LTVRE_ROB | | 95.06 1 | 97.73 1 | 98.39 2 | 96.95 1 | 96.33 53 | 96.94 36 | 98.30 22 | 94.90 15 | 98.61 2 | 97.73 3 | 97.97 25 | 98.57 24 | 95.74 4 | 99.24 1 | 98.70 4 | 98.72 8 | 98.70 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 97.59 2 | 98.32 3 | 96.73 4 | 95.90 68 | 98.10 2 | 99.08 2 | 93.92 32 | 98.24 4 | 96.44 13 | 98.12 20 | 97.86 53 | 96.06 2 | 99.24 1 | 98.93 1 | 99.00 2 | 97.77 5 |
|
WR-MVS | | | 97.53 3 | 98.20 4 | 96.76 3 | 96.93 30 | 98.17 1 | 98.60 10 | 96.67 7 | 96.39 15 | 94.46 32 | 99.14 1 | 98.92 12 | 94.57 15 | 99.06 3 | 98.80 2 | 99.32 1 | 96.92 27 |
|
SixPastTwentyTwo | | | 97.36 4 | 97.73 11 | 96.92 2 | 97.36 14 | 96.15 57 | 98.29 23 | 94.43 24 | 96.50 13 | 96.96 7 | 98.74 6 | 98.74 19 | 96.04 3 | 99.03 5 | 97.74 18 | 98.44 24 | 97.22 15 |
|
PS-CasMVS | | | 97.22 5 | 97.84 8 | 96.50 5 | 97.08 26 | 97.92 6 | 98.17 32 | 97.02 2 | 94.71 27 | 95.32 21 | 98.52 13 | 98.97 10 | 92.91 42 | 99.04 4 | 98.47 6 | 98.49 20 | 97.24 14 |
|
PEN-MVS | | | 97.16 6 | 97.87 7 | 96.33 12 | 97.20 22 | 97.97 4 | 98.25 27 | 96.86 6 | 95.09 25 | 94.93 26 | 98.66 8 | 99.16 6 | 92.27 53 | 98.98 6 | 98.39 8 | 98.49 20 | 96.83 31 |
|
DTE-MVSNet | | | 97.16 6 | 97.75 10 | 96.47 6 | 97.40 13 | 97.95 5 | 98.20 30 | 96.89 5 | 95.30 20 | 95.15 24 | 98.66 8 | 98.80 17 | 92.77 46 | 98.97 7 | 98.27 10 | 98.44 24 | 96.28 42 |
|
COLMAP_ROB |  | 93.74 2 | 97.09 8 | 97.98 5 | 96.05 18 | 95.97 65 | 97.78 9 | 98.56 11 | 91.72 88 | 97.53 8 | 96.01 15 | 98.14 19 | 98.76 18 | 95.28 5 | 98.76 12 | 98.23 11 | 98.77 6 | 96.67 36 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
WR-MVS_H | | | 97.06 9 | 97.78 9 | 96.23 14 | 96.74 38 | 98.04 3 | 98.25 27 | 97.32 1 | 94.40 34 | 93.71 53 | 98.55 11 | 98.89 13 | 92.97 39 | 98.91 9 | 98.45 7 | 98.38 29 | 97.19 16 |
|
CP-MVSNet | | | 96.97 10 | 97.42 15 | 96.44 7 | 97.06 27 | 97.82 8 | 98.12 34 | 96.98 3 | 93.50 48 | 95.21 23 | 97.98 24 | 98.44 26 | 92.83 45 | 98.93 8 | 98.37 9 | 98.46 23 | 96.91 28 |
|
test_part1 | | | 96.91 11 | 98.63 1 | 94.90 47 | 94.62 104 | 97.75 11 | 98.33 21 | 93.88 34 | 98.92 1 | 93.11 68 | 99.06 2 | 99.66 1 | 90.49 93 | 98.84 11 | 98.61 5 | 98.97 3 | 97.60 8 |
|
DVP-MVS++ | | | 96.63 12 | 97.92 6 | 95.12 41 | 97.77 7 | 97.52 16 | 98.29 23 | 93.83 36 | 96.72 10 | 92.52 77 | 98.10 21 | 99.07 9 | 90.87 80 | 97.83 33 | 97.44 30 | 97.44 62 | 98.76 1 |
|
ACMH | | 90.17 8 | 96.61 13 | 97.69 13 | 95.35 31 | 95.29 84 | 96.94 36 | 98.43 15 | 92.05 76 | 98.04 5 | 95.38 19 | 98.07 22 | 99.25 5 | 93.23 33 | 98.35 17 | 97.16 42 | 97.72 53 | 96.00 48 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 96.56 14 | 96.73 25 | 96.36 10 | 98.99 1 | 97.90 7 | 97.79 45 | 95.64 10 | 92.78 62 | 92.54 76 | 96.23 71 | 95.02 130 | 94.31 18 | 98.43 16 | 98.12 12 | 98.89 4 | 98.58 3 |
|
ACMMPR | | | 96.54 15 | 96.71 26 | 96.35 11 | 97.55 10 | 97.63 12 | 98.62 9 | 94.54 19 | 94.45 31 | 94.19 38 | 95.04 96 | 97.35 66 | 94.92 10 | 97.85 30 | 97.50 27 | 98.26 31 | 97.17 17 |
|
v7n | | | 96.49 16 | 97.20 19 | 95.65 23 | 95.57 78 | 96.04 59 | 97.93 39 | 92.49 61 | 96.40 14 | 97.13 6 | 98.99 3 | 99.41 4 | 93.79 26 | 97.84 32 | 96.15 68 | 97.00 83 | 95.60 56 |
|
DeepC-MVS | | 92.47 4 | 96.44 17 | 96.75 24 | 96.08 17 | 97.57 8 | 97.19 32 | 97.96 38 | 94.28 25 | 95.29 21 | 94.92 27 | 98.31 18 | 96.92 79 | 93.69 27 | 96.81 69 | 96.50 58 | 98.06 42 | 96.27 43 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMM | | 90.06 9 | 96.31 18 | 96.42 33 | 96.19 15 | 97.21 21 | 97.16 34 | 98.71 5 | 93.79 39 | 94.35 35 | 93.81 46 | 92.80 130 | 98.23 34 | 95.11 6 | 98.07 22 | 97.45 29 | 98.51 18 | 96.86 30 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 89.90 10 | 96.27 19 | 97.52 14 | 94.81 48 | 95.19 87 | 97.18 33 | 97.97 37 | 92.52 59 | 96.72 10 | 90.50 124 | 97.31 45 | 99.11 7 | 94.10 20 | 98.67 13 | 97.90 15 | 98.56 16 | 95.79 52 |
|
APDe-MVS | | | 96.23 20 | 97.22 18 | 95.08 42 | 96.66 42 | 97.56 15 | 98.63 8 | 93.69 43 | 94.62 28 | 89.80 133 | 97.73 33 | 98.13 38 | 93.84 25 | 97.79 35 | 97.63 20 | 97.87 49 | 97.08 22 |
|
CP-MVS | | | 96.21 21 | 96.16 44 | 96.27 13 | 97.56 9 | 97.13 35 | 98.43 15 | 94.70 18 | 92.62 65 | 94.13 40 | 92.71 131 | 98.03 44 | 94.54 16 | 98.00 26 | 97.60 22 | 98.23 33 | 97.05 23 |
|
zzz-MVS | | | 96.18 22 | 96.01 47 | 96.38 8 | 98.30 2 | 96.18 56 | 98.51 13 | 94.48 23 | 94.56 29 | 94.81 30 | 91.73 140 | 96.96 76 | 94.30 19 | 98.09 20 | 97.83 16 | 97.91 48 | 96.73 33 |
|
HFP-MVS | | | 96.18 22 | 96.53 30 | 95.77 21 | 97.34 17 | 97.26 29 | 98.16 33 | 94.54 19 | 94.45 31 | 92.52 77 | 95.05 94 | 96.95 77 | 93.89 23 | 97.28 52 | 97.46 28 | 98.19 35 | 97.25 12 |
|
UniMVSNet_ETH3D | | | 96.15 24 | 97.71 12 | 94.33 57 | 97.31 18 | 96.71 41 | 95.06 110 | 96.91 4 | 97.86 6 | 90.42 125 | 98.55 11 | 99.60 2 | 88.01 120 | 98.51 14 | 97.81 17 | 98.26 31 | 94.95 68 |
|
MP-MVS |  | | 96.13 25 | 95.93 50 | 96.37 9 | 98.19 4 | 97.31 28 | 98.49 14 | 94.53 22 | 91.39 96 | 94.38 35 | 94.32 110 | 96.43 92 | 94.59 14 | 97.75 37 | 97.44 30 | 98.04 43 | 96.88 29 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMP |  | | 96.12 26 | 96.27 40 | 95.93 19 | 97.20 22 | 97.60 13 | 98.64 7 | 93.74 40 | 92.47 69 | 93.13 67 | 93.23 124 | 98.06 41 | 94.51 17 | 97.99 27 | 97.57 24 | 98.39 28 | 96.99 24 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DVP-MVS |  | | 96.10 27 | 97.23 17 | 94.79 50 | 96.28 56 | 97.49 17 | 97.90 40 | 93.60 45 | 95.47 18 | 89.57 139 | 97.32 44 | 97.72 56 | 93.89 23 | 97.74 38 | 97.53 25 | 97.51 58 | 97.34 10 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
LGP-MVS_train | | | 96.10 27 | 96.29 37 | 95.87 20 | 96.72 39 | 97.35 27 | 98.43 15 | 93.83 36 | 90.81 110 | 92.67 75 | 95.05 94 | 98.86 15 | 95.01 7 | 98.11 19 | 97.37 38 | 98.52 17 | 96.50 38 |
|
CSCG | | | 96.07 29 | 97.15 20 | 94.81 48 | 96.06 63 | 97.58 14 | 96.52 75 | 90.98 99 | 96.51 12 | 93.60 55 | 97.13 52 | 98.55 25 | 93.01 37 | 97.17 56 | 95.36 83 | 98.68 10 | 97.78 4 |
|
