This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB95.06 197.73 198.39 296.95 196.33 5396.94 3698.30 2294.90 1598.61 297.73 397.97 2598.57 2495.74 499.24 198.70 498.72 898.70 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.59 298.32 396.73 495.90 6898.10 299.08 293.92 3298.24 496.44 1398.12 2097.86 5396.06 299.24 198.93 199.00 297.77 5
WR-MVS97.53 398.20 496.76 396.93 3098.17 198.60 1096.67 796.39 1594.46 3299.14 198.92 1294.57 1599.06 398.80 299.32 196.92 27
SixPastTwentyTwo97.36 497.73 1196.92 297.36 1496.15 5798.29 2394.43 2496.50 1396.96 798.74 698.74 1996.04 399.03 597.74 1898.44 2497.22 15
PS-CasMVS97.22 597.84 896.50 597.08 2697.92 698.17 3297.02 294.71 2795.32 2198.52 1398.97 1092.91 4299.04 498.47 698.49 2097.24 14
PEN-MVS97.16 697.87 796.33 1297.20 2297.97 498.25 2796.86 695.09 2594.93 2698.66 899.16 692.27 5398.98 698.39 898.49 2096.83 31
DTE-MVSNet97.16 697.75 1096.47 697.40 1397.95 598.20 3096.89 595.30 2095.15 2498.66 898.80 1792.77 4698.97 798.27 1098.44 2496.28 42
COLMAP_ROBcopyleft93.74 297.09 897.98 596.05 1895.97 6597.78 998.56 1191.72 8897.53 896.01 1598.14 1998.76 1895.28 598.76 1298.23 1198.77 696.67 36
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H97.06 997.78 996.23 1496.74 3898.04 398.25 2797.32 194.40 3493.71 5398.55 1198.89 1392.97 3998.91 998.45 798.38 2997.19 16
CP-MVSNet96.97 1097.42 1596.44 797.06 2797.82 898.12 3496.98 393.50 4895.21 2397.98 2498.44 2692.83 4598.93 898.37 998.46 2396.91 28
test_part196.91 1198.63 194.90 4794.62 10497.75 1198.33 2193.88 3498.92 193.11 6899.06 299.66 190.49 9398.84 1198.61 598.97 397.60 8
DVP-MVS++96.63 1297.92 695.12 4197.77 797.52 1698.29 2393.83 3696.72 1092.52 7798.10 2199.07 990.87 8097.83 3397.44 3097.44 6298.76 1
ACMH90.17 896.61 1397.69 1395.35 3195.29 8496.94 3698.43 1592.05 7698.04 595.38 1998.07 2299.25 593.23 3398.35 1797.16 4297.72 5396.00 48
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net96.56 1496.73 2596.36 1098.99 197.90 797.79 4595.64 1092.78 6292.54 7696.23 7195.02 13094.31 1898.43 1698.12 1298.89 498.58 3
ACMMPR96.54 1596.71 2696.35 1197.55 1097.63 1298.62 994.54 1994.45 3194.19 3895.04 9697.35 6694.92 1097.85 3097.50 2798.26 3197.17 17
v7n96.49 1697.20 1995.65 2395.57 7896.04 5997.93 3992.49 6196.40 1497.13 698.99 399.41 493.79 2697.84 3296.15 6897.00 8395.60 56
DeepC-MVS92.47 496.44 1796.75 2496.08 1797.57 897.19 3297.96 3894.28 2595.29 2194.92 2798.31 1896.92 7993.69 2796.81 6996.50 5898.06 4296.27 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM90.06 996.31 1896.42 3396.19 1597.21 2197.16 3498.71 593.79 3994.35 3593.81 4692.80 13098.23 3495.11 698.07 2297.45 2998.51 1896.86 30
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+89.90 1096.27 1997.52 1494.81 4895.19 8797.18 3397.97 3792.52 5996.72 1090.50 12497.31 4599.11 794.10 2098.67 1397.90 1598.56 1695.79 52
APDe-MVS96.23 2097.22 1895.08 4296.66 4297.56 1598.63 893.69 4394.62 2889.80 13397.73 3398.13 3893.84 2597.79 3597.63 2097.87 4997.08 22
CP-MVS96.21 2196.16 4496.27 1397.56 997.13 3598.43 1594.70 1892.62 6594.13 4092.71 13198.03 4494.54 1698.00 2697.60 2298.23 3397.05 23
zzz-MVS96.18 2296.01 4796.38 898.30 296.18 5698.51 1394.48 2394.56 2994.81 3091.73 14096.96 7694.30 1998.09 2097.83 1697.91 4896.73 33
HFP-MVS96.18 2296.53 3095.77 2197.34 1797.26 2998.16 3394.54 1994.45 3192.52 7795.05 9496.95 7793.89 2397.28 5297.46 2898.19 3597.25 12
UniMVSNet_ETH3D96.15 2497.71 1294.33 5797.31 1896.71 4195.06 11096.91 497.86 690.42 12598.55 1199.60 288.01 12098.51 1497.81 1798.26 3194.95 68
MP-MVScopyleft96.13 2595.93 5096.37 998.19 497.31 2898.49 1494.53 2291.39 9694.38 3594.32 11096.43 9294.59 1497.75 3797.44 3098.04 4396.88 29
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPcopyleft96.12 2696.27 4095.93 1997.20 2297.60 1398.64 793.74 4092.47 6993.13 6793.23 12498.06 4194.51 1797.99 2797.57 2498.39 2896.99 24
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft96.10 2797.23 1794.79 5096.28 5697.49 1797.90 4093.60 4595.47 1889.57 13997.32 4497.72 5693.89 2397.74 3897.53 2597.51 5897.34 10
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LGP-MVS_train96.10 2796.29 3795.87 2096.72 3997.35 2798.43 1593.83 3690.81 11092.67 7595.05 9498.86 1595.01 798.11 1997.37 3898.52 1796.50 38
CSCG96.07 2997.15 2094.81 4896.06 6397.58 1496.52 7590.98 9996.51 1293.60 5597.13 5298.55 2593.01 3797.17 5695.36 8398.68 1097.78 4
DPE-MVScopyleft96.00 3096.80 2395.06 4395.87 7197.47 2298.25 2793.73 4192.38 7191.57 10697.55 3997.97 4692.98 3897.49 4997.61 2197.96 4797.16 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft95.99 3196.48 3195.41 3097.43 1297.36 2597.55 5093.70 4294.05 4293.79 4797.02 5594.53 13592.28 5297.53 4897.19 4097.73 5297.67 7
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.95.99 3196.57 2995.31 3396.87 3196.50 4898.71 591.58 8993.25 5392.71 7296.86 5796.57 9093.92 2198.09 2097.91 1498.08 4096.81 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS95.96 3396.59 2895.23 3696.67 4196.52 4797.86 4293.28 5095.27 2393.46 5796.26 6898.85 1692.89 4397.09 5796.37 6397.22 7695.78 53
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SteuartSystems-ACMMP95.96 3396.13 4695.76 2297.06 2797.36 2598.40 1994.24 2791.49 9091.91 9694.50 10596.89 8094.99 898.01 2597.44 3097.97 4697.25 12
Skip Steuart: Steuart Systems R&D Blog.
