This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7074.79 10688.83 7788.90 13678.67 4096.06 795.45 496.66 395.58 2
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11286.35 6593.60 3778.79 1895.48 391.79 293.08 2697.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1796.01 3887.53 197.69 196.81 197.33 195.34 4
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2287.80 1690.42 5692.05 10879.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3487.73 1790.04 5891.80 11278.71 3894.36 2893.82 1794.48 3794.32 6
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3383.50 5089.06 7294.44 7581.68 2294.17 3094.19 1395.81 1793.87 7
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3088.53 1389.54 6595.57 4784.25 795.24 2094.27 1295.97 1193.85 8
anonymousdsp85.62 5990.53 4679.88 9264.64 20876.35 14396.28 1253.53 19285.63 6781.59 6992.81 3097.71 1286.88 294.56 2592.83 2496.35 693.84 9
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4489.17 1087.00 9796.34 3083.95 1095.77 1194.72 795.81 1793.78 10
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4583.43 5393.48 2095.19 5781.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1697.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 3979.80 7993.01 2793.53 8783.17 1592.75 4592.45 2991.32 8293.59 13
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6185.32 4088.23 8294.67 6982.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVS89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8993.44 2195.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5387.14 2578.98 14694.53 7176.47 5795.25 1994.28 1195.85 1493.55 16
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6581.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4786.87 3087.24 9496.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 5995.14 6178.71 3891.45 5888.21 7295.96 1293.44 19
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7087.67 1887.02 9695.26 5683.62 1295.01 2393.94 1595.79 1993.40 20
RPSCF88.05 4692.61 1782.73 6584.24 9688.40 4490.04 7266.29 10791.46 1382.29 6088.93 7596.01 3879.38 3295.15 2194.90 694.15 3993.40 20
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2380.15 7794.21 1594.51 7476.59 5692.94 4191.17 4593.46 5093.37 22
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5888.75 1289.00 7394.38 7784.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3681.79 6792.68 3195.08 6283.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4881.83 6692.92 2995.15 6082.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2886.88 2987.32 9296.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6387.23 2390.45 5597.35 1783.20 1495.44 1693.41 2096.28 892.63 27
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3184.61 4293.33 2294.22 7880.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3482.70 5789.90 6095.37 5477.91 4791.69 5490.04 5493.95 4492.47 29
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8289.79 3587.04 10474.39 5185.17 7278.92 8677.59 15593.57 8582.60 1793.23 3691.88 3989.42 10792.46 30
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 4985.68 3880.05 14195.74 4584.77 694.28 2992.68 2695.28 2692.45 31
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8279.47 8291.48 4594.85 6681.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5185.33 3988.91 7697.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4085.76 3785.74 10986.92 14578.02 4593.03 4092.21 3495.39 2592.21 34
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3883.89 4589.40 6790.84 12180.26 3190.62 7290.19 5392.36 7092.03 35
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8982.56 9190.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5587.66 1987.89 8592.07 10680.28 3090.97 6991.41 4393.17 5791.69 37
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2787.40 2186.86 9996.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6282.25 6182.96 12992.15 10476.04 6291.69 5490.69 4792.17 7391.64 39
