LTVRE_ROB | | 98.82 1 | 99.76 1 | 99.75 2 | 99.77 7 | 99.87 18 | 99.71 10 | 99.77 8 | 99.76 20 | 99.52 3 | 99.80 3 | 99.79 21 | 99.91 1 | 99.56 13 | 99.83 4 | 99.75 5 | 99.86 10 | 99.75 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs6 | | | 99.74 2 | 99.75 2 | 99.73 11 | 99.92 6 | 99.67 15 | 99.76 10 | 99.84 11 | 99.59 1 | 99.52 25 | 99.87 11 | 99.91 1 | 99.43 27 | 99.87 1 | 99.81 3 | 99.89 6 | 99.52 11 |
|
test_part1 | | | 99.72 3 | 99.79 1 | 99.64 12 | 99.95 2 | 99.88 1 | 99.71 16 | 99.83 12 | 99.58 2 | 99.48 29 | 99.79 21 | 99.78 10 | 98.98 72 | 99.86 2 | 99.85 1 | 99.88 8 | 99.82 1 |
|
SixPastTwentyTwo | | | 99.70 4 | 99.59 5 | 99.82 2 | 99.93 4 | 99.80 3 | 99.86 2 | 99.87 6 | 98.87 12 | 99.79 5 | 99.85 14 | 99.33 67 | 99.74 5 | 99.85 3 | 99.82 2 | 99.74 25 | 99.63 6 |
|
v7n | | | 99.68 5 | 99.61 4 | 99.76 8 | 99.89 13 | 99.74 9 | 99.87 1 | 99.82 13 | 99.20 7 | 99.71 6 | 99.96 1 | 99.73 14 | 99.76 3 | 99.58 21 | 99.59 17 | 99.52 47 | 99.46 16 |
|
anonymousdsp | | | 99.64 6 | 99.55 7 | 99.74 10 | 99.87 18 | 99.56 26 | 99.82 3 | 99.73 23 | 98.54 17 | 99.71 6 | 99.92 4 | 99.84 7 | 99.61 9 | 99.70 10 | 99.63 10 | 99.69 34 | 99.64 4 |
|
UniMVSNet_ETH3D | | | 99.61 7 | 99.59 5 | 99.63 14 | 99.96 1 | 99.70 11 | 99.53 36 | 99.86 8 | 99.28 6 | 99.48 29 | 99.44 55 | 99.86 5 | 99.01 70 | 99.78 5 | 99.76 4 | 99.90 2 | 99.33 22 |
|
WR-MVS | | | 99.61 7 | 99.44 9 | 99.82 2 | 99.92 6 | 99.80 3 | 99.80 4 | 99.89 1 | 98.54 17 | 99.66 13 | 99.78 23 | 99.16 88 | 99.68 7 | 99.70 10 | 99.63 10 | 99.94 1 | 99.49 14 |
|
PEN-MVS | | | 99.54 9 | 99.30 16 | 99.83 1 | 99.92 6 | 99.76 6 | 99.80 4 | 99.88 3 | 97.60 62 | 99.71 6 | 99.59 37 | 99.52 45 | 99.75 4 | 99.64 16 | 99.51 20 | 99.90 2 | 99.46 16 |
|
TDRefinement | | | 99.54 9 | 99.50 8 | 99.60 18 | 99.70 68 | 99.35 45 | 99.77 8 | 99.58 51 | 99.40 5 | 99.28 50 | 99.66 27 | 99.41 57 | 99.55 15 | 99.74 9 | 99.65 9 | 99.70 31 | 99.25 27 |
|
DTE-MVSNet | | | 99.52 11 | 99.27 17 | 99.82 2 | 99.93 4 | 99.77 5 | 99.79 6 | 99.87 6 | 97.89 44 | 99.70 11 | 99.55 46 | 99.21 79 | 99.77 2 | 99.65 14 | 99.43 24 | 99.90 2 | 99.36 20 |
|
PS-CasMVS | | | 99.50 12 | 99.23 20 | 99.82 2 | 99.92 6 | 99.75 8 | 99.78 7 | 99.89 1 | 97.30 74 | 99.71 6 | 99.60 35 | 99.23 75 | 99.71 6 | 99.65 14 | 99.55 19 | 99.90 2 | 99.56 9 |
|
WR-MVS_H | | | 99.48 13 | 99.23 20 | 99.76 8 | 99.91 10 | 99.76 6 | 99.75 11 | 99.88 3 | 97.27 77 | 99.58 17 | 99.56 42 | 99.24 74 | 99.56 13 | 99.60 19 | 99.60 16 | 99.88 8 | 99.58 8 |
|
pm-mvs1 | | | 99.47 14 | 99.38 10 | 99.57 22 | 99.82 31 | 99.49 30 | 99.63 24 | 99.65 38 | 98.88 11 | 99.31 43 | 99.85 14 | 99.02 107 | 99.23 47 | 99.60 19 | 99.58 18 | 99.80 16 | 99.22 35 |
|
MIMVSNet1 | | | 99.46 15 | 99.34 11 | 99.60 18 | 99.83 25 | 99.68 14 | 99.74 14 | 99.71 26 | 98.20 27 | 99.41 35 | 99.86 13 | 99.66 27 | 99.41 30 | 99.50 25 | 99.39 26 | 99.50 52 | 99.10 46 |
|
TransMVSNet (Re) | | | 99.45 16 | 99.32 14 | 99.61 16 | 99.88 15 | 99.60 21 | 99.75 11 | 99.63 42 | 99.11 8 | 99.28 50 | 99.83 18 | 98.35 142 | 99.27 43 | 99.70 10 | 99.62 14 | 99.84 11 | 99.03 54 |
|
ACMH | | 97.81 6 | 99.44 17 | 99.33 12 | 99.56 23 | 99.81 34 | 99.42 37 | 99.73 15 | 99.58 51 | 99.02 9 | 99.10 75 | 99.41 59 | 99.69 20 | 99.60 10 | 99.45 29 | 99.26 37 | 99.55 43 | 99.05 51 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CP-MVSNet | | | 99.39 18 | 99.04 29 | 99.80 6 | 99.91 10 | 99.70 11 | 99.75 11 | 99.88 3 | 96.82 98 | 99.68 12 | 99.32 62 | 98.86 116 | 99.68 7 | 99.57 22 | 99.47 21 | 99.89 6 | 99.52 11 |
|
COLMAP_ROB |  | 98.29 2 | 99.37 19 | 99.25 18 | 99.51 31 | 99.74 59 | 99.12 74 | 99.56 33 | 99.39 88 | 98.96 10 | 99.17 62 | 99.44 55 | 99.63 35 | 99.58 11 | 99.48 27 | 99.27 35 | 99.60 40 | 98.81 80 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DeepC-MVS | | 97.88 4 | 99.33 20 | 99.15 24 | 99.53 30 | 99.73 64 | 99.05 82 | 99.49 41 | 99.40 86 | 98.42 20 | 99.55 22 | 99.71 25 | 99.89 3 | 99.49 19 | 99.14 43 | 98.81 67 | 99.54 44 | 99.02 56 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FC-MVSNet-test | | | 99.32 21 | 99.33 12 | 99.31 59 | 99.87 18 | 99.65 18 | 99.63 24 | 99.75 22 | 97.76 46 | 97.29 197 | 99.87 11 | 99.63 35 | 99.52 16 | 99.66 13 | 99.63 10 | 99.77 20 | 99.12 41 |
|
UA-Net | | | 99.30 22 | 99.22 22 | 99.39 45 | 99.94 3 | 99.66 17 | 98.91 112 | 99.86 8 | 97.74 52 | 98.74 116 | 99.00 89 | 99.60 40 | 99.17 54 | 99.50 25 | 99.39 26 | 99.70 31 | 99.64 4 |
|
ACMH+ | | 97.53 7 | 99.29 23 | 99.20 23 | 99.40 44 | 99.81 34 | 99.22 62 | 99.59 30 | 99.50 69 | 98.64 16 | 98.29 150 | 99.21 74 | 99.69 20 | 99.57 12 | 99.53 24 | 99.33 31 | 99.66 35 | 98.81 80 |
|
Vis-MVSNet |  | | 99.25 24 | 99.32 14 | 99.17 69 | 99.65 79 | 99.55 28 | 99.63 24 | 99.33 104 | 98.16 28 | 99.29 46 | 99.65 31 | 99.77 11 | 97.56 144 | 99.44 31 | 99.14 42 | 99.58 41 | 99.51 13 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TranMVSNet+NR-MVSNet | | | 99.23 25 | 98.91 36 | 99.61 16 | 99.81 34 | 99.45 34 | 99.47 43 | 99.68 29 | 97.28 76 | 99.39 36 | 99.54 47 | 99.08 103 | 99.45 22 | 99.09 49 | 98.84 64 | 99.83 12 | 99.04 52 |
|
CSCG | | | 99.23 25 | 99.15 24 | 99.32 58 | 99.83 25 | 99.45 34 | 98.97 104 | 99.21 124 | 98.83 13 | 99.04 85 | 99.43 57 | 99.64 33 | 99.26 45 | 98.85 77 | 98.20 104 | 99.62 38 | 99.62 7 |
|
Gipuma |  | | 99.22 27 | 98.86 39 | 99.64 12 | 99.70 68 | 99.24 56 | 99.17 86 | 99.63 42 | 99.52 3 | 99.89 1 | 96.54 176 | 99.14 92 | 99.93 1 | 99.42 32 | 99.15 41 | 99.52 47 | 99.04 52 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tfpnnormal | | | 99.19 28 | 98.90 37 | 99.54 27 | 99.81 34 | 99.55 28 | 99.60 29 | 99.54 60 | 98.53 19 | 99.23 54 | 98.40 109 | 98.23 145 | 99.40 31 | 99.29 38 | 99.36 29 | 99.63 37 | 98.95 66 |
|
Baseline_NR-MVSNet | | | 99.18 29 | 98.87 38 | 99.54 27 | 99.74 59 | 99.56 26 | 99.36 58 | 99.62 47 | 96.53 119 | 99.29 46 | 99.85 14 | 98.64 133 | 99.40 31 | 99.03 62 | 99.63 10 | 99.83 12 | 98.86 75 |
|
thisisatest0515 | | | 99.16 30 | 98.94 34 | 99.41 39 | 99.75 53 | 99.43 36 | 99.36 58 | 99.63 42 | 97.68 58 | 99.35 38 | 99.31 63 | 98.90 113 | 99.09 64 | 98.95 67 | 99.20 38 | 99.27 84 | 99.11 42 |