DPE-MVS |  | | 96.00 30 | 96.80 23 | 95.06 43 | 95.87 71 | 97.47 22 | 98.25 27 | 93.73 41 | 92.38 71 | 91.57 106 | 97.55 39 | 97.97 46 | 92.98 38 | 97.49 49 | 97.61 21 | 97.96 47 | 97.16 18 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SMA-MVS |  | | 95.99 31 | 96.48 31 | 95.41 30 | 97.43 12 | 97.36 25 | 97.55 50 | 93.70 42 | 94.05 42 | 93.79 47 | 97.02 55 | 94.53 135 | 92.28 52 | 97.53 48 | 97.19 40 | 97.73 52 | 97.67 7 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
TSAR-MVS + MP. | | | 95.99 31 | 96.57 29 | 95.31 33 | 96.87 31 | 96.50 48 | 98.71 5 | 91.58 89 | 93.25 53 | 92.71 72 | 96.86 57 | 96.57 90 | 93.92 21 | 98.09 20 | 97.91 14 | 98.08 40 | 96.81 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
OPM-MVS | | | 95.96 33 | 96.59 28 | 95.23 36 | 96.67 41 | 96.52 47 | 97.86 42 | 93.28 50 | 95.27 23 | 93.46 57 | 96.26 68 | 98.85 16 | 92.89 43 | 97.09 57 | 96.37 63 | 97.22 76 | 95.78 53 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
SteuartSystems-ACMMP | | | 95.96 33 | 96.13 46 | 95.76 22 | 97.06 27 | 97.36 25 | 98.40 19 | 94.24 27 | 91.49 90 | 91.91 96 | 94.50 105 | 96.89 80 | 94.99 8 | 98.01 25 | 97.44 30 | 97.97 46 | 97.25 12 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMP | | 89.62 11 | 95.96 33 | 96.28 38 | 95.59 24 | 96.58 44 | 97.23 31 | 98.26 26 | 93.22 51 | 92.33 74 | 92.31 85 | 94.29 111 | 98.73 20 | 94.68 12 | 98.04 23 | 97.14 44 | 98.47 22 | 96.17 45 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PGM-MVS | | | 95.90 36 | 95.72 54 | 96.10 16 | 97.53 11 | 97.45 23 | 98.55 12 | 94.12 29 | 90.25 113 | 93.71 53 | 93.20 125 | 97.18 70 | 94.63 13 | 97.68 42 | 97.34 39 | 98.08 40 | 96.97 25 |
|
PMVS |  | 87.16 16 | 95.88 37 | 96.47 32 | 95.19 38 | 97.00 29 | 96.02 60 | 96.70 66 | 91.57 90 | 94.43 33 | 95.33 20 | 97.16 51 | 95.37 118 | 92.39 49 | 98.89 10 | 98.72 3 | 98.17 37 | 94.71 73 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMMP_NAP | | | 95.86 38 | 96.18 41 | 95.47 29 | 97.11 25 | 97.26 29 | 98.37 20 | 93.48 47 | 93.49 49 | 93.99 44 | 95.61 80 | 94.11 140 | 92.49 48 | 97.87 29 | 97.44 30 | 97.40 65 | 97.52 9 |
|
Gipuma |  | | 95.86 38 | 96.17 42 | 95.50 28 | 95.92 67 | 94.59 108 | 94.77 118 | 92.50 60 | 97.82 7 | 97.90 2 | 95.56 83 | 97.88 51 | 94.71 11 | 98.02 24 | 94.81 97 | 97.23 75 | 94.48 81 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LS3D | | | 95.83 40 | 96.35 35 | 95.22 37 | 96.47 48 | 97.49 17 | 97.99 35 | 92.35 64 | 94.92 26 | 94.58 31 | 94.88 100 | 95.11 128 | 91.52 64 | 98.48 15 | 98.05 13 | 98.42 26 | 95.49 57 |
|
SD-MVS | | | 95.77 41 | 96.17 42 | 95.30 34 | 96.72 39 | 96.19 55 | 97.01 58 | 93.04 52 | 94.03 43 | 92.71 72 | 96.45 66 | 96.78 87 | 93.91 22 | 96.79 70 | 95.89 74 | 98.42 26 | 97.09 21 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SED-MVS | | | 95.73 42 | 96.98 21 | 94.28 58 | 96.08 61 | 97.39 24 | 98.18 31 | 93.80 38 | 94.20 37 | 89.61 138 | 97.29 46 | 97.49 63 | 90.69 84 | 97.74 38 | 97.41 35 | 97.32 70 | 97.34 10 |
|
TranMVSNet+NR-MVSNet | | | 95.72 43 | 96.42 33 | 94.91 46 | 96.21 57 | 96.77 40 | 96.90 63 | 94.99 13 | 92.62 65 | 91.92 95 | 98.51 14 | 98.63 22 | 90.82 81 | 97.27 53 | 96.83 49 | 98.63 13 | 94.31 83 |
|
DU-MVS | | | 95.51 44 | 95.68 55 | 95.33 32 | 96.45 49 | 96.44 50 | 96.61 72 | 95.32 11 | 89.97 118 | 93.78 49 | 97.46 41 | 98.07 40 | 91.19 71 | 97.03 59 | 96.53 56 | 98.61 14 | 94.22 84 |
|
UniMVSNet (Re) | | | 95.46 45 | 95.86 52 | 95.00 45 | 96.09 59 | 96.60 42 | 96.68 70 | 94.99 13 | 90.36 112 | 92.13 88 | 97.64 37 | 98.13 38 | 91.38 65 | 96.90 64 | 96.74 50 | 98.73 7 | 94.63 76 |
|
RPSCF | | | 95.46 45 | 96.95 22 | 93.73 81 | 95.72 75 | 95.94 63 | 95.58 101 | 88.08 145 | 95.31 19 | 91.34 108 | 96.26 68 | 98.04 43 | 93.63 28 | 98.28 18 | 97.67 19 | 98.01 44 | 97.13 19 |
|
anonymousdsp | | | 95.45 47 | 96.70 27 | 93.99 69 | 88.43 202 | 92.05 151 | 99.18 1 | 85.42 179 | 94.29 36 | 96.10 14 | 98.63 10 | 99.08 8 | 96.11 1 | 97.77 36 | 97.41 35 | 98.70 9 | 97.69 6 |
|
APD-MVS |  | | 95.38 48 | 95.68 55 | 95.03 44 | 97.30 19 | 96.90 38 | 97.83 43 | 93.92 32 | 89.40 125 | 90.35 126 | 95.41 87 | 97.69 59 | 92.97 39 | 97.24 55 | 97.17 41 | 97.83 50 | 95.96 49 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
UniMVSNet_NR-MVSNet | | | 95.34 49 | 95.51 59 | 95.14 40 | 95.80 73 | 96.55 43 | 96.61 72 | 94.79 16 | 90.04 117 | 93.78 49 | 97.51 40 | 97.25 67 | 91.19 71 | 96.68 72 | 96.31 65 | 98.65 12 | 94.22 84 |
|
X-MVS | | | 95.33 50 | 95.13 67 | 95.57 26 | 97.35 15 | 97.48 19 | 98.43 15 | 94.28 25 | 92.30 75 | 93.28 60 | 86.89 187 | 96.82 83 | 91.87 58 | 97.85 30 | 97.59 23 | 98.19 35 | 96.95 26 |
|
MSP-MVS | | | 95.32 51 | 96.28 38 | 94.19 61 | 96.87 31 | 97.77 10 | 98.27 25 | 93.88 34 | 94.15 41 | 89.63 137 | 95.36 88 | 98.37 29 | 90.73 82 | 94.37 117 | 97.53 25 | 95.77 122 | 96.40 39 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
3Dnovator+ | | 92.82 3 | 95.22 52 | 95.16 65 | 95.29 35 | 96.17 58 | 96.55 43 | 97.64 47 | 94.02 31 | 94.16 40 | 94.29 37 | 92.09 137 | 93.71 145 | 91.90 56 | 96.68 72 | 96.51 57 | 97.70 55 | 96.40 39 |
|
HPM-MVS++ |  | | 95.21 53 | 94.89 70 | 95.59 24 | 97.79 6 | 95.39 81 | 97.68 46 | 94.05 30 | 91.91 82 | 94.35 36 | 93.38 122 | 95.07 129 | 92.94 41 | 96.01 85 | 95.88 75 | 96.73 86 | 96.61 37 |
|
TSAR-MVS + ACMM | | | 95.17 54 | 95.95 48 | 94.26 59 | 96.07 62 | 96.46 49 | 95.67 98 | 94.21 28 | 93.84 45 | 90.99 116 | 97.18 49 | 95.24 126 | 93.55 29 | 96.60 76 | 95.61 81 | 95.06 141 | 96.69 35 |
|
xxxxxxxxxxxxxcwj | | | 95.03 55 | 96.14 45 | 93.73 81 | 95.30 81 | 95.93 64 | 94.80 116 | 91.76 85 | 93.11 57 | 91.93 93 | 95.83 76 | 98.96 11 | 91.11 74 | 96.62 74 | 96.44 60 | 97.46 59 | 96.13 46 |
|
CPTT-MVS | | | 95.00 56 | 94.52 79 | 95.57 26 | 96.84 35 | 96.78 39 | 97.88 41 | 93.67 44 | 92.20 76 | 92.35 84 | 85.87 195 | 97.56 62 | 94.98 9 | 96.96 62 | 96.07 71 | 97.70 55 | 96.18 44 |
|
SF-MVS | | | 94.88 57 | 95.87 51 | 93.73 81 | 95.30 81 | 95.93 64 | 94.80 116 | 91.76 85 | 93.11 57 | 91.93 93 | 95.83 76 | 97.07 73 | 91.11 74 | 96.62 74 | 96.44 60 | 97.46 59 | 96.13 46 |
|
