TDRefinement | | | 86.29 1 | 90.77 1 | 81.06 1 | 75.10 54 | 83.76 2 | 93.79 1 | 61.08 19 | 89.57 2 | 86.19 1 | 90.06 11 | 93.01 26 | 76.72 2 | 94.71 1 | 92.72 1 | 93.47 1 | 91.56 2 |
|
COLMAP_ROB |  | 75.87 2 | 84.34 2 | 89.80 2 | 77.97 12 | 75.52 52 | 82.76 4 | 90.39 20 | 54.21 55 | 89.37 3 | 83.18 2 | 89.90 13 | 95.58 11 | 72.34 10 | 92.31 4 | 90.04 5 | 92.17 5 | 88.61 18 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CP-MVS | | | 84.06 3 | 86.79 10 | 80.86 2 | 81.81 9 | 79.66 29 | 92.67 6 | 64.48 1 | 83.13 33 | 82.32 3 | 80.89 73 | 92.97 27 | 72.51 9 | 91.74 6 | 90.02 6 | 91.40 17 | 89.14 8 |
|
ACMMPR | | | 83.94 4 | 87.20 4 | 80.14 4 | 81.04 14 | 81.92 8 | 92.57 8 | 63.14 5 | 84.35 21 | 79.45 12 | 83.37 46 | 92.04 37 | 72.82 8 | 90.66 12 | 88.96 12 | 91.80 6 | 89.13 9 |
|
MP-MVS |  | | 83.50 5 | 86.11 19 | 80.45 3 | 82.58 5 | 80.60 24 | 92.68 5 | 63.48 3 | 81.43 47 | 80.21 9 | 81.95 62 | 90.76 55 | 72.86 6 | 90.14 19 | 89.30 11 | 90.92 19 | 88.59 19 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMP |  | | 83.17 6 | 86.75 11 | 79.01 8 | 80.11 26 | 82.01 7 | 92.29 11 | 60.35 26 | 82.20 41 | 78.32 16 | 80.59 74 | 93.14 24 | 70.67 15 | 91.30 8 | 89.36 10 | 92.30 4 | 88.62 17 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PGM-MVS | | | 83.03 7 | 85.67 26 | 79.95 5 | 80.69 18 | 81.09 15 | 92.40 10 | 63.06 6 | 79.38 61 | 80.21 9 | 80.31 76 | 91.44 42 | 71.75 12 | 90.46 15 | 88.53 15 | 91.57 9 | 88.50 20 |
|
LGP-MVS_train | | | 82.91 8 | 86.50 13 | 78.72 9 | 78.72 35 | 81.03 16 | 89.78 24 | 61.16 18 | 80.15 57 | 80.44 6 | 84.83 37 | 94.19 16 | 70.52 18 | 90.70 11 | 87.19 23 | 91.71 8 | 87.37 30 |
|
ACMM | | 71.24 7 | 82.85 9 | 86.59 12 | 78.50 10 | 80.10 27 | 78.59 32 | 91.77 12 | 60.76 23 | 84.43 19 | 76.49 25 | 81.58 67 | 93.50 19 | 70.45 19 | 91.38 7 | 89.42 9 | 91.42 16 | 87.22 32 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
zzz-MVS | | | 82.61 10 | 85.04 33 | 79.79 6 | 82.59 4 | 73.90 59 | 92.42 9 | 62.39 12 | 84.54 18 | 80.21 9 | 79.86 80 | 90.74 56 | 70.63 16 | 90.01 21 | 89.71 8 | 90.48 21 | 86.49 37 |
|
HFP-MVS | | | 82.37 11 | 86.28 15 | 77.81 15 | 79.94 28 | 80.96 18 | 91.13 15 | 63.30 4 | 84.04 23 | 71.81 40 | 82.39 57 | 89.59 72 | 69.16 24 | 89.08 26 | 88.83 14 | 91.49 13 | 89.10 10 |
|
DeepC-MVS | | 73.80 3 | 82.34 12 | 86.87 8 | 77.06 19 | 78.62 36 | 84.34 1 | 90.30 22 | 63.54 2 | 83.10 34 | 71.30 45 | 86.91 24 | 90.54 62 | 67.12 30 | 87.81 35 | 87.05 24 | 91.46 15 | 88.37 21 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CPTT-MVS | | | 82.32 13 | 85.00 35 | 79.19 7 | 80.73 17 | 80.86 21 | 91.68 13 | 62.59 10 | 82.55 38 | 75.53 29 | 73.88 120 | 92.28 33 | 73.74 5 | 90.07 20 | 87.65 19 | 90.87 20 | 87.74 25 |
|
ACMP | | 70.35 9 | 82.17 14 | 86.45 14 | 77.18 18 | 79.33 29 | 81.00 17 | 89.27 28 | 58.63 32 | 81.35 49 | 75.46 30 | 82.97 52 | 95.08 13 | 68.90 25 | 90.49 14 | 87.43 22 | 91.48 14 | 86.84 34 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SteuartSystems-ACMMP | | | 82.16 15 | 85.55 28 | 78.21 11 | 80.48 20 | 79.28 30 | 92.65 7 | 61.03 20 | 80.55 55 | 77.00 23 | 81.80 65 | 90.71 57 | 68.73 26 | 90.25 17 | 87.94 18 | 89.36 28 | 88.30 22 |
Skip Steuart: Steuart Systems R&D Blog. |
SMA-MVS |  | | 82.15 16 | 85.93 21 | 77.74 16 | 80.13 25 | 80.25 26 | 91.01 16 | 60.61 24 | 85.54 12 | 78.61 15 | 83.21 49 | 86.96 100 | 65.95 34 | 88.10 32 | 87.59 20 | 90.11 22 | 89.83 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SD-MVS | | | 82.13 17 | 86.80 9 | 76.67 20 | 80.36 23 | 80.66 22 | 89.48 26 | 56.93 35 | 82.50 39 | 67.55 69 | 87.05 22 | 91.40 44 | 72.84 7 | 88.66 28 | 88.32 16 | 92.85 2 | 89.04 11 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
LTVRE_ROB | | 75.99 1 | 82.04 18 | 87.16 5 | 76.07 23 | 63.57 126 | 70.27 77 | 86.48 42 | 62.99 7 | 89.00 6 | 80.32 7 | 86.25 27 | 91.04 49 | 74.66 4 | 92.58 3 | 90.29 4 | 88.42 35 | 90.72 3 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DVP-MVS++ | | | 82.03 19 | 88.03 3 | 75.05 28 | 82.08 7 | 78.96 31 | 88.98 32 | 56.44 40 | 89.29 4 | 72.39 38 | 93.25 1 | 93.86 18 | 63.42 49 | 85.46 46 | 81.36 57 | 86.96 49 | 94.00 1 |
|
PMVS |  | 70.37 8 | 81.82 20 | 87.08 6 | 75.68 25 | 77.06 43 | 77.23 40 | 87.77 39 | 56.25 43 | 83.33 32 | 67.18 74 | 89.48 15 | 87.94 84 | 77.70 1 | 93.02 2 | 92.57 2 | 88.13 37 | 86.00 40 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMMP_NAP | | | 81.79 21 | 85.72 24 | 77.21 17 | 79.15 33 | 79.68 28 | 91.62 14 | 59.66 28 | 83.55 29 | 77.74 19 | 83.72 44 | 87.34 93 | 65.36 35 | 88.61 29 | 87.56 21 | 89.73 27 | 89.58 6 |
|
X-MVS | | | 81.61 22 | 84.73 37 | 77.97 12 | 80.31 24 | 81.29 12 | 93.53 2 | 62.50 11 | 81.41 48 | 77.45 20 | 72.04 130 | 90.19 65 | 62.50 57 | 90.57 13 | 88.87 13 | 91.54 10 | 88.73 15 |
|
OPM-MVS | | | 81.44 23 | 85.68 25 | 76.49 21 | 79.27 30 | 78.21 35 | 89.84 23 | 58.67 31 | 85.25 13 | 76.26 26 | 85.28 34 | 92.88 28 | 66.03 33 | 87.20 38 | 85.40 28 | 88.86 32 | 85.58 44 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
TSAR-MVS + MP. | | | 81.23 24 | 86.13 17 | 75.52 26 | 80.74 16 | 83.22 3 | 90.55 17 | 55.12 50 | 80.87 52 | 67.62 68 | 88.01 17 | 92.38 32 | 70.61 17 | 86.64 40 | 83.10 43 | 88.51 33 | 88.67 16 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + ACMM | | | 81.20 25 | 86.92 7 | 74.52 30 | 77.60 39 | 82.29 5 | 84.41 49 | 62.95 8 | 82.99 35 | 64.03 83 | 87.71 18 | 89.17 74 | 71.98 11 | 88.19 31 | 88.10 17 | 86.18 59 | 89.95 4 |
|
APDe-MVS | | | 81.08 26 | 86.12 18 | 75.20 27 | 79.25 31 | 80.91 19 | 90.38 21 | 57.05 34 | 85.83 11 | 66.07 79 | 87.34 21 | 91.27 45 | 69.45 20 | 85.99 44 | 82.55 45 | 88.98 31 | 88.95 13 |
|
DPE-MVS |  | | 81.01 27 | 85.18 30 | 76.15 22 | 78.58 37 | 80.64 23 | 89.77 25 | 57.92 33 | 81.66 46 | 73.45 33 | 86.84 25 | 89.80 70 | 69.33 22 | 85.40 47 | 82.91 44 | 87.87 39 | 89.01 12 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APD-MVS |  | | 80.60 28 | 84.63 38 | 75.91 24 | 81.22 12 | 81.48 10 | 90.49 18 | 58.81 30 | 77.54 67 | 67.49 70 | 85.90 29 | 89.82 69 | 69.43 21 | 86.08 43 | 83.80 38 | 88.01 38 | 87.77 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HPM-MVS++ |  | | 80.44 29 | 82.57 52 | 77.96 14 | 81.99 8 | 72.76 64 | 90.48 19 | 61.31 15 | 80.85 53 | 77.90 18 | 81.93 63 | 87.01 97 | 68.20 28 | 84.15 57 | 85.27 30 | 87.85 40 | 86.00 40 |
