TDRefinement | | | 86.29 1 | 90.77 1 | 81.06 1 | 75.10 52 | 83.76 2 | 93.79 1 | 61.08 18 | 89.57 1 | 86.19 1 | 90.06 10 | 93.01 24 | 76.72 2 | 94.71 1 | 92.72 1 | 93.47 1 | 91.56 2 |
|
COLMAP_ROB |  | 75.87 2 | 84.34 2 | 89.80 2 | 77.97 11 | 75.52 50 | 82.76 4 | 90.39 19 | 54.21 54 | 89.37 2 | 83.18 2 | 89.90 12 | 95.58 11 | 72.34 10 | 92.31 4 | 90.04 5 | 92.17 5 | 88.61 18 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CP-MVS | | | 84.06 3 | 86.79 10 | 80.86 2 | 81.81 8 | 79.66 29 | 92.67 6 | 64.48 1 | 83.13 30 | 82.32 3 | 80.89 72 | 92.97 25 | 72.51 9 | 91.74 6 | 90.02 6 | 91.40 17 | 89.14 8 |
|
ACMMPR | | | 83.94 4 | 87.20 4 | 80.14 4 | 81.04 13 | 81.92 8 | 92.57 8 | 63.14 5 | 84.35 19 | 79.45 11 | 83.37 46 | 92.04 35 | 72.82 8 | 90.66 12 | 88.96 11 | 91.80 6 | 89.13 9 |
|
MP-MVS |  | | 83.50 5 | 86.11 19 | 80.45 3 | 82.58 4 | 80.60 24 | 92.68 5 | 63.48 3 | 81.43 44 | 80.21 9 | 81.95 62 | 90.76 53 | 72.86 6 | 90.14 19 | 89.30 10 | 90.92 19 | 88.59 19 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMP |  | | 83.17 6 | 86.75 11 | 79.01 7 | 80.11 25 | 82.01 7 | 92.29 10 | 60.35 25 | 82.20 38 | 78.32 15 | 80.59 73 | 93.14 22 | 70.67 15 | 91.30 8 | 89.36 9 | 92.30 4 | 88.62 17 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PGM-MVS | | | 83.03 7 | 85.67 26 | 79.95 5 | 80.69 17 | 81.09 15 | 92.40 9 | 63.06 6 | 79.38 58 | 80.21 9 | 80.31 75 | 91.44 40 | 71.75 12 | 90.46 15 | 88.53 14 | 91.57 9 | 88.50 20 |
|
LGP-MVS_train | | | 82.91 8 | 86.50 13 | 78.72 8 | 78.72 34 | 81.03 16 | 89.78 23 | 61.16 17 | 80.15 54 | 80.44 6 | 84.83 36 | 94.19 14 | 70.52 17 | 90.70 11 | 87.19 22 | 91.71 8 | 87.37 29 |
|
ACMM | | 71.24 7 | 82.85 9 | 86.59 12 | 78.50 9 | 80.10 26 | 78.59 32 | 91.77 11 | 60.76 22 | 84.43 17 | 76.49 24 | 81.58 67 | 93.50 17 | 70.45 18 | 91.38 7 | 89.42 8 | 91.42 16 | 87.22 31 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HFP-MVS | | | 82.37 10 | 86.28 15 | 77.81 14 | 79.94 27 | 80.96 18 | 91.13 14 | 63.30 4 | 84.04 21 | 71.81 39 | 82.39 57 | 89.59 69 | 69.16 23 | 89.08 25 | 88.83 13 | 91.49 13 | 89.10 10 |
|
DeepC-MVS | | 73.80 3 | 82.34 11 | 86.87 8 | 77.06 18 | 78.62 35 | 84.34 1 | 90.30 21 | 63.54 2 | 83.10 31 | 71.30 44 | 86.91 23 | 90.54 59 | 67.12 29 | 87.81 34 | 87.05 23 | 91.46 15 | 88.37 21 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CPTT-MVS | | | 82.32 12 | 85.00 34 | 79.19 6 | 80.73 16 | 80.86 21 | 91.68 12 | 62.59 10 | 82.55 35 | 75.53 28 | 73.88 117 | 92.28 31 | 73.74 5 | 90.07 20 | 87.65 18 | 90.87 20 | 87.74 25 |
|
ACMP | | 70.35 9 | 82.17 13 | 86.45 14 | 77.18 17 | 79.33 28 | 81.00 17 | 89.27 27 | 58.63 31 | 81.35 46 | 75.46 29 | 82.97 52 | 95.08 12 | 68.90 24 | 90.49 14 | 87.43 21 | 91.48 14 | 86.84 33 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SteuartSystems-ACMMP | | | 82.16 14 | 85.55 28 | 78.21 10 | 80.48 19 | 79.28 30 | 92.65 7 | 61.03 19 | 80.55 52 | 77.00 22 | 81.80 65 | 90.71 54 | 68.73 25 | 90.25 17 | 87.94 17 | 89.36 27 | 88.30 22 |
Skip Steuart: Steuart Systems R&D Blog. |
SMA-MVS |  | | 82.15 15 | 85.93 21 | 77.74 15 | 80.13 24 | 80.25 26 | 91.01 15 | 60.61 23 | 85.54 11 | 78.61 14 | 83.21 49 | 86.96 98 | 65.95 34 | 88.10 31 | 87.59 19 | 90.11 21 | 89.83 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SD-MVS | | | 82.13 16 | 86.80 9 | 76.67 19 | 80.36 22 | 80.66 22 | 89.48 25 | 56.93 34 | 82.50 36 | 67.55 67 | 87.05 21 | 91.40 42 | 72.84 7 | 88.66 27 | 88.32 15 | 92.85 2 | 89.04 11 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
LTVRE_ROB | | 75.99 1 | 82.04 17 | 87.16 5 | 76.07 22 | 63.57 124 | 70.27 74 | 86.48 41 | 62.99 7 | 89.00 5 | 80.32 7 | 86.25 26 | 91.04 47 | 74.66 4 | 92.58 3 | 90.29 4 | 88.42 34 | 90.72 3 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DVP-MVS++ | | | 82.03 18 | 88.03 3 | 75.05 27 | 82.08 6 | 78.96 31 | 88.98 31 | 56.44 39 | 89.29 3 | 72.39 37 | 93.25 1 | 93.86 16 | 63.42 49 | 85.46 45 | 81.36 56 | 86.96 46 | 94.00 1 |
|
PMVS |  | 70.37 8 | 81.82 19 | 87.08 6 | 75.68 24 | 77.06 42 | 77.23 40 | 87.77 38 | 56.25 42 | 83.33 29 | 67.18 72 | 89.48 14 | 87.94 82 | 77.70 1 | 93.02 2 | 92.57 2 | 88.13 36 | 86.00 38 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMMP_NAP | | | 81.79 20 | 85.72 24 | 77.21 16 | 79.15 32 | 79.68 28 | 91.62 13 | 59.66 27 | 83.55 26 | 77.74 18 | 83.72 44 | 87.34 91 | 65.36 35 | 88.61 28 | 87.56 20 | 89.73 26 | 89.58 6 |
|
X-MVS | | | 81.61 21 | 84.73 36 | 77.97 11 | 80.31 23 | 81.29 12 | 93.53 2 | 62.50 11 | 81.41 45 | 77.45 19 | 72.04 129 | 90.19 62 | 62.50 56 | 90.57 13 | 88.87 12 | 91.54 10 | 88.73 15 |
|
OPM-MVS | | | 81.44 22 | 85.68 25 | 76.49 20 | 79.27 29 | 78.21 35 | 89.84 22 | 58.67 30 | 85.25 12 | 76.26 25 | 85.28 33 | 92.88 26 | 66.03 33 | 87.20 37 | 85.40 27 | 88.86 31 | 85.58 42 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
TSAR-MVS + MP. | | | 81.23 23 | 86.13 17 | 75.52 25 | 80.74 15 | 83.22 3 | 90.55 16 | 55.12 49 | 80.87 49 | 67.62 66 | 88.01 16 | 92.38 30 | 70.61 16 | 86.64 39 | 83.10 42 | 88.51 32 | 88.67 16 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + ACMM | | | 81.20 24 | 86.92 7 | 74.52 29 | 77.60 38 | 82.29 5 | 84.41 48 | 62.95 8 | 82.99 32 | 64.03 81 | 87.71 17 | 89.17 71 | 71.98 11 | 88.19 30 | 88.10 16 | 86.18 55 | 89.95 4 |
|
APDe-MVS | | | 81.08 25 | 86.12 18 | 75.20 26 | 79.25 30 | 80.91 19 | 90.38 20 | 57.05 33 | 85.83 10 | 66.07 77 | 87.34 20 | 91.27 43 | 69.45 19 | 85.99 43 | 82.55 44 | 88.98 30 | 88.95 13 |
|
DPE-MVS |  | | 81.01 26 | 85.18 30 | 76.15 21 | 78.58 36 | 80.64 23 | 89.77 24 | 57.92 32 | 81.66 43 | 73.45 32 | 86.84 24 | 89.80 67 | 69.33 21 | 85.40 46 | 82.91 43 | 87.87 38 | 89.01 12 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APD-MVS |  | | 80.60 27 | 84.63 37 | 75.91 23 | 81.22 11 | 81.48 10 | 90.49 17 | 58.81 29 | 77.54 64 | 67.49 68 | 85.90 28 | 89.82 66 | 69.43 20 | 86.08 42 | 83.80 37 | 88.01 37 | 87.77 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HPM-MVS++ |  | | 80.44 28 | 82.57 49 | 77.96 13 | 81.99 7 | 72.76 61 | 90.48 18 | 61.31 14 | 80.85 50 | 77.90 17 | 81.93 63 | 87.01 95 | 68.20 27 | 84.15 56 | 85.27 29 | 87.85 39 | 86.00 38 |
