TDRefinement | | | 86.29 1 | 90.77 1 | 81.06 1 | 75.10 53 | 83.76 2 | 93.79 1 | 61.08 19 | 89.57 2 | 86.19 1 | 90.06 10 | 93.01 25 | 76.72 2 | 94.71 1 | 92.72 1 | 93.47 1 | 91.56 1 |
|
COLMAP_ROB |  | 75.87 2 | 84.34 2 | 89.80 2 | 77.97 12 | 75.52 51 | 82.76 4 | 90.39 20 | 54.21 54 | 89.37 3 | 83.18 2 | 89.90 12 | 95.58 11 | 72.34 10 | 92.31 4 | 90.04 5 | 92.17 5 | 88.61 17 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CP-MVS | | | 84.06 3 | 86.79 9 | 80.86 2 | 81.81 8 | 79.66 29 | 92.67 6 | 64.48 1 | 83.13 32 | 82.32 3 | 80.89 72 | 92.97 26 | 72.51 9 | 91.74 6 | 90.02 6 | 91.40 17 | 89.14 7 |
|
ACMMPR | | | 83.94 4 | 87.20 3 | 80.14 4 | 81.04 13 | 81.92 8 | 92.57 8 | 63.14 5 | 84.35 20 | 79.45 12 | 83.37 45 | 92.04 36 | 72.82 8 | 90.66 12 | 88.96 12 | 91.80 6 | 89.13 8 |
|
MP-MVS |  | | 83.50 5 | 86.11 18 | 80.45 3 | 82.58 5 | 80.60 24 | 92.68 5 | 63.48 3 | 81.43 46 | 80.21 9 | 81.95 61 | 90.76 54 | 72.86 6 | 90.14 19 | 89.30 11 | 90.92 19 | 88.59 18 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMP |  | | 83.17 6 | 86.75 10 | 79.01 8 | 80.11 25 | 82.01 7 | 92.29 11 | 60.35 26 | 82.20 40 | 78.32 16 | 80.59 73 | 93.14 23 | 70.67 15 | 91.30 8 | 89.36 10 | 92.30 4 | 88.62 16 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PGM-MVS | | | 83.03 7 | 85.67 25 | 79.95 5 | 80.69 17 | 81.09 15 | 92.40 10 | 63.06 6 | 79.38 60 | 80.21 9 | 80.31 75 | 91.44 41 | 71.75 12 | 90.46 15 | 88.53 15 | 91.57 9 | 88.50 19 |
|
LGP-MVS_train | | | 82.91 8 | 86.50 12 | 78.72 9 | 78.72 34 | 81.03 16 | 89.78 24 | 61.16 18 | 80.15 56 | 80.44 6 | 84.83 36 | 94.19 16 | 70.52 18 | 90.70 11 | 87.19 23 | 91.71 8 | 87.37 29 |
|
ACMM | | 71.24 7 | 82.85 9 | 86.59 11 | 78.50 10 | 80.10 26 | 78.59 31 | 91.77 12 | 60.76 23 | 84.43 18 | 76.49 25 | 81.58 66 | 93.50 18 | 70.45 19 | 91.38 7 | 89.42 9 | 91.42 16 | 87.22 31 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
zzz-MVS | | | 82.61 10 | 85.04 32 | 79.79 6 | 82.59 4 | 73.90 58 | 92.42 9 | 62.39 12 | 84.54 17 | 80.21 9 | 79.86 79 | 90.74 55 | 70.63 16 | 90.01 21 | 89.71 8 | 90.48 21 | 86.49 36 |
|
HFP-MVS | | | 82.37 11 | 86.28 14 | 77.81 15 | 79.94 27 | 80.96 18 | 91.13 15 | 63.30 4 | 84.04 22 | 71.81 39 | 82.39 56 | 89.59 71 | 69.16 24 | 89.08 26 | 88.83 14 | 91.49 13 | 89.10 9 |
|
DeepC-MVS | | 73.80 3 | 82.34 12 | 86.87 7 | 77.06 19 | 78.62 35 | 84.34 1 | 90.30 22 | 63.54 2 | 83.10 33 | 71.30 44 | 86.91 23 | 90.54 61 | 67.12 30 | 87.81 35 | 87.05 24 | 91.46 15 | 88.37 20 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CPTT-MVS | | | 82.32 13 | 85.00 34 | 79.19 7 | 80.73 16 | 80.86 21 | 91.68 13 | 62.59 10 | 82.55 37 | 75.53 29 | 73.88 114 | 92.28 32 | 73.74 5 | 90.07 20 | 87.65 19 | 90.87 20 | 87.74 24 |
|
ACMP | | 70.35 9 | 82.17 14 | 86.45 13 | 77.18 18 | 79.33 28 | 81.00 17 | 89.27 28 | 58.63 32 | 81.35 48 | 75.46 30 | 82.97 51 | 95.08 13 | 68.90 25 | 90.49 14 | 87.43 22 | 91.48 14 | 86.84 33 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SteuartSystems-ACMMP | | | 82.16 15 | 85.55 27 | 78.21 11 | 80.48 19 | 79.28 30 | 92.65 7 | 61.03 20 | 80.55 54 | 77.00 23 | 81.80 64 | 90.71 56 | 68.73 26 | 90.25 17 | 87.94 18 | 89.36 28 | 88.30 21 |
Skip Steuart: Steuart Systems R&D Blog. |
SMA-MVS |  | | 82.15 16 | 85.93 20 | 77.74 16 | 80.13 24 | 80.25 26 | 91.01 16 | 60.61 24 | 85.54 11 | 78.61 15 | 83.21 48 | 86.96 99 | 65.95 34 | 88.10 32 | 87.59 20 | 90.11 22 | 89.83 4 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SD-MVS | | | 82.13 17 | 86.80 8 | 76.67 20 | 80.36 22 | 80.66 22 | 89.48 26 | 56.93 35 | 82.50 38 | 67.55 68 | 87.05 21 | 91.40 43 | 72.84 7 | 88.66 28 | 88.32 16 | 92.85 2 | 89.04 10 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
LTVRE_ROB | | 75.99 1 | 82.04 18 | 87.16 4 | 76.07 23 | 63.57 120 | 70.27 76 | 86.48 41 | 62.99 7 | 89.00 5 | 80.32 7 | 86.25 26 | 91.04 48 | 74.66 4 | 92.58 3 | 90.29 4 | 88.42 35 | 90.72 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PMVS |  | 70.37 8 | 81.82 19 | 87.08 5 | 75.68 25 | 77.06 42 | 77.23 39 | 87.77 38 | 56.25 42 | 83.33 31 | 67.18 73 | 89.48 14 | 87.94 83 | 77.70 1 | 93.02 2 | 92.57 2 | 88.13 37 | 86.00 39 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMMP_NAP | | | 81.79 20 | 85.72 23 | 77.21 17 | 79.15 32 | 79.68 28 | 91.62 14 | 59.66 28 | 83.55 28 | 77.74 19 | 83.72 43 | 87.34 92 | 65.36 35 | 88.61 29 | 87.56 21 | 89.73 27 | 89.58 5 |
|
X-MVS | | | 81.61 21 | 84.73 36 | 77.97 12 | 80.31 23 | 81.29 12 | 93.53 2 | 62.50 11 | 81.41 47 | 77.45 20 | 72.04 124 | 90.19 64 | 62.50 54 | 90.57 13 | 88.87 13 | 91.54 10 | 88.73 14 |
|
OPM-MVS | | | 81.44 22 | 85.68 24 | 76.49 21 | 79.27 29 | 78.21 34 | 89.84 23 | 58.67 31 | 85.25 12 | 76.26 26 | 85.28 33 | 92.88 27 | 66.03 33 | 87.20 38 | 85.40 28 | 88.86 32 | 85.58 43 |
|
TSAR-MVS + MP. | | | 81.23 23 | 86.13 16 | 75.52 26 | 80.74 15 | 83.22 3 | 90.55 17 | 55.12 49 | 80.87 51 | 67.62 67 | 88.01 16 | 92.38 31 | 70.61 17 | 86.64 40 | 83.10 43 | 88.51 33 | 88.67 15 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + ACMM | | | 81.20 24 | 86.92 6 | 74.52 29 | 77.60 38 | 82.29 5 | 84.41 48 | 62.95 8 | 82.99 34 | 64.03 81 | 87.71 17 | 89.17 73 | 71.98 11 | 88.19 31 | 88.10 17 | 86.18 55 | 89.95 3 |
|
APDe-MVS | | | 81.08 25 | 86.12 17 | 75.20 27 | 79.25 30 | 80.91 19 | 90.38 21 | 57.05 34 | 85.83 10 | 66.07 77 | 87.34 20 | 91.27 44 | 69.45 20 | 85.99 44 | 82.55 45 | 88.98 31 | 88.95 12 |
|
DPE-MVS |  | | 81.01 26 | 85.18 29 | 76.15 22 | 78.58 36 | 80.64 23 | 89.77 25 | 57.92 33 | 81.66 45 | 73.45 33 | 86.84 24 | 89.80 69 | 69.33 22 | 85.40 46 | 82.91 44 | 87.87 39 | 89.01 11 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APD-MVS |  | | 80.60 27 | 84.63 37 | 75.91 24 | 81.22 11 | 81.48 10 | 90.49 18 | 58.81 30 | 77.54 66 | 67.49 69 | 85.90 28 | 89.82 68 | 69.43 21 | 86.08 43 | 83.80 38 | 88.01 38 | 87.77 23 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HPM-MVS++ |  | | 80.44 28 | 82.57 51 | 77.96 14 | 81.99 7 | 72.76 63 | 90.48 19 | 61.31 15 | 80.85 52 | 77.90 18 | 81.93 62 | 87.01 96 | 68.20 28 | 84.15 56 | 85.27 30 | 87.85 40 | 86.00 39 |
