LTVRE_ROB | | 98.82 1 | 99.76 1 | 99.75 2 | 99.77 7 | 99.87 16 | 99.71 9 | 99.77 8 | 99.76 18 | 99.52 3 | 99.80 3 | 99.79 21 | 99.91 1 | 99.56 13 | 99.83 4 | 99.75 5 | 99.86 10 | 99.75 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs6 | | | 99.74 2 | 99.75 2 | 99.73 11 | 99.92 6 | 99.67 13 | 99.76 10 | 99.84 11 | 99.59 1 | 99.52 24 | 99.87 11 | 99.91 1 | 99.43 27 | 99.87 1 | 99.81 3 | 99.89 6 | 99.52 10 |
|
test_part1 | | | 99.72 3 | 99.79 1 | 99.64 12 | 99.95 2 | 99.88 1 | 99.71 16 | 99.83 12 | 99.58 2 | 99.48 28 | 99.79 21 | 99.78 9 | 98.98 66 | 99.86 2 | 99.85 1 | 99.88 8 | 99.82 1 |
|
SixPastTwentyTwo | | | 99.70 4 | 99.59 5 | 99.82 2 | 99.93 4 | 99.80 2 | 99.86 2 | 99.87 6 | 98.87 12 | 99.79 5 | 99.85 14 | 99.33 64 | 99.74 5 | 99.85 3 | 99.82 2 | 99.74 23 | 99.63 5 |
|
v7n | | | 99.68 5 | 99.61 4 | 99.76 8 | 99.89 13 | 99.74 8 | 99.87 1 | 99.82 13 | 99.20 7 | 99.71 6 | 99.96 1 | 99.73 13 | 99.76 3 | 99.58 18 | 99.59 14 | 99.52 42 | 99.46 15 |
|
anonymousdsp | | | 99.64 6 | 99.55 7 | 99.74 10 | 99.87 16 | 99.56 20 | 99.82 3 | 99.73 21 | 98.54 17 | 99.71 6 | 99.92 4 | 99.84 6 | 99.61 9 | 99.70 7 | 99.63 7 | 99.69 28 | 99.64 3 |
|
UniMVSNet_ETH3D | | | 99.61 7 | 99.59 5 | 99.63 14 | 99.96 1 | 99.70 10 | 99.53 33 | 99.86 8 | 99.28 6 | 99.48 28 | 99.44 52 | 99.86 4 | 99.01 64 | 99.78 5 | 99.76 4 | 99.90 2 | 99.33 20 |
|
WR-MVS | | | 99.61 7 | 99.44 9 | 99.82 2 | 99.92 6 | 99.80 2 | 99.80 4 | 99.89 1 | 98.54 17 | 99.66 13 | 99.78 23 | 99.16 84 | 99.68 7 | 99.70 7 | 99.63 7 | 99.94 1 | 99.49 13 |
|
PEN-MVS | | | 99.54 9 | 99.30 16 | 99.83 1 | 99.92 6 | 99.76 5 | 99.80 4 | 99.88 3 | 97.60 58 | 99.71 6 | 99.59 36 | 99.52 44 | 99.75 4 | 99.64 13 | 99.51 17 | 99.90 2 | 99.46 15 |
|
TDRefinement | | | 99.54 9 | 99.50 8 | 99.60 17 | 99.70 63 | 99.35 39 | 99.77 8 | 99.58 45 | 99.40 5 | 99.28 48 | 99.66 27 | 99.41 54 | 99.55 15 | 99.74 6 | 99.65 6 | 99.70 25 | 99.25 24 |
|
DTE-MVSNet | | | 99.52 11 | 99.27 17 | 99.82 2 | 99.93 4 | 99.77 4 | 99.79 6 | 99.87 6 | 97.89 40 | 99.70 11 | 99.55 44 | 99.21 76 | 99.77 2 | 99.65 11 | 99.43 20 | 99.90 2 | 99.36 18 |
|
PS-CasMVS | | | 99.50 12 | 99.23 19 | 99.82 2 | 99.92 6 | 99.75 7 | 99.78 7 | 99.89 1 | 97.30 70 | 99.71 6 | 99.60 34 | 99.23 72 | 99.71 6 | 99.65 11 | 99.55 16 | 99.90 2 | 99.56 8 |
|
WR-MVS_H | | | 99.48 13 | 99.23 19 | 99.76 8 | 99.91 10 | 99.76 5 | 99.75 11 | 99.88 3 | 97.27 73 | 99.58 17 | 99.56 40 | 99.24 71 | 99.56 13 | 99.60 16 | 99.60 13 | 99.88 8 | 99.58 7 |
|
pm-mvs1 | | | 99.47 14 | 99.38 10 | 99.57 20 | 99.82 25 | 99.49 24 | 99.63 22 | 99.65 33 | 98.88 11 | 99.31 42 | 99.85 14 | 99.02 103 | 99.23 44 | 99.60 16 | 99.58 15 | 99.80 16 | 99.22 31 |
|
MIMVSNet1 | | | 99.46 15 | 99.34 11 | 99.60 17 | 99.83 22 | 99.68 12 | 99.74 14 | 99.71 24 | 98.20 25 | 99.41 34 | 99.86 13 | 99.66 26 | 99.41 30 | 99.50 22 | 99.39 22 | 99.50 47 | 99.10 42 |
|
TransMVSNet (Re) | | | 99.45 16 | 99.32 14 | 99.61 15 | 99.88 15 | 99.60 17 | 99.75 11 | 99.63 37 | 99.11 8 | 99.28 48 | 99.83 18 | 98.35 139 | 99.27 41 | 99.70 7 | 99.62 11 | 99.84 11 | 99.03 50 |
|
ACMH | | 97.81 6 | 99.44 17 | 99.33 12 | 99.56 21 | 99.81 28 | 99.42 32 | 99.73 15 | 99.58 45 | 99.02 9 | 99.10 74 | 99.41 56 | 99.69 19 | 99.60 10 | 99.45 26 | 99.26 32 | 99.55 38 | 99.05 47 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CP-MVSNet | | | 99.39 18 | 99.04 28 | 99.80 6 | 99.91 10 | 99.70 10 | 99.75 11 | 99.88 3 | 96.82 94 | 99.68 12 | 99.32 59 | 98.86 112 | 99.68 7 | 99.57 19 | 99.47 18 | 99.89 6 | 99.52 10 |
|
COLMAP_ROB |  | 98.29 2 | 99.37 19 | 99.25 18 | 99.51 28 | 99.74 53 | 99.12 68 | 99.56 30 | 99.39 82 | 98.96 10 | 99.17 61 | 99.44 52 | 99.63 34 | 99.58 11 | 99.48 24 | 99.27 31 | 99.60 34 | 98.81 74 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DeepC-MVS | | 97.88 4 | 99.33 20 | 99.15 23 | 99.53 27 | 99.73 58 | 99.05 76 | 99.49 38 | 99.40 80 | 98.42 20 | 99.55 21 | 99.71 25 | 99.89 3 | 99.49 19 | 99.14 38 | 98.81 60 | 99.54 39 | 99.02 52 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FC-MVSNet-test | | | 99.32 21 | 99.33 12 | 99.31 53 | 99.87 16 | 99.65 16 | 99.63 22 | 99.75 20 | 97.76 42 | 97.29 191 | 99.87 11 | 99.63 34 | 99.52 16 | 99.66 10 | 99.63 7 | 99.77 20 | 99.12 37 |
|
UA-Net | | | 99.30 22 | 99.22 21 | 99.39 40 | 99.94 3 | 99.66 15 | 98.91 105 | 99.86 8 | 97.74 48 | 98.74 112 | 99.00 86 | 99.60 39 | 99.17 50 | 99.50 22 | 99.39 22 | 99.70 25 | 99.64 3 |
|
ACMH+ | | 97.53 7 | 99.29 23 | 99.20 22 | 99.40 39 | 99.81 28 | 99.22 56 | 99.59 27 | 99.50 63 | 98.64 16 | 98.29 145 | 99.21 71 | 99.69 19 | 99.57 12 | 99.53 21 | 99.33 27 | 99.66 29 | 98.81 74 |
|
Vis-MVSNet |  | | 99.25 24 | 99.32 14 | 99.17 63 | 99.65 74 | 99.55 22 | 99.63 22 | 99.33 98 | 98.16 26 | 99.29 45 | 99.65 30 | 99.77 10 | 97.56 138 | 99.44 28 | 99.14 37 | 99.58 35 | 99.51 12 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TranMVSNet+NR-MVSNet | | | 99.23 25 | 98.91 35 | 99.61 15 | 99.81 28 | 99.45 28 | 99.47 40 | 99.68 27 | 97.28 72 | 99.39 35 | 99.54 45 | 99.08 99 | 99.45 22 | 99.09 44 | 98.84 57 | 99.83 12 | 99.04 48 |
|
CSCG | | | 99.23 25 | 99.15 23 | 99.32 52 | 99.83 22 | 99.45 28 | 98.97 97 | 99.21 118 | 98.83 13 | 99.04 84 | 99.43 54 | 99.64 32 | 99.26 42 | 98.85 70 | 98.20 98 | 99.62 32 | 99.62 6 |
|
Gipuma |  | | 99.22 27 | 98.86 38 | 99.64 12 | 99.70 63 | 99.24 50 | 99.17 80 | 99.63 37 | 99.52 3 | 99.89 1 | 96.54 169 | 99.14 88 | 99.93 1 | 99.42 29 | 99.15 36 | 99.52 42 | 99.04 48 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tfpnnormal | | | 99.19 28 | 98.90 36 | 99.54 24 | 99.81 28 | 99.55 22 | 99.60 26 | 99.54 54 | 98.53 19 | 99.23 52 | 98.40 105 | 98.23 142 | 99.40 31 | 99.29 33 | 99.36 25 | 99.63 31 | 98.95 62 |
|
Baseline_NR-MVSNet | | | 99.18 29 | 98.87 37 | 99.54 24 | 99.74 53 | 99.56 20 | 99.36 52 | 99.62 42 | 96.53 115 | 99.29 45 | 99.85 14 | 98.64 129 | 99.40 31 | 99.03 55 | 99.63 7 | 99.83 12 | 98.86 70 |