ACMP89.62 1195.96 3396.28 3895.59 2496.58 4497.23 3198.26 2693.22 5192.33 7492.31 8594.29 11198.73 2094.68 1298.04 2397.14 4498.47 2296.17 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PGM-MVS95.90 3695.72 5496.10 1697.53 1197.45 2398.55 1294.12 2990.25 11393.71 5393.20 12597.18 7094.63 1397.68 4297.34 3998.08 4096.97 25
PMVScopyleft87.16 1695.88 3796.47 3295.19 3897.00 2996.02 6096.70 6691.57 9094.43 3395.33 2097.16 5195.37 11892.39 4998.89 1098.72 398.17 3794.71 73
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMMP_NAP95.86 3896.18 4195.47 2997.11 2597.26 2998.37 2093.48 4793.49 4993.99 4495.61 8094.11 14092.49 4897.87 2997.44 3097.40 6597.52 9
Gipumacopyleft95.86 3896.17 4295.50 2895.92 6794.59 10894.77 11892.50 6097.82 797.90 295.56 8397.88 5194.71 1198.02 2494.81 9797.23 7594.48 81
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LS3D95.83 4096.35 3595.22 3796.47 4897.49 1797.99 3592.35 6494.92 2694.58 3194.88 10095.11 12891.52 6498.48 1598.05 1398.42 2695.49 57
SD-MVS95.77 4196.17 4295.30 3496.72 3996.19 5597.01 5893.04 5294.03 4392.71 7296.45 6696.78 8793.91 2296.79 7095.89 7498.42 2697.09 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS95.73 4296.98 2194.28 5896.08 6197.39 2498.18 3193.80 3894.20 3789.61 13897.29 4697.49 6390.69 8497.74 3897.41 3597.32 7097.34 10
TranMVSNet+NR-MVSNet95.72 4396.42 3394.91 4696.21 5796.77 4096.90 6394.99 1392.62 6591.92 9598.51 1498.63 2290.82 8197.27 5396.83 4998.63 1394.31 83
DU-MVS95.51 4495.68 5595.33 3296.45 4996.44 5096.61 7295.32 1189.97 11893.78 4997.46 4198.07 4091.19 7197.03 5996.53 5698.61 1494.22 84
UniMVSNet (Re)95.46 4595.86 5295.00 4596.09 5996.60 4296.68 7094.99 1390.36 11292.13 8897.64 3798.13 3891.38 6596.90 6496.74 5098.73 794.63 76
RPSCF95.46 4596.95 2293.73 8195.72 7595.94 6395.58 10188.08 14595.31 1991.34 10896.26 6898.04 4393.63 2898.28 1897.67 1998.01 4497.13 19
anonymousdsp95.45 4796.70 2793.99 6988.43 20292.05 15199.18 185.42 17994.29 3696.10 1498.63 1099.08 896.11 197.77 3697.41 3598.70 997.69 6
APD-MVScopyleft95.38 4895.68 5595.03 4497.30 1996.90 3897.83 4393.92 3289.40 12590.35 12695.41 8797.69 5992.97 3997.24 5597.17 4197.83 5095.96 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet_NR-MVSNet95.34 4995.51 5995.14 4095.80 7396.55 4396.61 7294.79 1690.04 11793.78 4997.51 4097.25 6791.19 7196.68 7296.31 6598.65 1294.22 84
X-MVS95.33 5095.13 6795.57 2697.35 1597.48 1998.43 1594.28 2592.30 7593.28 6086.89 18796.82 8391.87 5897.85 3097.59 2398.19 3596.95 26
MSP-MVS95.32 5196.28 3894.19 6196.87 3197.77 1098.27 2593.88 3494.15 4189.63 13795.36 8898.37 2990.73 8294.37 11797.53 2595.77 12296.40 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
3Dnovator+92.82 395.22 5295.16 6595.29 3596.17 5896.55 4397.64 4794.02 3194.16 4094.29 3792.09 13793.71 14591.90 5696.68 7296.51 5797.70 5596.40 39
HPM-MVS++copyleft95.21 5394.89 7095.59 2497.79 695.39 8197.68 4694.05 3091.91 8294.35 3693.38 12295.07 12992.94 4196.01 8595.88 7596.73 8696.61 37
TSAR-MVS + ACMM95.17 5495.95 4894.26 5996.07 6296.46 4995.67 9894.21 2893.84 4590.99 11697.18 4995.24 12693.55 2996.60 7695.61 8195.06 14196.69 35
xxxxxxxxxxxxxcwj95.03 5596.14 4593.73 8195.30 8195.93 6494.80 11691.76 8593.11 5791.93 9395.83 7698.96 1191.11 7496.62 7496.44 6097.46 5996.13 46
CPTT-MVS95.00 5694.52 7995.57 2696.84 3596.78 3997.88 4193.67 4492.20 7692.35 8485.87 19597.56 6294.98 996.96 6296.07 7197.70 5596.18 44
SF-MVS94.88 5795.87 5193.73 8195.30 8195.93 6494.80 11691.76 8593.11 5791.93 9395.83 7697.07 7391.11 7496.62 7496.44 6097.46 5996.13 46
Baseline_NR-MVSNet94.85 5895.35 6394.26 5996.45 4993.86 12396.70 6694.54 1990.07 11690.17 13098.77 597.89 4890.64 8797.03 5996.16 6797.04 8293.67 96
EG-PatchMatch MVS94.81 5995.53 5893.97 7095.89 7094.62 10695.55 10388.18 14392.77 6394.88 2897.04 5498.61 2393.31 3096.89 6595.19 8795.99 11593.56 99
OMC-MVS94.74 6095.46 6193.91 7394.62 10496.26 5396.64 7189.36 13094.20 3794.15 3994.02 11697.73 5591.34 6796.15 8395.04 9197.37 6794.80 70
DeepC-MVS_fast91.38 694.73 6194.98 6894.44 5396.83 3796.12 5896.69 6892.17 7092.98 6093.72 5194.14 11295.45 11690.49 9395.73 9195.30 8496.71 8795.13 66
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS94.65 6294.84 7294.44 5394.95 9396.55 4396.46 7891.10 9788.96 12896.00 1694.55 10495.32 12190.67 8596.97 6196.69 5497.44 6294.84 69