|
DVP-MVS |  | | 80.31 30 | 85.60 27 | 74.15 34 | 76.23 47 | 78.39 33 | 86.62 41 | 55.79 46 | 86.47 10 | 71.32 44 | 90.96 8 | 89.02 76 | 69.28 23 | 84.62 56 | 81.64 54 | 85.66 64 | 88.09 23 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
ACMH+ | | 67.97 10 | 80.15 31 | 86.16 16 | 73.14 41 | 73.82 61 | 76.41 43 | 83.59 54 | 54.82 53 | 87.35 7 | 70.86 49 | 86.98 23 | 96.27 4 | 66.50 31 | 89.17 25 | 83.39 40 | 89.26 29 | 83.56 50 |
|
OMC-MVS | | | 79.95 32 | 85.28 29 | 73.74 37 | 72.95 64 | 80.10 27 | 87.87 38 | 48.13 87 | 84.62 17 | 79.42 13 | 80.27 77 | 92.49 30 | 64.14 44 | 87.25 37 | 85.11 31 | 89.92 25 | 87.10 33 |
|
SED-MVS | | | 79.70 33 | 85.16 31 | 73.34 39 | 75.83 51 | 78.11 36 | 88.77 34 | 56.45 39 | 84.85 15 | 69.45 61 | 90.70 10 | 88.38 79 | 63.16 52 | 85.12 52 | 81.28 58 | 86.40 56 | 87.63 26 |
|
MSP-MVS | | | 79.65 34 | 84.28 42 | 74.25 32 | 78.92 34 | 81.86 9 | 89.07 29 | 60.49 25 | 83.85 27 | 70.05 56 | 85.12 35 | 90.92 53 | 62.99 54 | 81.15 79 | 81.64 54 | 83.99 71 | 85.42 46 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DeepPCF-MVS | | 71.57 5 | 79.49 35 | 84.05 43 | 74.17 33 | 74.14 58 | 80.88 20 | 89.33 27 | 56.24 44 | 82.41 40 | 71.58 42 | 82.27 58 | 86.47 103 | 66.47 32 | 84.80 54 | 84.16 36 | 87.26 45 | 87.34 31 |
|
LS3D | | | 79.33 36 | 84.03 44 | 73.84 35 | 75.37 53 | 78.09 37 | 83.30 55 | 52.94 62 | 84.42 20 | 76.01 27 | 84.16 40 | 87.44 92 | 65.34 36 | 86.30 41 | 82.08 52 | 90.09 23 | 85.70 42 |
|
3Dnovator+ | | 72.94 4 | 78.78 37 | 83.05 49 | 73.80 36 | 70.70 77 | 81.34 11 | 88.33 35 | 56.01 45 | 81.33 50 | 72.87 37 | 78.06 93 | 81.15 132 | 63.83 46 | 87.39 36 | 85.82 26 | 91.06 18 | 86.28 39 |
|
UA-Net | | | 78.65 38 | 83.96 45 | 72.46 43 | 84.87 1 | 76.15 44 | 89.06 30 | 55.70 47 | 77.25 68 | 53.14 117 | 79.73 82 | 82.09 130 | 59.69 74 | 92.21 5 | 90.93 3 | 92.32 3 | 89.36 7 |
|
xxxxxxxxxxxxxcwj | | | 78.58 39 | 83.87 46 | 72.41 44 | 76.04 49 | 75.72 47 | 83.86 51 | 51.81 66 | 84.00 25 | 70.65 52 | 81.27 69 | 95.06 14 | 64.64 41 | 83.28 66 | 80.28 60 | 87.44 43 | 87.49 28 |
|
DeepC-MVS_fast | | 71.40 6 | 78.48 40 | 82.92 50 | 73.31 40 | 76.44 46 | 82.23 6 | 87.59 40 | 56.56 38 | 77.79 65 | 68.91 65 | 77.00 97 | 87.32 94 | 61.90 60 | 85.40 47 | 84.37 33 | 88.46 34 | 86.33 38 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SF-MVS | | | 78.36 41 | 83.47 48 | 72.41 44 | 76.04 49 | 75.72 47 | 83.86 51 | 51.81 66 | 84.00 25 | 70.65 52 | 81.27 69 | 92.22 34 | 64.64 41 | 83.28 66 | 80.28 60 | 87.44 43 | 87.49 28 |
|
WR-MVS | | | 78.32 42 | 86.09 20 | 69.25 62 | 76.22 48 | 72.33 71 | 85.71 45 | 59.02 29 | 86.66 8 | 51.41 123 | 92.91 3 | 96.76 1 | 53.09 109 | 90.21 18 | 85.30 29 | 90.05 24 | 78.46 77 |
|
ACMH | | 66.19 11 | 78.12 43 | 84.55 39 | 70.63 53 | 69.62 84 | 72.40 70 | 80.77 71 | 46.43 101 | 89.24 5 | 77.99 17 | 87.42 20 | 95.83 9 | 62.95 55 | 86.27 42 | 78.24 72 | 86.00 62 | 82.46 52 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
train_agg | | | 77.83 44 | 80.47 62 | 74.77 29 | 80.92 15 | 69.60 78 | 88.87 33 | 56.32 42 | 74.03 84 | 71.03 47 | 83.67 45 | 87.68 87 | 64.75 40 | 83.70 59 | 81.85 53 | 86.71 52 | 82.73 51 |
|
NCCC | | | 77.82 45 | 80.72 61 | 74.43 31 | 79.24 32 | 75.72 47 | 88.06 36 | 56.36 41 | 79.61 59 | 73.22 35 | 67.75 143 | 87.05 96 | 63.09 53 | 85.62 45 | 84.00 37 | 86.62 53 | 85.30 47 |
|
CNVR-MVS | | | 77.79 46 | 81.57 56 | 73.38 38 | 78.37 38 | 75.91 45 | 87.97 37 | 55.11 51 | 79.41 60 | 70.98 48 | 74.70 114 | 86.43 104 | 61.77 61 | 85.10 53 | 83.73 39 | 86.10 61 | 85.68 43 |
|
WR-MVS_H | | | 77.56 47 | 85.88 22 | 67.86 67 | 80.54 19 | 74.32 56 | 83.23 56 | 61.78 13 | 83.47 30 | 47.46 143 | 91.81 7 | 95.84 8 | 50.50 120 | 90.44 16 | 84.37 33 | 83.63 76 | 80.89 62 |
|
RPSCF | | | 77.56 47 | 84.51 40 | 69.46 61 | 65.17 115 | 74.36 55 | 79.74 76 | 47.45 90 | 84.01 24 | 72.89 36 | 77.89 94 | 90.67 58 | 65.14 38 | 88.25 30 | 89.74 7 | 86.38 57 | 86.64 36 |
|
PS-CasMVS | | | 77.46 49 | 85.80 23 | 67.73 69 | 81.24 11 | 72.88 63 | 80.63 72 | 61.28 16 | 84.14 22 | 50.53 129 | 92.13 5 | 96.76 1 | 50.12 123 | 91.02 9 | 84.46 32 | 82.60 88 | 79.19 70 |
|
DTE-MVSNet | | | 77.28 50 | 84.87 36 | 68.42 64 | 82.94 3 | 72.70 66 | 81.60 66 | 61.78 13 | 85.03 14 | 51.40 124 | 92.11 6 | 96.00 6 | 49.42 127 | 89.73 23 | 82.52 47 | 83.39 80 | 75.98 89 |
|
SixPastTwentyTwo | | | 77.24 51 | 83.65 47 | 69.78 57 | 65.14 116 | 64.85 100 | 77.44 87 | 47.74 89 | 82.76 37 | 68.52 66 | 87.65 19 | 93.31 21 | 71.68 13 | 89.49 24 | 82.41 48 | 88.14 36 | 85.05 48 |
|
CDPH-MVS | | | 77.22 52 | 81.05 60 | 72.75 42 | 77.29 41 | 77.46 39 | 86.36 43 | 54.02 57 | 73.00 90 | 69.75 59 | 77.78 95 | 88.90 77 | 61.31 65 | 84.09 58 | 82.54 46 | 87.79 41 | 83.57 49 |
|
PEN-MVS | | | 77.06 53 | 85.05 32 | 67.74 68 | 82.29 6 | 72.59 67 | 80.86 70 | 61.03 20 | 84.66 16 | 50.08 132 | 92.19 4 | 96.59 3 | 49.12 128 | 89.83 22 | 82.35 49 | 83.06 81 | 77.14 83 |
|
CP-MVSNet | | | 77.01 54 | 85.04 33 | 67.65 70 | 81.16 13 | 72.72 65 | 80.54 73 | 61.18 17 | 82.09 42 | 50.41 130 | 90.81 9 | 95.89 7 | 50.03 124 | 90.86 10 | 84.30 35 | 82.56 90 | 78.65 76 |
|
CSCG | | | 76.95 55 | 82.08 54 | 70.97 49 | 73.32 63 | 78.35 34 | 81.08 69 | 47.19 92 | 83.47 30 | 69.82 58 | 80.44 75 | 87.19 95 | 64.59 43 | 81.01 82 | 77.26 80 | 89.83 26 | 86.84 34 |
|
CNLPA | | | 76.67 56 | 81.72 55 | 70.77 52 | 70.75 75 | 76.68 42 | 86.14 44 | 46.11 103 | 81.82 44 | 74.68 31 | 76.37 99 | 86.23 106 | 62.92 56 | 85.28 50 | 83.29 41 | 84.02 70 | 82.40 53 |
|
MSLP-MVS++ | | | 76.66 57 | 82.32 53 | 70.06 55 | 70.51 78 | 80.27 25 | 79.77 75 | 55.58 48 | 77.79 65 | 63.09 84 | 67.25 147 | 89.50 73 | 71.01 14 | 88.10 32 | 85.74 27 | 80.39 102 | 87.56 27 |
|
TSAR-MVS + COLMAP | | | 75.85 58 | 81.06 58 | 69.77 58 | 71.15 71 | 76.90 41 | 82.93 58 | 52.43 64 | 79.25 62 | 70.13 54 | 82.78 53 | 87.00 98 | 60.02 70 | 80.30 86 | 79.61 65 | 81.95 94 | 81.61 58 |