|
DVP-MVS |  | | 80.31 29 | 85.60 27 | 74.15 33 | 76.23 46 | 78.39 33 | 86.62 40 | 55.79 45 | 86.47 9 | 71.32 43 | 90.96 7 | 89.02 73 | 69.28 22 | 84.62 55 | 81.64 53 | 85.66 60 | 88.09 23 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
ACMH+ | | 67.97 10 | 80.15 30 | 86.16 16 | 73.14 40 | 73.82 59 | 76.41 43 | 83.59 52 | 54.82 52 | 87.35 6 | 70.86 48 | 86.98 22 | 96.27 4 | 66.50 30 | 89.17 24 | 83.39 39 | 89.26 28 | 83.56 48 |
|
OMC-MVS | | | 79.95 31 | 85.28 29 | 73.74 36 | 72.95 62 | 80.10 27 | 87.87 37 | 48.13 84 | 84.62 16 | 79.42 12 | 80.27 76 | 92.49 28 | 64.14 43 | 87.25 36 | 85.11 30 | 89.92 24 | 87.10 32 |
|
SED-MVS | | | 79.70 32 | 85.16 31 | 73.34 38 | 75.83 49 | 78.11 36 | 88.77 33 | 56.45 38 | 84.85 14 | 69.45 59 | 90.70 9 | 88.38 77 | 63.16 51 | 85.12 51 | 81.28 57 | 86.40 52 | 87.63 26 |
|
MSP-MVS | | | 79.65 33 | 84.28 40 | 74.25 31 | 78.92 33 | 81.86 9 | 89.07 28 | 60.49 24 | 83.85 24 | 70.05 54 | 85.12 34 | 90.92 51 | 62.99 53 | 81.15 76 | 81.64 53 | 83.99 68 | 85.42 44 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DeepPCF-MVS | | 71.57 5 | 79.49 34 | 84.05 41 | 74.17 32 | 74.14 56 | 80.88 20 | 89.33 26 | 56.24 43 | 82.41 37 | 71.58 41 | 82.27 58 | 86.47 101 | 66.47 31 | 84.80 53 | 84.16 35 | 87.26 44 | 87.34 30 |
|
LS3D | | | 79.33 35 | 84.03 42 | 73.84 34 | 75.37 51 | 78.09 37 | 83.30 53 | 52.94 61 | 84.42 18 | 76.01 26 | 84.16 40 | 87.44 90 | 65.34 36 | 86.30 40 | 82.08 51 | 90.09 22 | 85.70 40 |
|
3Dnovator+ | | 72.94 4 | 78.78 36 | 83.05 46 | 73.80 35 | 70.70 75 | 81.34 11 | 88.33 34 | 56.01 44 | 81.33 47 | 72.87 36 | 78.06 91 | 81.15 128 | 63.83 46 | 87.39 35 | 85.82 25 | 91.06 18 | 86.28 37 |
|
UA-Net | | | 78.65 37 | 83.96 43 | 72.46 42 | 84.87 1 | 76.15 44 | 89.06 29 | 55.70 46 | 77.25 65 | 53.14 116 | 79.73 80 | 82.09 126 | 59.69 72 | 92.21 5 | 90.93 3 | 92.32 3 | 89.36 7 |
|
DeepC-MVS_fast | | 71.40 6 | 78.48 38 | 82.92 47 | 73.31 39 | 76.44 45 | 82.23 6 | 87.59 39 | 56.56 37 | 77.79 62 | 68.91 63 | 77.00 95 | 87.32 92 | 61.90 58 | 85.40 46 | 84.37 32 | 88.46 33 | 86.33 36 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SF-MVS | | | 78.36 39 | 83.47 45 | 72.41 43 | 76.04 48 | 75.72 47 | 83.86 50 | 51.81 65 | 84.00 23 | 70.65 51 | 81.27 69 | 92.22 32 | 64.64 41 | 83.28 65 | 80.28 59 | 87.44 43 | 87.49 28 |
|
WR-MVS | | | 78.32 40 | 86.09 20 | 69.25 60 | 76.22 47 | 72.33 68 | 85.71 44 | 59.02 28 | 86.66 7 | 51.41 122 | 92.91 2 | 96.76 1 | 53.09 106 | 90.21 18 | 85.30 28 | 90.05 23 | 78.46 75 |
|
ACMH | | 66.19 11 | 78.12 41 | 84.55 38 | 70.63 51 | 69.62 81 | 72.40 67 | 80.77 68 | 46.43 96 | 89.24 4 | 77.99 16 | 87.42 19 | 95.83 9 | 62.95 54 | 86.27 41 | 78.24 70 | 86.00 58 | 82.46 50 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
train_agg | | | 77.83 42 | 80.47 59 | 74.77 28 | 80.92 14 | 69.60 75 | 88.87 32 | 56.32 41 | 74.03 81 | 71.03 46 | 83.67 45 | 87.68 85 | 64.75 40 | 83.70 58 | 81.85 52 | 86.71 48 | 82.73 49 |
|
NCCC | | | 77.82 43 | 80.72 58 | 74.43 30 | 79.24 31 | 75.72 47 | 88.06 35 | 56.36 40 | 79.61 56 | 73.22 34 | 67.75 142 | 87.05 94 | 63.09 52 | 85.62 44 | 84.00 36 | 86.62 49 | 85.30 45 |
|
CNVR-MVS | | | 77.79 44 | 81.57 53 | 73.38 37 | 78.37 37 | 75.91 45 | 87.97 36 | 55.11 50 | 79.41 57 | 70.98 47 | 74.70 113 | 86.43 102 | 61.77 59 | 85.10 52 | 83.73 38 | 86.10 57 | 85.68 41 |
|
WR-MVS_H | | | 77.56 45 | 85.88 22 | 67.86 64 | 80.54 18 | 74.32 55 | 83.23 54 | 61.78 12 | 83.47 27 | 47.46 142 | 91.81 6 | 95.84 8 | 50.50 118 | 90.44 16 | 84.37 32 | 83.63 73 | 80.89 61 |
|
RPSCF | | | 77.56 45 | 84.51 39 | 69.46 59 | 65.17 112 | 74.36 54 | 79.74 75 | 47.45 87 | 84.01 22 | 72.89 35 | 77.89 92 | 90.67 55 | 65.14 38 | 88.25 29 | 89.74 7 | 86.38 53 | 86.64 35 |
|
PS-CasMVS | | | 77.46 47 | 85.80 23 | 67.73 66 | 81.24 10 | 72.88 60 | 80.63 69 | 61.28 15 | 84.14 20 | 50.53 128 | 92.13 4 | 96.76 1 | 50.12 121 | 91.02 9 | 84.46 31 | 82.60 85 | 79.19 68 |
|
DTE-MVSNet | | | 77.28 48 | 84.87 35 | 68.42 62 | 82.94 3 | 72.70 63 | 81.60 63 | 61.78 12 | 85.03 13 | 51.40 123 | 92.11 5 | 96.00 6 | 49.42 124 | 89.73 22 | 82.52 46 | 83.39 78 | 75.98 85 |
|
SixPastTwentyTwo | | | 77.24 49 | 83.65 44 | 69.78 55 | 65.14 113 | 64.85 97 | 77.44 85 | 47.74 86 | 82.76 34 | 68.52 64 | 87.65 18 | 93.31 19 | 71.68 13 | 89.49 23 | 82.41 47 | 88.14 35 | 85.05 46 |
|
CDPH-MVS | | | 77.22 50 | 81.05 57 | 72.75 41 | 77.29 40 | 77.46 39 | 86.36 42 | 54.02 56 | 73.00 87 | 69.75 57 | 77.78 93 | 88.90 75 | 61.31 63 | 84.09 57 | 82.54 45 | 87.79 40 | 83.57 47 |
|
PEN-MVS | | | 77.06 51 | 85.05 32 | 67.74 65 | 82.29 5 | 72.59 64 | 80.86 67 | 61.03 19 | 84.66 15 | 50.08 131 | 92.19 3 | 96.59 3 | 49.12 126 | 89.83 21 | 82.35 48 | 83.06 79 | 77.14 80 |
|
CP-MVSNet | | | 77.01 52 | 85.04 33 | 67.65 67 | 81.16 12 | 72.72 62 | 80.54 70 | 61.18 16 | 82.09 39 | 50.41 129 | 90.81 8 | 95.89 7 | 50.03 122 | 90.86 10 | 84.30 34 | 82.56 87 | 78.65 74 |
|
CSCG | | | 76.95 53 | 82.08 51 | 70.97 47 | 73.32 61 | 78.35 34 | 81.08 66 | 47.19 88 | 83.47 27 | 69.82 56 | 80.44 74 | 87.19 93 | 64.59 42 | 81.01 79 | 77.26 77 | 89.83 25 | 86.84 33 |
|
CNLPA | | | 76.67 54 | 81.72 52 | 70.77 50 | 70.75 73 | 76.68 42 | 86.14 43 | 46.11 98 | 81.82 41 | 74.68 30 | 76.37 97 | 86.23 104 | 62.92 55 | 85.28 49 | 83.29 40 | 84.02 67 | 82.40 51 |
|
MSLP-MVS++ | | | 76.66 55 | 82.32 50 | 70.06 53 | 70.51 76 | 80.27 25 | 79.77 74 | 55.58 47 | 77.79 62 | 63.09 82 | 67.25 146 | 89.50 70 | 71.01 14 | 88.10 31 | 85.74 26 | 80.39 99 | 87.56 27 |
|
TSAR-MVS + COLMAP | | | 75.85 56 | 81.06 55 | 69.77 56 | 71.15 69 | 76.90 41 | 82.93 56 | 52.43 63 | 79.25 59 | 70.13 52 | 82.78 53 | 87.00 96 | 60.02 68 | 80.30 83 | 79.61 63 | 81.95 91 | 81.61 57 |
|
HQP-MVS | | | 75.81 57 | 78.91 65 | 72.18 44 | 77.41 39 | 75.38 50 | 84.75 45 | 53.35 58 | 76.12 69 | 73.32 33 | 69.48 134 | 88.07 80 | 57.76 80 | 79.42 89 | 78.44 67 | 86.48 50 | 85.50 43 |
|