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5197.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2187.24 2289.71 6392.07 10678.37 4294.43 2792.59 2795.86 1391.35 41
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 5983.72 4675.92 17292.39 10077.08 5391.72 5390.68 4892.57 6791.30 42
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6482.16 6486.05 10691.99 11075.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2680.21 7690.21 5796.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3283.70 4792.97 2892.22 10386.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 8983.48 5178.65 15093.54 8672.55 8986.49 11185.89 9592.28 7290.95 46
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 2971.92 12595.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3698.35 780.29 2995.28 1892.34 3195.52 2290.43 48
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15883.44 8390.58 5969.49 7881.11 11267.10 15389.85 6191.48 11671.71 9891.34 5989.37 6289.48 10590.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2575.31 10395.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8788.62 4390.62 5864.22 12989.15 3788.05 1478.83 14893.71 8276.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 1998.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11882.71 5686.92 9893.32 8975.55 6791.00 6889.85 5693.47 4989.71 53
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4175.16 10494.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9374.52 10985.09 11487.67 14279.24 3391.11 6490.41 5091.45 7989.45 55
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10296.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8682.21 6381.69 13792.14 10575.09 7287.27 10384.78 10692.58 6589.30 57
canonicalmvs81.22 10886.04 8575.60 11983.17 11383.18 8580.29 15065.82 11685.97 6567.98 14977.74 15491.51 11565.17 13588.62 9186.15 9191.17 8689.09 58
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8894.47 3174.22 5381.71 10081.54 7089.20 7192.87 9478.33 4390.12 7988.47 6892.51 6989.04 59
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9289.65 784.89 11792.40 9975.97 6390.88 7089.70 5892.58 6589.03 60
CNLPA85.50 6188.58 5781.91 7184.55 9187.52 5690.89 5463.56 13988.18 4584.06 4483.85 12691.34 11876.46 5891.27 6089.00 6691.96 7488.88 61
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10595.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7888.30 4591.24 5169.10 8282.36 9584.45 4377.56 15690.40 12672.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TPM-MVS86.18 7783.43 8487.57 9378.77 8769.75 20384.63 15762.24 14889.88 9888.48 64
DPM-MVS81.42 10482.11 13180.62 8687.54 6485.30 7190.18 7168.96 8481.00 11479.15 8470.45 19983.29 16067.67 12182.81 14383.46 11790.19 9388.48 64
v7n87.11 5090.46 4883.19 5685.22 8583.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 66
EC-MVSNet83.70 7784.77 10482.46 6687.47 6682.79 8785.50 11272.00 6369.81 16577.66 9385.02 11689.63 12878.14 4490.40 7487.56 7594.00 4188.16 67
QAPM80.43 11184.34 10975.86 11779.40 14282.06 9579.86 15561.94 15483.28 8574.73 10881.74 13685.44 15370.97 10384.99 12884.71 10888.29 12588.14 68
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14384.61 7387.18 9961.02 16085.65 6676.11 9785.07 11585.38 15470.96 10487.22 10486.47 8591.66 7788.12 69
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14782.88 5485.13 11393.35 8872.55 8988.62 9187.69 7491.93 7588.05 70
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9696.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 71
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7987.69 5490.50 6570.60 7286.40 6082.33 5989.69 6492.52 9874.01 8187.53 10086.84 8389.63 10287.80 72
MAR-MVS81.98 9982.92 12780.88 8085.18 8685.85 6789.13 8069.52 7671.21 16182.25 6171.28 19388.89 13769.69 10988.71 8986.96 7989.52 10487.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPP-MVSNet82.76 9286.47 7878.45 10286.00 8084.47 7485.39 11568.42 9184.17 7962.97 16389.26 7076.84 18372.13 9492.56 4890.40 5195.76 2087.56 74