|
HQP-MVS | | | 75.81 59 | 78.91 68 | 72.18 46 | 77.41 40 | 75.38 51 | 84.75 46 | 53.35 59 | 76.12 72 | 73.32 34 | 69.48 135 | 88.07 82 | 57.76 82 | 79.42 93 | 78.44 69 | 86.48 54 | 85.50 45 |
|
PLC |  | 64.88 15 | 75.76 60 | 80.22 63 | 70.57 54 | 70.46 79 | 77.75 38 | 82.01 64 | 48.84 82 | 80.74 54 | 70.85 50 | 71.32 132 | 84.82 116 | 63.69 47 | 84.73 55 | 82.35 49 | 87.54 42 | 79.80 67 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test_part1 | | | 75.44 61 | 84.35 41 | 65.04 90 | 71.41 70 | 70.75 75 | 78.24 81 | 47.16 93 | 90.52 1 | 56.65 100 | 93.19 2 | 95.21 12 | 49.99 125 | 82.20 74 | 77.98 74 | 86.80 51 | 80.63 63 |
|
TAPA-MVS | | 66.11 12 | 75.37 62 | 79.24 66 | 70.86 50 | 67.63 93 | 74.09 57 | 83.17 57 | 44.75 117 | 81.82 44 | 80.83 5 | 65.61 158 | 88.04 83 | 61.58 62 | 83.21 68 | 80.12 62 | 87.17 47 | 81.82 56 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PHI-MVS | | | 75.17 63 | 78.37 69 | 71.43 47 | 71.13 72 | 72.46 69 | 82.28 63 | 50.55 73 | 73.39 87 | 79.05 14 | 73.65 122 | 87.50 91 | 61.98 59 | 81.10 80 | 78.48 68 | 83.60 77 | 81.99 54 |
|
anonymousdsp | | | 74.76 64 | 82.59 51 | 65.63 85 | 45.61 206 | 61.13 126 | 89.06 30 | 32.58 193 | 74.11 83 | 59.55 91 | 84.06 41 | 94.12 17 | 75.24 3 | 88.94 27 | 86.95 25 | 91.74 7 | 88.81 14 |
|
AdaColmap |  | | 74.73 65 | 77.57 74 | 71.40 48 | 76.90 44 | 75.76 46 | 84.54 48 | 53.08 61 | 76.20 71 | 66.64 78 | 66.06 156 | 78.16 150 | 61.32 64 | 85.37 49 | 82.20 51 | 85.95 63 | 79.27 69 |
|
v7n | | | 74.47 66 | 81.06 58 | 66.77 76 | 66.98 99 | 67.10 81 | 76.76 92 | 45.88 105 | 81.98 43 | 67.43 71 | 88.38 16 | 95.67 10 | 61.38 63 | 80.76 84 | 73.49 102 | 82.21 92 | 80.06 65 |
|
PCF-MVS | | 65.25 14 | 73.99 67 | 76.74 79 | 70.79 51 | 71.61 69 | 75.33 52 | 83.76 53 | 50.40 74 | 74.88 75 | 74.50 32 | 67.60 144 | 85.36 113 | 58.30 80 | 78.61 98 | 74.25 97 | 86.15 60 | 81.13 61 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MCST-MVS | | | 73.84 68 | 77.44 75 | 69.63 60 | 73.75 62 | 74.73 54 | 81.38 68 | 48.58 83 | 74.77 76 | 69.16 63 | 71.97 131 | 86.20 107 | 59.50 75 | 78.51 99 | 74.06 99 | 85.42 65 | 81.85 55 |
|
MVS_0304 | | | 73.74 69 | 77.16 77 | 69.74 59 | 74.24 57 | 73.47 60 | 84.70 47 | 49.62 77 | 62.26 145 | 67.27 72 | 75.87 102 | 87.57 89 | 57.49 85 | 81.20 78 | 79.50 66 | 85.10 66 | 80.27 64 |
|
TSAR-MVS + GP. | | | 73.42 70 | 76.31 80 | 70.05 56 | 77.15 42 | 71.13 74 | 81.59 67 | 54.11 56 | 69.84 116 | 58.65 94 | 66.20 155 | 78.77 147 | 65.29 37 | 83.65 60 | 83.14 42 | 83.54 78 | 81.47 59 |
|
Gipuma |  | | 73.40 71 | 79.27 65 | 66.55 80 | 63.64 125 | 59.35 135 | 70.28 126 | 45.92 104 | 83.79 28 | 71.78 41 | 84.04 42 | 93.07 25 | 68.69 27 | 87.90 34 | 76.76 83 | 78.98 113 | 69.96 122 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVS_111021_HR | | | 72.37 72 | 76.12 83 | 68.00 66 | 68.55 89 | 64.30 108 | 82.93 58 | 48.98 81 | 74.25 81 | 65.39 80 | 73.59 123 | 84.11 121 | 59.48 76 | 82.61 71 | 78.38 70 | 82.66 87 | 75.59 91 |
|
TinyColmap | | | 71.85 73 | 76.11 84 | 66.87 75 | 66.07 106 | 65.34 95 | 74.35 104 | 49.30 80 | 79.93 58 | 75.93 28 | 75.66 104 | 87.74 86 | 54.72 100 | 80.66 85 | 70.42 123 | 80.85 100 | 73.02 106 |
|
UniMVSNet_ETH3D | | | 71.84 74 | 81.36 57 | 60.74 111 | 76.46 45 | 66.01 89 | 66.49 145 | 60.24 27 | 86.58 9 | 41.87 166 | 90.04 12 | 96.02 5 | 43.72 154 | 85.14 51 | 77.30 79 | 75.64 134 | 68.40 135 |
|
TranMVSNet+NR-MVSNet | | | 71.66 75 | 79.23 67 | 62.83 104 | 72.54 66 | 65.64 91 | 74.77 102 | 55.27 49 | 75.91 73 | 45.50 155 | 89.55 14 | 94.25 15 | 45.96 145 | 82.74 70 | 77.03 82 | 82.96 83 | 69.48 129 |
|
MVS_111021_LR | | | 71.60 76 | 75.21 87 | 67.38 71 | 67.42 94 | 62.44 115 | 81.73 65 | 46.24 102 | 70.89 101 | 66.80 77 | 73.19 125 | 84.98 114 | 60.09 69 | 81.94 75 | 77.77 77 | 82.00 93 | 75.29 92 |
|
EG-PatchMatch MVS | | | 71.50 77 | 76.82 78 | 65.30 87 | 70.74 76 | 66.50 85 | 74.23 106 | 43.25 125 | 72.02 93 | 59.11 92 | 79.85 81 | 86.88 101 | 63.95 45 | 80.29 87 | 75.25 93 | 80.51 101 | 76.98 85 |
|
DPM-MVS | | | 71.35 78 | 73.50 104 | 68.84 63 | 74.93 55 | 73.35 61 | 84.07 50 | 50.56 72 | 71.91 94 | 67.06 75 | 61.21 178 | 77.02 155 | 52.64 112 | 74.15 118 | 75.14 94 | 83.79 74 | 81.74 57 |
|
UniMVSNet (Re) | | | 71.29 79 | 78.14 70 | 63.30 99 | 70.29 80 | 66.57 84 | 75.98 94 | 54.74 54 | 70.20 109 | 46.20 153 | 85.08 36 | 93.21 22 | 48.19 133 | 82.50 72 | 78.33 71 | 84.40 68 | 71.08 117 |
|
CLD-MVS | | | 71.24 80 | 78.12 71 | 63.20 101 | 74.03 59 | 71.60 72 | 82.82 60 | 32.91 190 | 74.23 82 | 69.32 62 | 79.65 83 | 91.54 40 | 47.02 141 | 81.22 77 | 79.01 67 | 73.09 151 | 69.63 125 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 71.07 81 | 75.09 89 | 66.39 81 | 72.57 65 | 71.53 73 | 82.38 62 | 47.10 94 | 59.81 151 | 59.81 90 | 74.97 109 | 84.37 120 | 54.25 103 | 79.89 90 | 77.64 78 | 82.25 91 | 77.40 81 |
|
v1192 | | | 71.06 82 | 74.87 91 | 66.61 78 | 66.38 101 | 65.80 90 | 78.27 80 | 45.28 110 | 70.19 110 | 70.79 51 | 83.37 46 | 91.79 38 | 58.76 79 | 70.86 151 | 69.02 130 | 80.16 104 | 73.08 104 |
|
DU-MVS | | | 71.03 83 | 77.92 72 | 62.98 103 | 70.81 73 | 65.48 93 | 73.93 109 | 56.76 36 | 69.95 114 | 46.77 149 | 85.70 32 | 93.49 20 | 46.91 142 | 83.47 61 | 77.82 76 | 82.72 86 | 69.54 126 |
|
v1240 | | | 70.94 84 | 74.52 95 | 66.76 77 | 66.54 100 | 64.40 104 | 77.76 84 | 45.29 109 | 70.05 112 | 71.45 43 | 83.36 48 | 90.96 51 | 60.37 67 | 70.50 154 | 68.68 131 | 79.14 111 | 73.68 100 |
|
v1921920 | | | 70.82 85 | 74.46 97 | 66.58 79 | 66.33 102 | 64.35 107 | 77.72 85 | 45.07 112 | 70.39 106 | 71.18 46 | 83.15 50 | 90.62 60 | 59.97 71 | 70.90 149 | 68.43 138 | 79.19 110 | 73.39 101 |
|
UniMVSNet_NR-MVSNet | | | 70.82 85 | 77.44 75 | 63.11 102 | 71.75 68 | 66.02 88 | 73.93 109 | 55.00 52 | 70.90 100 | 46.77 149 | 86.68 26 | 91.54 40 | 46.91 142 | 81.07 81 | 76.32 87 | 84.28 69 | 69.54 126 |
|
PVSNet_Blended_VisFu | | | 70.70 87 | 73.62 103 | 67.28 73 | 63.53 127 | 72.96 62 | 77.97 82 | 52.10 65 | 63.65 139 | 62.66 85 | 71.14 133 | 73.46 165 | 63.55 48 | 79.35 97 | 75.34 92 | 83.90 72 | 79.43 68 |