PLC |  | 64.88 15 | 75.76 58 | 80.22 60 | 70.57 52 | 70.46 77 | 77.75 38 | 82.01 61 | 48.84 79 | 80.74 51 | 70.85 49 | 71.32 131 | 84.82 114 | 63.69 47 | 84.73 54 | 82.35 48 | 87.54 41 | 79.80 65 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TAPA-MVS | | 66.11 12 | 75.37 59 | 79.24 63 | 70.86 48 | 67.63 88 | 74.09 56 | 83.17 55 | 44.75 113 | 81.82 41 | 80.83 5 | 65.61 157 | 88.04 81 | 61.58 60 | 83.21 66 | 80.12 60 | 87.17 45 | 81.82 54 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PHI-MVS | | | 75.17 60 | 78.37 66 | 71.43 45 | 71.13 70 | 72.46 66 | 82.28 60 | 50.55 71 | 73.39 84 | 79.05 13 | 73.65 119 | 87.50 89 | 61.98 57 | 81.10 77 | 78.48 66 | 83.60 74 | 81.99 52 |
|
anonymousdsp | | | 74.76 61 | 82.59 48 | 65.63 84 | 45.61 206 | 61.13 124 | 89.06 29 | 32.58 192 | 74.11 80 | 59.55 91 | 84.06 41 | 94.12 15 | 75.24 3 | 88.94 26 | 86.95 24 | 91.74 7 | 88.81 14 |
|
AdaColmap |  | | 74.73 62 | 77.57 71 | 71.40 46 | 76.90 43 | 75.76 46 | 84.54 47 | 53.08 60 | 76.20 68 | 66.64 75 | 66.06 155 | 78.16 148 | 61.32 62 | 85.37 48 | 82.20 50 | 85.95 59 | 79.27 67 |
|
v7n | | | 74.47 63 | 81.06 55 | 66.77 73 | 66.98 94 | 67.10 78 | 76.76 89 | 45.88 100 | 81.98 40 | 67.43 69 | 88.38 15 | 95.67 10 | 61.38 61 | 80.76 81 | 73.49 98 | 82.21 89 | 80.06 63 |
|
PCF-MVS | | 65.25 14 | 73.99 64 | 76.74 76 | 70.79 49 | 71.61 68 | 75.33 51 | 83.76 51 | 50.40 72 | 74.88 72 | 74.50 31 | 67.60 143 | 85.36 111 | 58.30 78 | 78.61 95 | 74.25 93 | 86.15 56 | 81.13 60 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MCST-MVS | | | 73.84 65 | 77.44 72 | 69.63 58 | 73.75 60 | 74.73 53 | 81.38 65 | 48.58 80 | 74.77 73 | 69.16 61 | 71.97 130 | 86.20 105 | 59.50 73 | 78.51 96 | 74.06 95 | 85.42 62 | 81.85 53 |
|
MVS_0304 | | | 73.74 66 | 77.16 74 | 69.74 57 | 74.24 55 | 73.47 57 | 84.70 46 | 49.62 74 | 62.26 143 | 67.27 70 | 75.87 101 | 87.57 87 | 57.49 83 | 81.20 75 | 79.50 64 | 85.10 63 | 80.27 62 |
|
TSAR-MVS + GP. | | | 73.42 67 | 76.31 77 | 70.05 54 | 77.15 41 | 71.13 71 | 81.59 64 | 54.11 55 | 69.84 114 | 58.65 94 | 66.20 154 | 78.77 144 | 65.29 37 | 83.65 59 | 83.14 41 | 83.54 75 | 81.47 58 |
|
Gipuma |  | | 73.40 68 | 79.27 62 | 66.55 78 | 63.64 123 | 59.35 133 | 70.28 124 | 45.92 99 | 83.79 25 | 71.78 40 | 84.04 42 | 93.07 23 | 68.69 26 | 87.90 33 | 76.76 79 | 78.98 112 | 69.96 120 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVS_111021_HR | | | 72.37 69 | 76.12 80 | 68.00 63 | 68.55 85 | 64.30 105 | 82.93 56 | 48.98 78 | 74.25 78 | 65.39 78 | 73.59 120 | 84.11 119 | 59.48 74 | 82.61 69 | 78.38 68 | 82.66 84 | 75.59 87 |
|
TinyColmap | | | 71.85 70 | 76.11 81 | 66.87 72 | 66.07 103 | 65.34 92 | 74.35 101 | 49.30 77 | 79.93 55 | 75.93 27 | 75.66 103 | 87.74 84 | 54.72 98 | 80.66 82 | 70.42 120 | 80.85 97 | 73.02 103 |
|
UniMVSNet_ETH3D | | | 71.84 71 | 81.36 54 | 60.74 108 | 76.46 44 | 66.01 86 | 66.49 144 | 60.24 26 | 86.58 8 | 41.87 165 | 90.04 11 | 96.02 5 | 43.72 153 | 85.14 50 | 77.30 76 | 75.64 133 | 68.40 134 |
|
TranMVSNet+NR-MVSNet | | | 71.66 72 | 79.23 64 | 62.83 100 | 72.54 65 | 65.64 88 | 74.77 99 | 55.27 48 | 75.91 70 | 45.50 154 | 89.55 13 | 94.25 13 | 45.96 144 | 82.74 68 | 77.03 78 | 82.96 81 | 69.48 128 |
|
MVS_111021_LR | | | 71.60 73 | 75.21 84 | 67.38 68 | 67.42 89 | 62.44 114 | 81.73 62 | 46.24 97 | 70.89 99 | 66.80 74 | 73.19 123 | 84.98 112 | 60.09 67 | 81.94 72 | 77.77 74 | 82.00 90 | 75.29 88 |
|
EG-PatchMatch MVS | | | 71.50 74 | 76.82 75 | 65.30 85 | 70.74 74 | 66.50 82 | 74.23 103 | 43.25 121 | 72.02 91 | 59.11 92 | 79.85 79 | 86.88 99 | 63.95 45 | 80.29 84 | 75.25 89 | 80.51 98 | 76.98 81 |
|
DPM-MVS | | | 71.35 75 | 73.50 102 | 68.84 61 | 74.93 53 | 73.35 58 | 84.07 49 | 50.56 70 | 71.91 92 | 67.06 73 | 61.21 177 | 77.02 153 | 52.64 109 | 74.15 115 | 75.14 90 | 83.79 71 | 81.74 55 |
|
UniMVSNet (Re) | | | 71.29 76 | 78.14 67 | 63.30 95 | 70.29 78 | 66.57 81 | 75.98 91 | 54.74 53 | 70.20 107 | 46.20 152 | 85.08 35 | 93.21 20 | 48.19 132 | 82.50 70 | 78.33 69 | 84.40 65 | 71.08 114 |
|
CLD-MVS | | | 71.24 77 | 78.12 68 | 63.20 97 | 74.03 57 | 71.60 69 | 82.82 58 | 32.91 189 | 74.23 79 | 69.32 60 | 79.65 81 | 91.54 38 | 47.02 140 | 81.22 74 | 79.01 65 | 73.09 150 | 69.63 124 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 71.07 78 | 75.09 86 | 66.39 79 | 72.57 64 | 71.53 70 | 82.38 59 | 47.10 89 | 59.81 149 | 59.81 90 | 74.97 108 | 84.37 118 | 54.25 101 | 79.89 87 | 77.64 75 | 82.25 88 | 77.40 78 |
|
v1192 | | | 71.06 79 | 74.87 88 | 66.61 75 | 66.38 98 | 65.80 87 | 78.27 79 | 45.28 105 | 70.19 108 | 70.79 50 | 83.37 46 | 91.79 36 | 58.76 77 | 70.86 150 | 69.02 127 | 80.16 102 | 73.08 101 |
|
DU-MVS | | | 71.03 80 | 77.92 69 | 62.98 99 | 70.81 71 | 65.48 90 | 73.93 106 | 56.76 35 | 69.95 112 | 46.77 148 | 85.70 31 | 93.49 18 | 46.91 141 | 83.47 60 | 77.82 73 | 82.72 83 | 69.54 125 |
|
v1240 | | | 70.94 81 | 74.52 92 | 66.76 74 | 66.54 97 | 64.40 101 | 77.76 82 | 45.29 104 | 70.05 110 | 71.45 42 | 83.36 48 | 90.96 49 | 60.37 65 | 70.50 153 | 68.68 128 | 79.14 110 | 73.68 97 |
|
v1921920 | | | 70.82 82 | 74.46 94 | 66.58 77 | 66.33 99 | 64.35 104 | 77.72 83 | 45.07 107 | 70.39 104 | 71.18 45 | 83.15 50 | 90.62 57 | 59.97 69 | 70.90 148 | 68.43 135 | 79.19 109 | 73.39 98 |
|
UniMVSNet_NR-MVSNet | | | 70.82 82 | 77.44 72 | 63.11 98 | 71.75 67 | 66.02 85 | 73.93 106 | 55.00 51 | 70.90 98 | 46.77 148 | 86.68 25 | 91.54 38 | 46.91 141 | 81.07 78 | 76.32 83 | 84.28 66 | 69.54 125 |
|
PVSNet_Blended_VisFu | | | 70.70 84 | 73.62 101 | 67.28 70 | 63.53 125 | 72.96 59 | 77.97 80 | 52.10 64 | 63.65 137 | 62.66 83 | 71.14 132 | 73.46 164 | 63.55 48 | 79.35 93 | 75.34 88 | 83.90 69 | 79.43 66 |
|
v144192 | | | 70.68 85 | 74.40 96 | 66.34 80 | 65.94 105 | 64.38 102 | 77.63 84 | 45.18 106 | 69.97 111 | 70.11 53 | 82.70 55 | 90.77 52 | 59.84 71 | 71.43 146 | 68.46 131 | 79.31 108 | 73.08 101 |
|
EC-MVSNet | | | 70.50 86 | 73.32 105 | 67.20 71 | 72.07 66 | 66.21 84 | 70.86 121 | 50.10 73 | 57.66 162 | 60.49 89 | 74.97 108 | 79.42 139 | 63.32 50 | 79.65 88 | 75.46 87 | 86.35 54 | 79.87 64 |
|
FPMVS | | | 70.46 87 | 74.89 87 | 65.28 86 | 69.09 83 | 61.42 120 | 77.07 87 | 46.92 92 | 76.73 67 | 53.53 112 | 67.33 144 | 75.07 159 | 67.23 28 | 83.41 62 | 81.54 55 | 77.86 119 | 78.73 72 |
