LTVRE_ROB | | 95.06 1 | 97.73 1 | 98.39 2 | 96.95 1 | 96.33 51 | 96.94 35 | 98.30 22 | 94.90 15 | 98.61 2 | 97.73 3 | 97.97 24 | 98.57 23 | 95.74 4 | 99.24 1 | 98.70 4 | 98.72 8 | 98.70 1 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 97.59 2 | 98.32 3 | 96.73 4 | 95.90 67 | 98.10 2 | 99.08 2 | 93.92 32 | 98.24 4 | 96.44 13 | 98.12 20 | 97.86 52 | 96.06 2 | 99.24 1 | 98.93 1 | 99.00 2 | 97.77 4 |
|
WR-MVS | | | 97.53 3 | 98.20 4 | 96.76 3 | 96.93 29 | 98.17 1 | 98.60 10 | 96.67 7 | 96.39 14 | 94.46 32 | 99.14 1 | 98.92 11 | 94.57 15 | 99.06 3 | 98.80 2 | 99.32 1 | 96.92 26 |
|
SixPastTwentyTwo | | | 97.36 4 | 97.73 10 | 96.92 2 | 97.36 13 | 96.15 55 | 98.29 23 | 94.43 24 | 96.50 12 | 96.96 7 | 98.74 6 | 98.74 18 | 96.04 3 | 99.03 5 | 97.74 18 | 98.44 23 | 97.22 14 |
|
PS-CasMVS | | | 97.22 5 | 97.84 7 | 96.50 5 | 97.08 25 | 97.92 6 | 98.17 31 | 97.02 2 | 94.71 26 | 95.32 21 | 98.52 13 | 98.97 9 | 92.91 40 | 99.04 4 | 98.47 6 | 98.49 19 | 97.24 13 |
|
PEN-MVS | | | 97.16 6 | 97.87 6 | 96.33 12 | 97.20 21 | 97.97 4 | 98.25 26 | 96.86 6 | 95.09 24 | 94.93 26 | 98.66 8 | 99.16 6 | 92.27 50 | 98.98 6 | 98.39 8 | 98.49 19 | 96.83 30 |
|
DTE-MVSNet | | | 97.16 6 | 97.75 9 | 96.47 6 | 97.40 12 | 97.95 5 | 98.20 29 | 96.89 5 | 95.30 19 | 95.15 24 | 98.66 8 | 98.80 16 | 92.77 44 | 98.97 7 | 98.27 10 | 98.44 23 | 96.28 41 |
|
COLMAP_ROB |  | 93.74 2 | 97.09 8 | 97.98 5 | 96.05 18 | 95.97 63 | 97.78 9 | 98.56 11 | 91.72 82 | 97.53 8 | 96.01 15 | 98.14 19 | 98.76 17 | 95.28 5 | 98.76 12 | 98.23 11 | 98.77 6 | 96.67 35 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
WR-MVS_H | | | 97.06 9 | 97.78 8 | 96.23 14 | 96.74 37 | 98.04 3 | 98.25 26 | 97.32 1 | 94.40 33 | 93.71 52 | 98.55 11 | 98.89 12 | 92.97 37 | 98.91 9 | 98.45 7 | 98.38 28 | 97.19 15 |
|
CP-MVSNet | | | 96.97 10 | 97.42 14 | 96.44 7 | 97.06 26 | 97.82 8 | 98.12 33 | 96.98 3 | 93.50 46 | 95.21 23 | 97.98 23 | 98.44 25 | 92.83 43 | 98.93 8 | 98.37 9 | 98.46 22 | 96.91 27 |
|
test_part1 | | | 96.91 11 | 98.63 1 | 94.90 45 | 94.62 98 | 97.75 11 | 98.33 21 | 93.88 34 | 98.92 1 | 93.11 67 | 99.06 2 | 99.66 1 | 90.49 89 | 98.84 11 | 98.61 5 | 98.97 3 | 97.60 7 |
|
ACMH | | 90.17 8 | 96.61 12 | 97.69 12 | 95.35 31 | 95.29 83 | 96.94 35 | 98.43 15 | 92.05 70 | 98.04 5 | 95.38 19 | 98.07 21 | 99.25 5 | 93.23 33 | 98.35 17 | 97.16 40 | 97.72 50 | 96.00 47 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 96.56 13 | 96.73 24 | 96.36 10 | 98.99 1 | 97.90 7 | 97.79 43 | 95.64 10 | 92.78 60 | 92.54 75 | 96.23 68 | 95.02 126 | 94.31 18 | 98.43 16 | 98.12 12 | 98.89 4 | 98.58 2 |
|
ACMMPR | | | 96.54 14 | 96.71 25 | 96.35 11 | 97.55 9 | 97.63 12 | 98.62 9 | 94.54 19 | 94.45 30 | 94.19 38 | 95.04 93 | 97.35 64 | 94.92 10 | 97.85 30 | 97.50 27 | 98.26 29 | 97.17 16 |
|
v7n | | | 96.49 15 | 97.20 18 | 95.65 23 | 95.57 77 | 96.04 57 | 97.93 38 | 92.49 55 | 96.40 13 | 97.13 6 | 98.99 3 | 99.41 4 | 93.79 26 | 97.84 32 | 96.15 61 | 97.00 77 | 95.60 55 |
|
DeepC-MVS | | 92.47 4 | 96.44 16 | 96.75 23 | 96.08 17 | 97.57 7 | 97.19 31 | 97.96 37 | 94.28 25 | 95.29 20 | 94.92 27 | 98.31 18 | 96.92 76 | 93.69 27 | 96.81 62 | 96.50 51 | 98.06 39 | 96.27 42 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMM | | 90.06 9 | 96.31 17 | 96.42 32 | 96.19 15 | 97.21 20 | 97.16 33 | 98.71 5 | 93.79 38 | 94.35 34 | 93.81 46 | 92.80 124 | 98.23 33 | 95.11 6 | 98.07 22 | 97.45 29 | 98.51 18 | 96.86 29 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 89.90 10 | 96.27 18 | 97.52 13 | 94.81 46 | 95.19 86 | 97.18 32 | 97.97 36 | 92.52 53 | 96.72 10 | 90.50 121 | 97.31 44 | 99.11 7 | 94.10 20 | 98.67 13 | 97.90 15 | 98.56 16 | 95.79 51 |
|
APDe-MVS | | | 96.23 19 | 97.22 17 | 95.08 40 | 96.66 41 | 97.56 15 | 98.63 8 | 93.69 42 | 94.62 27 | 89.80 130 | 97.73 32 | 98.13 37 | 93.84 25 | 97.79 34 | 97.63 20 | 97.87 46 | 97.08 21 |
|
CP-MVS | | | 96.21 20 | 96.16 43 | 96.27 13 | 97.56 8 | 97.13 34 | 98.43 15 | 94.70 18 | 92.62 63 | 94.13 41 | 92.71 125 | 98.03 43 | 94.54 16 | 98.00 26 | 97.60 22 | 98.23 31 | 97.05 22 |
|
zzz-MVS | | | 96.18 21 | 96.01 46 | 96.38 8 | 98.30 2 | 96.18 54 | 98.51 13 | 94.48 23 | 94.56 28 | 94.81 30 | 91.73 134 | 96.96 74 | 94.30 19 | 98.09 20 | 97.83 16 | 97.91 45 | 96.73 32 |
|
HFP-MVS | | | 96.18 21 | 96.53 29 | 95.77 21 | 97.34 16 | 97.26 28 | 98.16 32 | 94.54 19 | 94.45 30 | 92.52 76 | 95.05 91 | 96.95 75 | 93.89 23 | 97.28 45 | 97.46 28 | 98.19 32 | 97.25 11 |
|
UniMVSNet_ETH3D | | | 96.15 23 | 97.71 11 | 94.33 53 | 97.31 17 | 96.71 40 | 95.06 107 | 96.91 4 | 97.86 6 | 90.42 122 | 98.55 11 | 99.60 2 | 88.01 117 | 98.51 14 | 97.81 17 | 98.26 29 | 94.95 66 |
|
MP-MVS |  | | 96.13 24 | 95.93 49 | 96.37 9 | 98.19 4 | 97.31 27 | 98.49 14 | 94.53 22 | 91.39 92 | 94.38 35 | 94.32 106 | 96.43 89 | 94.59 14 | 97.75 36 | 97.44 30 | 98.04 40 | 96.88 28 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMP |  | | 96.12 25 | 96.27 39 | 95.93 19 | 97.20 21 | 97.60 13 | 98.64 7 | 93.74 39 | 92.47 65 | 93.13 66 | 93.23 119 | 98.06 40 | 94.51 17 | 97.99 27 | 97.57 24 | 98.39 27 | 96.99 23 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DVP-MVS | | | 96.10 26 | 97.23 16 | 94.79 48 | 96.28 54 | 97.49 16 | 97.90 39 | 93.60 44 | 95.47 17 | 89.57 136 | 97.32 43 | 97.72 55 | 93.89 23 | 97.74 37 | 97.53 25 | 97.51 55 | 97.34 9 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
LGP-MVS_train | | | 96.10 26 | 96.29 36 | 95.87 20 | 96.72 38 | 97.35 26 | 98.43 15 | 93.83 36 | 90.81 106 | 92.67 74 | 95.05 91 | 98.86 14 | 95.01 7 | 98.11 19 | 97.37 36 | 98.52 17 | 96.50 37 |
|
CSCG | | | 96.07 28 | 97.15 19 | 94.81 46 | 96.06 61 | 97.58 14 | 96.52 72 | 90.98 94 | 96.51 11 | 93.60 54 | 97.13 50 | 98.55 24 | 93.01 35 | 97.17 49 | 95.36 77 | 98.68 10 | 97.78 3 |
|
