This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3394.76 2977.45 2985.41 7274.79 10488.83 7788.90 13578.67 4096.06 795.45 496.66 395.58 1
LTVRE_ROB86.82 191.55 394.43 388.19 1183.19 11086.35 6793.60 3778.79 1995.48 491.79 293.08 2697.21 2186.34 397.06 296.27 395.46 2395.56 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2295.55 293.00 193.98 1796.01 3987.53 197.69 196.81 197.33 195.34 3
SMA-MVScopyleft90.13 1592.26 2787.64 1891.68 1690.44 2695.22 2477.34 3390.79 2287.80 1790.42 5592.05 10879.05 3593.89 3393.59 1994.77 3494.62 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP89.86 1991.96 3387.42 2091.00 3090.08 2996.00 1676.61 3789.28 3587.73 1890.04 5791.80 11178.71 3894.36 2993.82 1894.48 3894.32 5
HFP-MVS90.32 1392.37 2287.94 1491.46 2190.91 1895.69 1879.49 1289.94 3483.50 5189.06 7294.44 7681.68 2394.17 3194.19 1495.81 1793.87 6
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3188.53 1489.54 6595.57 4884.25 795.24 2094.27 1395.97 1193.85 7
anonymousdsp85.62 6190.53 4879.88 9264.64 20376.35 13996.28 1353.53 18885.63 6981.59 7092.81 3097.71 1486.88 294.56 2692.83 2596.35 693.84 8
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4689.17 1187.00 9596.34 3183.95 1095.77 1194.72 895.81 1793.78 9
DPE-MVScopyleft89.81 2292.34 2486.86 2489.69 4491.00 1695.53 1976.91 3488.18 4783.43 5493.48 2095.19 5781.07 2792.75 4692.07 3794.55 3793.74 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1288.98 5192.86 295.51 2072.17 5994.95 591.27 394.11 1697.77 1284.22 896.49 495.27 596.79 293.60 11
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5179.48 1388.86 4179.80 8093.01 2793.53 8883.17 1592.75 4692.45 3091.32 8293.59 12
SteuartSystems-ACMMP90.00 1791.73 3587.97 1391.21 2990.29 2896.51 778.00 2486.33 6385.32 4188.23 8194.67 7082.08 2195.13 2293.88 1794.72 3693.59 12
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVS89.85 2092.91 1086.29 2790.47 3891.34 796.04 1576.41 4091.11 1778.50 8893.44 2195.82 4381.55 2493.16 3891.90 3994.77 3493.58 14
X-MVS89.36 2890.73 4787.77 1791.50 2091.23 896.76 478.88 1887.29 5587.14 2678.98 14194.53 7276.47 5595.25 1994.28 1295.85 1493.55 15
DVP-MVS89.40 2792.69 1385.56 3489.01 5089.85 3293.72 3575.42 4592.28 1180.49 7394.36 1394.87 6681.46 2592.49 5091.42 4293.27 5293.54 16
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ACMMPcopyleft90.63 892.40 2088.56 991.24 2891.60 696.49 977.53 2787.89 4986.87 3187.24 9296.46 2682.87 1695.59 1594.50 996.35 693.51 17
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG88.12 4591.45 3884.23 4888.12 6290.59 2590.57 6168.60 8791.37 1583.45 5389.94 5895.14 6178.71 3891.45 5988.21 7495.96 1293.44 18
PGM-MVS90.42 1091.58 3789.05 691.77 1491.06 1396.51 778.94 1785.41 7287.67 1987.02 9495.26 5683.62 1295.01 2493.94 1695.79 1993.40 19
RPSCF88.05 4692.61 1782.73 6684.24 9588.40 4390.04 7466.29 10591.46 1382.29 6188.93 7596.01 3979.38 3295.15 2194.90 694.15 4093.40 19
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3695.11 2575.98 4290.73 2380.15 7994.21 1594.51 7576.59 5492.94 4191.17 4593.46 4993.37 21
MP-MVScopyleft90.84 691.95 3489.55 392.92 590.90 1996.56 679.60 1186.83 6088.75 1389.00 7394.38 7884.01 994.94 2594.34 1195.45 2493.24 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SD-MVS89.91 1892.23 3087.19 2291.31 2489.79 3494.31 3275.34 4789.26 3881.79 6892.68 3195.08 6283.88 1193.10 3992.69 2696.54 493.02 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.89.67 2492.25 2886.65 2691.53 1890.98 1796.15 1473.30 5687.88 5081.83 6792.92 2995.15 6082.23 1993.58 3592.25 3494.87 3193.01 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMM80.67 790.67 792.46 1988.57 891.35 2289.93 3196.34 1277.36 3190.17 2986.88 3087.32 9096.63 2483.32 1395.79 1094.49 1096.19 992.91 25
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LGP-MVS_train90.56 992.38 2188.43 1090.88 3291.15 1195.35 2277.65 2686.26 6587.23 2490.45 5497.35 1883.20 1495.44 1693.41 2196.28 892.63 26
DeepC-MVS83.59 490.37 1292.56 1887.82 1591.26 2792.33 394.72 3080.04 990.01 3284.61 4393.33 2294.22 7980.59 2892.90 4492.52 2995.69 2192.57 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xxxxxxxxxxxxxcwj88.03 4791.29 4384.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5789.90 5997.72 1377.91 4591.69 5490.04 5593.95 4492.47 28