|
v1144 | | | 70.45 88 | 74.50 93 | 65.73 83 | 65.74 107 | 64.88 96 | 77.33 86 | 44.16 115 | 70.59 103 | 69.63 58 | 83.15 50 | 91.42 41 | 57.79 79 | 71.29 147 | 68.53 130 | 79.72 106 | 71.63 113 |
|
v10 | | | 70.25 89 | 74.59 91 | 65.19 87 | 65.32 110 | 66.46 83 | 76.60 90 | 44.84 110 | 67.38 123 | 67.21 71 | 82.75 54 | 90.56 58 | 57.70 81 | 71.69 143 | 68.63 129 | 79.44 107 | 74.67 91 |
|
Effi-MVS+-dtu | | | 70.10 90 | 73.76 100 | 65.82 82 | 70.23 79 | 74.92 52 | 79.47 76 | 44.49 114 | 56.98 167 | 54.34 106 | 64.26 161 | 84.78 115 | 59.97 69 | 80.96 80 | 80.38 58 | 86.44 51 | 74.05 95 |
|
CS-MVS-test | | | 70.00 91 | 72.92 108 | 66.59 76 | 66.71 96 | 64.06 107 | 80.28 72 | 44.82 111 | 58.41 154 | 58.08 97 | 73.57 121 | 80.94 130 | 63.98 44 | 83.29 64 | 75.93 85 | 85.65 61 | 74.23 92 |
|
MAR-MVS | | | 70.00 91 | 72.28 116 | 67.34 69 | 69.89 80 | 72.57 65 | 80.09 73 | 49.49 76 | 60.28 148 | 69.03 62 | 59.29 186 | 80.79 132 | 54.68 99 | 78.39 98 | 76.00 84 | 80.87 96 | 78.67 73 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Vis-MVSNet |  | | 69.95 93 | 77.69 70 | 60.91 106 | 60.67 140 | 66.71 79 | 77.94 81 | 48.58 80 | 69.10 117 | 45.78 153 | 80.21 77 | 83.58 122 | 53.41 105 | 82.92 67 | 80.11 61 | 79.08 111 | 81.21 59 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CS-MVS | | | 69.56 94 | 72.49 113 | 66.14 81 | 66.85 95 | 64.10 106 | 72.55 111 | 42.91 123 | 58.90 151 | 60.78 87 | 72.93 126 | 83.21 124 | 66.32 32 | 78.77 94 | 72.84 105 | 87.45 42 | 76.72 82 |
|
EPP-MVSNet | | | 69.51 95 | 76.17 78 | 61.74 104 | 68.38 87 | 66.60 80 | 71.77 113 | 46.98 90 | 73.60 83 | 41.79 166 | 82.06 61 | 69.65 175 | 52.51 110 | 83.41 62 | 79.94 62 | 89.02 29 | 77.94 76 |
|
3Dnovator | | 65.69 13 | 69.43 96 | 75.74 83 | 62.06 103 | 60.78 139 | 70.50 73 | 75.85 93 | 39.57 157 | 74.44 75 | 57.41 99 | 75.91 99 | 77.73 150 | 55.34 94 | 76.86 102 | 75.61 86 | 83.44 76 | 79.14 69 |
|
Effi-MVS+ | | | 69.04 97 | 73.01 107 | 64.40 90 | 67.20 92 | 64.83 98 | 74.87 98 | 43.97 117 | 63.33 139 | 60.90 86 | 73.06 124 | 85.79 108 | 55.61 91 | 73.58 121 | 76.41 82 | 83.84 70 | 74.09 94 |
|
v2v482 | | | 69.01 98 | 73.39 104 | 63.89 92 | 63.86 117 | 62.99 111 | 75.26 96 | 42.05 132 | 70.22 106 | 68.46 65 | 82.64 56 | 91.61 37 | 55.38 92 | 70.89 149 | 66.93 151 | 78.30 115 | 68.48 133 |
|
MSDG | | | 68.98 99 | 73.31 106 | 63.92 91 | 67.08 93 | 68.27 76 | 75.41 95 | 40.77 148 | 67.61 121 | 64.89 79 | 75.75 102 | 78.96 141 | 53.70 103 | 76.72 104 | 73.95 96 | 81.71 93 | 71.93 111 |
|
v8 | | | 68.77 100 | 73.50 102 | 63.26 96 | 63.74 121 | 64.47 100 | 74.22 104 | 42.07 131 | 67.30 124 | 64.89 79 | 82.08 60 | 90.23 61 | 56.50 89 | 71.85 142 | 66.57 152 | 78.14 116 | 72.02 109 |
|
NR-MVSNet | | | 68.66 101 | 76.15 79 | 59.93 113 | 65.49 108 | 65.48 90 | 74.42 100 | 56.76 35 | 69.95 112 | 45.38 155 | 85.70 31 | 91.13 44 | 34.68 185 | 74.52 114 | 76.75 80 | 82.83 82 | 69.49 127 |
|
USDC | | | 68.53 102 | 71.82 122 | 64.68 88 | 63.53 125 | 61.87 119 | 70.12 126 | 46.98 90 | 77.89 61 | 76.58 23 | 68.55 139 | 86.88 99 | 50.50 118 | 73.73 118 | 65.62 154 | 80.39 99 | 68.21 136 |
|
IS_MVSNet | | | 68.20 103 | 74.41 95 | 60.96 105 | 68.55 85 | 64.36 103 | 71.47 116 | 48.33 82 | 70.11 109 | 43.30 161 | 80.90 71 | 74.54 161 | 47.19 139 | 81.25 73 | 77.97 72 | 86.94 47 | 71.76 112 |
|
Baseline_NR-MVSNet | | | 68.15 104 | 75.12 85 | 60.02 112 | 70.81 71 | 55.67 156 | 75.88 92 | 53.40 57 | 71.25 95 | 43.96 159 | 85.88 29 | 92.68 27 | 45.76 145 | 83.47 60 | 68.34 136 | 70.34 167 | 68.58 132 |
|
GeoE | | | 68.11 105 | 72.10 120 | 63.47 94 | 67.32 90 | 62.42 115 | 78.32 78 | 43.22 122 | 64.06 136 | 55.72 104 | 73.97 116 | 84.58 116 | 55.35 93 | 76.09 108 | 70.41 121 | 80.89 95 | 73.14 100 |
|
casdiffmvs_mvg |  | | 68.01 106 | 74.22 98 | 60.78 107 | 63.75 120 | 62.08 118 | 70.21 125 | 42.58 125 | 72.11 90 | 58.53 95 | 84.80 38 | 88.98 74 | 49.37 125 | 73.25 125 | 67.54 147 | 80.24 101 | 70.75 116 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Fast-Effi-MVS+ | | | 67.71 107 | 72.54 112 | 62.07 102 | 63.83 118 | 63.68 108 | 75.74 94 | 39.94 154 | 60.89 147 | 54.29 107 | 73.00 125 | 86.19 106 | 56.85 86 | 78.46 97 | 73.23 101 | 81.74 92 | 72.36 107 |
|
thisisatest0515 | | | 66.95 108 | 72.29 115 | 60.72 109 | 56.37 164 | 56.05 154 | 71.08 117 | 38.81 162 | 67.59 122 | 53.26 115 | 78.21 89 | 79.79 138 | 60.11 66 | 75.69 110 | 73.02 103 | 84.69 64 | 75.66 86 |
|
EPNet | | | 66.87 109 | 68.89 136 | 64.53 89 | 73.97 58 | 61.13 124 | 78.46 77 | 61.03 19 | 56.78 169 | 53.41 113 | 66.91 149 | 70.91 170 | 43.49 154 | 76.08 109 | 76.68 81 | 76.81 123 | 73.73 96 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
canonicalmvs | | | 66.37 110 | 74.37 97 | 57.04 130 | 65.89 106 | 65.06 93 | 62.58 163 | 42.55 126 | 76.82 66 | 46.87 147 | 67.33 144 | 86.38 103 | 45.49 147 | 76.77 103 | 71.85 110 | 78.87 113 | 76.35 83 |
|
QAPM | | | 66.36 111 | 72.76 111 | 58.90 118 | 59.57 147 | 65.01 94 | 64.05 157 | 41.17 143 | 73.09 86 | 56.82 101 | 69.42 135 | 77.78 149 | 55.07 96 | 73.00 128 | 72.07 108 | 76.71 124 | 78.96 70 |
|
casdiffmvs |  | | 66.19 112 | 72.34 114 | 59.02 117 | 62.75 129 | 60.61 130 | 69.06 131 | 41.38 140 | 69.49 115 | 54.11 108 | 84.00 43 | 89.74 68 | 49.12 126 | 70.74 152 | 62.70 169 | 77.70 121 | 69.14 130 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
V42 | | | 65.79 113 | 72.11 119 | 58.42 122 | 51.89 186 | 58.69 135 | 73.80 108 | 34.50 181 | 65.40 131 | 57.10 100 | 79.54 83 | 89.09 72 | 57.51 82 | 71.98 140 | 67.83 144 | 75.70 131 | 72.26 108 |
|
IterMVS-LS | | | 65.76 114 | 70.85 129 | 59.81 115 | 65.33 109 | 57.78 140 | 64.63 154 | 48.02 85 | 65.65 130 | 51.05 125 | 81.31 68 | 77.47 151 | 54.94 97 | 69.46 161 | 69.36 126 | 74.90 139 | 74.95 89 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PM-MVS | | | 65.66 115 | 71.25 128 | 59.14 116 | 58.92 153 | 54.88 165 | 73.66 110 | 38.55 165 | 66.12 127 | 49.91 133 | 69.87 133 | 86.97 97 | 60.61 64 | 76.30 106 | 74.75 91 | 73.19 148 | 69.83 121 |
|