|
DVP-MVS | | | 80.31 29 | 85.60 26 | 74.15 33 | 76.23 46 | 78.39 32 | 86.62 40 | 55.79 45 | 86.47 9 | 71.32 43 | 90.96 7 | 89.02 75 | 69.28 23 | 84.62 55 | 81.64 54 | 85.66 60 | 88.09 22 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
ACMH+ | | 67.97 10 | 80.15 30 | 86.16 15 | 73.14 40 | 73.82 60 | 76.41 42 | 83.59 53 | 54.82 52 | 87.35 6 | 70.86 48 | 86.98 22 | 96.27 4 | 66.50 31 | 89.17 25 | 83.39 40 | 89.26 29 | 83.56 49 |
|
OMC-MVS | | | 79.95 31 | 85.28 28 | 73.74 36 | 72.95 63 | 80.10 27 | 87.87 37 | 48.13 81 | 84.62 16 | 79.42 13 | 80.27 76 | 92.49 29 | 64.14 44 | 87.25 37 | 85.11 31 | 89.92 25 | 87.10 32 |
|
SED-MVS | | | 79.70 32 | 85.16 30 | 73.34 38 | 75.83 50 | 78.11 35 | 88.77 33 | 56.45 39 | 84.85 14 | 69.45 60 | 90.70 9 | 88.38 78 | 63.16 49 | 85.12 51 | 81.28 57 | 86.40 53 | 87.63 25 |
|
MSP-MVS | | | 79.65 33 | 84.28 41 | 74.25 31 | 78.92 33 | 81.86 9 | 89.07 29 | 60.49 25 | 83.85 26 | 70.05 55 | 85.12 34 | 90.92 52 | 62.99 51 | 81.15 77 | 81.64 54 | 83.99 68 | 85.42 45 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DeepPCF-MVS | | 71.57 5 | 79.49 34 | 84.05 42 | 74.17 32 | 74.14 57 | 80.88 20 | 89.33 27 | 56.24 43 | 82.41 39 | 71.58 41 | 82.27 57 | 86.47 102 | 66.47 32 | 84.80 53 | 84.16 36 | 87.26 45 | 87.34 30 |
|
LS3D | | | 79.33 35 | 84.03 43 | 73.84 34 | 75.37 52 | 78.09 36 | 83.30 54 | 52.94 61 | 84.42 19 | 76.01 27 | 84.16 39 | 87.44 91 | 65.34 36 | 86.30 41 | 82.08 52 | 90.09 23 | 85.70 41 |
|
3Dnovator+ | | 72.94 4 | 78.78 36 | 83.05 48 | 73.80 35 | 70.70 75 | 81.34 11 | 88.33 34 | 56.01 44 | 81.33 49 | 72.87 37 | 78.06 92 | 81.15 129 | 63.83 46 | 87.39 36 | 85.82 26 | 91.06 18 | 86.28 38 |
|
UA-Net | | | 78.65 37 | 83.96 44 | 72.46 42 | 84.87 1 | 76.15 43 | 89.06 30 | 55.70 46 | 77.25 67 | 53.14 114 | 79.73 81 | 82.09 127 | 59.69 70 | 92.21 5 | 90.93 3 | 92.32 3 | 89.36 6 |
|
xxxxxxxxxxxxxcwj | | | 78.58 38 | 83.87 45 | 72.41 43 | 76.04 48 | 75.72 46 | 83.86 50 | 51.81 65 | 84.00 24 | 70.65 51 | 81.27 68 | 95.06 14 | 64.64 41 | 83.28 64 | 80.28 59 | 87.44 43 | 87.49 27 |
|
DeepC-MVS_fast | | 71.40 6 | 78.48 39 | 82.92 49 | 73.31 39 | 76.44 45 | 82.23 6 | 87.59 39 | 56.56 38 | 77.79 64 | 68.91 64 | 77.00 96 | 87.32 93 | 61.90 56 | 85.40 46 | 84.37 33 | 88.46 34 | 86.33 37 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SF-MVS | | | 78.36 40 | 83.47 47 | 72.41 43 | 76.04 48 | 75.72 46 | 83.86 50 | 51.81 65 | 84.00 24 | 70.65 51 | 81.27 68 | 92.22 33 | 64.64 41 | 83.28 64 | 80.28 59 | 87.44 43 | 87.49 27 |
|
WR-MVS | | | 78.32 41 | 86.09 19 | 69.25 61 | 76.22 47 | 72.33 70 | 85.71 44 | 59.02 29 | 86.66 7 | 51.41 120 | 92.91 2 | 96.76 1 | 53.09 106 | 90.21 18 | 85.30 29 | 90.05 24 | 78.46 75 |
|
ACMH | | 66.19 11 | 78.12 42 | 84.55 38 | 70.63 52 | 69.62 81 | 72.40 69 | 80.77 70 | 46.43 95 | 89.24 4 | 77.99 17 | 87.42 19 | 95.83 9 | 62.95 52 | 86.27 42 | 78.24 71 | 86.00 58 | 82.46 51 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
train_agg | | | 77.83 43 | 80.47 61 | 74.77 28 | 80.92 14 | 69.60 77 | 88.87 32 | 56.32 41 | 74.03 83 | 71.03 46 | 83.67 44 | 87.68 86 | 64.75 40 | 83.70 58 | 81.85 53 | 86.71 49 | 82.73 50 |
|
NCCC | | | 77.82 44 | 80.72 60 | 74.43 30 | 79.24 31 | 75.72 46 | 88.06 35 | 56.36 40 | 79.61 58 | 73.22 35 | 67.75 137 | 87.05 95 | 63.09 50 | 85.62 45 | 84.00 37 | 86.62 50 | 85.30 46 |
|
CNVR-MVS | | | 77.79 45 | 81.57 55 | 73.38 37 | 78.37 37 | 75.91 44 | 87.97 36 | 55.11 50 | 79.41 59 | 70.98 47 | 74.70 111 | 86.43 103 | 61.77 57 | 85.10 52 | 83.73 39 | 86.10 57 | 85.68 42 |
|
WR-MVS_H | | | 77.56 46 | 85.88 21 | 67.86 65 | 80.54 18 | 74.32 55 | 83.23 55 | 61.78 13 | 83.47 29 | 47.46 140 | 91.81 6 | 95.84 8 | 50.50 117 | 90.44 16 | 84.37 33 | 83.63 73 | 80.89 61 |
|
RPSCF | | | 77.56 46 | 84.51 39 | 69.46 60 | 65.17 109 | 74.36 54 | 79.74 75 | 47.45 84 | 84.01 23 | 72.89 36 | 77.89 93 | 90.67 57 | 65.14 38 | 88.25 30 | 89.74 7 | 86.38 54 | 86.64 35 |
|
PS-CasMVS | | | 77.46 48 | 85.80 22 | 67.73 67 | 81.24 10 | 72.88 62 | 80.63 71 | 61.28 16 | 84.14 21 | 50.53 126 | 92.13 4 | 96.76 1 | 50.12 120 | 91.02 9 | 84.46 32 | 82.60 85 | 79.19 68 |
|
DTE-MVSNet | | | 77.28 49 | 84.87 35 | 68.42 63 | 82.94 3 | 72.70 65 | 81.60 65 | 61.78 13 | 85.03 13 | 51.40 121 | 92.11 5 | 96.00 6 | 49.42 124 | 89.73 23 | 82.52 47 | 83.39 77 | 75.98 85 |
|
SixPastTwentyTwo | | | 77.24 50 | 83.65 46 | 69.78 56 | 65.14 110 | 64.85 98 | 77.44 86 | 47.74 83 | 82.76 36 | 68.52 65 | 87.65 18 | 93.31 20 | 71.68 13 | 89.49 24 | 82.41 48 | 88.14 36 | 85.05 47 |
|
CDPH-MVS | | | 77.22 51 | 81.05 59 | 72.75 41 | 77.29 40 | 77.46 38 | 86.36 42 | 54.02 56 | 73.00 88 | 69.75 58 | 77.78 94 | 88.90 76 | 61.31 61 | 84.09 57 | 82.54 46 | 87.79 41 | 83.57 48 |
|
PEN-MVS | | | 77.06 52 | 85.05 31 | 67.74 66 | 82.29 6 | 72.59 66 | 80.86 69 | 61.03 20 | 84.66 15 | 50.08 129 | 92.19 3 | 96.59 3 | 49.12 125 | 89.83 22 | 82.35 49 | 83.06 78 | 77.14 81 |
|
CP-MVSNet | | | 77.01 53 | 85.04 32 | 67.65 68 | 81.16 12 | 72.72 64 | 80.54 72 | 61.18 17 | 82.09 41 | 50.41 127 | 90.81 8 | 95.89 7 | 50.03 121 | 90.86 10 | 84.30 35 | 82.56 87 | 78.65 74 |
|
CSCG | | | 76.95 54 | 82.08 53 | 70.97 48 | 73.32 62 | 78.35 33 | 81.08 68 | 47.19 86 | 83.47 29 | 69.82 57 | 80.44 74 | 87.19 94 | 64.59 43 | 81.01 80 | 77.26 79 | 89.83 26 | 86.84 33 |
|
CNLPA | | | 76.67 55 | 81.72 54 | 70.77 51 | 70.75 73 | 76.68 41 | 86.14 43 | 46.11 97 | 81.82 43 | 74.68 31 | 76.37 98 | 86.23 105 | 62.92 53 | 85.28 49 | 83.29 41 | 84.02 67 | 82.40 52 |
|
MSLP-MVS++ | | | 76.66 56 | 82.32 52 | 70.06 54 | 70.51 76 | 80.27 25 | 79.77 74 | 55.58 47 | 77.79 64 | 63.09 82 | 67.25 141 | 89.50 72 | 71.01 14 | 88.10 32 | 85.74 27 | 80.39 99 | 87.56 26 |
|