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12486.01 6688.03 8871.23 6876.05 14079.54 8183.88 12583.44 15877.49 5187.38 10184.93 10491.41 8087.40 75
ambc88.38 6091.62 1787.97 5284.48 12388.64 4387.93 1587.38 9194.82 6874.53 7689.14 8883.86 11585.94 15186.84 76
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8188.84 4188.86 8368.70 8887.06 5683.60 4879.02 14490.05 12777.37 5290.88 7089.66 5993.37 5286.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9480.41 7373.82 18384.69 15675.19 7091.58 5789.90 5591.87 7686.48 78
UGNet79.62 11985.91 8672.28 14373.52 17983.91 7686.64 10669.51 7779.85 12362.57 16585.82 10889.63 12853.18 18488.39 9587.35 7788.28 12686.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
OpenMVScopyleft75.38 1678.44 13081.39 13574.99 12780.46 13379.85 11479.99 15258.31 17577.34 13473.85 11277.19 15982.33 16668.60 11684.67 13181.95 13088.72 11786.40 80
CS-MVS83.57 8084.79 10382.14 6883.83 10481.48 9887.29 9766.54 10572.73 15380.05 7884.04 12493.12 9380.35 2889.50 8386.34 8894.76 3486.32 81
CMPMVSbinary55.74 1871.56 16976.26 16266.08 18068.11 19663.91 19463.17 21050.52 20168.79 17375.49 10170.78 19885.67 15163.54 14381.58 15377.20 16375.63 18385.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15778.73 8884.49 12290.70 12469.54 11287.65 9986.17 9089.87 9985.84 83
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11681.11 10480.44 14966.06 11085.01 7362.53 16678.84 14794.43 7658.51 16188.66 9085.91 9390.41 9185.73 84
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9386.75 10564.02 13484.24 7878.17 9289.38 6895.03 6478.78 3789.95 8186.33 8989.59 10385.65 85
thisisatest051581.18 10984.32 11077.52 11076.73 16974.84 15885.06 11961.37 15781.05 11373.95 11188.79 7889.25 13375.49 6885.98 11584.78 10692.53 6885.56 86
FPMVS81.56 10284.04 11778.66 10082.92 11575.96 14786.48 10865.66 11784.67 7671.47 12877.78 15383.22 16177.57 5091.24 6190.21 5287.84 12985.21 87
tttt051775.86 14776.23 16375.42 12075.55 17574.06 16282.73 13360.31 16369.24 16870.24 13579.18 14358.79 21172.17 9284.49 13283.08 12491.54 7884.80 88
EPNet79.36 12279.44 14179.27 9889.51 4677.20 13788.35 8777.35 3168.27 17474.29 11076.31 16579.22 17359.63 15585.02 12785.45 9986.49 14384.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8980.29 11190.51 6468.05 9684.07 8180.38 7484.74 12091.37 11774.23 7790.37 7587.25 7890.86 8984.59 90
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8386.57 6488.40 8668.28 9369.04 17273.13 11876.26 16791.11 12074.74 7588.40 9487.76 7392.84 6384.57 91
IterMVS-LS79.79 11582.56 12976.56 11681.83 12677.85 13079.90 15469.42 8078.93 12971.21 12990.47 5485.20 15570.86 10580.54 16180.57 14186.15 14684.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CS-MVS-test83.59 7984.86 10182.10 6983.04 11481.05 10591.58 4767.48 10272.52 15478.42 9084.75 11991.82 11178.62 4191.98 5087.54 7693.48 4884.35 93
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11778.23 12889.61 7565.23 12082.08 9781.19 7185.31 11192.04 10975.22 6989.50 8385.90 9490.24 9284.23 94
thisisatest053075.54 14975.95 16775.05 12475.08 17673.56 16382.15 13860.31 16369.17 16969.32 13879.02 14458.78 21272.17 9283.88 13683.08 12491.30 8384.20 95
Effi-MVS+82.33 9483.87 11880.52 8884.51 9481.32 10087.53 9468.05 9674.94 14579.67 8082.37 13492.31 10172.21 9185.06 12386.91 8191.18 8584.20 95
v1083.17 8785.22 9480.78 8183.26 11182.99 8688.66 8566.49 10679.24 12783.60 4891.46 4695.47 5074.12 7882.60 14680.66 14088.53 12384.11 97
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11169.29 13992.63 3496.83 2269.07 11491.23 6289.60 6093.97 4384.00 98
GeoE81.92 10083.87 11879.66 9484.64 8879.87 11389.75 7465.90 11476.12 13975.87 9984.62 12192.23 10271.96 9686.83 10883.60 11689.83 10083.81 99
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10378.78 12485.35 11668.42 9192.69 1089.03 1191.94 3896.32 3281.80 2194.45 2686.86 8290.91 8883.69 100