Baseline_NR-MVSNet | | | 94.85 58 | 95.35 63 | 94.26 59 | 96.45 49 | 93.86 123 | 96.70 66 | 94.54 19 | 90.07 116 | 90.17 130 | 98.77 5 | 97.89 48 | 90.64 87 | 97.03 59 | 96.16 67 | 97.04 82 | 93.67 96 |
|
EG-PatchMatch MVS | | | 94.81 59 | 95.53 58 | 93.97 70 | 95.89 70 | 94.62 106 | 95.55 103 | 88.18 143 | 92.77 63 | 94.88 28 | 97.04 54 | 98.61 23 | 93.31 30 | 96.89 65 | 95.19 87 | 95.99 115 | 93.56 99 |
|
OMC-MVS | | | 94.74 60 | 95.46 61 | 93.91 73 | 94.62 104 | 96.26 53 | 96.64 71 | 89.36 130 | 94.20 37 | 94.15 39 | 94.02 116 | 97.73 55 | 91.34 67 | 96.15 83 | 95.04 91 | 97.37 67 | 94.80 70 |
|
DeepC-MVS_fast | | 91.38 6 | 94.73 61 | 94.98 68 | 94.44 53 | 96.83 37 | 96.12 58 | 96.69 68 | 92.17 70 | 92.98 60 | 93.72 51 | 94.14 112 | 95.45 116 | 90.49 93 | 95.73 91 | 95.30 84 | 96.71 87 | 95.13 66 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PHI-MVS | | | 94.65 62 | 94.84 72 | 94.44 53 | 94.95 93 | 96.55 43 | 96.46 78 | 91.10 97 | 88.96 128 | 96.00 16 | 94.55 104 | 95.32 121 | 90.67 85 | 96.97 61 | 96.69 54 | 97.44 62 | 94.84 69 |
|
CS-MVS | | | 94.59 63 | 94.55 78 | 94.65 52 | 96.44 51 | 94.99 95 | 97.81 44 | 89.00 133 | 85.60 157 | 93.79 47 | 94.48 107 | 97.71 57 | 92.50 47 | 97.44 50 | 97.15 43 | 98.34 30 | 94.46 82 |
|
pmmvs6 | | | 94.58 64 | 97.30 16 | 91.40 124 | 94.84 96 | 94.61 107 | 93.40 149 | 92.43 63 | 98.51 3 | 85.61 164 | 98.73 7 | 99.53 3 | 84.40 145 | 97.88 28 | 97.03 45 | 97.72 53 | 94.79 71 |
|
DeepPCF-MVS | | 90.68 7 | 94.56 65 | 94.92 69 | 94.15 62 | 94.11 117 | 95.71 72 | 97.03 57 | 90.65 103 | 93.39 52 | 94.08 41 | 95.29 91 | 94.15 139 | 93.21 34 | 95.22 102 | 94.92 95 | 95.82 121 | 95.75 54 |
|
CS-MVS-test | | | 94.55 66 | 94.02 92 | 95.17 39 | 94.82 97 | 95.30 83 | 97.14 52 | 93.40 48 | 83.18 174 | 94.01 43 | 93.00 127 | 96.93 78 | 93.13 35 | 97.73 40 | 97.42 34 | 98.50 19 | 94.55 78 |
|
NR-MVSNet | | | 94.55 66 | 95.66 57 | 93.25 94 | 94.26 113 | 96.44 50 | 96.69 68 | 95.32 11 | 89.97 118 | 91.79 101 | 97.46 41 | 98.39 28 | 82.85 154 | 96.87 67 | 96.48 59 | 98.57 15 | 93.98 90 |
|
Vis-MVSNet |  | | 94.39 68 | 95.85 53 | 92.68 102 | 90.91 185 | 95.88 67 | 97.62 49 | 91.41 91 | 91.95 81 | 89.20 141 | 97.29 46 | 96.26 95 | 90.60 92 | 96.95 63 | 95.91 72 | 96.32 102 | 96.71 34 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TSAR-MVS + GP. | | | 94.25 69 | 94.81 73 | 93.60 84 | 96.52 47 | 95.80 70 | 94.37 127 | 92.47 62 | 90.89 106 | 88.92 143 | 95.34 89 | 94.38 137 | 92.85 44 | 96.36 81 | 95.62 80 | 96.47 94 | 95.28 63 |
|
CNVR-MVS | | | 94.24 70 | 94.47 80 | 93.96 71 | 96.56 45 | 95.67 73 | 96.43 79 | 91.95 79 | 92.08 79 | 91.28 110 | 90.51 148 | 95.35 119 | 91.20 70 | 96.34 82 | 95.50 82 | 96.34 100 | 95.88 51 |
|
DROMVSNet | | | 94.23 71 | 93.81 101 | 94.71 51 | 94.85 95 | 96.23 54 | 97.14 52 | 93.40 48 | 81.79 181 | 91.58 105 | 93.29 123 | 95.21 127 | 93.13 35 | 97.73 40 | 96.95 46 | 98.20 34 | 95.45 58 |
|
v1192 | | | 93.98 72 | 93.94 95 | 94.01 67 | 93.91 125 | 94.63 105 | 97.00 59 | 89.75 120 | 91.01 104 | 96.50 10 | 97.93 26 | 98.26 33 | 91.74 60 | 92.06 147 | 92.05 137 | 95.18 136 | 91.66 137 |
|
v10 | | | 93.96 73 | 94.12 91 | 93.77 80 | 93.37 137 | 95.45 77 | 96.83 65 | 91.13 96 | 89.70 122 | 95.02 25 | 97.88 29 | 98.23 34 | 91.27 68 | 92.39 142 | 92.18 135 | 94.99 143 | 93.00 108 |
|
CDPH-MVS | | | 93.96 73 | 93.86 97 | 94.08 64 | 96.31 54 | 95.84 68 | 96.92 61 | 91.85 82 | 87.21 144 | 91.25 112 | 92.83 128 | 96.06 103 | 91.05 77 | 95.57 93 | 94.81 97 | 97.12 77 | 94.72 72 |
|
MVS_0304 | | | 93.92 75 | 93.81 101 | 94.05 66 | 96.06 63 | 96.00 61 | 96.43 79 | 92.76 57 | 85.99 155 | 94.43 34 | 94.04 115 | 97.08 72 | 88.12 119 | 94.65 113 | 94.20 110 | 96.47 94 | 94.71 73 |
|
MSLP-MVS++ | | | 93.91 76 | 94.30 87 | 93.45 86 | 95.51 79 | 95.83 69 | 93.12 155 | 91.93 81 | 91.45 93 | 91.40 107 | 87.42 182 | 96.12 102 | 93.27 31 | 96.57 77 | 96.40 62 | 95.49 126 | 96.29 41 |
|
v1921920 | | | 93.90 77 | 93.82 99 | 94.00 68 | 93.74 131 | 94.31 111 | 97.12 54 | 89.33 131 | 91.13 101 | 96.77 9 | 97.90 27 | 98.06 41 | 91.95 55 | 91.93 151 | 91.54 146 | 95.10 139 | 91.85 131 |
|
train_agg | | | 93.89 78 | 93.46 112 | 94.40 55 | 97.35 15 | 93.78 125 | 97.63 48 | 92.19 69 | 88.12 135 | 90.52 123 | 93.57 121 | 95.78 109 | 92.31 51 | 94.78 110 | 93.46 121 | 96.36 98 | 94.70 75 |
|
v144192 | | | 93.89 78 | 93.85 98 | 93.94 72 | 93.50 135 | 94.33 110 | 97.12 54 | 89.49 125 | 90.89 106 | 96.49 11 | 97.78 31 | 98.27 32 | 91.89 57 | 92.17 146 | 91.70 143 | 95.19 135 | 91.78 134 |
|
v1240 | | | 93.89 78 | 93.72 103 | 94.09 63 | 93.98 122 | 94.31 111 | 97.12 54 | 89.37 129 | 90.74 111 | 96.92 8 | 98.05 23 | 97.89 48 | 92.15 54 | 91.53 157 | 91.60 144 | 94.99 143 | 91.93 129 |
|
NCCC | | | 93.87 81 | 93.42 113 | 94.40 55 | 96.84 35 | 95.42 78 | 96.47 77 | 92.62 58 | 92.36 73 | 92.05 90 | 83.83 202 | 95.55 112 | 91.84 59 | 95.89 87 | 95.23 86 | 96.56 91 | 95.63 55 |
|
v1144 | | | 93.83 82 | 93.87 96 | 93.78 79 | 93.72 132 | 94.57 109 | 96.85 64 | 89.98 115 | 91.31 98 | 95.90 17 | 97.89 28 | 98.40 27 | 91.13 73 | 92.01 150 | 92.01 138 | 95.10 139 | 90.94 142 |
|
MVS_111021_HR | | | 93.82 83 | 94.26 89 | 93.31 89 | 95.01 91 | 93.97 121 | 95.73 95 | 89.75 120 | 92.06 80 | 92.49 79 | 94.01 117 | 96.05 104 | 90.61 91 | 95.95 86 | 94.78 100 | 96.28 103 | 93.04 107 |
|
thisisatest0515 | | | 93.79 84 | 94.41 83 | 93.06 99 | 94.14 114 | 92.50 144 | 95.56 102 | 88.55 140 | 91.61 86 | 92.45 80 | 96.84 58 | 95.71 110 | 90.62 89 | 94.58 114 | 95.07 89 | 97.05 80 | 94.58 77 |
|
TAPA-MVS | | 88.94 13 | 93.78 85 | 94.31 86 | 93.18 96 | 94.14 114 | 95.99 62 | 95.74 94 | 86.98 162 | 93.43 51 | 93.88 45 | 90.16 155 | 96.88 81 | 91.05 77 | 94.33 118 | 93.95 112 | 97.28 73 | 95.40 59 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
GeoE | | | 93.72 86 | 93.62 107 | 93.84 74 | 94.75 100 | 94.90 99 | 97.24 51 | 91.81 84 | 86.97 147 | 92.74 71 | 93.83 119 | 97.24 69 | 90.46 95 | 95.10 106 | 94.09 111 | 96.08 112 | 93.18 105 |
|
EPP-MVSNet | | | 93.63 87 | 93.95 94 | 93.26 92 | 95.15 88 | 96.54 46 | 96.18 87 | 91.97 78 | 91.74 83 | 85.76 162 | 94.95 98 | 84.27 188 | 91.60 63 | 97.61 46 | 97.38 37 | 98.87 5 | 95.18 65 |