|
CS-MVS | | | 99.15 31 | 98.76 45 | 99.60 18 | 99.83 25 | 99.64 19 | 99.61 27 | 99.61 48 | 95.48 151 | 99.56 20 | 98.95 92 | 99.44 55 | 99.27 43 | 99.04 60 | 99.47 21 | 99.71 30 | 99.30 25 |
|
CS-MVS-test | | | 99.15 31 | 98.74 47 | 99.62 15 | 99.88 15 | 99.86 2 | 99.68 17 | 99.78 16 | 95.77 147 | 99.29 46 | 98.28 115 | 99.47 54 | 99.35 37 | 99.30 36 | 99.27 35 | 99.76 22 | 99.23 32 |
|
APDe-MVS | | | 99.15 31 | 98.95 31 | 99.39 45 | 99.77 44 | 99.28 53 | 99.52 37 | 99.54 60 | 97.22 81 | 99.06 79 | 99.20 75 | 99.64 33 | 99.05 68 | 99.14 43 | 99.02 52 | 99.39 65 | 99.17 39 |
|
FC-MVSNet-train | | | 99.13 34 | 99.05 28 | 99.21 64 | 99.87 18 | 99.57 25 | 99.67 19 | 99.60 50 | 96.75 104 | 98.28 151 | 99.48 51 | 99.52 45 | 98.10 123 | 99.47 28 | 99.37 28 | 99.76 22 | 99.21 36 |
|
NR-MVSNet | | | 99.10 35 | 98.68 56 | 99.58 21 | 99.89 13 | 99.23 59 | 99.35 61 | 99.63 42 | 96.58 112 | 99.36 37 | 99.05 83 | 98.67 131 | 99.46 20 | 99.63 17 | 98.73 77 | 99.80 16 | 98.88 74 |
|
DVP-MVS++ | | | 99.09 36 | 99.25 18 | 98.90 102 | 99.53 108 | 99.37 44 | 99.17 86 | 99.48 74 | 98.28 25 | 97.95 172 | 99.54 47 | 99.88 4 | 98.13 122 | 99.08 51 | 98.94 55 | 99.15 98 | 99.65 3 |
|
DVP-MVS |  | | 99.09 36 | 99.07 27 | 99.12 76 | 99.55 101 | 99.40 39 | 99.36 58 | 99.44 85 | 97.75 49 | 98.23 154 | 99.23 71 | 99.80 8 | 98.97 73 | 99.08 51 | 98.96 53 | 99.19 92 | 99.25 27 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
UniMVSNet (Re) | | | 99.08 38 | 98.69 54 | 99.54 27 | 99.75 53 | 99.33 48 | 99.29 69 | 99.64 41 | 96.75 104 | 99.48 29 | 99.30 65 | 98.69 127 | 99.26 45 | 98.94 69 | 98.76 73 | 99.78 19 | 99.02 56 |
|
ACMMPR | | | 99.05 39 | 98.72 50 | 99.44 33 | 99.79 39 | 99.12 74 | 99.35 61 | 99.56 54 | 97.74 52 | 99.21 56 | 97.72 137 | 99.55 43 | 99.29 41 | 98.90 75 | 98.81 67 | 99.41 64 | 99.19 37 |
|
DU-MVS | | | 99.04 40 | 98.59 60 | 99.56 23 | 99.74 59 | 99.23 59 | 99.29 69 | 99.63 42 | 96.58 112 | 99.55 22 | 99.05 83 | 98.68 129 | 99.36 35 | 99.03 62 | 98.60 84 | 99.77 20 | 98.97 61 |
|
TSAR-MVS + MP. | | | 99.02 41 | 98.95 31 | 99.11 79 | 99.23 158 | 98.79 118 | 99.51 38 | 98.73 165 | 97.50 66 | 98.56 126 | 99.03 86 | 99.59 41 | 99.16 56 | 99.29 38 | 99.17 40 | 99.50 52 | 99.24 31 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
v10 | | | 99.01 42 | 98.66 57 | 99.41 39 | 99.52 113 | 99.39 40 | 99.57 32 | 99.66 36 | 97.59 63 | 99.32 42 | 99.88 9 | 99.23 75 | 99.50 18 | 97.77 140 | 97.98 114 | 98.92 127 | 98.78 85 |
|
EG-PatchMatch MVS | | | 99.01 42 | 98.77 44 | 99.28 63 | 99.64 82 | 98.90 111 | 98.81 124 | 99.27 115 | 96.55 116 | 99.71 6 | 99.31 63 | 99.66 27 | 99.17 54 | 99.28 40 | 99.11 44 | 99.10 100 | 98.57 101 |
|
PVSNet_Blended_VisFu | | | 98.98 44 | 98.79 42 | 99.21 64 | 99.76 50 | 99.34 46 | 99.35 61 | 99.35 100 | 97.12 87 | 99.46 32 | 99.56 42 | 98.89 114 | 98.08 126 | 99.05 55 | 98.58 86 | 99.27 84 | 98.98 60 |
|
HFP-MVS | | | 98.97 45 | 98.70 52 | 99.29 61 | 99.67 73 | 98.98 94 | 99.13 92 | 99.53 63 | 97.76 46 | 98.90 100 | 98.07 125 | 99.50 51 | 99.14 60 | 98.64 88 | 98.78 71 | 99.37 67 | 99.18 38 |
|
UniMVSNet_NR-MVSNet | | | 98.97 45 | 98.46 71 | 99.56 23 | 99.76 50 | 99.34 46 | 99.29 69 | 99.61 48 | 96.55 116 | 99.55 22 | 99.05 83 | 97.96 153 | 99.36 35 | 98.84 78 | 98.50 92 | 99.81 15 | 98.97 61 |
|
DROMVSNet | | | 98.96 47 | 98.45 74 | 99.56 23 | 99.88 15 | 99.70 11 | 99.68 17 | 99.78 16 | 94.15 182 | 98.97 89 | 98.26 117 | 99.21 79 | 99.35 37 | 99.30 36 | 99.14 42 | 99.73 26 | 99.40 19 |
|
SED-MVS | | | 98.94 48 | 98.95 31 | 98.91 101 | 99.43 129 | 99.38 42 | 99.12 94 | 99.46 79 | 97.05 90 | 98.43 142 | 99.23 71 | 99.79 9 | 97.99 129 | 99.05 55 | 98.94 55 | 99.05 113 | 99.23 32 |
|
ACMMP_NAP | | | 98.94 48 | 98.72 50 | 99.21 64 | 99.67 73 | 99.08 77 | 99.26 74 | 99.39 88 | 96.84 95 | 98.88 104 | 98.22 118 | 99.68 23 | 98.82 82 | 99.06 54 | 98.90 59 | 99.25 87 | 99.25 27 |
|
zzz-MVS | | | 98.94 48 | 98.57 63 | 99.37 52 | 99.77 44 | 99.15 71 | 99.24 77 | 99.55 56 | 97.38 72 | 99.16 65 | 96.64 172 | 99.69 20 | 99.15 58 | 99.09 49 | 98.92 58 | 99.37 67 | 99.11 42 |
|
v1144 | | | 98.94 48 | 98.53 66 | 99.42 37 | 99.62 86 | 99.03 88 | 99.58 31 | 99.36 97 | 97.99 35 | 99.49 28 | 99.91 8 | 99.20 82 | 99.51 17 | 97.61 145 | 97.85 121 | 98.95 122 | 98.10 141 |
|
v8 | | | 98.94 48 | 98.60 58 | 99.35 55 | 99.54 105 | 99.39 40 | 99.55 34 | 99.67 33 | 97.48 67 | 99.13 71 | 99.81 19 | 99.10 99 | 99.39 33 | 97.86 135 | 97.89 119 | 98.81 136 | 98.66 93 |
|
SteuartSystems-ACMMP | | | 98.94 48 | 98.52 67 | 99.43 36 | 99.79 39 | 99.13 73 | 99.33 65 | 99.55 56 | 96.17 135 | 99.04 85 | 97.53 143 | 99.65 31 | 99.46 20 | 99.04 60 | 98.76 73 | 99.44 59 | 99.35 21 |
Skip Steuart: Steuart Systems R&D Blog. |
v1192 | | | 98.91 54 | 98.48 70 | 99.41 39 | 99.61 90 | 99.03 88 | 99.64 21 | 99.25 119 | 97.91 41 | 99.58 17 | 99.92 4 | 99.07 105 | 99.45 22 | 97.55 149 | 97.68 135 | 98.93 124 | 98.23 131 |
|
FMVSNet1 | | | 98.90 55 | 99.10 26 | 98.67 126 | 99.54 105 | 99.48 31 | 99.22 80 | 99.66 36 | 98.39 23 | 97.50 185 | 99.66 27 | 99.04 106 | 96.58 166 | 99.05 55 | 99.03 49 | 99.52 47 | 99.08 48 |
|
ACMM | | 96.66 11 | 98.90 55 | 98.44 76 | 99.44 33 | 99.74 59 | 98.95 100 | 99.47 43 | 99.55 56 | 97.66 60 | 99.09 76 | 96.43 178 | 99.41 57 | 99.35 37 | 98.95 67 | 98.67 80 | 99.45 57 | 99.03 54 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20231211 | | | 98.89 57 | 98.79 42 | 98.99 94 | 99.82 31 | 99.41 38 | 99.18 85 | 99.31 110 | 96.92 92 | 98.54 129 | 98.58 106 | 98.84 119 | 97.46 146 | 99.45 29 | 99.29 33 | 99.65 36 | 99.08 48 |
|
v1921920 | | | 98.89 57 | 98.46 71 | 99.39 45 | 99.58 94 | 99.04 86 | 99.64 21 | 99.17 130 | 97.91 41 | 99.64 15 | 99.92 4 | 98.99 111 | 99.44 25 | 97.44 156 | 97.57 144 | 98.84 134 | 98.35 121 |
|
GeoE | | | 98.88 59 | 98.43 79 | 99.41 39 | 99.83 25 | 99.24 56 | 99.51 38 | 99.82 13 | 96.55 116 | 99.22 55 | 98.76 98 | 99.22 78 | 98.96 74 | 98.55 91 | 98.15 106 | 99.10 100 | 98.56 104 |
|