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DELS-MVS79.71 11683.74 12175.01 12679.31 14382.68 8984.79 12160.06 16775.43 14369.09 14086.13 10489.38 13167.16 12385.12 12283.87 11489.65 10183.57 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CVMVSNet75.65 14877.62 15273.35 14071.95 18569.89 17583.04 13160.84 16269.12 17068.76 14379.92 14278.93 17573.64 8581.02 15781.01 13881.86 17583.43 102
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 9085.56 11170.02 7480.11 12163.52 16187.28 9381.18 16867.26 12291.08 6789.33 6394.82 3183.42 103
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12380.62 10787.72 9163.51 14073.01 14974.75 10783.80 12792.70 9673.44 8688.15 9885.26 10090.05 9483.17 104
EU-MVSNet76.48 14080.53 13871.75 14567.62 19870.30 17381.74 14154.06 18975.47 14271.01 13180.10 13993.17 9273.67 8383.73 13777.85 15782.40 17283.07 105
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10276.47 3881.46 10770.49 13393.24 2395.56 4868.13 11790.43 7388.47 6893.78 4583.02 106
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10278.35 1980.64 11670.49 13392.67 3296.91 2168.13 11791.79 5189.29 6493.20 5583.02 106
v124083.57 8084.94 9981.97 7084.05 9881.27 10189.46 7866.06 11081.31 11087.50 2091.88 4195.46 5176.25 6081.16 15680.51 14388.52 12482.98 108
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9676.75 3485.47 6868.99 14195.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 109
v192192083.49 8284.94 9981.80 7283.78 10581.20 10389.50 7765.91 11381.64 10287.18 2491.70 4395.39 5375.85 6481.56 15480.27 14588.60 11982.80 110
NR-MVSNet82.89 8987.43 7277.59 10883.91 10283.59 8187.10 10178.35 1980.64 11668.85 14292.67 3296.50 2454.19 18087.19 10688.68 6793.16 5882.75 111
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 14082.41 693.84 664.43 15995.41 798.76 163.72 14193.63 3389.74 5789.47 10682.74 112
v14419283.43 8384.97 9881.63 7583.43 10881.23 10289.42 7966.04 11281.45 10886.40 3491.46 4695.70 4675.76 6682.14 14780.23 14688.74 11682.57 113
v119283.61 7885.23 9381.72 7384.05 9882.15 9489.54 7666.20 10881.38 10986.76 3291.79 4296.03 3674.88 7481.81 15180.92 13988.91 11482.50 114
FMVSNet178.20 13284.83 10270.46 15478.62 15079.03 12177.90 16667.53 10183.02 8755.10 18487.19 9593.18 9155.65 17385.57 11783.39 11987.98 12882.40 115
IB-MVS71.28 1775.21 15177.00 15673.12 14176.76 16377.45 13383.05 13058.92 17263.01 19664.31 16059.99 21587.57 14368.64 11586.26 11482.34 12987.05 13882.36 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v882.20 9684.56 10779.45 9582.42 12181.65 9687.26 9864.27 12879.36 12681.70 6891.04 5295.75 4473.30 8782.82 14279.18 15387.74 13182.09 117
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15187.81 9074.97 4881.53 10466.84 15494.71 1296.46 2566.90 12591.79 5183.37 12285.83 15382.09 117
ETV-MVS79.01 12777.98 14880.22 9186.69 7279.73 11688.80 8468.27 9463.22 19571.56 12770.25 20173.63 19373.66 8490.30 7886.77 8492.33 7181.95 119
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9777.67 13185.68 11064.11 13182.90 8852.22 19592.57 3593.69 8349.52 19588.30 9686.93 8090.03 9581.95 119
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11980.54 10883.50 12764.49 12783.40 8372.53 11992.15 3795.40 5265.84 13284.69 13081.89 13290.59 9081.86 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4279.59 12083.59 12374.93 12969.61 19277.05 13986.59 10755.84 18178.42 13177.29 9489.84 6295.08 6274.12 7883.05 13980.11 14886.12 14781.59 122
v114483.22 8585.01 9681.14 7783.76 10681.60 9788.95 8265.58 11881.89 9985.80 3691.68 4495.84 4174.04 8082.12 14880.56 14288.70 11881.41 123
PM-MVS80.42 11283.63 12276.67 11378.04 15572.37 16887.14 10060.18 16680.13 12071.75 12686.12 10593.92 8177.08 5386.56 11085.12 10285.83 15381.18 124
TinyColmap83.79 7686.12 8281.07 7883.42 10981.44 9985.42 11468.55 9088.71 4289.46 887.60 8792.72 9570.34 10889.29 8681.94 13189.20 10881.12 125
