87 12098.65 14798.28 126
pmmvs598.37 10897.81 11999.03 8799.46 12198.97 9799.03 9898.96 15295.85 14299.05 7999.45 5398.66 13198.79 8296.02 18597.52 14698.87 13098.21 133
OMC-MVS98.35 10998.10 10698.64 13298.85 18397.99 17198.56 14298.21 18897.26 7898.87 10498.54 10699.27 7198.43 10698.34 10697.66 13698.92 12697.65 155
canonicalmvs98.34 11097.92 11698.83 11099.45 12399.21 6398.37 15899.53 6297.06 8897.74 17796.95 16595.05 18398.36 10998.77 8298.85 6299.51 5199.53 9
CHOSEN 1792x268898.31 11198.02 11198.66 12899.55 10098.57 13799.38 5399.25 11898.42 1998.48 13699.58 3999.85 698.31 11395.75 18895.71 18396.96 19098.27 128
CPTT-MVS98.28 11297.51 13499.16 6999.54 10498.78 11898.96 10499.36 9696.30 12998.89 10193.10 20899.30 6899.20 4998.35 10597.96 11599.03 11598.82 76
TinyColmap98.27 11397.62 13199.03 8799.29 14897.79 18098.92 10998.95 15397.48 6799.52 2498.65 10297.86 15398.90 7598.34 10697.27 15698.64 14895.97 185
diffmvspermissive98.26 11498.16 9898.39 14499.61 8998.78 11898.79 12498.61 17297.94 3897.11 20099.51 4899.52 4397.61 14296.55 17796.93 16498.61 15097.87 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
USDC98.26 11497.57 13299.06 8199.42 13197.98 17398.83 11998.85 15897.57 6499.59 1699.15 7798.59 13398.99 7097.42 15796.08 18298.69 14496.23 183
SF-MVS98.25 11698.16 9898.35 14799.43 12898.42 14897.05 21199.09 14396.42 12498.13 15997.73 13699.20 8097.22 15298.36 10398.38 9699.16 9598.62 94
MCST-MVS98.25 11697.57 13299.06 8199.53 10798.24 15898.63 13599.17 13095.88 14098.58 12496.11 18399.09 9999.18 5197.58 14897.31 15599.25 8698.75 84
IterMVS-LS98.23 11897.66 12798.90 10199.63 8499.38 4199.07 9599.48 7397.75 4998.81 10899.37 6194.57 18597.88 13596.54 17897.04 16198.53 15898.97 59
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAPA-MVS96.65 1298.23 11897.96 11598.55 13898.81 18598.16 16298.40 15597.94 19796.68 10598.49 13498.61 10398.89 11298.57 9797.45 15497.59 14299.09 10398.35 120
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS98.22 12097.76 12198.76 11799.33 14098.26 15698.48 14898.88 15696.22 13198.47 13895.79 18999.33 6598.35 11098.37 10297.99 11399.03 11598.38 118
IS_MVSNet98.20 12198.00 11298.44 14199.82 2899.48 3099.25 7699.56 5495.58 14993.93 21997.56 14296.52 17198.27 11699.08 5099.20 3799.80 1598.56 102
DeepPCF-MVS96.68 1098.20 12198.26 9298.12 16097.03 22298.11 16598.44 15297.70 20196.77 10198.52 13098.91 9299.17 8498.58 9698.41 9898.02 11198.46 16398.46 110
MSDG98.20 12197.88 11898.56 13699.33 14097.74 18198.27 16898.10 19197.20 8398.06 16398.59 10499.16 8698.76 8498.39 9997.71 13498.86 13296.38 180
testgi98.18 12498.44 7597.89 16999.78 4199.23 5998.78 12699.21 12497.26 7897.41 18997.39 14999.36 6492.85 20798.82 7998.66 8199.31 7798.35 120
Effi-MVS+98.11 12597.29 14099.06 8199.62 8598.55 13898.16 17499.80 1594.64 16499.15 6796.59 17297.43 15998.44 10597.46 15397.90 11799.17 9398.45 112
FA-MVS(training)98.08 12697.68 12598.56 13699.14 16698.69 12698.41 15399.83 1295.85 14298.57 12597.95 13296.92 16896.85 15998.51 9298.09 10898.54 15697.74 151
HyFIR lowres test98.08 12697.16 14999.14 7399.72 6498.91 10799.41 4999.58 5197.93 3998.82 10799.24 6995.81 17798.73 8695.16 19995.13 19298.60 15297.94 145