v144192 | | | 98.88 59 | 98.46 71 | 99.37 52 | 99.56 100 | 99.03 88 | 99.61 27 | 99.26 116 | 97.79 45 | 99.58 17 | 99.88 9 | 99.11 97 | 99.43 27 | 97.38 161 | 97.61 140 | 98.80 138 | 98.43 116 |
|
SMA-MVS |  | | 98.87 61 | 98.73 49 | 99.04 87 | 99.72 65 | 99.05 82 | 98.64 134 | 99.17 130 | 96.31 130 | 98.80 110 | 99.07 81 | 99.70 19 | 98.67 90 | 98.93 72 | 98.82 65 | 99.23 90 | 99.23 32 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMP | | 96.54 13 | 98.87 61 | 98.40 82 | 99.41 39 | 99.74 59 | 98.88 112 | 99.29 69 | 99.50 69 | 96.85 94 | 98.96 92 | 97.05 159 | 99.66 27 | 99.43 27 | 98.98 66 | 98.60 84 | 99.52 47 | 98.81 80 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DCV-MVSNet | | | 98.86 63 | 98.57 63 | 99.19 67 | 99.86 22 | 99.67 15 | 99.39 52 | 99.71 26 | 97.53 65 | 98.69 119 | 95.85 189 | 98.48 137 | 97.75 138 | 99.57 22 | 99.41 25 | 99.72 27 | 99.48 15 |
|
v1240 | | | 98.86 63 | 98.41 81 | 99.38 50 | 99.59 92 | 99.05 82 | 99.65 20 | 99.14 135 | 97.68 58 | 99.66 13 | 99.93 3 | 98.72 126 | 99.45 22 | 97.38 161 | 97.72 133 | 98.79 139 | 98.35 121 |
|
CP-MVS | | | 98.86 63 | 98.43 79 | 99.36 54 | 99.68 71 | 98.97 98 | 99.19 83 | 99.46 79 | 96.60 110 | 99.20 57 | 97.11 158 | 99.51 49 | 99.15 58 | 98.92 73 | 98.82 65 | 99.45 57 | 99.08 48 |
|
v2v482 | | | 98.85 66 | 98.40 82 | 99.38 50 | 99.65 79 | 98.98 94 | 99.55 34 | 99.39 88 | 97.92 40 | 99.35 38 | 99.85 14 | 99.14 92 | 99.39 33 | 97.50 151 | 97.78 124 | 98.98 119 | 97.60 155 |
|
DPE-MVS |  | | 98.84 67 | 98.69 54 | 99.00 91 | 99.05 176 | 99.26 54 | 99.19 83 | 99.35 100 | 95.85 143 | 98.74 116 | 99.27 67 | 99.66 27 | 98.30 115 | 98.90 75 | 98.93 57 | 99.37 67 | 99.00 58 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
OPM-MVS | | | 98.84 67 | 98.59 60 | 99.12 76 | 99.52 113 | 98.50 142 | 99.13 92 | 99.22 122 | 97.76 46 | 98.76 112 | 98.70 100 | 99.61 38 | 98.90 77 | 98.67 86 | 98.37 98 | 99.19 92 | 98.57 101 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
test20.03 | | | 98.84 67 | 98.74 47 | 98.95 97 | 99.77 44 | 99.33 48 | 99.21 82 | 99.46 79 | 97.29 75 | 98.88 104 | 99.65 31 | 99.10 99 | 97.07 158 | 99.11 46 | 98.76 73 | 99.32 77 | 97.98 145 |
|
casdiffmvs | | | 98.84 67 | 98.75 46 | 98.94 100 | 99.75 53 | 99.21 63 | 99.33 65 | 99.04 146 | 98.04 31 | 97.46 188 | 99.72 24 | 99.72 16 | 98.60 94 | 98.30 111 | 98.37 98 | 99.48 54 | 97.92 147 |
|
LGP-MVS_train | | | 98.84 67 | 98.33 88 | 99.44 33 | 99.78 42 | 98.98 94 | 99.39 52 | 99.55 56 | 95.41 153 | 98.90 100 | 97.51 144 | 99.68 23 | 99.44 25 | 99.03 62 | 98.81 67 | 99.57 42 | 98.91 70 |
|
RPSCF | | | 98.84 67 | 98.81 41 | 98.89 104 | 99.37 137 | 98.95 100 | 98.51 146 | 98.85 158 | 97.73 54 | 98.33 147 | 98.97 91 | 99.14 92 | 98.95 75 | 99.18 42 | 98.68 79 | 99.31 78 | 98.99 59 |
|
ACMMP |  | | 98.82 73 | 98.33 88 | 99.39 45 | 99.77 44 | 99.14 72 | 99.37 55 | 99.54 60 | 96.47 123 | 99.03 87 | 96.26 182 | 99.52 45 | 99.28 42 | 98.92 73 | 98.80 70 | 99.37 67 | 99.16 40 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
V42 | | | 98.81 74 | 98.49 69 | 99.18 68 | 99.52 113 | 98.92 106 | 99.50 40 | 99.29 112 | 97.43 70 | 98.97 89 | 99.81 19 | 99.00 110 | 99.30 40 | 97.93 131 | 98.01 112 | 98.51 162 | 98.34 125 |
|
LS3D | | | 98.79 75 | 98.52 67 | 99.12 76 | 99.64 82 | 99.09 76 | 99.24 77 | 99.46 79 | 97.75 49 | 98.93 98 | 97.47 146 | 98.23 145 | 97.98 130 | 99.36 33 | 99.30 32 | 99.46 55 | 98.42 117 |
|
MP-MVS |  | | 98.78 76 | 98.30 90 | 99.34 57 | 99.75 53 | 98.95 100 | 99.26 74 | 99.46 79 | 95.78 146 | 99.17 62 | 96.98 163 | 99.72 16 | 99.06 67 | 98.84 78 | 98.74 76 | 99.33 74 | 99.11 42 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
v148 | | | 98.77 77 | 98.45 74 | 99.15 72 | 99.68 71 | 98.94 104 | 99.49 41 | 99.31 110 | 97.95 37 | 98.91 99 | 99.65 31 | 99.62 37 | 99.18 51 | 97.99 129 | 97.64 139 | 98.33 167 | 97.38 161 |
|
test1111 | | | 98.75 78 | 98.14 104 | 99.46 32 | 99.86 22 | 99.63 20 | 99.47 43 | 99.68 29 | 98.34 24 | 98.76 112 | 99.66 27 | 90.92 195 | 99.23 47 | 99.77 6 | 99.71 6 | 99.75 24 | 98.95 66 |
|
ECVR-MVS |  | | 98.74 79 | 98.15 102 | 99.42 37 | 99.83 25 | 99.58 23 | 99.37 55 | 99.67 33 | 98.02 33 | 98.85 107 | 99.59 37 | 91.66 193 | 99.10 62 | 99.77 6 | 99.70 7 | 99.72 27 | 98.73 87 |
|
SD-MVS | | | 98.73 80 | 98.54 65 | 98.95 97 | 99.14 167 | 98.76 121 | 98.46 150 | 99.14 135 | 97.71 56 | 98.56 126 | 98.06 127 | 99.61 38 | 98.85 81 | 98.56 90 | 97.74 130 | 99.54 44 | 99.32 23 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MSP-MVS | | | 98.72 81 | 98.60 58 | 98.87 106 | 99.67 73 | 99.33 48 | 99.15 89 | 99.26 116 | 96.99 91 | 97.90 175 | 98.19 120 | 99.74 13 | 98.29 116 | 97.69 143 | 98.96 53 | 98.96 120 | 99.27 26 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 98.69 82 | 98.09 109 | 99.39 45 | 99.76 50 | 99.07 78 | 99.30 68 | 99.51 67 | 94.76 164 | 99.18 61 | 96.70 170 | 99.51 49 | 99.20 49 | 98.79 82 | 98.71 78 | 99.39 65 | 99.11 42 |
|
pmmvs-eth3d | | | 98.68 83 | 98.14 104 | 99.29 61 | 99.49 118 | 98.45 145 | 99.45 48 | 99.38 93 | 97.21 82 | 99.50 27 | 99.65 31 | 99.21 79 | 99.16 56 | 97.11 168 | 97.56 145 | 98.79 139 | 97.82 151 |
|
EU-MVSNet | | | 98.68 83 | 98.94 34 | 98.37 146 | 99.14 167 | 98.74 123 | 99.64 21 | 98.20 191 | 98.21 26 | 99.17 62 | 99.66 27 | 99.18 85 | 99.08 65 | 99.11 46 | 98.86 60 | 95.00 203 | 98.83 77 |
|
PMVS |  | 92.51 17 | 98.66 85 | 98.86 39 | 98.43 141 | 99.26 153 | 98.98 94 | 98.60 140 | 98.59 175 | 97.73 54 | 99.45 33 | 99.38 60 | 98.54 136 | 95.24 184 | 99.62 18 | 99.61 15 | 99.42 61 | 98.17 138 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepC-MVS_fast | | 97.38 8 | 98.65 86 | 98.34 87 | 99.02 90 | 99.33 141 | 98.29 152 | 98.99 102 | 98.71 167 | 97.40 71 | 99.31 43 | 98.20 119 | 99.40 60 | 98.54 102 | 98.33 108 | 98.18 105 | 99.23 90 | 98.58 99 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator | | 98.16 3 | 98.65 86 | 98.35 86 | 99.00 91 | 99.59 92 | 98.70 126 | 98.90 116 | 99.36 97 | 97.97 36 | 99.09 76 | 96.55 175 | 99.09 101 | 97.97 131 | 98.70 85 | 98.65 82 | 99.12 99 | 98.81 80 |
|