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18682.28 9682.11 6588.48 8095.27 5563.95 13989.41 8588.29 7086.45 14481.01 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121179.37 12185.78 8771.89 14482.87 11879.66 11778.77 16463.93 13783.36 8459.39 17090.54 5394.66 7056.46 16887.38 10184.12 11189.92 9780.74 127
MSDG81.39 10684.23 11378.09 10482.40 12282.47 9285.31 11860.91 16179.73 12480.26 7586.30 10288.27 14069.67 11087.20 10584.98 10389.97 9680.67 128
diffmvspermissive76.74 13781.61 13471.06 14875.64 17474.45 16180.68 14857.57 17777.48 13267.62 15288.95 7493.94 8061.98 14979.74 16476.18 16882.85 17180.50 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pmmvs680.46 11088.34 6371.26 14681.96 12577.51 13277.54 16768.83 8693.72 755.92 18093.94 1898.03 955.94 17089.21 8785.61 9687.36 13580.38 130
GBi-Net73.17 16077.64 15067.95 17076.76 16377.36 13475.77 17964.57 12462.99 19751.83 19676.05 16877.76 17952.73 18885.57 11783.39 11986.04 14880.37 131
test173.17 16077.64 15067.95 17076.76 16377.36 13475.77 17964.57 12462.99 19751.83 19676.05 16877.76 17952.73 18885.57 11783.39 11986.04 14880.37 131
FMVSNet274.43 15579.70 13968.27 16776.76 16377.36 13475.77 17965.36 11972.28 15552.97 19081.92 13585.61 15252.73 18880.66 16079.73 14986.04 14880.37 131
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 13078.99 12282.95 13262.90 14781.53 10468.60 14691.94 3896.03 3665.84 13282.89 14177.07 16488.59 12080.34 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test76.72 13879.40 14273.60 13478.85 14974.99 15679.91 15361.56 15669.67 16672.44 12085.98 10790.78 12263.50 14478.30 16975.74 17185.33 15780.31 135
MVSTER68.08 18369.73 18566.16 17866.33 20670.06 17475.71 18252.36 19555.18 21458.64 17270.23 20256.72 21657.34 16579.68 16576.03 16986.61 14180.20 136
FA-MVS(training)78.93 12880.63 13776.93 11179.79 13975.57 15285.44 11361.95 15377.19 13578.97 8584.82 11882.47 16366.43 13084.09 13580.13 14789.02 11180.15 137
CANet_DTU75.04 15278.45 14471.07 14777.27 16077.96 12983.88 12658.00 17664.11 19168.67 14575.65 17488.37 13953.92 18282.05 14981.11 13684.67 16179.88 138
IterMVS-SCA-FT77.23 13479.18 14374.96 12876.67 17079.85 11475.58 18461.34 15873.10 14873.79 11386.23 10379.61 17279.00 3680.28 16375.50 17283.41 17079.70 139
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 11075.99 14677.54 16763.98 13590.68 2455.84 18194.80 1096.06 3553.73 18386.27 11383.22 12386.65 13979.61 140
FMVSNet371.40 17175.20 17266.97 17475.00 17776.59 14174.29 18664.57 12462.99 19751.83 19676.05 16877.76 17951.49 19376.58 17777.03 16584.62 16279.43 141
Anonymous20240521184.68 10583.92 10179.45 11979.03 16267.79 9882.01 9888.77 7992.58 9755.93 17186.68 10984.26 11088.92 11378.98 142
v2v48282.20 9684.26 11179.81 9382.67 12080.18 11287.67 9263.96 13681.69 10184.73 4191.27 4996.33 3172.05 9581.94 15079.56 15087.79 13078.84 143
EIA-MVS78.57 12977.90 14979.35 9787.24 6980.71 10686.16 10964.03 13362.63 20073.49 11573.60 18476.12 18773.83 8288.49 9384.93 10491.36 8178.78 144
DI_MVS_plusplus_trai77.64 13379.64 14075.31 12279.87 13876.89 14081.55 14363.64 13876.21 13872.03 12485.59 11082.97 16266.63 12679.27 16777.78 15888.14 12778.76 145
PVSNet_BlendedMVS76.45 14178.12 14674.49 13076.76 16378.46 12579.65 15663.26 14365.42 18673.15 11675.05 17788.96 13466.51 12882.73 14477.66 15987.61 13278.60 146
PVSNet_Blended76.45 14178.12 14674.49 13076.76 16378.46 12579.65 15663.26 14365.42 18673.15 11675.05 17788.96 13466.51 12882.73 14477.66 15987.61 13278.60 146
baseline69.33 17775.37 17062.28 19066.54 20466.67 18773.95 18848.07 20266.10 18059.26 17182.45 13186.30 14854.44 17874.42 18473.25 17871.42 19278.43 148
pm-mvs178.21 13185.68 8969.50 16180.38 13475.73 14976.25 17565.04 12187.59 5054.47 18693.16 2595.99 4054.20 17986.37 11282.98 12686.64 14077.96 149
ET-MVSNet_ETH3D74.71 15474.19 17475.31 12279.22 14575.29 15382.70 13464.05 13265.45 18570.96 13277.15 16057.70 21365.89 13184.40 13381.65 13489.03 11077.67 150
USDC81.39 10683.07 12679.43 9681.48 12878.95 12382.62 13566.17 10987.45 5290.73 482.40 13393.65 8466.57 12783.63 13877.97 15689.00 11277.45 151