|
thisisatest0515 | | | 99.16 30 | 98.94 33 | 99.41 34 | 99.75 47 | 99.43 31 | 99.36 52 | 99.63 37 | 97.68 54 | 99.35 37 | 99.31 60 | 98.90 109 | 99.09 58 | 98.95 60 | 99.20 33 | 99.27 79 | 99.11 38 |
|
APDe-MVS | | | 99.15 31 | 98.95 30 | 99.39 40 | 99.77 38 | 99.28 47 | 99.52 34 | 99.54 54 | 97.22 77 | 99.06 78 | 99.20 72 | 99.64 32 | 99.05 62 | 99.14 38 | 99.02 46 | 99.39 60 | 99.17 35 |
|
FC-MVSNet-train | | | 99.13 32 | 99.05 27 | 99.21 58 | 99.87 16 | 99.57 19 | 99.67 17 | 99.60 44 | 96.75 100 | 98.28 146 | 99.48 48 | 99.52 44 | 98.10 117 | 99.47 25 | 99.37 24 | 99.76 22 | 99.21 32 |
|
NR-MVSNet | | | 99.10 33 | 98.68 53 | 99.58 19 | 99.89 13 | 99.23 53 | 99.35 55 | 99.63 37 | 96.58 108 | 99.36 36 | 99.05 80 | 98.67 127 | 99.46 20 | 99.63 14 | 98.73 71 | 99.80 16 | 98.88 69 |
|
DVP-MVS | | | 99.09 34 | 99.07 26 | 99.12 71 | 99.55 96 | 99.40 34 | 99.36 52 | 99.44 79 | 97.75 45 | 98.23 149 | 99.23 68 | 99.80 7 | 98.97 67 | 99.08 46 | 98.96 47 | 99.19 87 | 99.25 24 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
UniMVSNet (Re) | | | 99.08 35 | 98.69 51 | 99.54 24 | 99.75 47 | 99.33 42 | 99.29 63 | 99.64 36 | 96.75 100 | 99.48 28 | 99.30 62 | 98.69 123 | 99.26 42 | 98.94 62 | 98.76 67 | 99.78 19 | 99.02 52 |
|
ACMMPR | | | 99.05 36 | 98.72 47 | 99.44 29 | 99.79 33 | 99.12 68 | 99.35 55 | 99.56 48 | 97.74 48 | 99.21 54 | 97.72 131 | 99.55 42 | 99.29 39 | 98.90 68 | 98.81 60 | 99.41 59 | 99.19 33 |
|
DU-MVS | | | 99.04 37 | 98.59 57 | 99.56 21 | 99.74 53 | 99.23 53 | 99.29 63 | 99.63 37 | 96.58 108 | 99.55 21 | 99.05 80 | 98.68 125 | 99.36 35 | 99.03 55 | 98.60 78 | 99.77 20 | 98.97 57 |
|
TSAR-MVS + MP. | | | 99.02 38 | 98.95 30 | 99.11 74 | 99.23 152 | 98.79 112 | 99.51 35 | 98.73 159 | 97.50 62 | 98.56 122 | 99.03 83 | 99.59 40 | 99.16 52 | 99.29 33 | 99.17 35 | 99.50 47 | 99.24 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
v10 | | | 99.01 39 | 98.66 54 | 99.41 34 | 99.52 107 | 99.39 35 | 99.57 29 | 99.66 31 | 97.59 59 | 99.32 41 | 99.88 9 | 99.23 72 | 99.50 18 | 97.77 134 | 97.98 108 | 98.92 121 | 98.78 79 |
|
EG-PatchMatch MVS | | | 99.01 39 | 98.77 43 | 99.28 57 | 99.64 77 | 98.90 105 | 98.81 117 | 99.27 109 | 96.55 112 | 99.71 6 | 99.31 60 | 99.66 26 | 99.17 50 | 99.28 35 | 99.11 38 | 99.10 94 | 98.57 95 |
|
PVSNet_Blended_VisFu | | | 98.98 41 | 98.79 41 | 99.21 58 | 99.76 44 | 99.34 40 | 99.35 55 | 99.35 94 | 97.12 83 | 99.46 31 | 99.56 40 | 98.89 110 | 98.08 120 | 99.05 49 | 98.58 80 | 99.27 79 | 98.98 56 |
|
HFP-MVS | | | 98.97 42 | 98.70 49 | 99.29 55 | 99.67 68 | 98.98 88 | 99.13 85 | 99.53 57 | 97.76 42 | 98.90 98 | 98.07 119 | 99.50 50 | 99.14 56 | 98.64 81 | 98.78 64 | 99.37 62 | 99.18 34 |
|
UniMVSNet_NR-MVSNet | | | 98.97 42 | 98.46 68 | 99.56 21 | 99.76 44 | 99.34 40 | 99.29 63 | 99.61 43 | 96.55 112 | 99.55 21 | 99.05 80 | 97.96 150 | 99.36 35 | 98.84 71 | 98.50 86 | 99.81 15 | 98.97 57 |
|
SED-MVS | | | 98.94 44 | 98.95 30 | 98.91 96 | 99.43 123 | 99.38 37 | 99.12 87 | 99.46 73 | 97.05 86 | 98.43 137 | 99.23 68 | 99.79 8 | 97.99 123 | 99.05 49 | 98.94 49 | 99.05 107 | 99.23 29 |
|
ACMMP_NAP | | | 98.94 44 | 98.72 47 | 99.21 58 | 99.67 68 | 99.08 71 | 99.26 68 | 99.39 82 | 96.84 91 | 98.88 102 | 98.22 112 | 99.68 22 | 98.82 76 | 99.06 48 | 98.90 52 | 99.25 82 | 99.25 24 |
|
zzz-MVS | | | 98.94 44 | 98.57 60 | 99.37 47 | 99.77 38 | 99.15 65 | 99.24 71 | 99.55 50 | 97.38 68 | 99.16 64 | 96.64 165 | 99.69 19 | 99.15 54 | 99.09 44 | 98.92 51 | 99.37 62 | 99.11 38 |
|
v1144 | | | 98.94 44 | 98.53 63 | 99.42 33 | 99.62 81 | 99.03 82 | 99.58 28 | 99.36 91 | 97.99 31 | 99.49 27 | 99.91 8 | 99.20 78 | 99.51 17 | 97.61 139 | 97.85 115 | 98.95 116 | 98.10 135 |
|
v8 | | | 98.94 44 | 98.60 55 | 99.35 50 | 99.54 100 | 99.39 35 | 99.55 31 | 99.67 30 | 97.48 63 | 99.13 70 | 99.81 19 | 99.10 95 | 99.39 33 | 97.86 129 | 97.89 113 | 98.81 130 | 98.66 86 |
|
SteuartSystems-ACMMP | | | 98.94 44 | 98.52 64 | 99.43 32 | 99.79 33 | 99.13 67 | 99.33 59 | 99.55 50 | 96.17 131 | 99.04 84 | 97.53 137 | 99.65 30 | 99.46 20 | 99.04 54 | 98.76 67 | 99.44 54 | 99.35 19 |
Skip Steuart: Steuart Systems R&D Blog. |
v1192 | | | 98.91 50 | 98.48 67 | 99.41 34 | 99.61 85 | 99.03 82 | 99.64 19 | 99.25 113 | 97.91 37 | 99.58 17 | 99.92 4 | 99.07 101 | 99.45 22 | 97.55 143 | 97.68 129 | 98.93 118 | 98.23 125 |
|
FMVSNet1 | | | 98.90 51 | 99.10 25 | 98.67 120 | 99.54 100 | 99.48 25 | 99.22 74 | 99.66 31 | 98.39 23 | 97.50 179 | 99.66 27 | 99.04 102 | 96.58 160 | 99.05 49 | 99.03 43 | 99.52 42 | 99.08 44 |
|
ACMM | | 96.66 11 | 98.90 51 | 98.44 72 | 99.44 29 | 99.74 53 | 98.95 94 | 99.47 40 | 99.55 50 | 97.66 56 | 99.09 75 | 96.43 171 | 99.41 54 | 99.35 37 | 98.95 60 | 98.67 74 | 99.45 52 | 99.03 50 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20231211 | | | 98.89 53 | 98.79 41 | 98.99 89 | 99.82 25 | 99.41 33 | 99.18 79 | 99.31 104 | 96.92 88 | 98.54 125 | 98.58 102 | 98.84 115 | 97.46 140 | 99.45 26 | 99.29 29 | 99.65 30 | 99.08 44 |
|
v1921920 | | | 98.89 53 | 98.46 68 | 99.39 40 | 99.58 89 | 99.04 80 | 99.64 19 | 99.17 124 | 97.91 37 | 99.64 15 | 99.92 4 | 98.99 107 | 99.44 25 | 97.44 150 | 97.57 138 | 98.84 128 | 98.35 115 |
|
GeoE | | | 98.88 55 | 98.43 75 | 99.41 34 | 99.83 22 | 99.24 50 | 99.51 35 | 99.82 13 | 96.55 112 | 99.22 53 | 98.76 94 | 99.22 75 | 98.96 68 | 98.55 84 | 98.15 100 | 99.10 94 | 98.56 98 |
|
v144192 | | | 98.88 55 | 98.46 68 | 99.37 47 | 99.56 95 | 99.03 82 | 99.61 25 | 99.26 110 | 97.79 41 | 99.58 17 | 99.88 9 | 99.11 93 | 99.43 27 | 97.38 155 | 97.61 134 | 98.80 132 | 98.43 110 |
|