TSAR-MVS + COLMAP | | | 75.85 57 | 81.06 57 | 69.77 57 | 71.15 69 | 76.90 40 | 82.93 57 | 52.43 63 | 79.25 61 | 70.13 53 | 82.78 52 | 87.00 97 | 60.02 66 | 80.30 84 | 79.61 64 | 81.95 91 | 81.61 57 |
|
HQP-MVS | | | 75.81 58 | 78.91 67 | 72.18 45 | 77.41 39 | 75.38 50 | 84.75 45 | 53.35 58 | 76.12 71 | 73.32 34 | 69.48 129 | 88.07 81 | 57.76 78 | 79.42 89 | 78.44 68 | 86.48 51 | 85.50 44 |
|
PLC |  | 64.88 15 | 75.76 59 | 80.22 62 | 70.57 53 | 70.46 77 | 77.75 37 | 82.01 63 | 48.84 76 | 80.74 53 | 70.85 49 | 71.32 126 | 84.82 115 | 63.69 47 | 84.73 54 | 82.35 49 | 87.54 42 | 79.80 65 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test_part1 | | | 75.44 60 | 84.35 40 | 65.04 88 | 71.41 68 | 70.75 74 | 78.24 80 | 47.16 87 | 90.52 1 | 56.65 98 | 93.19 1 | 95.21 12 | 49.99 122 | 82.20 72 | 77.98 73 | 86.80 48 | 80.63 62 |
|
TAPA-MVS | | 66.11 12 | 75.37 61 | 79.24 65 | 70.86 49 | 67.63 90 | 74.09 56 | 83.17 56 | 44.75 111 | 81.82 43 | 80.83 5 | 65.61 152 | 88.04 82 | 61.58 58 | 83.21 66 | 80.12 61 | 87.17 46 | 81.82 55 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PHI-MVS | | | 75.17 62 | 78.37 68 | 71.43 46 | 71.13 70 | 72.46 68 | 82.28 62 | 50.55 69 | 73.39 86 | 79.05 14 | 73.65 116 | 87.50 90 | 61.98 55 | 81.10 78 | 78.48 67 | 83.60 74 | 81.99 53 |
|
anonymousdsp | | | 74.76 63 | 82.59 50 | 65.63 82 | 45.61 200 | 61.13 121 | 89.06 30 | 32.58 187 | 74.11 82 | 59.55 89 | 84.06 40 | 94.12 17 | 75.24 3 | 88.94 27 | 86.95 25 | 91.74 7 | 88.81 13 |
|
AdaColmap |  | | 74.73 64 | 77.57 73 | 71.40 47 | 76.90 43 | 75.76 45 | 84.54 47 | 53.08 60 | 76.20 70 | 66.64 76 | 66.06 150 | 78.16 144 | 61.32 60 | 85.37 48 | 82.20 51 | 85.95 59 | 79.27 67 |
|
v7n | | | 74.47 65 | 81.06 57 | 66.77 73 | 66.98 95 | 67.10 80 | 76.76 90 | 45.88 99 | 81.98 42 | 67.43 70 | 88.38 15 | 95.67 10 | 61.38 59 | 80.76 82 | 73.49 98 | 82.21 89 | 80.06 64 |
|
PCF-MVS | | 65.25 14 | 73.99 66 | 76.74 78 | 70.79 50 | 71.61 67 | 75.33 51 | 83.76 52 | 50.40 70 | 74.88 74 | 74.50 32 | 67.60 138 | 85.36 112 | 58.30 76 | 78.61 92 | 74.25 93 | 86.15 56 | 81.13 60 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MCST-MVS | | | 73.84 67 | 77.44 74 | 69.63 59 | 73.75 61 | 74.73 53 | 81.38 67 | 48.58 77 | 74.77 75 | 69.16 62 | 71.97 125 | 86.20 106 | 59.50 71 | 78.51 93 | 74.06 95 | 85.42 61 | 81.85 54 |
|
MVS_0304 | | | 73.74 68 | 77.16 76 | 69.74 58 | 74.24 56 | 73.47 59 | 84.70 46 | 49.62 71 | 62.26 141 | 67.27 71 | 75.87 101 | 87.57 88 | 57.49 81 | 81.20 76 | 79.50 65 | 85.10 62 | 80.27 63 |
|
TSAR-MVS + GP. | | | 73.42 69 | 76.31 79 | 70.05 55 | 77.15 41 | 71.13 73 | 81.59 66 | 54.11 55 | 69.84 112 | 58.65 92 | 66.20 149 | 78.77 141 | 65.29 37 | 83.65 59 | 83.14 42 | 83.54 75 | 81.47 58 |
|
Gipuma |  | | 73.40 70 | 79.27 64 | 66.55 77 | 63.64 119 | 59.35 129 | 70.28 123 | 45.92 98 | 83.79 27 | 71.78 40 | 84.04 41 | 93.07 24 | 68.69 27 | 87.90 34 | 76.76 81 | 78.98 110 | 69.96 118 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVS_111021_HR | | | 72.37 71 | 76.12 82 | 68.00 64 | 68.55 86 | 64.30 106 | 82.93 57 | 48.98 75 | 74.25 80 | 65.39 78 | 73.59 117 | 84.11 120 | 59.48 72 | 82.61 69 | 78.38 69 | 82.66 84 | 75.59 87 |
|
TinyColmap | | | 71.85 72 | 76.11 83 | 66.87 72 | 66.07 100 | 65.34 93 | 74.35 103 | 49.30 74 | 79.93 57 | 75.93 28 | 75.66 103 | 87.74 85 | 54.72 97 | 80.66 83 | 70.42 117 | 80.85 97 | 73.02 102 |
|
UniMVSNet_ETH3D | | | 71.84 73 | 81.36 56 | 60.74 108 | 76.46 44 | 66.01 87 | 66.49 141 | 60.24 27 | 86.58 8 | 41.87 163 | 90.04 11 | 96.02 5 | 43.72 151 | 85.14 50 | 77.30 78 | 75.64 130 | 68.40 132 |
|
TranMVSNet+NR-MVSNet | | | 71.66 74 | 79.23 66 | 62.83 101 | 72.54 65 | 65.64 89 | 74.77 101 | 55.27 48 | 75.91 72 | 45.50 152 | 89.55 13 | 94.25 15 | 45.96 142 | 82.74 68 | 77.03 80 | 82.96 80 | 69.48 125 |
|
MVS_111021_LR | | | 71.60 75 | 75.21 86 | 67.38 69 | 67.42 91 | 62.44 113 | 81.73 64 | 46.24 96 | 70.89 99 | 66.80 75 | 73.19 119 | 84.98 113 | 60.09 65 | 81.94 73 | 77.77 76 | 82.00 90 | 75.29 88 |
|
EG-PatchMatch MVS | | | 71.50 76 | 76.82 77 | 65.30 85 | 70.74 74 | 66.50 84 | 74.23 105 | 43.25 120 | 72.02 91 | 59.11 90 | 79.85 80 | 86.88 100 | 63.95 45 | 80.29 85 | 75.25 89 | 80.51 98 | 76.98 82 |
|
DPM-MVS | | | 71.35 77 | 73.50 103 | 68.84 62 | 74.93 54 | 73.35 60 | 84.07 49 | 50.56 68 | 71.91 92 | 67.06 74 | 61.21 171 | 77.02 149 | 52.64 109 | 74.15 112 | 75.14 90 | 83.79 71 | 81.74 56 |
|
UniMVSNet (Re) | | | 71.29 78 | 78.14 69 | 63.30 96 | 70.29 78 | 66.57 83 | 75.98 92 | 54.74 53 | 70.20 105 | 46.20 150 | 85.08 35 | 93.21 21 | 48.19 130 | 82.50 70 | 78.33 70 | 84.40 65 | 71.08 113 |
|
CLD-MVS | | | 71.24 79 | 78.12 70 | 63.20 98 | 74.03 58 | 71.60 71 | 82.82 59 | 32.91 184 | 74.23 81 | 69.32 61 | 79.65 82 | 91.54 39 | 47.02 138 | 81.22 75 | 79.01 66 | 73.09 145 | 69.63 121 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 71.07 80 | 75.09 88 | 66.39 78 | 72.57 64 | 71.53 72 | 82.38 61 | 47.10 88 | 59.81 147 | 59.81 88 | 74.97 107 | 84.37 119 | 54.25 100 | 79.89 88 | 77.64 77 | 82.25 88 | 77.40 79 |
|
v1192 | | | 71.06 81 | 74.87 90 | 66.61 75 | 66.38 97 | 65.80 88 | 78.27 79 | 45.28 104 | 70.19 106 | 70.79 50 | 83.37 45 | 91.79 37 | 58.76 75 | 70.86 145 | 69.02 124 | 80.16 101 | 73.08 100 |
|
DU-MVS | | | 71.03 82 | 77.92 71 | 62.98 100 | 70.81 71 | 65.48 91 | 73.93 108 | 56.76 36 | 69.95 110 | 46.77 146 | 85.70 31 | 93.49 19 | 46.91 139 | 83.47 60 | 77.82 75 | 82.72 83 | 69.54 122 |
|
v1240 | | | 70.94 83 | 74.52 94 | 66.76 74 | 66.54 96 | 64.40 102 | 77.76 83 | 45.29 103 | 70.05 108 | 71.45 42 | 83.36 47 | 90.96 50 | 60.37 63 | 70.50 148 | 68.68 125 | 79.14 108 | 73.68 96 |
|
v1921920 | | | 70.82 84 | 74.46 96 | 66.58 76 | 66.33 98 | 64.35 105 | 77.72 84 | 45.07 106 | 70.39 102 | 71.18 45 | 83.15 49 | 90.62 59 | 59.97 67 | 70.90 143 | 68.43 132 | 79.19 107 | 73.39 97 |
|
UniMVSNet_NR-MVSNet | | | 70.82 84 | 77.44 74 | 63.11 99 | 71.75 66 | 66.02 86 | 73.93 108 | 55.00 51 | 70.90 98 | 46.77 146 | 86.68 25 | 91.54 39 | 46.91 139 | 81.07 79 | 76.32 85 | 84.28 66 | 69.54 122 |