UGNet | | | 65.61 116 | 74.79 89 | 54.91 142 | 54.54 180 | 68.20 77 | 70.97 120 | 48.21 83 | 67.14 126 | 41.67 167 | 74.15 115 | 80.65 134 | 36.10 180 | 79.39 90 | 77.99 71 | 77.95 118 | 76.01 84 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DELS-MVS | | | 65.54 117 | 71.79 123 | 58.24 125 | 59.68 146 | 65.55 89 | 70.99 118 | 38.69 164 | 62.29 142 | 49.27 136 | 75.03 107 | 81.42 127 | 50.93 114 | 73.71 120 | 71.35 112 | 79.90 104 | 73.20 99 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
pmmvs-eth3d | | | 65.36 118 | 70.09 132 | 59.85 114 | 63.05 128 | 53.61 168 | 74.29 102 | 46.45 95 | 68.14 120 | 51.45 121 | 78.83 87 | 85.78 109 | 49.87 123 | 70.44 154 | 70.45 119 | 74.00 143 | 63.38 156 |
|
FA-MVS(training) | | | 65.22 119 | 69.19 135 | 60.58 110 | 60.91 137 | 57.60 144 | 71.57 115 | 38.82 161 | 65.84 129 | 61.18 85 | 75.95 98 | 74.52 162 | 51.18 113 | 73.32 123 | 67.41 148 | 79.80 105 | 69.70 123 |
|
v148 | | | 64.92 120 | 70.58 131 | 58.32 123 | 59.89 144 | 57.09 147 | 66.04 146 | 35.27 180 | 69.11 116 | 60.66 88 | 79.57 82 | 90.93 50 | 53.91 102 | 69.81 160 | 62.22 170 | 74.14 141 | 65.31 148 |
|
FC-MVSNet-train | | | 64.87 121 | 74.76 90 | 53.33 146 | 65.24 111 | 58.05 137 | 69.69 128 | 41.92 135 | 70.99 97 | 32.62 191 | 85.75 30 | 88.23 78 | 32.10 195 | 77.61 101 | 74.41 92 | 78.43 114 | 68.25 135 |
|
pmmvs6 | | | 64.78 122 | 75.82 82 | 51.89 152 | 62.41 130 | 57.13 146 | 60.24 170 | 45.59 102 | 82.90 33 | 34.69 182 | 84.83 36 | 93.18 21 | 36.22 179 | 76.43 105 | 71.13 115 | 72.21 154 | 65.12 149 |
|
OpenMVS |  | 60.79 16 | 64.42 123 | 69.72 133 | 58.23 126 | 61.63 134 | 62.17 116 | 64.11 156 | 37.54 174 | 67.17 125 | 55.71 105 | 65.89 156 | 74.89 160 | 52.67 108 | 72.20 138 | 68.29 138 | 77.73 120 | 77.39 79 |
|
test1111 | | | 64.34 124 | 71.57 124 | 55.90 137 | 67.25 91 | 60.24 132 | 66.66 142 | 51.63 68 | 73.36 85 | 34.69 182 | 75.63 104 | 80.67 133 | 39.43 165 | 78.17 99 | 71.69 111 | 75.71 130 | 61.23 162 |
|
DCV-MVSNet | | | 64.34 124 | 72.84 110 | 54.42 144 | 63.79 119 | 62.09 117 | 62.50 164 | 42.72 124 | 74.32 77 | 41.34 168 | 66.96 147 | 88.57 76 | 39.18 166 | 75.20 112 | 70.35 122 | 77.01 122 | 72.37 106 |
|
ETV-MVS | | | 64.30 126 | 64.76 151 | 63.77 93 | 68.59 84 | 62.49 113 | 77.02 88 | 45.31 103 | 49.27 195 | 50.88 126 | 56.23 198 | 59.91 198 | 57.12 85 | 80.19 86 | 74.23 94 | 83.68 72 | 71.03 115 |
|
ECVR-MVS |  | | 63.93 127 | 71.52 125 | 55.08 140 | 66.19 100 | 61.34 121 | 63.84 158 | 51.79 66 | 70.75 101 | 34.77 180 | 74.70 113 | 81.10 129 | 38.92 167 | 79.39 90 | 73.43 99 | 75.00 137 | 59.92 169 |
|
Anonymous20231211 | | | 63.69 128 | 72.86 109 | 53.00 149 | 63.72 122 | 60.25 131 | 60.33 169 | 40.96 144 | 72.49 88 | 38.91 171 | 81.77 66 | 88.17 79 | 37.60 174 | 73.30 124 | 68.01 141 | 76.47 128 | 66.06 145 |
|
TransMVSNet (Re) | | | 63.49 129 | 73.86 99 | 51.39 158 | 64.26 116 | 56.07 153 | 61.17 167 | 42.23 129 | 78.81 60 | 34.80 179 | 85.94 27 | 90.63 56 | 34.35 189 | 72.73 133 | 67.98 142 | 71.50 157 | 64.84 150 |
|
DI_MVS_plusplus_trai | | | 63.43 130 | 67.54 140 | 58.63 119 | 62.34 131 | 58.06 136 | 65.75 150 | 42.15 130 | 63.05 140 | 53.28 114 | 75.88 100 | 75.92 156 | 50.18 120 | 68.04 164 | 64.20 160 | 78.07 117 | 67.65 137 |
|
EIA-MVS | | | 63.24 131 | 64.16 155 | 62.16 101 | 69.30 82 | 63.20 110 | 72.40 112 | 40.82 147 | 48.31 201 | 51.50 120 | 59.63 184 | 62.23 190 | 57.33 84 | 78.00 100 | 71.94 109 | 81.59 94 | 65.82 146 |
|
Fast-Effi-MVS+-dtu | | | 63.22 132 | 65.55 145 | 60.49 111 | 61.24 136 | 64.70 99 | 74.15 105 | 53.24 59 | 51.46 180 | 49.67 134 | 58.03 193 | 78.42 145 | 48.05 134 | 72.03 139 | 71.14 114 | 76.60 127 | 63.09 157 |
|
IterMVS-SCA-FT | | | 62.67 133 | 68.00 138 | 56.45 136 | 56.92 162 | 64.92 95 | 57.51 183 | 38.12 166 | 59.44 150 | 53.62 111 | 74.74 112 | 71.60 167 | 64.84 39 | 70.24 156 | 65.27 156 | 67.70 175 | 69.83 121 |
|
diffmvs |  | | 62.64 134 | 69.66 134 | 54.46 143 | 56.19 167 | 55.06 162 | 67.36 140 | 36.74 178 | 64.18 134 | 50.58 127 | 79.54 83 | 87.55 88 | 45.13 149 | 68.04 164 | 63.20 165 | 70.78 162 | 70.02 119 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MVS_Test | | | 62.58 135 | 67.46 141 | 56.89 132 | 59.52 148 | 55.90 155 | 64.94 152 | 38.83 160 | 57.08 166 | 56.55 102 | 76.53 96 | 84.49 117 | 47.45 136 | 66.95 167 | 62.01 171 | 74.04 142 | 69.27 129 |
|
MDA-MVSNet-bldmvs | | | 62.46 136 | 72.13 118 | 51.19 160 | 34.32 216 | 56.10 152 | 68.65 133 | 38.85 159 | 69.05 118 | 49.50 135 | 78.17 90 | 85.43 110 | 51.32 111 | 86.67 38 | 67.40 149 | 64.46 180 | 62.08 159 |
|
pm-mvs1 | | | 61.97 137 | 72.01 121 | 50.25 166 | 60.64 141 | 55.23 160 | 58.67 178 | 42.44 127 | 74.40 76 | 33.63 188 | 81.03 70 | 89.86 65 | 34.87 184 | 72.93 131 | 67.95 143 | 71.28 158 | 62.65 158 |
|
FMVSNet1 | | | 61.92 138 | 71.36 126 | 50.90 162 | 57.67 161 | 59.29 134 | 59.48 176 | 44.14 116 | 70.24 105 | 34.72 181 | 75.45 106 | 84.94 113 | 36.75 176 | 72.33 135 | 68.45 132 | 72.66 151 | 68.83 131 |
|
PVSNet_BlendedMVS | | | 61.75 139 | 65.07 149 | 57.87 128 | 56.27 165 | 60.99 127 | 65.81 148 | 43.75 118 | 51.27 184 | 54.08 109 | 62.12 172 | 78.84 142 | 50.67 115 | 71.49 144 | 63.91 162 | 76.64 125 | 66.86 139 |
|
PVSNet_Blended | | | 61.75 139 | 65.07 149 | 57.87 128 | 56.27 165 | 60.99 127 | 65.81 148 | 43.75 118 | 51.27 184 | 54.08 109 | 62.12 172 | 78.84 142 | 50.67 115 | 71.49 144 | 63.91 162 | 76.64 125 | 66.86 139 |
|
tttt0517 | | | 61.44 141 | 63.85 157 | 58.62 120 | 55.20 176 | 55.61 157 | 68.80 132 | 38.02 169 | 55.70 171 | 50.01 132 | 66.93 148 | 48.90 209 | 56.69 87 | 73.84 117 | 71.10 116 | 82.99 80 | 74.89 90 |
|
tfpnnormal | | | 61.41 142 | 71.33 127 | 49.83 167 | 61.73 133 | 54.90 164 | 58.52 179 | 41.24 141 | 75.20 71 | 32.00 196 | 82.13 59 | 87.87 83 | 35.63 183 | 72.75 132 | 66.30 153 | 69.87 168 | 60.14 166 |
|
IB-MVS | | 57.02 17 | 61.37 143 | 65.39 146 | 56.69 133 | 56.65 163 | 60.85 129 | 70.70 122 | 37.90 171 | 49.37 194 | 45.37 156 | 48.75 210 | 79.14 140 | 53.55 104 | 76.26 107 | 70.85 118 | 75.97 129 | 72.50 105 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CANet_DTU | | | 61.22 144 | 67.07 142 | 54.40 145 | 59.89 144 | 63.62 109 | 70.98 119 | 36.77 177 | 50.49 187 | 47.15 143 | 62.45 170 | 80.81 131 | 37.90 173 | 71.87 141 | 70.09 124 | 73.69 144 | 70.19 118 |