SMA-MVS |  | | 98.87 57 | 98.73 46 | 99.04 82 | 99.72 59 | 99.05 76 | 98.64 128 | 99.17 124 | 96.31 126 | 98.80 107 | 99.07 78 | 99.70 18 | 98.67 84 | 98.93 65 | 98.82 58 | 99.23 85 | 99.23 29 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMP | | 96.54 13 | 98.87 57 | 98.40 78 | 99.41 34 | 99.74 53 | 98.88 106 | 99.29 63 | 99.50 63 | 96.85 90 | 98.96 90 | 97.05 152 | 99.66 26 | 99.43 27 | 98.98 59 | 98.60 78 | 99.52 42 | 98.81 74 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DCV-MVSNet | | | 98.86 59 | 98.57 60 | 99.19 61 | 99.86 20 | 99.67 13 | 99.39 48 | 99.71 24 | 97.53 61 | 98.69 115 | 95.85 182 | 98.48 133 | 97.75 132 | 99.57 19 | 99.41 21 | 99.72 24 | 99.48 14 |
|
v1240 | | | 98.86 59 | 98.41 77 | 99.38 45 | 99.59 87 | 99.05 76 | 99.65 18 | 99.14 129 | 97.68 54 | 99.66 13 | 99.93 3 | 98.72 122 | 99.45 22 | 97.38 155 | 97.72 127 | 98.79 133 | 98.35 115 |
|
CP-MVS | | | 98.86 59 | 98.43 75 | 99.36 49 | 99.68 66 | 98.97 92 | 99.19 77 | 99.46 73 | 96.60 106 | 99.20 55 | 97.11 151 | 99.51 48 | 99.15 54 | 98.92 66 | 98.82 58 | 99.45 52 | 99.08 44 |
|
v2v482 | | | 98.85 62 | 98.40 78 | 99.38 45 | 99.65 74 | 98.98 88 | 99.55 31 | 99.39 82 | 97.92 36 | 99.35 37 | 99.85 14 | 99.14 88 | 99.39 33 | 97.50 145 | 97.78 118 | 98.98 113 | 97.60 149 |
|
DPE-MVS |  | | 98.84 63 | 98.69 51 | 99.00 86 | 99.05 170 | 99.26 48 | 99.19 77 | 99.35 94 | 95.85 139 | 98.74 112 | 99.27 64 | 99.66 26 | 98.30 109 | 98.90 68 | 98.93 50 | 99.37 62 | 99.00 54 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
OPM-MVS | | | 98.84 63 | 98.59 57 | 99.12 71 | 99.52 107 | 98.50 136 | 99.13 85 | 99.22 116 | 97.76 42 | 98.76 109 | 98.70 96 | 99.61 37 | 98.90 71 | 98.67 79 | 98.37 92 | 99.19 87 | 98.57 95 |
|
test20.03 | | | 98.84 63 | 98.74 45 | 98.95 92 | 99.77 38 | 99.33 42 | 99.21 76 | 99.46 73 | 97.29 71 | 98.88 102 | 99.65 30 | 99.10 95 | 97.07 152 | 99.11 41 | 98.76 67 | 99.32 72 | 97.98 139 |
|
casdiffmvs | | | 98.84 63 | 98.75 44 | 98.94 95 | 99.75 47 | 99.21 57 | 99.33 59 | 99.04 140 | 98.04 29 | 97.46 182 | 99.72 24 | 99.72 15 | 98.60 88 | 98.30 104 | 98.37 92 | 99.48 49 | 97.92 141 |
|
LGP-MVS_train | | | 98.84 63 | 98.33 84 | 99.44 29 | 99.78 36 | 98.98 88 | 99.39 48 | 99.55 50 | 95.41 147 | 98.90 98 | 97.51 138 | 99.68 22 | 99.44 25 | 99.03 55 | 98.81 60 | 99.57 36 | 98.91 65 |
|
RPSCF | | | 98.84 63 | 98.81 40 | 98.89 98 | 99.37 131 | 98.95 94 | 98.51 140 | 98.85 152 | 97.73 50 | 98.33 142 | 98.97 88 | 99.14 88 | 98.95 69 | 99.18 37 | 98.68 73 | 99.31 73 | 98.99 55 |
|
ACMMP |  | | 98.82 69 | 98.33 84 | 99.39 40 | 99.77 38 | 99.14 66 | 99.37 51 | 99.54 54 | 96.47 119 | 99.03 86 | 96.26 175 | 99.52 44 | 99.28 40 | 98.92 66 | 98.80 63 | 99.37 62 | 99.16 36 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
V42 | | | 98.81 70 | 98.49 66 | 99.18 62 | 99.52 107 | 98.92 100 | 99.50 37 | 99.29 106 | 97.43 66 | 98.97 88 | 99.81 19 | 99.00 106 | 99.30 38 | 97.93 125 | 98.01 106 | 98.51 156 | 98.34 119 |
|
LS3D | | | 98.79 71 | 98.52 64 | 99.12 71 | 99.64 77 | 99.09 70 | 99.24 71 | 99.46 73 | 97.75 45 | 98.93 96 | 97.47 139 | 98.23 142 | 97.98 124 | 99.36 30 | 99.30 28 | 99.46 50 | 98.42 111 |
|
MP-MVS |  | | 98.78 72 | 98.30 86 | 99.34 51 | 99.75 47 | 98.95 94 | 99.26 68 | 99.46 73 | 95.78 142 | 99.17 61 | 96.98 156 | 99.72 15 | 99.06 61 | 98.84 71 | 98.74 70 | 99.33 69 | 99.11 38 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
v148 | | | 98.77 73 | 98.45 71 | 99.15 67 | 99.68 66 | 98.94 98 | 99.49 38 | 99.31 104 | 97.95 33 | 98.91 97 | 99.65 30 | 99.62 36 | 99.18 47 | 97.99 123 | 97.64 133 | 98.33 161 | 97.38 155 |
|
SD-MVS | | | 98.73 74 | 98.54 62 | 98.95 92 | 99.14 161 | 98.76 115 | 98.46 144 | 99.14 129 | 97.71 52 | 98.56 122 | 98.06 121 | 99.61 37 | 98.85 75 | 98.56 83 | 97.74 124 | 99.54 39 | 99.32 21 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MSP-MVS | | | 98.72 75 | 98.60 55 | 98.87 100 | 99.67 68 | 99.33 42 | 99.15 82 | 99.26 110 | 96.99 87 | 97.90 169 | 98.19 114 | 99.74 12 | 98.29 110 | 97.69 137 | 98.96 47 | 98.96 114 | 99.27 23 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 98.69 76 | 98.09 103 | 99.39 40 | 99.76 44 | 99.07 72 | 99.30 62 | 99.51 61 | 94.76 158 | 99.18 60 | 96.70 163 | 99.51 48 | 99.20 45 | 98.79 75 | 98.71 72 | 99.39 60 | 99.11 38 |
|
pmmvs-eth3d | | | 98.68 77 | 98.14 99 | 99.29 55 | 99.49 112 | 98.45 139 | 99.45 44 | 99.38 87 | 97.21 78 | 99.50 26 | 99.65 30 | 99.21 76 | 99.16 52 | 97.11 162 | 97.56 139 | 98.79 133 | 97.82 145 |
|
EU-MVSNet | | | 98.68 77 | 98.94 33 | 98.37 140 | 99.14 161 | 98.74 117 | 99.64 19 | 98.20 185 | 98.21 24 | 99.17 61 | 99.66 27 | 99.18 81 | 99.08 59 | 99.11 41 | 98.86 53 | 95.00 197 | 98.83 71 |
|
PMVS |  | 92.51 17 | 98.66 79 | 98.86 38 | 98.43 135 | 99.26 147 | 98.98 88 | 98.60 134 | 98.59 169 | 97.73 50 | 99.45 32 | 99.38 57 | 98.54 132 | 95.24 178 | 99.62 15 | 99.61 12 | 99.42 56 | 98.17 132 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepC-MVS_fast | | 97.38 8 | 98.65 80 | 98.34 83 | 99.02 85 | 99.33 135 | 98.29 146 | 98.99 95 | 98.71 161 | 97.40 67 | 99.31 42 | 98.20 113 | 99.40 57 | 98.54 96 | 98.33 101 | 98.18 99 | 99.23 85 | 98.58 93 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator | | 98.16 3 | 98.65 80 | 98.35 82 | 99.00 86 | 99.59 87 | 98.70 120 | 98.90 109 | 99.36 91 | 97.97 32 | 99.09 75 | 96.55 168 | 99.09 97 | 97.97 125 | 98.70 78 | 98.65 76 | 99.12 93 | 98.81 74 |
|
TSAR-MVS + ACMM | | | 98.64 82 | 98.58 59 | 98.72 114 | 99.17 159 | 98.63 125 | 98.69 124 | 99.10 136 | 97.69 53 | 98.30 144 | 99.12 76 | 99.38 59 | 98.70 83 | 98.45 87 | 97.51 141 | 98.35 160 | 99.25 24 |
|
DELS-MVS | | | 98.63 83 | 98.70 49 | 98.55 131 | 99.24 151 | 99.04 80 | 98.96 98 | 98.52 172 | 96.83 93 | 98.38 139 | 99.58 38 | 99.68 22 | 97.06 153 | 98.74 77 | 98.44 88 | 99.10 94 | 98.59 92 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
QAPM | | | 98.62 84 | 98.40 78 | 98.89 98 | 99.57 94 | 98.80 111 | 98.63 129 | 99.35 94 | 96.82 94 | 98.60 119 | 98.85 93 | 99.08 99 | 98.09 119 | 98.31 102 | 98.21 96 | 99.08 100 | 98.72 81 |
|
EPP-MVSNet | | | 98.61 85 | 98.19 95 | 99.11 74 | 99.86 20 | 99.60 17 | 99.44 45 | 99.53 57 | 97.37 69 | 96.85 195 | 98.69 97 | 93.75 183 | 99.18 47 | 99.22 36 | 99.35 26 | 99.82 14 | 99.32 21 |