|
v144192 | | | 70.68 88 | 74.40 99 | 66.34 82 | 65.94 108 | 64.38 105 | 77.63 86 | 45.18 111 | 69.97 113 | 70.11 55 | 82.70 55 | 90.77 54 | 59.84 73 | 71.43 147 | 68.46 134 | 79.31 109 | 73.08 104 |
|
DROMVSNet | | | 70.50 89 | 73.32 107 | 67.20 74 | 72.07 67 | 66.21 87 | 70.86 122 | 50.10 75 | 57.66 163 | 60.49 89 | 74.97 109 | 79.42 142 | 63.32 50 | 79.65 91 | 75.46 91 | 86.35 58 | 79.87 66 |
|
FPMVS | | | 70.46 90 | 74.89 90 | 65.28 88 | 69.09 87 | 61.42 121 | 77.07 90 | 46.92 97 | 76.73 70 | 53.53 113 | 67.33 145 | 75.07 161 | 67.23 29 | 83.41 63 | 81.54 56 | 77.86 120 | 78.73 74 |
|
v1144 | | | 70.45 91 | 74.50 96 | 65.73 84 | 65.74 110 | 64.88 99 | 77.33 88 | 44.16 119 | 70.59 105 | 69.63 60 | 83.15 50 | 91.42 43 | 57.79 81 | 71.29 148 | 68.53 133 | 79.72 107 | 71.63 116 |
|
v10 | | | 70.25 92 | 74.59 94 | 65.19 89 | 65.32 113 | 66.46 86 | 76.60 93 | 44.84 115 | 67.38 125 | 67.21 73 | 82.75 54 | 90.56 61 | 57.70 83 | 71.69 144 | 68.63 132 | 79.44 108 | 74.67 95 |
|
CS-MVS-test | | | 70.20 93 | 72.06 122 | 68.03 65 | 69.81 83 | 61.69 120 | 70.86 122 | 50.10 75 | 51.07 187 | 66.95 76 | 74.48 116 | 83.26 126 | 63.32 50 | 79.65 91 | 77.22 81 | 87.15 48 | 77.04 84 |
|
Effi-MVS+-dtu | | | 70.10 94 | 73.76 102 | 65.82 83 | 70.23 81 | 74.92 53 | 79.47 77 | 44.49 118 | 56.98 168 | 54.34 107 | 64.26 162 | 84.78 117 | 59.97 71 | 80.96 83 | 80.38 59 | 86.44 55 | 74.05 98 |
|
MAR-MVS | | | 70.00 95 | 72.28 117 | 67.34 72 | 69.89 82 | 72.57 68 | 80.09 74 | 49.49 79 | 60.28 150 | 69.03 64 | 59.29 188 | 80.79 135 | 54.68 101 | 78.39 101 | 76.00 88 | 80.87 99 | 78.67 75 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Vis-MVSNet |  | | 69.95 96 | 77.69 73 | 60.91 110 | 60.67 141 | 66.71 82 | 77.94 83 | 48.58 83 | 69.10 119 | 45.78 154 | 80.21 78 | 83.58 124 | 53.41 108 | 82.92 69 | 80.11 63 | 79.08 112 | 81.21 60 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EPP-MVSNet | | | 69.51 97 | 76.17 81 | 61.74 108 | 68.38 91 | 66.60 83 | 71.77 115 | 46.98 95 | 73.60 86 | 41.79 167 | 82.06 61 | 69.65 176 | 52.51 113 | 83.41 63 | 79.94 64 | 89.02 30 | 77.94 79 |
|
CS-MVS | | | 69.43 98 | 73.20 109 | 65.03 91 | 68.08 92 | 61.25 125 | 77.29 89 | 40.64 152 | 59.27 153 | 54.96 106 | 74.07 118 | 82.56 128 | 62.02 58 | 83.33 65 | 75.87 89 | 87.18 46 | 76.03 87 |
|
3Dnovator | | 65.69 13 | 69.43 98 | 75.74 86 | 62.06 107 | 60.78 140 | 70.50 76 | 75.85 96 | 39.57 160 | 74.44 78 | 57.41 97 | 75.91 100 | 77.73 152 | 55.34 96 | 76.86 105 | 75.61 90 | 83.44 79 | 79.14 71 |
|
Effi-MVS+ | | | 69.04 100 | 73.01 110 | 64.40 94 | 67.20 97 | 64.83 101 | 74.87 101 | 43.97 121 | 63.33 141 | 60.90 87 | 73.06 126 | 85.79 110 | 55.61 93 | 73.58 124 | 76.41 86 | 83.84 73 | 74.09 97 |
|
v2v482 | | | 69.01 101 | 73.39 106 | 63.89 96 | 63.86 120 | 62.99 112 | 75.26 99 | 42.05 134 | 70.22 108 | 68.46 67 | 82.64 56 | 91.61 39 | 55.38 94 | 70.89 150 | 66.93 152 | 78.30 116 | 68.48 134 |
|
MSDG | | | 68.98 102 | 73.31 108 | 63.92 95 | 67.08 98 | 68.27 79 | 75.41 98 | 40.77 150 | 67.61 123 | 64.89 81 | 75.75 103 | 78.96 144 | 53.70 105 | 76.72 107 | 73.95 100 | 81.71 96 | 71.93 114 |
|
v8 | | | 68.77 103 | 73.50 104 | 63.26 100 | 63.74 123 | 64.47 103 | 74.22 107 | 42.07 133 | 67.30 126 | 64.89 81 | 82.08 60 | 90.23 64 | 56.50 91 | 71.85 143 | 66.57 153 | 78.14 117 | 72.02 112 |
|
NR-MVSNet | | | 68.66 104 | 76.15 82 | 59.93 115 | 65.49 111 | 65.48 93 | 74.42 103 | 56.76 36 | 69.95 114 | 45.38 156 | 85.70 32 | 91.13 46 | 34.68 186 | 74.52 117 | 76.75 84 | 82.83 85 | 69.49 128 |
|
USDC | | | 68.53 105 | 71.82 124 | 64.68 92 | 63.53 127 | 61.87 119 | 70.12 127 | 46.98 95 | 77.89 64 | 76.58 24 | 68.55 140 | 86.88 101 | 50.50 120 | 73.73 121 | 65.62 155 | 80.39 102 | 68.21 137 |
|
IS_MVSNet | | | 68.20 106 | 74.41 98 | 60.96 109 | 68.55 89 | 64.36 106 | 71.47 117 | 48.33 85 | 70.11 111 | 43.30 162 | 80.90 72 | 74.54 163 | 47.19 140 | 81.25 76 | 77.97 75 | 86.94 50 | 71.76 115 |
|
Baseline_NR-MVSNet | | | 68.15 107 | 75.12 88 | 60.02 114 | 70.81 73 | 55.67 157 | 75.88 95 | 53.40 58 | 71.25 97 | 43.96 160 | 85.88 30 | 92.68 29 | 45.76 146 | 83.47 61 | 68.34 139 | 70.34 168 | 68.58 133 |
|
GeoE | | | 68.11 108 | 72.10 121 | 63.47 98 | 67.32 95 | 62.42 116 | 78.32 79 | 43.22 126 | 64.06 138 | 55.72 104 | 73.97 119 | 84.58 118 | 55.35 95 | 76.09 111 | 70.41 124 | 80.89 98 | 73.14 103 |
|
Fast-Effi-MVS+ | | | 67.71 109 | 72.54 114 | 62.07 106 | 63.83 121 | 63.68 109 | 75.74 97 | 39.94 157 | 60.89 149 | 54.29 108 | 73.00 127 | 86.19 108 | 56.85 88 | 78.46 100 | 73.23 105 | 81.74 95 | 72.36 110 |
|
thisisatest0515 | | | 66.95 110 | 72.29 116 | 60.72 112 | 56.37 164 | 56.05 155 | 71.08 118 | 38.81 164 | 67.59 124 | 53.26 116 | 78.21 91 | 79.79 141 | 60.11 68 | 75.69 113 | 73.02 107 | 84.69 67 | 75.66 90 |
|
EPNet | | | 66.87 111 | 68.89 137 | 64.53 93 | 73.97 60 | 61.13 126 | 78.46 78 | 61.03 20 | 56.78 170 | 53.41 114 | 66.91 150 | 70.91 171 | 43.49 155 | 76.08 112 | 76.68 85 | 76.81 124 | 73.73 99 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
canonicalmvs | | | 66.37 112 | 74.37 100 | 57.04 132 | 65.89 109 | 65.06 96 | 62.58 164 | 42.55 128 | 76.82 69 | 46.87 148 | 67.33 145 | 86.38 105 | 45.49 148 | 76.77 106 | 71.85 113 | 78.87 114 | 76.35 86 |
|
QAPM | | | 66.36 113 | 72.76 113 | 58.90 120 | 59.57 148 | 65.01 97 | 64.05 158 | 41.17 145 | 73.09 89 | 56.82 99 | 69.42 136 | 77.78 151 | 55.07 98 | 73.00 129 | 72.07 111 | 76.71 125 | 78.96 72 |
|
casdiffmvs | | | 66.19 114 | 72.34 115 | 59.02 119 | 62.75 131 | 60.61 132 | 69.06 132 | 41.38 142 | 69.49 117 | 54.11 109 | 84.00 43 | 89.74 71 | 49.12 128 | 70.74 153 | 62.70 170 | 77.70 122 | 69.14 131 |
|
V42 | | | 65.79 115 | 72.11 120 | 58.42 124 | 51.89 186 | 58.69 137 | 73.80 111 | 34.50 182 | 65.40 133 | 57.10 98 | 79.54 85 | 89.09 75 | 57.51 84 | 71.98 141 | 67.83 147 | 75.70 132 | 72.26 111 |
|