|
pmmvs4 | | | 61.12 145 | 64.61 152 | 57.04 130 | 60.88 138 | 52.15 173 | 70.59 123 | 44.82 111 | 61.35 146 | 46.91 146 | 72.08 128 | 73.27 165 | 46.79 143 | 65.06 171 | 67.76 145 | 72.28 152 | 60.58 164 |
|
thisisatest0530 | | | 61.02 146 | 63.44 162 | 58.19 127 | 54.75 178 | 55.09 161 | 68.03 137 | 38.02 169 | 55.45 172 | 49.06 137 | 66.58 152 | 48.69 210 | 56.69 87 | 73.07 126 | 71.10 116 | 82.60 85 | 74.14 93 |
|
Vis-MVSNet (Re-imp) | | | 60.99 147 | 67.78 139 | 53.06 148 | 64.66 115 | 53.49 169 | 67.40 138 | 49.52 75 | 68.55 119 | 28.00 205 | 79.53 85 | 71.41 169 | 33.08 193 | 75.30 111 | 71.28 113 | 75.69 132 | 54.91 181 |
|
PatchMatch-RL | | | 60.96 148 | 63.00 165 | 58.57 121 | 59.16 152 | 52.18 172 | 67.38 139 | 41.99 133 | 57.85 160 | 48.16 138 | 53.55 206 | 69.77 174 | 59.47 75 | 73.73 118 | 72.49 107 | 75.27 136 | 61.44 161 |
|
GA-MVS | | | 60.73 149 | 64.24 154 | 56.64 134 | 59.38 151 | 57.45 145 | 65.07 151 | 36.65 179 | 57.39 164 | 58.17 96 | 73.43 122 | 69.10 178 | 47.38 137 | 64.47 176 | 63.63 164 | 73.19 148 | 64.22 153 |
|
CVMVSNet | | | 60.45 150 | 63.72 159 | 56.63 135 | 54.82 177 | 53.75 166 | 68.41 134 | 41.95 134 | 55.07 173 | 48.03 139 | 58.08 192 | 68.67 179 | 55.09 95 | 69.14 162 | 68.34 136 | 71.51 156 | 72.97 104 |
|
ET-MVSNet_ETH3D | | | 60.33 151 | 62.10 168 | 58.27 124 | 58.61 156 | 58.05 137 | 68.06 135 | 41.20 142 | 51.40 181 | 51.10 124 | 64.06 162 | 49.42 208 | 50.61 117 | 74.72 113 | 70.29 123 | 80.05 103 | 66.74 141 |
|
FC-MVSNet-test | | | 60.28 152 | 70.83 130 | 47.96 178 | 54.69 179 | 47.12 187 | 68.06 135 | 41.68 139 | 71.42 93 | 23.73 213 | 84.70 39 | 77.41 152 | 28.92 200 | 82.33 71 | 73.08 102 | 70.68 163 | 59.77 170 |
|
test2506 | | | 59.86 153 | 64.01 156 | 55.02 141 | 66.19 100 | 61.34 121 | 63.84 158 | 51.79 66 | 70.75 101 | 34.39 186 | 62.65 169 | 39.92 224 | 38.92 167 | 79.39 90 | 73.43 99 | 75.00 137 | 60.56 165 |
|
EU-MVSNet | | | 59.77 154 | 66.07 143 | 52.42 150 | 47.81 195 | 51.86 175 | 62.98 162 | 32.28 194 | 62.08 144 | 47.10 144 | 59.94 182 | 83.42 123 | 53.08 107 | 70.06 159 | 63.19 166 | 71.26 160 | 71.96 110 |
|
IterMVS | | | 59.24 155 | 64.45 153 | 53.16 147 | 50.98 188 | 61.29 123 | 66.51 143 | 32.85 190 | 58.17 156 | 46.31 151 | 72.58 127 | 70.23 172 | 54.26 100 | 64.81 174 | 60.24 175 | 68.04 174 | 63.81 155 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 59.15 156 | 62.28 167 | 55.49 139 | 52.42 184 | 62.59 112 | 71.76 114 | 39.74 155 | 50.25 189 | 41.92 164 | 62.88 167 | 69.16 177 | 55.85 90 | 62.77 181 | 67.18 150 | 71.27 159 | 61.11 163 |
|
thres600view7 | | | 58.87 157 | 65.91 144 | 50.66 164 | 61.27 135 | 56.32 150 | 59.88 174 | 40.63 150 | 64.88 132 | 32.10 195 | 64.82 158 | 69.83 173 | 36.72 177 | 72.99 129 | 72.55 106 | 73.34 146 | 59.97 168 |
|
CMPMVS |  | 45.32 18 | 58.10 158 | 65.24 148 | 49.76 168 | 47.88 194 | 46.86 190 | 48.16 208 | 32.82 191 | 58.06 157 | 61.35 84 | 59.64 183 | 80.00 135 | 47.27 138 | 70.15 157 | 64.10 161 | 61.08 184 | 77.85 77 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MDTV_nov1_ep13_2view | | | 58.09 159 | 63.54 161 | 51.74 154 | 50.13 190 | 46.56 191 | 66.95 141 | 33.41 187 | 63.52 138 | 58.77 93 | 74.84 110 | 84.10 120 | 43.12 155 | 65.95 170 | 54.69 190 | 58.04 190 | 55.13 180 |
|
CDS-MVSNet | | | 57.90 160 | 63.57 160 | 51.28 159 | 62.30 132 | 53.17 170 | 64.70 153 | 51.61 69 | 57.41 163 | 32.75 190 | 63.73 163 | 70.53 171 | 27.12 202 | 72.49 134 | 73.02 103 | 69.22 171 | 54.68 182 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
FMVSNet2 | | | 57.80 161 | 65.39 146 | 48.94 174 | 55.88 168 | 57.61 141 | 57.26 184 | 42.37 128 | 58.21 155 | 33.19 189 | 68.36 140 | 75.55 158 | 34.58 186 | 66.91 168 | 64.55 158 | 70.38 164 | 66.56 142 |
|
thres400 | | | 57.25 162 | 63.73 158 | 49.70 169 | 60.19 143 | 54.95 163 | 58.16 180 | 39.60 156 | 62.42 141 | 31.98 198 | 62.33 171 | 69.20 176 | 35.96 181 | 70.07 158 | 68.03 140 | 72.28 152 | 59.12 172 |
|
gm-plane-assit | | | 56.76 163 | 57.64 182 | 55.73 138 | 66.01 104 | 55.45 159 | 74.96 97 | 30.54 199 | 73.71 82 | 56.04 103 | 81.81 64 | 30.91 227 | 43.83 151 | 58.77 191 | 54.71 189 | 63.02 182 | 48.13 197 |
|
MIMVSNet1 | | | 56.72 164 | 68.69 137 | 42.76 192 | 46.70 201 | 42.81 198 | 69.13 129 | 30.52 200 | 81.01 48 | 32.00 196 | 74.82 111 | 91.10 46 | 26.83 204 | 73.98 116 | 64.72 157 | 51.40 202 | 52.38 186 |
|
EPNet_dtu | | | 56.63 165 | 60.77 174 | 51.80 153 | 55.47 173 | 44.63 192 | 69.83 127 | 38.74 163 | 50.27 188 | 47.64 140 | 58.01 194 | 72.27 166 | 33.71 191 | 68.60 163 | 67.72 146 | 65.39 178 | 63.86 154 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
GBi-Net | | | 56.54 166 | 63.26 163 | 48.70 175 | 55.88 168 | 57.61 141 | 57.26 184 | 41.75 136 | 49.06 196 | 32.37 192 | 61.81 174 | 67.02 181 | 34.58 186 | 72.33 135 | 68.45 132 | 70.38 164 | 66.56 142 |
|
test1 | | | 56.54 166 | 63.26 163 | 48.70 175 | 55.88 168 | 57.61 141 | 57.26 184 | 41.75 136 | 49.06 196 | 32.37 192 | 61.81 174 | 67.02 181 | 34.58 186 | 72.33 135 | 68.45 132 | 70.38 164 | 66.56 142 |
|
gg-mvs-nofinetune | | | 56.45 168 | 61.04 172 | 51.10 161 | 63.42 127 | 49.40 183 | 53.71 195 | 52.52 62 | 74.77 73 | 46.93 145 | 77.31 94 | 53.88 202 | 26.42 206 | 62.51 182 | 57.81 182 | 63.60 181 | 51.57 189 |
|
thres200 | | | 56.35 169 | 62.36 166 | 49.34 171 | 58.87 154 | 56.32 150 | 55.91 188 | 40.63 150 | 58.51 153 | 31.34 199 | 58.81 190 | 67.31 180 | 35.96 181 | 72.99 129 | 65.51 155 | 73.34 146 | 57.07 175 |
|
MS-PatchMatch | | | 56.31 170 | 60.22 177 | 51.73 155 | 60.53 142 | 55.53 158 | 63.41 160 | 37.18 175 | 51.34 183 | 37.44 173 | 60.53 180 | 62.19 191 | 45.52 146 | 64.25 177 | 63.17 167 | 66.33 176 | 64.56 151 |
|
tfpn200view9 | | | 56.07 171 | 61.85 169 | 49.34 171 | 58.57 157 | 56.48 149 | 58.01 182 | 40.72 149 | 53.23 174 | 31.01 200 | 56.41 196 | 66.40 186 | 34.18 190 | 73.02 127 | 68.06 139 | 73.53 145 | 59.35 171 |