|
3Dnovator+ | | 97.85 5 | 98.61 85 | 98.14 99 | 99.15 67 | 99.62 81 | 98.37 144 | 99.10 88 | 99.51 61 | 98.04 29 | 98.98 87 | 96.07 179 | 98.75 121 | 98.55 94 | 98.51 86 | 98.40 89 | 99.17 89 | 98.82 72 |
|
X-MVS | | | 98.59 87 | 97.99 109 | 99.30 54 | 99.75 47 | 99.07 72 | 99.17 80 | 99.50 63 | 96.62 104 | 98.95 92 | 93.95 198 | 99.37 60 | 99.11 57 | 98.94 62 | 98.86 53 | 99.35 67 | 99.09 43 |
|
MVS_111021_HR | | | 98.58 88 | 98.26 89 | 98.96 91 | 99.32 138 | 98.81 109 | 98.48 142 | 98.99 145 | 96.81 96 | 99.16 64 | 98.07 119 | 99.23 72 | 98.89 73 | 98.43 89 | 98.27 95 | 98.90 123 | 98.24 124 |
|
MVS_0304 | | | 98.57 89 | 98.36 81 | 98.82 107 | 99.72 59 | 98.94 98 | 98.92 103 | 99.14 129 | 96.76 99 | 99.33 40 | 98.30 109 | 99.73 13 | 96.74 156 | 98.05 120 | 97.79 117 | 99.08 100 | 98.97 57 |
|
PM-MVS | | | 98.57 89 | 98.24 91 | 98.95 92 | 99.26 147 | 98.59 128 | 99.03 92 | 98.74 158 | 96.84 91 | 99.44 33 | 99.13 75 | 98.31 141 | 98.75 81 | 98.03 121 | 98.21 96 | 98.48 157 | 98.58 93 |
|
PHI-MVS | | | 98.57 89 | 98.20 94 | 99.00 86 | 99.48 114 | 98.91 102 | 98.68 125 | 99.17 124 | 94.97 154 | 99.27 50 | 98.33 107 | 99.33 64 | 98.05 121 | 98.82 73 | 98.62 77 | 99.34 68 | 98.38 113 |
|
HPM-MVS++ |  | | 98.56 92 | 98.08 104 | 99.11 74 | 99.53 103 | 98.61 127 | 99.02 94 | 99.32 102 | 96.29 128 | 99.06 78 | 97.23 146 | 99.50 50 | 98.77 79 | 98.15 116 | 97.90 111 | 98.96 114 | 98.90 66 |
|
TSAR-MVS + GP. | | | 98.54 93 | 98.29 88 | 98.82 107 | 99.28 145 | 98.59 128 | 97.73 183 | 99.24 115 | 95.93 137 | 98.59 120 | 99.07 78 | 99.17 82 | 98.86 74 | 98.44 88 | 98.10 102 | 99.26 81 | 98.72 81 |
|
UGNet | | | 98.52 94 | 99.00 29 | 97.96 162 | 99.58 89 | 99.26 48 | 99.27 67 | 99.40 80 | 98.07 28 | 98.28 146 | 98.76 94 | 99.71 17 | 92.24 205 | 98.94 62 | 98.85 55 | 99.00 112 | 99.43 17 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20231206 | | | 98.50 95 | 98.03 106 | 99.05 80 | 99.50 110 | 99.01 85 | 99.15 82 | 99.26 110 | 96.38 124 | 99.12 72 | 99.50 47 | 99.12 91 | 98.60 88 | 97.68 138 | 97.24 152 | 98.66 141 | 97.30 159 |
|
CLD-MVS | | | 98.48 96 | 98.15 98 | 98.86 103 | 99.53 103 | 98.35 145 | 98.55 137 | 97.83 194 | 96.02 136 | 98.97 88 | 99.08 77 | 99.75 11 | 99.03 63 | 98.10 119 | 97.33 148 | 99.28 77 | 98.44 109 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 98.47 97 | 98.30 86 | 98.67 120 | 99.65 74 | 98.87 107 | 98.82 116 | 99.01 143 | 96.14 132 | 99.29 45 | 98.86 91 | 99.01 104 | 96.54 161 | 98.36 95 | 98.08 103 | 98.72 137 | 98.80 78 |
|
APD-MVS |  | | 98.47 97 | 97.97 110 | 99.05 80 | 99.64 77 | 98.91 102 | 98.94 100 | 99.45 78 | 94.40 169 | 98.77 108 | 97.26 145 | 99.41 54 | 98.21 113 | 98.67 79 | 98.57 83 | 99.31 73 | 98.57 95 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Vis-MVSNet (Re-imp) | | | 98.46 99 | 98.23 92 | 98.73 113 | 99.81 28 | 99.29 46 | 98.79 119 | 99.50 63 | 96.20 130 | 96.03 201 | 98.29 110 | 96.98 165 | 98.54 96 | 99.11 41 | 99.08 39 | 99.70 25 | 98.62 89 |
|
Fast-Effi-MVS+ | | | 98.42 100 | 97.79 116 | 99.15 67 | 99.69 65 | 98.66 123 | 98.94 100 | 99.68 27 | 94.49 163 | 99.05 80 | 98.06 121 | 98.86 112 | 98.48 99 | 98.18 113 | 97.78 118 | 99.05 107 | 98.54 101 |
|
ETV-MVS | | | 98.41 101 | 97.76 117 | 99.17 63 | 99.58 89 | 99.01 85 | 98.91 105 | 99.50 63 | 93.33 188 | 99.31 42 | 96.82 160 | 98.42 137 | 98.17 116 | 99.13 40 | 99.08 39 | 99.54 39 | 98.56 98 |
|
MVS_111021_LR | | | 98.39 102 | 98.11 101 | 98.71 116 | 99.08 167 | 98.54 134 | 98.23 164 | 98.56 171 | 96.57 110 | 99.13 70 | 98.41 104 | 98.86 112 | 98.65 86 | 98.23 111 | 97.87 114 | 98.65 143 | 98.28 121 |
|
pmmvs5 | | | 98.37 103 | 97.81 115 | 99.03 83 | 99.46 116 | 98.97 92 | 99.03 92 | 98.96 147 | 95.85 139 | 99.05 80 | 99.45 51 | 98.66 128 | 98.79 78 | 96.02 179 | 97.52 140 | 98.87 125 | 98.21 128 |
|
OMC-MVS | | | 98.35 104 | 98.10 102 | 98.64 126 | 98.85 178 | 97.99 166 | 98.56 136 | 98.21 183 | 97.26 75 | 98.87 104 | 98.54 103 | 99.27 70 | 98.43 101 | 98.34 99 | 97.66 130 | 98.92 121 | 97.65 148 |
|
canonicalmvs | | | 98.34 105 | 97.92 112 | 98.83 105 | 99.45 118 | 99.21 57 | 98.37 151 | 99.53 57 | 97.06 85 | 97.74 173 | 96.95 158 | 95.05 180 | 98.36 104 | 98.77 76 | 98.85 55 | 99.51 46 | 99.53 9 |
|
CHOSEN 1792x2688 | | | 98.31 106 | 98.02 107 | 98.66 122 | 99.55 96 | 98.57 131 | 99.38 50 | 99.25 113 | 98.42 20 | 98.48 133 | 99.58 38 | 99.85 5 | 98.31 108 | 95.75 182 | 95.71 177 | 96.96 184 | 98.27 123 |
|
xxxxxxxxxxxxxcwj | | | 98.28 107 | 98.23 92 | 98.35 141 | 99.43 123 | 98.42 142 | 97.05 205 | 99.09 137 | 96.42 121 | 98.13 155 | 97.73 129 | 99.65 30 | 97.22 146 | 98.36 95 | 98.38 90 | 99.16 91 | 98.62 89 |
|
CPTT-MVS | | | 98.28 107 | 97.51 129 | 99.16 65 | 99.54 100 | 98.78 113 | 98.96 98 | 99.36 91 | 96.30 127 | 98.89 101 | 93.10 203 | 99.30 67 | 99.20 45 | 98.35 98 | 97.96 109 | 99.03 110 | 98.82 72 |
|
TinyColmap | | | 98.27 109 | 97.62 126 | 99.03 83 | 99.29 143 | 97.79 175 | 98.92 103 | 98.95 148 | 97.48 63 | 99.52 24 | 98.65 99 | 97.86 152 | 98.90 71 | 98.34 99 | 97.27 150 | 98.64 144 | 95.97 179 |
|
diffmvs | | | 98.26 110 | 98.16 96 | 98.39 137 | 99.61 85 | 98.78 113 | 98.79 119 | 98.61 167 | 97.94 34 | 97.11 194 | 99.51 46 | 99.52 44 | 97.61 136 | 96.55 171 | 96.93 158 | 98.61 146 | 97.87 143 |
|
USDC | | | 98.26 110 | 97.57 127 | 99.06 77 | 99.42 127 | 97.98 168 | 98.83 113 | 98.85 152 | 97.57 60 | 99.59 16 | 99.15 74 | 98.59 130 | 98.99 65 | 97.42 151 | 96.08 176 | 98.69 140 | 96.23 177 |
|
SF-MVS | | | 98.25 112 | 98.16 96 | 98.35 141 | 99.43 123 | 98.42 142 | 97.05 205 | 99.09 137 | 96.42 121 | 98.13 155 | 97.73 129 | 99.20 78 | 97.22 146 | 98.36 95 | 98.38 90 | 99.16 91 | 98.62 89 |
|
MCST-MVS | | | 98.25 112 | 97.57 127 | 99.06 77 | 99.53 103 | 98.24 152 | 98.63 129 | 99.17 124 | 95.88 138 | 98.58 121 | 96.11 177 | 99.09 97 | 99.18 47 | 97.58 142 | 97.31 149 | 99.25 82 | 98.75 80 |