EIA-MVS98.03 12897.20 14698.99 9399.66 7599.24 5698.53 14599.52 6591.56 21099.25 5295.34 19398.78 12097.72 13998.38 10198.58 8699.28 8198.54 105
train_agg97.99 12997.26 14198.83 11099.43 12898.22 16098.91 11199.07 14494.43 17297.96 16996.42 17899.30 6898.81 8197.39 15996.62 17098.82 13498.47 108
MSLP-MVS++97.99 12997.64 13098.40 14398.91 18198.47 14497.12 20998.78 16296.49 12098.48 13693.57 20699.12 9398.51 10398.31 10998.58 8698.58 15498.95 64
CDPH-MVS97.99 12997.23 14498.87 10599.58 9398.29 15298.83 11999.20 12693.76 18898.11 16196.11 18399.16 8698.23 11797.80 13897.22 15999.29 8098.28 126
FMVSNet297.94 13298.08 10897.77 17598.71 18999.21 6398.62 13799.47 7596.62 10796.37 20699.20 7597.70 15594.39 19497.39 15997.75 12999.08 10498.70 89
PVSNet_BlendedMVS97.93 13397.66 12798.25 15399.30 14598.67 12798.31 16397.95 19594.30 17898.75 11397.63 13998.76 12196.30 17398.29 11297.78 12498.93 12398.18 135
PVSNet_Blended97.93 13397.66 12798.25 15399.30 14598.67 12798.31 16397.95 19594.30 17898.75 11397.63 13998.76 12196.30 17398.29 11297.78 12498.93 12398.18 135
OpenMVScopyleft97.26 997.88 13597.17 14898.70 12399.50 11598.55 13898.34 16199.11 14093.92 18698.90 9895.04 19898.23 14397.38 14998.11 12498.12 10698.95 12198.23 130
pmmvs497.87 13697.02 15398.86 10899.20 15897.68 18498.89 11699.03 14696.57 11399.12 7199.03 8697.26 16398.42 10795.16 19996.34 17498.53 15897.10 172
NCCC97.84 13796.96 15598.87 10599.39 13498.27 15598.46 15099.02 14796.78 10098.73 11791.12 21298.91 11098.57 9797.83 13797.49 14899.04 11498.33 125
Effi-MVS+-dtu97.78 13897.37 13898.26 15199.25 15498.50 14297.89 18399.19 12994.51 16698.16 15795.93 18698.80 11995.97 17698.27 11697.38 15199.10 9898.23 130
MDA-MVSNet-bldmvs97.75 13997.26 14198.33 14899.35 13998.45 14599.32 6797.21 20697.90 4399.05 7999.01 8896.86 16999.08 6499.36 3292.97 20295.97 19996.25 182
CDS-MVSNet97.75 13997.68 12597.83 17399.08 17398.20 16198.68 13098.61 17295.63 14897.80 17599.24 6996.93 16794.09 19997.96 13097.82 12298.71 14297.99 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CNLPA97.75 13997.26 14198.32 15098.58 19797.86 17697.80 18598.09 19296.49 12098.49 13496.15 18298.08 14698.35 11098.00 12897.03 16298.61 15097.21 169
PLCcopyleft95.63 1597.73 14297.01 15498.57 13599.10 17097.80 17997.72 19098.77 16396.34 12798.38 14393.46 20798.06 14798.66 8997.90 13397.65 13898.77 13997.90 147
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_Test97.69 14397.15 15098.33 14899.27 15198.43 14798.25 16999.29 11195.00 15897.39 19198.86 9498.00 15097.14 15495.38 19496.22 17698.62 14998.15 139
GBi-Net97.69 14397.75 12397.62 17698.71 18999.21 6398.62 13799.33 10394.09 18295.60 20998.17 12295.97 17494.39 19499.05 5499.03 4899.08 10498.70 89
test197.69 14397.75 12397.62 17698.71 18999.21 6398.62 13799.33 10394.09 18295.60 20998.17 12295.97 17494.39 19499.05 5499.03 4899.08 10498.70 89
CANet_DTU97.65 14697.50 13697.82 17499.19 16198.08 16798.41 15398.67 16994.40 17499.16 6498.32 11398.69 12593.96 20197.87 13497.61 14097.51 18697.56 158
IterMVS-SCA-FT97.63 14796.86 15798.52 14099.48 11998.71 12498.84 11898.91 15496.44 12399.16 6499.56 4195.54 17997.95 13295.68 19195.07 19596.76 19197.03 175