CS-MVS94.59 6394.55 7894.65 5296.44 5194.99 9597.81 4489.00 13385.60 15793.79 4794.48 10797.71 5792.50 4797.44 5097.15 4398.34 3094.46 82
pmmvs694.58 6497.30 1691.40 12494.84 9694.61 10793.40 14992.43 6398.51 385.61 16498.73 799.53 384.40 14597.88 2897.03 4597.72 5394.79 71
DeepPCF-MVS90.68 794.56 6594.92 6994.15 6294.11 11795.71 7297.03 5790.65 10393.39 5294.08 4195.29 9194.15 13993.21 3495.22 10294.92 9595.82 12195.75 54
CS-MVS-test94.55 6694.02 9295.17 3994.82 9795.30 8397.14 5293.40 4883.18 17494.01 4393.00 12796.93 7893.13 3597.73 4097.42 3498.50 1994.55 78
NR-MVSNet94.55 6695.66 5793.25 9494.26 11396.44 5096.69 6895.32 1189.97 11891.79 10197.46 4198.39 2882.85 15496.87 6796.48 5998.57 1593.98 90
Vis-MVSNetpermissive94.39 6895.85 5392.68 10290.91 18595.88 6797.62 4991.41 9191.95 8189.20 14197.29 4696.26 9590.60 9296.95 6395.91 7296.32 10296.71 34
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TSAR-MVS + GP.94.25 6994.81 7393.60 8496.52 4795.80 7094.37 12792.47 6290.89 10688.92 14395.34 8994.38 13792.85 4496.36 8195.62 8096.47 9495.28 63
CNVR-MVS94.24 7094.47 8093.96 7196.56 4595.67 7396.43 7991.95 7992.08 7991.28 11090.51 14895.35 11991.20 7096.34 8295.50 8296.34 10095.88 51
DROMVSNet94.23 7193.81 10194.71 5194.85 9596.23 5497.14 5293.40 4881.79 18191.58 10593.29 12395.21 12793.13 3597.73 4096.95 4698.20 3495.45 58
v119293.98 7293.94 9594.01 6793.91 12594.63 10597.00 5989.75 12091.01 10496.50 1097.93 2698.26 3391.74 6092.06 14792.05 13795.18 13691.66 137
v1093.96 7394.12 9193.77 8093.37 13795.45 7796.83 6591.13 9689.70 12295.02 2597.88 2998.23 3491.27 6892.39 14292.18 13594.99 14393.00 108
CDPH-MVS93.96 7393.86 9794.08 6496.31 5495.84 6896.92 6191.85 8287.21 14491.25 11292.83 12896.06 10391.05 7795.57 9394.81 9797.12 7794.72 72
MVS_030493.92 7593.81 10194.05 6696.06 6396.00 6196.43 7992.76 5785.99 15594.43 3494.04 11597.08 7288.12 11994.65 11394.20 11096.47 9494.71 73
MSLP-MVS++93.91 7694.30 8793.45 8695.51 7995.83 6993.12 15591.93 8191.45 9391.40 10787.42 18296.12 10293.27 3196.57 7796.40 6295.49 12696.29 41
v192192093.90 7793.82 9994.00 6893.74 13194.31 11197.12 5489.33 13191.13 10196.77 997.90 2798.06 4191.95 5591.93 15191.54 14695.10 13991.85 131
train_agg93.89 7893.46 11294.40 5597.35 1593.78 12597.63 4892.19 6988.12 13590.52 12393.57 12195.78 10992.31 5194.78 11093.46 12196.36 9894.70 75
v14419293.89 7893.85 9893.94 7293.50 13594.33 11097.12 5489.49 12590.89 10696.49 1197.78 3198.27 3291.89 5792.17 14691.70 14395.19 13591.78 134
v124093.89 7893.72 10394.09 6393.98 12294.31 11197.12 5489.37 12990.74 11196.92 898.05 2397.89 4892.15 5491.53 15791.60 14494.99 14391.93 129
NCCC93.87 8193.42 11394.40 5596.84 3595.42 7896.47 7792.62 5892.36 7392.05 9083.83 20295.55 11291.84 5995.89 8795.23 8696.56 9195.63 55
v114493.83 8293.87 9693.78 7993.72 13294.57 10996.85 6489.98 11591.31 9895.90 1797.89 2898.40 2791.13 7392.01 15092.01 13895.10 13990.94 142
MVS_111021_HR93.82 8394.26 8993.31 8995.01 9193.97 12195.73 9589.75 12092.06 8092.49 7994.01 11796.05 10490.61 9195.95 8694.78 10096.28 10393.04 107
thisisatest051593.79 8494.41 8393.06 9994.14 11492.50 14495.56 10288.55 14091.61 8692.45 8096.84 5895.71 11090.62 8994.58 11495.07 8997.05 8094.58 77
TAPA-MVS88.94 1393.78 8594.31 8693.18 9694.14 11495.99 6295.74 9486.98 16293.43 5193.88 4590.16 15596.88 8191.05 7794.33 11893.95 11297.28 7395.40 59
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE93.72 8693.62 10793.84 7494.75 10094.90 9997.24 5191.81 8486.97 14792.74 7193.83 11997.24 6990.46 9595.10 10694.09 11196.08 11293.18 105
EPP-MVSNet93.63 8793.95 9493.26 9295.15 8896.54 4696.18 8791.97 7891.74 8385.76 16294.95 9884.27 18891.60 6397.61 4697.38 3798.87 595.18 65
v893.60 8893.82 9993.34 8793.13 14495.06 9096.39 8190.75 10189.90 12094.03 4297.70 3598.21 3691.08 7692.36 14391.47 14794.63 15092.07 125
MCST-MVS93.60 8893.40 11593.83 7595.30 8195.40 8096.49 7690.87 10090.08 11591.72 10290.28 15395.99 10591.69 6193.94 12692.99 12696.93 8495.13 66
PVSNet_Blended_VisFu93.60 8893.41 11493.83 7596.31 5495.65 7495.71 9690.58 10588.08 13793.17 6595.29 9192.20 15490.72 8394.69 11293.41 12396.51 9394.54 79