|
PVSNet_Blended_VisFu | | | 70.70 86 | 73.62 102 | 67.28 71 | 63.53 121 | 72.96 61 | 77.97 81 | 52.10 64 | 63.65 135 | 62.66 84 | 71.14 127 | 73.46 159 | 63.55 48 | 79.35 91 | 75.34 88 | 83.90 69 | 79.43 66 |
|
v144192 | | | 70.68 87 | 74.40 98 | 66.34 79 | 65.94 102 | 64.38 103 | 77.63 85 | 45.18 105 | 69.97 109 | 70.11 54 | 82.70 54 | 90.77 53 | 59.84 69 | 71.43 141 | 68.46 128 | 79.31 106 | 73.08 100 |
|
FPMVS | | | 70.46 88 | 74.89 89 | 65.28 86 | 69.09 84 | 61.42 119 | 77.07 88 | 46.92 91 | 76.73 69 | 53.53 110 | 67.33 139 | 75.07 155 | 67.23 29 | 83.41 62 | 81.54 56 | 77.86 117 | 78.73 72 |
|
v1144 | | | 70.45 89 | 74.50 95 | 65.73 81 | 65.74 104 | 64.88 97 | 77.33 87 | 44.16 113 | 70.59 101 | 69.63 59 | 83.15 49 | 91.42 42 | 57.79 77 | 71.29 142 | 68.53 127 | 79.72 104 | 71.63 112 |
|
v10 | | | 70.25 90 | 74.59 93 | 65.19 87 | 65.32 107 | 66.46 85 | 76.60 91 | 44.84 109 | 67.38 121 | 67.21 72 | 82.75 53 | 90.56 60 | 57.70 79 | 71.69 138 | 68.63 126 | 79.44 105 | 74.67 91 |
|
Effi-MVS+-dtu | | | 70.10 91 | 73.76 101 | 65.82 80 | 70.23 79 | 74.92 52 | 79.47 76 | 44.49 112 | 56.98 162 | 54.34 104 | 64.26 156 | 84.78 116 | 59.97 67 | 80.96 81 | 80.38 58 | 86.44 52 | 74.05 94 |
|
MAR-MVS | | | 70.00 92 | 72.28 114 | 67.34 70 | 69.89 80 | 72.57 67 | 80.09 73 | 49.49 73 | 60.28 146 | 69.03 63 | 59.29 181 | 80.79 131 | 54.68 98 | 78.39 95 | 76.00 86 | 80.87 96 | 78.67 73 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Vis-MVSNet |  | | 69.95 93 | 77.69 72 | 60.91 107 | 60.67 135 | 66.71 81 | 77.94 82 | 48.58 77 | 69.10 115 | 45.78 151 | 80.21 77 | 83.58 123 | 53.41 105 | 82.92 67 | 80.11 62 | 79.08 109 | 81.21 59 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EPP-MVSNet | | | 69.51 94 | 76.17 80 | 61.74 105 | 68.38 89 | 66.60 82 | 71.77 114 | 46.98 89 | 73.60 85 | 41.79 164 | 82.06 60 | 69.65 170 | 52.51 110 | 83.41 62 | 79.94 63 | 89.02 30 | 77.94 77 |
|
3Dnovator | | 65.69 13 | 69.43 95 | 75.74 85 | 62.06 104 | 60.78 134 | 70.50 75 | 75.85 95 | 39.57 154 | 74.44 77 | 57.41 95 | 75.91 99 | 77.73 146 | 55.34 93 | 76.86 99 | 75.61 87 | 83.44 76 | 79.14 69 |
|
Effi-MVS+ | | | 69.04 96 | 73.01 107 | 64.40 91 | 67.20 93 | 64.83 99 | 74.87 100 | 43.97 115 | 63.33 137 | 60.90 86 | 73.06 120 | 85.79 109 | 55.61 90 | 73.58 118 | 76.41 84 | 83.84 70 | 74.09 93 |
|
v2v482 | | | 69.01 97 | 73.39 105 | 63.89 93 | 63.86 114 | 62.99 110 | 75.26 98 | 42.05 129 | 70.22 104 | 68.46 66 | 82.64 55 | 91.61 38 | 55.38 91 | 70.89 144 | 66.93 146 | 78.30 113 | 68.48 131 |
|
MSDG | | | 68.98 98 | 73.31 106 | 63.92 92 | 67.08 94 | 68.27 78 | 75.41 97 | 40.77 145 | 67.61 119 | 64.89 79 | 75.75 102 | 78.96 138 | 53.70 102 | 76.72 101 | 73.95 96 | 81.71 93 | 71.93 110 |
|
v8 | | | 68.77 99 | 73.50 103 | 63.26 97 | 63.74 117 | 64.47 101 | 74.22 106 | 42.07 128 | 67.30 122 | 64.89 79 | 82.08 59 | 90.23 63 | 56.50 88 | 71.85 137 | 66.57 147 | 78.14 114 | 72.02 108 |
|
NR-MVSNet | | | 68.66 100 | 76.15 81 | 59.93 112 | 65.49 105 | 65.48 91 | 74.42 102 | 56.76 36 | 69.95 110 | 45.38 153 | 85.70 31 | 91.13 45 | 34.68 180 | 74.52 111 | 76.75 82 | 82.83 82 | 69.49 124 |
|
USDC | | | 68.53 101 | 71.82 120 | 64.68 89 | 63.53 121 | 61.87 117 | 70.12 124 | 46.98 89 | 77.89 63 | 76.58 24 | 68.55 134 | 86.88 100 | 50.50 117 | 73.73 115 | 65.62 149 | 80.39 99 | 68.21 134 |
|
IS_MVSNet | | | 68.20 102 | 74.41 97 | 60.96 106 | 68.55 86 | 64.36 104 | 71.47 116 | 48.33 79 | 70.11 107 | 43.30 159 | 80.90 71 | 74.54 157 | 47.19 137 | 81.25 74 | 77.97 74 | 86.94 47 | 71.76 111 |
|
Baseline_NR-MVSNet | | | 68.15 103 | 75.12 87 | 60.02 111 | 70.81 71 | 55.67 151 | 75.88 94 | 53.40 57 | 71.25 95 | 43.96 157 | 85.88 29 | 92.68 28 | 45.76 143 | 83.47 60 | 68.34 133 | 70.34 162 | 68.58 130 |
|
GeoE | | | 68.11 104 | 72.10 118 | 63.47 95 | 67.32 92 | 62.42 114 | 78.32 78 | 43.22 121 | 64.06 134 | 55.72 102 | 73.97 113 | 84.58 117 | 55.35 92 | 76.09 105 | 70.41 118 | 80.89 95 | 73.14 99 |
|
Fast-Effi-MVS+ | | | 67.71 105 | 72.54 111 | 62.07 103 | 63.83 115 | 63.68 107 | 75.74 96 | 39.94 151 | 60.89 145 | 54.29 105 | 73.00 121 | 86.19 107 | 56.85 84 | 78.46 94 | 73.23 99 | 81.74 92 | 72.36 106 |
|
thisisatest0515 | | | 66.95 106 | 72.29 113 | 60.72 109 | 56.37 158 | 56.05 149 | 71.08 117 | 38.81 158 | 67.59 120 | 53.26 113 | 78.21 90 | 79.79 136 | 60.11 64 | 75.69 107 | 73.02 101 | 84.69 63 | 75.66 86 |
|
EPNet | | | 66.87 107 | 68.89 131 | 64.53 90 | 73.97 59 | 61.13 121 | 78.46 77 | 61.03 20 | 56.78 164 | 53.41 111 | 66.91 144 | 70.91 165 | 43.49 152 | 76.08 106 | 76.68 83 | 76.81 121 | 73.73 95 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
canonicalmvs | | | 66.37 108 | 74.37 99 | 57.04 129 | 65.89 103 | 65.06 94 | 62.58 158 | 42.55 123 | 76.82 68 | 46.87 145 | 67.33 139 | 86.38 104 | 45.49 145 | 76.77 100 | 71.85 107 | 78.87 111 | 76.35 83 |
|
QAPM | | | 66.36 109 | 72.76 110 | 58.90 117 | 59.57 142 | 65.01 95 | 64.05 154 | 41.17 140 | 73.09 87 | 56.82 97 | 69.42 130 | 77.78 145 | 55.07 95 | 73.00 123 | 72.07 105 | 76.71 122 | 78.96 70 |
|
casdiffmvs | | | 66.19 110 | 72.34 112 | 59.02 116 | 62.75 125 | 60.61 127 | 69.06 129 | 41.38 137 | 69.49 113 | 54.11 106 | 84.00 42 | 89.74 70 | 49.12 125 | 70.74 147 | 62.70 164 | 77.70 119 | 69.14 128 |
|
V42 | | | 65.79 111 | 72.11 117 | 58.42 121 | 51.89 180 | 58.69 131 | 73.80 110 | 34.50 176 | 65.40 129 | 57.10 96 | 79.54 84 | 89.09 74 | 57.51 80 | 71.98 135 | 67.83 141 | 75.70 128 | 72.26 107 |
|
IterMVS-LS | | | 65.76 112 | 70.85 125 | 59.81 114 | 65.33 106 | 57.78 136 | 64.63 151 | 48.02 82 | 65.65 128 | 51.05 123 | 81.31 67 | 77.47 147 | 54.94 96 | 69.46 156 | 69.36 123 | 74.90 134 | 74.95 89 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PM-MVS | | | 65.66 113 | 71.25 124 | 59.14 115 | 58.92 148 | 54.88 160 | 73.66 112 | 38.55 161 | 66.12 126 | 49.91 131 | 69.87 128 | 86.97 98 | 60.61 62 | 76.30 103 | 74.75 91 | 73.19 143 | 69.83 119 |