|
IterMVS-LS | | | 98.23 114 | 97.66 122 | 98.90 97 | 99.63 80 | 99.38 37 | 99.07 89 | 99.48 69 | 97.75 45 | 98.81 106 | 99.37 58 | 94.57 182 | 97.88 129 | 96.54 172 | 97.04 155 | 98.53 153 | 98.97 57 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TAPA-MVS | | 96.65 12 | 98.23 114 | 97.96 111 | 98.55 131 | 98.81 180 | 98.16 156 | 98.40 148 | 97.94 192 | 96.68 102 | 98.49 131 | 98.61 100 | 98.89 110 | 98.57 92 | 97.45 148 | 97.59 136 | 99.09 99 | 98.35 115 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CNVR-MVS | | | 98.22 116 | 97.76 117 | 98.76 111 | 99.33 135 | 98.26 150 | 98.48 142 | 98.88 151 | 96.22 129 | 98.47 135 | 95.79 183 | 99.33 64 | 98.35 105 | 98.37 94 | 97.99 107 | 99.03 110 | 98.38 113 |
|
IS_MVSNet | | | 98.20 117 | 98.00 108 | 98.44 134 | 99.82 25 | 99.48 25 | 99.25 70 | 99.56 48 | 95.58 144 | 93.93 213 | 97.56 136 | 96.52 169 | 98.27 111 | 99.08 46 | 99.20 33 | 99.80 16 | 98.56 98 |
|
DeepPCF-MVS | | 96.68 10 | 98.20 117 | 98.26 89 | 98.12 155 | 97.03 216 | 98.11 159 | 98.44 146 | 97.70 196 | 96.77 98 | 98.52 127 | 98.91 89 | 99.17 82 | 98.58 91 | 98.41 91 | 98.02 105 | 98.46 158 | 98.46 106 |
|
MSDG | | | 98.20 117 | 97.88 114 | 98.56 130 | 99.33 135 | 97.74 176 | 98.27 161 | 98.10 186 | 97.20 80 | 98.06 160 | 98.59 101 | 99.16 84 | 98.76 80 | 98.39 92 | 97.71 128 | 98.86 127 | 96.38 174 |
|
testgi | | | 98.18 120 | 98.44 72 | 97.89 164 | 99.78 36 | 99.23 53 | 98.78 121 | 99.21 118 | 97.26 75 | 97.41 184 | 97.39 142 | 99.36 63 | 92.85 202 | 98.82 73 | 98.66 75 | 99.31 73 | 98.35 115 |
|
CS-MVS | | | 98.13 121 | 97.25 139 | 99.16 65 | 99.71 62 | 99.44 30 | 98.80 118 | 99.49 68 | 93.16 191 | 99.19 57 | 93.95 198 | 98.47 135 | 98.19 115 | 98.30 104 | 98.78 64 | 99.56 37 | 98.66 86 |
|
Effi-MVS+ | | | 98.11 122 | 97.29 135 | 99.06 77 | 99.62 81 | 98.55 132 | 98.16 167 | 99.80 15 | 94.64 159 | 99.15 68 | 96.59 166 | 97.43 158 | 98.44 100 | 97.46 147 | 97.90 111 | 99.17 89 | 98.45 108 |
|
HyFIR lowres test | | | 98.08 123 | 97.16 145 | 99.14 70 | 99.72 59 | 98.91 102 | 99.41 46 | 99.58 45 | 97.93 35 | 98.82 105 | 99.24 66 | 95.81 175 | 98.73 82 | 95.16 193 | 95.13 186 | 98.60 148 | 97.94 140 |
|
EIA-MVS | | | 98.03 124 | 97.20 142 | 98.99 89 | 99.66 71 | 99.24 50 | 98.53 139 | 99.52 60 | 91.56 206 | 99.25 51 | 95.34 187 | 98.78 118 | 97.72 133 | 98.38 93 | 98.58 80 | 99.28 77 | 98.54 101 |
|
train_agg | | | 97.99 125 | 97.26 136 | 98.83 105 | 99.43 123 | 98.22 154 | 98.91 105 | 99.07 139 | 94.43 167 | 97.96 166 | 96.42 172 | 99.30 67 | 98.81 77 | 97.39 153 | 96.62 164 | 98.82 129 | 98.47 104 |
|
MSLP-MVS++ | | | 97.99 125 | 97.64 125 | 98.40 136 | 98.91 176 | 98.47 138 | 97.12 203 | 98.78 156 | 96.49 117 | 98.48 133 | 93.57 201 | 99.12 91 | 98.51 98 | 98.31 102 | 98.58 80 | 98.58 150 | 98.95 62 |
|
CDPH-MVS | | | 97.99 125 | 97.23 140 | 98.87 100 | 99.58 89 | 98.29 146 | 98.83 113 | 99.20 120 | 93.76 182 | 98.11 158 | 96.11 177 | 99.16 84 | 98.23 112 | 97.80 132 | 97.22 153 | 99.29 76 | 98.28 121 |
|
FMVSNet2 | | | 97.94 128 | 98.08 104 | 97.77 170 | 98.71 184 | 99.21 57 | 98.62 131 | 99.47 70 | 96.62 104 | 96.37 200 | 99.20 72 | 97.70 154 | 94.39 189 | 97.39 153 | 97.75 123 | 99.08 100 | 98.70 83 |
|
PVSNet_BlendedMVS | | | 97.93 129 | 97.66 122 | 98.25 148 | 99.30 140 | 98.67 121 | 98.31 156 | 97.95 190 | 94.30 173 | 98.75 110 | 97.63 133 | 98.76 119 | 96.30 168 | 98.29 106 | 97.78 118 | 98.93 118 | 98.18 130 |
|
PVSNet_Blended | | | 97.93 129 | 97.66 122 | 98.25 148 | 99.30 140 | 98.67 121 | 98.31 156 | 97.95 190 | 94.30 173 | 98.75 110 | 97.63 133 | 98.76 119 | 96.30 168 | 98.29 106 | 97.78 118 | 98.93 118 | 98.18 130 |
|
OpenMVS |  | 97.26 9 | 97.88 131 | 97.17 144 | 98.70 117 | 99.50 110 | 98.55 132 | 98.34 154 | 99.11 134 | 93.92 180 | 98.90 98 | 95.04 191 | 98.23 142 | 97.38 143 | 98.11 118 | 98.12 101 | 98.95 116 | 98.23 125 |
|
pmmvs4 | | | 97.87 132 | 97.02 149 | 98.86 103 | 99.20 153 | 97.68 179 | 98.89 110 | 99.03 141 | 96.57 110 | 99.12 72 | 99.03 83 | 97.26 162 | 98.42 102 | 95.16 193 | 96.34 168 | 98.53 153 | 97.10 166 |
|
NCCC | | | 97.84 133 | 96.96 151 | 98.87 100 | 99.39 130 | 98.27 149 | 98.46 144 | 99.02 142 | 96.78 97 | 98.73 114 | 91.12 206 | 98.91 108 | 98.57 92 | 97.83 131 | 97.49 142 | 99.04 109 | 98.33 120 |
|
Effi-MVS+-dtu | | | 97.78 134 | 97.37 133 | 98.26 146 | 99.25 149 | 98.50 136 | 97.89 177 | 99.19 123 | 94.51 161 | 98.16 153 | 95.93 180 | 98.80 117 | 95.97 171 | 98.27 110 | 97.38 145 | 99.10 94 | 98.23 125 |
|
MDA-MVSNet-bldmvs | | | 97.75 135 | 97.26 136 | 98.33 143 | 99.35 134 | 98.45 139 | 99.32 61 | 97.21 201 | 97.90 39 | 99.05 80 | 99.01 85 | 96.86 167 | 99.08 59 | 99.36 30 | 92.97 196 | 95.97 193 | 96.25 176 |
|
CDS-MVSNet | | | 97.75 135 | 97.68 121 | 97.83 168 | 99.08 167 | 98.20 155 | 98.68 125 | 98.61 167 | 95.63 143 | 97.80 171 | 99.24 66 | 96.93 166 | 94.09 194 | 97.96 124 | 97.82 116 | 98.71 138 | 97.99 137 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CNLPA | | | 97.75 135 | 97.26 136 | 98.32 145 | 98.58 192 | 97.86 171 | 97.80 179 | 98.09 187 | 96.49 117 | 98.49 131 | 96.15 176 | 98.08 145 | 98.35 105 | 98.00 122 | 97.03 156 | 98.61 146 | 97.21 163 |
|
PLC |  | 95.63 15 | 97.73 138 | 97.01 150 | 98.57 129 | 99.10 164 | 97.80 174 | 97.72 184 | 98.77 157 | 96.34 125 | 98.38 139 | 93.46 202 | 98.06 146 | 98.66 85 | 97.90 127 | 97.65 132 | 98.77 135 | 97.90 142 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_Test | | | 97.69 139 | 97.15 146 | 98.33 143 | 99.27 146 | 98.43 141 | 98.25 162 | 99.29 106 | 95.00 153 | 97.39 186 | 98.86 91 | 98.00 149 | 97.14 150 | 95.38 188 | 96.22 170 | 98.62 145 | 98.15 134 |
|
GBi-Net | | | 97.69 139 | 97.75 119 | 97.62 171 | 98.71 184 | 99.21 57 | 98.62 131 | 99.33 98 | 94.09 176 | 95.60 203 | 98.17 116 | 95.97 172 | 94.39 189 | 99.05 49 | 99.03 43 | 99.08 100 | 98.70 83 |
