This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2295.55 293.00 193.98 1796.01 3987.53 197.69 196.81 197.33 195.34 3
PMVScopyleft79.51 990.23 1492.67 1487.39 2190.16 3988.75 4193.64 3675.78 4490.00 3383.70 4892.97 2892.22 10386.13 497.01 396.79 294.94 3090.96 46
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LTVRE_ROB86.82 191.55 394.43 388.19 1183.19 11086.35 6793.60 3778.79 1995.48 491.79 293.08 2697.21 2186.34 397.06 296.27 395.46 2395.56 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3394.76 2977.45 2985.41 7274.79 10488.83 7788.90 13578.67 4096.06 795.45 496.66 395.58 1
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1288.98 5192.86 295.51 2072.17 5994.95 591.27 394.11 1697.77 1284.22 896.49 495.27 596.79 293.60 11
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPSCF88.05 4692.61 1782.73 6684.24 9588.40 4390.04 7466.29 10591.46 1382.29 6188.93 7596.01 3979.38 3295.15 2194.90 694.15 4093.40 19
zzz-MVS90.38 1191.35 4189.25 593.08 386.59 6496.45 1179.00 1690.23 2889.30 1085.87 10694.97 6582.54 1895.05 2394.83 795.14 2791.94 36
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4689.17 1187.00 9596.34 3183.95 1095.77 1194.72 895.81 1793.78 9
ACMMPcopyleft90.63 892.40 2088.56 991.24 2891.60 696.49 977.53 2787.89 4986.87 3187.24 9296.46 2682.87 1695.59 1594.50 996.35 693.51 17
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM80.67 790.67 792.46 1988.57 891.35 2289.93 3196.34 1277.36 3190.17 2986.88 3087.32 9096.63 2483.32 1395.79 1094.49 1096.19 992.91 25
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft90.84 691.95 3489.55 392.92 590.90 1996.56 679.60 1186.83 6088.75 1389.00 7394.38 7884.01 994.94 2594.34 1195.45 2493.24 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
X-MVS89.36 2890.73 4787.77 1791.50 2091.23 896.76 478.88 1887.29 5587.14 2678.98 14194.53 7276.47 5595.25 1994.28 1295.85 1493.55 15
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3188.53 1489.54 6595.57 4884.25 795.24 2094.27 1395.97 1193.85 7
HFP-MVS90.32 1392.37 2287.94 1491.46 2190.91 1895.69 1879.49 1289.94 3483.50 5189.06 7294.44 7681.68 2394.17 3194.19 1495.81 1793.87 6
WR-MVS89.79 2393.66 485.27 3791.32 2388.27 4593.49 3879.86 1092.75 975.37 10096.86 198.38 675.10 6995.93 894.07 1596.46 589.39 58
PGM-MVS90.42 1091.58 3789.05 691.77 1491.06 1396.51 778.94 1785.41 7287.67 1987.02 9495.26 5683.62 1295.01 2493.94 1695.79 1993.40 19
SteuartSystems-ACMMP90.00 1791.73 3587.97 1391.21 2990.29 2896.51 778.00 2486.33 6385.32 4188.23 8194.67 7082.08 2195.13 2293.88 1794.72 3693.59 12
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP89.86 1991.96 3387.42 2091.00 3090.08 2996.00 1676.61 3789.28 3587.73 1890.04 5791.80 11178.71 3894.36 2993.82 1894.48 3894.32 5
SMA-MVScopyleft90.13 1592.26 2787.64 1891.68 1690.44 2695.22 2477.34 3390.79 2287.80 1790.42 5592.05 10879.05 3593.89 3393.59 1994.77 3494.62 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP80.00 890.12 1692.30 2687.58 1990.83 3491.10 1294.96 2876.06 4187.47 5385.33 4088.91 7697.65 1682.13 2095.31 1793.44 2096.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train90.56 992.38 2188.43 1090.88 3291.15 1195.35 2277.65 2686.26 6587.23 2490.45 5497.35 1883.20 1495.44 1693.41 2196.28 892.63 26
PS-CasMVS89.07 3293.23 784.21 5192.44 888.23 4790.54 6382.95 390.50 2575.31 10195.80 698.37 771.16 9996.30 593.32 2292.88 6090.11 52
WR-MVS_H88.99 3593.28 583.99 5491.92 1189.13 3991.95 4683.23 190.14 3071.92 12395.85 598.01 1171.83 9695.82 993.19 2393.07 5890.83 48
CP-MVSNet88.71 4192.63 1584.13 5292.39 988.09 4990.47 6882.86 488.79 4375.16 10294.87 997.68 1571.05 10196.16 693.18 2492.85 6189.64 56
anonymousdsp85.62 6190.53 4879.88 9264.64 20376.35 13996.28 1353.53 18885.63 6981.59 7092.81 3097.71 1486.88 294.56 2692.83 2596.35 693.84 8
SD-MVS89.91 1892.23 3087.19 2291.31 2489.79 3494.31 3275.34 4789.26 3881.79 6892.68 3195.08 6283.88 1193.10 3992.69 2696.54 493.02 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CPTT-MVS89.63 2590.52 4988.59 790.95 3190.74 2195.71 1779.13 1587.70 5185.68 3980.05 13695.74 4684.77 694.28 3092.68 2795.28 2692.45 31
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6390.83 2187.24 2389.71 6392.07 10678.37 4194.43 2892.59 2895.86 1391.35 42