|
UGNet | | | 65.61 114 | 74.79 91 | 54.91 138 | 54.54 174 | 68.20 79 | 70.97 120 | 48.21 80 | 67.14 124 | 41.67 165 | 74.15 112 | 80.65 132 | 36.10 175 | 79.39 90 | 77.99 72 | 77.95 116 | 76.01 84 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DELS-MVS | | | 65.54 115 | 71.79 121 | 58.24 124 | 59.68 141 | 65.55 90 | 70.99 118 | 38.69 160 | 62.29 140 | 49.27 134 | 75.03 106 | 81.42 128 | 50.93 113 | 73.71 117 | 71.35 108 | 79.90 103 | 73.20 98 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
pmmvs-eth3d | | | 65.36 116 | 70.09 128 | 59.85 113 | 63.05 124 | 53.61 163 | 74.29 104 | 46.45 94 | 68.14 118 | 51.45 119 | 78.83 88 | 85.78 110 | 49.87 123 | 70.44 149 | 70.45 116 | 74.00 138 | 63.38 154 |
|
v148 | | | 64.92 117 | 70.58 127 | 58.32 122 | 59.89 139 | 57.09 142 | 66.04 143 | 35.27 175 | 69.11 114 | 60.66 87 | 79.57 83 | 90.93 51 | 53.91 101 | 69.81 155 | 62.22 165 | 74.14 136 | 65.31 146 |
|
CS-MVS | | | 64.89 118 | 64.54 148 | 65.31 84 | 68.39 88 | 61.63 118 | 75.90 93 | 43.28 119 | 54.33 169 | 63.06 83 | 55.59 194 | 62.41 184 | 56.76 85 | 77.69 97 | 70.80 115 | 84.46 64 | 69.33 126 |
|
FC-MVSNet-train | | | 64.87 119 | 74.76 92 | 53.33 142 | 65.24 108 | 58.05 133 | 69.69 126 | 41.92 132 | 70.99 97 | 32.62 186 | 85.75 30 | 88.23 79 | 32.10 190 | 77.61 98 | 74.41 92 | 78.43 112 | 68.25 133 |
|
pmmvs6 | | | 64.78 120 | 75.82 84 | 51.89 148 | 62.41 126 | 57.13 141 | 60.24 165 | 45.59 101 | 82.90 35 | 34.69 179 | 84.83 36 | 93.18 22 | 36.22 174 | 76.43 102 | 71.13 111 | 72.21 149 | 65.12 147 |
|
OpenMVS |  | 60.79 16 | 64.42 121 | 69.72 129 | 58.23 125 | 61.63 130 | 62.17 115 | 64.11 153 | 37.54 169 | 67.17 123 | 55.71 103 | 65.89 151 | 74.89 156 | 52.67 108 | 72.20 133 | 68.29 135 | 77.73 118 | 77.39 80 |
|
DCV-MVSNet | | | 64.34 122 | 72.84 109 | 54.42 140 | 63.79 116 | 62.09 116 | 62.50 159 | 42.72 122 | 74.32 79 | 41.34 166 | 66.96 142 | 88.57 77 | 39.18 163 | 75.20 109 | 70.35 119 | 77.01 120 | 72.37 105 |
|
ETV-MVS | | | 64.30 123 | 64.76 146 | 63.77 94 | 68.59 85 | 62.49 112 | 77.02 89 | 45.31 102 | 49.27 191 | 50.88 124 | 56.23 192 | 59.91 193 | 57.12 83 | 80.19 87 | 74.23 94 | 83.68 72 | 71.03 114 |
|
Anonymous20231211 | | | 63.69 124 | 72.86 108 | 53.00 145 | 63.72 118 | 60.25 128 | 60.33 164 | 40.96 141 | 72.49 89 | 38.91 169 | 81.77 65 | 88.17 80 | 37.60 169 | 73.30 120 | 68.01 138 | 76.47 126 | 66.06 143 |
|
TransMVSNet (Re) | | | 63.49 125 | 73.86 100 | 51.39 154 | 64.26 113 | 56.07 148 | 61.17 162 | 42.23 126 | 78.81 62 | 34.80 177 | 85.94 27 | 90.63 58 | 34.35 184 | 72.73 128 | 67.98 139 | 71.50 152 | 64.84 148 |
|
DI_MVS_plusplus_trai | | | 63.43 126 | 67.54 135 | 58.63 118 | 62.34 127 | 58.06 132 | 65.75 147 | 42.15 127 | 63.05 138 | 53.28 112 | 75.88 100 | 75.92 152 | 50.18 119 | 68.04 159 | 64.20 155 | 78.07 115 | 67.65 135 |
|
EIA-MVS | | | 63.24 127 | 64.16 151 | 62.16 102 | 69.30 83 | 63.20 109 | 72.40 113 | 40.82 144 | 48.31 197 | 51.50 118 | 59.63 179 | 62.23 185 | 57.33 82 | 78.00 96 | 71.94 106 | 81.59 94 | 65.82 144 |
|
Fast-Effi-MVS+-dtu | | | 63.22 128 | 65.55 140 | 60.49 110 | 61.24 132 | 64.70 100 | 74.15 107 | 53.24 59 | 51.46 176 | 49.67 132 | 58.03 187 | 78.42 142 | 48.05 132 | 72.03 134 | 71.14 110 | 76.60 125 | 63.09 155 |
|
IterMVS-SCA-FT | | | 62.67 129 | 68.00 133 | 56.45 135 | 56.92 156 | 64.92 96 | 57.51 177 | 38.12 162 | 59.44 148 | 53.62 109 | 74.74 110 | 71.60 162 | 64.84 39 | 70.24 151 | 65.27 151 | 67.70 170 | 69.83 119 |
|
diffmvs | | | 62.64 130 | 69.66 130 | 54.46 139 | 56.19 161 | 55.06 157 | 67.36 138 | 36.74 173 | 64.18 132 | 50.58 125 | 79.54 84 | 87.55 89 | 45.13 147 | 68.04 159 | 63.20 160 | 70.78 157 | 70.02 117 |
|
MVS_Test | | | 62.58 131 | 67.46 136 | 56.89 131 | 59.52 143 | 55.90 150 | 64.94 149 | 38.83 157 | 57.08 161 | 56.55 100 | 76.53 97 | 84.49 118 | 47.45 134 | 66.95 162 | 62.01 166 | 74.04 137 | 69.27 127 |
|
MDA-MVSNet-bldmvs | | | 62.46 132 | 72.13 116 | 51.19 156 | 34.32 210 | 56.10 147 | 68.65 131 | 38.85 156 | 69.05 116 | 49.50 133 | 78.17 91 | 85.43 111 | 51.32 111 | 86.67 39 | 67.40 144 | 64.46 175 | 62.08 157 |
|
pm-mvs1 | | | 61.97 133 | 72.01 119 | 50.25 162 | 60.64 136 | 55.23 155 | 58.67 172 | 42.44 124 | 74.40 78 | 33.63 183 | 81.03 70 | 89.86 67 | 34.87 179 | 72.93 126 | 67.95 140 | 71.28 153 | 62.65 156 |
|
FMVSNet1 | | | 61.92 134 | 71.36 122 | 50.90 158 | 57.67 155 | 59.29 130 | 59.48 170 | 44.14 114 | 70.24 103 | 34.72 178 | 75.45 105 | 84.94 114 | 36.75 171 | 72.33 130 | 68.45 129 | 72.66 146 | 68.83 129 |
|
PVSNet_BlendedMVS | | | 61.75 135 | 65.07 144 | 57.87 127 | 56.27 159 | 60.99 124 | 65.81 145 | 43.75 116 | 51.27 180 | 54.08 107 | 62.12 166 | 78.84 139 | 50.67 114 | 71.49 139 | 63.91 157 | 76.64 123 | 66.86 137 |
|
PVSNet_Blended | | | 61.75 135 | 65.07 144 | 57.87 127 | 56.27 159 | 60.99 124 | 65.81 145 | 43.75 116 | 51.27 180 | 54.08 107 | 62.12 166 | 78.84 139 | 50.67 114 | 71.49 139 | 63.91 157 | 76.64 123 | 66.86 137 |
|
tttt0517 | | | 61.44 137 | 63.85 152 | 58.62 119 | 55.20 170 | 55.61 152 | 68.80 130 | 38.02 165 | 55.70 166 | 50.01 130 | 66.93 143 | 48.90 204 | 56.69 86 | 73.84 114 | 71.10 112 | 82.99 79 | 74.89 90 |
|
tfpnnormal | | | 61.41 138 | 71.33 123 | 49.83 163 | 61.73 129 | 54.90 159 | 58.52 173 | 41.24 138 | 75.20 73 | 32.00 191 | 82.13 58 | 87.87 84 | 35.63 178 | 72.75 127 | 66.30 148 | 69.87 163 | 60.14 162 |
|
IB-MVS | | 57.02 17 | 61.37 139 | 65.39 141 | 56.69 132 | 56.65 157 | 60.85 126 | 70.70 121 | 37.90 167 | 49.37 190 | 45.37 154 | 48.75 205 | 79.14 137 | 53.55 104 | 76.26 104 | 70.85 114 | 75.97 127 | 72.50 104 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CANet_DTU | | | 61.22 140 | 67.07 137 | 54.40 141 | 59.89 139 | 63.62 108 | 70.98 119 | 36.77 172 | 50.49 183 | 47.15 141 | 62.45 164 | 80.81 130 | 37.90 168 | 71.87 136 | 70.09 121 | 73.69 139 | 70.19 116 |