TSAR-MVS + COLMAP97.62 14897.31 13997.98 16598.47 20397.39 18898.29 16598.25 18796.68 10597.54 18398.87 9398.04 14997.08 15596.78 17296.26 17598.26 16997.12 171
MS-PatchMatch97.60 14997.22 14598.04 16498.67 19397.18 19397.91 18198.28 18695.82 14598.34 14597.66 13898.38 13997.77 13797.10 16997.25 15797.27 18897.18 170
PCF-MVS95.58 1697.60 14996.67 15898.69 12499.44 12698.23 15998.37 15898.81 16093.01 19898.22 15497.97 13199.59 3898.20 11995.72 19095.08 19399.08 10497.09 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP-MVS97.58 15196.65 16198.66 12899.30 14597.99 17197.88 18498.65 17094.58 16598.66 11994.65 20299.15 8998.59 9496.10 18395.59 18498.90 12898.50 107
DI_MVS_plusplus_trai97.57 15296.55 16398.77 11699.55 10098.76 12099.22 7999.00 14997.08 8797.95 17097.78 13591.35 19498.02 12896.20 18196.81 16698.87 13097.87 148
AdaColmapbinary97.57 15296.57 16298.74 11899.25 15498.01 16998.36 16098.98 15194.44 17198.47 13892.44 20997.91 15298.62 9198.19 11897.74 13098.73 14097.28 166
baseline97.50 15497.51 13497.50 18099.18 16297.38 18998.00 17798.00 19496.52 11997.49 18599.28 6699.43 5395.31 18295.27 19696.22 17696.99 18998.47 108
IterMVS97.40 15596.67 15898.25 15399.45 12398.66 12998.87 11798.73 16596.40 12598.94 9599.56 4195.26 18197.58 14395.38 19494.70 19795.90 20096.72 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re97.38 15696.15 17198.82 11299.39 13498.34 15198.65 13398.88 15690.80 21798.86 10592.35 21095.13 18298.09 12498.84 7698.88 5999.06 11198.71 88
CVMVSNet97.38 15697.39 13797.37 18398.58 19797.72 18298.70 12897.42 20497.21 8195.95 20899.46 5293.31 18997.38 14997.60 14697.78 12496.18 19698.66 92
new-patchmatchnet97.26 15896.12 17298.58 13499.55 10098.63 13199.14 9097.04 20898.80 1399.19 5899.92 499.19 8298.92 7495.51 19387.04 21197.66 18393.73 201
MIMVSNet97.24 15997.15 15097.36 18499.03 17798.52 14198.55 14399.73 2394.94 16294.94 21697.98 13097.37 16193.66 20297.60 14697.34 15398.23 17296.29 181
PatchMatch-RL97.24 15996.45 16698.17 15798.70 19297.57 18797.31 20498.48 18094.42 17398.39 14295.74 19096.35 17397.88 13597.75 14197.48 14998.24 17195.87 186
thisisatest053097.20 16195.95 17698.66 12899.46 12198.84 11398.29 16599.20 12694.51 16698.25 15297.42 14785.03 21097.68 14098.43 9698.56 9099.08 10498.89 71
tttt051797.18 16295.92 17798.65 13199.49 11798.92 10598.29 16599.20 12694.37 17698.17 15597.37 15084.72 21397.68 14098.55 9098.56 9099.10 9898.95 64
MDTV_nov1_ep13_2view97.12 16396.19 17098.22 15699.13 16998.05 16899.24 7799.47 7597.61 6199.15 6799.59 3699.01 10698.40 10894.87 20290.14 20593.91 20694.04 200
MAR-MVS97.12 16396.28 16998.11 16198.94 17997.22 19197.65 19499.38 9290.93 21698.15 15895.17 19597.13 16496.48 16997.71 14297.40 15098.06 17698.40 116
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+-dtu96.99 16596.46 16597.61 17898.98 17897.89 17497.54 19899.76 1993.43 19296.55 20594.93 19998.06 14794.32 19796.93 17096.50 17298.53 15897.47 159
FPMVS96.97 16697.20 14696.70 20097.75 21496.11 20597.72 19095.47 21297.13 8598.02 16597.57 14196.67 17092.97 20699.00 6398.34 9998.28 16895.58 188