DeepC-MVS83.59 490.37 1292.56 1887.82 1591.26 2792.33 394.72 3080.04 990.01 3284.61 4393.33 2294.22 7980.59 2892.90 4492.52 2995.69 2192.57 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5179.48 1388.86 4179.80 8093.01 2793.53 8883.17 1592.75 4692.45 3091.32 8293.59 12
PEN-MVS88.86 3992.92 984.11 5392.92 588.05 5090.83 5582.67 591.04 1874.83 10395.97 498.47 470.38 10695.70 1392.43 3193.05 5988.78 64
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3892.18 4574.23 5293.55 882.66 5992.32 3698.35 880.29 2995.28 1892.34 3295.52 2290.43 50
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4890.96 5283.09 291.38 1476.21 9496.03 398.04 970.78 10595.65 1492.32 3393.18 5587.84 71
TSAR-MVS + MP.89.67 2492.25 2886.65 2691.53 1890.98 1796.15 1473.30 5687.88 5081.83 6792.92 2995.15 6082.23 1993.58 3592.25 3494.87 3193.01 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+83.71 388.13 4490.00 5285.94 2986.82 7291.06 1394.26 3375.39 4688.85 4285.76 3885.74 10886.92 14478.02 4393.03 4092.21 3595.39 2592.21 34
APD-MVScopyleft89.14 2991.25 4486.67 2591.73 1591.02 1595.50 2177.74 2584.04 8379.47 8391.48 4494.85 6781.14 2692.94 4192.20 3694.47 3992.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DPE-MVScopyleft89.81 2292.34 2486.86 2489.69 4491.00 1695.53 1976.91 3488.18 4783.43 5493.48 2095.19 5781.07 2792.75 4692.07 3794.55 3793.74 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS89.82 2192.24 2986.99 2390.86 3389.35 3795.07 2775.91 4391.16 1686.87 3191.07 5097.29 1979.13 3493.32 3691.99 3894.12 4191.49 41
APDe-MVS89.85 2092.91 1086.29 2790.47 3891.34 796.04 1576.41 4091.11 1778.50 8893.44 2195.82 4381.55 2493.16 3891.90 3994.77 3493.58 14
MSLP-MVS++86.29 5989.10 5783.01 5985.71 8289.79 3487.04 10574.39 5185.17 7478.92 8677.59 15093.57 8682.60 1793.23 3791.88 4089.42 10692.46 30
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 9082.56 9290.53 6471.93 6091.95 1285.89 3694.22 1497.25 2085.42 595.73 1291.71 4195.08 2891.89 37
DVP-MVS89.40 2792.69 1385.56 3489.01 5089.85 3293.72 3575.42 4592.28 1180.49 7394.36 1394.87 6681.46 2592.49 5091.42 4293.27 5293.54 16
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2377.52 2890.48 2680.21 7890.21 5696.08 3576.38 5788.30 9391.42 4291.12 8791.01 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft88.74 4089.54 5487.80 1692.58 785.69 7295.10 2678.01 2387.08 5787.66 2087.89 8492.07 10680.28 3090.97 7091.41 4493.17 5691.69 38
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3695.11 2575.98 4290.73 2380.15 7994.21 1594.51 7576.59 5492.94 4191.17 4593.46 4993.37 21
test_part187.86 4993.26 681.56 7487.23 7086.76 6290.91 5370.06 7196.50 176.74 9296.63 298.62 269.45 11392.93 4390.92 4694.98 2990.46 49
OMC-MVS88.16 4391.34 4284.46 4686.85 7190.63 2393.01 4167.00 10090.35 2787.40 2286.86 9796.35 3077.66 4892.63 4890.84 4794.84 3291.68 39
CNVR-MVS86.93 5388.98 5884.54 4490.11 4087.41 5793.23 4073.47 5586.31 6482.25 6282.96 12492.15 10476.04 6091.69 5490.69 4892.17 7391.64 40
NCCC86.74 5487.97 7085.31 3690.64 3587.25 5893.27 3974.59 4986.50 6183.72 4775.92 16692.39 10077.08 5291.72 5390.68 4992.57 6791.30 43
DeepC-MVS_fast81.78 587.38 5189.64 5384.75 4189.89 4290.70 2292.74 4374.45 5086.02 6682.16 6586.05 10491.99 11075.84 6391.16 6490.44 5093.41 5091.09 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.85.32 6687.41 7582.89 6390.07 4185.69 7289.07 8372.99 5782.45 9174.52 10785.09 11387.67 14179.24 3391.11 6590.41 5191.45 7989.45 57
EPP-MVSNet82.76 9186.47 8078.45 10386.00 8084.47 7785.39 11468.42 8984.17 8062.97 16189.26 7076.84 17872.13 9392.56 4990.40 5295.76 2087.56 74
FPMVS81.56 10184.04 11378.66 10182.92 11275.96 14386.48 10965.66 11584.67 7871.47 12677.78 14883.22 15777.57 4991.24 6290.21 5387.84 12485.21 87
DeepPCF-MVS81.61 687.95 4890.29 5185.22 3887.48 6690.01 3093.79 3473.54 5488.93 4083.89 4689.40 6790.84 12080.26 3190.62 7390.19 5492.36 7092.03 35
xxxxxxxxxxxxxcwj88.03 4791.29 4384.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5789.90 5997.72 1377.91 4591.69 5490.04 5593.95 4492.47 28
SF-MVS87.85 5090.95 4684.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5789.90 5995.37 5477.91 4591.69 5490.04 5593.95 4492.47 28
AdaColmapbinary84.15 7585.14 9683.00 6089.08 4987.14 6090.56 6270.90 6682.40 9280.41 7473.82 17784.69 15375.19 6891.58 5889.90 5791.87 7686.48 78