DPE-MVS |  | | 96.00 29 | 96.80 22 | 95.06 41 | 95.87 70 | 97.47 21 | 98.25 26 | 93.73 40 | 92.38 67 | 91.57 103 | 97.55 38 | 97.97 45 | 92.98 36 | 97.49 43 | 97.61 21 | 97.96 44 | 97.16 17 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SMA-MVS |  | | 95.99 30 | 96.48 30 | 95.41 30 | 97.43 11 | 97.36 24 | 97.55 48 | 93.70 41 | 94.05 41 | 93.79 47 | 97.02 53 | 94.53 131 | 92.28 49 | 97.53 42 | 97.19 38 | 97.73 49 | 97.67 6 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
TSAR-MVS + MP. | | | 95.99 30 | 96.57 28 | 95.31 33 | 96.87 30 | 96.50 47 | 98.71 5 | 91.58 83 | 93.25 51 | 92.71 71 | 96.86 55 | 96.57 87 | 93.92 21 | 98.09 20 | 97.91 14 | 98.08 37 | 96.81 31 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
OPM-MVS | | | 95.96 32 | 96.59 27 | 95.23 36 | 96.67 40 | 96.52 46 | 97.86 41 | 93.28 47 | 95.27 22 | 93.46 56 | 96.26 65 | 98.85 15 | 92.89 41 | 97.09 50 | 96.37 56 | 97.22 70 | 95.78 52 |
|
SteuartSystems-ACMMP | | | 95.96 32 | 96.13 45 | 95.76 22 | 97.06 26 | 97.36 24 | 98.40 19 | 94.24 27 | 91.49 86 | 91.91 94 | 94.50 102 | 96.89 77 | 94.99 8 | 98.01 25 | 97.44 30 | 97.97 43 | 97.25 11 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMP | | 89.62 11 | 95.96 32 | 96.28 37 | 95.59 24 | 96.58 43 | 97.23 30 | 98.26 25 | 93.22 48 | 92.33 70 | 92.31 83 | 94.29 107 | 98.73 19 | 94.68 12 | 98.04 23 | 97.14 41 | 98.47 21 | 96.17 44 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PGM-MVS | | | 95.90 35 | 95.72 53 | 96.10 16 | 97.53 10 | 97.45 22 | 98.55 12 | 94.12 29 | 90.25 109 | 93.71 52 | 93.20 120 | 97.18 68 | 94.63 13 | 97.68 39 | 97.34 37 | 98.08 37 | 96.97 24 |
|
PMVS |  | 87.16 16 | 95.88 36 | 96.47 31 | 95.19 38 | 97.00 28 | 96.02 58 | 96.70 63 | 91.57 84 | 94.43 32 | 95.33 20 | 97.16 49 | 95.37 115 | 92.39 46 | 98.89 10 | 98.72 3 | 98.17 34 | 94.71 71 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMMP_NAP | | | 95.86 37 | 96.18 40 | 95.47 29 | 97.11 24 | 97.26 28 | 98.37 20 | 93.48 46 | 93.49 47 | 93.99 44 | 95.61 77 | 94.11 136 | 92.49 45 | 97.87 29 | 97.44 30 | 97.40 61 | 97.52 8 |
|
Gipuma |  | | 95.86 37 | 96.17 41 | 95.50 28 | 95.92 66 | 94.59 102 | 94.77 115 | 92.50 54 | 97.82 7 | 97.90 2 | 95.56 80 | 97.88 50 | 94.71 11 | 98.02 24 | 94.81 91 | 97.23 69 | 94.48 78 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LS3D | | | 95.83 39 | 96.35 34 | 95.22 37 | 96.47 47 | 97.49 16 | 97.99 34 | 92.35 58 | 94.92 25 | 94.58 31 | 94.88 97 | 95.11 124 | 91.52 61 | 98.48 15 | 98.05 13 | 98.42 25 | 95.49 56 |
|
SD-MVS | | | 95.77 40 | 96.17 41 | 95.30 34 | 96.72 38 | 96.19 53 | 97.01 54 | 93.04 49 | 94.03 42 | 92.71 71 | 96.45 63 | 96.78 84 | 93.91 22 | 96.79 63 | 95.89 67 | 98.42 25 | 97.09 20 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SED-MVS | | | 95.73 41 | 96.98 20 | 94.28 55 | 96.08 59 | 97.39 23 | 98.18 30 | 93.80 37 | 94.20 36 | 89.61 135 | 97.29 45 | 97.49 61 | 90.69 80 | 97.74 37 | 97.41 33 | 97.32 66 | 97.34 9 |
|
TranMVSNet+NR-MVSNet | | | 95.72 42 | 96.42 32 | 94.91 44 | 96.21 55 | 96.77 39 | 96.90 59 | 94.99 13 | 92.62 63 | 91.92 93 | 98.51 14 | 98.63 21 | 90.82 77 | 97.27 46 | 96.83 45 | 98.63 13 | 94.31 79 |
|
DU-MVS | | | 95.51 43 | 95.68 54 | 95.33 32 | 96.45 48 | 96.44 49 | 96.61 69 | 95.32 11 | 89.97 114 | 93.78 48 | 97.46 40 | 98.07 39 | 91.19 68 | 97.03 52 | 96.53 49 | 98.61 14 | 94.22 80 |
|
UniMVSNet (Re) | | | 95.46 44 | 95.86 51 | 95.00 43 | 96.09 57 | 96.60 41 | 96.68 67 | 94.99 13 | 90.36 108 | 92.13 86 | 97.64 36 | 98.13 37 | 91.38 62 | 96.90 57 | 96.74 46 | 98.73 7 | 94.63 74 |
|
RPSCF | | | 95.46 44 | 96.95 21 | 93.73 78 | 95.72 74 | 95.94 61 | 95.58 98 | 88.08 139 | 95.31 18 | 91.34 105 | 96.26 65 | 98.04 42 | 93.63 28 | 98.28 18 | 97.67 19 | 98.01 41 | 97.13 18 |
|
anonymousdsp | | | 95.45 46 | 96.70 26 | 93.99 66 | 88.43 196 | 92.05 145 | 99.18 1 | 85.42 173 | 94.29 35 | 96.10 14 | 98.63 10 | 99.08 8 | 96.11 1 | 97.77 35 | 97.41 33 | 98.70 9 | 97.69 5 |
|
APD-MVS |  | | 95.38 47 | 95.68 54 | 95.03 42 | 97.30 18 | 96.90 37 | 97.83 42 | 93.92 32 | 89.40 121 | 90.35 123 | 95.41 84 | 97.69 57 | 92.97 37 | 97.24 48 | 97.17 39 | 97.83 47 | 95.96 48 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
UniMVSNet_NR-MVSNet | | | 95.34 48 | 95.51 58 | 95.14 39 | 95.80 72 | 96.55 42 | 96.61 69 | 94.79 16 | 90.04 113 | 93.78 48 | 97.51 39 | 97.25 65 | 91.19 68 | 96.68 65 | 96.31 58 | 98.65 12 | 94.22 80 |
|
X-MVS | | | 95.33 49 | 95.13 66 | 95.57 26 | 97.35 14 | 97.48 18 | 98.43 15 | 94.28 25 | 92.30 71 | 93.28 59 | 86.89 180 | 96.82 80 | 91.87 55 | 97.85 30 | 97.59 23 | 98.19 32 | 96.95 25 |
|
MSP-MVS | | | 95.32 50 | 96.28 37 | 94.19 58 | 96.87 30 | 97.77 10 | 98.27 24 | 93.88 34 | 94.15 40 | 89.63 134 | 95.36 85 | 98.37 28 | 90.73 78 | 94.37 111 | 97.53 25 | 95.77 116 | 96.40 38 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
3Dnovator+ | | 92.82 3 | 95.22 51 | 95.16 64 | 95.29 35 | 96.17 56 | 96.55 42 | 97.64 45 | 94.02 31 | 94.16 39 | 94.29 37 | 92.09 131 | 93.71 141 | 91.90 53 | 96.68 65 | 96.51 50 | 97.70 52 | 96.40 38 |
|
HPM-MVS++ |  | | 95.21 52 | 94.89 69 | 95.59 24 | 97.79 6 | 95.39 79 | 97.68 44 | 94.05 30 | 91.91 78 | 94.35 36 | 93.38 118 | 95.07 125 | 92.94 39 | 96.01 78 | 95.88 68 | 96.73 80 | 96.61 36 |
|
TSAR-MVS + ACMM | | | 95.17 53 | 95.95 47 | 94.26 56 | 96.07 60 | 96.46 48 | 95.67 95 | 94.21 28 | 93.84 44 | 90.99 113 | 97.18 48 | 95.24 123 | 93.55 29 | 96.60 69 | 95.61 74 | 95.06 135 | 96.69 34 |
|
xxxxxxxxxxxxxcwj | | | 95.03 54 | 96.14 44 | 93.73 78 | 95.30 80 | 95.93 62 | 94.80 113 | 91.76 79 | 93.11 55 | 91.93 91 | 95.83 73 | 98.96 10 | 91.11 71 | 96.62 67 | 96.44 53 | 97.46 56 | 96.13 45 |
|
CPTT-MVS | | | 95.00 55 | 94.52 77 | 95.57 26 | 96.84 34 | 96.78 38 | 97.88 40 | 93.67 43 | 92.20 72 | 92.35 82 | 85.87 188 | 97.56 60 | 94.98 9 | 96.96 55 | 96.07 64 | 97.70 52 | 96.18 43 |
|
SF-MVS | | | 94.88 56 | 95.87 50 | 93.73 78 | 95.30 80 | 95.93 62 | 94.80 113 | 91.76 79 | 93.11 55 | 91.93 91 | 95.83 73 | 97.07 71 | 91.11 71 | 96.62 67 | 96.44 53 | 97.46 56 | 96.13 45 |