TransMVSNet (Re)93.55 9196.32 3690.32 14094.38 11094.05 11693.30 15289.53 12497.15 985.12 16798.83 497.89 4882.21 16096.75 7196.14 6997.35 6893.46 100
DCV-MVSNet93.49 9295.15 6691.55 11994.05 11895.92 6695.15 10891.21 9392.76 6487.01 15889.71 15997.16 7183.90 14997.65 4396.87 4897.99 4595.95 50
v2v48293.42 9393.49 11193.32 8893.44 13694.05 11696.36 8489.76 11991.41 9595.24 2297.63 3898.34 3090.44 9691.65 15591.76 14294.69 14789.62 153
canonicalmvs93.38 9494.36 8492.24 10893.94 12496.41 5294.18 13690.47 10693.07 5988.47 14988.66 16993.78 14488.80 10995.74 9095.75 7897.57 5797.13 19
3Dnovator91.81 593.36 9594.27 8892.29 10792.99 14895.03 9195.76 9387.79 14893.82 4692.38 8392.19 13693.37 14988.14 11895.26 10194.85 9696.69 8895.40 59
pm-mvs193.27 9695.94 4990.16 14194.13 11693.66 12692.61 16589.91 11795.73 1784.28 17698.51 1498.29 3182.80 15596.44 7995.76 7797.25 7493.21 104
test111193.25 9794.43 8191.88 11395.09 9094.97 9794.58 12392.81 5493.60 4783.79 17997.17 5089.25 17387.59 12297.54 4796.57 5597.42 6491.89 130
Anonymous2023121193.19 9895.50 6090.49 13793.77 12995.29 8494.36 13190.04 11491.44 9484.59 17196.72 6197.65 6082.45 15997.25 5496.32 6497.74 5193.79 93
TinyColmap93.17 9993.33 11693.00 10093.84 12792.76 13994.75 12088.90 13693.97 4497.48 495.28 9395.29 12288.37 11495.31 10091.58 14594.65 14989.10 157
MVS_111021_LR93.15 10093.65 10592.56 10393.89 12692.28 14695.09 10986.92 16491.26 10092.99 7094.46 10896.22 9890.64 8795.11 10593.45 12295.85 11992.74 114
CNLPA93.14 10193.67 10492.53 10494.62 10494.73 10295.00 11286.57 16992.85 6192.43 8190.94 14394.67 13290.35 9795.41 9593.70 11896.23 10693.37 102
PLCcopyleft87.27 1593.08 10292.92 12093.26 9294.67 10195.03 9194.38 12690.10 10991.69 8492.14 8787.24 18393.91 14291.61 6295.05 10794.73 10396.67 8992.80 111
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CANet93.07 10393.05 11993.10 9795.90 6895.41 7995.88 9091.94 8084.77 16393.36 5894.05 11495.25 12586.25 13494.33 11893.94 11395.30 12993.58 98
TSAR-MVS + COLMAP93.06 10493.65 10592.36 10594.62 10494.28 11395.36 10789.46 12792.18 7791.64 10395.55 8495.27 12488.60 11293.24 13292.50 13194.46 15292.55 120
ECVR-MVScopyleft93.05 10594.25 9091.65 11794.76 9895.23 8594.26 13492.80 5592.49 6783.90 17796.75 6089.99 16686.84 12897.62 4496.72 5197.32 7090.92 143
Effi-MVS+92.93 10692.16 13193.83 7594.29 11193.53 13395.04 11192.98 5385.27 16094.46 3290.24 15495.34 12089.99 10093.72 12794.23 10996.22 10792.79 112
Fast-Effi-MVS+92.93 10692.64 12493.27 9193.81 12893.88 12295.90 8990.61 10483.98 16992.71 7292.81 12996.22 9890.67 8594.90 10993.92 11495.92 11792.77 113
HQP-MVS92.87 10892.49 12593.31 8995.75 7495.01 9495.64 9991.06 9888.54 13291.62 10488.16 17496.25 9689.47 10492.26 14591.81 14096.34 10095.40 59
FMVSNet192.86 10995.26 6490.06 14392.40 16295.16 8794.37 12792.22 6693.18 5682.16 18996.76 5997.48 6481.85 16495.32 9794.98 9297.34 6993.93 91
CLD-MVS92.81 11094.32 8591.05 12895.39 8095.31 8295.82 9281.44 20289.40 12591.94 9295.86 7497.36 6585.83 13695.35 9694.59 10595.85 11992.34 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IS_MVSNet92.76 11193.25 11792.19 10994.91 9495.56 7595.86 9192.12 7288.10 13682.71 18493.15 12688.30 17688.86 10897.29 5196.95 4698.66 1193.38 101
FC-MVSNet-train92.75 11295.40 6289.66 15195.21 8694.82 10097.00 5989.40 12891.13 10181.71 19097.72 3496.43 9277.57 18796.89 6596.72 5197.05 8094.09 87
V4292.67 11393.50 11091.71 11691.41 17692.96 13795.71 9685.00 18089.67 12393.22 6397.67 3698.01 4591.02 7992.65 13892.12 13693.86 16091.42 138
PM-MVS92.65 11493.20 11892.00 11192.11 17090.16 17295.99 8884.81 18491.31 9892.41 8295.87 7396.64 8992.35 5093.65 12992.91 12794.34 15591.85 131
QAPM92.57 11593.51 10991.47 12292.91 15094.82 10093.01 15787.51 15291.49 9091.21 11392.24 13491.70 15788.74 11094.54 11594.39 10895.41 12795.37 62
MIMVSNet192.52 11694.88 7189.77 14796.09 5991.99 15296.92 6189.68 12295.92 1684.55 17296.64 6398.21 3678.44 18196.08 8495.10 8892.91 17490.22 150
tfpnnormal92.45 11794.77 7489.74 14893.95 12393.44 13593.25 15388.49 14295.27 2383.20 18296.51 6496.23 9783.17 15395.47 9494.52 10696.38 9791.97 128
PCF-MVS87.46 1492.44 11891.80 13393.19 9594.66 10295.80 7096.37 8290.19 10887.57 14192.23 8689.26 16493.97 14189.24 10591.32 15990.82 15596.46 9693.86 92