CDPH-MVS86.66 5688.52 6184.48 4589.61 4588.27 4592.86 4272.69 5880.55 11682.71 5686.92 9693.32 9075.55 6591.00 6989.85 5893.47 4889.71 55
UniMVSNet_ETH3D85.39 6491.12 4578.71 10090.48 3783.72 8281.76 13882.41 693.84 664.43 15795.41 798.76 163.72 14093.63 3489.74 5989.47 10582.74 111
PHI-MVS86.37 5888.14 6784.30 4786.65 7487.56 5590.76 5870.16 7082.55 9089.65 784.89 11592.40 9975.97 6190.88 7189.70 6092.58 6589.03 62
PLCcopyleft76.06 1585.38 6587.46 7382.95 6285.79 8188.84 4088.86 8568.70 8687.06 5883.60 4979.02 13990.05 12677.37 5190.88 7189.66 6193.37 5186.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet (Re)84.95 6988.53 6080.78 8187.82 6484.21 7888.03 9176.50 3881.18 10969.29 13792.63 3496.83 2369.07 11491.23 6389.60 6293.97 4384.00 97
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7587.16 5991.47 4868.79 8595.49 389.74 693.55 1998.50 377.96 4494.14 3289.57 6393.49 4789.94 54
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive83.32 8388.12 6877.71 10777.91 15383.44 8690.58 6069.49 7681.11 11067.10 15189.85 6191.48 11571.71 9791.34 6089.37 6489.48 10490.26 51
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS_MVSNet81.72 10085.01 9777.90 10686.19 7782.64 9185.56 11270.02 7280.11 11963.52 15987.28 9181.18 16367.26 12391.08 6889.33 6594.82 3383.42 102
DU-MVS84.88 7088.27 6680.92 7988.30 5783.59 8487.06 10378.35 2080.64 11470.49 13192.67 3296.91 2268.13 11891.79 5189.29 6693.20 5483.02 105
TranMVSNet+NR-MVSNet85.23 6789.38 5580.39 9088.78 5383.77 8187.40 9876.75 3585.47 7068.99 13995.18 897.55 1767.13 12591.61 5789.13 6793.26 5382.95 108
CNLPA85.50 6388.58 5981.91 6984.55 9287.52 5690.89 5463.56 13688.18 4784.06 4583.85 12191.34 11776.46 5691.27 6189.00 6891.96 7488.88 63
NR-MVSNet82.89 8887.43 7477.59 10983.91 10183.59 8487.10 10278.35 2080.64 11468.85 14092.67 3296.50 2554.19 17587.19 10388.68 6993.16 5782.75 110
train_agg86.67 5587.73 7185.43 3591.51 1982.72 8994.47 3174.22 5381.71 9881.54 7189.20 7192.87 9478.33 4290.12 7788.47 7092.51 6989.04 61
UniMVSNet_NR-MVSNet84.62 7388.00 6980.68 8588.18 5983.83 8087.06 10376.47 3981.46 10570.49 13193.24 2395.56 4968.13 11890.43 7488.47 7093.78 4683.02 105
CLD-MVS82.75 9287.22 7677.54 11088.01 6385.76 7190.23 7154.52 18282.28 9482.11 6688.48 8095.27 5563.95 13889.41 8188.29 7286.45 13981.01 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAPA-MVS78.00 1385.88 6088.37 6382.96 6184.69 8888.62 4290.62 5964.22 12689.15 3988.05 1578.83 14393.71 8376.20 5990.11 7888.22 7394.00 4289.97 53
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG88.12 4591.45 3884.23 4888.12 6290.59 2590.57 6168.60 8791.37 1583.45 5389.94 5895.14 6178.71 3891.45 5988.21 7495.96 1293.44 18
Effi-MVS+-dtu82.04 9783.39 12180.48 8985.48 8486.57 6688.40 8968.28 9169.04 16773.13 11776.26 16191.11 11974.74 7388.40 9087.76 7592.84 6284.57 91
MVS_030484.73 7286.19 8383.02 5888.32 5686.71 6391.55 4770.87 6773.79 14582.88 5585.13 11293.35 8972.55 8888.62 8787.69 7691.93 7588.05 70
UGNet79.62 11685.91 8872.28 13973.52 17483.91 7986.64 10769.51 7579.85 12162.57 16385.82 10789.63 12753.18 17988.39 9187.35 7788.28 12186.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_HR83.95 7786.10 8581.44 7584.62 9080.29 10790.51 6568.05 9484.07 8280.38 7684.74 11691.37 11674.23 7590.37 7587.25 7890.86 8984.59 90
MAR-MVS81.98 9882.92 12380.88 8085.18 8685.85 6989.13 8269.52 7471.21 15782.25 6271.28 18888.89 13669.69 10888.71 8586.96 7989.52 10387.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-train79.20 12286.29 8270.94 14684.06 9677.67 12785.68 11164.11 12882.90 8852.22 19092.57 3593.69 8449.52 19088.30 9386.93 8090.03 9581.95 118
Effi-MVS+82.33 9383.87 11480.52 8884.51 9381.32 10087.53 9668.05 9474.94 14379.67 8182.37 12992.31 10172.21 9085.06 12086.91 8191.18 8584.20 94
Gipumacopyleft86.47 5789.25 5683.23 5683.88 10278.78 12085.35 11568.42 8992.69 1089.03 1291.94 3796.32 3381.80 2294.45 2786.86 8290.91 8883.69 99
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TSAR-MVS + COLMAP85.51 6288.36 6482.19 6786.05 7987.69 5490.50 6670.60 6986.40 6282.33 6089.69 6492.52 9874.01 7987.53 9786.84 8389.63 10187.80 72