SF-MVS87.85 5090.95 4684.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5789.90 5995.37 5477.91 4591.69 5490.04 5593.95 4492.47 28
MSLP-MVS++86.29 5989.10 5783.01 5985.71 8289.79 3487.04 10574.39 5185.17 7478.92 8677.59 15093.57 8682.60 1793.23 3791.88 4089.42 10692.46 30
CPTT-MVS89.63 2590.52 4988.59 790.95 3190.74 2195.71 1779.13 1587.70 5185.68 3980.05 13695.74 4684.77 694.28 3092.68 2795.28 2692.45 31
APD-MVScopyleft89.14 2991.25 4486.67 2591.73 1591.02 1595.50 2177.74 2584.04 8379.47 8391.48 4494.85 6781.14 2692.94 4192.20 3694.47 3992.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMP80.00 890.12 1692.30 2687.58 1990.83 3491.10 1294.96 2876.06 4187.47 5385.33 4088.91 7697.65 1682.13 2095.31 1793.44 2096.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator+83.71 388.13 4490.00 5285.94 2986.82 7291.06 1394.26 3375.39 4688.85 4285.76 3885.74 10886.92 14478.02 4393.03 4092.21 3595.39 2592.21 34
DeepPCF-MVS81.61 687.95 4890.29 5185.22 3887.48 6690.01 3093.79 3473.54 5488.93 4083.89 4689.40 6790.84 12080.26 3190.62 7390.19 5492.36 7092.03 35
zzz-MVS90.38 1191.35 4189.25 593.08 386.59 6496.45 1179.00 1690.23 2889.30 1085.87 10694.97 6582.54 1895.05 2394.83 795.14 2791.94 36
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 9082.56 9290.53 6471.93 6091.95 1285.89 3694.22 1497.25 2085.42 595.73 1291.71 4195.08 2891.89 37
HPM-MVS++copyleft88.74 4089.54 5487.80 1692.58 785.69 7295.10 2678.01 2387.08 5787.66 2087.89 8492.07 10680.28 3090.97 7091.41 4493.17 5691.69 38
OMC-MVS88.16 4391.34 4284.46 4686.85 7190.63 2393.01 4167.00 10090.35 2787.40 2286.86 9796.35 3077.66 4892.63 4890.84 4794.84 3291.68 39
CNVR-MVS86.93 5388.98 5884.54 4490.11 4087.41 5793.23 4073.47 5586.31 6482.25 6282.96 12492.15 10476.04 6091.69 5490.69 4892.17 7391.64 40
OPM-MVS89.82 2192.24 2986.99 2390.86 3389.35 3795.07 2775.91 4391.16 1686.87 3191.07 5097.29 1979.13 3493.32 3691.99 3894.12 4191.49 41
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6390.83 2187.24 2389.71 6392.07 10678.37 4194.43 2892.59 2895.86 1391.35 42
NCCC86.74 5487.97 7085.31 3690.64 3587.25 5893.27 3974.59 4986.50 6183.72 4775.92 16692.39 10077.08 5291.72 5390.68 4992.57 6791.30 43
DeepC-MVS_fast81.78 587.38 5189.64 5384.75 4189.89 4290.70 2292.74 4374.45 5086.02 6682.16 6586.05 10491.99 11075.84 6391.16 6490.44 5093.41 5091.09 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2377.52 2890.48 2680.21 7890.21 5696.08 3576.38 5788.30 9391.42 4291.12 8791.01 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PMVScopyleft79.51 990.23 1492.67 1487.39 2190.16 3988.75 4193.64 3675.78 4490.00 3383.70 4892.97 2892.22 10386.13 497.01 396.79 294.94 3090.96 46
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HQP-MVS85.02 6886.41 8183.40 5589.19 4886.59 6491.28 4971.60 6482.79 8983.48 5278.65 14593.54 8772.55 8886.49 10885.89 9292.28 7290.95 47
WR-MVS_H88.99 3593.28 583.99 5491.92 1189.13 3991.95 4683.23 190.14 3071.92 12395.85 598.01 1171.83 9695.82 993.19 2393.07 5890.83 48
test_part187.86 4993.26 681.56 7487.23 7086.76 6290.91 5370.06 7196.50 176.74 9296.63 298.62 269.45 11392.93 4390.92 4694.98 2990.46 49
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3892.18 4574.23 5293.55 882.66 5992.32 3698.35 880.29 2995.28 1892.34 3295.52 2290.43 50
Vis-MVSNetpermissive83.32 8388.12 6877.71 10777.91 15383.44 8690.58 6069.49 7681.11 11067.10 15189.85 6191.48 11571.71 9791.34 6089.37 6489.48 10490.26 51
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-CasMVS89.07 3293.23 784.21 5192.44 888.23 4790.54 6382.95 390.50 2575.31 10195.80 698.37 771.16 9996.30 593.32 2292.88 6090.11 52
TAPA-MVS78.00 1385.88 6088.37 6382.96 6184.69 8888.62 4290.62 5964.22 12689.15 3988.05 1578.83 14393.71 8376.20 5990.11 7888.22 7394.00 4289.97 53
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7587.16 5991.47 4868.79 8595.49 389.74 693.55 1998.50 377.96 4494.14 3289.57 6393.49 4789.94 54
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDPH-MVS86.66 5688.52 6184.48 4589.61 4588.27 4592.86 4272.69 5880.55 11682.71 5686.92 9693.32 9075.55 6591.00 6989.85 5893.47 4889.71 55
CP-MVSNet88.71 4192.63 1584.13 5292.39 988.09 4990.47 6882.86 488.79 4375.16 10294.87 997.68 1571.05 10196.16 693.18 2492.85 6189.64 56