TSAR-MVS + ACMM | | | 98.64 88 | 98.58 62 | 98.72 120 | 99.17 165 | 98.63 131 | 98.69 130 | 99.10 142 | 97.69 57 | 98.30 149 | 99.12 79 | 99.38 62 | 98.70 89 | 98.45 94 | 97.51 147 | 98.35 166 | 99.25 27 |
|
DELS-MVS | | | 98.63 89 | 98.70 52 | 98.55 137 | 99.24 157 | 99.04 86 | 98.96 105 | 98.52 178 | 96.83 97 | 98.38 144 | 99.58 40 | 99.68 23 | 97.06 159 | 98.74 84 | 98.44 94 | 99.10 100 | 98.59 98 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
QAPM | | | 98.62 90 | 98.40 82 | 98.89 104 | 99.57 99 | 98.80 117 | 98.63 135 | 99.35 100 | 96.82 98 | 98.60 123 | 98.85 97 | 99.08 103 | 98.09 125 | 98.31 109 | 98.21 102 | 99.08 106 | 98.72 88 |
|
EPP-MVSNet | | | 98.61 91 | 98.19 99 | 99.11 79 | 99.86 22 | 99.60 21 | 99.44 49 | 99.53 63 | 97.37 73 | 96.85 201 | 98.69 101 | 93.75 186 | 99.18 51 | 99.22 41 | 99.35 30 | 99.82 14 | 99.32 23 |
|
3Dnovator+ | | 97.85 5 | 98.61 91 | 98.14 104 | 99.15 72 | 99.62 86 | 98.37 150 | 99.10 95 | 99.51 67 | 98.04 31 | 98.98 88 | 96.07 186 | 98.75 125 | 98.55 100 | 98.51 93 | 98.40 95 | 99.17 94 | 98.82 78 |
|
X-MVS | | | 98.59 93 | 97.99 115 | 99.30 60 | 99.75 53 | 99.07 78 | 99.17 86 | 99.50 69 | 96.62 108 | 98.95 94 | 93.95 205 | 99.37 63 | 99.11 61 | 98.94 69 | 98.86 60 | 99.35 72 | 99.09 47 |
|
MVS_111021_HR | | | 98.58 94 | 98.26 93 | 98.96 96 | 99.32 144 | 98.81 115 | 98.48 148 | 98.99 151 | 96.81 100 | 99.16 65 | 98.07 125 | 99.23 75 | 98.89 79 | 98.43 96 | 98.27 101 | 98.90 129 | 98.24 130 |
|
MVS_0304 | | | 98.57 95 | 98.36 85 | 98.82 113 | 99.72 65 | 98.94 104 | 98.92 110 | 99.14 135 | 96.76 103 | 99.33 41 | 98.30 113 | 99.73 14 | 96.74 162 | 98.05 126 | 97.79 123 | 99.08 106 | 98.97 61 |
|
PM-MVS | | | 98.57 95 | 98.24 95 | 98.95 97 | 99.26 153 | 98.59 134 | 99.03 99 | 98.74 164 | 96.84 95 | 99.44 34 | 99.13 78 | 98.31 144 | 98.75 87 | 98.03 127 | 98.21 102 | 98.48 163 | 98.58 99 |
|
PHI-MVS | | | 98.57 95 | 98.20 98 | 99.00 91 | 99.48 120 | 98.91 108 | 98.68 131 | 99.17 130 | 94.97 160 | 99.27 52 | 98.33 111 | 99.33 67 | 98.05 127 | 98.82 80 | 98.62 83 | 99.34 73 | 98.38 119 |
|
HPM-MVS++ |  | | 98.56 98 | 98.08 110 | 99.11 79 | 99.53 108 | 98.61 133 | 99.02 101 | 99.32 108 | 96.29 132 | 99.06 79 | 97.23 153 | 99.50 51 | 98.77 85 | 98.15 122 | 97.90 117 | 98.96 120 | 98.90 71 |
|
TSAR-MVS + GP. | | | 98.54 99 | 98.29 92 | 98.82 113 | 99.28 151 | 98.59 134 | 97.73 189 | 99.24 121 | 95.93 141 | 98.59 124 | 99.07 81 | 99.17 86 | 98.86 80 | 98.44 95 | 98.10 108 | 99.26 86 | 98.72 88 |
|
UGNet | | | 98.52 100 | 99.00 30 | 97.96 168 | 99.58 94 | 99.26 54 | 99.27 73 | 99.40 86 | 98.07 30 | 98.28 151 | 98.76 98 | 99.71 18 | 92.24 211 | 98.94 69 | 98.85 62 | 99.00 118 | 99.43 18 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20231206 | | | 98.50 101 | 98.03 112 | 99.05 85 | 99.50 116 | 99.01 91 | 99.15 89 | 99.26 116 | 96.38 128 | 99.12 73 | 99.50 50 | 99.12 95 | 98.60 94 | 97.68 144 | 97.24 158 | 98.66 147 | 97.30 165 |
|
CLD-MVS | | | 98.48 102 | 98.15 102 | 98.86 109 | 99.53 108 | 98.35 151 | 98.55 143 | 97.83 200 | 96.02 140 | 98.97 89 | 99.08 80 | 99.75 12 | 99.03 69 | 98.10 125 | 97.33 154 | 99.28 82 | 98.44 115 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 98.47 103 | 98.30 90 | 98.67 126 | 99.65 79 | 98.87 113 | 98.82 123 | 99.01 149 | 96.14 136 | 99.29 46 | 98.86 95 | 99.01 108 | 96.54 167 | 98.36 102 | 98.08 109 | 98.72 143 | 98.80 84 |
|
APD-MVS |  | | 98.47 103 | 97.97 116 | 99.05 85 | 99.64 82 | 98.91 108 | 98.94 107 | 99.45 84 | 94.40 175 | 98.77 111 | 97.26 152 | 99.41 57 | 98.21 119 | 98.67 86 | 98.57 89 | 99.31 78 | 98.57 101 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Vis-MVSNet (Re-imp) | | | 98.46 105 | 98.23 96 | 98.73 119 | 99.81 34 | 99.29 52 | 98.79 125 | 99.50 69 | 96.20 134 | 96.03 207 | 98.29 114 | 96.98 168 | 98.54 102 | 99.11 46 | 99.08 45 | 99.70 31 | 98.62 95 |
|
Fast-Effi-MVS+ | | | 98.42 106 | 97.79 122 | 99.15 72 | 99.69 70 | 98.66 129 | 98.94 107 | 99.68 29 | 94.49 169 | 99.05 81 | 98.06 127 | 98.86 116 | 98.48 105 | 98.18 119 | 97.78 124 | 99.05 113 | 98.54 107 |
|
ETV-MVS | | | 98.41 107 | 97.76 123 | 99.17 69 | 99.58 94 | 99.01 91 | 98.91 112 | 99.50 69 | 93.33 195 | 99.31 43 | 96.82 167 | 98.42 140 | 98.17 121 | 99.13 45 | 99.08 45 | 99.54 44 | 98.56 104 |
|
MVS_111021_LR | | | 98.39 108 | 98.11 107 | 98.71 122 | 99.08 173 | 98.54 140 | 98.23 170 | 98.56 177 | 96.57 114 | 99.13 71 | 98.41 108 | 98.86 116 | 98.65 92 | 98.23 117 | 97.87 120 | 98.65 149 | 98.28 127 |
|
pmmvs5 | | | 98.37 109 | 97.81 121 | 99.03 88 | 99.46 122 | 98.97 98 | 99.03 99 | 98.96 153 | 95.85 143 | 99.05 81 | 99.45 54 | 98.66 132 | 98.79 84 | 96.02 185 | 97.52 146 | 98.87 131 | 98.21 134 |
|
OMC-MVS | | | 98.35 110 | 98.10 108 | 98.64 132 | 98.85 184 | 97.99 172 | 98.56 142 | 98.21 189 | 97.26 79 | 98.87 106 | 98.54 107 | 99.27 73 | 98.43 107 | 98.34 106 | 97.66 136 | 98.92 127 | 97.65 154 |
|
canonicalmvs | | | 98.34 111 | 97.92 118 | 98.83 111 | 99.45 124 | 99.21 63 | 98.37 157 | 99.53 63 | 97.06 89 | 97.74 179 | 96.95 165 | 95.05 183 | 98.36 110 | 98.77 83 | 98.85 62 | 99.51 51 | 99.53 10 |
|
CHOSEN 1792x2688 | | | 98.31 112 | 98.02 113 | 98.66 128 | 99.55 101 | 98.57 137 | 99.38 54 | 99.25 119 | 98.42 20 | 98.48 137 | 99.58 40 | 99.85 6 | 98.31 114 | 95.75 188 | 95.71 183 | 96.96 190 | 98.27 129 |
|
xxxxxxxxxxxxxcwj | | | 98.28 113 | 98.23 96 | 98.35 147 | 99.43 129 | 98.42 148 | 97.05 211 | 99.09 143 | 96.42 125 | 98.13 160 | 97.73 135 | 99.65 31 | 97.22 152 | 98.36 102 | 98.38 96 | 99.16 96 | 98.62 95 |
|
CPTT-MVS | | | 98.28 113 | 97.51 135 | 99.16 71 | 99.54 105 | 98.78 119 | 98.96 105 | 99.36 97 | 96.30 131 | 98.89 103 | 93.10 209 | 99.30 70 | 99.20 49 | 98.35 105 | 97.96 115 | 99.03 116 | 98.82 78 |
|
TinyColmap | | | 98.27 115 | 97.62 132 | 99.03 88 | 99.29 149 | 97.79 181 | 98.92 110 | 98.95 154 | 97.48 67 | 99.52 25 | 98.65 103 | 97.86 155 | 98.90 77 | 98.34 106 | 97.27 156 | 98.64 150 | 95.97 185 |
|
diffmvs | | | 98.26 116 | 98.16 100 | 98.39 143 | 99.61 90 | 98.78 119 | 98.79 125 | 98.61 173 | 97.94 38 | 97.11 200 | 99.51 49 | 99.52 45 | 97.61 142 | 96.55 177 | 96.93 164 | 98.61 152 | 97.87 149 |