|
pmmvs4 | | | 61.12 141 | 64.61 147 | 57.04 129 | 60.88 133 | 52.15 168 | 70.59 122 | 44.82 110 | 61.35 144 | 46.91 144 | 72.08 123 | 73.27 160 | 46.79 141 | 65.06 165 | 67.76 142 | 72.28 147 | 60.58 161 |
|
thisisatest0530 | | | 61.02 142 | 63.44 157 | 58.19 126 | 54.75 172 | 55.09 156 | 68.03 135 | 38.02 165 | 55.45 167 | 49.06 135 | 66.58 147 | 48.69 205 | 56.69 86 | 73.07 121 | 71.10 112 | 82.60 85 | 74.14 92 |
|
Vis-MVSNet (Re-imp) | | | 60.99 143 | 67.78 134 | 53.06 144 | 64.66 112 | 53.49 164 | 67.40 136 | 49.52 72 | 68.55 117 | 28.00 199 | 79.53 86 | 71.41 164 | 33.08 188 | 75.30 108 | 71.28 109 | 75.69 129 | 54.91 175 |
|
PatchMatch-RL | | | 60.96 144 | 63.00 160 | 58.57 120 | 59.16 147 | 52.18 167 | 67.38 137 | 41.99 130 | 57.85 156 | 48.16 136 | 53.55 201 | 69.77 169 | 59.47 73 | 73.73 115 | 72.49 104 | 75.27 133 | 61.44 159 |
|
GA-MVS | | | 60.73 145 | 64.24 150 | 56.64 133 | 59.38 146 | 57.45 140 | 65.07 148 | 36.65 174 | 57.39 159 | 58.17 93 | 73.43 118 | 69.10 173 | 47.38 135 | 64.47 170 | 63.63 159 | 73.19 143 | 64.22 151 |
|
CVMVSNet | | | 60.45 146 | 63.72 154 | 56.63 134 | 54.82 171 | 53.75 161 | 68.41 132 | 41.95 131 | 55.07 168 | 48.03 137 | 58.08 186 | 68.67 174 | 55.09 94 | 69.14 157 | 68.34 133 | 71.51 151 | 72.97 103 |
|
ET-MVSNet_ETH3D | | | 60.33 147 | 62.10 163 | 58.27 123 | 58.61 151 | 58.05 133 | 68.06 133 | 41.20 139 | 51.40 177 | 51.10 122 | 64.06 157 | 49.42 203 | 50.61 116 | 74.72 110 | 70.29 120 | 80.05 102 | 66.74 139 |
|
FC-MVSNet-test | | | 60.28 148 | 70.83 126 | 47.96 174 | 54.69 173 | 47.12 182 | 68.06 133 | 41.68 136 | 71.42 93 | 23.73 207 | 84.70 38 | 77.41 148 | 28.92 194 | 82.33 71 | 73.08 100 | 70.68 158 | 59.77 164 |
|
EU-MVSNet | | | 59.77 149 | 66.07 138 | 52.42 146 | 47.81 189 | 51.86 170 | 62.98 157 | 32.28 189 | 62.08 142 | 47.10 142 | 59.94 177 | 83.42 124 | 53.08 107 | 70.06 154 | 63.19 161 | 71.26 155 | 71.96 109 |
|
IterMVS | | | 59.24 150 | 64.45 149 | 53.16 143 | 50.98 182 | 61.29 120 | 66.51 140 | 32.85 185 | 58.17 152 | 46.31 149 | 72.58 122 | 70.23 167 | 54.26 99 | 64.81 168 | 60.24 170 | 68.04 169 | 63.81 153 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 59.15 151 | 62.28 162 | 55.49 137 | 52.42 178 | 62.59 111 | 71.76 115 | 39.74 152 | 50.25 185 | 41.92 162 | 62.88 162 | 69.16 172 | 55.85 89 | 62.77 175 | 67.18 145 | 71.27 154 | 61.11 160 |
|
thres600view7 | | | 58.87 152 | 65.91 139 | 50.66 160 | 61.27 131 | 56.32 145 | 59.88 168 | 40.63 147 | 64.88 130 | 32.10 190 | 64.82 153 | 69.83 168 | 36.72 172 | 72.99 124 | 72.55 103 | 73.34 141 | 59.97 163 |
|
CMPMVS |  | 45.32 18 | 58.10 153 | 65.24 143 | 49.76 164 | 47.88 188 | 46.86 185 | 48.16 202 | 32.82 186 | 58.06 153 | 61.35 85 | 59.64 178 | 80.00 133 | 47.27 136 | 70.15 152 | 64.10 156 | 61.08 178 | 77.85 78 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MDTV_nov1_ep13_2view | | | 58.09 154 | 63.54 156 | 51.74 150 | 50.13 184 | 46.56 186 | 66.95 139 | 33.41 182 | 63.52 136 | 58.77 91 | 74.84 108 | 84.10 121 | 43.12 153 | 65.95 164 | 54.69 184 | 58.04 184 | 55.13 174 |
|
CDS-MVSNet | | | 57.90 155 | 63.57 155 | 51.28 155 | 62.30 128 | 53.17 165 | 64.70 150 | 51.61 67 | 57.41 158 | 32.75 185 | 63.73 158 | 70.53 166 | 27.12 196 | 72.49 129 | 73.02 101 | 69.22 166 | 54.68 176 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
FMVSNet2 | | | 57.80 156 | 65.39 141 | 48.94 170 | 55.88 162 | 57.61 137 | 57.26 178 | 42.37 125 | 58.21 151 | 33.19 184 | 68.36 135 | 75.55 154 | 34.58 181 | 66.91 163 | 64.55 153 | 70.38 159 | 66.56 140 |
|
thres400 | | | 57.25 157 | 63.73 153 | 49.70 165 | 60.19 138 | 54.95 158 | 58.16 174 | 39.60 153 | 62.42 139 | 31.98 193 | 62.33 165 | 69.20 171 | 35.96 176 | 70.07 153 | 68.03 137 | 72.28 147 | 59.12 166 |
|
gm-plane-assit | | | 56.76 158 | 57.64 177 | 55.73 136 | 66.01 101 | 55.45 154 | 74.96 99 | 30.54 194 | 73.71 84 | 56.04 101 | 81.81 63 | 30.91 221 | 43.83 149 | 58.77 185 | 54.71 183 | 63.02 177 | 48.13 191 |
|
MIMVSNet1 | | | 56.72 159 | 68.69 132 | 42.76 187 | 46.70 195 | 42.81 192 | 69.13 127 | 30.52 195 | 81.01 50 | 32.00 191 | 74.82 109 | 91.10 47 | 26.83 198 | 73.98 113 | 64.72 152 | 51.40 196 | 52.38 180 |
|
EPNet_dtu | | | 56.63 160 | 60.77 169 | 51.80 149 | 55.47 167 | 44.63 187 | 69.83 125 | 38.74 159 | 50.27 184 | 47.64 138 | 58.01 188 | 72.27 161 | 33.71 186 | 68.60 158 | 67.72 143 | 65.39 173 | 63.86 152 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
GBi-Net | | | 56.54 161 | 63.26 158 | 48.70 171 | 55.88 162 | 57.61 137 | 57.26 178 | 41.75 133 | 49.06 192 | 32.37 187 | 61.81 168 | 67.02 176 | 34.58 181 | 72.33 130 | 68.45 129 | 70.38 159 | 66.56 140 |
|
test1 | | | 56.54 161 | 63.26 158 | 48.70 171 | 55.88 162 | 57.61 137 | 57.26 178 | 41.75 133 | 49.06 192 | 32.37 187 | 61.81 168 | 67.02 176 | 34.58 181 | 72.33 130 | 68.45 129 | 70.38 159 | 66.56 140 |
|
gg-mvs-nofinetune | | | 56.45 163 | 61.04 167 | 51.10 157 | 63.42 123 | 49.40 178 | 53.71 189 | 52.52 62 | 74.77 75 | 46.93 143 | 77.31 95 | 53.88 197 | 26.42 200 | 62.51 176 | 57.81 176 | 63.60 176 | 51.57 183 |
|
thres200 | | | 56.35 164 | 62.36 161 | 49.34 167 | 58.87 149 | 56.32 145 | 55.91 182 | 40.63 147 | 58.51 150 | 31.34 194 | 58.81 185 | 67.31 175 | 35.96 176 | 72.99 124 | 65.51 150 | 73.34 141 | 57.07 169 |
|
MS-PatchMatch | | | 56.31 165 | 60.22 172 | 51.73 151 | 60.53 137 | 55.53 153 | 63.41 155 | 37.18 170 | 51.34 179 | 37.44 171 | 60.53 175 | 62.19 186 | 45.52 144 | 64.25 171 | 63.17 162 | 66.33 171 | 64.56 149 |
|
tfpn200view9 | | | 56.07 166 | 61.85 164 | 49.34 167 | 58.57 152 | 56.48 144 | 58.01 176 | 40.72 146 | 53.23 170 | 31.01 195 | 56.41 190 | 66.40 180 | 34.18 185 | 73.02 122 | 68.06 136 | 73.53 140 | 59.35 165 |
|
FMVSNet3 | | | 54.77 167 | 60.73 170 | 47.81 175 | 54.29 175 | 56.88 143 | 55.89 183 | 41.75 133 | 49.06 192 | 32.37 187 | 61.81 168 | 67.02 176 | 33.67 187 | 62.88 174 | 61.96 167 | 68.88 167 | 65.53 145 |