TSAR-MVS + GP.85.32 6687.41 7582.89 6390.07 4185.69 7289.07 8372.99 5782.45 9174.52 10785.09 11387.67 14179.24 3391.11 6590.41 5191.45 7989.45 57
WR-MVS89.79 2393.66 485.27 3791.32 2388.27 4593.49 3879.86 1092.75 975.37 10096.86 198.38 675.10 6995.93 894.07 1596.46 589.39 58
MCST-MVS84.79 7186.48 7982.83 6487.30 6787.03 6190.46 6969.33 7983.14 8682.21 6481.69 13292.14 10575.09 7087.27 10084.78 10292.58 6589.30 59
canonicalmvs81.22 10686.04 8775.60 11883.17 11183.18 8780.29 14765.82 11485.97 6767.98 14777.74 14991.51 11465.17 13488.62 8786.15 8891.17 8689.09 60
train_agg86.67 5587.73 7185.43 3591.51 1982.72 8994.47 3174.22 5381.71 9881.54 7189.20 7192.87 9478.33 4290.12 7788.47 7092.51 6989.04 61
PHI-MVS86.37 5888.14 6784.30 4786.65 7487.56 5590.76 5870.16 7082.55 9089.65 784.89 11592.40 9975.97 6190.88 7189.70 6092.58 6589.03 62
CNLPA85.50 6388.58 5981.91 6984.55 9287.52 5690.89 5463.56 13688.18 4784.06 4583.85 12191.34 11776.46 5691.27 6189.00 6891.96 7488.88 63
PEN-MVS88.86 3992.92 984.11 5392.92 588.05 5090.83 5582.67 591.04 1874.83 10395.97 498.47 470.38 10695.70 1392.43 3193.05 5988.78 64
PCF-MVS76.59 1484.11 7685.27 9382.76 6586.12 7888.30 4491.24 5069.10 8082.36 9384.45 4477.56 15190.40 12572.91 8785.88 11383.88 11092.72 6388.53 65
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DPM-MVS81.42 10282.11 12780.62 8687.54 6585.30 7490.18 7368.96 8281.00 11279.15 8570.45 19483.29 15667.67 12282.81 13883.46 11490.19 9388.48 66
v7n87.11 5290.46 5083.19 5785.22 8583.69 8390.03 7568.20 9391.01 1986.71 3494.80 1098.46 577.69 4791.10 6685.98 8991.30 8388.19 67
QAPM80.43 10984.34 10675.86 11679.40 13782.06 9679.86 15261.94 15083.28 8574.73 10681.74 13185.44 15070.97 10284.99 12584.71 10488.29 12088.14 68
3Dnovator79.41 1082.21 9486.07 8677.71 10779.31 13884.61 7687.18 10061.02 15685.65 6876.11 9585.07 11485.38 15170.96 10387.22 10186.47 8591.66 7788.12 69
MVS_030484.73 7286.19 8383.02 5888.32 5686.71 6391.55 4770.87 6773.79 14582.88 5585.13 11293.35 8972.55 8888.62 8787.69 7691.93 7588.05 70
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4890.96 5283.09 291.38 1476.21 9496.03 398.04 970.78 10595.65 1492.32 3393.18 5587.84 71
TSAR-MVS + COLMAP85.51 6288.36 6482.19 6786.05 7987.69 5490.50 6670.60 6986.40 6282.33 6089.69 6492.52 9874.01 7987.53 9786.84 8389.63 10187.80 72
MAR-MVS81.98 9882.92 12380.88 8085.18 8685.85 6989.13 8269.52 7471.21 15782.25 6271.28 18888.89 13669.69 10888.71 8586.96 7989.52 10387.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPP-MVSNet82.76 9186.47 8078.45 10386.00 8084.47 7785.39 11468.42 8984.17 8062.97 16189.26 7076.84 17872.13 9392.56 4990.40 5295.76 2087.56 74
PVSNet_Blended_VisFu83.00 8784.16 11181.65 7282.17 12086.01 6888.03 9171.23 6576.05 13879.54 8283.88 12083.44 15477.49 5087.38 9884.93 10091.41 8087.40 75
ambc88.38 6291.62 1787.97 5184.48 12288.64 4587.93 1687.38 8994.82 6974.53 7489.14 8483.86 11285.94 14686.84 76
PLCcopyleft76.06 1585.38 6587.46 7382.95 6285.79 8188.84 4088.86 8568.70 8687.06 5883.60 4979.02 13990.05 12677.37 5190.88 7189.66 6193.37 5186.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
AdaColmapbinary84.15 7585.14 9683.00 6089.08 4987.14 6090.56 6270.90 6682.40 9280.41 7473.82 17784.69 15375.19 6891.58 5889.90 5791.87 7686.48 78
UGNet79.62 11685.91 8872.28 13973.52 17483.91 7986.64 10769.51 7579.85 12162.57 16385.82 10789.63 12753.18 17988.39 9187.35 7788.28 12186.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
OpenMVScopyleft75.38 1678.44 12681.39 13174.99 12680.46 12979.85 11079.99 14958.31 17177.34 13273.85 11177.19 15482.33 16168.60 11784.67 12781.95 12788.72 11486.40 80
abl_679.30 9884.98 8785.78 7090.50 6666.88 10177.08 13374.02 10973.29 18189.34 13068.94 11590.49 9085.98 81
CMPMVSbinary55.74 1871.56 16476.26 15766.08 17668.11 19163.91 18963.17 20550.52 19768.79 16875.49 9970.78 19385.67 14863.54 14281.58 14877.20 15875.63 17885.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CANet82.84 8984.60 10480.78 8187.30 6785.20 7590.23 7169.00 8172.16 15378.73 8784.49 11890.70 12369.54 11187.65 9686.17 8789.87 9885.84 83
DCV-MVSNet80.04 11185.67 9173.48 13382.91 11381.11 10480.44 14666.06 10885.01 7562.53 16478.84 14294.43 7758.51 15688.66 8685.91 9090.41 9185.73 84