|
USDC | | | 98.26 116 | 97.57 133 | 99.06 82 | 99.42 133 | 97.98 174 | 98.83 120 | 98.85 158 | 97.57 64 | 99.59 16 | 99.15 77 | 98.59 134 | 98.99 71 | 97.42 157 | 96.08 182 | 98.69 146 | 96.23 183 |
|
SF-MVS | | | 98.25 118 | 98.16 100 | 98.35 147 | 99.43 129 | 98.42 148 | 97.05 211 | 99.09 143 | 96.42 125 | 98.13 160 | 97.73 135 | 99.20 82 | 97.22 152 | 98.36 102 | 98.38 96 | 99.16 96 | 98.62 95 |
|
MCST-MVS | | | 98.25 118 | 97.57 133 | 99.06 82 | 99.53 108 | 98.24 158 | 98.63 135 | 99.17 130 | 95.88 142 | 98.58 125 | 96.11 184 | 99.09 101 | 99.18 51 | 97.58 148 | 97.31 155 | 99.25 87 | 98.75 86 |
|
IterMVS-LS | | | 98.23 120 | 97.66 128 | 98.90 102 | 99.63 85 | 99.38 42 | 99.07 96 | 99.48 74 | 97.75 49 | 98.81 109 | 99.37 61 | 94.57 185 | 97.88 135 | 96.54 178 | 97.04 161 | 98.53 159 | 98.97 61 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TAPA-MVS | | 96.65 12 | 98.23 120 | 97.96 117 | 98.55 137 | 98.81 186 | 98.16 162 | 98.40 154 | 97.94 198 | 96.68 106 | 98.49 135 | 98.61 104 | 98.89 114 | 98.57 98 | 97.45 154 | 97.59 142 | 99.09 105 | 98.35 121 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CNVR-MVS | | | 98.22 122 | 97.76 123 | 98.76 117 | 99.33 141 | 98.26 156 | 98.48 148 | 98.88 157 | 96.22 133 | 98.47 139 | 95.79 190 | 99.33 67 | 98.35 111 | 98.37 101 | 97.99 113 | 99.03 116 | 98.38 119 |
|
IS_MVSNet | | | 98.20 123 | 98.00 114 | 98.44 140 | 99.82 31 | 99.48 31 | 99.25 76 | 99.56 54 | 95.58 149 | 93.93 219 | 97.56 142 | 96.52 172 | 98.27 117 | 99.08 51 | 99.20 38 | 99.80 16 | 98.56 104 |
|
DeepPCF-MVS | | 96.68 10 | 98.20 123 | 98.26 93 | 98.12 161 | 97.03 222 | 98.11 165 | 98.44 152 | 97.70 202 | 96.77 102 | 98.52 131 | 98.91 93 | 99.17 86 | 98.58 97 | 98.41 98 | 98.02 111 | 98.46 164 | 98.46 112 |
|
MSDG | | | 98.20 123 | 97.88 120 | 98.56 136 | 99.33 141 | 97.74 182 | 98.27 167 | 98.10 192 | 97.20 84 | 98.06 165 | 98.59 105 | 99.16 88 | 98.76 86 | 98.39 99 | 97.71 134 | 98.86 133 | 96.38 180 |
|
testgi | | | 98.18 126 | 98.44 76 | 97.89 170 | 99.78 42 | 99.23 59 | 98.78 127 | 99.21 124 | 97.26 79 | 97.41 190 | 97.39 149 | 99.36 66 | 92.85 208 | 98.82 80 | 98.66 81 | 99.31 78 | 98.35 121 |
|
Effi-MVS+ | | | 98.11 127 | 97.29 141 | 99.06 82 | 99.62 86 | 98.55 138 | 98.16 173 | 99.80 15 | 94.64 165 | 99.15 69 | 96.59 173 | 97.43 161 | 98.44 106 | 97.46 153 | 97.90 117 | 99.17 94 | 98.45 114 |
|
HyFIR lowres test | | | 98.08 128 | 97.16 150 | 99.14 75 | 99.72 65 | 98.91 108 | 99.41 50 | 99.58 51 | 97.93 39 | 98.82 108 | 99.24 69 | 95.81 178 | 98.73 88 | 95.16 199 | 95.13 192 | 98.60 154 | 97.94 146 |
|
EIA-MVS | | | 98.03 129 | 97.20 147 | 98.99 94 | 99.66 76 | 99.24 56 | 98.53 145 | 99.52 66 | 91.56 212 | 99.25 53 | 95.34 194 | 98.78 122 | 97.72 139 | 98.38 100 | 98.58 86 | 99.28 82 | 98.54 107 |
|
train_agg | | | 97.99 130 | 97.26 142 | 98.83 111 | 99.43 129 | 98.22 160 | 98.91 112 | 99.07 145 | 94.43 173 | 97.96 171 | 96.42 179 | 99.30 70 | 98.81 83 | 97.39 159 | 96.62 170 | 98.82 135 | 98.47 110 |
|
MSLP-MVS++ | | | 97.99 130 | 97.64 131 | 98.40 142 | 98.91 182 | 98.47 144 | 97.12 209 | 98.78 162 | 96.49 121 | 98.48 137 | 93.57 207 | 99.12 95 | 98.51 104 | 98.31 109 | 98.58 86 | 98.58 156 | 98.95 66 |
|
CDPH-MVS | | | 97.99 130 | 97.23 145 | 98.87 106 | 99.58 94 | 98.29 152 | 98.83 120 | 99.20 126 | 93.76 189 | 98.11 163 | 96.11 184 | 99.16 88 | 98.23 118 | 97.80 138 | 97.22 159 | 99.29 81 | 98.28 127 |
|
FMVSNet2 | | | 97.94 133 | 98.08 110 | 97.77 176 | 98.71 190 | 99.21 63 | 98.62 137 | 99.47 76 | 96.62 108 | 96.37 206 | 99.20 75 | 97.70 157 | 94.39 195 | 97.39 159 | 97.75 129 | 99.08 106 | 98.70 90 |
|
PVSNet_BlendedMVS | | | 97.93 134 | 97.66 128 | 98.25 154 | 99.30 146 | 98.67 127 | 98.31 162 | 97.95 196 | 94.30 179 | 98.75 114 | 97.63 139 | 98.76 123 | 96.30 174 | 98.29 112 | 97.78 124 | 98.93 124 | 98.18 136 |
|
PVSNet_Blended | | | 97.93 134 | 97.66 128 | 98.25 154 | 99.30 146 | 98.67 127 | 98.31 162 | 97.95 196 | 94.30 179 | 98.75 114 | 97.63 139 | 98.76 123 | 96.30 174 | 98.29 112 | 97.78 124 | 98.93 124 | 98.18 136 |
|
OpenMVS |  | 97.26 9 | 97.88 136 | 97.17 149 | 98.70 123 | 99.50 116 | 98.55 138 | 98.34 160 | 99.11 140 | 93.92 187 | 98.90 100 | 95.04 198 | 98.23 145 | 97.38 149 | 98.11 124 | 98.12 107 | 98.95 122 | 98.23 131 |
|
pmmvs4 | | | 97.87 137 | 97.02 154 | 98.86 109 | 99.20 159 | 97.68 185 | 98.89 117 | 99.03 147 | 96.57 114 | 99.12 73 | 99.03 86 | 97.26 165 | 98.42 108 | 95.16 199 | 96.34 174 | 98.53 159 | 97.10 172 |
|
NCCC | | | 97.84 138 | 96.96 156 | 98.87 106 | 99.39 136 | 98.27 155 | 98.46 150 | 99.02 148 | 96.78 101 | 98.73 118 | 91.12 212 | 98.91 112 | 98.57 98 | 97.83 137 | 97.49 148 | 99.04 115 | 98.33 126 |
|
Effi-MVS+-dtu | | | 97.78 139 | 97.37 139 | 98.26 152 | 99.25 155 | 98.50 142 | 97.89 183 | 99.19 129 | 94.51 167 | 98.16 158 | 95.93 187 | 98.80 121 | 95.97 177 | 98.27 116 | 97.38 151 | 99.10 100 | 98.23 131 |
|
MDA-MVSNet-bldmvs | | | 97.75 140 | 97.26 142 | 98.33 149 | 99.35 140 | 98.45 145 | 99.32 67 | 97.21 207 | 97.90 43 | 99.05 81 | 99.01 88 | 96.86 170 | 99.08 65 | 99.36 33 | 92.97 202 | 95.97 199 | 96.25 182 |
|
CDS-MVSNet | | | 97.75 140 | 97.68 127 | 97.83 174 | 99.08 173 | 98.20 161 | 98.68 131 | 98.61 173 | 95.63 148 | 97.80 177 | 99.24 69 | 96.93 169 | 94.09 200 | 97.96 130 | 97.82 122 | 98.71 144 | 97.99 143 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CNLPA | | | 97.75 140 | 97.26 142 | 98.32 151 | 98.58 198 | 97.86 177 | 97.80 185 | 98.09 193 | 96.49 121 | 98.49 135 | 96.15 183 | 98.08 148 | 98.35 111 | 98.00 128 | 97.03 162 | 98.61 152 | 97.21 169 |
|
PLC |  | 95.63 15 | 97.73 143 | 97.01 155 | 98.57 135 | 99.10 170 | 97.80 180 | 97.72 190 | 98.77 163 | 96.34 129 | 98.38 144 | 93.46 208 | 98.06 149 | 98.66 91 | 97.90 133 | 97.65 138 | 98.77 141 | 97.90 148 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_Test | | | 97.69 144 | 97.15 151 | 98.33 149 | 99.27 152 | 98.43 147 | 98.25 168 | 99.29 112 | 95.00 159 | 97.39 192 | 98.86 95 | 98.00 152 | 97.14 156 | 95.38 194 | 96.22 176 | 98.62 151 | 98.15 140 |