test111179.67 11784.40 10874.16 13285.29 8479.56 11881.16 14473.13 5984.65 7756.08 17888.38 8186.14 14960.49 15289.78 8285.59 9788.79 11576.68 152
v14879.33 12382.32 13075.84 11880.14 13575.74 14881.98 13957.06 17881.51 10679.36 8389.42 6696.42 2771.32 9981.54 15575.29 17385.20 15876.32 153
pmmvs-eth3d79.64 11882.06 13276.83 11280.05 13672.64 16687.47 9566.59 10480.83 11573.50 11489.32 6993.20 9067.78 11980.78 15981.64 13585.58 15676.01 154
test250675.32 15076.87 15873.50 13684.55 9180.37 10979.63 15873.23 5782.64 9055.41 18276.87 16245.42 22559.61 15690.35 7686.46 8688.58 12175.98 155
MS-PatchMatch71.18 17273.99 17667.89 17277.16 16171.76 16977.18 17056.38 18067.35 17555.04 18574.63 17975.70 18862.38 14776.62 17675.97 17079.22 17975.90 156
Fast-Effi-MVS+-dtu76.92 13677.18 15476.62 11479.55 14079.17 12084.80 12077.40 2964.46 19068.75 14470.81 19786.57 14763.36 14681.74 15281.76 13385.86 15275.78 157
tfpnnormal77.16 13584.26 11168.88 16481.02 13175.02 15576.52 17463.30 14287.29 5352.40 19391.24 5093.97 7954.85 17785.46 12081.08 13785.18 15975.76 158
EPNet_dtu71.90 16873.03 18070.59 15278.28 15261.64 19782.44 13664.12 13063.26 19469.74 13671.47 19182.41 16451.89 19278.83 16878.01 15577.07 18275.60 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GA-MVS75.01 15376.39 16173.39 13878.37 15175.66 15080.03 15158.40 17470.51 16375.85 10083.24 12876.14 18663.75 14077.28 17376.62 16783.97 16575.30 160
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9180.37 10979.63 15873.23 5782.64 9055.98 17987.50 8886.85 14659.61 15690.35 7686.46 8688.58 12175.26 161
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17169.07 17885.33 11764.97 12284.87 7541.95 20993.17 2487.04 14447.78 19891.09 6685.56 9885.06 16074.34 162
thres600view774.34 15678.43 14569.56 16080.47 13276.28 14478.65 16562.56 14977.39 13352.53 19174.03 18176.78 18455.90 17285.06 12385.19 10187.25 13674.29 163
IterMVS73.62 15776.53 16070.23 15571.83 18677.18 13880.69 14753.22 19372.23 15666.62 15585.21 11278.96 17469.54 11276.28 18071.63 18379.45 17874.25 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpn200view972.01 16775.40 16968.06 16977.97 15676.44 14277.04 17162.67 14866.81 17750.82 20067.30 20675.67 18952.46 19185.06 12382.64 12787.41 13473.86 165
pmmvs475.92 14577.48 15374.10 13378.21 15470.94 17084.06 12464.78 12375.13 14468.47 14784.12 12383.32 15964.74 13875.93 18179.14 15484.31 16373.77 166
MDA-MVSNet-bldmvs76.51 13982.87 12869.09 16350.71 21974.72 16084.05 12560.27 16581.62 10371.16 13088.21 8391.58 11369.62 11192.78 4477.48 16178.75 18173.69 167
thres40073.13 16276.99 15768.62 16579.46 14174.93 15777.23 16961.23 15975.54 14152.31 19472.20 18877.10 18254.89 17582.92 14082.62 12886.57 14273.66 168
PatchMatch-RL76.05 14476.64 15975.36 12177.84 15969.87 17681.09 14663.43 14171.66 15968.34 14871.70 18981.76 16774.98 7384.83 12983.44 11886.45 14473.22 169
CHOSEN 1792x268868.80 17971.09 18266.13 17969.11 19468.89 18078.98 16354.68 18461.63 20256.69 17571.56 19078.39 17767.69 12072.13 19272.01 18269.63 19973.02 170
thres20072.41 16676.00 16668.21 16878.28 15276.28 14474.94 18562.56 14972.14 15851.35 19969.59 20476.51 18554.89 17585.06 12380.51 14387.25 13671.92 171
Vis-MVSNet (Re-imp)76.15 14380.84 13670.68 15183.66 10774.80 15981.66 14269.59 7580.48 11946.94 20487.44 9080.63 17053.14 18586.87 10784.56 10989.12 10971.12 172
thres100view90069.86 17472.97 18166.24 17777.97 15672.49 16773.29 18959.12 17066.81 17750.82 20067.30 20675.67 18950.54 19478.24 17079.40 15185.71 15570.88 173
baseline268.71 18068.34 18969.14 16275.69 17369.70 17776.60 17355.53 18360.13 20562.07 16866.76 20860.35 20660.77 15176.53 17974.03 17584.19 16470.88 173
baseline169.62 17573.55 17865.02 18678.95 14870.39 17271.38 19562.03 15270.97 16247.95 20378.47 15168.19 19947.77 19979.65 16676.94 16682.05 17370.27 175