|
thres100view900 | | | 53.88 168 | 59.19 173 | 47.68 176 | 58.57 152 | 52.74 166 | 54.45 186 | 38.07 164 | 53.23 170 | 31.01 195 | 56.41 190 | 66.40 180 | 32.80 189 | 65.03 167 | 64.43 154 | 71.18 156 | 56.10 172 |
|
CR-MVSNet | | | 53.82 169 | 55.40 181 | 51.98 147 | 51.57 181 | 50.23 173 | 45.00 204 | 44.97 107 | 46.90 199 | 52.60 115 | 67.91 136 | 46.99 212 | 48.37 128 | 59.15 183 | 59.53 173 | 69.38 165 | 57.07 169 |
|
baseline2 | | | 53.55 170 | 55.19 182 | 51.62 152 | 55.27 169 | 51.95 169 | 60.89 163 | 34.23 177 | 46.69 201 | 42.47 160 | 53.56 200 | 50.01 200 | 45.33 146 | 64.63 169 | 61.22 168 | 71.56 150 | 58.28 168 |
|
test20.03 | | | 53.49 171 | 60.95 168 | 44.78 183 | 64.73 111 | 47.25 181 | 61.58 161 | 43.30 118 | 65.86 127 | 22.85 208 | 66.87 146 | 79.85 134 | 22.99 202 | 62.38 177 | 56.95 178 | 53.25 193 | 47.46 193 |
|
baseline | | | 53.46 172 | 61.55 165 | 44.01 184 | 45.83 198 | 48.77 179 | 57.26 178 | 28.75 198 | 49.99 186 | 38.85 170 | 68.78 132 | 75.65 153 | 38.30 165 | 60.80 178 | 59.78 172 | 55.10 191 | 67.07 136 |
|
MVSTER | | | 53.08 173 | 56.39 179 | 49.21 169 | 47.19 191 | 51.08 171 | 60.14 167 | 31.74 191 | 40.63 209 | 38.97 168 | 55.78 193 | 46.74 213 | 42.47 156 | 67.29 161 | 62.99 163 | 74.73 135 | 70.23 115 |
|
CHOSEN 1792x2688 | | | 52.99 174 | 56.91 178 | 48.42 173 | 47.32 190 | 50.10 175 | 64.18 152 | 33.85 179 | 45.46 204 | 36.95 173 | 55.20 197 | 66.49 179 | 51.20 112 | 59.28 181 | 59.81 171 | 57.01 186 | 61.99 158 |
|
baseline1 | | | 52.90 175 | 58.38 174 | 46.51 182 | 58.87 149 | 50.01 176 | 54.17 187 | 40.45 150 | 56.81 163 | 29.25 198 | 62.72 163 | 58.99 194 | 30.25 192 | 65.05 166 | 60.57 169 | 66.07 172 | 54.54 177 |
|
CostFormer | | | 52.59 176 | 55.14 183 | 49.61 166 | 52.72 176 | 50.40 172 | 66.28 142 | 33.78 180 | 52.85 172 | 43.43 158 | 66.30 148 | 51.37 199 | 41.78 159 | 54.92 195 | 51.18 191 | 59.68 180 | 58.98 167 |
|
SCA | | | 52.47 177 | 53.97 185 | 50.71 159 | 46.95 194 | 57.79 135 | 60.18 166 | 46.89 92 | 51.92 175 | 46.71 148 | 60.73 172 | 49.97 201 | 47.69 133 | 56.39 192 | 52.98 188 | 55.82 188 | 48.03 192 |
|
testgi | | | 51.94 178 | 61.37 166 | 40.94 190 | 58.38 154 | 47.03 183 | 65.88 144 | 30.49 196 | 70.87 100 | 22.64 209 | 57.53 189 | 87.59 87 | 18.30 209 | 63.01 173 | 54.32 185 | 49.93 199 | 49.27 186 |
|
tpm cat1 | | | 50.98 179 | 51.28 191 | 50.62 161 | 55.74 165 | 49.92 177 | 63.13 156 | 38.12 162 | 52.38 174 | 47.61 139 | 60.11 176 | 44.51 216 | 44.86 148 | 51.31 203 | 47.49 198 | 54.25 192 | 53.24 179 |
|
RPMNet | | | 50.92 180 | 50.32 193 | 51.62 152 | 50.25 183 | 50.23 173 | 59.16 171 | 46.70 93 | 46.90 199 | 42.39 161 | 48.97 204 | 37.23 219 | 41.78 159 | 57.30 190 | 56.18 180 | 69.44 164 | 55.43 173 |
|
pmmvs5 | | | 50.64 181 | 58.01 175 | 42.05 188 | 47.01 193 | 43.67 190 | 49.27 200 | 29.43 197 | 50.77 182 | 33.83 182 | 68.69 133 | 76.16 151 | 27.82 195 | 57.53 189 | 57.07 177 | 64.95 174 | 52.18 181 |
|
PatchT | | | 50.55 182 | 53.55 187 | 47.05 180 | 37.59 209 | 42.26 193 | 50.55 197 | 37.56 168 | 46.37 202 | 52.60 115 | 66.91 144 | 43.54 218 | 48.37 128 | 59.15 183 | 59.53 173 | 55.62 189 | 57.07 169 |
|
Anonymous20231206 | | | 50.28 183 | 57.94 176 | 41.35 189 | 55.45 168 | 43.65 191 | 58.06 175 | 34.12 178 | 62.02 143 | 24.25 206 | 59.33 180 | 79.80 135 | 24.49 201 | 59.55 179 | 54.28 186 | 51.74 195 | 46.94 195 |
|
dps | | | 49.71 184 | 51.97 189 | 47.07 179 | 52.37 179 | 47.00 184 | 53.02 192 | 40.52 149 | 44.91 205 | 41.23 167 | 64.55 154 | 44.27 217 | 40.12 162 | 57.71 188 | 51.97 190 | 55.14 190 | 53.41 178 |
|
MDTV_nov1_ep13 | | | 49.60 185 | 51.57 190 | 47.31 177 | 46.28 196 | 44.61 188 | 59.82 169 | 30.96 192 | 48.80 196 | 50.20 128 | 59.26 182 | 52.38 198 | 38.56 164 | 56.20 193 | 49.70 194 | 58.04 184 | 50.01 184 |
|
PatchmatchNet |  | | 48.67 186 | 50.10 194 | 46.99 181 | 48.29 187 | 41.00 194 | 55.54 184 | 38.94 155 | 51.38 178 | 45.15 155 | 63.22 160 | 48.45 207 | 42.83 154 | 53.80 200 | 48.50 197 | 51.19 198 | 44.37 197 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
new-patchmatchnet | | | 47.33 187 | 60.49 171 | 31.99 206 | 55.69 166 | 33.86 206 | 36.84 214 | 33.31 183 | 72.36 90 | 14.33 214 | 80.09 78 | 92.14 34 | 13.27 211 | 63.54 172 | 40.09 206 | 38.51 208 | 41.32 205 |
|
tpm | | | 46.67 188 | 49.20 199 | 43.72 185 | 49.60 185 | 36.60 203 | 53.93 188 | 26.84 200 | 52.70 173 | 58.05 94 | 69.04 131 | 47.96 208 | 30.06 193 | 48.33 206 | 42.76 201 | 43.88 202 | 47.01 194 |
|
pmmvs3 | | | 46.64 189 | 54.13 184 | 37.90 197 | 31.23 214 | 40.68 195 | 49.83 199 | 15.34 211 | 46.31 203 | 36.34 175 | 53.15 202 | 74.40 158 | 36.36 173 | 58.43 186 | 56.64 179 | 58.32 183 | 49.29 185 |
|
TAMVS | | | 46.64 189 | 53.62 186 | 38.49 195 | 49.56 186 | 36.87 200 | 53.16 191 | 25.76 202 | 56.33 165 | 22.55 210 | 60.72 173 | 61.80 188 | 27.12 196 | 59.50 180 | 58.33 175 | 52.79 194 | 41.82 204 |
|
test-LLR | | | 46.01 191 | 45.06 208 | 47.11 178 | 59.39 144 | 36.72 201 | 51.28 194 | 40.95 142 | 36.41 213 | 34.45 180 | 46.14 207 | 47.02 210 | 38.00 166 | 51.78 201 | 48.53 195 | 58.60 181 | 48.84 188 |
|
MIMVSNet | | | 45.83 192 | 53.46 188 | 36.94 198 | 45.38 202 | 39.50 197 | 52.20 193 | 30.68 193 | 57.09 160 | 24.53 205 | 55.22 196 | 71.54 163 | 21.74 205 | 55.81 194 | 51.08 192 | 47.11 200 | 43.96 198 |
|
pmnet_mix02 | | | 45.67 193 | 55.99 180 | 33.63 205 | 45.77 199 | 31.22 210 | 42.04 209 | 27.60 199 | 64.14 133 | 24.89 202 | 75.50 104 | 82.30 126 | 21.88 204 | 54.53 198 | 41.22 203 | 39.62 206 | 43.05 200 |
|
test0.0.03 1 | | | 45.40 194 | 49.55 197 | 40.57 192 | 59.39 144 | 44.36 189 | 53.37 190 | 40.95 142 | 47.14 198 | 19.23 211 | 45.49 209 | 60.24 191 | 19.24 207 | 54.82 196 | 51.98 189 | 51.21 197 | 42.82 201 |
|