|
Baseline_NR-MVSNet | | | 94.85 57 | 95.35 62 | 94.26 56 | 96.45 48 | 93.86 117 | 96.70 63 | 94.54 19 | 90.07 112 | 90.17 127 | 98.77 5 | 97.89 47 | 90.64 83 | 97.03 52 | 96.16 60 | 97.04 76 | 93.67 92 |
|
EG-PatchMatch MVS | | | 94.81 58 | 95.53 57 | 93.97 67 | 95.89 69 | 94.62 100 | 95.55 100 | 88.18 137 | 92.77 61 | 94.88 28 | 97.04 52 | 98.61 22 | 93.31 30 | 96.89 58 | 95.19 81 | 95.99 109 | 93.56 95 |
|
OMC-MVS | | | 94.74 59 | 95.46 60 | 93.91 70 | 94.62 98 | 96.26 52 | 96.64 68 | 89.36 125 | 94.20 36 | 94.15 40 | 94.02 112 | 97.73 54 | 91.34 64 | 96.15 76 | 95.04 85 | 97.37 63 | 94.80 68 |
|
DeepC-MVS_fast | | 91.38 6 | 94.73 60 | 94.98 67 | 94.44 49 | 96.83 36 | 96.12 56 | 96.69 65 | 92.17 64 | 92.98 58 | 93.72 50 | 94.14 108 | 95.45 113 | 90.49 89 | 95.73 85 | 95.30 78 | 96.71 81 | 95.13 64 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PHI-MVS | | | 94.65 61 | 94.84 71 | 94.44 49 | 94.95 91 | 96.55 42 | 96.46 75 | 91.10 92 | 88.96 124 | 96.00 16 | 94.55 101 | 95.32 118 | 90.67 81 | 96.97 54 | 96.69 48 | 97.44 59 | 94.84 67 |
|
pmmvs6 | | | 94.58 62 | 97.30 15 | 91.40 118 | 94.84 93 | 94.61 101 | 93.40 143 | 92.43 57 | 98.51 3 | 85.61 161 | 98.73 7 | 99.53 3 | 84.40 139 | 97.88 28 | 97.03 42 | 97.72 50 | 94.79 69 |
|
DeepPCF-MVS | | 90.68 7 | 94.56 63 | 94.92 68 | 94.15 59 | 94.11 111 | 95.71 70 | 97.03 53 | 90.65 98 | 93.39 50 | 94.08 42 | 95.29 88 | 94.15 135 | 93.21 34 | 95.22 96 | 94.92 89 | 95.82 115 | 95.75 53 |
|
NR-MVSNet | | | 94.55 64 | 95.66 56 | 93.25 91 | 94.26 107 | 96.44 49 | 96.69 65 | 95.32 11 | 89.97 114 | 91.79 99 | 97.46 40 | 98.39 27 | 82.85 148 | 96.87 60 | 96.48 52 | 98.57 15 | 93.98 86 |
|
Vis-MVSNet |  | | 94.39 65 | 95.85 52 | 92.68 99 | 90.91 179 | 95.88 65 | 97.62 47 | 91.41 85 | 91.95 77 | 89.20 138 | 97.29 45 | 96.26 92 | 90.60 88 | 96.95 56 | 95.91 65 | 96.32 96 | 96.71 33 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TSAR-MVS + GP. | | | 94.25 66 | 94.81 72 | 93.60 81 | 96.52 46 | 95.80 68 | 94.37 123 | 92.47 56 | 90.89 102 | 88.92 140 | 95.34 86 | 94.38 133 | 92.85 42 | 96.36 74 | 95.62 73 | 96.47 88 | 95.28 61 |
|
CNVR-MVS | | | 94.24 67 | 94.47 78 | 93.96 68 | 96.56 44 | 95.67 71 | 96.43 76 | 91.95 73 | 92.08 75 | 91.28 107 | 90.51 142 | 95.35 116 | 91.20 67 | 96.34 75 | 95.50 76 | 96.34 94 | 95.88 50 |
|
v1192 | | | 93.98 68 | 93.94 90 | 94.01 64 | 93.91 119 | 94.63 99 | 97.00 55 | 89.75 115 | 91.01 100 | 96.50 10 | 97.93 25 | 98.26 32 | 91.74 57 | 92.06 141 | 92.05 131 | 95.18 130 | 91.66 133 |
|
v10 | | | 93.96 69 | 94.12 87 | 93.77 77 | 93.37 131 | 95.45 75 | 96.83 61 | 91.13 91 | 89.70 118 | 95.02 25 | 97.88 28 | 98.23 33 | 91.27 65 | 92.39 136 | 92.18 129 | 94.99 137 | 93.00 104 |
|
CDPH-MVS | | | 93.96 69 | 93.86 92 | 94.08 61 | 96.31 52 | 95.84 66 | 96.92 57 | 91.85 76 | 87.21 140 | 91.25 109 | 92.83 122 | 96.06 100 | 91.05 74 | 95.57 87 | 94.81 91 | 97.12 71 | 94.72 70 |
|
MVS_0304 | | | 93.92 71 | 93.81 96 | 94.05 63 | 96.06 61 | 96.00 59 | 96.43 76 | 92.76 51 | 85.99 151 | 94.43 34 | 94.04 111 | 97.08 70 | 88.12 116 | 94.65 107 | 94.20 104 | 96.47 88 | 94.71 71 |
|
MSLP-MVS++ | | | 93.91 72 | 94.30 84 | 93.45 83 | 95.51 78 | 95.83 67 | 93.12 149 | 91.93 75 | 91.45 89 | 91.40 104 | 87.42 175 | 96.12 99 | 93.27 31 | 96.57 70 | 96.40 55 | 95.49 120 | 96.29 40 |
|
v1921920 | | | 93.90 73 | 93.82 94 | 94.00 65 | 93.74 125 | 94.31 105 | 97.12 50 | 89.33 126 | 91.13 97 | 96.77 9 | 97.90 26 | 98.06 40 | 91.95 52 | 91.93 145 | 91.54 140 | 95.10 133 | 91.85 127 |
|
train_agg | | | 93.89 74 | 93.46 106 | 94.40 51 | 97.35 14 | 93.78 119 | 97.63 46 | 92.19 63 | 88.12 131 | 90.52 120 | 93.57 117 | 95.78 106 | 92.31 48 | 94.78 104 | 93.46 115 | 96.36 92 | 94.70 73 |
|
v144192 | | | 93.89 74 | 93.85 93 | 93.94 69 | 93.50 129 | 94.33 104 | 97.12 50 | 89.49 120 | 90.89 102 | 96.49 11 | 97.78 30 | 98.27 31 | 91.89 54 | 92.17 140 | 91.70 137 | 95.19 129 | 91.78 130 |
|
v1240 | | | 93.89 74 | 93.72 97 | 94.09 60 | 93.98 116 | 94.31 105 | 97.12 50 | 89.37 124 | 90.74 107 | 96.92 8 | 98.05 22 | 97.89 47 | 92.15 51 | 91.53 151 | 91.60 138 | 94.99 137 | 91.93 126 |
|
NCCC | | | 93.87 77 | 93.42 107 | 94.40 51 | 96.84 34 | 95.42 76 | 96.47 74 | 92.62 52 | 92.36 69 | 92.05 88 | 83.83 195 | 95.55 109 | 91.84 56 | 95.89 80 | 95.23 80 | 96.56 85 | 95.63 54 |
|
v1144 | | | 93.83 78 | 93.87 91 | 93.78 76 | 93.72 126 | 94.57 103 | 96.85 60 | 89.98 110 | 91.31 94 | 95.90 17 | 97.89 27 | 98.40 26 | 91.13 70 | 92.01 144 | 92.01 132 | 95.10 133 | 90.94 137 |
|
MVS_111021_HR | | | 93.82 79 | 94.26 86 | 93.31 86 | 95.01 89 | 93.97 115 | 95.73 92 | 89.75 115 | 92.06 76 | 92.49 77 | 94.01 113 | 96.05 101 | 90.61 87 | 95.95 79 | 94.78 94 | 96.28 97 | 93.04 103 |
|
thisisatest0515 | | | 93.79 80 | 94.41 80 | 93.06 96 | 94.14 108 | 92.50 138 | 95.56 99 | 88.55 134 | 91.61 82 | 92.45 78 | 96.84 56 | 95.71 107 | 90.62 85 | 94.58 108 | 95.07 83 | 97.05 74 | 94.58 75 |
|
TAPA-MVS | | 88.94 13 | 93.78 81 | 94.31 83 | 93.18 93 | 94.14 108 | 95.99 60 | 95.74 91 | 86.98 156 | 93.43 49 | 93.88 45 | 90.16 149 | 96.88 78 | 91.05 74 | 94.33 112 | 93.95 106 | 97.28 67 | 95.40 57 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
GeoE | | | 93.72 82 | 93.62 101 | 93.84 71 | 94.75 94 | 94.90 93 | 97.24 49 | 91.81 78 | 86.97 143 | 92.74 70 | 93.83 115 | 97.24 67 | 90.46 91 | 95.10 100 | 94.09 105 | 96.08 106 | 93.18 101 |
|
EPP-MVSNet | | | 93.63 83 | 93.95 89 | 93.26 89 | 95.15 87 | 96.54 45 | 96.18 84 | 91.97 72 | 91.74 79 | 85.76 159 | 94.95 95 | 84.27 183 | 91.60 60 | 97.61 41 | 97.38 35 | 98.87 5 | 95.18 63 |
|
v8 | | | 93.60 84 | 93.82 94 | 93.34 84 | 93.13 138 | 95.06 85 | 96.39 78 | 90.75 96 | 89.90 116 | 94.03 43 | 97.70 34 | 98.21 35 | 91.08 73 | 92.36 137 | 91.47 141 | 94.63 144 | 92.07 121 |
|