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvs92.42 11993.99 9390.60 13593.25 14093.82 12494.28 13388.73 13891.53 8884.53 17497.74 3298.64 2186.60 13193.21 13491.20 15096.21 10891.76 136
AdaColmapbinary92.41 12091.49 13793.48 8595.96 6695.02 9395.37 10691.73 8787.97 13991.28 11082.82 20691.04 16190.62 8995.82 8995.07 8995.95 11692.67 115
v14892.38 12192.78 12291.91 11292.86 15192.13 14994.84 11487.03 16191.47 9293.07 6996.92 5698.89 1390.10 9992.05 14889.69 16393.56 16388.27 166
pmmvs-eth3d92.34 12292.33 12692.34 10692.67 15590.67 16696.37 8289.06 13290.98 10593.60 5597.13 5297.02 7588.29 11590.20 16691.42 14894.07 15888.89 161
DELS-MVS92.33 12393.61 10890.83 13192.84 15295.13 8994.76 11987.22 16087.78 14088.42 15195.78 7895.28 12385.71 13994.44 11693.91 11596.01 11492.97 109
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu92.32 12491.66 13593.09 9895.13 8994.73 10294.57 12492.14 7181.74 18290.33 12788.13 17595.91 10689.24 10594.23 12393.65 12097.12 7793.23 103
UGNet92.31 12594.70 7589.53 15390.99 18495.53 7696.19 8692.10 7491.35 9785.76 16295.31 9095.48 11576.84 19295.22 10294.79 9995.32 12895.19 64
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
USDC92.17 12692.17 13092.18 11092.93 14992.22 14793.66 14387.41 15593.49 4997.99 194.10 11396.68 8886.46 13292.04 14989.18 16994.61 15187.47 169
ETV-MVS92.12 12790.44 14494.08 6496.36 5293.63 12896.27 8592.00 7778.90 20192.13 8885.29 19789.85 16890.26 9897.07 5896.29 6697.46 5992.04 126
IterMVS-LS92.10 12892.33 12691.82 11593.18 14193.66 12692.80 16392.27 6590.82 10890.59 12297.19 4890.97 16287.76 12189.60 17390.94 15494.34 15593.16 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG92.09 12992.84 12191.22 12792.55 15792.97 13693.42 14885.43 17890.24 11491.83 9894.70 10194.59 13388.48 11394.91 10893.31 12595.59 12589.15 156
EIA-MVS91.95 13090.36 14693.81 7896.54 4694.65 10495.38 10590.40 10778.01 20693.72 5186.70 19091.95 15689.93 10195.67 9294.72 10496.89 8590.79 144
MAR-MVS91.86 13191.14 14092.71 10194.29 11194.24 11494.91 11391.82 8381.66 18393.32 5984.51 20093.42 14886.86 12795.16 10494.44 10795.05 14294.53 80
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EU-MVSNet91.63 13292.73 12390.35 13988.36 20387.89 18396.53 7481.51 20192.45 7091.82 9996.44 6797.05 7493.26 3294.10 12488.94 17490.61 18192.24 123
FC-MVSNet-test91.49 13394.43 8188.07 16994.97 9290.53 16995.42 10491.18 9593.24 5472.94 21198.37 1693.86 14378.78 17597.82 3496.13 7095.13 13791.05 140
OpenMVScopyleft89.22 1291.09 13491.42 13890.71 13392.79 15493.61 13092.74 16485.47 17786.10 15490.73 11785.71 19693.07 15286.69 13094.07 12593.34 12495.86 11894.02 89
FPMVS90.81 13591.60 13689.88 14692.52 15888.18 17993.31 15183.62 19091.59 8788.45 15088.96 16789.73 17086.96 12596.42 8095.69 7994.43 15390.65 145
DI_MVS_plusplus_trai90.68 13690.40 14591.00 12992.43 16192.61 14394.17 13788.98 13488.32 13488.76 14793.67 12087.58 17886.44 13389.74 17190.33 15895.24 13290.56 148
Vis-MVSNet (Re-imp)90.68 13692.18 12988.92 15894.63 10392.75 14092.91 15991.20 9489.21 12775.01 20893.96 11889.07 17482.72 15795.88 8895.30 8497.08 7989.08 158
DPM-MVS90.67 13889.86 15091.63 11895.29 8494.16 11594.52 12589.63 12389.59 12489.67 13681.95 20888.64 17585.75 13890.46 16490.43 15794.91 14593.77 94
diffmvs90.44 13992.23 12888.35 16591.36 17891.38 15892.45 16984.84 18389.88 12185.09 16896.69 6297.71 5783.33 15290.01 17088.96 17393.03 17291.00 141
FMVSNet290.28 14092.04 13288.23 16791.22 18094.05 11692.88 16090.69 10286.53 15079.89 19794.38 10992.73 15378.54 17891.64 15692.26 13496.17 10992.67 115
IterMVS-SCA-FT90.24 14189.37 15691.26 12692.50 15992.11 15091.69 17987.48 15387.05 14691.82 9995.76 7987.25 17991.36 6689.02 17885.53 18992.68 17588.90 160
MVS_Test90.19 14290.58 14189.74 14892.12 16991.74 15492.51 16688.54 14182.80 17687.50 15594.62 10295.02 13083.97 14788.69 18189.32 16793.79 16191.85 131
EPNet90.17 14389.07 15891.45 12397.25 2090.62 16894.84 11493.54 4680.96 18591.85 9786.98 18685.88 18477.79 18492.30 14492.58 13093.41 16594.20 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS90.09 14490.12 14890.05 14492.40 16292.74 14191.74 17585.89 17380.54 18890.30 12888.54 17095.51 11384.69 14392.64 13990.25 15995.28 13090.61 146
PVSNet_Blended90.09 14490.12 14890.05 14492.40 16292.74 14191.74 17585.89 17380.54 18890.30 12888.54 17095.51 11384.69 14392.64 13990.25 15995.28 13090.61 146