ETV-MVS79.01 12477.98 14380.22 9186.69 7379.73 11388.80 8668.27 9263.22 19171.56 12570.25 19673.63 18973.66 8290.30 7686.77 8492.33 7181.95 118
3Dnovator79.41 1082.21 9486.07 8677.71 10779.31 13884.61 7687.18 10061.02 15685.65 6876.11 9585.07 11485.38 15170.96 10387.22 10186.47 8591.66 7788.12 69
EG-PatchMatch MVS84.35 7487.55 7280.62 8686.38 7682.24 9486.75 10664.02 13184.24 7978.17 9089.38 6895.03 6478.78 3789.95 7986.33 8689.59 10285.65 85
CANet82.84 8984.60 10480.78 8187.30 6785.20 7590.23 7169.00 8172.16 15378.73 8784.49 11890.70 12369.54 11187.65 9686.17 8789.87 9885.84 83
canonicalmvs81.22 10686.04 8775.60 11883.17 11183.18 8780.29 14765.82 11485.97 6767.98 14777.74 14991.51 11465.17 13488.62 8786.15 8891.17 8689.09 60
v7n87.11 5290.46 5083.19 5785.22 8583.69 8390.03 7568.20 9391.01 1986.71 3494.80 1098.46 577.69 4791.10 6685.98 8991.30 8388.19 67
DCV-MVSNet80.04 11185.67 9173.48 13382.91 11381.11 10480.44 14666.06 10885.01 7562.53 16478.84 14294.43 7758.51 15688.66 8685.91 9090.41 9185.73 84
MVS_111021_LR83.20 8585.33 9280.73 8482.88 11478.23 12489.61 7765.23 11882.08 9581.19 7285.31 11092.04 10975.22 6789.50 8085.90 9190.24 9284.23 93
HQP-MVS85.02 6886.41 8183.40 5589.19 4886.59 6491.28 4971.60 6482.79 8983.48 5278.65 14593.54 8772.55 8886.49 10885.89 9292.28 7290.95 47
pmmvs680.46 10888.34 6571.26 14281.96 12177.51 12877.54 16268.83 8493.72 755.92 17693.94 1898.03 1055.94 16589.21 8385.61 9387.36 13080.38 129
FC-MVSNet-test75.91 14283.59 11966.95 17176.63 16669.07 17385.33 11664.97 12084.87 7741.95 20493.17 2487.04 14347.78 19391.09 6785.56 9485.06 15574.34 157
EPNet79.36 11979.44 13679.27 9989.51 4677.20 13388.35 9077.35 3268.27 16974.29 10876.31 15979.22 16859.63 15285.02 12485.45 9586.49 13884.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+81.42 10283.82 11678.62 10282.24 11980.62 10687.72 9463.51 13773.01 14774.75 10583.80 12292.70 9673.44 8488.15 9585.26 9690.05 9483.17 103
thres600view774.34 15178.43 14069.56 15680.47 12876.28 14078.65 16062.56 14677.39 13152.53 18674.03 17576.78 17955.90 16785.06 12085.19 9787.25 13174.29 158
PM-MVS80.42 11083.63 11876.67 11378.04 15072.37 16387.14 10160.18 16280.13 11871.75 12486.12 10393.92 8277.08 5286.56 10785.12 9885.83 14881.18 122
MSDG81.39 10484.23 11078.09 10582.40 11882.47 9385.31 11760.91 15779.73 12280.26 7786.30 10088.27 13969.67 10987.20 10284.98 9989.97 9680.67 127
EIA-MVS78.57 12577.90 14479.35 9787.24 6980.71 10586.16 11064.03 13062.63 19673.49 11473.60 17876.12 18273.83 8088.49 8984.93 10091.36 8178.78 142
PVSNet_Blended_VisFu83.00 8784.16 11181.65 7282.17 12086.01 6888.03 9171.23 6576.05 13879.54 8283.88 12083.44 15477.49 5087.38 9884.93 10091.41 8087.40 75
thisisatest051581.18 10784.32 10777.52 11176.73 16474.84 15385.06 11861.37 15381.05 11173.95 11088.79 7889.25 13275.49 6685.98 11284.78 10292.53 6885.56 86
MCST-MVS84.79 7186.48 7982.83 6487.30 6787.03 6190.46 6969.33 7983.14 8682.21 6481.69 13292.14 10575.09 7087.27 10084.78 10292.58 6589.30 59
QAPM80.43 10984.34 10675.86 11679.40 13782.06 9679.86 15261.94 15083.28 8574.73 10681.74 13185.44 15070.97 10284.99 12584.71 10488.29 12088.14 68
Vis-MVSNet (Re-imp)76.15 13980.84 13270.68 14783.66 10574.80 15481.66 14069.59 7380.48 11746.94 19987.44 8880.63 16553.14 18086.87 10484.56 10589.12 10871.12 167
CS-MVS79.35 12077.74 14581.22 7685.59 8379.85 11088.78 8766.61 10267.63 17080.41 7467.82 20075.07 18773.27 8688.31 9284.36 10692.63 6481.18 122
Anonymous20240521184.68 10383.92 10079.45 11579.03 15767.79 9682.01 9688.77 7992.58 9755.93 16686.68 10684.26 10788.92 11178.98 140
Anonymous2023121179.37 11885.78 8971.89 14082.87 11579.66 11478.77 15963.93 13483.36 8459.39 16890.54 5294.66 7156.46 16387.38 9884.12 10889.92 9780.74 126
CDS-MVSNet73.07 15877.02 15168.46 16281.62 12372.89 16079.56 15570.78 6869.56 16252.52 18777.37 15381.12 16442.60 19884.20 13083.93 10983.65 16170.07 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PCF-MVS76.59 1484.11 7685.27 9382.76 6586.12 7888.30 4491.24 5069.10 8082.36 9384.45 4477.56 15190.40 12572.91 8785.88 11383.88 11092.72 6388.53 65
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DELS-MVS79.71 11483.74 11775.01 12579.31 13882.68 9084.79 12060.06 16375.43 14169.09 13886.13 10289.38 12967.16 12485.12 11983.87 11189.65 10083.57 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ambc88.38 6291.62 1787.97 5184.48 12288.64 4587.93 1687.38 8994.82 6974.53 7489.14 8483.86 11285.94 14686.84 76