MCST-MVS | | | 93.60 84 | 93.40 109 | 93.83 72 | 95.30 80 | 95.40 78 | 96.49 73 | 90.87 95 | 90.08 111 | 91.72 100 | 90.28 147 | 95.99 102 | 91.69 58 | 93.94 120 | 92.99 120 | 96.93 78 | 95.13 64 |
|
PVSNet_Blended_VisFu | | | 93.60 84 | 93.41 108 | 93.83 72 | 96.31 52 | 95.65 72 | 95.71 93 | 90.58 100 | 88.08 133 | 93.17 64 | 95.29 88 | 92.20 150 | 90.72 79 | 94.69 106 | 93.41 117 | 96.51 87 | 94.54 76 |
|
TransMVSNet (Re) | | | 93.55 87 | 96.32 35 | 90.32 134 | 94.38 104 | 94.05 110 | 93.30 146 | 89.53 119 | 97.15 9 | 85.12 164 | 98.83 4 | 97.89 47 | 82.21 154 | 96.75 64 | 96.14 62 | 97.35 64 | 93.46 96 |
|
DCV-MVSNet | | | 93.49 88 | 95.15 65 | 91.55 114 | 94.05 112 | 95.92 64 | 95.15 105 | 91.21 88 | 92.76 62 | 87.01 155 | 89.71 152 | 97.16 69 | 83.90 143 | 97.65 40 | 96.87 44 | 97.99 42 | 95.95 49 |
|
v2v482 | | | 93.42 89 | 93.49 105 | 93.32 85 | 93.44 130 | 94.05 110 | 96.36 81 | 89.76 114 | 91.41 91 | 95.24 22 | 97.63 37 | 98.34 29 | 90.44 92 | 91.65 149 | 91.76 136 | 94.69 141 | 89.62 147 |
|
canonicalmvs | | | 93.38 90 | 94.36 81 | 92.24 105 | 93.94 118 | 96.41 51 | 94.18 130 | 90.47 101 | 93.07 57 | 88.47 146 | 88.66 162 | 93.78 140 | 88.80 106 | 95.74 84 | 95.75 71 | 97.57 54 | 97.13 18 |
|
3Dnovator | | 91.81 5 | 93.36 91 | 94.27 85 | 92.29 104 | 92.99 142 | 95.03 86 | 95.76 90 | 87.79 142 | 93.82 45 | 92.38 81 | 92.19 130 | 93.37 145 | 88.14 115 | 95.26 95 | 94.85 90 | 96.69 82 | 95.40 57 |
|
pm-mvs1 | | | 93.27 92 | 95.94 48 | 90.16 135 | 94.13 110 | 93.66 120 | 92.61 159 | 89.91 112 | 95.73 16 | 84.28 173 | 98.51 14 | 98.29 30 | 82.80 149 | 96.44 72 | 95.76 70 | 97.25 68 | 93.21 100 |
|
Anonymous20231211 | | | 93.19 93 | 95.50 59 | 90.49 131 | 93.77 123 | 95.29 81 | 94.36 127 | 90.04 109 | 91.44 90 | 84.59 168 | 96.72 58 | 97.65 58 | 82.45 153 | 97.25 47 | 96.32 57 | 97.74 48 | 93.79 89 |
|
TinyColmap | | | 93.17 94 | 93.33 110 | 93.00 97 | 93.84 121 | 92.76 133 | 94.75 117 | 88.90 130 | 93.97 43 | 97.48 4 | 95.28 90 | 95.29 119 | 88.37 111 | 95.31 94 | 91.58 139 | 94.65 143 | 89.10 151 |
|
MVS_111021_LR | | | 93.15 95 | 93.65 99 | 92.56 100 | 93.89 120 | 92.28 140 | 95.09 106 | 86.92 158 | 91.26 96 | 92.99 69 | 94.46 104 | 96.22 95 | 90.64 83 | 95.11 99 | 93.45 116 | 95.85 113 | 92.74 110 |
|
CNLPA | | | 93.14 96 | 93.67 98 | 92.53 101 | 94.62 98 | 94.73 96 | 95.00 109 | 86.57 163 | 92.85 59 | 92.43 79 | 90.94 137 | 94.67 128 | 90.35 93 | 95.41 89 | 93.70 112 | 96.23 100 | 93.37 98 |
|
PLC |  | 87.27 15 | 93.08 97 | 92.92 114 | 93.26 89 | 94.67 95 | 95.03 86 | 94.38 122 | 90.10 104 | 91.69 80 | 92.14 85 | 87.24 176 | 93.91 138 | 91.61 59 | 95.05 101 | 94.73 97 | 96.67 83 | 92.80 107 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CANet | | | 93.07 98 | 93.05 113 | 93.10 94 | 95.90 67 | 95.41 77 | 95.88 87 | 91.94 74 | 84.77 158 | 93.36 57 | 94.05 110 | 95.25 122 | 86.25 128 | 94.33 112 | 93.94 107 | 95.30 123 | 93.58 94 |
|
TSAR-MVS + COLMAP | | | 93.06 99 | 93.65 99 | 92.36 102 | 94.62 98 | 94.28 107 | 95.36 104 | 89.46 122 | 92.18 73 | 91.64 101 | 95.55 81 | 95.27 121 | 88.60 109 | 93.24 126 | 92.50 125 | 94.46 146 | 92.55 116 |
|
Effi-MVS+ | | | 92.93 100 | 92.16 125 | 93.83 72 | 94.29 105 | 93.53 127 | 95.04 108 | 92.98 50 | 85.27 155 | 94.46 32 | 90.24 148 | 95.34 117 | 89.99 97 | 93.72 121 | 94.23 103 | 96.22 101 | 92.79 108 |
|
Fast-Effi-MVS+ | | | 92.93 100 | 92.64 118 | 93.27 88 | 93.81 122 | 93.88 116 | 95.90 86 | 90.61 99 | 83.98 164 | 92.71 71 | 92.81 123 | 96.22 95 | 90.67 81 | 94.90 103 | 93.92 108 | 95.92 111 | 92.77 109 |
|
HQP-MVS | | | 92.87 102 | 92.49 119 | 93.31 86 | 95.75 73 | 95.01 89 | 95.64 96 | 91.06 93 | 88.54 128 | 91.62 102 | 88.16 167 | 96.25 93 | 89.47 101 | 92.26 139 | 91.81 134 | 96.34 94 | 95.40 57 |
|
FMVSNet1 | | | 92.86 103 | 95.26 63 | 90.06 137 | 92.40 156 | 95.16 82 | 94.37 123 | 92.22 60 | 93.18 54 | 82.16 183 | 96.76 57 | 97.48 62 | 81.85 158 | 95.32 91 | 94.98 86 | 97.34 65 | 93.93 87 |
|
CLD-MVS | | | 92.81 104 | 94.32 82 | 91.05 122 | 95.39 79 | 95.31 80 | 95.82 89 | 81.44 196 | 89.40 121 | 91.94 90 | 95.86 71 | 97.36 63 | 85.83 130 | 95.35 90 | 94.59 99 | 95.85 113 | 92.34 118 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
IS_MVSNet | | | 92.76 105 | 93.25 111 | 92.19 106 | 94.91 92 | 95.56 73 | 95.86 88 | 92.12 66 | 88.10 132 | 82.71 178 | 93.15 121 | 88.30 171 | 88.86 105 | 97.29 44 | 96.95 43 | 98.66 11 | 93.38 97 |
|
FC-MVSNet-train | | | 92.75 106 | 95.40 61 | 89.66 145 | 95.21 85 | 94.82 94 | 97.00 55 | 89.40 123 | 91.13 97 | 81.71 184 | 97.72 33 | 96.43 89 | 77.57 181 | 96.89 58 | 96.72 47 | 97.05 74 | 94.09 83 |
|
V42 | | | 92.67 107 | 93.50 104 | 91.71 112 | 91.41 170 | 92.96 131 | 95.71 93 | 85.00 174 | 89.67 119 | 93.22 62 | 97.67 35 | 98.01 44 | 91.02 76 | 92.65 132 | 92.12 130 | 93.86 154 | 91.42 134 |
|
PM-MVS | | | 92.65 108 | 93.20 112 | 92.00 108 | 92.11 164 | 90.16 166 | 95.99 85 | 84.81 178 | 91.31 94 | 92.41 80 | 95.87 70 | 96.64 86 | 92.35 47 | 93.65 123 | 92.91 121 | 94.34 149 | 91.85 127 |
|
QAPM | | | 92.57 109 | 93.51 103 | 91.47 116 | 92.91 144 | 94.82 94 | 93.01 151 | 87.51 146 | 91.49 86 | 91.21 110 | 92.24 128 | 91.70 153 | 88.74 107 | 94.54 109 | 94.39 102 | 95.41 121 | 95.37 60 |
|
MIMVSNet1 | | | 92.52 110 | 94.88 70 | 89.77 141 | 96.09 57 | 91.99 146 | 96.92 57 | 89.68 117 | 95.92 15 | 84.55 169 | 96.64 60 | 98.21 35 | 78.44 175 | 96.08 77 | 95.10 82 | 92.91 168 | 90.22 144 |
|
tfpnnormal | | | 92.45 111 | 94.77 73 | 89.74 142 | 93.95 117 | 93.44 129 | 93.25 147 | 88.49 136 | 95.27 22 | 83.20 176 | 96.51 61 | 96.23 94 | 83.17 147 | 95.47 88 | 94.52 100 | 96.38 91 | 91.97 125 |
|
PCF-MVS | | 87.46 14 | 92.44 112 | 91.80 127 | 93.19 92 | 94.66 96 | 95.80 68 | 96.37 79 | 90.19 103 | 87.57 137 | 92.23 84 | 89.26 157 | 93.97 137 | 89.24 102 | 91.32 153 | 90.82 149 | 96.46 90 | 93.86 88 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