TAMVS96.95 16796.94 15696.97 19599.07 17597.67 18697.98 17997.12 20795.04 15795.41 21299.27 6795.57 17894.09 19997.32 16397.11 16098.16 17496.59 179
FMVSNet396.85 16896.67 15897.06 18997.56 21799.01 9097.99 17899.33 10394.09 18295.60 20998.17 12295.97 17493.26 20594.76 20496.22 17698.59 15398.46 110
GA-MVS96.84 16995.86 17997.98 16599.16 16598.29 15297.91 18198.64 17195.14 15597.71 17998.04 12988.90 19896.50 16896.41 18096.61 17197.97 18097.60 156
CHOSEN 280x42096.80 17096.30 16897.39 18199.09 17196.52 19798.76 12799.29 11193.88 18797.65 18098.34 11193.66 18796.29 17598.28 11497.73 13293.27 20995.70 187
gg-mvs-nofinetune96.77 17196.52 16497.06 18999.66 7597.82 17897.54 19899.86 898.69 1498.61 12199.94 289.62 19688.37 21997.55 14996.67 16898.30 16795.35 189
DPM-MVS96.73 17295.70 18297.95 16898.93 18097.26 19097.39 20398.44 18295.47 15197.62 18190.71 21398.47 13797.03 15895.02 20195.27 18998.26 16997.67 153
baseline196.72 17395.40 18498.26 15199.53 10798.81 11498.32 16298.80 16194.96 16096.78 20496.50 17684.87 21296.68 16497.42 15797.91 11699.46 5597.33 164
N_pmnet96.68 17495.70 18297.84 17299.42 13198.00 17099.35 6198.21 18898.40 2198.13 15999.42 5799.30 6897.44 14894.00 20888.79 20694.47 20591.96 207
pmnet_mix0296.61 17595.32 18598.11 16199.41 13397.68 18499.05 9697.59 20298.16 2799.05 7999.48 5099.11 9598.32 11292.36 21287.67 20895.26 20292.80 205
new_pmnet96.59 17696.40 16796.81 19798.24 21095.46 21497.71 19294.75 21596.92 9196.80 20399.23 7197.81 15496.69 16296.58 17695.16 19196.69 19293.64 202
PMMVS96.47 17795.81 18097.23 18597.38 21995.96 20997.31 20496.91 20993.21 19597.93 17297.14 15697.64 15795.70 17895.24 19796.18 17998.17 17395.33 190
EPNet96.44 17896.08 17396.86 19699.32 14397.15 19497.69 19399.32 10793.67 18998.11 16195.64 19193.44 18889.07 21796.86 17196.83 16597.67 18298.97 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres600view796.35 17994.27 18798.79 11599.66 7599.18 6898.94 10699.38 9294.37 17697.21 19887.19 21584.10 21498.10 12298.16 12099.47 2099.42 6197.43 160
EPNet_dtu96.31 18095.96 17596.72 19999.18 16295.39 21597.03 21299.13 13993.02 19799.35 3897.23 15397.07 16590.70 21695.74 18995.08 19394.94 20498.16 138
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs396.30 18195.87 17896.80 19897.66 21696.48 19897.93 18093.80 21693.40 19398.54 12898.27 11697.50 15897.37 15197.49 15293.11 20195.52 20194.85 194
PMMVS296.29 18297.05 15295.40 21098.32 20996.16 20298.18 17397.46 20397.20 8384.51 22599.60 3498.68 12796.37 17098.59 8897.38 15197.58 18591.76 208
thres20096.23 18394.13 18898.69 12499.44 12699.18 6898.58 14199.38 9293.52 19197.35 19286.33 22085.83 20897.93 13398.16 12098.78 7199.42 6197.10 172
thres40096.22 18494.08 19098.72 12099.58 9399.05 8198.83 11999.22 12194.01 18597.40 19086.34 21984.91 21197.93 13397.85 13699.08 4499.37 6797.28 166
tfpn200view996.17 18594.08 19098.60 13399.37 13699.18 6898.68 13099.39 8792.02 20497.30 19486.53 21786.34 20597.45 14798.15 12299.08 4499.43 6097.28 166
CMPMVSbinary74.71 1996.17 18596.06 17496.30 20497.41 21894.52 21894.83 22095.46 21391.57 20997.26 19794.45 20398.33 14194.98 18598.28 11497.59 14297.86 18197.68 152