GeoE81.92 9983.87 11479.66 9484.64 8979.87 10989.75 7665.90 11276.12 13775.87 9784.62 11792.23 10271.96 9586.83 10583.60 11389.83 9983.81 98
DPM-MVS81.42 10282.11 12780.62 8687.54 6585.30 7490.18 7368.96 8281.00 11279.15 8570.45 19483.29 15667.67 12282.81 13883.46 11490.19 9388.48 66
PatchMatch-RL76.05 14076.64 15475.36 12077.84 15469.87 17181.09 14363.43 13871.66 15568.34 14671.70 18481.76 16274.98 7184.83 12683.44 11586.45 13973.22 164
GBi-Net73.17 15577.64 14667.95 16676.76 15877.36 13075.77 17464.57 12262.99 19351.83 19176.05 16277.76 17452.73 18385.57 11483.39 11686.04 14380.37 130
test173.17 15577.64 14667.95 16676.76 15877.36 13075.77 17464.57 12262.99 19351.83 19176.05 16277.76 17452.73 18385.57 11483.39 11686.04 14380.37 130
FMVSNet178.20 12884.83 10270.46 15078.62 14579.03 11777.90 16167.53 9983.02 8755.10 17987.19 9393.18 9255.65 16885.57 11483.39 11687.98 12382.40 114
Baseline_NR-MVSNet82.79 9086.51 7878.44 10488.30 5775.62 14787.81 9374.97 4881.53 10266.84 15294.71 1296.46 2666.90 12691.79 5183.37 11985.83 14882.09 116
TransMVSNet (Re)79.05 12386.66 7770.18 15283.32 10875.99 14277.54 16263.98 13290.68 2455.84 17794.80 1096.06 3653.73 17886.27 11083.22 12086.65 13479.61 138
thisisatest053075.54 14575.95 16275.05 12375.08 17173.56 15882.15 13660.31 15969.17 16469.32 13679.02 13958.78 20872.17 9183.88 13183.08 12191.30 8384.20 94
tttt051775.86 14376.23 15875.42 11975.55 17074.06 15782.73 13160.31 15969.24 16370.24 13379.18 13858.79 20772.17 9184.49 12883.08 12191.54 7884.80 88
pm-mvs178.21 12785.68 9069.50 15780.38 13075.73 14576.25 17065.04 11987.59 5254.47 18193.16 2595.99 4154.20 17486.37 10982.98 12386.64 13577.96 147
tfpn200view972.01 16275.40 16468.06 16577.97 15176.44 13877.04 16662.67 14566.81 17350.82 19567.30 20175.67 18452.46 18685.06 12082.64 12487.41 12973.86 160
thres40073.13 15776.99 15368.62 16179.46 13674.93 15277.23 16461.23 15575.54 13952.31 18972.20 18377.10 17754.89 17082.92 13582.62 12586.57 13773.66 163
IB-MVS71.28 1775.21 14677.00 15273.12 13776.76 15877.45 12983.05 12858.92 16863.01 19264.31 15859.99 21087.57 14268.64 11686.26 11182.34 12687.05 13382.36 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft75.38 1678.44 12681.39 13174.99 12680.46 12979.85 11079.99 14958.31 17177.34 13273.85 11177.19 15482.33 16168.60 11784.67 12781.95 12788.72 11486.40 80
TinyColmap83.79 7886.12 8481.07 7883.42 10781.44 9985.42 11368.55 8888.71 4489.46 887.60 8692.72 9570.34 10789.29 8281.94 12889.20 10781.12 124
Fast-Effi-MVS+-dtu76.92 13277.18 15076.62 11479.55 13579.17 11684.80 11977.40 3064.46 18668.75 14270.81 19286.57 14563.36 14581.74 14781.76 12985.86 14775.78 153
ET-MVSNet_ETH3D74.71 14974.19 16975.31 12179.22 14075.29 14882.70 13264.05 12965.45 18170.96 13077.15 15557.70 20965.89 13184.40 12981.65 13089.03 10977.67 148
pmmvs-eth3d79.64 11582.06 12876.83 11280.05 13272.64 16187.47 9766.59 10380.83 11373.50 11389.32 6993.20 9167.78 12080.78 15481.64 13185.58 15176.01 151
CANet_DTU75.04 14778.45 13971.07 14377.27 15577.96 12583.88 12558.00 17264.11 18768.67 14375.65 16888.37 13853.92 17782.05 14481.11 13284.67 15679.88 136
tfpnnormal77.16 13184.26 10868.88 16081.02 12775.02 15076.52 16963.30 13987.29 5552.40 18891.24 4993.97 8054.85 17285.46 11781.08 13385.18 15475.76 154
CVMVSNet75.65 14477.62 14873.35 13671.95 18069.89 17083.04 12960.84 15869.12 16568.76 14179.92 13778.93 17073.64 8381.02 15281.01 13481.86 17083.43 101
v119283.61 7985.23 9481.72 7184.05 9782.15 9589.54 7866.20 10681.38 10786.76 3391.79 4196.03 3774.88 7281.81 14680.92 13588.91 11282.50 113
v1083.17 8685.22 9580.78 8183.26 10982.99 8888.66 8866.49 10479.24 12583.60 4991.46 4595.47 5174.12 7682.60 14180.66 13688.53 11884.11 96
IterMVS-LS79.79 11382.56 12576.56 11581.83 12277.85 12679.90 15169.42 7878.93 12771.21 12790.47 5385.20 15270.86 10480.54 15680.57 13786.15 14184.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114483.22 8485.01 9781.14 7783.76 10481.60 9888.95 8465.58 11681.89 9785.80 3791.68 4395.84 4274.04 7882.12 14380.56 13888.70 11581.41 121
v124083.57 8084.94 10081.97 6884.05 9781.27 10189.46 8066.06 10881.31 10887.50 2191.88 4095.46 5276.25 5881.16 15180.51 13988.52 11982.98 107