pmmvs489.95 14689.32 15790.69 13491.60 17589.17 17694.37 12787.63 14988.07 13891.02 11594.50 10590.50 16586.13 13586.33 19589.40 16693.39 16687.29 172
MDA-MVSNet-bldmvs89.75 14791.67 13487.50 17474.25 22190.88 16394.68 12185.89 17391.64 8591.03 11495.86 7494.35 13889.10 10796.87 6786.37 18590.04 18285.72 177
tttt051789.64 14888.05 16991.49 12193.52 13491.65 15593.67 14287.53 15082.77 17789.39 14090.37 15270.05 21388.21 11693.71 12893.79 11696.63 9094.04 88
PatchMatch-RL89.59 14988.80 16290.51 13692.20 16888.00 18291.72 17786.64 16684.75 16488.25 15287.10 18590.66 16489.85 10393.23 13392.28 13394.41 15485.60 178
Fast-Effi-MVS+-dtu89.57 15088.42 16690.92 13093.35 13891.57 15693.01 15795.71 978.94 20087.65 15484.68 19993.14 15182.00 16290.84 16291.01 15393.78 16288.77 162
thisisatest053089.54 15187.99 17191.35 12593.17 14291.31 15993.45 14787.53 15082.96 17589.17 14290.45 14970.32 21288.21 11693.37 13193.79 11696.54 9293.71 95
test250689.51 15287.77 17491.55 11994.76 9895.23 8594.26 13492.80 5592.49 6783.31 18189.97 15750.93 22786.84 12897.62 4496.72 5197.32 7091.42 138
GBi-Net89.35 15390.58 14187.91 17091.22 18094.05 11692.88 16090.05 11179.40 19278.60 19990.58 14587.05 18078.54 17895.32 9794.98 9296.17 10992.67 115
test189.35 15390.58 14187.91 17091.22 18094.05 11692.88 16090.05 11179.40 19278.60 19990.58 14587.05 18078.54 17895.32 9794.98 9296.17 10992.67 115
thres600view789.14 15588.83 16089.51 15493.71 13393.55 13193.93 14088.02 14687.30 14382.40 18581.18 20980.63 19982.69 15894.27 12095.90 7396.27 10488.94 159
CVMVSNet88.97 15689.73 15288.10 16887.33 20985.22 19294.68 12178.68 20388.94 12986.98 15995.55 8485.71 18589.87 10291.19 16089.69 16391.05 17991.78 134
CANet_DTU88.95 15789.51 15588.29 16693.12 14591.22 16193.61 14483.47 19380.07 19190.71 12189.19 16593.68 14676.27 19691.44 15891.17 15292.59 17689.83 152
GA-MVS88.76 15888.04 17089.59 15292.32 16591.46 15792.28 17186.62 16783.82 17189.84 13292.51 13381.94 19383.53 15189.41 17589.27 16892.95 17387.90 167
pmmvs588.63 15989.70 15387.39 17589.24 19690.64 16791.87 17482.13 19783.34 17287.86 15394.58 10396.15 10179.87 17287.33 19089.07 17293.39 16686.76 173
thres40088.54 16088.15 16888.98 15693.17 14292.84 13893.56 14586.93 16386.45 15182.37 18679.96 21181.46 19681.83 16593.21 13494.76 10196.04 11388.39 164
CDS-MVSNet88.41 16189.79 15186.79 17994.55 10890.82 16492.50 16789.85 11883.26 17380.52 19491.05 14189.93 16769.11 20793.17 13692.71 12994.21 15787.63 168
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gg-mvs-nofinetune88.32 16288.81 16187.75 17293.07 14689.37 17589.06 19895.94 895.29 2187.15 15697.38 4376.38 20268.05 21091.04 16189.10 17193.24 16883.10 186
IterMVS88.32 16288.25 16788.41 16490.83 18691.24 16093.07 15681.69 19986.77 14888.55 14895.61 8086.91 18387.01 12487.38 18983.77 19189.29 18486.06 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres20088.29 16487.88 17288.76 16092.50 15993.55 13192.47 16888.02 14684.80 16281.44 19179.28 21382.20 19281.83 16594.27 12093.67 11996.27 10487.40 170
IB-MVS86.01 1788.24 16587.63 17588.94 15792.03 17191.77 15392.40 17085.58 17678.24 20384.85 16971.99 21793.45 14783.96 14893.48 13092.33 13294.84 14692.15 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep13_2view88.22 16687.85 17388.65 16291.40 17786.75 18794.07 13884.97 18188.86 13193.20 6496.11 7296.21 10083.70 15087.29 19180.29 19884.56 20279.46 199
test20.0388.20 16791.26 13984.63 19196.64 4389.39 17490.73 18689.97 11691.07 10372.02 21394.98 9795.45 11669.35 20692.70 13791.19 15189.06 18684.02 180
HyFIR lowres test88.19 16886.56 18290.09 14291.24 17992.17 14894.30 13288.79 13784.06 16685.45 16589.52 16285.64 18688.64 11185.40 19887.28 17992.14 17881.87 189
ET-MVSNet_ETH3D88.06 16985.75 18690.74 13292.82 15390.68 16593.77 14188.59 13981.22 18489.78 13489.15 16666.79 22084.29 14691.72 15491.34 14995.22 13389.36 155
tfpn200view987.94 17087.51 17788.44 16392.28 16693.63 12893.35 15088.11 14480.90 18680.89 19278.25 21482.25 19079.65 17494.27 12094.76 10196.36 9888.48 163
FMVSNet387.90 17188.63 16487.04 17689.78 19493.46 13491.62 18090.05 11179.40 19278.60 19990.58 14587.05 18077.07 19188.03 18689.86 16295.12 13892.04 126