EG-PatchMatch MVS84.35 7487.55 7280.62 8686.38 7682.24 9486.75 10664.02 13184.24 7978.17 9089.38 6895.03 6478.78 3789.95 7986.33 8689.59 10285.65 85
thisisatest051581.18 10784.32 10777.52 11176.73 16474.84 15385.06 11861.37 15381.05 11173.95 11088.79 7889.25 13275.49 6685.98 11284.78 10292.53 6885.56 86
FPMVS81.56 10184.04 11378.66 10182.92 11275.96 14386.48 10965.66 11584.67 7871.47 12677.78 14883.22 15777.57 4991.24 6290.21 5387.84 12485.21 87
tttt051775.86 14376.23 15875.42 11975.55 17074.06 15782.73 13160.31 15969.24 16370.24 13379.18 13858.79 20772.17 9184.49 12883.08 12191.54 7884.80 88
EPNet79.36 11979.44 13679.27 9989.51 4677.20 13388.35 9077.35 3268.27 16974.29 10876.31 15979.22 16859.63 15285.02 12485.45 9586.49 13884.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_HR83.95 7786.10 8581.44 7584.62 9080.29 10790.51 6568.05 9484.07 8280.38 7684.74 11691.37 11674.23 7590.37 7587.25 7890.86 8984.59 90
Effi-MVS+-dtu82.04 9783.39 12180.48 8985.48 8486.57 6688.40 8968.28 9169.04 16773.13 11776.26 16191.11 11974.74 7388.40 9087.76 7592.84 6284.57 91
IterMVS-LS79.79 11382.56 12576.56 11581.83 12277.85 12679.90 15169.42 7878.93 12771.21 12790.47 5385.20 15270.86 10480.54 15680.57 13786.15 14184.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_LR83.20 8585.33 9280.73 8482.88 11478.23 12489.61 7765.23 11882.08 9581.19 7285.31 11092.04 10975.22 6789.50 8085.90 9190.24 9284.23 93
thisisatest053075.54 14575.95 16275.05 12375.08 17173.56 15882.15 13660.31 15969.17 16469.32 13679.02 13958.78 20872.17 9183.88 13183.08 12191.30 8384.20 94
Effi-MVS+82.33 9383.87 11480.52 8884.51 9381.32 10087.53 9668.05 9474.94 14379.67 8182.37 12992.31 10172.21 9085.06 12086.91 8191.18 8584.20 94
v1083.17 8685.22 9580.78 8183.26 10982.99 8888.66 8866.49 10479.24 12583.60 4991.46 4595.47 5174.12 7682.60 14180.66 13688.53 11884.11 96
UniMVSNet (Re)84.95 6988.53 6080.78 8187.82 6484.21 7888.03 9176.50 3881.18 10969.29 13792.63 3496.83 2369.07 11491.23 6389.60 6293.97 4384.00 97
GeoE81.92 9983.87 11479.66 9484.64 8979.87 10989.75 7665.90 11276.12 13775.87 9784.62 11792.23 10271.96 9586.83 10583.60 11389.83 9983.81 98
Gipumacopyleft86.47 5789.25 5683.23 5683.88 10278.78 12085.35 11568.42 8992.69 1089.03 1291.94 3796.32 3381.80 2294.45 2786.86 8290.91 8883.69 99
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DELS-MVS79.71 11483.74 11775.01 12579.31 13882.68 9084.79 12060.06 16375.43 14169.09 13886.13 10289.38 12967.16 12485.12 11983.87 11189.65 10083.57 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CVMVSNet75.65 14477.62 14873.35 13671.95 18069.89 17083.04 12960.84 15869.12 16568.76 14179.92 13778.93 17073.64 8381.02 15281.01 13481.86 17083.43 101
IS_MVSNet81.72 10085.01 9777.90 10686.19 7782.64 9185.56 11270.02 7280.11 11963.52 15987.28 9181.18 16367.26 12391.08 6889.33 6594.82 3383.42 102
Fast-Effi-MVS+81.42 10283.82 11678.62 10282.24 11980.62 10687.72 9463.51 13773.01 14774.75 10583.80 12292.70 9673.44 8488.15 9585.26 9690.05 9483.17 103
EU-MVSNet76.48 13680.53 13371.75 14167.62 19370.30 16881.74 13954.06 18575.47 14071.01 12980.10 13493.17 9373.67 8183.73 13277.85 15282.40 16783.07 104
UniMVSNet_NR-MVSNet84.62 7388.00 6980.68 8588.18 5983.83 8087.06 10376.47 3981.46 10570.49 13193.24 2395.56 4968.13 11890.43 7488.47 7093.78 4683.02 105
DU-MVS84.88 7088.27 6680.92 7988.30 5783.59 8487.06 10378.35 2080.64 11470.49 13192.67 3296.91 2268.13 11891.79 5189.29 6693.20 5483.02 105
v124083.57 8084.94 10081.97 6884.05 9781.27 10189.46 8066.06 10881.31 10887.50 2191.88 4095.46 5276.25 5881.16 15180.51 13988.52 11982.98 107
TranMVSNet+NR-MVSNet85.23 6789.38 5580.39 9088.78 5383.77 8187.40 9876.75 3585.47 7068.99 13995.18 897.55 1767.13 12591.61 5789.13 6793.26 5382.95 108
v192192083.49 8184.94 10081.80 7083.78 10381.20 10389.50 7965.91 11181.64 10087.18 2591.70 4295.39 5375.85 6281.56 14980.27 14188.60 11682.80 109
NR-MVSNet82.89 8887.43 7477.59 10983.91 10183.59 8487.10 10278.35 2080.64 11468.85 14092.67 3296.50 2554.19 17587.19 10388.68 6993.16 5782.75 110
UniMVSNet_ETH3D85.39 6491.12 4578.71 10090.48 3783.72 8281.76 13882.41 693.84 664.43 15795.41 798.76 163.72 14093.63 3489.74 5989.47 10582.74 111