casdiffmvs | | | 92.42 113 | 93.99 88 | 90.60 129 | 93.25 134 | 93.82 118 | 94.28 129 | 88.73 132 | 91.53 84 | 84.53 171 | 97.74 31 | 98.64 20 | 86.60 125 | 93.21 128 | 91.20 144 | 96.21 102 | 91.76 132 |
|
AdaColmap |  | | 92.41 114 | 91.49 131 | 93.48 82 | 95.96 64 | 95.02 88 | 95.37 103 | 91.73 81 | 87.97 135 | 91.28 107 | 82.82 199 | 91.04 157 | 90.62 85 | 95.82 83 | 95.07 83 | 95.95 110 | 92.67 111 |
|
v148 | | | 92.38 115 | 92.78 116 | 91.91 109 | 92.86 145 | 92.13 143 | 94.84 111 | 87.03 155 | 91.47 88 | 93.07 68 | 96.92 54 | 98.89 12 | 90.10 96 | 92.05 142 | 89.69 157 | 93.56 157 | 88.27 160 |
|
pmmvs-eth3d | | | 92.34 116 | 92.33 120 | 92.34 103 | 92.67 149 | 90.67 160 | 96.37 79 | 89.06 127 | 90.98 101 | 93.60 54 | 97.13 50 | 97.02 73 | 88.29 112 | 90.20 160 | 91.42 142 | 94.07 152 | 88.89 155 |
|
DELS-MVS | | | 92.33 117 | 93.61 102 | 90.83 125 | 92.84 146 | 95.13 84 | 94.76 116 | 87.22 154 | 87.78 136 | 88.42 148 | 95.78 75 | 95.28 120 | 85.71 133 | 94.44 110 | 93.91 109 | 96.01 108 | 92.97 105 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Effi-MVS+-dtu | | | 92.32 118 | 91.66 129 | 93.09 95 | 95.13 88 | 94.73 96 | 94.57 120 | 92.14 65 | 81.74 175 | 90.33 124 | 88.13 168 | 95.91 103 | 89.24 102 | 94.23 117 | 93.65 114 | 97.12 71 | 93.23 99 |
|
UGNet | | | 92.31 119 | 94.70 74 | 89.53 147 | 90.99 178 | 95.53 74 | 96.19 83 | 92.10 68 | 91.35 93 | 85.76 159 | 95.31 87 | 95.48 112 | 76.84 186 | 95.22 96 | 94.79 93 | 95.32 122 | 95.19 62 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
USDC | | | 92.17 120 | 92.17 124 | 92.18 107 | 92.93 143 | 92.22 141 | 93.66 137 | 87.41 149 | 93.49 47 | 97.99 1 | 94.10 109 | 96.68 85 | 86.46 126 | 92.04 143 | 89.18 163 | 94.61 145 | 87.47 163 |
|
ETV-MVS | | | 92.12 121 | 90.44 138 | 94.08 61 | 96.36 50 | 93.63 122 | 96.27 82 | 92.00 71 | 78.90 195 | 92.13 86 | 85.29 190 | 89.85 164 | 90.26 95 | 97.07 51 | 96.29 59 | 97.46 56 | 92.04 123 |
|
IterMVS-LS | | | 92.10 122 | 92.33 120 | 91.82 111 | 93.18 135 | 93.66 120 | 92.80 157 | 92.27 59 | 90.82 104 | 90.59 119 | 97.19 47 | 90.97 158 | 87.76 118 | 89.60 167 | 90.94 148 | 94.34 149 | 93.16 102 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 92.09 123 | 92.84 115 | 91.22 121 | 92.55 151 | 92.97 130 | 93.42 142 | 85.43 172 | 90.24 110 | 91.83 96 | 94.70 98 | 94.59 129 | 88.48 110 | 94.91 102 | 93.31 119 | 95.59 119 | 89.15 150 |
|
CS-MVS | | | 92.04 124 | 90.08 144 | 94.32 54 | 95.94 65 | 94.95 92 | 96.72 62 | 91.36 86 | 80.81 181 | 94.18 39 | 81.09 203 | 90.28 162 | 90.30 94 | 95.84 82 | 95.57 75 | 97.41 60 | 92.05 122 |
|
EIA-MVS | | | 91.95 125 | 90.36 140 | 93.81 75 | 96.54 45 | 94.65 98 | 95.38 102 | 90.40 102 | 78.01 200 | 93.72 50 | 86.70 183 | 91.95 152 | 89.93 98 | 95.67 86 | 94.72 98 | 96.89 79 | 90.79 138 |
|
MAR-MVS | | | 91.86 126 | 91.14 134 | 92.71 98 | 94.29 105 | 94.24 108 | 94.91 110 | 91.82 77 | 81.66 176 | 93.32 58 | 84.51 193 | 93.42 144 | 86.86 123 | 95.16 98 | 94.44 101 | 95.05 136 | 94.53 77 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
EU-MVSNet | | | 91.63 127 | 92.73 117 | 90.35 133 | 88.36 197 | 87.89 177 | 96.53 71 | 81.51 195 | 92.45 66 | 91.82 97 | 96.44 64 | 97.05 72 | 93.26 32 | 94.10 118 | 88.94 168 | 90.61 175 | 92.24 119 |
|
FC-MVSNet-test | | | 91.49 128 | 94.43 79 | 88.07 163 | 94.97 90 | 90.53 163 | 95.42 101 | 91.18 90 | 93.24 52 | 72.94 205 | 98.37 16 | 93.86 139 | 78.78 169 | 97.82 33 | 96.13 63 | 95.13 131 | 91.05 135 |
|
OpenMVS |  | 89.22 12 | 91.09 129 | 91.42 132 | 90.71 127 | 92.79 148 | 93.61 124 | 92.74 158 | 85.47 171 | 86.10 150 | 90.73 114 | 85.71 189 | 93.07 148 | 86.69 124 | 94.07 119 | 93.34 118 | 95.86 112 | 94.02 85 |
|
FPMVS | | | 90.81 130 | 91.60 130 | 89.88 140 | 92.52 152 | 88.18 173 | 93.31 145 | 83.62 184 | 91.59 83 | 88.45 147 | 88.96 160 | 89.73 166 | 86.96 121 | 96.42 73 | 95.69 72 | 94.43 147 | 90.65 139 |
|
DI_MVS_plusplus_trai | | | 90.68 131 | 90.40 139 | 91.00 123 | 92.43 155 | 92.61 137 | 94.17 131 | 88.98 128 | 88.32 130 | 88.76 144 | 93.67 116 | 87.58 173 | 86.44 127 | 89.74 165 | 90.33 152 | 95.24 126 | 90.56 142 |
|
Vis-MVSNet (Re-imp) | | | 90.68 131 | 92.18 123 | 88.92 152 | 94.63 97 | 92.75 134 | 92.91 153 | 91.20 89 | 89.21 123 | 75.01 202 | 93.96 114 | 89.07 169 | 82.72 151 | 95.88 81 | 95.30 78 | 97.08 73 | 89.08 152 |
|
DPM-MVS | | | 90.67 133 | 89.86 145 | 91.63 113 | 95.29 83 | 94.16 109 | 94.52 121 | 89.63 118 | 89.59 120 | 89.67 133 | 81.95 201 | 88.64 170 | 85.75 132 | 90.46 158 | 90.43 151 | 94.91 139 | 93.77 90 |
|
diffmvs | | | 90.44 134 | 92.23 122 | 88.35 159 | 91.36 172 | 91.38 152 | 92.45 163 | 84.84 177 | 89.88 117 | 85.09 165 | 96.69 59 | 97.71 56 | 83.33 146 | 90.01 164 | 88.96 167 | 93.03 166 | 91.00 136 |
|
FMVSNet2 | | | 90.28 135 | 92.04 126 | 88.23 161 | 91.22 174 | 94.05 110 | 92.88 154 | 90.69 97 | 86.53 146 | 79.89 191 | 94.38 105 | 92.73 149 | 78.54 172 | 91.64 150 | 92.26 128 | 96.17 103 | 92.67 111 |
|
IterMVS-SCA-FT | | | 90.24 136 | 89.37 151 | 91.26 120 | 92.50 153 | 92.11 144 | 91.69 173 | 87.48 147 | 87.05 142 | 91.82 97 | 95.76 76 | 87.25 174 | 91.36 63 | 89.02 172 | 85.53 183 | 92.68 169 | 88.90 154 |
|
MVS_Test | | | 90.19 137 | 90.58 135 | 89.74 142 | 92.12 163 | 91.74 148 | 92.51 160 | 88.54 135 | 82.80 170 | 87.50 152 | 94.62 99 | 95.02 126 | 83.97 141 | 88.69 175 | 89.32 161 | 93.79 155 | 91.85 127 |
|
EPNet | | | 90.17 138 | 89.07 153 | 91.45 117 | 97.25 19 | 90.62 162 | 94.84 111 | 93.54 45 | 80.96 178 | 91.85 95 | 86.98 179 | 85.88 179 | 77.79 178 | 92.30 138 | 92.58 124 | 93.41 159 | 94.20 82 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PVSNet_BlendedMVS | | | 90.09 139 | 90.12 142 | 90.05 138 | 92.40 156 | 92.74 135 | 91.74 169 | 85.89 167 | 80.54 182 | 90.30 125 | 88.54 163 | 95.51 110 | 84.69 137 | 92.64 133 | 90.25 153 | 95.28 124 | 90.61 140 |
|