|
v8 | | | 93.60 88 | 93.82 99 | 93.34 87 | 93.13 144 | 95.06 90 | 96.39 81 | 90.75 101 | 89.90 120 | 94.03 42 | 97.70 35 | 98.21 36 | 91.08 76 | 92.36 143 | 91.47 147 | 94.63 150 | 92.07 125 |
|
MCST-MVS | | | 93.60 88 | 93.40 115 | 93.83 75 | 95.30 81 | 95.40 80 | 96.49 76 | 90.87 100 | 90.08 115 | 91.72 102 | 90.28 153 | 95.99 105 | 91.69 61 | 93.94 126 | 92.99 126 | 96.93 84 | 95.13 66 |
|
PVSNet_Blended_VisFu | | | 93.60 88 | 93.41 114 | 93.83 75 | 96.31 54 | 95.65 74 | 95.71 96 | 90.58 105 | 88.08 137 | 93.17 65 | 95.29 91 | 92.20 154 | 90.72 83 | 94.69 112 | 93.41 123 | 96.51 93 | 94.54 79 |
|
TransMVSNet (Re) | | | 93.55 91 | 96.32 36 | 90.32 140 | 94.38 110 | 94.05 116 | 93.30 152 | 89.53 124 | 97.15 9 | 85.12 167 | 98.83 4 | 97.89 48 | 82.21 160 | 96.75 71 | 96.14 69 | 97.35 68 | 93.46 100 |
|
DCV-MVSNet | | | 93.49 92 | 95.15 66 | 91.55 119 | 94.05 118 | 95.92 66 | 95.15 108 | 91.21 93 | 92.76 64 | 87.01 158 | 89.71 159 | 97.16 71 | 83.90 149 | 97.65 43 | 96.87 48 | 97.99 45 | 95.95 50 |
|
v2v482 | | | 93.42 93 | 93.49 111 | 93.32 88 | 93.44 136 | 94.05 116 | 96.36 84 | 89.76 119 | 91.41 95 | 95.24 22 | 97.63 38 | 98.34 30 | 90.44 96 | 91.65 155 | 91.76 142 | 94.69 147 | 89.62 153 |
|
canonicalmvs | | | 93.38 94 | 94.36 84 | 92.24 108 | 93.94 124 | 96.41 52 | 94.18 136 | 90.47 106 | 93.07 59 | 88.47 149 | 88.66 169 | 93.78 144 | 88.80 109 | 95.74 90 | 95.75 78 | 97.57 57 | 97.13 19 |
|
3Dnovator | | 91.81 5 | 93.36 95 | 94.27 88 | 92.29 107 | 92.99 148 | 95.03 91 | 95.76 93 | 87.79 148 | 93.82 46 | 92.38 83 | 92.19 136 | 93.37 149 | 88.14 118 | 95.26 101 | 94.85 96 | 96.69 88 | 95.40 59 |
|
pm-mvs1 | | | 93.27 96 | 95.94 49 | 90.16 141 | 94.13 116 | 93.66 126 | 92.61 165 | 89.91 117 | 95.73 17 | 84.28 176 | 98.51 14 | 98.29 31 | 82.80 155 | 96.44 79 | 95.76 77 | 97.25 74 | 93.21 104 |
|
test1111 | | | 93.25 97 | 94.43 81 | 91.88 113 | 95.09 90 | 94.97 97 | 94.58 123 | 92.81 54 | 93.60 47 | 83.79 179 | 97.17 50 | 89.25 173 | 87.59 122 | 97.54 47 | 96.57 55 | 97.42 64 | 91.89 130 |
|
Anonymous20231211 | | | 93.19 98 | 95.50 60 | 90.49 137 | 93.77 129 | 95.29 84 | 94.36 131 | 90.04 114 | 91.44 94 | 84.59 171 | 96.72 61 | 97.65 60 | 82.45 159 | 97.25 54 | 96.32 64 | 97.74 51 | 93.79 93 |
|
TinyColmap | | | 93.17 99 | 93.33 116 | 93.00 100 | 93.84 127 | 92.76 139 | 94.75 120 | 88.90 136 | 93.97 44 | 97.48 4 | 95.28 93 | 95.29 122 | 88.37 114 | 95.31 100 | 91.58 145 | 94.65 149 | 89.10 157 |
|
MVS_111021_LR | | | 93.15 100 | 93.65 105 | 92.56 103 | 93.89 126 | 92.28 146 | 95.09 109 | 86.92 164 | 91.26 100 | 92.99 70 | 94.46 108 | 96.22 98 | 90.64 87 | 95.11 105 | 93.45 122 | 95.85 119 | 92.74 114 |
|
CNLPA | | | 93.14 101 | 93.67 104 | 92.53 104 | 94.62 104 | 94.73 102 | 95.00 112 | 86.57 169 | 92.85 61 | 92.43 81 | 90.94 143 | 94.67 132 | 90.35 97 | 95.41 95 | 93.70 118 | 96.23 106 | 93.37 102 |
|
PLC |  | 87.27 15 | 93.08 102 | 92.92 120 | 93.26 92 | 94.67 101 | 95.03 91 | 94.38 126 | 90.10 109 | 91.69 84 | 92.14 87 | 87.24 183 | 93.91 142 | 91.61 62 | 95.05 107 | 94.73 103 | 96.67 89 | 92.80 111 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CANet | | | 93.07 103 | 93.05 119 | 93.10 97 | 95.90 68 | 95.41 79 | 95.88 90 | 91.94 80 | 84.77 163 | 93.36 58 | 94.05 114 | 95.25 125 | 86.25 134 | 94.33 118 | 93.94 113 | 95.30 129 | 93.58 98 |
|
TSAR-MVS + COLMAP | | | 93.06 104 | 93.65 105 | 92.36 105 | 94.62 104 | 94.28 113 | 95.36 107 | 89.46 127 | 92.18 77 | 91.64 103 | 95.55 84 | 95.27 124 | 88.60 112 | 93.24 132 | 92.50 131 | 94.46 152 | 92.55 120 |
|
ECVR-MVS |  | | 93.05 105 | 94.25 90 | 91.65 117 | 94.76 98 | 95.23 85 | 94.26 134 | 92.80 55 | 92.49 67 | 83.90 177 | 96.75 60 | 89.99 166 | 86.84 128 | 97.62 44 | 96.72 51 | 97.32 70 | 90.92 143 |
|
Effi-MVS+ | | | 92.93 106 | 92.16 131 | 93.83 75 | 94.29 111 | 93.53 133 | 95.04 111 | 92.98 53 | 85.27 160 | 94.46 32 | 90.24 154 | 95.34 120 | 89.99 100 | 93.72 127 | 94.23 109 | 96.22 107 | 92.79 112 |
|
Fast-Effi-MVS+ | | | 92.93 106 | 92.64 124 | 93.27 91 | 93.81 128 | 93.88 122 | 95.90 89 | 90.61 104 | 83.98 169 | 92.71 72 | 92.81 129 | 96.22 98 | 90.67 85 | 94.90 109 | 93.92 114 | 95.92 117 | 92.77 113 |
|
HQP-MVS | | | 92.87 108 | 92.49 125 | 93.31 89 | 95.75 74 | 95.01 94 | 95.64 99 | 91.06 98 | 88.54 132 | 91.62 104 | 88.16 174 | 96.25 96 | 89.47 104 | 92.26 145 | 91.81 140 | 96.34 100 | 95.40 59 |
|
FMVSNet1 | | | 92.86 109 | 95.26 64 | 90.06 143 | 92.40 162 | 95.16 87 | 94.37 127 | 92.22 66 | 93.18 56 | 82.16 189 | 96.76 59 | 97.48 64 | 81.85 164 | 95.32 97 | 94.98 92 | 97.34 69 | 93.93 91 |
|
CLD-MVS | | | 92.81 110 | 94.32 85 | 91.05 128 | 95.39 80 | 95.31 82 | 95.82 92 | 81.44 202 | 89.40 125 | 91.94 92 | 95.86 74 | 97.36 65 | 85.83 136 | 95.35 96 | 94.59 105 | 95.85 119 | 92.34 122 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
IS_MVSNet | | | 92.76 111 | 93.25 117 | 92.19 109 | 94.91 94 | 95.56 75 | 95.86 91 | 92.12 72 | 88.10 136 | 82.71 184 | 93.15 126 | 88.30 176 | 88.86 108 | 97.29 51 | 96.95 46 | 98.66 11 | 93.38 101 |
|
FC-MVSNet-train | | | 92.75 112 | 95.40 62 | 89.66 151 | 95.21 86 | 94.82 100 | 97.00 59 | 89.40 128 | 91.13 101 | 81.71 190 | 97.72 34 | 96.43 92 | 77.57 187 | 96.89 65 | 96.72 51 | 97.05 80 | 94.09 87 |
|
V42 | | | 92.67 113 | 93.50 110 | 91.71 116 | 91.41 176 | 92.96 137 | 95.71 96 | 85.00 180 | 89.67 123 | 93.22 63 | 97.67 36 | 98.01 45 | 91.02 79 | 92.65 138 | 92.12 136 | 93.86 160 | 91.42 138 |
|
PM-MVS | | | 92.65 114 | 93.20 118 | 92.00 111 | 92.11 170 | 90.16 172 | 95.99 88 | 84.81 184 | 91.31 98 | 92.41 82 | 95.87 73 | 96.64 89 | 92.35 50 | 93.65 129 | 92.91 127 | 94.34 155 | 91.85 131 |
|
QAPM | | | 92.57 115 | 93.51 109 | 91.47 122 | 92.91 150 | 94.82 100 | 93.01 157 | 87.51 152 | 91.49 90 | 91.21 113 | 92.24 134 | 91.70 157 | 88.74 110 | 94.54 115 | 94.39 108 | 95.41 127 | 95.37 62 |
|
MIMVSNet1 | | | 92.52 116 | 94.88 71 | 89.77 147 | 96.09 59 | 91.99 152 | 96.92 61 | 89.68 122 | 95.92 16 | 84.55 172 | 96.64 63 | 98.21 36 | 78.44 181 | 96.08 84 | 95.10 88 | 92.91 174 | 90.22 150 |