thres20072.41 16176.00 16168.21 16478.28 14776.28 14074.94 18062.56 14672.14 15451.35 19469.59 19876.51 18054.89 17085.06 12080.51 13987.25 13171.92 166
v192192083.49 8184.94 10081.80 7083.78 10381.20 10389.50 7965.91 11181.64 10087.18 2591.70 4295.39 5375.85 6281.56 14980.27 14188.60 11682.80 109
v14419283.43 8284.97 9981.63 7383.43 10681.23 10289.42 8166.04 11081.45 10686.40 3591.46 4595.70 4775.76 6482.14 14280.23 14288.74 11382.57 112
V4279.59 11783.59 11974.93 12869.61 18777.05 13586.59 10855.84 17778.42 12977.29 9189.84 6295.08 6274.12 7683.05 13480.11 14386.12 14281.59 120
FMVSNet274.43 15079.70 13468.27 16376.76 15877.36 13075.77 17465.36 11772.28 15152.97 18581.92 13085.61 14952.73 18380.66 15579.73 14486.04 14380.37 130
v2v48282.20 9584.26 10879.81 9382.67 11680.18 10887.67 9563.96 13381.69 9984.73 4291.27 4896.33 3272.05 9481.94 14579.56 14587.79 12578.84 141
thres100view90069.86 16972.97 17666.24 17377.97 15172.49 16273.29 18459.12 16666.81 17350.82 19567.30 20175.67 18450.54 18978.24 16579.40 14685.71 15070.88 168
MIMVSNet173.40 15381.85 12963.55 18372.90 17764.37 18784.58 12153.60 18790.84 2053.92 18287.75 8596.10 3445.31 19685.37 11879.32 14770.98 19169.18 176
v882.20 9584.56 10579.45 9582.42 11781.65 9787.26 9964.27 12579.36 12481.70 6991.04 5195.75 4573.30 8582.82 13779.18 14887.74 12682.09 116
pmmvs475.92 14177.48 14974.10 13178.21 14970.94 16584.06 12364.78 12175.13 14268.47 14584.12 11983.32 15564.74 13775.93 17679.14 14984.31 15873.77 161
EPNet_dtu71.90 16373.03 17570.59 14878.28 14761.64 19282.44 13464.12 12763.26 19069.74 13471.47 18682.41 15951.89 18778.83 16378.01 15077.07 17775.60 155
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
USDC81.39 10483.07 12279.43 9681.48 12478.95 11982.62 13366.17 10787.45 5490.73 482.40 12893.65 8566.57 12883.63 13377.97 15189.00 11077.45 149
EU-MVSNet76.48 13680.53 13371.75 14167.62 19370.30 16881.74 13954.06 18575.47 14071.01 12980.10 13493.17 9373.67 8183.73 13277.85 15282.40 16783.07 104
DI_MVS_plusplus_trai77.64 12979.64 13575.31 12179.87 13476.89 13681.55 14163.64 13576.21 13672.03 12285.59 10982.97 15866.63 12779.27 16277.78 15388.14 12278.76 143
PVSNet_BlendedMVS76.45 13778.12 14174.49 12976.76 15878.46 12179.65 15363.26 14065.42 18273.15 11575.05 17188.96 13366.51 12982.73 13977.66 15487.61 12778.60 144
PVSNet_Blended76.45 13778.12 14174.49 12976.76 15878.46 12179.65 15363.26 14065.42 18273.15 11575.05 17188.96 13366.51 12982.73 13977.66 15487.61 12778.60 144
MDA-MVSNet-bldmvs76.51 13582.87 12469.09 15950.71 21474.72 15584.05 12460.27 16181.62 10171.16 12888.21 8291.58 11269.62 11092.78 4577.48 15678.75 17673.69 162
HyFIR lowres test73.29 15474.14 17072.30 13873.08 17678.33 12383.12 12762.41 14863.81 18862.13 16576.67 15878.50 17171.09 10074.13 18077.47 15781.98 16970.10 171
CMPMVSbinary55.74 1871.56 16476.26 15766.08 17668.11 19163.91 18963.17 20550.52 19768.79 16875.49 9970.78 19385.67 14863.54 14281.58 14877.20 15875.63 17885.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
casdiffmvs79.93 11284.11 11275.05 12381.41 12678.99 11882.95 13062.90 14481.53 10268.60 14491.94 3796.03 3765.84 13282.89 13677.07 15988.59 11780.34 133
FMVSNet371.40 16675.20 16766.97 17075.00 17276.59 13774.29 18164.57 12262.99 19351.83 19176.05 16277.76 17451.49 18876.58 17277.03 16084.62 15779.43 139
baseline169.62 17073.55 17365.02 18278.95 14370.39 16771.38 19062.03 14970.97 15847.95 19878.47 14668.19 19547.77 19479.65 16176.94 16182.05 16870.27 170
GA-MVS75.01 14876.39 15673.39 13478.37 14675.66 14680.03 14858.40 17070.51 15975.85 9883.24 12376.14 18163.75 13977.28 16876.62 16283.97 16075.30 156
diffmvs76.74 13381.61 13071.06 14475.64 16974.45 15680.68 14557.57 17377.48 13067.62 15088.95 7493.94 8161.98 14779.74 15976.18 16382.85 16680.50 128
MVSTER68.08 17869.73 18066.16 17466.33 20170.06 16975.71 17752.36 19155.18 21058.64 17070.23 19756.72 21257.34 16079.68 16076.03 16486.61 13680.20 135
MS-PatchMatch71.18 16773.99 17167.89 16877.16 15671.76 16477.18 16556.38 17667.35 17155.04 18074.63 17375.70 18362.38 14676.62 17175.97 16579.22 17475.90 152
MVS_Test76.72 13479.40 13773.60 13278.85 14474.99 15179.91 15061.56 15269.67 16172.44 11885.98 10590.78 12163.50 14378.30 16475.74 16685.33 15280.31 134