PVSNet_Blended | | | 90.09 139 | 90.12 142 | 90.05 138 | 92.40 156 | 92.74 135 | 91.74 169 | 85.89 167 | 80.54 182 | 90.30 125 | 88.54 163 | 95.51 110 | 84.69 137 | 92.64 133 | 90.25 153 | 95.28 124 | 90.61 140 |
|
pmmvs4 | | | 89.95 141 | 89.32 152 | 90.69 128 | 91.60 169 | 89.17 170 | 94.37 123 | 87.63 143 | 88.07 134 | 91.02 112 | 94.50 102 | 90.50 161 | 86.13 129 | 86.33 189 | 89.40 160 | 93.39 160 | 87.29 166 |
|
MDA-MVSNet-bldmvs | | | 89.75 142 | 91.67 128 | 87.50 168 | 74.25 215 | 90.88 157 | 94.68 118 | 85.89 167 | 91.64 81 | 91.03 111 | 95.86 71 | 94.35 134 | 89.10 104 | 96.87 60 | 86.37 179 | 90.04 176 | 85.72 171 |
|
tttt0517 | | | 89.64 143 | 88.05 164 | 91.49 115 | 93.52 128 | 91.65 149 | 93.67 136 | 87.53 144 | 82.77 171 | 89.39 137 | 90.37 146 | 70.05 208 | 88.21 113 | 93.71 122 | 93.79 110 | 96.63 84 | 94.04 84 |
|
PatchMatch-RL | | | 89.59 144 | 88.80 157 | 90.51 130 | 92.20 162 | 88.00 176 | 91.72 171 | 86.64 160 | 84.75 159 | 88.25 149 | 87.10 178 | 90.66 160 | 89.85 100 | 93.23 127 | 92.28 127 | 94.41 148 | 85.60 172 |
|
Fast-Effi-MVS+-dtu | | | 89.57 145 | 88.42 161 | 90.92 124 | 93.35 132 | 91.57 150 | 93.01 151 | 95.71 9 | 78.94 194 | 87.65 151 | 84.68 192 | 93.14 147 | 82.00 156 | 90.84 156 | 91.01 147 | 93.78 156 | 88.77 156 |
|
thisisatest0530 | | | 89.54 146 | 87.99 166 | 91.35 119 | 93.17 136 | 91.31 153 | 93.45 141 | 87.53 144 | 82.96 169 | 89.17 139 | 90.45 143 | 70.32 207 | 88.21 113 | 93.37 125 | 93.79 110 | 96.54 86 | 93.71 91 |
|
GBi-Net | | | 89.35 147 | 90.58 135 | 87.91 164 | 91.22 174 | 94.05 110 | 92.88 154 | 90.05 106 | 79.40 186 | 78.60 193 | 90.58 139 | 87.05 175 | 78.54 172 | 95.32 91 | 94.98 86 | 96.17 103 | 92.67 111 |
|
test1 | | | 89.35 147 | 90.58 135 | 87.91 164 | 91.22 174 | 94.05 110 | 92.88 154 | 90.05 106 | 79.40 186 | 78.60 193 | 90.58 139 | 87.05 175 | 78.54 172 | 95.32 91 | 94.98 86 | 96.17 103 | 92.67 111 |
|
thres600view7 | | | 89.14 149 | 88.83 155 | 89.51 148 | 93.71 127 | 93.55 125 | 93.93 134 | 88.02 140 | 87.30 139 | 82.40 179 | 81.18 202 | 80.63 194 | 82.69 152 | 94.27 114 | 95.90 66 | 96.27 98 | 88.94 153 |
|
CVMVSNet | | | 88.97 150 | 89.73 147 | 88.10 162 | 87.33 203 | 85.22 186 | 94.68 118 | 78.68 197 | 88.94 125 | 86.98 156 | 95.55 81 | 85.71 180 | 89.87 99 | 91.19 154 | 89.69 157 | 91.05 173 | 91.78 130 |
|
CANet_DTU | | | 88.95 151 | 89.51 150 | 88.29 160 | 93.12 139 | 91.22 155 | 93.61 138 | 83.47 187 | 80.07 185 | 90.71 118 | 89.19 158 | 93.68 142 | 76.27 190 | 91.44 152 | 91.17 146 | 92.59 170 | 89.83 146 |
|
GA-MVS | | | 88.76 152 | 88.04 165 | 89.59 146 | 92.32 159 | 91.46 151 | 92.28 165 | 86.62 161 | 83.82 166 | 89.84 129 | 92.51 127 | 81.94 188 | 83.53 145 | 89.41 169 | 89.27 162 | 92.95 167 | 87.90 161 |
|
pmmvs5 | | | 88.63 153 | 89.70 148 | 87.39 169 | 89.24 190 | 90.64 161 | 91.87 168 | 82.13 191 | 83.34 167 | 87.86 150 | 94.58 100 | 96.15 98 | 79.87 166 | 87.33 184 | 89.07 166 | 93.39 160 | 86.76 167 |
|
thres400 | | | 88.54 154 | 88.15 163 | 88.98 150 | 93.17 136 | 92.84 132 | 93.56 139 | 86.93 157 | 86.45 147 | 82.37 180 | 79.96 205 | 81.46 191 | 81.83 159 | 93.21 128 | 94.76 95 | 96.04 107 | 88.39 158 |
|
CDS-MVSNet | | | 88.41 155 | 89.79 146 | 86.79 173 | 94.55 102 | 90.82 158 | 92.50 161 | 89.85 113 | 83.26 168 | 80.52 188 | 91.05 135 | 89.93 163 | 69.11 201 | 93.17 130 | 92.71 123 | 94.21 151 | 87.63 162 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
gg-mvs-nofinetune | | | 88.32 156 | 88.81 156 | 87.75 166 | 93.07 140 | 89.37 169 | 89.06 192 | 95.94 8 | 95.29 20 | 87.15 153 | 97.38 42 | 76.38 197 | 68.05 204 | 91.04 155 | 89.10 165 | 93.24 162 | 83.10 180 |
|
IterMVS | | | 88.32 156 | 88.25 162 | 88.41 158 | 90.83 180 | 91.24 154 | 93.07 150 | 81.69 193 | 86.77 144 | 88.55 145 | 95.61 77 | 86.91 178 | 87.01 120 | 87.38 183 | 83.77 185 | 89.29 178 | 86.06 170 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
thres200 | | | 88.29 158 | 87.88 167 | 88.76 154 | 92.50 153 | 93.55 125 | 92.47 162 | 88.02 140 | 84.80 157 | 81.44 185 | 79.28 207 | 82.20 187 | 81.83 159 | 94.27 114 | 93.67 113 | 96.27 98 | 87.40 164 |
|
IB-MVS | | 86.01 17 | 88.24 159 | 87.63 169 | 88.94 151 | 92.03 165 | 91.77 147 | 92.40 164 | 85.58 170 | 78.24 197 | 84.85 166 | 71.99 211 | 93.45 143 | 83.96 142 | 93.48 124 | 92.33 126 | 94.84 140 | 92.15 120 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDTV_nov1_ep13_2view | | | 88.22 160 | 87.85 168 | 88.65 156 | 91.40 171 | 86.75 181 | 94.07 132 | 84.97 175 | 88.86 127 | 93.20 63 | 96.11 69 | 96.21 97 | 83.70 144 | 87.29 185 | 80.29 192 | 84.56 196 | 79.46 193 |
|
test20.03 | | | 88.20 161 | 91.26 133 | 84.63 185 | 96.64 42 | 89.39 168 | 90.73 180 | 89.97 111 | 91.07 99 | 72.02 207 | 94.98 94 | 95.45 113 | 69.35 200 | 92.70 131 | 91.19 145 | 89.06 180 | 84.02 174 |
|
HyFIR lowres test | | | 88.19 162 | 86.56 176 | 90.09 136 | 91.24 173 | 92.17 142 | 94.30 128 | 88.79 131 | 84.06 161 | 85.45 162 | 89.52 155 | 85.64 181 | 88.64 108 | 85.40 192 | 87.28 173 | 92.14 172 | 81.87 183 |
|
ET-MVSNet_ETH3D | | | 88.06 163 | 85.75 180 | 90.74 126 | 92.82 147 | 90.68 159 | 93.77 135 | 88.59 133 | 81.22 177 | 89.78 131 | 89.15 159 | 66.79 215 | 84.29 140 | 91.72 148 | 91.34 143 | 95.22 127 | 89.36 149 |
|
tfpn200view9 | | | 87.94 164 | 87.51 171 | 88.44 157 | 92.28 160 | 93.63 122 | 93.35 144 | 88.11 138 | 80.90 179 | 80.89 186 | 78.25 208 | 82.25 185 | 79.65 168 | 94.27 114 | 94.76 95 | 96.36 92 | 88.48 157 |
|
FMVSNet3 | | | 87.90 165 | 88.63 159 | 87.04 170 | 89.78 188 | 93.46 128 | 91.62 174 | 90.05 106 | 79.40 186 | 78.60 193 | 90.58 139 | 87.05 175 | 77.07 185 | 88.03 180 | 89.86 156 | 95.12 132 | 92.04 123 |
|
MS-PatchMatch | | | 87.72 166 | 88.62 160 | 86.66 174 | 90.81 181 | 88.18 173 | 90.92 177 | 82.25 190 | 85.86 152 | 80.40 189 | 90.14 150 | 89.29 168 | 84.93 134 | 89.39 170 | 89.12 164 | 90.67 174 | 88.34 159 |
|