v14419283.43 8284.97 9981.63 7383.43 10681.23 10289.42 8166.04 11081.45 10686.40 3591.46 4595.70 4775.76 6482.14 14280.23 14288.74 11382.57 112
v119283.61 7985.23 9481.72 7184.05 9782.15 9589.54 7866.20 10681.38 10786.76 3391.79 4196.03 3774.88 7281.81 14680.92 13588.91 11282.50 113
FMVSNet178.20 12884.83 10270.46 15078.62 14579.03 11777.90 16167.53 9983.02 8755.10 17987.19 9393.18 9255.65 16885.57 11483.39 11687.98 12382.40 114
IB-MVS71.28 1775.21 14677.00 15273.12 13776.76 15877.45 12983.05 12858.92 16863.01 19264.31 15859.99 21087.57 14268.64 11686.26 11182.34 12687.05 13382.36 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v882.20 9584.56 10579.45 9582.42 11781.65 9787.26 9964.27 12579.36 12481.70 6991.04 5195.75 4573.30 8582.82 13779.18 14887.74 12682.09 116
Baseline_NR-MVSNet82.79 9086.51 7878.44 10488.30 5775.62 14787.81 9374.97 4881.53 10266.84 15294.71 1296.46 2666.90 12691.79 5183.37 11985.83 14882.09 116
ETV-MVS79.01 12477.98 14380.22 9186.69 7379.73 11388.80 8668.27 9263.22 19171.56 12570.25 19673.63 18973.66 8290.30 7686.77 8492.33 7181.95 118
FC-MVSNet-train79.20 12286.29 8270.94 14684.06 9677.67 12785.68 11164.11 12882.90 8852.22 19092.57 3593.69 8449.52 19088.30 9386.93 8090.03 9581.95 118
V4279.59 11783.59 11974.93 12869.61 18777.05 13586.59 10855.84 17778.42 12977.29 9189.84 6295.08 6274.12 7683.05 13480.11 14386.12 14281.59 120
v114483.22 8485.01 9781.14 7783.76 10481.60 9888.95 8465.58 11681.89 9785.80 3791.68 4395.84 4274.04 7882.12 14380.56 13888.70 11581.41 121
CS-MVS79.35 12077.74 14581.22 7685.59 8379.85 11088.78 8766.61 10267.63 17080.41 7467.82 20075.07 18773.27 8688.31 9284.36 10692.63 6481.18 122
PM-MVS80.42 11083.63 11876.67 11378.04 15072.37 16387.14 10160.18 16280.13 11871.75 12486.12 10393.92 8277.08 5286.56 10785.12 9885.83 14881.18 122
TinyColmap83.79 7886.12 8481.07 7883.42 10781.44 9985.42 11368.55 8888.71 4489.46 887.60 8692.72 9570.34 10789.29 8281.94 12889.20 10781.12 124
CLD-MVS82.75 9287.22 7677.54 11088.01 6385.76 7190.23 7154.52 18282.28 9482.11 6688.48 8095.27 5563.95 13889.41 8188.29 7286.45 13981.01 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121179.37 11885.78 8971.89 14082.87 11579.66 11478.77 15963.93 13483.36 8459.39 16890.54 5294.66 7156.46 16387.38 9884.12 10889.92 9780.74 126
MSDG81.39 10484.23 11078.09 10582.40 11882.47 9385.31 11760.91 15779.73 12280.26 7786.30 10088.27 13969.67 10987.20 10284.98 9989.97 9680.67 127
diffmvs76.74 13381.61 13071.06 14475.64 16974.45 15680.68 14557.57 17377.48 13067.62 15088.95 7493.94 8161.98 14779.74 15976.18 16382.85 16680.50 128
pmmvs680.46 10888.34 6571.26 14281.96 12177.51 12877.54 16268.83 8493.72 755.92 17693.94 1898.03 1055.94 16589.21 8385.61 9387.36 13080.38 129
GBi-Net73.17 15577.64 14667.95 16676.76 15877.36 13075.77 17464.57 12262.99 19351.83 19176.05 16277.76 17452.73 18385.57 11483.39 11686.04 14380.37 130
test173.17 15577.64 14667.95 16676.76 15877.36 13075.77 17464.57 12262.99 19351.83 19176.05 16277.76 17452.73 18385.57 11483.39 11686.04 14380.37 130
FMVSNet274.43 15079.70 13468.27 16376.76 15877.36 13075.77 17465.36 11772.28 15152.97 18581.92 13085.61 14952.73 18380.66 15579.73 14486.04 14380.37 130
casdiffmvs79.93 11284.11 11275.05 12381.41 12678.99 11882.95 13062.90 14481.53 10268.60 14491.94 3796.03 3765.84 13282.89 13677.07 15988.59 11780.34 133
MVS_Test76.72 13479.40 13773.60 13278.85 14474.99 15179.91 15061.56 15269.67 16172.44 11885.98 10590.78 12163.50 14378.30 16475.74 16685.33 15280.31 134
MVSTER68.08 17869.73 18066.16 17466.33 20170.06 16975.71 17752.36 19155.18 21058.64 17070.23 19756.72 21257.34 16079.68 16076.03 16486.61 13680.20 135
CANet_DTU75.04 14778.45 13971.07 14377.27 15577.96 12583.88 12558.00 17264.11 18768.67 14375.65 16888.37 13853.92 17782.05 14481.11 13284.67 15679.88 136
IterMVS-SCA-FT77.23 13079.18 13874.96 12776.67 16579.85 11075.58 17961.34 15473.10 14673.79 11286.23 10179.61 16779.00 3680.28 15875.50 16783.41 16579.70 137
TransMVSNet (Re)79.05 12386.66 7770.18 15283.32 10875.99 14277.54 16263.98 13290.68 2455.84 17794.80 1096.06 3653.73 17886.27 11083.22 12086.65 13479.61 138
FMVSNet371.40 16675.20 16766.97 17075.00 17276.59 13774.29 18164.57 12262.99 19351.83 19176.05 16277.76 17451.49 18876.58 17277.03 16084.62 15779.43 139