|
test1 | | | 97.69 139 | 97.75 119 | 97.62 171 | 98.71 184 | 99.21 57 | 98.62 131 | 99.33 98 | 94.09 176 | 95.60 203 | 98.17 116 | 95.97 172 | 94.39 189 | 99.05 49 | 99.03 43 | 99.08 100 | 98.70 83 |
|
CANet_DTU | | | 97.65 142 | 97.50 131 | 97.82 169 | 99.19 156 | 98.08 161 | 98.41 147 | 98.67 163 | 94.40 169 | 99.16 64 | 98.32 108 | 98.69 123 | 93.96 196 | 97.87 128 | 97.61 134 | 97.51 180 | 97.56 151 |
|
IterMVS-SCA-FT | | | 97.63 143 | 96.86 153 | 98.52 133 | 99.48 114 | 98.71 119 | 98.84 112 | 98.91 149 | 96.44 120 | 99.16 64 | 99.56 40 | 95.54 177 | 97.95 126 | 95.68 185 | 95.07 189 | 96.76 185 | 97.03 169 |
|
TSAR-MVS + COLMAP | | | 97.62 144 | 97.31 134 | 97.98 160 | 98.47 198 | 97.39 183 | 98.29 158 | 98.25 182 | 96.68 102 | 97.54 178 | 98.87 90 | 98.04 148 | 97.08 151 | 96.78 166 | 96.26 169 | 98.26 164 | 97.12 165 |
|
MS-PatchMatch | | | 97.60 145 | 97.22 141 | 98.04 159 | 98.67 188 | 97.18 187 | 97.91 175 | 98.28 181 | 95.82 141 | 98.34 141 | 97.66 132 | 98.38 138 | 97.77 131 | 97.10 163 | 97.25 151 | 97.27 182 | 97.18 164 |
|
PCF-MVS | | 95.58 16 | 97.60 145 | 96.67 154 | 98.69 118 | 99.44 121 | 98.23 153 | 98.37 151 | 98.81 154 | 93.01 194 | 98.22 150 | 97.97 125 | 99.59 40 | 98.20 114 | 95.72 184 | 95.08 187 | 99.08 100 | 97.09 168 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HQP-MVS | | | 97.58 147 | 96.65 157 | 98.66 122 | 99.30 140 | 97.99 166 | 97.88 178 | 98.65 164 | 94.58 160 | 98.66 116 | 94.65 195 | 99.15 87 | 98.59 90 | 96.10 177 | 95.59 178 | 98.90 123 | 98.50 103 |
|
DI_MVS_plusplus_trai | | | 97.57 148 | 96.55 159 | 98.77 110 | 99.55 96 | 98.76 115 | 99.22 74 | 99.00 144 | 97.08 84 | 97.95 167 | 97.78 128 | 91.35 190 | 98.02 122 | 96.20 175 | 96.81 160 | 98.87 125 | 97.87 143 |
|
AdaColmap |  | | 97.57 148 | 96.57 158 | 98.74 112 | 99.25 149 | 98.01 164 | 98.36 153 | 98.98 146 | 94.44 166 | 98.47 135 | 92.44 204 | 97.91 151 | 98.62 87 | 98.19 112 | 97.74 124 | 98.73 136 | 97.28 160 |
|
baseline | | | 97.50 150 | 97.51 129 | 97.50 175 | 99.18 157 | 97.38 184 | 98.00 171 | 98.00 189 | 96.52 116 | 97.49 180 | 99.28 63 | 99.43 53 | 95.31 177 | 95.27 190 | 96.22 170 | 96.99 183 | 98.47 104 |
|
IterMVS | | | 97.40 151 | 96.67 154 | 98.25 148 | 99.45 118 | 98.66 123 | 98.87 111 | 98.73 159 | 96.40 123 | 98.94 95 | 99.56 40 | 95.26 179 | 97.58 137 | 95.38 188 | 94.70 191 | 95.90 194 | 96.72 172 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CVMVSNet | | | 97.38 152 | 97.39 132 | 97.37 178 | 98.58 192 | 97.72 177 | 98.70 123 | 97.42 199 | 97.21 78 | 95.95 202 | 99.46 50 | 93.31 186 | 97.38 143 | 97.60 140 | 97.78 118 | 96.18 190 | 98.66 86 |
|
new-patchmatchnet | | | 97.26 153 | 96.12 167 | 98.58 128 | 99.55 96 | 98.63 125 | 99.14 84 | 97.04 203 | 98.80 14 | 99.19 57 | 99.92 4 | 99.19 80 | 98.92 70 | 95.51 187 | 87.04 205 | 97.66 177 | 93.73 195 |
|
MIMVSNet | | | 97.24 154 | 97.15 146 | 97.36 179 | 99.03 171 | 98.52 135 | 98.55 137 | 99.73 21 | 94.94 157 | 94.94 210 | 97.98 124 | 97.37 160 | 93.66 197 | 97.60 140 | 97.34 147 | 98.23 167 | 96.29 175 |
|
PatchMatch-RL | | | 97.24 154 | 96.45 162 | 98.17 152 | 98.70 187 | 97.57 182 | 97.31 198 | 98.48 175 | 94.42 168 | 98.39 138 | 95.74 184 | 96.35 171 | 97.88 129 | 97.75 135 | 97.48 143 | 98.24 166 | 95.87 180 |
|
thisisatest0530 | | | 97.20 156 | 95.95 171 | 98.66 122 | 99.46 116 | 98.84 108 | 98.29 158 | 99.20 120 | 94.51 161 | 98.25 148 | 97.42 140 | 85.03 205 | 97.68 134 | 98.43 89 | 98.56 84 | 99.08 100 | 98.89 68 |
|
tttt0517 | | | 97.18 157 | 95.92 172 | 98.65 125 | 99.49 112 | 98.92 100 | 98.29 158 | 99.20 120 | 94.37 171 | 98.17 151 | 97.37 143 | 84.72 208 | 97.68 134 | 98.55 84 | 98.56 84 | 99.10 94 | 98.95 62 |
|
MDTV_nov1_ep13_2view | | | 97.12 158 | 96.19 166 | 98.22 151 | 99.13 163 | 98.05 162 | 99.24 71 | 99.47 70 | 97.61 57 | 99.15 68 | 99.59 36 | 99.01 104 | 98.40 103 | 94.87 196 | 90.14 199 | 93.91 200 | 94.04 194 |
|
MAR-MVS | | | 97.12 158 | 96.28 165 | 98.11 156 | 98.94 174 | 97.22 186 | 97.65 188 | 99.38 87 | 90.93 212 | 98.15 154 | 95.17 189 | 97.13 163 | 96.48 164 | 97.71 136 | 97.40 144 | 98.06 170 | 98.40 112 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Fast-Effi-MVS+-dtu | | | 96.99 160 | 96.46 161 | 97.61 173 | 98.98 173 | 97.89 169 | 97.54 192 | 99.76 18 | 93.43 186 | 96.55 199 | 94.93 192 | 98.06 146 | 94.32 192 | 96.93 164 | 96.50 166 | 98.53 153 | 97.47 152 |
|
FPMVS | | | 96.97 161 | 97.20 142 | 96.70 195 | 97.75 208 | 96.11 199 | 97.72 184 | 95.47 207 | 97.13 82 | 98.02 162 | 97.57 135 | 96.67 168 | 92.97 201 | 99.00 58 | 98.34 94 | 98.28 163 | 95.58 182 |
|
TAMVS | | | 96.95 162 | 96.94 152 | 96.97 190 | 99.07 169 | 97.67 181 | 97.98 173 | 97.12 202 | 95.04 152 | 95.41 206 | 99.27 64 | 95.57 176 | 94.09 194 | 97.32 157 | 97.11 154 | 98.16 169 | 96.59 173 |
|
FMVSNet3 | | | 96.85 163 | 96.67 154 | 97.06 184 | 97.56 211 | 99.01 85 | 97.99 172 | 99.33 98 | 94.09 176 | 95.60 203 | 98.17 116 | 95.97 172 | 93.26 200 | 94.76 198 | 96.22 170 | 98.59 149 | 98.46 106 |
|
GA-MVS | | | 96.84 164 | 95.86 174 | 97.98 160 | 99.16 160 | 98.29 146 | 97.91 175 | 98.64 166 | 95.14 150 | 97.71 174 | 98.04 123 | 88.90 193 | 96.50 163 | 96.41 174 | 96.61 165 | 97.97 174 | 97.60 149 |
|
CHOSEN 280x420 | | | 96.80 165 | 96.30 164 | 97.39 176 | 99.09 165 | 96.52 191 | 98.76 122 | 99.29 106 | 93.88 181 | 97.65 175 | 98.34 106 | 93.66 184 | 96.29 170 | 98.28 108 | 97.73 126 | 93.27 203 | 95.70 181 |
|
gg-mvs-nofinetune | | | 96.77 166 | 96.52 160 | 97.06 184 | 99.66 71 | 97.82 173 | 97.54 192 | 99.86 8 | 98.69 15 | 98.61 118 | 99.94 2 | 89.62 191 | 88.37 213 | 97.55 143 | 96.67 162 | 98.30 162 | 95.35 183 |
|
DPM-MVS | | | 96.73 167 | 95.70 177 | 97.95 163 | 98.93 175 | 97.26 185 | 97.39 197 | 98.44 177 | 95.47 146 | 97.62 176 | 90.71 207 | 98.47 135 | 97.03 154 | 95.02 195 | 95.27 183 | 98.26 164 | 97.67 147 |