Anonymous20231206 | | | 87.45 167 | 89.66 149 | 84.87 182 | 94.00 113 | 87.73 179 | 91.36 175 | 86.41 165 | 88.89 126 | 75.03 201 | 92.59 126 | 96.82 80 | 72.48 198 | 89.72 166 | 88.06 170 | 89.93 177 | 83.81 176 |
|
EPNet_dtu | | | 87.40 168 | 86.27 177 | 88.72 155 | 95.68 75 | 83.37 192 | 92.09 167 | 90.08 105 | 78.11 199 | 91.29 106 | 86.33 184 | 89.74 165 | 75.39 193 | 89.07 171 | 87.89 171 | 87.81 185 | 89.38 148 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline1 | | | 86.96 169 | 87.58 170 | 86.24 176 | 93.07 140 | 90.44 164 | 89.24 191 | 86.85 159 | 85.14 156 | 77.26 199 | 90.45 143 | 76.09 199 | 75.79 191 | 91.80 147 | 91.81 134 | 95.20 128 | 87.35 165 |
|
baseline | | | 86.71 170 | 88.89 154 | 84.16 187 | 87.85 199 | 85.23 185 | 89.82 185 | 77.69 200 | 84.03 163 | 84.75 167 | 94.91 96 | 94.59 129 | 77.19 184 | 86.57 188 | 86.51 178 | 87.66 188 | 90.36 143 |
|
CHOSEN 1792x2688 | | | 86.64 171 | 86.62 174 | 86.65 175 | 90.33 184 | 87.86 178 | 93.19 148 | 83.30 188 | 83.95 165 | 82.32 181 | 87.93 170 | 89.34 167 | 86.92 122 | 85.64 191 | 84.95 184 | 83.85 200 | 86.68 168 |
|
testgi | | | 86.49 172 | 90.31 141 | 82.03 191 | 95.63 76 | 88.18 173 | 93.47 140 | 84.89 176 | 93.23 53 | 69.54 211 | 87.16 177 | 97.96 46 | 60.66 208 | 91.90 146 | 89.90 155 | 87.99 183 | 83.84 175 |
|
thres100view900 | | | 86.46 173 | 86.00 179 | 86.99 171 | 92.28 160 | 91.03 156 | 91.09 176 | 84.49 180 | 80.90 179 | 80.89 186 | 78.25 208 | 82.25 185 | 77.57 181 | 90.17 161 | 92.84 122 | 95.63 117 | 86.57 169 |
|
gm-plane-assit | | | 86.15 174 | 82.51 188 | 90.40 132 | 95.81 71 | 92.29 139 | 97.99 34 | 84.66 179 | 92.15 74 | 93.15 65 | 97.84 29 | 44.65 222 | 78.60 171 | 88.02 181 | 85.95 180 | 92.20 171 | 76.69 201 |
|
CMPMVS |  | 66.55 18 | 85.55 175 | 87.46 172 | 83.32 188 | 84.99 205 | 81.97 197 | 79.19 212 | 75.93 202 | 79.32 189 | 88.82 142 | 85.09 191 | 91.07 156 | 82.12 155 | 92.56 135 | 89.63 159 | 88.84 181 | 92.56 115 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CR-MVSNet | | | 85.32 176 | 81.58 190 | 89.69 144 | 90.36 183 | 84.79 188 | 86.72 203 | 92.22 60 | 75.38 205 | 90.73 114 | 90.41 145 | 67.88 212 | 84.86 135 | 83.76 195 | 85.74 181 | 93.24 162 | 83.14 178 |
|
baseline2 | | | 84.95 177 | 82.68 187 | 87.59 167 | 92.64 150 | 88.41 172 | 90.09 182 | 84.25 181 | 75.88 203 | 85.23 163 | 82.49 200 | 71.15 205 | 80.14 165 | 88.21 179 | 87.21 176 | 93.21 165 | 85.39 173 |
|
pmnet_mix02 | | | 84.85 178 | 86.58 175 | 82.83 189 | 90.19 185 | 81.10 200 | 88.52 195 | 78.58 198 | 91.50 85 | 80.32 190 | 96.48 62 | 95.86 104 | 75.42 192 | 85.17 193 | 76.44 201 | 83.91 199 | 79.51 192 |
|
MVSTER | | | 84.79 179 | 83.79 183 | 85.96 178 | 89.14 191 | 89.80 167 | 89.39 189 | 82.99 189 | 74.16 209 | 82.78 177 | 85.97 187 | 66.81 214 | 76.84 186 | 90.77 157 | 88.83 169 | 94.66 142 | 90.19 145 |
|
MIMVSNet | | | 84.76 180 | 86.75 173 | 82.44 190 | 91.71 168 | 85.95 183 | 89.74 187 | 89.49 120 | 85.28 154 | 69.69 210 | 87.93 170 | 90.88 159 | 64.85 206 | 88.26 178 | 87.74 172 | 89.18 179 | 81.24 184 |
|
SCA | | | 84.69 181 | 81.10 191 | 88.87 153 | 89.02 192 | 90.31 165 | 92.21 166 | 92.09 69 | 82.72 172 | 89.68 132 | 86.83 181 | 73.08 201 | 85.80 131 | 80.50 203 | 77.51 198 | 84.45 198 | 76.80 200 |
|
new-patchmatchnet | | | 84.45 182 | 88.75 158 | 79.43 197 | 93.28 133 | 81.87 198 | 81.68 209 | 83.48 186 | 94.47 29 | 71.53 208 | 98.33 17 | 97.88 50 | 58.61 211 | 90.35 159 | 77.33 199 | 87.99 183 | 81.05 186 |
|
PatchT | | | 83.44 183 | 81.10 191 | 86.18 177 | 77.92 213 | 82.58 196 | 89.87 184 | 87.39 150 | 75.88 203 | 90.73 114 | 89.86 151 | 66.71 216 | 84.86 135 | 83.76 195 | 85.74 181 | 86.33 193 | 83.14 178 |
|
RPMNet | | | 83.42 184 | 78.40 200 | 89.28 149 | 89.79 187 | 84.79 188 | 90.64 181 | 92.11 67 | 75.38 205 | 87.10 154 | 79.80 206 | 61.99 221 | 82.79 150 | 81.88 201 | 82.07 189 | 93.23 164 | 82.87 181 |
|
TAMVS | | | 82.96 185 | 86.15 178 | 79.24 200 | 90.57 182 | 83.12 195 | 87.29 199 | 75.12 204 | 84.06 161 | 65.81 212 | 92.22 129 | 88.27 172 | 69.11 201 | 88.72 173 | 87.26 175 | 87.56 189 | 79.38 194 |
|
PatchmatchNet |  | | 82.44 186 | 78.69 199 | 86.83 172 | 89.81 186 | 81.55 199 | 90.78 179 | 87.27 153 | 82.39 174 | 88.85 141 | 88.31 166 | 70.96 206 | 81.90 157 | 78.58 207 | 74.33 207 | 82.35 204 | 74.69 204 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDTV_nov1_ep13 | | | 82.33 187 | 79.66 194 | 85.45 180 | 88.83 194 | 83.88 190 | 90.09 182 | 81.98 192 | 79.07 193 | 88.82 142 | 88.70 161 | 73.77 200 | 78.41 176 | 80.29 205 | 76.08 202 | 84.56 196 | 75.83 202 |
|
CostFormer | | | 82.15 188 | 79.54 195 | 85.20 181 | 88.92 193 | 85.70 184 | 90.87 178 | 86.26 166 | 79.19 192 | 83.87 174 | 87.89 172 | 69.20 210 | 76.62 188 | 77.50 210 | 75.28 204 | 84.69 195 | 82.02 182 |
|
PMMVS | | | 81.93 189 | 83.48 185 | 80.12 196 | 72.35 216 | 75.05 209 | 88.54 194 | 64.01 209 | 77.02 202 | 82.22 182 | 87.51 174 | 91.12 155 | 79.70 167 | 86.59 186 | 86.64 177 | 93.88 153 | 80.41 187 |
|
pmmvs3 | | | 81.69 190 | 83.83 182 | 79.19 201 | 78.33 212 | 78.57 203 | 89.53 188 | 58.71 212 | 78.88 196 | 84.34 172 | 88.36 165 | 91.96 151 | 77.69 180 | 87.48 182 | 82.42 188 | 86.54 192 | 79.18 195 |
|
tpm | | | 81.58 191 | 78.84 197 | 84.79 184 | 91.11 177 | 79.50 201 | 89.79 186 | 83.75 182 | 79.30 190 | 92.05 88 | 90.98 136 | 64.78 218 | 74.54 194 | 80.50 203 | 76.67 200 | 77.49 209 | 80.15 190 |
|
test0.0.03 1 | | | 81.51 192 | 83.30 186 | 79.42 198 | 93.99 114 | 86.50 182 | 85.93 207 | 87.32 151 | 78.16 198 | 61.62 213 | 80.78 204 | 81.78 189 | 59.87 209 | 88.40 177 | 87.27 174 | 87.78 187 | 80.19 189 |
|
dps | | | 81.42 193 | 77.88 205 | 85.56 179 | 87.67 201 | 85.17 187 | 88.37 197 | 87.46 148 | 74.37 208 | 84.55 169 | 86.80 182 | 62.18 220 | 80.20 164 | 81.13 202 | 77.52 197 | 85.10 194 | 77.98 198 |
|
test-LLR | | | 80.62 194 | 77.20 208 | 84.62 186 | 93.99 114 | 75.11 207 | 87.04 200 | 87.32 151 | 70.11 212 | 78.59 196 | 83.17 197 | 71.60 203 | 73.88 196 | 82.32 199 | 79.20 194 | 86.91 190 | 78.87 196 |