|
tfpnnormal | | | 92.45 117 | 94.77 74 | 89.74 148 | 93.95 123 | 93.44 135 | 93.25 153 | 88.49 142 | 95.27 23 | 83.20 182 | 96.51 64 | 96.23 97 | 83.17 153 | 95.47 94 | 94.52 106 | 96.38 97 | 91.97 128 |
|
PCF-MVS | | 87.46 14 | 92.44 118 | 91.80 133 | 93.19 95 | 94.66 102 | 95.80 70 | 96.37 82 | 90.19 108 | 87.57 141 | 92.23 86 | 89.26 164 | 93.97 141 | 89.24 105 | 91.32 159 | 90.82 155 | 96.46 96 | 93.86 92 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
casdiffmvs | | | 92.42 119 | 93.99 93 | 90.60 135 | 93.25 140 | 93.82 124 | 94.28 133 | 88.73 138 | 91.53 88 | 84.53 174 | 97.74 32 | 98.64 21 | 86.60 131 | 93.21 134 | 91.20 150 | 96.21 108 | 91.76 136 |
|
AdaColmap |  | | 92.41 120 | 91.49 137 | 93.48 85 | 95.96 66 | 95.02 93 | 95.37 106 | 91.73 87 | 87.97 139 | 91.28 110 | 82.82 206 | 91.04 161 | 90.62 89 | 95.82 89 | 95.07 89 | 95.95 116 | 92.67 115 |
|
v148 | | | 92.38 121 | 92.78 122 | 91.91 112 | 92.86 151 | 92.13 149 | 94.84 114 | 87.03 161 | 91.47 92 | 93.07 69 | 96.92 56 | 98.89 13 | 90.10 99 | 92.05 148 | 89.69 163 | 93.56 163 | 88.27 166 |
|
pmmvs-eth3d | | | 92.34 122 | 92.33 126 | 92.34 106 | 92.67 155 | 90.67 166 | 96.37 82 | 89.06 132 | 90.98 105 | 93.60 55 | 97.13 52 | 97.02 75 | 88.29 115 | 90.20 166 | 91.42 148 | 94.07 158 | 88.89 161 |
|
DELS-MVS | | | 92.33 123 | 93.61 108 | 90.83 131 | 92.84 152 | 95.13 89 | 94.76 119 | 87.22 160 | 87.78 140 | 88.42 151 | 95.78 78 | 95.28 123 | 85.71 139 | 94.44 116 | 93.91 115 | 96.01 114 | 92.97 109 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Effi-MVS+-dtu | | | 92.32 124 | 91.66 135 | 93.09 98 | 95.13 89 | 94.73 102 | 94.57 124 | 92.14 71 | 81.74 182 | 90.33 127 | 88.13 175 | 95.91 106 | 89.24 105 | 94.23 123 | 93.65 120 | 97.12 77 | 93.23 103 |
|
UGNet | | | 92.31 125 | 94.70 75 | 89.53 153 | 90.99 184 | 95.53 76 | 96.19 86 | 92.10 74 | 91.35 97 | 85.76 162 | 95.31 90 | 95.48 115 | 76.84 192 | 95.22 102 | 94.79 99 | 95.32 128 | 95.19 64 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
USDC | | | 92.17 126 | 92.17 130 | 92.18 110 | 92.93 149 | 92.22 147 | 93.66 143 | 87.41 155 | 93.49 49 | 97.99 1 | 94.10 113 | 96.68 88 | 86.46 132 | 92.04 149 | 89.18 169 | 94.61 151 | 87.47 169 |
|
ETV-MVS | | | 92.12 127 | 90.44 144 | 94.08 64 | 96.36 52 | 93.63 128 | 96.27 85 | 92.00 77 | 78.90 201 | 92.13 88 | 85.29 197 | 89.85 168 | 90.26 98 | 97.07 58 | 96.29 66 | 97.46 59 | 92.04 126 |
|
IterMVS-LS | | | 92.10 128 | 92.33 126 | 91.82 115 | 93.18 141 | 93.66 126 | 92.80 163 | 92.27 65 | 90.82 108 | 90.59 122 | 97.19 48 | 90.97 162 | 87.76 121 | 89.60 173 | 90.94 154 | 94.34 155 | 93.16 106 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 92.09 129 | 92.84 121 | 91.22 127 | 92.55 157 | 92.97 136 | 93.42 148 | 85.43 178 | 90.24 114 | 91.83 98 | 94.70 101 | 94.59 133 | 88.48 113 | 94.91 108 | 93.31 125 | 95.59 125 | 89.15 156 |
|
EIA-MVS | | | 91.95 130 | 90.36 146 | 93.81 78 | 96.54 46 | 94.65 104 | 95.38 105 | 90.40 107 | 78.01 206 | 93.72 51 | 86.70 190 | 91.95 156 | 89.93 101 | 95.67 92 | 94.72 104 | 96.89 85 | 90.79 144 |
|
MAR-MVS | | | 91.86 131 | 91.14 140 | 92.71 101 | 94.29 111 | 94.24 114 | 94.91 113 | 91.82 83 | 81.66 183 | 93.32 59 | 84.51 200 | 93.42 148 | 86.86 127 | 95.16 104 | 94.44 107 | 95.05 142 | 94.53 80 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
EU-MVSNet | | | 91.63 132 | 92.73 123 | 90.35 139 | 88.36 203 | 87.89 183 | 96.53 74 | 81.51 201 | 92.45 70 | 91.82 99 | 96.44 67 | 97.05 74 | 93.26 32 | 94.10 124 | 88.94 174 | 90.61 181 | 92.24 123 |
|
FC-MVSNet-test | | | 91.49 133 | 94.43 81 | 88.07 169 | 94.97 92 | 90.53 169 | 95.42 104 | 91.18 95 | 93.24 54 | 72.94 211 | 98.37 16 | 93.86 143 | 78.78 175 | 97.82 34 | 96.13 70 | 95.13 137 | 91.05 140 |
|
OpenMVS |  | 89.22 12 | 91.09 134 | 91.42 138 | 90.71 133 | 92.79 154 | 93.61 130 | 92.74 164 | 85.47 177 | 86.10 154 | 90.73 117 | 85.71 196 | 93.07 152 | 86.69 130 | 94.07 125 | 93.34 124 | 95.86 118 | 94.02 89 |
|
FPMVS | | | 90.81 135 | 91.60 136 | 89.88 146 | 92.52 158 | 88.18 179 | 93.31 151 | 83.62 190 | 91.59 87 | 88.45 150 | 88.96 167 | 89.73 170 | 86.96 125 | 96.42 80 | 95.69 79 | 94.43 153 | 90.65 145 |
|
DI_MVS_plusplus_trai | | | 90.68 136 | 90.40 145 | 91.00 129 | 92.43 161 | 92.61 143 | 94.17 137 | 88.98 134 | 88.32 134 | 88.76 147 | 93.67 120 | 87.58 178 | 86.44 133 | 89.74 171 | 90.33 158 | 95.24 132 | 90.56 148 |
|
Vis-MVSNet (Re-imp) | | | 90.68 136 | 92.18 129 | 88.92 158 | 94.63 103 | 92.75 140 | 92.91 159 | 91.20 94 | 89.21 127 | 75.01 208 | 93.96 118 | 89.07 174 | 82.72 157 | 95.88 88 | 95.30 84 | 97.08 79 | 89.08 158 |
|
DPM-MVS | | | 90.67 138 | 89.86 150 | 91.63 118 | 95.29 84 | 94.16 115 | 94.52 125 | 89.63 123 | 89.59 124 | 89.67 136 | 81.95 208 | 88.64 175 | 85.75 138 | 90.46 164 | 90.43 157 | 94.91 145 | 93.77 94 |
|
diffmvs | | | 90.44 139 | 92.23 128 | 88.35 165 | 91.36 178 | 91.38 158 | 92.45 169 | 84.84 183 | 89.88 121 | 85.09 168 | 96.69 62 | 97.71 57 | 83.33 152 | 90.01 170 | 88.96 173 | 93.03 172 | 91.00 141 |
|
FMVSNet2 | | | 90.28 140 | 92.04 132 | 88.23 167 | 91.22 180 | 94.05 116 | 92.88 160 | 90.69 102 | 86.53 150 | 79.89 197 | 94.38 109 | 92.73 153 | 78.54 178 | 91.64 156 | 92.26 134 | 96.17 109 | 92.67 115 |
|
IterMVS-SCA-FT | | | 90.24 141 | 89.37 156 | 91.26 126 | 92.50 159 | 92.11 150 | 91.69 179 | 87.48 153 | 87.05 146 | 91.82 99 | 95.76 79 | 87.25 179 | 91.36 66 | 89.02 178 | 85.53 189 | 92.68 175 | 88.90 160 |
|
MVS_Test | | | 90.19 142 | 90.58 141 | 89.74 148 | 92.12 169 | 91.74 154 | 92.51 166 | 88.54 141 | 82.80 176 | 87.50 155 | 94.62 102 | 95.02 130 | 83.97 147 | 88.69 181 | 89.32 167 | 93.79 161 | 91.85 131 |
|
EPNet | | | 90.17 143 | 89.07 158 | 91.45 123 | 97.25 20 | 90.62 168 | 94.84 114 | 93.54 46 | 80.96 185 | 91.85 97 | 86.98 186 | 85.88 184 | 77.79 184 | 92.30 144 | 92.58 130 | 93.41 165 | 94.20 86 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PVSNet_BlendedMVS | | | 90.09 144 | 90.12 148 | 90.05 144 | 92.40 162 | 92.74 141 | 91.74 175 | 85.89 173 | 80.54 188 | 90.30 128 | 88.54 170 | 95.51 113 | 84.69 143 | 92.64 139 | 90.25 159 | 95.28 130 | 90.61 146 |