HyFIR lowres test73.29 15974.14 17572.30 14273.08 18178.33 12783.12 12962.41 15163.81 19262.13 16776.67 16478.50 17671.09 10174.13 18577.47 16281.98 17470.10 176
CDS-MVSNet73.07 16377.02 15568.46 16681.62 12772.89 16579.56 16070.78 7169.56 16752.52 19277.37 15881.12 16942.60 20384.20 13483.93 11283.65 16670.07 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CostFormer66.81 18666.94 19266.67 17672.79 18368.25 18179.55 16155.57 18265.52 18462.77 16476.98 16160.09 20756.73 16765.69 20962.35 19872.59 18869.71 178
CR-MVSNet69.56 17668.34 18970.99 14972.78 18467.63 18264.47 20867.74 9959.93 20672.30 12180.10 13956.77 21565.04 13671.64 19372.91 17983.61 16869.40 179
PatchT66.25 18766.76 19365.67 18355.87 21460.75 19870.17 19759.00 17159.80 20872.30 12178.68 14954.12 22065.04 13671.64 19372.91 17971.63 19169.40 179
MIMVSNet173.40 15881.85 13363.55 18772.90 18264.37 19284.58 12253.60 19190.84 2053.92 18787.75 8696.10 3345.31 20185.37 12179.32 15270.98 19669.18 181
RPMNet67.02 18563.99 20070.56 15371.55 18767.63 18275.81 17769.44 7959.93 20663.24 16264.32 21047.51 22459.68 15470.37 19869.64 18983.64 16768.49 182
pmmvs568.91 17874.35 17362.56 18967.45 20066.78 18671.70 19251.47 19867.17 17656.25 17782.41 13288.59 13847.21 20073.21 19174.23 17481.30 17668.03 183
gg-mvs-nofinetune72.68 16575.21 17169.73 15881.48 12869.04 17970.48 19676.67 3586.92 5767.80 15188.06 8464.67 20142.12 20577.60 17173.65 17679.81 17766.57 184
MDTV_nov1_ep13_2view72.96 16475.59 16869.88 15771.15 18964.86 19182.31 13754.45 18776.30 13778.32 9186.52 10091.58 11361.35 15076.80 17466.83 19471.70 18966.26 185
test-mter59.39 20361.59 20756.82 19853.21 21554.82 20573.12 19126.57 21753.19 21556.31 17664.71 20960.47 20556.36 16968.69 20264.27 19775.38 18465.00 186
dps65.14 18864.50 19865.89 18271.41 18865.81 19071.44 19461.59 15558.56 20961.43 16975.45 17552.70 22258.06 16369.57 20064.65 19671.39 19364.77 187
testgi68.20 18276.05 16559.04 19479.99 13767.32 18581.16 14451.78 19784.91 7439.36 21473.42 18595.19 5732.79 21476.54 17870.40 18669.14 20064.55 188
tpm cat164.79 19162.74 20567.17 17374.61 17865.91 18976.18 17659.32 16964.88 18966.41 15671.21 19453.56 22159.17 15861.53 21358.16 20767.33 20363.95 189
PMMVS61.98 19965.61 19557.74 19645.03 22051.76 21169.54 20135.05 21255.49 21355.32 18368.23 20578.39 17758.09 16270.21 19971.56 18483.42 16963.66 190
tpm62.79 19463.25 20262.26 19170.09 19153.78 20671.65 19347.31 20365.72 18376.70 9580.62 13856.40 21848.11 19764.20 21158.54 20559.70 20963.47 191
test20.0369.91 17376.20 16462.58 18884.01 10067.34 18475.67 18365.88 11579.98 12240.28 21382.65 13089.31 13239.63 20877.41 17273.28 17769.98 19763.40 192
Anonymous2023120667.28 18473.41 17960.12 19376.45 17263.61 19574.21 18756.52 17976.35 13642.23 20875.81 17390.47 12541.51 20674.52 18269.97 18869.83 19863.17 193
CHOSEN 280x42056.32 21058.85 21653.36 20551.63 21639.91 22069.12 20438.61 21156.29 21136.79 21648.84 21762.59 20363.39 14573.61 18967.66 19260.61 20763.07 194
pmmvs362.72 19568.71 18855.74 20050.74 21857.10 20270.05 19828.82 21561.57 20457.39 17471.19 19585.73 15053.96 18173.36 19069.43 19073.47 18762.55 195
FMVSNet556.37 20960.14 21151.98 20960.83 21059.58 19966.85 20742.37 20852.68 21641.33 21147.09 21854.68 21935.28 21173.88 18670.77 18565.24 20662.26 196
test-LLR62.15 19859.46 21465.29 18479.07 14652.66 20969.46 20262.93 14550.76 21753.81 18863.11 21258.91 20952.87 18666.54 20762.34 19973.59 18561.87 197
TESTMET0.1,157.21 20659.46 21454.60 20450.95 21752.66 20969.46 20226.91 21650.76 21753.81 18863.11 21258.91 20952.87 18666.54 20762.34 19973.59 18561.87 197
MDTV_nov1_ep1364.96 18964.77 19765.18 18567.08 20162.46 19675.80 17851.10 20062.27 20169.74 13674.12 18062.65 20255.64 17468.19 20362.16 20271.70 18961.57 199
SCA68.54 18167.52 19169.73 15867.79 19775.04 15476.96 17268.94 8566.41 17967.86 15074.03 18160.96 20465.55 13468.99 20165.67 19571.30 19461.54 200
gm-plane-assit71.56 16969.99 18473.39 13884.43 9573.21 16490.42 6851.36 19984.08 8076.00 9891.30 4837.09 22659.01 15973.65 18870.24 18779.09 18060.37 201