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test250696.12 18793.35 20099.35 5399.83 2399.58 2299.37 5499.67 3498.02 3398.44 14097.51 14460.03 22899.10 6199.77 599.70 699.72 2698.86 73
IB-MVS95.85 1495.87 18894.88 18697.02 19299.09 17198.25 15797.16 20697.38 20591.97 20797.77 17683.61 22297.29 16292.03 21497.16 16797.66 13698.66 14598.20 134
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 195.81 18995.77 18195.85 20999.20 15898.15 16497.49 20298.50 17892.24 20092.74 22296.82 16792.70 19088.60 21897.31 16597.01 16398.57 15596.19 184
thres100view90095.74 19093.66 19998.17 15799.37 13698.59 13498.10 17598.33 18592.02 20497.30 19486.53 21786.34 20596.69 16296.77 17398.47 9399.24 8896.89 176
ET-MVSNet_ETH3D95.72 19193.85 19597.89 16997.30 22098.09 16698.19 17298.40 18394.46 17098.01 16896.71 16977.85 22496.76 16096.08 18496.39 17398.70 14397.36 162
baseline295.58 19294.04 19297.38 18298.80 18698.16 16297.14 20797.80 20091.45 21197.49 18595.22 19483.63 21594.98 18596.42 17996.66 16998.06 17696.76 177
PatchT95.49 19393.29 20198.06 16398.65 19496.20 20198.91 11199.73 2392.00 20698.50 13196.67 17183.25 21696.34 17194.40 20595.50 18596.21 19595.04 192
CR-MVSNet95.38 19493.01 20298.16 15998.63 19595.85 21197.64 19599.78 1691.27 21398.50 13196.84 16682.16 21796.34 17194.40 20595.50 18598.05 17895.04 192
MVSTER95.38 19493.99 19497.01 19398.83 18498.95 9996.62 21399.14 13592.17 20297.44 18897.29 15177.88 22391.63 21597.45 15496.18 17998.41 16497.99 142
MVS-HIRNet94.86 19693.83 19696.07 20597.07 22194.00 21994.31 22199.17 13091.23 21598.17 15598.69 10097.43 15995.66 17994.05 20791.92 20392.04 21689.46 216
test-LLR94.79 19793.71 19796.06 20699.20 15896.16 20296.31 21598.50 17889.98 21894.08 21797.01 16086.43 20392.20 21296.76 17495.31 18796.05 19794.31 197
RPMNet94.72 19892.01 20797.88 17198.56 20095.85 21197.78 18699.70 2991.27 21398.33 14693.69 20581.88 21894.91 18892.60 21094.34 19998.01 17994.46 196
gm-plane-assit94.62 19991.39 20998.39 14499.90 1199.47 3299.40 5099.65 3997.44 6999.56 2099.68 2559.40 22994.23 19896.17 18294.77 19697.61 18492.79 206
test-mter94.62 19994.02 19395.32 21197.72 21596.75 19596.23 21795.67 21189.83 22193.23 22196.99 16285.94 20792.66 21097.32 16396.11 18196.44 19395.22 191
FMVSNet594.57 20192.77 20396.67 20197.88 21298.72 12397.54 19898.70 16888.64 22295.11 21486.90 21681.77 21993.27 20497.92 13298.07 11097.50 18797.34 163
SCA94.53 20291.95 20897.55 17998.58 19797.86 17698.49 14799.68 3095.11 15699.07 7695.87 18787.24 20196.53 16789.77 21587.08 21092.96 21190.69 211
MDTV_nov1_ep1394.47 20392.15 20597.17 18698.54 20296.42 19998.10 17598.89 15594.49 16898.02 16597.41 14886.49 20295.56 18090.85 21387.95 20793.91 20691.45 210
TESTMET0.1,194.44 20493.71 19795.30 21297.84 21396.16 20296.31 21595.32 21489.98 21894.08 21797.01 16086.43 20392.20 21296.76 17495.31 18796.05 19794.31 197
ADS-MVSNet94.41 20592.13 20697.07 18898.86 18296.60 19698.38 15798.47 18196.13 13698.02 16596.98 16387.50 20095.87 17789.89 21487.58 20992.79 21390.27 213
tpm93.89 20691.21 21097.03 19198.36 20796.07 20697.53 20199.65 3992.24 20098.64 12097.23 15374.67 22794.64 19292.68 20990.73 20493.37 20894.82 195