MS-PatchMatch87.72 17288.62 16586.66 18090.81 18788.18 17990.92 18382.25 19685.86 15680.40 19590.14 15689.29 17284.93 14089.39 17689.12 17090.67 18088.34 165
Anonymous2023120687.45 17389.66 15484.87 18894.00 11987.73 18591.36 18186.41 17188.89 13075.03 20792.59 13296.82 8372.48 20489.72 17288.06 17689.93 18383.81 182
EPNet_dtu87.40 17486.27 18388.72 16195.68 7683.37 19892.09 17390.08 11078.11 20591.29 10986.33 19189.74 16975.39 19989.07 17787.89 17787.81 19189.38 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline186.96 17587.58 17686.24 18293.07 14690.44 17089.24 19786.85 16585.14 16177.26 20590.45 14976.09 20475.79 19791.80 15391.81 14095.20 13487.35 171
baseline86.71 17688.89 15984.16 19387.85 20585.23 19189.82 19177.69 20684.03 16884.75 17094.91 9994.59 13377.19 19086.57 19486.51 18487.66 19490.36 149
CHOSEN 1792x268886.64 17786.62 18086.65 18190.33 19087.86 18493.19 15483.30 19483.95 17082.32 18787.93 17789.34 17186.92 12685.64 19784.95 19083.85 20686.68 174
testgi86.49 17890.31 14782.03 19795.63 7788.18 17993.47 14684.89 18293.23 5569.54 21787.16 18497.96 4760.66 21491.90 15289.90 16187.99 18983.84 181
thres100view90086.46 17986.00 18586.99 17792.28 16691.03 16291.09 18284.49 18680.90 18680.89 19278.25 21482.25 19077.57 18790.17 16792.84 12895.63 12386.57 175
gm-plane-assit86.15 18082.51 19490.40 13895.81 7292.29 14597.99 3584.66 18592.15 7893.15 6697.84 3044.65 22878.60 17788.02 18785.95 18692.20 17776.69 207
CMPMVSbinary66.55 1885.55 18187.46 17883.32 19484.99 21181.97 20379.19 21875.93 20879.32 19588.82 14585.09 19891.07 16082.12 16192.56 14189.63 16588.84 18792.56 119
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet85.32 18281.58 19689.69 15090.36 18984.79 19486.72 20992.22 6675.38 21190.73 11790.41 15167.88 21784.86 14183.76 20185.74 18793.24 16883.14 184
baseline284.95 18382.68 19387.59 17392.64 15688.41 17890.09 18884.25 18775.88 20985.23 16682.49 20771.15 21080.14 17188.21 18587.21 18293.21 17185.39 179
pmnet_mix0284.85 18486.58 18182.83 19590.19 19181.10 20688.52 20178.58 20491.50 8980.32 19696.48 6595.86 10775.42 19885.17 19976.44 20783.91 20579.51 198
MVSTER84.79 18583.79 18985.96 18489.14 19789.80 17389.39 19582.99 19574.16 21582.78 18385.97 19466.81 21976.84 19290.77 16388.83 17594.66 14890.19 151
MIMVSNet84.76 18686.75 17982.44 19691.71 17485.95 18989.74 19389.49 12585.28 15969.69 21687.93 17790.88 16364.85 21288.26 18487.74 17889.18 18581.24 190
SCA84.69 18781.10 19788.87 15989.02 19890.31 17192.21 17292.09 7582.72 17889.68 13586.83 18873.08 20685.80 13780.50 20977.51 20484.45 20476.80 206
new-patchmatchnet84.45 18888.75 16379.43 20393.28 13981.87 20481.68 21583.48 19294.47 3071.53 21498.33 1797.88 5158.61 21790.35 16577.33 20587.99 18981.05 192
PatchT83.44 18981.10 19786.18 18377.92 21982.58 20289.87 19087.39 15675.88 20990.73 11789.86 15866.71 22184.86 14183.76 20185.74 18786.33 19983.14 184
RPMNet83.42 19078.40 20689.28 15589.79 19384.79 19490.64 18792.11 7375.38 21187.10 15779.80 21261.99 22682.79 15681.88 20782.07 19593.23 17082.87 187
TAMVS82.96 19186.15 18479.24 20690.57 18883.12 20187.29 20575.12 21084.06 16665.81 21892.22 13588.27 17769.11 20788.72 17987.26 18187.56 19579.38 200
PatchmatchNetpermissive82.44 19278.69 20586.83 17889.81 19281.55 20590.78 18587.27 15982.39 18088.85 14488.31 17370.96 21181.90 16378.58 21374.33 21382.35 21074.69 210
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1382.33 19379.66 20085.45 18688.83 20083.88 19690.09 18881.98 19879.07 19988.82 14588.70 16873.77 20578.41 18280.29 21176.08 20884.56 20275.83 208
CostFormer82.15 19479.54 20185.20 18788.92 19985.70 19090.87 18486.26 17279.19 19883.87 17887.89 17969.20 21576.62 19477.50 21675.28 21084.69 20182.02 188
PMMVS81.93 19583.48 19180.12 20272.35 22275.05 21588.54 20064.01 21577.02 20882.22 18887.51 18191.12 15979.70 17386.59 19286.64 18393.88 15980.41 193
pmmvs381.69 19683.83 18879.19 20778.33 21878.57 20989.53 19458.71 21878.88 20284.34 17588.36 17291.96 15577.69 18687.48 18882.42 19486.54 19879.18 201
tpm81.58 19778.84 20384.79 19091.11 18379.50 20789.79 19283.75 18879.30 19692.05 9090.98 14264.78 22374.54 20080.50 20976.67 20677.49 21580.15 196
test0.0.03 181.51 19883.30 19279.42 20493.99 12086.50 18885.93 21387.32 15778.16 20461.62 21980.78 21081.78 19459.87 21588.40 18387.27 18087.78 19380.19 195