IterMVS-LS | | | 65.76 116 | 70.85 131 | 59.81 117 | 65.33 112 | 57.78 142 | 64.63 155 | 48.02 88 | 65.65 132 | 51.05 126 | 81.31 68 | 77.47 153 | 54.94 99 | 69.46 162 | 69.36 129 | 74.90 140 | 74.95 93 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PM-MVS | | | 65.66 117 | 71.25 130 | 59.14 118 | 58.92 154 | 54.88 166 | 73.66 113 | 38.55 167 | 66.12 130 | 49.91 134 | 69.87 134 | 86.97 99 | 60.61 66 | 76.30 109 | 74.75 95 | 73.19 149 | 69.83 123 |
|
UGNet | | | 65.61 118 | 74.79 92 | 54.91 144 | 54.54 180 | 68.20 80 | 70.97 121 | 48.21 86 | 67.14 128 | 41.67 168 | 74.15 117 | 80.65 137 | 36.10 181 | 79.39 94 | 77.99 73 | 77.95 119 | 76.01 88 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DELS-MVS | | | 65.54 119 | 71.79 125 | 58.24 127 | 59.68 147 | 65.55 92 | 70.99 119 | 38.69 166 | 62.29 144 | 49.27 137 | 75.03 108 | 81.42 131 | 50.93 116 | 73.71 123 | 71.35 115 | 79.90 106 | 73.20 102 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
pmmvs-eth3d | | | 65.36 120 | 70.09 134 | 59.85 116 | 63.05 130 | 53.61 169 | 74.29 105 | 46.45 100 | 68.14 122 | 51.45 122 | 78.83 89 | 85.78 111 | 49.87 126 | 70.44 155 | 70.45 122 | 74.00 144 | 63.38 157 |
|
v148 | | | 64.92 121 | 70.58 133 | 58.32 125 | 59.89 145 | 57.09 148 | 66.04 147 | 35.27 181 | 69.11 118 | 60.66 88 | 79.57 84 | 90.93 52 | 53.91 104 | 69.81 161 | 62.22 171 | 74.14 142 | 65.31 149 |
|
FC-MVSNet-train | | | 64.87 122 | 74.76 93 | 53.33 148 | 65.24 114 | 58.05 139 | 69.69 129 | 41.92 137 | 70.99 99 | 32.62 192 | 85.75 31 | 88.23 80 | 32.10 196 | 77.61 104 | 74.41 96 | 78.43 115 | 68.25 136 |
|
pmmvs6 | | | 64.78 123 | 75.82 85 | 51.89 154 | 62.41 132 | 57.13 147 | 60.24 171 | 45.59 107 | 82.90 36 | 34.69 183 | 84.83 37 | 93.18 23 | 36.22 180 | 76.43 108 | 71.13 118 | 72.21 155 | 65.12 150 |
|
OpenMVS |  | 60.79 16 | 64.42 124 | 69.72 135 | 58.23 128 | 61.63 136 | 62.17 117 | 64.11 157 | 37.54 175 | 67.17 127 | 55.71 105 | 65.89 157 | 74.89 162 | 52.67 111 | 72.20 139 | 68.29 141 | 77.73 121 | 77.39 82 |
|
test1111 | | | 64.34 125 | 71.57 126 | 55.90 139 | 67.25 96 | 60.24 134 | 66.66 143 | 51.63 70 | 73.36 88 | 34.69 183 | 75.63 105 | 80.67 136 | 39.43 166 | 78.17 102 | 71.69 114 | 75.71 131 | 61.23 163 |
|
DCV-MVSNet | | | 64.34 125 | 72.84 112 | 54.42 146 | 63.79 122 | 62.09 118 | 62.50 165 | 42.72 127 | 74.32 80 | 41.34 169 | 66.96 148 | 88.57 78 | 39.18 167 | 75.20 115 | 70.35 125 | 77.01 123 | 72.37 109 |
|
ETV-MVS | | | 64.30 127 | 64.76 152 | 63.77 97 | 68.59 88 | 62.49 114 | 77.02 91 | 45.31 108 | 49.27 197 | 50.88 127 | 56.23 199 | 59.91 198 | 57.12 87 | 80.19 89 | 74.23 98 | 83.68 75 | 71.03 118 |
|
ECVR-MVS |  | | 63.93 128 | 71.52 127 | 55.08 142 | 66.19 103 | 61.34 122 | 63.84 159 | 51.79 68 | 70.75 103 | 34.77 181 | 74.70 114 | 81.10 133 | 38.92 168 | 79.39 94 | 73.43 103 | 75.00 138 | 59.92 169 |
|
Anonymous20231211 | | | 63.69 129 | 72.86 111 | 53.00 151 | 63.72 124 | 60.25 133 | 60.33 170 | 40.96 146 | 72.49 91 | 38.91 172 | 81.77 66 | 88.17 81 | 37.60 175 | 73.30 126 | 68.01 144 | 76.47 129 | 66.06 146 |
|
TransMVSNet (Re) | | | 63.49 130 | 73.86 101 | 51.39 160 | 64.26 119 | 56.07 154 | 61.17 168 | 42.23 131 | 78.81 63 | 34.80 180 | 85.94 28 | 90.63 59 | 34.35 190 | 72.73 134 | 67.98 145 | 71.50 158 | 64.84 151 |
|
DI_MVS_plusplus_trai | | | 63.43 131 | 67.54 141 | 58.63 121 | 62.34 133 | 58.06 138 | 65.75 151 | 42.15 132 | 63.05 142 | 53.28 115 | 75.88 101 | 75.92 158 | 50.18 122 | 68.04 165 | 64.20 161 | 78.07 118 | 67.65 138 |
|
EIA-MVS | | | 63.24 132 | 64.16 156 | 62.16 105 | 69.30 86 | 63.20 111 | 72.40 114 | 40.82 149 | 48.31 203 | 51.50 121 | 59.63 186 | 62.23 190 | 57.33 86 | 78.00 103 | 71.94 112 | 81.59 97 | 65.82 147 |
|
Fast-Effi-MVS+-dtu | | | 63.22 133 | 65.55 146 | 60.49 113 | 61.24 138 | 64.70 102 | 74.15 108 | 53.24 60 | 51.46 181 | 49.67 135 | 58.03 194 | 78.42 148 | 48.05 135 | 72.03 140 | 71.14 117 | 76.60 128 | 63.09 158 |
|
IterMVS-SCA-FT | | | 62.67 134 | 68.00 139 | 56.45 138 | 56.92 162 | 64.92 98 | 57.51 183 | 38.12 168 | 59.44 152 | 53.62 112 | 74.74 113 | 71.60 168 | 64.84 39 | 70.24 157 | 65.27 157 | 67.70 176 | 69.83 123 |
|
diffmvs | | | 62.64 135 | 69.66 136 | 54.46 145 | 56.19 167 | 55.06 163 | 67.36 141 | 36.74 179 | 64.18 136 | 50.58 128 | 79.54 85 | 87.55 90 | 45.13 150 | 68.04 165 | 63.20 166 | 70.78 163 | 70.02 121 |
|
MVS_Test | | | 62.58 136 | 67.46 142 | 56.89 134 | 59.52 149 | 55.90 156 | 64.94 153 | 38.83 163 | 57.08 167 | 56.55 102 | 76.53 98 | 84.49 119 | 47.45 137 | 66.95 168 | 62.01 172 | 74.04 143 | 69.27 130 |
|
MDA-MVSNet-bldmvs | | | 62.46 137 | 72.13 119 | 51.19 162 | 34.32 216 | 56.10 153 | 68.65 134 | 38.85 162 | 69.05 120 | 49.50 136 | 78.17 92 | 85.43 112 | 51.32 114 | 86.67 39 | 67.40 150 | 64.46 181 | 62.08 160 |
|
pm-mvs1 | | | 61.97 138 | 72.01 123 | 50.25 168 | 60.64 142 | 55.23 161 | 58.67 178 | 42.44 129 | 74.40 79 | 33.63 189 | 81.03 71 | 89.86 68 | 34.87 185 | 72.93 132 | 67.95 146 | 71.28 159 | 62.65 159 |
|
FMVSNet1 | | | 61.92 139 | 71.36 128 | 50.90 164 | 57.67 161 | 59.29 136 | 59.48 176 | 44.14 120 | 70.24 107 | 34.72 182 | 75.45 107 | 84.94 115 | 36.75 177 | 72.33 136 | 68.45 135 | 72.66 152 | 68.83 132 |
|
PVSNet_BlendedMVS | | | 61.75 140 | 65.07 150 | 57.87 130 | 56.27 165 | 60.99 129 | 65.81 149 | 43.75 122 | 51.27 185 | 54.08 110 | 62.12 173 | 78.84 145 | 50.67 117 | 71.49 145 | 63.91 163 | 76.64 126 | 66.86 140 |
|
PVSNet_Blended | | | 61.75 140 | 65.07 150 | 57.87 130 | 56.27 165 | 60.99 129 | 65.81 149 | 43.75 122 | 51.27 185 | 54.08 110 | 62.12 173 | 78.84 145 | 50.67 117 | 71.49 145 | 63.91 163 | 76.64 126 | 66.86 140 |
|
tttt0517 | | | 61.44 142 | 63.85 158 | 58.62 122 | 55.20 176 | 55.61 158 | 68.80 133 | 38.02 171 | 55.70 172 | 50.01 133 | 66.93 149 | 48.90 209 | 56.69 89 | 73.84 120 | 71.10 119 | 82.99 82 | 74.89 94 |
|
tfpnnormal | | | 61.41 143 | 71.33 129 | 49.83 169 | 61.73 135 | 54.90 165 | 58.52 179 | 41.24 143 | 75.20 74 | 32.00 197 | 82.13 59 | 87.87 85 | 35.63 184 | 72.75 133 | 66.30 154 | 69.87 169 | 60.14 167 |
|