IterMVS-SCA-FT77.23 13079.18 13874.96 12776.67 16579.85 11075.58 17961.34 15473.10 14673.79 11286.23 10179.61 16779.00 3680.28 15875.50 16783.41 16579.70 137
v14879.33 12182.32 12675.84 11780.14 13175.74 14481.98 13757.06 17481.51 10479.36 8489.42 6696.42 2871.32 9881.54 15075.29 16885.20 15376.32 150
pmmvs568.91 17374.35 16862.56 18567.45 19566.78 18171.70 18751.47 19467.17 17256.25 17582.41 12788.59 13747.21 19573.21 18674.23 16981.30 17168.03 178
baseline268.71 17568.34 18469.14 15875.69 16869.70 17276.60 16855.53 17960.13 20162.07 16666.76 20360.35 20260.77 14976.53 17474.03 17084.19 15970.88 168
gg-mvs-nofinetune72.68 16075.21 16669.73 15481.48 12469.04 17470.48 19176.67 3686.92 5967.80 14988.06 8364.67 19742.12 20077.60 16673.65 17179.81 17266.57 179
test20.0369.91 16876.20 15962.58 18484.01 9967.34 17975.67 17865.88 11379.98 12040.28 20882.65 12589.31 13139.63 20377.41 16773.28 17269.98 19263.40 187
baseline69.33 17275.37 16562.28 18666.54 19966.67 18273.95 18348.07 19866.10 17659.26 16982.45 12686.30 14654.44 17374.42 17973.25 17371.42 18778.43 146
CR-MVSNet69.56 17168.34 18470.99 14572.78 17967.63 17764.47 20367.74 9759.93 20272.30 11980.10 13456.77 21165.04 13571.64 18872.91 17483.61 16369.40 174
PatchT66.25 18266.76 18865.67 17955.87 20960.75 19370.17 19259.00 16759.80 20472.30 11978.68 14454.12 21665.04 13571.64 18872.91 17471.63 18669.40 174
TAMVS63.02 18769.30 18155.70 19770.12 18556.89 19869.63 19545.13 20170.23 16038.00 21077.79 14775.15 18642.60 19874.48 17872.81 17668.70 19657.75 203
CHOSEN 1792x268868.80 17471.09 17766.13 17569.11 18968.89 17578.98 15854.68 18061.63 19856.69 17371.56 18578.39 17267.69 12172.13 18772.01 17769.63 19473.02 165
IterMVS73.62 15276.53 15570.23 15171.83 18177.18 13480.69 14453.22 18972.23 15266.62 15385.21 11178.96 16969.54 11176.28 17571.63 17879.45 17374.25 159
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMMVS61.98 19465.61 19057.74 19245.03 21551.76 20669.54 19635.05 20855.49 20955.32 17868.23 19978.39 17258.09 15770.21 19471.56 17983.42 16463.66 185
FMVSNet556.37 20460.14 20651.98 20560.83 20559.58 19466.85 20242.37 20452.68 21241.33 20647.09 21354.68 21535.28 20673.88 18170.77 18065.24 20162.26 191
testgi68.20 17776.05 16059.04 19079.99 13367.32 18081.16 14251.78 19384.91 7639.36 20973.42 17995.19 5732.79 20976.54 17370.40 18169.14 19564.55 183
gm-plane-assit71.56 16469.99 17973.39 13484.43 9473.21 15990.42 7051.36 19584.08 8176.00 9691.30 4737.09 22159.01 15473.65 18370.24 18279.09 17560.37 196
Anonymous2023120667.28 17973.41 17460.12 18976.45 16763.61 19074.21 18256.52 17576.35 13442.23 20375.81 16790.47 12441.51 20174.52 17769.97 18369.83 19363.17 188
RPMNet67.02 18063.99 19570.56 14971.55 18267.63 17775.81 17269.44 7759.93 20263.24 16064.32 20547.51 22059.68 15170.37 19369.64 18483.64 16268.49 177
pmmvs362.72 19068.71 18355.74 19650.74 21357.10 19770.05 19328.82 21161.57 20057.39 17271.19 19085.73 14753.96 17673.36 18569.43 18573.47 18262.55 190
test0.0.03 161.79 19565.33 19157.65 19379.07 14164.09 18868.51 20062.93 14261.59 19933.71 21261.58 20971.58 19333.43 20870.95 19168.68 18668.26 19758.82 199
CHOSEN 280x42056.32 20558.85 21153.36 20151.63 21139.91 21569.12 19938.61 20756.29 20736.79 21148.84 21262.59 19963.39 14473.61 18467.66 18760.61 20263.07 189
MIMVSNet63.02 18769.02 18256.01 19568.20 19059.26 19570.01 19453.79 18671.56 15641.26 20771.38 18782.38 16036.38 20571.43 19067.32 18866.45 20059.83 198
MDTV_nov1_ep13_2view72.96 15975.59 16369.88 15371.15 18464.86 18682.31 13554.45 18376.30 13578.32 8986.52 9891.58 11261.35 14876.80 16966.83 18971.70 18466.26 180
SCA68.54 17667.52 18669.73 15467.79 19275.04 14976.96 16768.94 8366.41 17567.86 14874.03 17560.96 20065.55 13368.99 19665.67 19071.30 18961.54 195
dps65.14 18364.50 19365.89 17871.41 18365.81 18571.44 18961.59 15158.56 20561.43 16775.45 16952.70 21858.06 15869.57 19564.65 19171.39 18864.77 182
test-mter59.39 19861.59 20256.82 19453.21 21054.82 20073.12 18626.57 21353.19 21156.31 17464.71 20460.47 20156.36 16468.69 19764.27 19275.38 17965.00 181
CostFormer66.81 18166.94 18766.67 17272.79 17868.25 17679.55 15655.57 17865.52 18062.77 16276.98 15660.09 20356.73 16265.69 20462.35 19372.59 18369.71 173