|
PVSNet_Blended | | | 90.09 144 | 90.12 148 | 90.05 144 | 92.40 162 | 92.74 141 | 91.74 175 | 85.89 173 | 80.54 188 | 90.30 128 | 88.54 170 | 95.51 113 | 84.69 143 | 92.64 139 | 90.25 159 | 95.28 130 | 90.61 146 |
|
pmmvs4 | | | 89.95 146 | 89.32 157 | 90.69 134 | 91.60 175 | 89.17 176 | 94.37 127 | 87.63 149 | 88.07 138 | 91.02 115 | 94.50 105 | 90.50 165 | 86.13 135 | 86.33 195 | 89.40 166 | 93.39 166 | 87.29 172 |
|
MDA-MVSNet-bldmvs | | | 89.75 147 | 91.67 134 | 87.50 174 | 74.25 221 | 90.88 163 | 94.68 121 | 85.89 173 | 91.64 85 | 91.03 114 | 95.86 74 | 94.35 138 | 89.10 107 | 96.87 67 | 86.37 185 | 90.04 182 | 85.72 177 |
|
tttt0517 | | | 89.64 148 | 88.05 169 | 91.49 121 | 93.52 134 | 91.65 155 | 93.67 142 | 87.53 150 | 82.77 177 | 89.39 140 | 90.37 152 | 70.05 213 | 88.21 116 | 93.71 128 | 93.79 116 | 96.63 90 | 94.04 88 |
|
PatchMatch-RL | | | 89.59 149 | 88.80 162 | 90.51 136 | 92.20 168 | 88.00 182 | 91.72 177 | 86.64 166 | 84.75 164 | 88.25 152 | 87.10 185 | 90.66 164 | 89.85 103 | 93.23 133 | 92.28 133 | 94.41 154 | 85.60 178 |
|
Fast-Effi-MVS+-dtu | | | 89.57 150 | 88.42 166 | 90.92 130 | 93.35 138 | 91.57 156 | 93.01 157 | 95.71 9 | 78.94 200 | 87.65 154 | 84.68 199 | 93.14 151 | 82.00 162 | 90.84 162 | 91.01 153 | 93.78 162 | 88.77 162 |
|
thisisatest0530 | | | 89.54 151 | 87.99 171 | 91.35 125 | 93.17 142 | 91.31 159 | 93.45 147 | 87.53 150 | 82.96 175 | 89.17 142 | 90.45 149 | 70.32 212 | 88.21 116 | 93.37 131 | 93.79 116 | 96.54 92 | 93.71 95 |
|
test2506 | | | 89.51 152 | 87.77 174 | 91.55 119 | 94.76 98 | 95.23 85 | 94.26 134 | 92.80 55 | 92.49 67 | 83.31 181 | 89.97 157 | 50.93 227 | 86.84 128 | 97.62 44 | 96.72 51 | 97.32 70 | 91.42 138 |
|
GBi-Net | | | 89.35 153 | 90.58 141 | 87.91 170 | 91.22 180 | 94.05 116 | 92.88 160 | 90.05 111 | 79.40 192 | 78.60 199 | 90.58 145 | 87.05 180 | 78.54 178 | 95.32 97 | 94.98 92 | 96.17 109 | 92.67 115 |
|
test1 | | | 89.35 153 | 90.58 141 | 87.91 170 | 91.22 180 | 94.05 116 | 92.88 160 | 90.05 111 | 79.40 192 | 78.60 199 | 90.58 145 | 87.05 180 | 78.54 178 | 95.32 97 | 94.98 92 | 96.17 109 | 92.67 115 |
|
thres600view7 | | | 89.14 155 | 88.83 160 | 89.51 154 | 93.71 133 | 93.55 131 | 93.93 140 | 88.02 146 | 87.30 143 | 82.40 185 | 81.18 209 | 80.63 199 | 82.69 158 | 94.27 120 | 95.90 73 | 96.27 104 | 88.94 159 |
|
CVMVSNet | | | 88.97 156 | 89.73 152 | 88.10 168 | 87.33 209 | 85.22 192 | 94.68 121 | 78.68 203 | 88.94 129 | 86.98 159 | 95.55 84 | 85.71 185 | 89.87 102 | 91.19 160 | 89.69 163 | 91.05 179 | 91.78 134 |
|
CANet_DTU | | | 88.95 157 | 89.51 155 | 88.29 166 | 93.12 145 | 91.22 161 | 93.61 144 | 83.47 193 | 80.07 191 | 90.71 121 | 89.19 165 | 93.68 146 | 76.27 196 | 91.44 158 | 91.17 152 | 92.59 176 | 89.83 152 |
|
GA-MVS | | | 88.76 158 | 88.04 170 | 89.59 152 | 92.32 165 | 91.46 157 | 92.28 171 | 86.62 167 | 83.82 171 | 89.84 132 | 92.51 133 | 81.94 193 | 83.53 151 | 89.41 175 | 89.27 168 | 92.95 173 | 87.90 167 |
|
pmmvs5 | | | 88.63 159 | 89.70 153 | 87.39 175 | 89.24 196 | 90.64 167 | 91.87 174 | 82.13 197 | 83.34 172 | 87.86 153 | 94.58 103 | 96.15 101 | 79.87 172 | 87.33 190 | 89.07 172 | 93.39 166 | 86.76 173 |
|
thres400 | | | 88.54 160 | 88.15 168 | 88.98 156 | 93.17 142 | 92.84 138 | 93.56 145 | 86.93 163 | 86.45 151 | 82.37 186 | 79.96 211 | 81.46 196 | 81.83 165 | 93.21 134 | 94.76 101 | 96.04 113 | 88.39 164 |
|
CDS-MVSNet | | | 88.41 161 | 89.79 151 | 86.79 179 | 94.55 108 | 90.82 164 | 92.50 167 | 89.85 118 | 83.26 173 | 80.52 194 | 91.05 141 | 89.93 167 | 69.11 207 | 93.17 136 | 92.71 129 | 94.21 157 | 87.63 168 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
gg-mvs-nofinetune | | | 88.32 162 | 88.81 161 | 87.75 172 | 93.07 146 | 89.37 175 | 89.06 198 | 95.94 8 | 95.29 21 | 87.15 156 | 97.38 43 | 76.38 202 | 68.05 210 | 91.04 161 | 89.10 171 | 93.24 168 | 83.10 186 |
|
IterMVS | | | 88.32 162 | 88.25 167 | 88.41 164 | 90.83 186 | 91.24 160 | 93.07 156 | 81.69 199 | 86.77 148 | 88.55 148 | 95.61 80 | 86.91 183 | 87.01 124 | 87.38 189 | 83.77 191 | 89.29 184 | 86.06 176 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
thres200 | | | 88.29 164 | 87.88 172 | 88.76 160 | 92.50 159 | 93.55 131 | 92.47 168 | 88.02 146 | 84.80 162 | 81.44 191 | 79.28 213 | 82.20 192 | 81.83 165 | 94.27 120 | 93.67 119 | 96.27 104 | 87.40 170 |
|
IB-MVS | | 86.01 17 | 88.24 165 | 87.63 175 | 88.94 157 | 92.03 171 | 91.77 153 | 92.40 170 | 85.58 176 | 78.24 203 | 84.85 169 | 71.99 217 | 93.45 147 | 83.96 148 | 93.48 130 | 92.33 132 | 94.84 146 | 92.15 124 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDTV_nov1_ep13_2view | | | 88.22 166 | 87.85 173 | 88.65 162 | 91.40 177 | 86.75 187 | 94.07 138 | 84.97 181 | 88.86 131 | 93.20 64 | 96.11 72 | 96.21 100 | 83.70 150 | 87.29 191 | 80.29 198 | 84.56 202 | 79.46 199 |
|
test20.03 | | | 88.20 167 | 91.26 139 | 84.63 191 | 96.64 43 | 89.39 174 | 90.73 186 | 89.97 116 | 91.07 103 | 72.02 213 | 94.98 97 | 95.45 116 | 69.35 206 | 92.70 137 | 91.19 151 | 89.06 186 | 84.02 180 |
|
HyFIR lowres test | | | 88.19 168 | 86.56 182 | 90.09 142 | 91.24 179 | 92.17 148 | 94.30 132 | 88.79 137 | 84.06 166 | 85.45 165 | 89.52 162 | 85.64 186 | 88.64 111 | 85.40 198 | 87.28 179 | 92.14 178 | 81.87 189 |
|
ET-MVSNet_ETH3D | | | 88.06 169 | 85.75 186 | 90.74 132 | 92.82 153 | 90.68 165 | 93.77 141 | 88.59 139 | 81.22 184 | 89.78 134 | 89.15 166 | 66.79 220 | 84.29 146 | 91.72 154 | 91.34 149 | 95.22 133 | 89.36 155 |
|
tfpn200view9 | | | 87.94 170 | 87.51 177 | 88.44 163 | 92.28 166 | 93.63 128 | 93.35 150 | 88.11 144 | 80.90 186 | 80.89 192 | 78.25 214 | 82.25 190 | 79.65 174 | 94.27 120 | 94.76 101 | 96.36 98 | 88.48 163 |
|
FMVSNet3 | | | 87.90 171 | 88.63 164 | 87.04 176 | 89.78 194 | 93.46 134 | 91.62 180 | 90.05 111 | 79.40 192 | 78.60 199 | 90.58 145 | 87.05 180 | 77.07 191 | 88.03 186 | 89.86 162 | 95.12 138 | 92.04 126 |
|