Anonymous20240521184.68 10383.92 10079.45 11579.03 15767.79 9682.01 9688.77 7992.58 9755.93 16686.68 10684.26 10788.92 11178.98 140
v2v48282.20 9584.26 10879.81 9382.67 11680.18 10887.67 9563.96 13381.69 9984.73 4291.27 4896.33 3272.05 9481.94 14579.56 14587.79 12578.84 141
EIA-MVS78.57 12577.90 14479.35 9787.24 6980.71 10586.16 11064.03 13062.63 19673.49 11473.60 17876.12 18273.83 8088.49 8984.93 10091.36 8178.78 142
DI_MVS_plusplus_trai77.64 12979.64 13575.31 12179.87 13476.89 13681.55 14163.64 13576.21 13672.03 12285.59 10982.97 15866.63 12779.27 16277.78 15388.14 12278.76 143
PVSNet_BlendedMVS76.45 13778.12 14174.49 12976.76 15878.46 12179.65 15363.26 14065.42 18273.15 11575.05 17188.96 13366.51 12982.73 13977.66 15487.61 12778.60 144
PVSNet_Blended76.45 13778.12 14174.49 12976.76 15878.46 12179.65 15363.26 14065.42 18273.15 11575.05 17188.96 13366.51 12982.73 13977.66 15487.61 12778.60 144
baseline69.33 17275.37 16562.28 18666.54 19966.67 18273.95 18348.07 19866.10 17659.26 16982.45 12686.30 14654.44 17374.42 17973.25 17371.42 18778.43 146
pm-mvs178.21 12785.68 9069.50 15780.38 13075.73 14576.25 17065.04 11987.59 5254.47 18193.16 2595.99 4154.20 17486.37 10982.98 12386.64 13577.96 147
ET-MVSNet_ETH3D74.71 14974.19 16975.31 12179.22 14075.29 14882.70 13264.05 12965.45 18170.96 13077.15 15557.70 20965.89 13184.40 12981.65 13089.03 10977.67 148
USDC81.39 10483.07 12279.43 9681.48 12478.95 11982.62 13366.17 10787.45 5490.73 482.40 12893.65 8566.57 12883.63 13377.97 15189.00 11077.45 149
v14879.33 12182.32 12675.84 11780.14 13175.74 14481.98 13757.06 17481.51 10479.36 8489.42 6696.42 2871.32 9881.54 15075.29 16885.20 15376.32 150
pmmvs-eth3d79.64 11582.06 12876.83 11280.05 13272.64 16187.47 9766.59 10380.83 11373.50 11389.32 6993.20 9167.78 12080.78 15481.64 13185.58 15176.01 151
MS-PatchMatch71.18 16773.99 17167.89 16877.16 15671.76 16477.18 16556.38 17667.35 17155.04 18074.63 17375.70 18362.38 14676.62 17175.97 16579.22 17475.90 152
Fast-Effi-MVS+-dtu76.92 13277.18 15076.62 11479.55 13579.17 11684.80 11977.40 3064.46 18668.75 14270.81 19286.57 14563.36 14581.74 14781.76 12985.86 14775.78 153
tfpnnormal77.16 13184.26 10868.88 16081.02 12775.02 15076.52 16963.30 13987.29 5552.40 18891.24 4993.97 8054.85 17285.46 11781.08 13385.18 15475.76 154
EPNet_dtu71.90 16373.03 17570.59 14878.28 14761.64 19282.44 13464.12 12763.26 19069.74 13471.47 18682.41 15951.89 18778.83 16378.01 15077.07 17775.60 155
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GA-MVS75.01 14876.39 15673.39 13478.37 14675.66 14680.03 14858.40 17070.51 15975.85 9883.24 12376.14 18163.75 13977.28 16876.62 16283.97 16075.30 156
FC-MVSNet-test75.91 14283.59 11966.95 17176.63 16669.07 17385.33 11664.97 12084.87 7741.95 20493.17 2487.04 14347.78 19391.09 6785.56 9485.06 15574.34 157
thres600view774.34 15178.43 14069.56 15680.47 12876.28 14078.65 16062.56 14677.39 13152.53 18674.03 17576.78 17955.90 16785.06 12085.19 9787.25 13174.29 158
IterMVS73.62 15276.53 15570.23 15171.83 18177.18 13480.69 14453.22 18972.23 15266.62 15385.21 11178.96 16969.54 11176.28 17571.63 17879.45 17374.25 159
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpn200view972.01 16275.40 16468.06 16577.97 15176.44 13877.04 16662.67 14566.81 17350.82 19567.30 20175.67 18452.46 18685.06 12082.64 12487.41 12973.86 160
pmmvs475.92 14177.48 14974.10 13178.21 14970.94 16584.06 12364.78 12175.13 14268.47 14584.12 11983.32 15564.74 13775.93 17679.14 14984.31 15873.77 161
MDA-MVSNet-bldmvs76.51 13582.87 12469.09 15950.71 21474.72 15584.05 12460.27 16181.62 10171.16 12888.21 8291.58 11269.62 11092.78 4577.48 15678.75 17673.69 162
thres40073.13 15776.99 15368.62 16179.46 13674.93 15277.23 16461.23 15575.54 13952.31 18972.20 18377.10 17754.89 17082.92 13582.62 12586.57 13773.66 163
PatchMatch-RL76.05 14076.64 15475.36 12077.84 15469.87 17181.09 14363.43 13871.66 15568.34 14671.70 18481.76 16274.98 7184.83 12683.44 11586.45 13973.22 164
CHOSEN 1792x268868.80 17471.09 17766.13 17569.11 18968.89 17578.98 15854.68 18061.63 19856.69 17371.56 18578.39 17267.69 12172.13 18772.01 17769.63 19473.02 165
thres20072.41 16176.00 16168.21 16478.28 14776.28 14074.94 18062.56 14672.14 15451.35 19469.59 19876.51 18054.89 17085.06 12080.51 13987.25 13171.92 166