|
tpm cat1 | | | 80.03 195 | 75.93 211 | 84.81 183 | 89.31 189 | 83.26 194 | 88.86 193 | 86.55 164 | 79.24 191 | 86.10 158 | 84.22 194 | 63.62 219 | 77.37 183 | 73.43 211 | 70.88 210 | 80.67 205 | 76.87 199 |
|
N_pmnet | | | 79.33 196 | 84.22 181 | 73.62 207 | 91.72 167 | 73.72 210 | 86.11 205 | 76.36 201 | 92.38 67 | 53.38 214 | 95.54 83 | 95.62 108 | 59.14 210 | 84.23 194 | 74.84 206 | 75.03 212 | 73.25 208 |
|
EPMVS | | | 79.26 197 | 78.20 203 | 80.49 194 | 87.04 204 | 78.86 202 | 86.08 206 | 83.51 185 | 82.63 173 | 73.94 204 | 89.59 153 | 68.67 211 | 72.03 199 | 78.17 208 | 75.08 205 | 80.37 206 | 74.37 205 |
|
CHOSEN 280x420 | | | 79.24 198 | 78.26 202 | 80.38 195 | 79.60 211 | 68.80 215 | 89.32 190 | 75.38 203 | 77.25 201 | 78.02 198 | 75.57 210 | 76.17 198 | 81.19 162 | 88.61 176 | 81.39 190 | 78.79 207 | 80.03 191 |
|
ADS-MVSNet | | | 79.11 199 | 79.38 196 | 78.80 203 | 81.90 209 | 75.59 206 | 84.36 208 | 83.69 183 | 87.31 138 | 76.76 200 | 87.58 173 | 76.90 196 | 68.55 203 | 78.70 206 | 75.56 203 | 77.53 208 | 74.07 206 |
|
FMVSNet5 | | | 79.08 200 | 78.83 198 | 79.38 199 | 87.52 202 | 86.78 180 | 87.64 198 | 78.15 199 | 69.54 214 | 70.64 209 | 65.97 214 | 65.44 217 | 63.87 207 | 90.17 161 | 90.46 150 | 88.48 182 | 83.45 177 |
|
tpmrst | | | 78.81 201 | 76.18 210 | 81.87 192 | 88.56 195 | 77.45 204 | 86.74 202 | 81.52 194 | 80.08 184 | 83.48 175 | 90.84 138 | 66.88 213 | 74.54 194 | 73.04 212 | 71.02 209 | 76.38 210 | 73.95 207 |
|
test-mter | | | 78.71 202 | 78.35 201 | 79.12 202 | 84.03 206 | 76.58 205 | 88.51 196 | 59.06 211 | 71.06 210 | 78.87 192 | 83.73 196 | 71.83 202 | 76.44 189 | 83.41 198 | 80.61 191 | 87.79 186 | 81.24 184 |
|
MVS-HIRNet | | | 78.28 203 | 75.28 212 | 81.79 193 | 80.33 210 | 69.38 214 | 76.83 213 | 86.59 162 | 70.76 211 | 86.66 157 | 89.57 154 | 81.04 192 | 77.74 179 | 77.81 209 | 71.65 208 | 82.62 202 | 66.73 212 |
|
E-PMN | | | 77.81 204 | 77.88 205 | 77.73 206 | 88.26 198 | 70.48 213 | 80.19 211 | 71.20 206 | 86.66 145 | 72.89 206 | 88.09 169 | 81.74 190 | 78.75 170 | 90.02 163 | 68.30 211 | 75.10 211 | 59.85 213 |
|
EMVS | | | 77.65 205 | 77.49 207 | 77.83 204 | 87.75 200 | 71.02 212 | 81.13 210 | 70.54 207 | 86.38 148 | 74.52 203 | 89.38 156 | 80.19 195 | 78.22 177 | 89.48 168 | 67.13 212 | 74.83 213 | 58.84 214 |
|
TESTMET0.1,1 | | | 77.47 206 | 77.20 208 | 77.78 205 | 81.94 208 | 75.11 207 | 87.04 200 | 58.33 213 | 70.11 212 | 78.59 196 | 83.17 197 | 71.60 203 | 73.88 196 | 82.32 199 | 79.20 194 | 86.91 190 | 78.87 196 |
|
new_pmnet | | | 76.65 207 | 83.52 184 | 68.63 208 | 82.60 207 | 72.08 211 | 76.76 214 | 64.17 208 | 84.41 160 | 49.73 216 | 91.77 132 | 91.53 154 | 56.16 212 | 86.59 186 | 83.26 187 | 82.37 203 | 75.02 203 |
|
MVE |  | 60.41 19 | 73.21 208 | 80.84 193 | 64.30 209 | 56.34 217 | 57.24 217 | 75.28 216 | 72.76 205 | 87.14 141 | 41.39 218 | 86.31 185 | 85.30 182 | 80.66 163 | 86.17 190 | 83.36 186 | 59.35 215 | 80.38 188 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 69.86 209 | 82.14 189 | 55.52 210 | 75.19 214 | 63.08 216 | 75.52 215 | 60.97 210 | 88.50 129 | 25.11 220 | 91.77 132 | 96.44 88 | 25.43 214 | 88.70 174 | 79.34 193 | 70.93 214 | 67.17 211 |
|
GG-mvs-BLEND | | | 54.28 210 | 77.89 204 | 26.72 213 | 0.37 222 | 83.31 193 | 70.04 217 | 0.39 219 | 74.71 207 | 5.36 221 | 68.78 212 | 83.06 184 | 0.62 218 | 83.73 197 | 78.99 196 | 83.55 201 | 72.68 210 |
|
test_method | | | 43.16 211 | 51.13 213 | 33.85 211 | 7.35 219 | 12.38 220 | 51.70 219 | 11.91 215 | 62.51 216 | 47.64 217 | 62.49 215 | 80.78 193 | 28.84 213 | 59.55 215 | 34.48 214 | 55.68 216 | 45.72 215 |
|
testmvs | | | 2.38 212 | 3.35 214 | 1.26 215 | 0.83 220 | 0.96 222 | 1.53 222 | 0.83 217 | 3.59 218 | 1.63 223 | 6.03 217 | 2.93 224 | 1.55 217 | 3.49 216 | 2.51 216 | 1.21 220 | 3.92 217 |
|
test123 | | | 2.16 213 | 2.82 215 | 1.41 214 | 0.62 221 | 1.18 221 | 1.53 222 | 0.82 218 | 2.78 219 | 2.27 222 | 4.18 218 | 1.98 225 | 1.64 216 | 2.58 217 | 3.01 215 | 1.56 219 | 4.00 216 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 97.21 5 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 93.19 146 | | | | | |
|
SR-MVS | | | | | | 97.13 23 | | | 94.77 17 | | | | 97.77 53 | | | | | |
|
Anonymous202405211 | | | | 94.63 75 | | 94.51 103 | 94.96 91 | 93.94 133 | 91.35 87 | 90.82 104 | | 95.60 79 | 95.85 105 | 81.74 161 | 96.47 71 | 95.84 69 | 97.39 62 | 92.85 106 |
|
our_test_3 | | | | | | 91.78 166 | 88.87 171 | 94.37 123 | | | | | | | | | | |
|
ambc | | | | 94.61 76 | | 98.09 5 | 95.14 83 | 91.71 172 | | 94.18 38 | 96.46 12 | 96.26 65 | 96.30 91 | 91.26 66 | 94.70 105 | 92.00 133 | 93.45 158 | 93.67 92 |
|
MTAPA | | | | | | | | | | | 94.88 28 | | 96.88 78 | | | | | |
|
MTMP | | | | | | | | | | | 95.43 18 | | 97.25 65 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.96 221 | | | | | | | | | | |
|
tmp_tt | | | | | 28.44 212 | 36.05 218 | 15.86 219 | 21.29 220 | 6.40 216 | 54.52 217 | 51.96 215 | 50.37 216 | 38.68 223 | 9.55 215 | 61.75 214 | 59.66 213 | 45.36 218 | |
|
XVS | | | | | | 96.86 32 | 97.48 18 | 98.73 3 | | | 93.28 59 | | 96.82 80 | | | | 98.17 34 | |
|
X-MVStestdata | | | | | | 96.86 32 | 97.48 18 | 98.73 3 | | | 93.28 59 | | 96.82 80 | | | | 98.17 34 | |
|
abl_6 | | | | | 91.88 110 | 93.76 124 | 94.98 90 | 95.64 96 | 88.97 129 | 86.20 149 | 90.00 128 | 86.31 185 | 94.50 132 | 87.31 119 | | | 95.60 118 | 92.48 117 |
|
mPP-MVS | | | | | | 98.24 3 | | | | | | | 97.65 58 | | | | | |
|
NP-MVS | | | | | | | | | | 85.48 153 | | | | | | | | |
|
Patchmtry | | | | | | | 83.74 191 | 86.72 203 | 92.22 60 | | 90.73 114 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 47.68 218 | 53.20 218 | 19.21 214 | 63.24 215 | 26.96 219 | 66.50 213 | 69.82 209 | 66.91 205 | 64.27 213 | | 54.91 217 | 72.72 209 |
|