|
FMVSNet3 | | | 54.77 172 | 60.73 175 | 47.81 179 | 54.29 181 | 56.88 148 | 55.89 189 | 41.75 136 | 49.06 196 | 32.37 192 | 61.81 174 | 67.02 181 | 33.67 192 | 62.88 180 | 61.96 172 | 68.88 172 | 65.53 147 |
|
thres100view900 | | | 53.88 173 | 59.19 178 | 47.68 180 | 58.57 157 | 52.74 171 | 54.45 192 | 38.07 168 | 53.23 174 | 31.01 200 | 56.41 196 | 66.40 186 | 32.80 194 | 65.03 173 | 64.43 159 | 71.18 161 | 56.10 178 |
|
CR-MVSNet | | | 53.82 174 | 55.40 186 | 51.98 151 | 51.57 187 | 50.23 178 | 45.00 210 | 44.97 108 | 46.90 203 | 52.60 117 | 67.91 141 | 46.99 217 | 48.37 129 | 59.15 189 | 59.53 178 | 69.38 170 | 57.07 175 |
|
baseline2 | | | 53.55 175 | 55.19 187 | 51.62 156 | 55.27 175 | 51.95 174 | 60.89 168 | 34.23 182 | 46.69 205 | 42.47 162 | 53.56 205 | 50.01 205 | 45.33 148 | 64.63 175 | 61.22 173 | 71.56 155 | 58.28 174 |
|
test20.03 | | | 53.49 176 | 60.95 173 | 44.78 188 | 64.73 114 | 47.25 186 | 61.58 166 | 43.30 120 | 65.86 128 | 22.85 214 | 66.87 151 | 79.85 136 | 22.99 208 | 62.38 183 | 56.95 184 | 53.25 199 | 47.46 199 |
|
baseline | | | 53.46 177 | 61.55 170 | 44.01 189 | 45.83 204 | 48.77 184 | 57.26 184 | 28.75 203 | 49.99 190 | 38.85 172 | 68.78 137 | 75.65 157 | 38.30 170 | 60.80 184 | 59.78 177 | 55.10 197 | 67.07 138 |
|
MVSTER | | | 53.08 178 | 56.39 184 | 49.21 173 | 47.19 197 | 51.08 176 | 60.14 172 | 31.74 196 | 40.63 214 | 38.97 170 | 55.78 199 | 46.74 218 | 42.47 158 | 67.29 166 | 62.99 168 | 74.73 140 | 70.23 117 |
|
CHOSEN 1792x2688 | | | 52.99 179 | 56.91 183 | 48.42 177 | 47.32 196 | 50.10 180 | 64.18 155 | 33.85 184 | 45.46 208 | 36.95 175 | 55.20 202 | 66.49 185 | 51.20 112 | 59.28 187 | 59.81 176 | 57.01 192 | 61.99 160 |
|
baseline1 | | | 52.90 180 | 58.38 179 | 46.51 186 | 58.87 154 | 50.01 181 | 54.17 193 | 40.45 153 | 56.81 168 | 29.25 203 | 62.72 168 | 58.99 199 | 30.25 198 | 65.05 172 | 60.57 174 | 66.07 177 | 54.54 183 |
|
CostFormer | | | 52.59 181 | 55.14 188 | 49.61 170 | 52.72 182 | 50.40 177 | 66.28 145 | 33.78 185 | 52.85 176 | 43.43 160 | 66.30 153 | 51.37 204 | 41.78 161 | 54.92 201 | 51.18 197 | 59.68 186 | 58.98 173 |
|
SCA | | | 52.47 182 | 53.97 191 | 50.71 163 | 46.95 200 | 57.79 139 | 60.18 171 | 46.89 93 | 51.92 179 | 46.71 150 | 60.73 178 | 49.97 206 | 47.69 135 | 56.39 198 | 52.98 194 | 55.82 194 | 48.03 198 |
|
testgi | | | 51.94 183 | 61.37 171 | 40.94 195 | 58.38 159 | 47.03 188 | 65.88 147 | 30.49 201 | 70.87 100 | 22.64 215 | 57.53 195 | 87.59 86 | 18.30 215 | 63.01 179 | 54.32 191 | 49.93 205 | 49.27 192 |
|
dmvs_re | | | 51.01 184 | 54.88 189 | 46.49 187 | 58.06 160 | 44.35 195 | 60.08 173 | 37.67 172 | 42.11 212 | 28.68 204 | 45.12 215 | 66.70 184 | 31.90 197 | 66.62 169 | 59.18 180 | 62.59 183 | 60.11 167 |
|
tpm cat1 | | | 50.98 185 | 51.28 197 | 50.62 165 | 55.74 171 | 49.92 182 | 63.13 161 | 38.12 166 | 52.38 178 | 47.61 141 | 60.11 181 | 44.51 221 | 44.86 150 | 51.31 209 | 47.49 204 | 54.25 198 | 53.24 185 |
|
RPMNet | | | 50.92 186 | 50.32 199 | 51.62 156 | 50.25 189 | 50.23 178 | 59.16 177 | 46.70 94 | 46.90 203 | 42.39 163 | 48.97 209 | 37.23 225 | 41.78 161 | 57.30 196 | 56.18 186 | 69.44 169 | 55.43 179 |
|
pmmvs5 | | | 50.64 187 | 58.01 180 | 42.05 193 | 47.01 199 | 43.67 196 | 49.27 206 | 29.43 202 | 50.77 186 | 33.83 187 | 68.69 138 | 76.16 155 | 27.82 201 | 57.53 195 | 57.07 183 | 64.95 179 | 52.18 187 |
|
PatchT | | | 50.55 188 | 53.55 193 | 47.05 184 | 37.59 215 | 42.26 199 | 50.55 203 | 37.56 173 | 46.37 206 | 52.60 117 | 66.91 149 | 43.54 223 | 48.37 129 | 59.15 189 | 59.53 178 | 55.62 195 | 57.07 175 |
|
Anonymous20231206 | | | 50.28 189 | 57.94 181 | 41.35 194 | 55.45 174 | 43.65 197 | 58.06 181 | 34.12 183 | 62.02 145 | 24.25 212 | 59.33 185 | 79.80 137 | 24.49 207 | 59.55 185 | 54.28 192 | 51.74 201 | 46.94 201 |
|
dps | | | 49.71 190 | 51.97 195 | 47.07 183 | 52.37 185 | 47.00 189 | 53.02 198 | 40.52 152 | 44.91 209 | 41.23 169 | 64.55 159 | 44.27 222 | 40.12 164 | 57.71 194 | 51.97 196 | 55.14 196 | 53.41 184 |
|
MDTV_nov1_ep13 | | | 49.60 191 | 51.57 196 | 47.31 181 | 46.28 202 | 44.61 193 | 59.82 175 | 30.96 197 | 48.80 200 | 50.20 130 | 59.26 187 | 52.38 203 | 38.56 169 | 56.20 199 | 49.70 200 | 58.04 190 | 50.01 190 |
|
PatchmatchNet |  | | 48.67 192 | 50.10 200 | 46.99 185 | 48.29 193 | 41.00 200 | 55.54 190 | 38.94 158 | 51.38 182 | 45.15 157 | 63.22 165 | 48.45 212 | 42.83 156 | 53.80 206 | 48.50 203 | 51.19 204 | 44.37 203 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
new-patchmatchnet | | | 47.33 193 | 60.49 176 | 31.99 211 | 55.69 172 | 33.86 212 | 36.84 220 | 33.31 188 | 72.36 89 | 14.33 220 | 80.09 78 | 92.14 33 | 13.27 217 | 63.54 178 | 40.09 212 | 38.51 214 | 41.32 211 |
|
tpm | | | 46.67 194 | 49.20 205 | 43.72 190 | 49.60 191 | 36.60 209 | 53.93 194 | 26.84 205 | 52.70 177 | 58.05 98 | 69.04 136 | 47.96 213 | 30.06 199 | 48.33 212 | 42.76 207 | 43.88 208 | 47.01 200 |
|
pmmvs3 | | | 46.64 195 | 54.13 190 | 37.90 202 | 31.23 220 | 40.68 201 | 49.83 205 | 15.34 216 | 46.31 207 | 36.34 177 | 53.15 207 | 74.40 163 | 36.36 178 | 58.43 192 | 56.64 185 | 58.32 189 | 49.29 191 |
|
TAMVS | | | 46.64 195 | 53.62 192 | 38.49 200 | 49.56 192 | 36.87 206 | 53.16 197 | 25.76 207 | 56.33 170 | 22.55 216 | 60.72 179 | 61.80 193 | 27.12 202 | 59.50 186 | 58.33 181 | 52.79 200 | 41.82 210 |
|
test-LLR | | | 46.01 197 | 45.06 214 | 47.11 182 | 59.39 149 | 36.72 207 | 51.28 200 | 40.95 145 | 36.41 218 | 34.45 184 | 46.14 212 | 47.02 215 | 38.00 171 | 51.78 207 | 48.53 201 | 58.60 187 | 48.84 194 |
|
MIMVSNet | | | 45.83 198 | 53.46 194 | 36.94 203 | 45.38 208 | 39.50 203 | 52.20 199 | 30.68 198 | 57.09 165 | 24.53 211 | 55.22 201 | 71.54 168 | 21.74 211 | 55.81 200 | 51.08 198 | 47.11 206 | 43.96 204 |
|
pmnet_mix02 | | | 45.67 199 | 55.99 185 | 33.63 210 | 45.77 205 | 31.22 216 | 42.04 215 | 27.60 204 | 64.14 135 | 24.89 208 | 75.50 105 | 82.30 125 | 21.88 210 | 54.53 204 | 41.22 209 | 39.62 212 | 43.05 206 |
|