IB-MVS | | 57.02 17 | 61.37 144 | 65.39 147 | 56.69 135 | 56.65 163 | 60.85 131 | 70.70 124 | 37.90 173 | 49.37 196 | 45.37 157 | 48.75 211 | 79.14 143 | 53.55 107 | 76.26 110 | 70.85 121 | 75.97 130 | 72.50 108 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CANet_DTU | | | 61.22 145 | 67.07 143 | 54.40 147 | 59.89 145 | 63.62 110 | 70.98 120 | 36.77 178 | 50.49 189 | 47.15 144 | 62.45 171 | 80.81 134 | 37.90 174 | 71.87 142 | 70.09 127 | 73.69 145 | 70.19 120 |
|
pmmvs4 | | | 61.12 146 | 64.61 153 | 57.04 132 | 60.88 139 | 52.15 174 | 70.59 125 | 44.82 116 | 61.35 148 | 46.91 147 | 72.08 129 | 73.27 166 | 46.79 144 | 65.06 171 | 67.76 148 | 72.28 153 | 60.58 165 |
|
thisisatest0530 | | | 61.02 147 | 63.44 163 | 58.19 129 | 54.75 178 | 55.09 162 | 68.03 138 | 38.02 171 | 55.45 173 | 49.06 138 | 66.58 153 | 48.69 210 | 56.69 89 | 73.07 127 | 71.10 119 | 82.60 88 | 74.14 96 |
|
Vis-MVSNet (Re-imp) | | | 60.99 148 | 67.78 140 | 53.06 150 | 64.66 118 | 53.49 170 | 67.40 139 | 49.52 78 | 68.55 121 | 28.00 205 | 79.53 87 | 71.41 170 | 33.08 194 | 75.30 114 | 71.28 116 | 75.69 133 | 54.91 181 |
|
PatchMatch-RL | | | 60.96 149 | 63.00 166 | 58.57 123 | 59.16 153 | 52.18 173 | 67.38 140 | 41.99 135 | 57.85 161 | 48.16 139 | 53.55 207 | 69.77 175 | 59.47 77 | 73.73 121 | 72.49 110 | 75.27 137 | 61.44 162 |
|
GA-MVS | | | 60.73 150 | 64.24 155 | 56.64 136 | 59.38 152 | 57.45 146 | 65.07 152 | 36.65 180 | 57.39 165 | 58.17 95 | 73.43 124 | 69.10 179 | 47.38 138 | 64.47 176 | 63.63 165 | 73.19 149 | 64.22 154 |
|
CVMVSNet | | | 60.45 151 | 63.72 160 | 56.63 137 | 54.82 177 | 53.75 167 | 68.41 135 | 41.95 136 | 55.07 174 | 48.03 140 | 58.08 193 | 68.67 180 | 55.09 97 | 69.14 163 | 68.34 139 | 71.51 157 | 72.97 107 |
|
ET-MVSNet_ETH3D | | | 60.33 152 | 62.10 169 | 58.27 126 | 58.61 157 | 58.05 139 | 68.06 136 | 41.20 144 | 51.40 182 | 51.10 125 | 64.06 163 | 49.42 208 | 50.61 119 | 74.72 116 | 70.29 126 | 80.05 105 | 66.74 142 |
|
FC-MVSNet-test | | | 60.28 153 | 70.83 132 | 47.96 180 | 54.69 179 | 47.12 188 | 68.06 136 | 41.68 141 | 71.42 95 | 23.73 213 | 84.70 39 | 77.41 154 | 28.92 200 | 82.33 73 | 73.08 106 | 70.68 164 | 59.77 170 |
|
test2506 | | | 59.86 154 | 64.01 157 | 55.02 143 | 66.19 103 | 61.34 122 | 63.84 159 | 51.79 68 | 70.75 103 | 34.39 187 | 62.65 170 | 39.92 224 | 38.92 168 | 79.39 94 | 73.43 103 | 75.00 138 | 60.56 166 |
|
EU-MVSNet | | | 59.77 155 | 66.07 144 | 52.42 152 | 47.81 195 | 51.86 176 | 62.98 163 | 32.28 195 | 62.08 146 | 47.10 145 | 59.94 184 | 83.42 125 | 53.08 110 | 70.06 160 | 63.19 167 | 71.26 161 | 71.96 113 |
|
IterMVS | | | 59.24 156 | 64.45 154 | 53.16 149 | 50.98 188 | 61.29 124 | 66.51 144 | 32.85 191 | 58.17 157 | 46.31 152 | 72.58 128 | 70.23 173 | 54.26 102 | 64.81 174 | 60.24 176 | 68.04 175 | 63.81 156 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 59.15 157 | 62.28 168 | 55.49 141 | 52.42 184 | 62.59 113 | 71.76 116 | 39.74 158 | 50.25 191 | 41.92 165 | 62.88 168 | 69.16 178 | 55.85 92 | 62.77 181 | 67.18 151 | 71.27 160 | 61.11 164 |
|
thres600view7 | | | 58.87 158 | 65.91 145 | 50.66 166 | 61.27 137 | 56.32 151 | 59.88 174 | 40.63 153 | 64.88 134 | 32.10 196 | 64.82 159 | 69.83 174 | 36.72 178 | 72.99 130 | 72.55 109 | 73.34 147 | 59.97 168 |
|
CMPMVS |  | 45.32 18 | 58.10 159 | 65.24 149 | 49.76 170 | 47.88 194 | 46.86 191 | 48.16 208 | 32.82 192 | 58.06 158 | 61.35 86 | 59.64 185 | 80.00 138 | 47.27 139 | 70.15 158 | 64.10 162 | 61.08 184 | 77.85 80 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MDTV_nov1_ep13_2view | | | 58.09 160 | 63.54 162 | 51.74 156 | 50.13 190 | 46.56 192 | 66.95 142 | 33.41 188 | 63.52 140 | 58.77 93 | 74.84 111 | 84.10 122 | 43.12 156 | 65.95 170 | 54.69 190 | 58.04 190 | 55.13 180 |
|
CDS-MVSNet | | | 57.90 161 | 63.57 161 | 51.28 161 | 62.30 134 | 53.17 171 | 64.70 154 | 51.61 71 | 57.41 164 | 32.75 191 | 63.73 164 | 70.53 172 | 27.12 202 | 72.49 135 | 73.02 107 | 69.22 172 | 54.68 182 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
FMVSNet2 | | | 57.80 162 | 65.39 147 | 48.94 176 | 55.88 168 | 57.61 143 | 57.26 184 | 42.37 130 | 58.21 156 | 33.19 190 | 68.36 141 | 75.55 160 | 34.58 187 | 66.91 169 | 64.55 159 | 70.38 165 | 66.56 143 |
|
thres400 | | | 57.25 163 | 63.73 159 | 49.70 171 | 60.19 144 | 54.95 164 | 58.16 180 | 39.60 159 | 62.42 143 | 31.98 199 | 62.33 172 | 69.20 177 | 35.96 182 | 70.07 159 | 68.03 143 | 72.28 153 | 59.12 172 |
|
gm-plane-assit | | | 56.76 164 | 57.64 183 | 55.73 140 | 66.01 107 | 55.45 160 | 74.96 100 | 30.54 200 | 73.71 85 | 56.04 103 | 81.81 64 | 30.91 227 | 43.83 152 | 58.77 191 | 54.71 189 | 63.02 183 | 48.13 197 |
|
MIMVSNet1 | | | 56.72 165 | 68.69 138 | 42.76 193 | 46.70 201 | 42.81 198 | 69.13 130 | 30.52 201 | 81.01 51 | 32.00 197 | 74.82 112 | 91.10 48 | 26.83 204 | 73.98 119 | 64.72 158 | 51.40 202 | 52.38 186 |
|
EPNet_dtu | | | 56.63 166 | 60.77 175 | 51.80 155 | 55.47 173 | 44.63 193 | 69.83 128 | 38.74 165 | 50.27 190 | 47.64 141 | 58.01 195 | 72.27 167 | 33.71 192 | 68.60 164 | 67.72 149 | 65.39 179 | 63.86 155 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
GBi-Net | | | 56.54 167 | 63.26 164 | 48.70 177 | 55.88 168 | 57.61 143 | 57.26 184 | 41.75 138 | 49.06 198 | 32.37 193 | 61.81 175 | 67.02 182 | 34.58 187 | 72.33 136 | 68.45 135 | 70.38 165 | 66.56 143 |
|
test1 | | | 56.54 167 | 63.26 164 | 48.70 177 | 55.88 168 | 57.61 143 | 57.26 184 | 41.75 138 | 49.06 198 | 32.37 193 | 61.81 175 | 67.02 182 | 34.58 187 | 72.33 136 | 68.45 135 | 70.38 165 | 66.56 143 |
|
gg-mvs-nofinetune | | | 56.45 169 | 61.04 173 | 51.10 163 | 63.42 129 | 49.40 184 | 53.71 195 | 52.52 63 | 74.77 76 | 46.93 146 | 77.31 96 | 53.88 202 | 26.42 206 | 62.51 182 | 57.81 182 | 63.60 182 | 51.57 189 |
|
thres200 | | | 56.35 170 | 62.36 167 | 49.34 173 | 58.87 155 | 56.32 151 | 55.91 188 | 40.63 153 | 58.51 155 | 31.34 200 | 58.81 192 | 67.31 181 | 35.96 182 | 72.99 130 | 65.51 156 | 73.34 147 | 57.07 175 |
|
MS-PatchMatch | | | 56.31 171 | 60.22 178 | 51.73 157 | 60.53 143 | 55.53 159 | 63.41 161 | 37.18 176 | 51.34 184 | 37.44 174 | 60.53 182 | 62.19 191 | 45.52 147 | 64.25 177 | 63.17 168 | 66.33 177 | 64.56 152 |
|