pmnet_mix0262.60 19670.81 18353.02 20666.56 20350.44 21362.81 21146.84 20479.13 12843.76 20787.45 8990.75 12339.85 20770.48 19757.09 20858.27 21160.32 202
MIMVSNet63.02 19269.02 18756.01 19968.20 19559.26 20070.01 19953.79 19071.56 16041.26 21271.38 19282.38 16536.38 21071.43 19567.32 19366.45 20559.83 203
test0.0.03 161.79 20065.33 19657.65 19779.07 14664.09 19368.51 20562.93 14561.59 20333.71 21761.58 21471.58 19733.43 21370.95 19668.68 19168.26 20258.82 204
new-patchmatchnet62.59 19773.79 17749.53 21076.98 16253.57 20753.46 21954.64 18585.43 6928.81 21891.94 3896.41 2825.28 21676.80 17453.66 21457.99 21258.69 205
PatchmatchNetpermissive64.81 19063.74 20166.06 18169.21 19358.62 20173.16 19060.01 16865.92 18166.19 15776.27 16659.09 20860.45 15366.58 20661.47 20467.33 20358.24 206
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst59.42 20260.02 21258.71 19567.56 19953.10 20866.99 20651.88 19663.80 19357.68 17376.73 16356.49 21748.73 19656.47 21755.55 21059.43 21058.02 207
TAMVS63.02 19269.30 18655.70 20170.12 19056.89 20369.63 20045.13 20570.23 16438.00 21577.79 15275.15 19142.60 20374.48 18372.81 18168.70 20157.75 208
MVEpermissive41.12 1951.80 21360.92 20941.16 21235.21 22234.14 22248.45 22241.39 20969.11 17119.53 22163.33 21173.80 19263.56 14267.19 20461.51 20338.85 21957.38 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND41.63 21560.36 21019.78 2150.14 22766.04 18855.66 2180.17 22357.64 2102.42 22651.82 21669.42 1980.28 22364.11 21258.29 20660.02 20855.18 210
EPMVS56.62 20859.77 21352.94 20762.41 20950.55 21260.66 21352.83 19465.15 18841.80 21077.46 15757.28 21442.68 20259.81 21554.82 21157.23 21353.35 211
MVS-HIRNet59.74 20158.74 21760.92 19257.74 21345.81 21756.02 21758.69 17355.69 21265.17 15870.86 19671.66 19556.75 16661.11 21453.74 21371.17 19552.28 212
ADS-MVSNet56.89 20761.09 20852.00 20859.48 21148.10 21558.02 21554.37 18872.82 15149.19 20275.32 17665.97 20037.96 20959.34 21654.66 21252.99 21751.42 213
new_pmnet52.29 21263.16 20339.61 21358.89 21244.70 21848.78 22134.73 21365.88 18217.85 22273.42 18580.00 17123.06 21767.00 20562.28 20154.36 21448.81 214
N_pmnet54.95 21165.90 19442.18 21166.37 20543.86 21957.92 21639.79 21079.54 12517.24 22386.31 10187.91 14125.44 21564.68 21051.76 21646.33 21847.23 215
DeepMVS_CXcopyleft17.78 22320.40 2246.69 21831.41 2209.80 22438.61 21934.88 22733.78 21228.41 22023.59 22245.77 216
E-PMN59.07 20462.79 20454.72 20267.01 20247.81 21660.44 21443.40 20672.95 15044.63 20670.42 20073.17 19458.73 16080.97 15851.98 21554.14 21542.26 217
EMVS58.97 20562.63 20654.70 20366.26 20748.71 21461.74 21242.71 20772.80 15246.00 20573.01 18771.66 19557.91 16480.41 16250.68 21753.55 21641.11 218
PMMVS248.13 21464.06 19929.55 21444.06 22136.69 22151.95 22029.97 21474.75 1468.90 22576.02 17191.24 1197.53 21973.78 18755.91 20934.87 22040.01 219
test_method22.69 21626.99 21817.67 2162.13 2244.31 22527.50 2234.53 21937.94 21924.52 22036.20 22051.40 22315.26 21829.86 21917.09 21932.07 22112.16 220
testmvs0.93 2181.37 2200.41 2190.36 2260.36 2270.62 2270.39 2211.48 2220.18 2282.41 2221.31 2300.41 2221.25 2221.08 2210.48 2241.68 221
test1231.06 2171.41 2190.64 2180.39 2250.48 2260.52 2280.25 2221.11 2231.37 2272.01 2231.98 2290.87 2211.43 2211.27 2200.46 2251.62 222
uanet_test0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
sosnet-low-res0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
sosnet0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
RE-MVS-def87.10 28
9.1489.43 130
SR-MVS91.82 1380.80 795.53 49
our_test_373.27 18070.91 17183.26 128
MTAPA89.37 994.85 66
MTMP90.54 595.16 59
Patchmatch-RL test4.13 226
tmp_tt13.54 21716.73 2236.42 2248.49 2252.36 22028.69 22127.44 21918.40 22113.51 2283.70 22033.23 21836.26 21822.54 223
XVS91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7195.84 15
mPP-MVS93.05 395.77 43
NP-MVS78.65 130
Patchmtry56.88 20464.47 20867.74 9972.30 121