|
baseline1 | | | 96.72 168 | 95.40 179 | 98.26 146 | 99.53 103 | 98.81 109 | 98.32 155 | 98.80 155 | 94.96 155 | 96.78 198 | 96.50 170 | 84.87 207 | 96.68 159 | 97.42 151 | 97.91 110 | 99.46 50 | 97.33 158 |
|
N_pmnet | | | 96.68 169 | 95.70 177 | 97.84 167 | 99.42 127 | 98.00 165 | 99.35 55 | 98.21 183 | 98.40 22 | 98.13 155 | 99.42 55 | 99.30 67 | 97.44 142 | 94.00 202 | 88.79 200 | 94.47 199 | 91.96 201 |
|
pmnet_mix02 | | | 96.61 170 | 95.32 180 | 98.11 156 | 99.41 129 | 97.68 179 | 99.05 90 | 97.59 197 | 98.16 26 | 99.05 80 | 99.48 48 | 99.11 93 | 98.32 107 | 92.36 206 | 87.67 202 | 95.26 196 | 92.80 199 |
|
new_pmnet | | | 96.59 171 | 96.40 163 | 96.81 192 | 98.24 204 | 95.46 208 | 97.71 186 | 94.75 210 | 96.92 88 | 96.80 197 | 99.23 68 | 97.81 153 | 96.69 157 | 96.58 170 | 95.16 185 | 96.69 186 | 93.64 196 |
|
PMMVS | | | 96.47 172 | 95.81 175 | 97.23 180 | 97.38 213 | 95.96 203 | 97.31 198 | 96.91 204 | 93.21 190 | 97.93 168 | 97.14 149 | 97.64 156 | 95.70 173 | 95.24 191 | 96.18 173 | 98.17 168 | 95.33 184 |
|
EPNet | | | 96.44 173 | 96.08 168 | 96.86 191 | 99.32 138 | 97.15 188 | 97.69 187 | 99.32 102 | 93.67 183 | 98.11 158 | 95.64 185 | 93.44 185 | 89.07 211 | 96.86 165 | 96.83 159 | 97.67 176 | 98.97 57 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres600view7 | | | 96.35 174 | 94.27 182 | 98.79 109 | 99.66 71 | 99.18 62 | 98.94 100 | 99.38 87 | 94.37 171 | 97.21 193 | 87.19 209 | 84.10 209 | 98.10 117 | 98.16 114 | 99.47 18 | 99.42 56 | 97.43 153 |
|
EPNet_dtu | | | 96.31 175 | 95.96 170 | 96.72 194 | 99.18 157 | 95.39 209 | 97.03 207 | 99.13 133 | 93.02 193 | 99.35 37 | 97.23 146 | 97.07 164 | 90.70 210 | 95.74 183 | 95.08 187 | 94.94 198 | 98.16 133 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
pmmvs3 | | | 96.30 176 | 95.87 173 | 96.80 193 | 97.66 210 | 96.48 192 | 97.93 174 | 93.80 211 | 93.40 187 | 98.54 125 | 98.27 111 | 97.50 157 | 97.37 145 | 97.49 146 | 93.11 195 | 95.52 195 | 94.85 188 |
|
PMMVS2 | | | 96.29 177 | 97.05 148 | 95.40 205 | 98.32 203 | 96.16 196 | 98.18 166 | 97.46 198 | 97.20 80 | 84.51 219 | 99.60 34 | 98.68 125 | 96.37 165 | 98.59 82 | 97.38 145 | 97.58 179 | 91.76 202 |
|
thres200 | | | 96.23 178 | 94.13 183 | 98.69 118 | 99.44 121 | 99.18 62 | 98.58 135 | 99.38 87 | 93.52 185 | 97.35 187 | 86.33 214 | 85.83 203 | 97.93 127 | 98.16 114 | 98.78 64 | 99.42 56 | 97.10 166 |
|
thres400 | | | 96.22 179 | 94.08 185 | 98.72 114 | 99.58 89 | 99.05 76 | 98.83 113 | 99.22 116 | 94.01 179 | 97.40 185 | 86.34 213 | 84.91 206 | 97.93 127 | 97.85 130 | 99.08 39 | 99.37 62 | 97.28 160 |
|
tfpn200view9 | | | 96.17 180 | 94.08 185 | 98.60 127 | 99.37 131 | 99.18 62 | 98.68 125 | 99.39 82 | 92.02 200 | 97.30 189 | 86.53 211 | 86.34 200 | 97.45 141 | 98.15 116 | 99.08 39 | 99.43 55 | 97.28 160 |
|
CMPMVS |  | 74.71 19 | 96.17 180 | 96.06 169 | 96.30 199 | 97.41 212 | 94.52 212 | 94.83 214 | 95.46 208 | 91.57 205 | 97.26 192 | 94.45 197 | 98.33 140 | 94.98 180 | 98.28 108 | 97.59 136 | 97.86 175 | 97.68 146 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
IB-MVS | | 95.85 14 | 95.87 182 | 94.88 181 | 97.02 187 | 99.09 165 | 98.25 151 | 97.16 200 | 97.38 200 | 91.97 203 | 97.77 172 | 83.61 216 | 97.29 161 | 92.03 208 | 97.16 161 | 97.66 130 | 98.66 141 | 98.20 129 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test0.0.03 1 | | | 95.81 183 | 95.77 176 | 95.85 204 | 99.20 153 | 98.15 158 | 97.49 196 | 98.50 173 | 92.24 196 | 92.74 216 | 96.82 160 | 92.70 187 | 88.60 212 | 97.31 159 | 97.01 157 | 98.57 151 | 96.19 178 |
|
thres100view900 | | | 95.74 184 | 93.66 194 | 98.17 152 | 99.37 131 | 98.59 128 | 98.10 168 | 98.33 180 | 92.02 200 | 97.30 189 | 86.53 211 | 86.34 200 | 96.69 157 | 96.77 167 | 98.47 87 | 99.24 84 | 96.89 170 |
|
ET-MVSNet_ETH3D | | | 95.72 185 | 93.85 190 | 97.89 164 | 97.30 214 | 98.09 160 | 98.19 165 | 98.40 178 | 94.46 165 | 98.01 165 | 96.71 162 | 77.85 219 | 96.76 155 | 96.08 178 | 96.39 167 | 98.70 139 | 97.36 156 |
|
baseline2 | | | 95.58 186 | 94.04 187 | 97.38 177 | 98.80 181 | 98.16 156 | 97.14 201 | 97.80 195 | 91.45 207 | 97.49 180 | 95.22 188 | 83.63 210 | 94.98 180 | 96.42 173 | 96.66 163 | 98.06 170 | 96.76 171 |
|
PatchT | | | 95.49 187 | 93.29 195 | 98.06 158 | 98.65 189 | 96.20 195 | 98.91 105 | 99.73 21 | 92.00 202 | 98.50 128 | 96.67 164 | 83.25 211 | 96.34 166 | 94.40 199 | 95.50 179 | 96.21 189 | 95.04 186 |
|
CR-MVSNet | | | 95.38 188 | 93.01 196 | 98.16 154 | 98.63 190 | 95.85 205 | 97.64 189 | 99.78 16 | 91.27 209 | 98.50 128 | 96.84 159 | 82.16 212 | 96.34 166 | 94.40 199 | 95.50 179 | 98.05 172 | 95.04 186 |
|
MVSTER | | | 95.38 188 | 93.99 189 | 97.01 188 | 98.83 179 | 98.95 94 | 96.62 208 | 99.14 129 | 92.17 198 | 97.44 183 | 97.29 144 | 77.88 218 | 91.63 209 | 97.45 148 | 96.18 173 | 98.41 159 | 97.99 137 |
|
MVS-HIRNet | | | 94.86 190 | 93.83 191 | 96.07 200 | 97.07 215 | 94.00 213 | 94.31 215 | 99.17 124 | 91.23 211 | 98.17 151 | 98.69 97 | 97.43 158 | 95.66 174 | 94.05 201 | 91.92 197 | 92.04 210 | 89.46 210 |
|
test-LLR | | | 94.79 191 | 93.71 192 | 96.06 201 | 99.20 153 | 96.16 196 | 96.31 209 | 98.50 173 | 89.98 213 | 94.08 211 | 97.01 153 | 86.43 198 | 92.20 206 | 96.76 168 | 95.31 181 | 96.05 191 | 94.31 191 |
|
RPMNet | | | 94.72 192 | 92.01 201 | 97.88 166 | 98.56 195 | 95.85 205 | 97.78 180 | 99.70 26 | 91.27 209 | 98.33 142 | 93.69 200 | 81.88 213 | 94.91 183 | 92.60 204 | 94.34 193 | 98.01 173 | 94.46 190 |
|
gm-plane-assit | | | 94.62 193 | 91.39 203 | 98.39 137 | 99.90 12 | 99.47 27 | 99.40 47 | 99.65 33 | 97.44 65 | 99.56 20 | 99.68 26 | 59.40 223 | 94.23 193 | 96.17 176 | 94.77 190 | 97.61 178 | 92.79 200 |
|
test-mter | | | 94.62 193 | 94.02 188 | 95.32 206 | 97.72 209 | 96.75 189 | 96.23 211 | 95.67 206 | 89.83 216 | 93.23 215 | 96.99 155 | 85.94 202 | 92.66 204 | 97.32 157 | 96.11 175 | 96.44 187 | 95.22 185 |