tfpn200view9 | | | 56.07 172 | 61.85 170 | 49.34 173 | 58.57 158 | 56.48 150 | 58.01 182 | 40.72 151 | 53.23 175 | 31.01 201 | 56.41 197 | 66.40 186 | 34.18 191 | 73.02 128 | 68.06 142 | 73.53 146 | 59.35 171 |
|
FMVSNet3 | | | 54.77 173 | 60.73 176 | 47.81 181 | 54.29 181 | 56.88 149 | 55.89 189 | 41.75 138 | 49.06 198 | 32.37 193 | 61.81 175 | 67.02 182 | 33.67 193 | 62.88 180 | 61.96 173 | 68.88 173 | 65.53 148 |
|
thres100view900 | | | 53.88 174 | 59.19 179 | 47.68 182 | 58.57 158 | 52.74 172 | 54.45 192 | 38.07 170 | 53.23 175 | 31.01 201 | 56.41 197 | 66.40 186 | 32.80 195 | 65.03 173 | 64.43 160 | 71.18 162 | 56.10 178 |
|
CR-MVSNet | | | 53.82 175 | 55.40 187 | 51.98 153 | 51.57 187 | 50.23 179 | 45.00 210 | 44.97 113 | 46.90 205 | 52.60 118 | 67.91 142 | 46.99 217 | 48.37 131 | 59.15 189 | 59.53 179 | 69.38 171 | 57.07 175 |
|
baseline2 | | | 53.55 176 | 55.19 188 | 51.62 158 | 55.27 175 | 51.95 175 | 60.89 169 | 34.23 183 | 46.69 207 | 42.47 163 | 53.56 206 | 50.01 205 | 45.33 149 | 64.63 175 | 61.22 174 | 71.56 156 | 58.28 174 |
|
test20.03 | | | 53.49 177 | 60.95 174 | 44.78 189 | 64.73 117 | 47.25 187 | 61.58 167 | 43.30 124 | 65.86 131 | 22.85 214 | 66.87 152 | 79.85 139 | 22.99 208 | 62.38 183 | 56.95 184 | 53.25 199 | 47.46 199 |
|
baseline | | | 53.46 178 | 61.55 171 | 44.01 190 | 45.83 204 | 48.77 185 | 57.26 184 | 28.75 204 | 49.99 192 | 38.85 173 | 68.78 138 | 75.65 159 | 38.30 171 | 60.80 184 | 59.78 178 | 55.10 197 | 67.07 139 |
|
MVSTER | | | 53.08 179 | 56.39 185 | 49.21 175 | 47.19 197 | 51.08 177 | 60.14 173 | 31.74 197 | 40.63 215 | 38.97 171 | 55.78 200 | 46.74 218 | 42.47 159 | 67.29 167 | 62.99 169 | 74.73 141 | 70.23 119 |
|
CHOSEN 1792x2688 | | | 52.99 180 | 56.91 184 | 48.42 179 | 47.32 196 | 50.10 181 | 64.18 156 | 33.85 185 | 45.46 210 | 36.95 176 | 55.20 203 | 66.49 185 | 51.20 115 | 59.28 187 | 59.81 177 | 57.01 192 | 61.99 161 |
|
baseline1 | | | 52.90 181 | 58.38 180 | 46.51 188 | 58.87 155 | 50.01 182 | 54.17 193 | 40.45 156 | 56.81 169 | 29.25 204 | 62.72 169 | 58.99 199 | 30.25 198 | 65.05 172 | 60.57 175 | 66.07 178 | 54.54 183 |
|
CostFormer | | | 52.59 182 | 55.14 189 | 49.61 172 | 52.72 182 | 50.40 178 | 66.28 146 | 33.78 186 | 52.85 177 | 43.43 161 | 66.30 154 | 51.37 204 | 41.78 162 | 54.92 201 | 51.18 197 | 59.68 186 | 58.98 173 |
|
SCA | | | 52.47 183 | 53.97 191 | 50.71 165 | 46.95 200 | 57.79 141 | 60.18 172 | 46.89 98 | 51.92 180 | 46.71 151 | 60.73 179 | 49.97 206 | 47.69 136 | 56.39 198 | 52.98 194 | 55.82 194 | 48.03 198 |
|
testgi | | | 51.94 184 | 61.37 172 | 40.94 196 | 58.38 160 | 47.03 189 | 65.88 148 | 30.49 202 | 70.87 102 | 22.64 215 | 57.53 196 | 87.59 88 | 18.30 215 | 63.01 179 | 54.32 191 | 49.93 205 | 49.27 192 |
|
tpm cat1 | | | 50.98 185 | 51.28 197 | 50.62 167 | 55.74 171 | 49.92 183 | 63.13 162 | 38.12 168 | 52.38 179 | 47.61 142 | 60.11 183 | 44.51 221 | 44.86 151 | 51.31 209 | 47.49 204 | 54.25 198 | 53.24 185 |
|
RPMNet | | | 50.92 186 | 50.32 199 | 51.62 158 | 50.25 189 | 50.23 179 | 59.16 177 | 46.70 99 | 46.90 205 | 42.39 164 | 48.97 210 | 37.23 225 | 41.78 162 | 57.30 196 | 56.18 186 | 69.44 170 | 55.43 179 |
|
pmmvs5 | | | 50.64 187 | 58.01 181 | 42.05 194 | 47.01 199 | 43.67 196 | 49.27 206 | 29.43 203 | 50.77 188 | 33.83 188 | 68.69 139 | 76.16 157 | 27.82 201 | 57.53 195 | 57.07 183 | 64.95 180 | 52.18 187 |
|
PatchT | | | 50.55 188 | 53.55 193 | 47.05 186 | 37.59 215 | 42.26 199 | 50.55 203 | 37.56 174 | 46.37 208 | 52.60 118 | 66.91 150 | 43.54 223 | 48.37 131 | 59.15 189 | 59.53 179 | 55.62 195 | 57.07 175 |
|
Anonymous20231206 | | | 50.28 189 | 57.94 182 | 41.35 195 | 55.45 174 | 43.65 197 | 58.06 181 | 34.12 184 | 62.02 147 | 24.25 212 | 59.33 187 | 79.80 140 | 24.49 207 | 59.55 185 | 54.28 192 | 51.74 201 | 46.94 201 |
|
dps | | | 49.71 190 | 51.97 195 | 47.07 185 | 52.37 185 | 47.00 190 | 53.02 198 | 40.52 155 | 44.91 211 | 41.23 170 | 64.55 160 | 44.27 222 | 40.12 165 | 57.71 194 | 51.97 196 | 55.14 196 | 53.41 184 |
|
MDTV_nov1_ep13 | | | 49.60 191 | 51.57 196 | 47.31 183 | 46.28 202 | 44.61 194 | 59.82 175 | 30.96 198 | 48.80 202 | 50.20 131 | 59.26 189 | 52.38 203 | 38.56 170 | 56.20 199 | 49.70 200 | 58.04 190 | 50.01 190 |
|
PatchmatchNet |  | | 48.67 192 | 50.10 200 | 46.99 187 | 48.29 193 | 41.00 200 | 55.54 190 | 38.94 161 | 51.38 183 | 45.15 158 | 63.22 166 | 48.45 212 | 42.83 157 | 53.80 206 | 48.50 203 | 51.19 204 | 44.37 203 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
new-patchmatchnet | | | 47.33 193 | 60.49 177 | 31.99 212 | 55.69 172 | 33.86 212 | 36.84 220 | 33.31 189 | 72.36 92 | 14.33 220 | 80.09 79 | 92.14 35 | 13.27 217 | 63.54 178 | 40.09 212 | 38.51 214 | 41.32 211 |
|
tpm | | | 46.67 194 | 49.20 205 | 43.72 191 | 49.60 191 | 36.60 209 | 53.93 194 | 26.84 206 | 52.70 178 | 58.05 96 | 69.04 137 | 47.96 213 | 30.06 199 | 48.33 212 | 42.76 207 | 43.88 208 | 47.01 200 |
|
pmmvs3 | | | 46.64 195 | 54.13 190 | 37.90 203 | 31.23 220 | 40.68 201 | 49.83 205 | 15.34 217 | 46.31 209 | 36.34 178 | 53.15 208 | 74.40 164 | 36.36 179 | 58.43 192 | 56.64 185 | 58.32 189 | 49.29 191 |
|
TAMVS | | | 46.64 195 | 53.62 192 | 38.49 201 | 49.56 192 | 36.87 206 | 53.16 197 | 25.76 208 | 56.33 171 | 22.55 216 | 60.72 180 | 61.80 193 | 27.12 202 | 59.50 186 | 58.33 181 | 52.79 200 | 41.82 210 |
|
test-LLR | | | 46.01 197 | 45.06 214 | 47.11 184 | 59.39 150 | 36.72 207 | 51.28 200 | 40.95 147 | 36.41 219 | 34.45 185 | 46.14 213 | 47.02 215 | 38.00 172 | 51.78 207 | 48.53 201 | 58.60 187 | 48.84 194 |
|
MIMVSNet | | | 45.83 198 | 53.46 194 | 36.94 204 | 45.38 208 | 39.50 203 | 52.20 199 | 30.68 199 | 57.09 166 | 24.53 211 | 55.22 202 | 71.54 169 | 21.74 211 | 55.81 200 | 51.08 198 | 47.11 206 | 43.96 204 |
|
pmnet_mix02 | | | 45.67 199 | 55.99 186 | 33.63 211 | 45.77 205 | 31.22 216 | 42.04 215 | 27.60 205 | 64.14 137 | 24.89 208 | 75.50 106 | 82.30 129 | 21.88 210 | 54.53 204 | 41.22 209 | 39.62 212 | 43.05 206 |
|
test0.0.03 1 | | | 45.40 200 | 49.55 203 | 40.57 198 | 59.39 150 | 44.36 195 | 53.37 196 | 40.95 147 | 47.14 204 | 19.23 217 | 45.49 215 | 60.24 196 | 19.24 213 | 54.82 202 | 51.98 195 | 51.21 203 | 42.82 207 |