|
GBi-Net | | | 97.69 144 | 97.75 125 | 97.62 177 | 98.71 190 | 99.21 63 | 98.62 137 | 99.33 104 | 94.09 183 | 95.60 209 | 98.17 122 | 95.97 175 | 94.39 195 | 99.05 55 | 99.03 49 | 99.08 106 | 98.70 90 |
|
test1 | | | 97.69 144 | 97.75 125 | 97.62 177 | 98.71 190 | 99.21 63 | 98.62 137 | 99.33 104 | 94.09 183 | 95.60 209 | 98.17 122 | 95.97 175 | 94.39 195 | 99.05 55 | 99.03 49 | 99.08 106 | 98.70 90 |
|
CANet_DTU | | | 97.65 147 | 97.50 137 | 97.82 175 | 99.19 162 | 98.08 167 | 98.41 153 | 98.67 169 | 94.40 175 | 99.16 65 | 98.32 112 | 98.69 127 | 93.96 202 | 97.87 134 | 97.61 140 | 97.51 186 | 97.56 157 |
|
IterMVS-SCA-FT | | | 97.63 148 | 96.86 158 | 98.52 139 | 99.48 120 | 98.71 125 | 98.84 119 | 98.91 155 | 96.44 124 | 99.16 65 | 99.56 42 | 95.54 180 | 97.95 132 | 95.68 191 | 95.07 195 | 96.76 191 | 97.03 175 |
|
TSAR-MVS + COLMAP | | | 97.62 149 | 97.31 140 | 97.98 166 | 98.47 204 | 97.39 189 | 98.29 164 | 98.25 188 | 96.68 106 | 97.54 184 | 98.87 94 | 98.04 151 | 97.08 157 | 96.78 172 | 96.26 175 | 98.26 170 | 97.12 171 |
|
MS-PatchMatch | | | 97.60 150 | 97.22 146 | 98.04 165 | 98.67 194 | 97.18 193 | 97.91 181 | 98.28 187 | 95.82 145 | 98.34 146 | 97.66 138 | 98.38 141 | 97.77 137 | 97.10 169 | 97.25 157 | 97.27 188 | 97.18 170 |
|
PCF-MVS | | 95.58 16 | 97.60 150 | 96.67 159 | 98.69 124 | 99.44 127 | 98.23 159 | 98.37 157 | 98.81 160 | 93.01 200 | 98.22 155 | 97.97 131 | 99.59 41 | 98.20 120 | 95.72 190 | 95.08 193 | 99.08 106 | 97.09 174 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HQP-MVS | | | 97.58 152 | 96.65 162 | 98.66 128 | 99.30 146 | 97.99 172 | 97.88 184 | 98.65 170 | 94.58 166 | 98.66 120 | 94.65 202 | 99.15 91 | 98.59 96 | 96.10 183 | 95.59 184 | 98.90 129 | 98.50 109 |
|
DI_MVS_plusplus_trai | | | 97.57 153 | 96.55 164 | 98.77 116 | 99.55 101 | 98.76 121 | 99.22 80 | 99.00 150 | 97.08 88 | 97.95 172 | 97.78 134 | 91.35 194 | 98.02 128 | 96.20 181 | 96.81 166 | 98.87 131 | 97.87 149 |
|
AdaColmap |  | | 97.57 153 | 96.57 163 | 98.74 118 | 99.25 155 | 98.01 170 | 98.36 159 | 98.98 152 | 94.44 172 | 98.47 139 | 92.44 210 | 97.91 154 | 98.62 93 | 98.19 118 | 97.74 130 | 98.73 142 | 97.28 166 |
|
baseline | | | 97.50 155 | 97.51 135 | 97.50 181 | 99.18 163 | 97.38 190 | 98.00 177 | 98.00 195 | 96.52 120 | 97.49 186 | 99.28 66 | 99.43 56 | 95.31 183 | 95.27 196 | 96.22 176 | 96.99 189 | 98.47 110 |
|
IterMVS | | | 97.40 156 | 96.67 159 | 98.25 154 | 99.45 124 | 98.66 129 | 98.87 118 | 98.73 165 | 96.40 127 | 98.94 97 | 99.56 42 | 95.26 182 | 97.58 143 | 95.38 194 | 94.70 197 | 95.90 200 | 96.72 178 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CVMVSNet | | | 97.38 157 | 97.39 138 | 97.37 184 | 98.58 198 | 97.72 183 | 98.70 129 | 97.42 205 | 97.21 82 | 95.95 208 | 99.46 53 | 93.31 189 | 97.38 149 | 97.60 146 | 97.78 124 | 96.18 196 | 98.66 93 |
|
new-patchmatchnet | | | 97.26 158 | 96.12 172 | 98.58 134 | 99.55 101 | 98.63 131 | 99.14 91 | 97.04 209 | 98.80 14 | 99.19 59 | 99.92 4 | 99.19 84 | 98.92 76 | 95.51 193 | 87.04 211 | 97.66 183 | 93.73 201 |
|
MIMVSNet | | | 97.24 159 | 97.15 151 | 97.36 185 | 99.03 177 | 98.52 141 | 98.55 143 | 99.73 23 | 94.94 163 | 94.94 216 | 97.98 130 | 97.37 163 | 93.66 203 | 97.60 146 | 97.34 153 | 98.23 173 | 96.29 181 |
|
PatchMatch-RL | | | 97.24 159 | 96.45 167 | 98.17 158 | 98.70 193 | 97.57 188 | 97.31 204 | 98.48 181 | 94.42 174 | 98.39 143 | 95.74 191 | 96.35 174 | 97.88 135 | 97.75 141 | 97.48 149 | 98.24 172 | 95.87 186 |
|
thisisatest0530 | | | 97.20 161 | 95.95 176 | 98.66 128 | 99.46 122 | 98.84 114 | 98.29 164 | 99.20 126 | 94.51 167 | 98.25 153 | 97.42 147 | 85.03 210 | 97.68 140 | 98.43 96 | 98.56 90 | 99.08 106 | 98.89 73 |
|
tttt0517 | | | 97.18 162 | 95.92 177 | 98.65 131 | 99.49 118 | 98.92 106 | 98.29 164 | 99.20 126 | 94.37 177 | 98.17 156 | 97.37 150 | 84.72 213 | 97.68 140 | 98.55 91 | 98.56 90 | 99.10 100 | 98.95 66 |
|
MDTV_nov1_ep13_2view | | | 97.12 163 | 96.19 171 | 98.22 157 | 99.13 169 | 98.05 168 | 99.24 77 | 99.47 76 | 97.61 61 | 99.15 69 | 99.59 37 | 99.01 108 | 98.40 109 | 94.87 202 | 90.14 205 | 93.91 206 | 94.04 200 |
|
MAR-MVS | | | 97.12 163 | 96.28 170 | 98.11 162 | 98.94 180 | 97.22 192 | 97.65 194 | 99.38 93 | 90.93 218 | 98.15 159 | 95.17 196 | 97.13 166 | 96.48 170 | 97.71 142 | 97.40 150 | 98.06 176 | 98.40 118 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Fast-Effi-MVS+-dtu | | | 96.99 165 | 96.46 166 | 97.61 179 | 98.98 179 | 97.89 175 | 97.54 198 | 99.76 20 | 93.43 193 | 96.55 205 | 94.93 199 | 98.06 149 | 94.32 198 | 96.93 170 | 96.50 172 | 98.53 159 | 97.47 158 |
|
FPMVS | | | 96.97 166 | 97.20 147 | 96.70 201 | 97.75 214 | 96.11 205 | 97.72 190 | 95.47 213 | 97.13 86 | 98.02 167 | 97.57 141 | 96.67 171 | 92.97 207 | 99.00 65 | 98.34 100 | 98.28 169 | 95.58 188 |
|
TAMVS | | | 96.95 167 | 96.94 157 | 96.97 196 | 99.07 175 | 97.67 187 | 97.98 179 | 97.12 208 | 95.04 158 | 95.41 212 | 99.27 67 | 95.57 179 | 94.09 200 | 97.32 163 | 97.11 160 | 98.16 175 | 96.59 179 |
|
FMVSNet3 | | | 96.85 168 | 96.67 159 | 97.06 190 | 97.56 217 | 99.01 91 | 97.99 178 | 99.33 104 | 94.09 183 | 95.60 209 | 98.17 122 | 95.97 175 | 93.26 206 | 94.76 204 | 96.22 176 | 98.59 155 | 98.46 112 |
|
GA-MVS | | | 96.84 169 | 95.86 179 | 97.98 166 | 99.16 166 | 98.29 152 | 97.91 181 | 98.64 172 | 95.14 156 | 97.71 180 | 98.04 129 | 88.90 198 | 96.50 169 | 96.41 180 | 96.61 171 | 97.97 180 | 97.60 155 |
|
CHOSEN 280x420 | | | 96.80 170 | 96.30 169 | 97.39 182 | 99.09 171 | 96.52 197 | 98.76 128 | 99.29 112 | 93.88 188 | 97.65 181 | 98.34 110 | 93.66 187 | 96.29 176 | 98.28 114 | 97.73 132 | 93.27 209 | 95.70 187 |
|
gg-mvs-nofinetune | | | 96.77 171 | 96.52 165 | 97.06 190 | 99.66 76 | 97.82 179 | 97.54 198 | 99.86 8 | 98.69 15 | 98.61 122 | 99.94 2 | 89.62 196 | 88.37 219 | 97.55 149 | 96.67 168 | 98.30 168 | 95.35 189 |
|