test-LLR62.15 19359.46 20965.29 18079.07 14152.66 20469.46 19762.93 14250.76 21353.81 18363.11 20758.91 20552.87 18166.54 20262.34 19473.59 18061.87 192
TESTMET0.1,157.21 20159.46 20954.60 20050.95 21252.66 20469.46 19726.91 21250.76 21353.81 18363.11 20758.91 20552.87 18166.54 20262.34 19473.59 18061.87 192
new_pmnet52.29 20763.16 19839.61 20958.89 20744.70 21348.78 21634.73 20965.88 17817.85 21773.42 17980.00 16623.06 21267.00 20062.28 19654.36 20948.81 209
MDTV_nov1_ep1364.96 18464.77 19265.18 18167.08 19662.46 19175.80 17351.10 19662.27 19769.74 13474.12 17462.65 19855.64 16968.19 19862.16 19771.70 18461.57 194
MVEpermissive41.12 1951.80 20860.92 20441.16 20835.21 21734.14 21748.45 21741.39 20569.11 16619.53 21663.33 20673.80 18863.56 14167.19 19961.51 19838.85 21457.38 204
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PatchmatchNetpermissive64.81 18563.74 19666.06 17769.21 18858.62 19673.16 18560.01 16465.92 17766.19 15576.27 16059.09 20460.45 15066.58 20161.47 19967.33 19858.24 201
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm62.79 18963.25 19762.26 18770.09 18653.78 20171.65 18847.31 19965.72 17976.70 9380.62 13356.40 21448.11 19264.20 20658.54 20059.70 20463.47 186
GG-mvs-BLEND41.63 21060.36 20519.78 2110.14 22266.04 18355.66 2130.17 21957.64 2062.42 22151.82 21169.42 1940.28 21864.11 20758.29 20160.02 20355.18 205
tpm cat164.79 18662.74 20067.17 16974.61 17365.91 18476.18 17159.32 16564.88 18566.41 15471.21 18953.56 21759.17 15361.53 20858.16 20267.33 19863.95 184
pmnet_mix0262.60 19170.81 17853.02 20266.56 19850.44 20862.81 20646.84 20079.13 12643.76 20287.45 8790.75 12239.85 20270.48 19257.09 20358.27 20660.32 197
PMMVS248.13 20964.06 19429.55 21044.06 21636.69 21651.95 21529.97 21074.75 1448.90 22076.02 16591.24 1187.53 21473.78 18255.91 20434.87 21540.01 214
tpmrst59.42 19760.02 20758.71 19167.56 19453.10 20366.99 20151.88 19263.80 18957.68 17176.73 15756.49 21348.73 19156.47 21255.55 20559.43 20558.02 202
EPMVS56.62 20359.77 20852.94 20362.41 20450.55 20760.66 20852.83 19065.15 18441.80 20577.46 15257.28 21042.68 19759.81 21054.82 20657.23 20853.35 206
ADS-MVSNet56.89 20261.09 20352.00 20459.48 20648.10 21058.02 21054.37 18472.82 14949.19 19775.32 17065.97 19637.96 20459.34 21154.66 20752.99 21251.42 208
MVS-HIRNet59.74 19658.74 21260.92 18857.74 20845.81 21256.02 21258.69 16955.69 20865.17 15670.86 19171.66 19156.75 16161.11 20953.74 20871.17 19052.28 207
new-patchmatchnet62.59 19273.79 17249.53 20676.98 15753.57 20253.46 21454.64 18185.43 7128.81 21391.94 3796.41 2925.28 21176.80 16953.66 20957.99 20758.69 200
E-PMN59.07 19962.79 19954.72 19867.01 19747.81 21160.44 20943.40 20272.95 14844.63 20170.42 19573.17 19058.73 15580.97 15351.98 21054.14 21042.26 212
N_pmnet54.95 20665.90 18942.18 20766.37 20043.86 21457.92 21139.79 20679.54 12317.24 21886.31 9987.91 14025.44 21064.68 20551.76 21146.33 21347.23 210
EMVS58.97 20062.63 20154.70 19966.26 20248.71 20961.74 20742.71 20372.80 15046.00 20073.01 18271.66 19157.91 15980.41 15750.68 21253.55 21141.11 213
tmp_tt13.54 21316.73 2186.42 2198.49 2202.36 21628.69 21727.44 21418.40 21613.51 2233.70 21533.23 21336.26 21322.54 218
test_method22.69 21126.99 21317.67 2122.13 2194.31 22027.50 2184.53 21537.94 21524.52 21536.20 21551.40 21915.26 21329.86 21417.09 21432.07 21612.16 215
test1231.06 2121.41 2140.64 2140.39 2200.48 2210.52 2230.25 2181.11 2191.37 2222.01 2181.98 2240.87 2161.43 2161.27 2150.46 2201.62 217
testmvs0.93 2131.37 2150.41 2150.36 2210.36 2220.62 2220.39 2171.48 2180.18 2232.41 2171.31 2250.41 2171.25 2171.08 2160.48 2191.68 216
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def87.10 29
9.1489.43 128
SR-MVS91.82 1380.80 795.53 50
our_test_373.27 17570.91 16683.26 126
MTAPA89.37 994.85 67
MTMP90.54 595.16 59
Patchmatch-RL test4.13 221
XVS91.28 2591.23 896.89 287.14 2694.53 7295.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2694.53 7295.84 15
abl_679.30 9884.98 8785.78 7090.50 6666.88 10177.08 13374.02 10973.29 18189.34 13068.94 11590.49 9085.98 81
mPP-MVS93.05 495.77 44
NP-MVS78.65 128
Patchmtry56.88 19964.47 20367.74 9772.30 119
DeepMVS_CXcopyleft17.78 21820.40 2196.69 21431.41 2169.80 21938.61 21434.88 22233.78 20728.41 21523.59 21745.77 211