|
PMMVS | | | 45.37 201 | 49.29 204 | 40.79 197 | 27.75 221 | 35.07 211 | 50.88 202 | 19.88 214 | 39.27 217 | 35.78 179 | 50.11 209 | 61.29 194 | 42.04 160 | 54.13 205 | 55.95 187 | 68.43 174 | 49.19 193 |
|
MVS-HIRNet | | | 44.56 202 | 45.52 212 | 43.44 192 | 40.98 211 | 31.03 217 | 39.52 219 | 36.96 177 | 42.80 213 | 44.37 159 | 53.80 205 | 60.04 197 | 41.85 161 | 47.97 214 | 41.08 210 | 56.99 193 | 41.95 209 |
|
test-mter | | | 44.18 203 | 47.60 207 | 40.18 199 | 33.20 217 | 39.03 204 | 55.28 191 | 13.91 219 | 39.07 218 | 36.63 177 | 48.09 212 | 49.52 207 | 41.12 164 | 54.55 203 | 50.91 199 | 60.97 185 | 52.03 188 |
|
EMVS | | | 43.85 204 | 49.91 201 | 36.77 206 | 45.46 207 | 32.70 213 | 44.09 212 | 25.33 209 | 57.88 160 | 26.62 206 | 58.99 191 | 61.14 195 | 42.77 158 | 70.26 156 | 38.52 216 | 36.38 216 | 29.87 217 |
|
E-PMN | | | 43.83 205 | 49.81 202 | 36.84 205 | 46.09 203 | 31.86 215 | 42.77 214 | 25.85 207 | 57.76 162 | 25.53 207 | 55.50 201 | 62.47 189 | 43.77 153 | 70.78 152 | 39.51 213 | 37.04 215 | 30.79 216 |
|
tpmrst | | | 43.31 206 | 46.14 210 | 40.02 200 | 47.05 198 | 36.48 210 | 48.01 209 | 32.17 196 | 49.50 195 | 37.26 175 | 63.66 165 | 47.04 214 | 31.98 197 | 42.00 218 | 40.55 211 | 43.64 209 | 43.75 205 |
|
TESTMET0.1,1 | | | 41.79 207 | 45.06 214 | 37.97 202 | 31.32 219 | 36.72 207 | 51.28 200 | 14.17 218 | 36.41 219 | 34.45 185 | 46.14 213 | 47.02 215 | 38.00 172 | 51.78 207 | 48.53 201 | 58.60 187 | 48.84 194 |
|
ADS-MVSNet | | | 40.61 208 | 46.31 208 | 33.96 209 | 40.70 212 | 30.42 218 | 40.42 217 | 33.44 187 | 58.01 159 | 30.87 203 | 63.05 167 | 54.48 201 | 22.67 209 | 44.35 217 | 39.23 215 | 35.64 217 | 34.64 214 |
|
CHOSEN 280x420 | | | 40.24 209 | 44.14 217 | 35.69 207 | 32.36 218 | 23.58 221 | 50.30 204 | 21.21 213 | 40.94 214 | 18.84 218 | 32.75 219 | 48.65 211 | 48.13 134 | 59.16 188 | 55.31 188 | 43.28 210 | 48.62 196 |
|
EPMVS | | | 40.11 210 | 44.96 216 | 34.44 208 | 41.55 210 | 32.65 214 | 41.74 216 | 32.39 194 | 49.89 194 | 24.83 209 | 64.44 161 | 46.38 219 | 26.57 205 | 44.75 216 | 39.47 214 | 39.59 213 | 37.16 213 |
|
FMVSNet5 | | | 39.83 211 | 45.08 213 | 33.71 210 | 39.24 213 | 39.56 202 | 48.77 207 | 23.55 211 | 39.45 216 | 24.55 210 | 33.73 218 | 44.57 220 | 20.97 212 | 58.27 193 | 54.23 193 | 45.16 207 | 45.77 202 |
|
N_pmnet | | | 39.50 212 | 51.01 198 | 26.09 214 | 44.48 209 | 25.59 220 | 40.20 218 | 21.49 212 | 64.20 135 | 7.98 224 | 73.86 121 | 76.67 156 | 13.66 216 | 50.17 210 | 36.69 218 | 28.71 219 | 29.86 218 |
|
MVE |  | 28.01 19 | 35.86 213 | 43.56 218 | 26.88 213 | 22.33 223 | 19.75 223 | 30.85 223 | 23.88 210 | 49.90 193 | 10.48 222 | 43.64 216 | 61.87 192 | 48.99 130 | 47.26 215 | 42.15 208 | 24.76 220 | 40.37 212 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
new_pmnet | | | 35.76 214 | 45.64 211 | 24.22 215 | 38.59 214 | 25.83 219 | 31.87 222 | 19.24 215 | 49.06 198 | 9.01 223 | 54.34 204 | 64.73 188 | 12.46 218 | 49.21 211 | 44.91 205 | 34.17 218 | 31.41 215 |
|
PMMVS2 | | | 34.11 215 | 48.55 206 | 17.26 216 | 25.45 222 | 20.72 222 | 35.08 221 | 16.26 216 | 58.71 154 | 4.16 226 | 59.22 190 | 78.40 149 | 3.65 220 | 57.24 197 | 38.31 217 | 18.94 222 | 27.28 219 |
|
GG-mvs-BLEND | | | 31.54 216 | 46.27 209 | 14.37 217 | 0.07 228 | 48.65 186 | 42.97 213 | 0.08 225 | 44.04 212 | 1.21 228 | 39.77 217 | 57.94 200 | 0.15 224 | 48.19 213 | 42.82 206 | 41.70 211 | 42.46 208 |
|
test_method | | | 13.28 217 | 15.83 219 | 10.30 218 | 1.05 225 | 2.18 226 | 15.40 224 | 2.23 221 | 22.43 221 | 13.84 221 | 22.00 221 | 33.14 226 | 9.78 219 | 17.80 220 | 9.93 220 | 19.50 221 | 3.31 221 |
|
test123 | | | 0.53 218 | 0.60 221 | 0.46 220 | 0.22 226 | 0.25 227 | 0.33 229 | 0.13 224 | 0.66 224 | 1.37 227 | 1.10 223 | 0.00 231 | 0.43 222 | 0.68 222 | 0.61 221 | 0.26 225 | 0.88 222 |
|
testmvs | | | 0.47 219 | 0.69 220 | 0.21 221 | 0.17 227 | 0.17 228 | 0.35 228 | 0.16 223 | 0.66 224 | 0.18 229 | 1.05 224 | 0.99 230 | 0.27 223 | 0.62 223 | 0.54 222 | 0.15 226 | 0.77 223 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 231 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 231 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 231 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
RE-MVS-def | | | | | | | | | | | 70.04 57 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 83.64 123 | | | | | |
|
SR-MVS | | | | | | 81.31 10 | | | 62.63 9 | | | | 91.11 47 | | | | | |
|
Anonymous202405211 | | | | 72.22 118 | | 66.19 103 | 61.09 128 | 62.23 166 | 45.87 106 | 71.25 97 | | 79.33 88 | 86.16 109 | 37.36 176 | 73.54 125 | 69.84 128 | 75.45 135 | 64.32 153 |
|
our_test_3 | | | | | | 52.72 182 | 53.66 168 | 69.11 131 | | | | | | | | | | |
|
ambc | | | | 79.96 64 | | 74.57 56 | 75.48 50 | 73.75 112 | | 80.32 56 | 72.34 39 | 78.46 90 | 92.41 31 | 59.05 78 | 80.24 88 | 73.95 100 | 75.41 136 | 78.85 73 |
|
MTAPA | | | | | | | | | | | 80.26 8 | | 90.53 63 | | | | | |
|
MTMP | | | | | | | | | | | 82.07 4 | | 91.00 50 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.05 227 | | | | | | | | | | |
|
tmp_tt | | | | | 7.47 219 | 8.89 224 | 3.32 225 | 4.35 226 | 1.14 222 | 15.58 223 | 15.76 219 | 8.50 222 | 5.90 229 | 2.00 221 | 20.02 219 | 21.51 219 | 12.70 223 | |
|
XVS | | | | | | 80.47 21 | 81.29 12 | 93.33 3 | | | 77.45 20 | | 90.19 65 | | | | 91.52 11 | |
|
X-MVStestdata | | | | | | 80.47 21 | 81.29 12 | 93.33 3 | | | 77.45 20 | | 90.19 65 | | | | 91.52 11 | |
|
abl_6 | | | | | 65.41 86 | 69.37 85 | 74.02 58 | 82.50 61 | 47.39 91 | 66.39 129 | 56.63 101 | 60.61 181 | 82.76 127 | 53.68 106 | | | 82.92 84 | 78.39 78 |
|
mPP-MVS | | | | | | 82.97 2 | | | | | | | 92.12 36 | | | | | |
|
NP-MVS | | | | | | | | | | 71.39 96 | | | | | | | | |
|
Patchmtry | | | | | | | 37.73 205 | 45.00 210 | 44.97 113 | | 52.60 118 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 8.52 224 | 9.75 225 | 3.19 220 | 16.70 222 | 5.02 225 | 23.06 220 | 19.33 228 | 18.69 214 | 13.75 221 | | 11.34 224 | 25.07 220 |
|