MS-PatchMatch | | | 87.72 172 | 88.62 165 | 86.66 180 | 90.81 187 | 88.18 179 | 90.92 183 | 82.25 196 | 85.86 156 | 80.40 195 | 90.14 156 | 89.29 172 | 84.93 140 | 89.39 176 | 89.12 170 | 90.67 180 | 88.34 165 |
|
Anonymous20231206 | | | 87.45 173 | 89.66 154 | 84.87 188 | 94.00 119 | 87.73 185 | 91.36 181 | 86.41 171 | 88.89 130 | 75.03 207 | 92.59 132 | 96.82 83 | 72.48 204 | 89.72 172 | 88.06 176 | 89.93 183 | 83.81 182 |
|
EPNet_dtu | | | 87.40 174 | 86.27 183 | 88.72 161 | 95.68 76 | 83.37 198 | 92.09 173 | 90.08 110 | 78.11 205 | 91.29 109 | 86.33 191 | 89.74 169 | 75.39 199 | 89.07 177 | 87.89 177 | 87.81 191 | 89.38 154 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline1 | | | 86.96 175 | 87.58 176 | 86.24 182 | 93.07 146 | 90.44 170 | 89.24 197 | 86.85 165 | 85.14 161 | 77.26 205 | 90.45 149 | 76.09 204 | 75.79 197 | 91.80 153 | 91.81 140 | 95.20 134 | 87.35 171 |
|
baseline | | | 86.71 176 | 88.89 159 | 84.16 193 | 87.85 205 | 85.23 191 | 89.82 191 | 77.69 206 | 84.03 168 | 84.75 170 | 94.91 99 | 94.59 133 | 77.19 190 | 86.57 194 | 86.51 184 | 87.66 194 | 90.36 149 |
|
CHOSEN 1792x2688 | | | 86.64 177 | 86.62 180 | 86.65 181 | 90.33 190 | 87.86 184 | 93.19 154 | 83.30 194 | 83.95 170 | 82.32 187 | 87.93 177 | 89.34 171 | 86.92 126 | 85.64 197 | 84.95 190 | 83.85 206 | 86.68 174 |
|
testgi | | | 86.49 178 | 90.31 147 | 82.03 197 | 95.63 77 | 88.18 179 | 93.47 146 | 84.89 182 | 93.23 55 | 69.54 217 | 87.16 184 | 97.96 47 | 60.66 214 | 91.90 152 | 89.90 161 | 87.99 189 | 83.84 181 |
|
thres100view900 | | | 86.46 179 | 86.00 185 | 86.99 177 | 92.28 166 | 91.03 162 | 91.09 182 | 84.49 186 | 80.90 186 | 80.89 192 | 78.25 214 | 82.25 190 | 77.57 187 | 90.17 167 | 92.84 128 | 95.63 123 | 86.57 175 |
|
gm-plane-assit | | | 86.15 180 | 82.51 194 | 90.40 138 | 95.81 72 | 92.29 145 | 97.99 35 | 84.66 185 | 92.15 78 | 93.15 66 | 97.84 30 | 44.65 228 | 78.60 177 | 88.02 187 | 85.95 186 | 92.20 177 | 76.69 207 |
|
CMPMVS |  | 66.55 18 | 85.55 181 | 87.46 178 | 83.32 194 | 84.99 211 | 81.97 203 | 79.19 218 | 75.93 208 | 79.32 195 | 88.82 145 | 85.09 198 | 91.07 160 | 82.12 161 | 92.56 141 | 89.63 165 | 88.84 187 | 92.56 119 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CR-MVSNet | | | 85.32 182 | 81.58 196 | 89.69 150 | 90.36 189 | 84.79 194 | 86.72 209 | 92.22 66 | 75.38 211 | 90.73 117 | 90.41 151 | 67.88 217 | 84.86 141 | 83.76 201 | 85.74 187 | 93.24 168 | 83.14 184 |
|
baseline2 | | | 84.95 183 | 82.68 193 | 87.59 173 | 92.64 156 | 88.41 178 | 90.09 188 | 84.25 187 | 75.88 209 | 85.23 166 | 82.49 207 | 71.15 210 | 80.14 171 | 88.21 185 | 87.21 182 | 93.21 171 | 85.39 179 |
|
pmnet_mix02 | | | 84.85 184 | 86.58 181 | 82.83 195 | 90.19 191 | 81.10 206 | 88.52 201 | 78.58 204 | 91.50 89 | 80.32 196 | 96.48 65 | 95.86 107 | 75.42 198 | 85.17 199 | 76.44 207 | 83.91 205 | 79.51 198 |
|
MVSTER | | | 84.79 185 | 83.79 189 | 85.96 184 | 89.14 197 | 89.80 173 | 89.39 195 | 82.99 195 | 74.16 215 | 82.78 183 | 85.97 194 | 66.81 219 | 76.84 192 | 90.77 163 | 88.83 175 | 94.66 148 | 90.19 151 |
|
MIMVSNet | | | 84.76 186 | 86.75 179 | 82.44 196 | 91.71 174 | 85.95 189 | 89.74 193 | 89.49 125 | 85.28 159 | 69.69 216 | 87.93 177 | 90.88 163 | 64.85 212 | 88.26 184 | 87.74 178 | 89.18 185 | 81.24 190 |
|
SCA | | | 84.69 187 | 81.10 197 | 88.87 159 | 89.02 198 | 90.31 171 | 92.21 172 | 92.09 75 | 82.72 178 | 89.68 135 | 86.83 188 | 73.08 206 | 85.80 137 | 80.50 209 | 77.51 204 | 84.45 204 | 76.80 206 |
|
new-patchmatchnet | | | 84.45 188 | 88.75 163 | 79.43 203 | 93.28 139 | 81.87 204 | 81.68 215 | 83.48 192 | 94.47 30 | 71.53 214 | 98.33 17 | 97.88 51 | 58.61 217 | 90.35 165 | 77.33 205 | 87.99 189 | 81.05 192 |
|
PatchT | | | 83.44 189 | 81.10 197 | 86.18 183 | 77.92 219 | 82.58 202 | 89.87 190 | 87.39 156 | 75.88 209 | 90.73 117 | 89.86 158 | 66.71 221 | 84.86 141 | 83.76 201 | 85.74 187 | 86.33 199 | 83.14 184 |
|
RPMNet | | | 83.42 190 | 78.40 206 | 89.28 155 | 89.79 193 | 84.79 194 | 90.64 187 | 92.11 73 | 75.38 211 | 87.10 157 | 79.80 212 | 61.99 226 | 82.79 156 | 81.88 207 | 82.07 195 | 93.23 170 | 82.87 187 |
|
TAMVS | | | 82.96 191 | 86.15 184 | 79.24 206 | 90.57 188 | 83.12 201 | 87.29 205 | 75.12 210 | 84.06 166 | 65.81 218 | 92.22 135 | 88.27 177 | 69.11 207 | 88.72 179 | 87.26 181 | 87.56 195 | 79.38 200 |
|
PatchmatchNet |  | | 82.44 192 | 78.69 205 | 86.83 178 | 89.81 192 | 81.55 205 | 90.78 185 | 87.27 159 | 82.39 180 | 88.85 144 | 88.31 173 | 70.96 211 | 81.90 163 | 78.58 213 | 74.33 213 | 82.35 210 | 74.69 210 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDTV_nov1_ep13 | | | 82.33 193 | 79.66 200 | 85.45 186 | 88.83 200 | 83.88 196 | 90.09 188 | 81.98 198 | 79.07 199 | 88.82 145 | 88.70 168 | 73.77 205 | 78.41 182 | 80.29 211 | 76.08 208 | 84.56 202 | 75.83 208 |
|
CostFormer | | | 82.15 194 | 79.54 201 | 85.20 187 | 88.92 199 | 85.70 190 | 90.87 184 | 86.26 172 | 79.19 198 | 83.87 178 | 87.89 179 | 69.20 215 | 76.62 194 | 77.50 216 | 75.28 210 | 84.69 201 | 82.02 188 |
|
PMMVS | | | 81.93 195 | 83.48 191 | 80.12 202 | 72.35 222 | 75.05 215 | 88.54 200 | 64.01 215 | 77.02 208 | 82.22 188 | 87.51 181 | 91.12 159 | 79.70 173 | 86.59 192 | 86.64 183 | 93.88 159 | 80.41 193 |
|
pmmvs3 | | | 81.69 196 | 83.83 188 | 79.19 207 | 78.33 218 | 78.57 209 | 89.53 194 | 58.71 218 | 78.88 202 | 84.34 175 | 88.36 172 | 91.96 155 | 77.69 186 | 87.48 188 | 82.42 194 | 86.54 198 | 79.18 201 |
|
tpm | | | 81.58 197 | 78.84 203 | 84.79 190 | 91.11 183 | 79.50 207 | 89.79 192 | 83.75 188 | 79.30 196 | 92.05 90 | 90.98 142 | 64.78 223 | 74.54 200 | 80.50 209 | 76.67 206 | 77.49 215 | 80.15 196 |
|
test0.0.03 1 | | | 81.51 198 | 83.30 192 | 79.42 204 | 93.99 120 | 86.50 188 | 85.93 213 | 87.32 157 | 78.16 204 | 61.62 219 | 80.78 210 | 81.78 194 | 59.87 215 | 88.40 183 | 87.27 180 | 87.78 193 | 80.19 195 |
|
dps | | | 81.42 199 | 77.88 211 | 85.56 185 | 87.67 207 | 85.17 193 | 88.37 203 | 87.46 154 | 74.37 214 | 84.55 172 | 86.80 189 | 62.18 225 | 80.20 170 | 81.13 208 | 77.52 203 | 85.10 200 | 77.98 204 |