PMMVS | | | 45.37 195 | 49.29 198 | 40.79 191 | 27.75 215 | 35.07 205 | 50.88 196 | 19.88 208 | 39.27 211 | 35.78 176 | 50.11 203 | 61.29 189 | 42.04 157 | 54.13 199 | 55.95 181 | 68.43 168 | 49.19 187 |
|
MVS-HIRNet | | | 44.56 196 | 45.52 206 | 43.44 186 | 40.98 205 | 31.03 211 | 39.52 213 | 36.96 171 | 42.80 207 | 44.37 156 | 53.80 199 | 60.04 192 | 41.85 158 | 47.97 208 | 41.08 204 | 56.99 187 | 41.95 203 |
|
test-mter | | | 44.18 197 | 47.60 201 | 40.18 193 | 33.20 211 | 39.03 198 | 55.28 185 | 13.91 213 | 39.07 212 | 36.63 174 | 48.09 206 | 49.52 202 | 41.12 161 | 54.55 197 | 50.91 193 | 60.97 179 | 52.03 182 |
|
EMVS | | | 43.85 198 | 49.91 195 | 36.77 200 | 45.46 201 | 32.70 207 | 44.09 206 | 25.33 203 | 57.88 155 | 26.62 200 | 58.99 184 | 61.14 190 | 42.77 155 | 70.26 150 | 38.52 210 | 36.38 210 | 29.87 211 |
|
E-PMN | | | 43.83 199 | 49.81 196 | 36.84 199 | 46.09 197 | 31.86 209 | 42.77 208 | 25.85 201 | 57.76 157 | 25.53 201 | 55.50 195 | 62.47 183 | 43.77 150 | 70.78 146 | 39.51 207 | 37.04 209 | 30.79 210 |
|
tpmrst | | | 43.31 200 | 46.14 204 | 40.02 194 | 47.05 192 | 36.48 204 | 48.01 203 | 32.17 190 | 49.50 189 | 37.26 172 | 63.66 159 | 47.04 209 | 31.98 191 | 42.00 212 | 40.55 205 | 43.64 203 | 43.75 199 |
|
TESTMET0.1,1 | | | 41.79 201 | 45.06 208 | 37.97 196 | 31.32 213 | 36.72 201 | 51.28 194 | 14.17 212 | 36.41 213 | 34.45 180 | 46.14 207 | 47.02 210 | 38.00 166 | 51.78 201 | 48.53 195 | 58.60 181 | 48.84 188 |
|
ADS-MVSNet | | | 40.61 202 | 46.31 202 | 33.96 203 | 40.70 206 | 30.42 212 | 40.42 211 | 33.44 181 | 58.01 154 | 30.87 197 | 63.05 161 | 54.48 196 | 22.67 203 | 44.35 211 | 39.23 209 | 35.64 211 | 34.64 208 |
|
CHOSEN 280x420 | | | 40.24 203 | 44.14 211 | 35.69 201 | 32.36 212 | 23.58 215 | 50.30 198 | 21.21 207 | 40.94 208 | 18.84 212 | 32.75 213 | 48.65 206 | 48.13 131 | 59.16 182 | 55.31 182 | 43.28 204 | 48.62 190 |
|
EPMVS | | | 40.11 204 | 44.96 210 | 34.44 202 | 41.55 204 | 32.65 208 | 41.74 210 | 32.39 188 | 49.89 188 | 24.83 203 | 64.44 155 | 46.38 214 | 26.57 199 | 44.75 210 | 39.47 208 | 39.59 207 | 37.16 207 |
|
FMVSNet5 | | | 39.83 205 | 45.08 207 | 33.71 204 | 39.24 207 | 39.56 196 | 48.77 201 | 23.55 205 | 39.45 210 | 24.55 204 | 33.73 212 | 44.57 215 | 20.97 206 | 58.27 187 | 54.23 187 | 45.16 201 | 45.77 196 |
|
N_pmnet | | | 39.50 206 | 51.01 192 | 26.09 208 | 44.48 203 | 25.59 214 | 40.20 212 | 21.49 206 | 64.20 131 | 7.98 218 | 73.86 115 | 76.67 150 | 13.66 210 | 50.17 204 | 36.69 212 | 28.71 213 | 29.86 212 |
|
MVE |  | 28.01 19 | 35.86 207 | 43.56 212 | 26.88 207 | 22.33 217 | 19.75 217 | 30.85 217 | 23.88 204 | 49.90 187 | 10.48 216 | 43.64 210 | 61.87 187 | 48.99 127 | 47.26 209 | 42.15 202 | 24.76 214 | 40.37 206 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
new_pmnet | | | 35.76 208 | 45.64 205 | 24.22 209 | 38.59 208 | 25.83 213 | 31.87 216 | 19.24 209 | 49.06 192 | 9.01 217 | 54.34 198 | 64.73 182 | 12.46 212 | 49.21 205 | 44.91 199 | 34.17 212 | 31.41 209 |
|
PMMVS2 | | | 34.11 209 | 48.55 200 | 17.26 210 | 25.45 216 | 20.72 216 | 35.08 215 | 16.26 210 | 58.71 149 | 4.16 220 | 59.22 183 | 78.40 143 | 3.65 214 | 57.24 191 | 38.31 211 | 18.94 216 | 27.28 213 |
|
GG-mvs-BLEND | | | 31.54 210 | 46.27 203 | 14.37 211 | 0.07 222 | 48.65 180 | 42.97 207 | 0.08 219 | 44.04 206 | 1.21 222 | 39.77 211 | 57.94 195 | 0.15 218 | 48.19 207 | 42.82 200 | 41.70 205 | 42.46 202 |
|
test_method | | | 13.28 211 | 15.83 213 | 10.30 212 | 1.05 219 | 2.18 220 | 15.40 218 | 2.23 215 | 22.43 215 | 13.84 215 | 22.00 215 | 33.14 220 | 9.78 213 | 17.80 214 | 9.93 214 | 19.50 215 | 3.31 215 |
|
test123 | | | 0.53 212 | 0.60 215 | 0.46 214 | 0.22 220 | 0.25 221 | 0.33 223 | 0.13 218 | 0.66 218 | 1.37 221 | 1.10 217 | 0.00 225 | 0.43 216 | 0.68 216 | 0.61 215 | 0.26 219 | 0.88 216 |
|
testmvs | | | 0.47 213 | 0.69 214 | 0.21 215 | 0.17 221 | 0.17 222 | 0.35 222 | 0.16 217 | 0.66 218 | 0.18 223 | 1.05 218 | 0.99 224 | 0.27 217 | 0.62 217 | 0.54 216 | 0.15 220 | 0.77 217 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 225 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 225 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 225 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 70.04 56 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 83.64 122 | | | | | |
|
SR-MVS | | | | | | 81.31 9 | | | 62.63 9 | | | | 91.11 46 | | | | | |
|
Anonymous202405211 | | | | 72.22 115 | | 66.19 99 | 61.09 123 | 62.23 160 | 45.87 100 | 71.25 95 | | 79.33 87 | 86.16 108 | 37.36 170 | 73.54 119 | 69.84 122 | 75.45 131 | 64.32 150 |
|
our_test_3 | | | | | | 52.72 176 | 53.66 162 | 69.11 128 | | | | | | | | | | |
|
ambc | | | | 79.96 63 | | 74.57 55 | 75.48 49 | 73.75 111 | | 80.32 55 | 72.34 38 | 78.46 89 | 92.41 30 | 59.05 74 | 80.24 86 | 73.95 96 | 75.41 132 | 78.85 71 |
|
MTAPA | | | | | | | | | | | 80.26 8 | | 90.53 62 | | | | | |
|
MTMP | | | | | | | | | | | 82.07 4 | | 91.00 49 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.05 221 | | | | | | | | | | |
|
tmp_tt | | | | | 7.47 213 | 8.89 218 | 3.32 219 | 4.35 220 | 1.14 216 | 15.58 217 | 15.76 213 | 8.50 216 | 5.90 223 | 2.00 215 | 20.02 213 | 21.51 213 | 12.70 217 | |
|
XVS | | | | | | 80.47 20 | 81.29 12 | 93.33 3 | | | 77.45 20 | | 90.19 64 | | | | 91.52 11 | |
|
X-MVStestdata | | | | | | 80.47 20 | 81.29 12 | 93.33 3 | | | 77.45 20 | | 90.19 64 | | | | 91.52 11 | |
|
abl_6 | | | | | 65.41 83 | 69.37 82 | 74.02 57 | 82.50 60 | 47.39 85 | 66.39 125 | 56.63 99 | 60.61 174 | 82.76 125 | 53.68 103 | | | 82.92 81 | 78.39 76 |
|
mPP-MVS | | | | | | 82.97 2 | | | | | | | 92.12 35 | | | | | |
|
NP-MVS | | | | | | | | | | 71.39 94 | | | | | | | | |
|
Patchmtry | | | | | | | 37.73 199 | 45.00 204 | 44.97 107 | | 52.60 115 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 8.52 218 | 9.75 219 | 3.19 214 | 16.70 216 | 5.02 219 | 23.06 214 | 19.33 222 | 18.69 208 | 13.75 215 | | 11.34 218 | 25.07 214 |
|