|
FMVSNet5 | | | 94.57 195 | 92.77 197 | 96.67 196 | 97.88 206 | 98.72 118 | 97.54 192 | 98.70 162 | 88.64 217 | 95.11 208 | 86.90 210 | 81.77 214 | 93.27 199 | 97.92 126 | 98.07 104 | 97.50 181 | 97.34 157 |
|
SCA | | | 94.53 196 | 91.95 202 | 97.55 174 | 98.58 192 | 97.86 171 | 98.49 141 | 99.68 27 | 95.11 151 | 99.07 77 | 95.87 181 | 87.24 196 | 96.53 162 | 89.77 209 | 87.08 204 | 92.96 205 | 90.69 205 |
|
MDTV_nov1_ep13 | | | 94.47 197 | 92.15 199 | 97.17 181 | 98.54 197 | 96.42 193 | 98.10 168 | 98.89 150 | 94.49 163 | 98.02 162 | 97.41 141 | 86.49 197 | 95.56 175 | 90.85 207 | 87.95 201 | 93.91 200 | 91.45 204 |
|
TESTMET0.1,1 | | | 94.44 198 | 93.71 192 | 95.30 207 | 97.84 207 | 96.16 196 | 96.31 209 | 95.32 209 | 89.98 213 | 94.08 211 | 97.01 153 | 86.43 198 | 92.20 206 | 96.76 168 | 95.31 181 | 96.05 191 | 94.31 191 |
|
ADS-MVSNet | | | 94.41 199 | 92.13 200 | 97.07 183 | 98.86 177 | 96.60 190 | 98.38 150 | 98.47 176 | 96.13 134 | 98.02 162 | 96.98 156 | 87.50 195 | 95.87 172 | 89.89 208 | 87.58 203 | 92.79 207 | 90.27 207 |
|
tpm | | | 93.89 200 | 91.21 204 | 97.03 186 | 98.36 201 | 96.07 200 | 97.53 195 | 99.65 33 | 92.24 196 | 98.64 117 | 97.23 146 | 74.67 222 | 94.64 187 | 92.68 203 | 90.73 198 | 93.37 202 | 94.82 189 |
|
PatchmatchNet |  | | 93.88 201 | 91.08 205 | 97.14 182 | 98.75 183 | 96.01 202 | 98.25 162 | 99.39 82 | 94.95 156 | 98.96 90 | 96.32 173 | 85.35 204 | 95.50 176 | 88.89 210 | 85.89 208 | 91.99 211 | 90.15 208 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 93.67 202 | 90.82 206 | 96.99 189 | 98.62 191 | 96.39 194 | 98.40 148 | 99.11 134 | 95.54 145 | 97.87 170 | 97.14 149 | 81.27 216 | 94.97 182 | 88.54 212 | 86.80 206 | 92.95 206 | 90.06 209 |
|
MVE |  | 82.47 18 | 93.12 203 | 94.09 184 | 91.99 210 | 90.79 217 | 82.50 218 | 93.93 216 | 96.30 205 | 96.06 135 | 88.81 217 | 98.19 114 | 96.38 170 | 97.56 138 | 97.24 160 | 95.18 184 | 84.58 217 | 93.07 197 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
CostFormer | | | 92.75 204 | 89.49 208 | 96.55 197 | 98.78 182 | 95.83 207 | 97.55 191 | 98.59 169 | 91.83 204 | 97.34 188 | 96.31 174 | 78.53 217 | 94.50 188 | 86.14 213 | 84.92 209 | 92.54 208 | 92.84 198 |
|
tpmrst | | | 92.45 205 | 89.48 209 | 95.92 203 | 98.43 200 | 95.03 210 | 97.14 201 | 97.92 193 | 94.16 175 | 97.56 177 | 97.86 127 | 81.63 215 | 93.56 198 | 85.89 214 | 82.86 210 | 90.91 215 | 88.95 212 |
|
dps | | | 92.35 206 | 88.78 211 | 96.52 198 | 98.21 205 | 95.94 204 | 97.78 180 | 98.38 179 | 89.88 215 | 96.81 196 | 95.07 190 | 75.31 221 | 94.70 186 | 88.62 211 | 86.21 207 | 93.21 204 | 90.41 206 |
|
E-PMN | | | 92.28 207 | 90.12 207 | 94.79 208 | 98.56 195 | 90.90 215 | 95.16 213 | 93.68 212 | 95.36 148 | 95.10 209 | 96.56 167 | 89.05 192 | 95.24 178 | 95.21 192 | 81.84 212 | 90.98 213 | 81.94 214 |
|
EMVS | | | 91.84 208 | 89.39 210 | 94.70 209 | 98.44 199 | 90.84 216 | 95.27 212 | 93.53 213 | 95.18 149 | 95.26 207 | 95.62 186 | 87.59 194 | 94.77 185 | 94.87 196 | 80.72 213 | 90.95 214 | 80.88 215 |
|
tpm cat1 | | | 91.52 209 | 87.70 212 | 95.97 202 | 98.33 202 | 94.98 211 | 97.06 204 | 98.03 188 | 92.11 199 | 98.03 161 | 94.77 194 | 77.19 220 | 92.71 203 | 83.56 215 | 82.24 211 | 91.67 212 | 89.04 211 |
|
test_method | | | 77.69 210 | 85.40 213 | 68.69 211 | 42.66 219 | 55.39 220 | 82.17 219 | 52.05 215 | 92.83 195 | 84.52 218 | 94.88 193 | 95.41 178 | 65.37 214 | 92.49 205 | 79.32 214 | 85.36 216 | 87.50 213 |
|
GG-mvs-BLEND | | | 65.66 211 | 92.62 198 | 34.20 213 | 1.45 222 | 93.75 214 | 85.40 218 | 1.64 219 | 91.37 208 | 17.21 221 | 87.25 208 | 94.78 181 | 3.25 218 | 95.64 186 | 93.80 194 | 96.27 188 | 91.74 203 |
|
testmvs | | | 9.73 212 | 13.38 214 | 5.48 215 | 3.62 220 | 4.12 221 | 6.40 222 | 3.19 218 | 14.92 218 | 7.68 223 | 22.10 217 | 13.89 225 | 6.83 216 | 13.47 216 | 10.38 216 | 5.14 220 | 14.81 216 |
|
test123 | | | 9.37 213 | 12.26 215 | 6.00 214 | 3.32 221 | 4.06 222 | 6.39 223 | 3.41 217 | 13.20 219 | 10.48 222 | 16.43 218 | 16.22 224 | 6.76 217 | 11.37 217 | 10.40 215 | 5.62 219 | 14.10 217 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 99.88 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 98.83 116 | | | | | |
|
SR-MVS | | | | | | 99.62 81 | | | 99.47 70 | | | | 99.40 57 | | | | | |
|
Anonymous202405211 | | | | 98.44 72 | | 99.79 33 | 99.32 45 | 99.05 90 | 99.34 97 | 96.59 107 | | 97.95 126 | 97.68 155 | 97.16 149 | 99.36 30 | 99.28 30 | 99.61 33 | 98.90 66 |
|
our_test_3 | | | | | | 99.29 143 | 97.72 177 | 98.98 96 | | | | | | | | | | |
|
ambc | | | | 97.89 113 | | 99.45 118 | 97.88 170 | 97.78 180 | | 97.27 73 | 99.80 3 | 98.99 87 | 98.48 133 | 98.55 94 | 97.80 132 | 96.68 161 | 98.54 152 | 98.10 135 |
|
MTAPA | | | | | | | | | | | 99.19 57 | | 99.68 22 | | | | | |
|
MTMP | | | | | | | | | | | 99.20 55 | | 99.54 43 | | | | | |
|
Patchmatch-RL test | | | | | | | | 32.47 221 | | | | | | | | | | |
|
tmp_tt | | | | | 65.28 212 | 82.24 218 | 71.50 219 | 70.81 220 | 23.21 216 | 96.14 132 | 81.70 220 | 85.98 215 | 92.44 188 | 49.84 215 | 95.81 181 | 94.36 192 | 83.86 218 | |
|
XVS | | | | | | 99.77 38 | 99.07 72 | 99.46 42 | | | 98.95 92 | | 99.37 60 | | | | 99.33 69 | |
|
X-MVStestdata | | | | | | 99.77 38 | 99.07 72 | 99.46 42 | | | 98.95 92 | | 99.37 60 | | | | 99.33 69 | |
|
abl_6 | | | | | 98.38 139 | 99.03 171 | 98.04 163 | 98.08 170 | 98.65 164 | 93.23 189 | 98.56 122 | 94.58 196 | 98.57 131 | 97.17 148 | | | 98.81 130 | 97.42 154 |
|
mPP-MVS | | | | | | 99.75 47 | | | | | | | 99.49 52 | | | | | |
|
NP-MVS | | | | | | | | | | 93.07 192 | | | | | | | | |
|
Patchmtry | | | | | | | 96.05 201 | 97.64 189 | 99.78 16 | | 98.50 128 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 87.86 217 | 92.27 217 | 61.98 214 | 93.64 184 | 93.62 214 | 91.17 205 | 91.67 189 | 94.90 184 | 95.99 180 | | 92.48 209 | 94.18 193 |
|