|
test-LLR | | | 80.62 200 | 77.20 214 | 84.62 192 | 93.99 120 | 75.11 213 | 87.04 206 | 87.32 157 | 70.11 218 | 78.59 202 | 83.17 204 | 71.60 208 | 73.88 202 | 82.32 205 | 79.20 200 | 86.91 196 | 78.87 202 |
|
tpm cat1 | | | 80.03 201 | 75.93 217 | 84.81 189 | 89.31 195 | 83.26 200 | 88.86 199 | 86.55 170 | 79.24 197 | 86.10 161 | 84.22 201 | 63.62 224 | 77.37 189 | 73.43 217 | 70.88 216 | 80.67 211 | 76.87 205 |
|
N_pmnet | | | 79.33 202 | 84.22 187 | 73.62 213 | 91.72 173 | 73.72 216 | 86.11 211 | 76.36 207 | 92.38 71 | 53.38 220 | 95.54 86 | 95.62 111 | 59.14 216 | 84.23 200 | 74.84 212 | 75.03 218 | 73.25 214 |
|
EPMVS | | | 79.26 203 | 78.20 209 | 80.49 200 | 87.04 210 | 78.86 208 | 86.08 212 | 83.51 191 | 82.63 179 | 73.94 210 | 89.59 160 | 68.67 216 | 72.03 205 | 78.17 214 | 75.08 211 | 80.37 212 | 74.37 211 |
|
CHOSEN 280x420 | | | 79.24 204 | 78.26 208 | 80.38 201 | 79.60 217 | 68.80 221 | 89.32 196 | 75.38 209 | 77.25 207 | 78.02 204 | 75.57 216 | 76.17 203 | 81.19 168 | 88.61 182 | 81.39 196 | 78.79 213 | 80.03 197 |
|
ADS-MVSNet | | | 79.11 205 | 79.38 202 | 78.80 209 | 81.90 215 | 75.59 212 | 84.36 214 | 83.69 189 | 87.31 142 | 76.76 206 | 87.58 180 | 76.90 201 | 68.55 209 | 78.70 212 | 75.56 209 | 77.53 214 | 74.07 212 |
|
FMVSNet5 | | | 79.08 206 | 78.83 204 | 79.38 205 | 87.52 208 | 86.78 186 | 87.64 204 | 78.15 205 | 69.54 220 | 70.64 215 | 65.97 220 | 65.44 222 | 63.87 213 | 90.17 167 | 90.46 156 | 88.48 188 | 83.45 183 |
|
tpmrst | | | 78.81 207 | 76.18 216 | 81.87 198 | 88.56 201 | 77.45 210 | 86.74 208 | 81.52 200 | 80.08 190 | 83.48 180 | 90.84 144 | 66.88 218 | 74.54 200 | 73.04 218 | 71.02 215 | 76.38 216 | 73.95 213 |
|
test-mter | | | 78.71 208 | 78.35 207 | 79.12 208 | 84.03 212 | 76.58 211 | 88.51 202 | 59.06 217 | 71.06 216 | 78.87 198 | 83.73 203 | 71.83 207 | 76.44 195 | 83.41 204 | 80.61 197 | 87.79 192 | 81.24 190 |
|
MVS-HIRNet | | | 78.28 209 | 75.28 218 | 81.79 199 | 80.33 216 | 69.38 220 | 76.83 219 | 86.59 168 | 70.76 217 | 86.66 160 | 89.57 161 | 81.04 197 | 77.74 185 | 77.81 215 | 71.65 214 | 82.62 208 | 66.73 218 |
|
E-PMN | | | 77.81 210 | 77.88 211 | 77.73 212 | 88.26 204 | 70.48 219 | 80.19 217 | 71.20 212 | 86.66 149 | 72.89 212 | 88.09 176 | 81.74 195 | 78.75 176 | 90.02 169 | 68.30 217 | 75.10 217 | 59.85 219 |
|
EMVS | | | 77.65 211 | 77.49 213 | 77.83 210 | 87.75 206 | 71.02 218 | 81.13 216 | 70.54 213 | 86.38 152 | 74.52 209 | 89.38 163 | 80.19 200 | 78.22 183 | 89.48 174 | 67.13 218 | 74.83 219 | 58.84 220 |
|
TESTMET0.1,1 | | | 77.47 212 | 77.20 214 | 77.78 211 | 81.94 214 | 75.11 213 | 87.04 206 | 58.33 219 | 70.11 218 | 78.59 202 | 83.17 204 | 71.60 208 | 73.88 202 | 82.32 205 | 79.20 200 | 86.91 196 | 78.87 202 |
|
new_pmnet | | | 76.65 213 | 83.52 190 | 68.63 214 | 82.60 213 | 72.08 217 | 76.76 220 | 64.17 214 | 84.41 165 | 49.73 222 | 91.77 138 | 91.53 158 | 56.16 218 | 86.59 192 | 83.26 193 | 82.37 209 | 75.02 209 |
|
MVE |  | 60.41 19 | 73.21 214 | 80.84 199 | 64.30 215 | 56.34 223 | 57.24 223 | 75.28 222 | 72.76 211 | 87.14 145 | 41.39 224 | 86.31 192 | 85.30 187 | 80.66 169 | 86.17 196 | 83.36 192 | 59.35 221 | 80.38 194 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 69.86 215 | 82.14 195 | 55.52 216 | 75.19 220 | 63.08 222 | 75.52 221 | 60.97 216 | 88.50 133 | 25.11 226 | 91.77 138 | 96.44 91 | 25.43 220 | 88.70 180 | 79.34 199 | 70.93 220 | 67.17 217 |
|
GG-mvs-BLEND | | | 54.28 216 | 77.89 210 | 26.72 219 | 0.37 228 | 83.31 199 | 70.04 223 | 0.39 225 | 74.71 213 | 5.36 227 | 68.78 218 | 83.06 189 | 0.62 224 | 83.73 203 | 78.99 202 | 83.55 207 | 72.68 216 |
|
test_method | | | 43.16 217 | 51.13 219 | 33.85 217 | 7.35 225 | 12.38 226 | 51.70 225 | 11.91 221 | 62.51 222 | 47.64 223 | 62.49 221 | 80.78 198 | 28.84 219 | 59.55 221 | 34.48 220 | 55.68 222 | 45.72 221 |
|
testmvs | | | 2.38 218 | 3.35 220 | 1.26 221 | 0.83 226 | 0.96 228 | 1.53 228 | 0.83 223 | 3.59 224 | 1.63 229 | 6.03 223 | 2.93 230 | 1.55 223 | 3.49 222 | 2.51 222 | 1.21 226 | 3.92 223 |
|
test123 | | | 2.16 219 | 2.82 221 | 1.41 220 | 0.62 227 | 1.18 227 | 1.53 228 | 0.82 224 | 2.78 225 | 2.27 228 | 4.18 224 | 1.98 231 | 1.64 222 | 2.58 223 | 3.01 221 | 1.56 225 | 4.00 222 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
RE-MVS-def | | | | | | | | | | | 97.21 5 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 93.19 150 | | | | | |
|
SR-MVS | | | | | | 97.13 24 | | | 94.77 17 | | | | 97.77 54 | | | | | |
|
Anonymous202405211 | | | | 94.63 76 | | 94.51 109 | 94.96 98 | 93.94 139 | 91.35 92 | 90.82 108 | | 95.60 82 | 95.85 108 | 81.74 167 | 96.47 78 | 95.84 76 | 97.39 66 | 92.85 110 |
|
our_test_3 | | | | | | 91.78 172 | 88.87 177 | 94.37 127 | | | | | | | | | | |
|
ambc | | | | 94.61 77 | | 98.09 5 | 95.14 88 | 91.71 178 | | 94.18 39 | 96.46 12 | 96.26 68 | 96.30 94 | 91.26 69 | 94.70 111 | 92.00 139 | 93.45 164 | 93.67 96 |
|
MTAPA | | | | | | | | | | | 94.88 28 | | 96.88 81 | | | | | |
|
MTMP | | | | | | | | | | | 95.43 18 | | 97.25 67 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.96 227 | | | | | | | | | | |
|
tmp_tt | | | | | 28.44 218 | 36.05 224 | 15.86 225 | 21.29 226 | 6.40 222 | 54.52 223 | 51.96 221 | 50.37 222 | 38.68 229 | 9.55 221 | 61.75 220 | 59.66 219 | 45.36 224 | |
|
XVS | | | | | | 96.86 33 | 97.48 19 | 98.73 3 | | | 93.28 60 | | 96.82 83 | | | | 98.17 37 | |
|
X-MVStestdata | | | | | | 96.86 33 | 97.48 19 | 98.73 3 | | | 93.28 60 | | 96.82 83 | | | | 98.17 37 | |
|
abl_6 | | | | | 91.88 113 | 93.76 130 | 94.98 96 | 95.64 99 | 88.97 135 | 86.20 153 | 90.00 131 | 86.31 192 | 94.50 136 | 87.31 123 | | | 95.60 124 | 92.48 121 |
|
mPP-MVS | | | | | | 98.24 3 | | | | | | | 97.65 60 | | | | | |
|
NP-MVS | | | | | | | | | | 85.48 158 | | | | | | | | |
|
Patchmtry | | | | | | | 83.74 197 | 86.72 209 | 92.22 66 | | 90.73 117 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 47.68 224 | 53.20 224 | 19.21 220 | 63.24 221 | 26.96 225 | 66.50 219 | 69.82 214 | 66.91 211 | 64.27 219 | | 54.91 223 | 72.72 215 |
|