Vis-MVSNet (Re-imp)76.15 13980.84 13270.68 14783.66 10574.80 15481.66 14069.59 7380.48 11746.94 19987.44 8880.63 16553.14 18086.87 10484.56 10589.12 10871.12 167
thres100view90069.86 16972.97 17666.24 17377.97 15172.49 16273.29 18459.12 16666.81 17350.82 19567.30 20175.67 18450.54 18978.24 16579.40 14685.71 15070.88 168
baseline268.71 17568.34 18469.14 15875.69 16869.70 17276.60 16855.53 17960.13 20162.07 16666.76 20360.35 20260.77 14976.53 17474.03 17084.19 15970.88 168
baseline169.62 17073.55 17365.02 18278.95 14370.39 16771.38 19062.03 14970.97 15847.95 19878.47 14668.19 19547.77 19479.65 16176.94 16182.05 16870.27 170
HyFIR lowres test73.29 15474.14 17072.30 13873.08 17678.33 12383.12 12762.41 14863.81 18862.13 16576.67 15878.50 17171.09 10074.13 18077.47 15781.98 16970.10 171
CDS-MVSNet73.07 15877.02 15168.46 16281.62 12372.89 16079.56 15570.78 6869.56 16252.52 18777.37 15381.12 16442.60 19884.20 13083.93 10983.65 16170.07 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CostFormer66.81 18166.94 18766.67 17272.79 17868.25 17679.55 15655.57 17865.52 18062.77 16276.98 15660.09 20356.73 16265.69 20462.35 19372.59 18369.71 173
CR-MVSNet69.56 17168.34 18470.99 14572.78 17967.63 17764.47 20367.74 9759.93 20272.30 11980.10 13456.77 21165.04 13571.64 18872.91 17483.61 16369.40 174
PatchT66.25 18266.76 18865.67 17955.87 20960.75 19370.17 19259.00 16759.80 20472.30 11978.68 14454.12 21665.04 13571.64 18872.91 17471.63 18669.40 174
MIMVSNet173.40 15381.85 12963.55 18372.90 17764.37 18784.58 12153.60 18790.84 2053.92 18287.75 8596.10 3445.31 19685.37 11879.32 14770.98 19169.18 176
RPMNet67.02 18063.99 19570.56 14971.55 18267.63 17775.81 17269.44 7759.93 20263.24 16064.32 20547.51 22059.68 15170.37 19369.64 18483.64 16268.49 177
pmmvs568.91 17374.35 16862.56 18567.45 19566.78 18171.70 18751.47 19467.17 17256.25 17582.41 12788.59 13747.21 19573.21 18674.23 16981.30 17168.03 178
gg-mvs-nofinetune72.68 16075.21 16669.73 15481.48 12469.04 17470.48 19176.67 3686.92 5967.80 14988.06 8364.67 19742.12 20077.60 16673.65 17179.81 17266.57 179
MDTV_nov1_ep13_2view72.96 15975.59 16369.88 15371.15 18464.86 18682.31 13554.45 18376.30 13578.32 8986.52 9891.58 11261.35 14876.80 16966.83 18971.70 18466.26 180
test-mter59.39 19861.59 20256.82 19453.21 21054.82 20073.12 18626.57 21353.19 21156.31 17464.71 20460.47 20156.36 16468.69 19764.27 19275.38 17965.00 181
dps65.14 18364.50 19365.89 17871.41 18365.81 18571.44 18961.59 15158.56 20561.43 16775.45 16952.70 21858.06 15869.57 19564.65 19171.39 18864.77 182
testgi68.20 17776.05 16059.04 19079.99 13367.32 18081.16 14251.78 19384.91 7639.36 20973.42 17995.19 5732.79 20976.54 17370.40 18169.14 19564.55 183
tpm cat164.79 18662.74 20067.17 16974.61 17365.91 18476.18 17159.32 16564.88 18566.41 15471.21 18953.56 21759.17 15361.53 20858.16 20267.33 19863.95 184
PMMVS61.98 19465.61 19057.74 19245.03 21551.76 20669.54 19635.05 20855.49 20955.32 17868.23 19978.39 17258.09 15770.21 19471.56 17983.42 16463.66 185
tpm62.79 18963.25 19762.26 18770.09 18653.78 20171.65 18847.31 19965.72 17976.70 9380.62 13356.40 21448.11 19264.20 20658.54 20059.70 20463.47 186
test20.0369.91 16876.20 15962.58 18484.01 9967.34 17975.67 17865.88 11379.98 12040.28 20882.65 12589.31 13139.63 20377.41 16773.28 17269.98 19263.40 187
Anonymous2023120667.28 17973.41 17460.12 18976.45 16763.61 19074.21 18256.52 17576.35 13442.23 20375.81 16790.47 12441.51 20174.52 17769.97 18369.83 19363.17 188
CHOSEN 280x42056.32 20558.85 21153.36 20151.63 21139.91 21569.12 19938.61 20756.29 20736.79 21148.84 21262.59 19963.39 14473.61 18467.66 18760.61 20263.07 189
pmmvs362.72 19068.71 18355.74 19650.74 21357.10 19770.05 19328.82 21161.57 20057.39 17271.19 19085.73 14753.96 17673.36 18569.43 18573.47 18262.55 190
FMVSNet556.37 20460.14 20651.98 20560.83 20559.58 19466.85 20242.37 20452.68 21241.33 20647.09 21354.68 21535.28 20673.88 18170.77 18065.24 20162.26 191
test-LLR62.15 19359.46 20965.29 18079.07 14152.66 20469.46 19762.93 14250.76 21353.81 18363.11 20758.91 20552.87 18166.54 20262.34 19473.59 18061.87 192
TESTMET0.1,157.21 20159.46 20954.60 20050.95 21252.66 20469.46 19726.91 21250.76 21353.81 18363.11 20758.91 20552.87 18166.54 20262.34 19473.59 18061.87 192