test0.0.03 1 | | | 45.40 200 | 49.55 203 | 40.57 197 | 59.39 149 | 44.36 194 | 53.37 196 | 40.95 145 | 47.14 202 | 19.23 217 | 45.49 214 | 60.24 196 | 19.24 213 | 54.82 202 | 51.98 195 | 51.21 203 | 42.82 207 |
|
PMMVS | | | 45.37 201 | 49.29 204 | 40.79 196 | 27.75 221 | 35.07 211 | 50.88 202 | 19.88 213 | 39.27 216 | 35.78 178 | 50.11 208 | 61.29 194 | 42.04 159 | 54.13 205 | 55.95 187 | 68.43 173 | 49.19 193 |
|
MVS-HIRNet | | | 44.56 202 | 45.52 212 | 43.44 191 | 40.98 211 | 31.03 217 | 39.52 219 | 36.96 176 | 42.80 211 | 44.37 158 | 53.80 204 | 60.04 197 | 41.85 160 | 47.97 214 | 41.08 210 | 56.99 193 | 41.95 209 |
|
test-mter | | | 44.18 203 | 47.60 207 | 40.18 198 | 33.20 217 | 39.03 204 | 55.28 191 | 13.91 218 | 39.07 217 | 36.63 176 | 48.09 211 | 49.52 207 | 41.12 163 | 54.55 203 | 50.91 199 | 60.97 185 | 52.03 188 |
|
EMVS | | | 43.85 204 | 49.91 201 | 36.77 205 | 45.46 207 | 32.70 213 | 44.09 212 | 25.33 208 | 57.88 159 | 26.62 206 | 58.99 189 | 61.14 195 | 42.77 157 | 70.26 155 | 38.52 216 | 36.38 216 | 29.87 217 |
|
E-PMN | | | 43.83 205 | 49.81 202 | 36.84 204 | 46.09 203 | 31.86 215 | 42.77 214 | 25.85 206 | 57.76 161 | 25.53 207 | 55.50 200 | 62.47 189 | 43.77 152 | 70.78 151 | 39.51 213 | 37.04 215 | 30.79 216 |
|
tpmrst | | | 43.31 206 | 46.14 210 | 40.02 199 | 47.05 198 | 36.48 210 | 48.01 209 | 32.17 195 | 49.50 193 | 37.26 174 | 63.66 164 | 47.04 214 | 31.98 196 | 42.00 218 | 40.55 211 | 43.64 209 | 43.75 205 |
|
TESTMET0.1,1 | | | 41.79 207 | 45.06 214 | 37.97 201 | 31.32 219 | 36.72 207 | 51.28 200 | 14.17 217 | 36.41 218 | 34.45 184 | 46.14 212 | 47.02 215 | 38.00 171 | 51.78 207 | 48.53 201 | 58.60 187 | 48.84 194 |
|
ADS-MVSNet | | | 40.61 208 | 46.31 208 | 33.96 208 | 40.70 212 | 30.42 218 | 40.42 217 | 33.44 186 | 58.01 158 | 30.87 202 | 63.05 166 | 54.48 201 | 22.67 209 | 44.35 217 | 39.23 215 | 35.64 217 | 34.64 214 |
|
CHOSEN 280x420 | | | 40.24 209 | 44.14 217 | 35.69 206 | 32.36 218 | 23.58 221 | 50.30 204 | 21.21 212 | 40.94 213 | 18.84 218 | 32.75 219 | 48.65 211 | 48.13 133 | 59.16 188 | 55.31 188 | 43.28 210 | 48.62 196 |
|
EPMVS | | | 40.11 210 | 44.96 216 | 34.44 207 | 41.55 210 | 32.65 214 | 41.74 216 | 32.39 193 | 49.89 192 | 24.83 209 | 64.44 160 | 46.38 219 | 26.57 205 | 44.75 216 | 39.47 214 | 39.59 213 | 37.16 213 |
|
FMVSNet5 | | | 39.83 211 | 45.08 213 | 33.71 209 | 39.24 213 | 39.56 202 | 48.77 207 | 23.55 210 | 39.45 215 | 24.55 210 | 33.73 218 | 44.57 220 | 20.97 212 | 58.27 193 | 54.23 193 | 45.16 207 | 45.77 202 |
|
N_pmnet | | | 39.50 212 | 51.01 198 | 26.09 213 | 44.48 209 | 25.59 220 | 40.20 218 | 21.49 211 | 64.20 133 | 7.98 224 | 73.86 118 | 76.67 154 | 13.66 216 | 50.17 210 | 36.69 218 | 28.71 219 | 29.86 218 |
|
MVE |  | 28.01 19 | 35.86 213 | 43.56 218 | 26.88 212 | 22.33 223 | 19.75 223 | 30.85 223 | 23.88 209 | 49.90 191 | 10.48 222 | 43.64 216 | 61.87 192 | 48.99 128 | 47.26 215 | 42.15 208 | 24.76 220 | 40.37 212 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
new_pmnet | | | 35.76 214 | 45.64 211 | 24.22 214 | 38.59 214 | 25.83 219 | 31.87 222 | 19.24 214 | 49.06 196 | 9.01 223 | 54.34 203 | 64.73 188 | 12.46 218 | 49.21 211 | 44.91 205 | 34.17 218 | 31.41 215 |
|
PMMVS2 | | | 34.11 215 | 48.55 206 | 17.26 215 | 25.45 222 | 20.72 222 | 35.08 221 | 16.26 215 | 58.71 152 | 4.16 226 | 59.22 188 | 78.40 146 | 3.65 220 | 57.24 197 | 38.31 217 | 18.94 222 | 27.28 219 |
|
GG-mvs-BLEND | | | 31.54 216 | 46.27 209 | 14.37 216 | 0.07 228 | 48.65 185 | 42.97 213 | 0.08 224 | 44.04 210 | 1.21 228 | 39.77 217 | 57.94 200 | 0.15 224 | 48.19 213 | 42.82 206 | 41.70 211 | 42.46 208 |
|
test_method | | | 13.28 217 | 15.83 219 | 10.30 217 | 1.05 225 | 2.18 226 | 15.40 224 | 2.23 220 | 22.43 220 | 13.84 221 | 22.00 221 | 33.14 226 | 9.78 219 | 17.80 220 | 9.93 220 | 19.50 221 | 3.31 221 |
|
test123 | | | 0.53 218 | 0.60 221 | 0.46 219 | 0.22 226 | 0.25 227 | 0.33 229 | 0.13 223 | 0.66 223 | 1.37 227 | 1.10 223 | 0.00 231 | 0.43 222 | 0.68 222 | 0.61 221 | 0.26 225 | 0.88 222 |
|
testmvs | | | 0.47 219 | 0.69 220 | 0.21 220 | 0.17 227 | 0.17 228 | 0.35 228 | 0.16 222 | 0.66 223 | 0.18 229 | 1.05 224 | 0.99 230 | 0.27 223 | 0.62 223 | 0.54 222 | 0.15 226 | 0.77 223 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 231 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 231 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 231 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
TPM-MVS | | | | | | 72.72 63 | 70.92 72 | 80.38 71 | | | 66.22 76 | 58.35 191 | 78.23 147 | 48.26 131 | | | 83.40 77 | 81.74 55 |
|
RE-MVS-def | | | | | | | | | | | 70.04 55 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 83.64 121 | | | | | |
|
SR-MVS | | | | | | 81.31 9 | | | 62.63 9 | | | | 91.11 45 | | | | | |
|
Anonymous202405211 | | | | 72.22 117 | | 66.19 100 | 61.09 126 | 62.23 165 | 45.87 101 | 71.25 95 | | 79.33 86 | 86.16 107 | 37.36 175 | 73.54 122 | 69.84 125 | 75.45 134 | 64.32 152 |
|
our_test_3 | | | | | | 52.72 182 | 53.66 167 | 69.11 130 | | | | | | | | | | |
|
ambc | | | | 79.96 61 | | 74.57 54 | 75.48 49 | 73.75 109 | | 80.32 53 | 72.34 38 | 78.46 88 | 92.41 29 | 59.05 76 | 80.24 85 | 73.95 96 | 75.41 135 | 78.85 71 |
|
MTAPA | | | | | | | | | | | 80.26 8 | | 90.53 60 | | | | | |
|
MTMP | | | | | | | | | | | 82.07 4 | | 91.00 48 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.05 227 | | | | | | | | | | |
|
tmp_tt | | | | | 7.47 218 | 8.89 224 | 3.32 225 | 4.35 226 | 1.14 221 | 15.58 222 | 15.76 219 | 8.50 222 | 5.90 229 | 2.00 221 | 20.02 219 | 21.51 219 | 12.70 223 | |
|
XVS | | | | | | 80.47 20 | 81.29 12 | 93.33 3 | | | 77.45 19 | | 90.19 62 | | | | 91.52 11 | |
|
X-MVStestdata | | | | | | 80.47 20 | 81.29 12 | 93.33 3 | | | 77.45 19 | | 90.19 62 | | | | 91.52 11 | |
|
mPP-MVS | | | | | | 82.97 2 | | | | | | | 92.12 34 | | | | | |
|
NP-MVS | | | | | | | | | | 71.39 94 | | | | | | | | |
|
Patchmtry | | | | | | | 37.73 205 | 45.00 210 | 44.97 108 | | 52.60 117 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 8.52 224 | 9.75 225 | 3.19 219 | 16.70 221 | 5.02 225 | 23.06 220 | 19.33 228 | 18.69 214 | 13.75 221 | | 11.34 224 | 25.07 220 |
|