dps81.42 19977.88 21185.56 18587.67 20785.17 19388.37 20387.46 15474.37 21484.55 17286.80 18962.18 22580.20 17081.13 20877.52 20385.10 20077.98 204
test-LLR80.62 20077.20 21484.62 19293.99 12075.11 21387.04 20687.32 15770.11 21878.59 20283.17 20471.60 20873.88 20282.32 20579.20 20086.91 19678.87 202
tpm cat180.03 20175.93 21784.81 18989.31 19583.26 20088.86 19986.55 17079.24 19786.10 16184.22 20163.62 22477.37 18973.43 21770.88 21680.67 21176.87 205
N_pmnet79.33 20284.22 18773.62 21391.72 17373.72 21686.11 21176.36 20792.38 7153.38 22095.54 8695.62 11159.14 21684.23 20074.84 21275.03 21873.25 214
EPMVS79.26 20378.20 20980.49 20087.04 21078.86 20886.08 21283.51 19182.63 17973.94 21089.59 16068.67 21672.03 20578.17 21475.08 21180.37 21274.37 211
CHOSEN 280x42079.24 20478.26 20880.38 20179.60 21768.80 22189.32 19675.38 20977.25 20778.02 20475.57 21676.17 20381.19 16888.61 18281.39 19678.79 21380.03 197
ADS-MVSNet79.11 20579.38 20278.80 20981.90 21575.59 21284.36 21483.69 18987.31 14276.76 20687.58 18076.90 20168.55 20978.70 21275.56 20977.53 21474.07 212
FMVSNet579.08 20678.83 20479.38 20587.52 20886.78 18687.64 20478.15 20569.54 22070.64 21565.97 22065.44 22263.87 21390.17 16790.46 15688.48 18883.45 183
tpmrst78.81 20776.18 21681.87 19888.56 20177.45 21086.74 20881.52 20080.08 19083.48 18090.84 14466.88 21874.54 20073.04 21871.02 21576.38 21673.95 213
test-mter78.71 20878.35 20779.12 20884.03 21276.58 21188.51 20259.06 21771.06 21678.87 19883.73 20371.83 20776.44 19583.41 20480.61 19787.79 19281.24 190
MVS-HIRNet78.28 20975.28 21881.79 19980.33 21669.38 22076.83 21986.59 16870.76 21786.66 16089.57 16181.04 19777.74 18577.81 21571.65 21482.62 20866.73 218
E-PMN77.81 21077.88 21177.73 21288.26 20470.48 21980.19 21771.20 21286.66 14972.89 21288.09 17681.74 19578.75 17690.02 16968.30 21775.10 21759.85 219
EMVS77.65 21177.49 21377.83 21087.75 20671.02 21881.13 21670.54 21386.38 15274.52 20989.38 16380.19 20078.22 18389.48 17467.13 21874.83 21958.84 220
TESTMET0.1,177.47 21277.20 21477.78 21181.94 21475.11 21387.04 20658.33 21970.11 21878.59 20283.17 20471.60 20873.88 20282.32 20579.20 20086.91 19678.87 202
new_pmnet76.65 21383.52 19068.63 21482.60 21372.08 21776.76 22064.17 21484.41 16549.73 22291.77 13891.53 15856.16 21886.59 19283.26 19382.37 20975.02 209
MVEpermissive60.41 1973.21 21480.84 19964.30 21556.34 22357.24 22375.28 22272.76 21187.14 14541.39 22486.31 19285.30 18780.66 16986.17 19683.36 19259.35 22180.38 194
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS269.86 21582.14 19555.52 21675.19 22063.08 22275.52 22160.97 21688.50 13325.11 22691.77 13896.44 9125.43 22088.70 18079.34 19970.93 22067.17 217
GG-mvs-BLEND54.28 21677.89 21026.72 2190.37 22883.31 19970.04 2230.39 22574.71 2135.36 22768.78 21883.06 1890.62 22483.73 20378.99 20283.55 20772.68 216
test_method43.16 21751.13 21933.85 2177.35 22512.38 22651.70 22511.91 22162.51 22247.64 22362.49 22180.78 19828.84 21959.55 22134.48 22055.68 22245.72 221
testmvs2.38 2183.35 2201.26 2210.83 2260.96 2281.53 2280.83 2233.59 2241.63 2296.03 2232.93 2301.55 2233.49 2222.51 2221.21 2263.92 223
test1232.16 2192.82 2211.41 2200.62 2271.18 2271.53 2280.82 2242.78 2252.27 2284.18 2241.98 2311.64 2222.58 2233.01 2211.56 2254.00 222
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def97.21 5
9.1493.19 150
SR-MVS97.13 2494.77 1797.77 54
Anonymous20240521194.63 7694.51 10994.96 9893.94 13991.35 9290.82 10895.60 8295.85 10881.74 16796.47 7895.84 7697.39 6692.85 110
our_test_391.78 17288.87 17794.37 127
ambc94.61 7798.09 595.14 8891.71 17894.18 3996.46 1296.26 6896.30 9491.26 6994.70 11192.00 13993.45 16493.67 96
MTAPA94.88 2896.88 81
MTMP95.43 1897.25 67
Patchmatch-RL test8.96 227
tmp_tt28.44 21836.05 22415.86 22521.29 2266.40 22254.52 22351.96 22150.37 22238.68 2299.55 22161.75 22059.66 21945.36 224
XVS96.86 3397.48 1998.73 393.28 6096.82 8398.17 37
X-MVStestdata96.86 3397.48 1998.73 393.28 6096.82 8398.17 37
abl_691.88 11393.76 13094.98 9695.64 9988.97 13586.20 15390.00 13186.31 19294.50 13687.31 12395.60 12492.48 121
mPP-MVS98.24 397.65 60
NP-MVS85.48 158
Patchmtry83.74 19786.72 20992.22 6690.73 117
DeepMVS_CXcopyleft47.68 22453.20 22419.21 22063.24 22126.96 22566.50 21969.82 21466.91 21164.27 21954.91 22372.72 215