MDTV_nov1_ep1364.96 18464.77 19265.18 18167.08 19662.46 19175.80 17351.10 19662.27 19769.74 13474.12 17462.65 19855.64 16968.19 19862.16 19771.70 18461.57 194
SCA68.54 17667.52 18669.73 15467.79 19275.04 14976.96 16768.94 8366.41 17567.86 14874.03 17560.96 20065.55 13368.99 19665.67 19071.30 18961.54 195
gm-plane-assit71.56 16469.99 17973.39 13484.43 9473.21 15990.42 7051.36 19584.08 8176.00 9691.30 4737.09 22159.01 15473.65 18370.24 18279.09 17560.37 196
pmnet_mix0262.60 19170.81 17853.02 20266.56 19850.44 20862.81 20646.84 20079.13 12643.76 20287.45 8790.75 12239.85 20270.48 19257.09 20358.27 20660.32 197
MIMVSNet63.02 18769.02 18256.01 19568.20 19059.26 19570.01 19453.79 18671.56 15641.26 20771.38 18782.38 16036.38 20571.43 19067.32 18866.45 20059.83 198
test0.0.03 161.79 19565.33 19157.65 19379.07 14164.09 18868.51 20062.93 14261.59 19933.71 21261.58 20971.58 19333.43 20870.95 19168.68 18668.26 19758.82 199
new-patchmatchnet62.59 19273.79 17249.53 20676.98 15753.57 20253.46 21454.64 18185.43 7128.81 21391.94 3796.41 2925.28 21176.80 16953.66 20957.99 20758.69 200
PatchmatchNetpermissive64.81 18563.74 19666.06 17769.21 18858.62 19673.16 18560.01 16465.92 17766.19 15576.27 16059.09 20460.45 15066.58 20161.47 19967.33 19858.24 201
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst59.42 19760.02 20758.71 19167.56 19453.10 20366.99 20151.88 19263.80 18957.68 17176.73 15756.49 21348.73 19156.47 21255.55 20559.43 20558.02 202
TAMVS63.02 18769.30 18155.70 19770.12 18556.89 19869.63 19545.13 20170.23 16038.00 21077.79 14775.15 18642.60 19874.48 17872.81 17668.70 19657.75 203
MVEpermissive41.12 1951.80 20860.92 20441.16 20835.21 21734.14 21748.45 21741.39 20569.11 16619.53 21663.33 20673.80 18863.56 14167.19 19961.51 19838.85 21457.38 204
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND41.63 21060.36 20519.78 2110.14 22266.04 18355.66 2130.17 21957.64 2062.42 22151.82 21169.42 1940.28 21864.11 20758.29 20160.02 20355.18 205
EPMVS56.62 20359.77 20852.94 20362.41 20450.55 20760.66 20852.83 19065.15 18441.80 20577.46 15257.28 21042.68 19759.81 21054.82 20657.23 20853.35 206
MVS-HIRNet59.74 19658.74 21260.92 18857.74 20845.81 21256.02 21258.69 16955.69 20865.17 15670.86 19171.66 19156.75 16161.11 20953.74 20871.17 19052.28 207
ADS-MVSNet56.89 20261.09 20352.00 20459.48 20648.10 21058.02 21054.37 18472.82 14949.19 19775.32 17065.97 19637.96 20459.34 21154.66 20752.99 21251.42 208
new_pmnet52.29 20763.16 19839.61 20958.89 20744.70 21348.78 21634.73 20965.88 17817.85 21773.42 17980.00 16623.06 21267.00 20062.28 19654.36 20948.81 209
N_pmnet54.95 20665.90 18942.18 20766.37 20043.86 21457.92 21139.79 20679.54 12317.24 21886.31 9987.91 14025.44 21064.68 20551.76 21146.33 21347.23 210
DeepMVS_CXcopyleft17.78 21820.40 2196.69 21431.41 2169.80 21938.61 21434.88 22233.78 20728.41 21523.59 21745.77 211
E-PMN59.07 19962.79 19954.72 19867.01 19747.81 21160.44 20943.40 20272.95 14844.63 20170.42 19573.17 19058.73 15580.97 15351.98 21054.14 21042.26 212
EMVS58.97 20062.63 20154.70 19966.26 20248.71 20961.74 20742.71 20372.80 15046.00 20073.01 18271.66 19157.91 15980.41 15750.68 21253.55 21141.11 213
PMMVS248.13 20964.06 19429.55 21044.06 21636.69 21651.95 21529.97 21074.75 1448.90 22076.02 16591.24 1187.53 21473.78 18255.91 20434.87 21540.01 214
test_method22.69 21126.99 21317.67 2122.13 2194.31 22027.50 2184.53 21537.94 21524.52 21536.20 21551.40 21915.26 21329.86 21417.09 21432.07 21612.16 215
testmvs0.93 2131.37 2150.41 2150.36 2210.36 2220.62 2220.39 2171.48 2180.18 2232.41 2171.31 2250.41 2171.25 2171.08 2160.48 2191.68 216
test1231.06 2121.41 2140.64 2140.39 2200.48 2210.52 2230.25 2181.11 2191.37 2222.01 2181.98 2240.87 2161.43 2161.27 2150.46 2201.62 217
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def87.10 29
9.1489.43 128
SR-MVS91.82 1380.80 795.53 50
our_test_373.27 17570.91 16683.26 126
MTAPA89.37 994.85 67
MTMP90.54 595.16 59
Patchmatch-RL test4.13 221
tmp_tt13.54 21316.73 2186.42 2198.49 2202.36 21628.69 21727.44 21418.40 21613.51 2233.70 21533.23 21336.26 21322.54 218
XVS91.28 2591.23 896.89 287.14 2694.53 7295.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2694.53 7295.84 15
mPP-MVS93.05 495.77 44
NP-MVS78.65 128
Patchmtry56.88 19964.47 20367.74 9772.30 119