DPM-MVS | | | 96.73 172 | 95.70 182 | 97.95 169 | 98.93 181 | 97.26 191 | 97.39 203 | 98.44 183 | 95.47 152 | 97.62 182 | 90.71 213 | 98.47 139 | 97.03 160 | 95.02 201 | 95.27 189 | 98.26 170 | 97.67 153 |
|
baseline1 | | | 96.72 173 | 95.40 184 | 98.26 152 | 99.53 108 | 98.81 115 | 98.32 161 | 98.80 161 | 94.96 161 | 96.78 204 | 96.50 177 | 84.87 212 | 96.68 165 | 97.42 157 | 97.91 116 | 99.46 55 | 97.33 164 |
|
N_pmnet | | | 96.68 174 | 95.70 182 | 97.84 173 | 99.42 133 | 98.00 171 | 99.35 61 | 98.21 189 | 98.40 22 | 98.13 160 | 99.42 58 | 99.30 70 | 97.44 148 | 94.00 208 | 88.79 206 | 94.47 205 | 91.96 207 |
|
pmnet_mix02 | | | 96.61 175 | 95.32 185 | 98.11 162 | 99.41 135 | 97.68 185 | 99.05 97 | 97.59 203 | 98.16 28 | 99.05 81 | 99.48 51 | 99.11 97 | 98.32 113 | 92.36 212 | 87.67 208 | 95.26 202 | 92.80 205 |
|
new_pmnet | | | 96.59 176 | 96.40 168 | 96.81 198 | 98.24 210 | 95.46 214 | 97.71 192 | 94.75 216 | 96.92 92 | 96.80 203 | 99.23 71 | 97.81 156 | 96.69 163 | 96.58 176 | 95.16 191 | 96.69 192 | 93.64 202 |
|
PMMVS | | | 96.47 177 | 95.81 180 | 97.23 186 | 97.38 219 | 95.96 209 | 97.31 204 | 96.91 210 | 93.21 197 | 97.93 174 | 97.14 156 | 97.64 159 | 95.70 179 | 95.24 197 | 96.18 179 | 98.17 174 | 95.33 190 |
|
EPNet | | | 96.44 178 | 96.08 173 | 96.86 197 | 99.32 144 | 97.15 194 | 97.69 193 | 99.32 108 | 93.67 190 | 98.11 163 | 95.64 192 | 93.44 188 | 89.07 217 | 96.86 171 | 96.83 165 | 97.67 182 | 98.97 61 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres600view7 | | | 96.35 179 | 94.27 187 | 98.79 115 | 99.66 76 | 99.18 68 | 98.94 107 | 99.38 93 | 94.37 177 | 97.21 199 | 87.19 215 | 84.10 214 | 98.10 123 | 98.16 120 | 99.47 21 | 99.42 61 | 97.43 159 |
|
EPNet_dtu | | | 96.31 180 | 95.96 175 | 96.72 200 | 99.18 163 | 95.39 215 | 97.03 213 | 99.13 139 | 93.02 199 | 99.35 38 | 97.23 153 | 97.07 167 | 90.70 216 | 95.74 189 | 95.08 193 | 94.94 204 | 98.16 139 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
pmmvs3 | | | 96.30 181 | 95.87 178 | 96.80 199 | 97.66 216 | 96.48 198 | 97.93 180 | 93.80 217 | 93.40 194 | 98.54 129 | 98.27 116 | 97.50 160 | 97.37 151 | 97.49 152 | 93.11 201 | 95.52 201 | 94.85 194 |
|
PMMVS2 | | | 96.29 182 | 97.05 153 | 95.40 211 | 98.32 209 | 96.16 202 | 98.18 172 | 97.46 204 | 97.20 84 | 84.51 225 | 99.60 35 | 98.68 129 | 96.37 171 | 98.59 89 | 97.38 151 | 97.58 185 | 91.76 208 |
|
thres200 | | | 96.23 183 | 94.13 188 | 98.69 124 | 99.44 127 | 99.18 68 | 98.58 141 | 99.38 93 | 93.52 192 | 97.35 193 | 86.33 220 | 85.83 208 | 97.93 133 | 98.16 120 | 98.78 71 | 99.42 61 | 97.10 172 |
|
thres400 | | | 96.22 184 | 94.08 190 | 98.72 120 | 99.58 94 | 99.05 82 | 98.83 120 | 99.22 122 | 94.01 186 | 97.40 191 | 86.34 219 | 84.91 211 | 97.93 133 | 97.85 136 | 99.08 45 | 99.37 67 | 97.28 166 |
|
tfpn200view9 | | | 96.17 185 | 94.08 190 | 98.60 133 | 99.37 137 | 99.18 68 | 98.68 131 | 99.39 88 | 92.02 206 | 97.30 195 | 86.53 217 | 86.34 205 | 97.45 147 | 98.15 122 | 99.08 45 | 99.43 60 | 97.28 166 |
|
CMPMVS |  | 74.71 19 | 96.17 185 | 96.06 174 | 96.30 205 | 97.41 218 | 94.52 218 | 94.83 220 | 95.46 214 | 91.57 211 | 97.26 198 | 94.45 204 | 98.33 143 | 94.98 186 | 98.28 114 | 97.59 142 | 97.86 181 | 97.68 152 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test2506 | | | 96.12 187 | 93.35 200 | 99.35 55 | 99.83 25 | 99.58 23 | 99.37 55 | 99.67 33 | 98.02 33 | 98.44 141 | 97.51 144 | 60.03 228 | 99.10 62 | 99.77 6 | 99.70 7 | 99.72 27 | 98.86 75 |
|
IB-MVS | | 95.85 14 | 95.87 188 | 94.88 186 | 97.02 193 | 99.09 171 | 98.25 157 | 97.16 206 | 97.38 206 | 91.97 209 | 97.77 178 | 83.61 222 | 97.29 164 | 92.03 214 | 97.16 167 | 97.66 136 | 98.66 147 | 98.20 135 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test0.0.03 1 | | | 95.81 189 | 95.77 181 | 95.85 210 | 99.20 159 | 98.15 164 | 97.49 202 | 98.50 179 | 92.24 202 | 92.74 222 | 96.82 167 | 92.70 190 | 88.60 218 | 97.31 165 | 97.01 163 | 98.57 157 | 96.19 184 |
|
thres100view900 | | | 95.74 190 | 93.66 199 | 98.17 158 | 99.37 137 | 98.59 134 | 98.10 174 | 98.33 186 | 92.02 206 | 97.30 195 | 86.53 217 | 86.34 205 | 96.69 163 | 96.77 173 | 98.47 93 | 99.24 89 | 96.89 176 |
|
ET-MVSNet_ETH3D | | | 95.72 191 | 93.85 195 | 97.89 170 | 97.30 220 | 98.09 166 | 98.19 171 | 98.40 184 | 94.46 171 | 98.01 170 | 96.71 169 | 77.85 224 | 96.76 161 | 96.08 184 | 96.39 173 | 98.70 145 | 97.36 162 |
|
baseline2 | | | 95.58 192 | 94.04 192 | 97.38 183 | 98.80 187 | 98.16 162 | 97.14 207 | 97.80 201 | 91.45 213 | 97.49 186 | 95.22 195 | 83.63 215 | 94.98 186 | 96.42 179 | 96.66 169 | 98.06 176 | 96.76 177 |
|
PatchT | | | 95.49 193 | 93.29 201 | 98.06 164 | 98.65 195 | 96.20 201 | 98.91 112 | 99.73 23 | 92.00 208 | 98.50 132 | 96.67 171 | 83.25 216 | 96.34 172 | 94.40 205 | 95.50 185 | 96.21 195 | 95.04 192 |
|
CR-MVSNet | | | 95.38 194 | 93.01 202 | 98.16 160 | 98.63 196 | 95.85 211 | 97.64 195 | 99.78 16 | 91.27 215 | 98.50 132 | 96.84 166 | 82.16 217 | 96.34 172 | 94.40 205 | 95.50 185 | 98.05 178 | 95.04 192 |
|
MVSTER | | | 95.38 194 | 93.99 194 | 97.01 194 | 98.83 185 | 98.95 100 | 96.62 214 | 99.14 135 | 92.17 204 | 97.44 189 | 97.29 151 | 77.88 223 | 91.63 215 | 97.45 154 | 96.18 179 | 98.41 165 | 97.99 143 |
|
MVS-HIRNet | | | 94.86 196 | 93.83 196 | 96.07 206 | 97.07 221 | 94.00 219 | 94.31 221 | 99.17 130 | 91.23 217 | 98.17 156 | 98.69 101 | 97.43 161 | 95.66 180 | 94.05 207 | 91.92 203 | 92.04 216 | 89.46 216 |
|
test-LLR | | | 94.79 197 | 93.71 197 | 96.06 207 | 99.20 159 | 96.16 202 | 96.31 215 | 98.50 179 | 89.98 219 | 94.08 217 | 97.01 160 | 86.43 203 | 92.20 212 | 96.76 174 | 95.31 187 | 96.05 197 | 94.31 197 |
|
RPMNet | | | 94.72 198 | 92.01 207 | 97.88 172 | 98.56 201 | 95.85 211 | 97.78 186 | 99.70 28 | 91.27 215 | 98.33 147 | 93.69 206 | 81.88 218 | 94.91 189 | 92.60 210 | 94.34 199 | 98.01 179 | 94.46 196 |
|
gm-plane-assit | | | 94.62 199 | 91.39 209 | 98.39 143 | 99.90 12 | 99.47 33 | 99.40 51 | 99.65 38 | 97.44 69 | 99.56 20 | 99.68 26 | 59.40 229 | 94.23 199 | 96.17 182 | 94.77 196 | 97.61 184 | 92.79 206 |
|