PatchmatchNetpermissive93.88 20791.08 21197.14 18798.75 18896.01 20898.25 16999.39 8794.95 16198.96 9096.32 17985.35 20995.50 18188.89 21685.89 21491.99 21790.15 214
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS93.67 20890.82 21296.99 19498.62 19696.39 20098.40 15599.11 14095.54 15097.87 17497.14 15681.27 22194.97 18788.54 21886.80 21292.95 21290.06 215
MVEpermissive82.47 1893.12 20994.09 18991.99 21590.79 22382.50 22493.93 22296.30 21096.06 13788.81 22398.19 12096.38 17297.56 14497.24 16695.18 19084.58 22393.07 203
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CostFormer92.75 21089.49 21496.55 20298.78 18795.83 21397.55 19798.59 17491.83 20897.34 19396.31 18078.53 22294.50 19386.14 21984.92 21592.54 21492.84 204
tpmrst92.45 21189.48 21595.92 20898.43 20595.03 21697.14 20797.92 19894.16 18097.56 18297.86 13481.63 22093.56 20385.89 22082.86 21690.91 22188.95 218
dps92.35 21288.78 21796.52 20398.21 21195.94 21097.78 18698.38 18489.88 22096.81 20295.07 19775.31 22694.70 19188.62 21786.21 21393.21 21090.41 212
E-PMN92.28 21390.12 21394.79 21398.56 20090.90 22195.16 21993.68 21795.36 15395.10 21596.56 17389.05 19795.24 18395.21 19881.84 21890.98 21981.94 220
EMVS91.84 21489.39 21694.70 21498.44 20490.84 22295.27 21893.53 21895.18 15495.26 21395.62 19287.59 19994.77 19094.87 20280.72 21990.95 22080.88 221
tpm cat191.52 21587.70 21895.97 20798.33 20894.98 21797.06 21098.03 19392.11 20398.03 16494.77 20177.19 22592.71 20883.56 22182.24 21791.67 21889.04 217
test_method77.69 21685.40 21968.69 21642.66 22555.39 22682.17 22552.05 22092.83 19984.52 22494.88 20095.41 18065.37 22092.49 21179.32 22085.36 22287.50 219
GG-mvs-BLEND65.66 21792.62 20434.20 2181.45 22893.75 22085.40 2241.64 22491.37 21217.21 22787.25 21494.78 1843.25 22495.64 19293.80 20096.27 19491.74 209
testmvs9.73 21813.38 2205.48 2203.62 2264.12 2276.40 2283.19 22314.92 2237.68 22922.10 22313.89 2316.83 22213.47 22210.38 2225.14 22614.81 222
test1239.37 21912.26 2216.00 2193.32 2274.06 2286.39 2293.41 22213.20 22410.48 22816.43 22416.22 2306.76 22311.37 22310.40 2215.62 22514.10 223
uanet_test0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
TPM-MVS98.38 20697.20 19296.44 21497.17 19995.17 19598.68 12792.69 20998.11 17597.67 153
RE-MVS-def99.88 2
9.1498.83 118
SR-MVS99.62 8599.47 7599.40 57
Anonymous20240521198.44 7599.79 3899.32 5199.05 9699.34 10296.59 11097.95 13297.68 15697.16 15399.36 3299.28 3499.61 3998.90 69
our_test_399.29 14897.72 18298.98 102
ambc97.89 11799.45 12397.88 17597.78 18697.27 7699.80 398.99 9098.48 13598.55 9997.80 13896.68 16798.54 15698.10 140
MTAPA99.19 5899.68 21
MTMP99.20 5699.54 41
Patchmatch-RL test32.47 227
tmp_tt65.28 21782.24 22471.50 22570.81 22623.21 22196.14 13481.70 22685.98 22192.44 19149.84 22195.81 18794.36 19883.86 224
XVS99.77 4399.07 7799.46 4598.95 9299.37 6199.33 73
X-MVStestdata99.77 4399.07 7799.46 4598.95 9299.37 6199.33 73
mPP-MVS99.75 5299.49 51
NP-MVS93.07 196
Patchmtry96.05 20797.64 19599.78 1698.50 131
DeepMVS_CXcopyleft87.86 22392.27 22361.98 21993.64 19093.62 22091.17 21191.67 19294.90 18995.99 18692.48 21594.18 199