test-mter | | | 94.62 199 | 94.02 193 | 95.32 212 | 97.72 215 | 96.75 195 | 96.23 217 | 95.67 212 | 89.83 222 | 93.23 221 | 96.99 162 | 85.94 207 | 92.66 210 | 97.32 163 | 96.11 181 | 96.44 193 | 95.22 191 |
|
FMVSNet5 | | | 94.57 201 | 92.77 203 | 96.67 202 | 97.88 212 | 98.72 124 | 97.54 198 | 98.70 168 | 88.64 223 | 95.11 214 | 86.90 216 | 81.77 219 | 93.27 205 | 97.92 132 | 98.07 110 | 97.50 187 | 97.34 163 |
|
SCA | | | 94.53 202 | 91.95 208 | 97.55 180 | 98.58 198 | 97.86 177 | 98.49 147 | 99.68 29 | 95.11 157 | 99.07 78 | 95.87 188 | 87.24 201 | 96.53 168 | 89.77 215 | 87.08 210 | 92.96 211 | 90.69 211 |
|
MDTV_nov1_ep13 | | | 94.47 203 | 92.15 205 | 97.17 187 | 98.54 203 | 96.42 199 | 98.10 174 | 98.89 156 | 94.49 169 | 98.02 167 | 97.41 148 | 86.49 202 | 95.56 181 | 90.85 213 | 87.95 207 | 93.91 206 | 91.45 210 |
|
TESTMET0.1,1 | | | 94.44 204 | 93.71 197 | 95.30 213 | 97.84 213 | 96.16 202 | 96.31 215 | 95.32 215 | 89.98 219 | 94.08 217 | 97.01 160 | 86.43 203 | 92.20 212 | 96.76 174 | 95.31 187 | 96.05 197 | 94.31 197 |
|
ADS-MVSNet | | | 94.41 205 | 92.13 206 | 97.07 189 | 98.86 183 | 96.60 196 | 98.38 156 | 98.47 182 | 96.13 138 | 98.02 167 | 96.98 163 | 87.50 200 | 95.87 178 | 89.89 214 | 87.58 209 | 92.79 213 | 90.27 213 |
|
tpm | | | 93.89 206 | 91.21 210 | 97.03 192 | 98.36 207 | 96.07 206 | 97.53 201 | 99.65 38 | 92.24 202 | 98.64 121 | 97.23 153 | 74.67 227 | 94.64 193 | 92.68 209 | 90.73 204 | 93.37 208 | 94.82 195 |
|
PatchmatchNet |  | | 93.88 207 | 91.08 211 | 97.14 188 | 98.75 189 | 96.01 208 | 98.25 168 | 99.39 88 | 94.95 162 | 98.96 92 | 96.32 180 | 85.35 209 | 95.50 182 | 88.89 216 | 85.89 214 | 91.99 217 | 90.15 214 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 93.67 208 | 90.82 212 | 96.99 195 | 98.62 197 | 96.39 200 | 98.40 154 | 99.11 140 | 95.54 150 | 97.87 176 | 97.14 156 | 81.27 221 | 94.97 188 | 88.54 218 | 86.80 212 | 92.95 212 | 90.06 215 |
|
MVE |  | 82.47 18 | 93.12 209 | 94.09 189 | 91.99 216 | 90.79 223 | 82.50 224 | 93.93 222 | 96.30 211 | 96.06 139 | 88.81 223 | 98.19 120 | 96.38 173 | 97.56 144 | 97.24 166 | 95.18 190 | 84.58 223 | 93.07 203 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
CostFormer | | | 92.75 210 | 89.49 214 | 96.55 203 | 98.78 188 | 95.83 213 | 97.55 197 | 98.59 175 | 91.83 210 | 97.34 194 | 96.31 181 | 78.53 222 | 94.50 194 | 86.14 219 | 84.92 215 | 92.54 214 | 92.84 204 |
|
tpmrst | | | 92.45 211 | 89.48 215 | 95.92 209 | 98.43 206 | 95.03 216 | 97.14 207 | 97.92 199 | 94.16 181 | 97.56 183 | 97.86 133 | 81.63 220 | 93.56 204 | 85.89 220 | 82.86 216 | 90.91 221 | 88.95 218 |
|
dps | | | 92.35 212 | 88.78 217 | 96.52 204 | 98.21 211 | 95.94 210 | 97.78 186 | 98.38 185 | 89.88 221 | 96.81 202 | 95.07 197 | 75.31 226 | 94.70 192 | 88.62 217 | 86.21 213 | 93.21 210 | 90.41 212 |
|
E-PMN | | | 92.28 213 | 90.12 213 | 94.79 214 | 98.56 201 | 90.90 221 | 95.16 219 | 93.68 218 | 95.36 154 | 95.10 215 | 96.56 174 | 89.05 197 | 95.24 184 | 95.21 198 | 81.84 218 | 90.98 219 | 81.94 220 |
|
EMVS | | | 91.84 214 | 89.39 216 | 94.70 215 | 98.44 205 | 90.84 222 | 95.27 218 | 93.53 219 | 95.18 155 | 95.26 213 | 95.62 193 | 87.59 199 | 94.77 191 | 94.87 202 | 80.72 219 | 90.95 220 | 80.88 221 |
|
tpm cat1 | | | 91.52 215 | 87.70 218 | 95.97 208 | 98.33 208 | 94.98 217 | 97.06 210 | 98.03 194 | 92.11 205 | 98.03 166 | 94.77 201 | 77.19 225 | 92.71 209 | 83.56 221 | 82.24 217 | 91.67 218 | 89.04 217 |
|
test_method | | | 77.69 216 | 85.40 219 | 68.69 217 | 42.66 225 | 55.39 226 | 82.17 225 | 52.05 221 | 92.83 201 | 84.52 224 | 94.88 200 | 95.41 181 | 65.37 220 | 92.49 211 | 79.32 220 | 85.36 222 | 87.50 219 |
|
GG-mvs-BLEND | | | 65.66 217 | 92.62 204 | 34.20 219 | 1.45 228 | 93.75 220 | 85.40 224 | 1.64 225 | 91.37 214 | 17.21 227 | 87.25 214 | 94.78 184 | 3.25 224 | 95.64 192 | 93.80 200 | 96.27 194 | 91.74 209 |
|
testmvs | | | 9.73 218 | 13.38 220 | 5.48 221 | 3.62 226 | 4.12 227 | 6.40 228 | 3.19 224 | 14.92 224 | 7.68 229 | 22.10 223 | 13.89 231 | 6.83 222 | 13.47 222 | 10.38 222 | 5.14 226 | 14.81 222 |
|
test123 | | | 9.37 219 | 12.26 221 | 6.00 220 | 3.32 227 | 4.06 228 | 6.39 229 | 3.41 223 | 13.20 225 | 10.48 228 | 16.43 224 | 16.22 230 | 6.76 223 | 11.37 223 | 10.40 221 | 5.62 225 | 14.10 223 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
RE-MVS-def | | | | | | | | | | | 99.88 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 98.83 120 | | | | | |
|
SR-MVS | | | | | | 99.62 86 | | | 99.47 76 | | | | 99.40 60 | | | | | |
|
Anonymous202405211 | | | | 98.44 76 | | 99.79 39 | 99.32 51 | 99.05 97 | 99.34 103 | 96.59 111 | | 97.95 132 | 97.68 158 | 97.16 155 | 99.36 33 | 99.28 34 | 99.61 39 | 98.90 71 |
|
our_test_3 | | | | | | 99.29 149 | 97.72 183 | 98.98 103 | | | | | | | | | | |
|
ambc | | | | 97.89 119 | | 99.45 124 | 97.88 176 | 97.78 186 | | 97.27 77 | 99.80 3 | 98.99 90 | 98.48 137 | 98.55 100 | 97.80 138 | 96.68 167 | 98.54 158 | 98.10 141 |
|
MTAPA | | | | | | | | | | | 99.19 59 | | 99.68 23 | | | | | |
|
MTMP | | | | | | | | | | | 99.20 57 | | 99.54 44 | | | | | |
|
Patchmatch-RL test | | | | | | | | 32.47 227 | | | | | | | | | | |
|
tmp_tt | | | | | 65.28 218 | 82.24 224 | 71.50 225 | 70.81 226 | 23.21 222 | 96.14 136 | 81.70 226 | 85.98 221 | 92.44 191 | 49.84 221 | 95.81 187 | 94.36 198 | 83.86 224 | |
|
XVS | | | | | | 99.77 44 | 99.07 78 | 99.46 46 | | | 98.95 94 | | 99.37 63 | | | | 99.33 74 | |
|
X-MVStestdata | | | | | | 99.77 44 | 99.07 78 | 99.46 46 | | | 98.95 94 | | 99.37 63 | | | | 99.33 74 | |
|
abl_6 | | | | | 98.38 145 | 99.03 177 | 98.04 169 | 98.08 176 | 98.65 170 | 93.23 196 | 98.56 126 | 94.58 203 | 98.57 135 | 97.17 154 | | | 98.81 136 | 97.42 160 |
|
mPP-MVS | | | | | | 99.75 53 | | | | | | | 99.49 53 | | | | | |
|
NP-MVS | | | | | | | | | | 93.07 198 | | | | | | | | |
|
Patchmtry | | | | | | | 96.05 207 | 97.64 195 | 99.78 16 | | 98.50 132 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 87.86 223 | 92.27 223 | 61.98 220 | 93.64 191 | 93.62 220 | 91.17 211 | 91.67 192 | 94.90 190 | 95.99 186 | | 92.48 215 | 94.18 199 |
|