This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2295.55 293.00 193.98 1796.01 3987.53 197.69 196.81 197.33 195.34 3
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1288.98 5192.86 295.51 2072.17 5994.95 591.27 394.11 1697.77 1284.22 896.49 495.27 596.79 293.60 11
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LTVRE_ROB86.82 191.55 394.43 388.19 1183.19 11086.35 6793.60 3778.79 1995.48 491.79 293.08 2697.21 2186.34 397.06 296.27 395.46 2395.56 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS89.79 2393.66 485.27 3791.32 2388.27 4593.49 3879.86 1092.75 975.37 10096.86 198.38 675.10 6995.93 894.07 1596.46 589.39 58
WR-MVS_H88.99 3593.28 583.99 5491.92 1189.13 3991.95 4683.23 190.14 3071.92 12395.85 598.01 1171.83 9695.82 993.19 2393.07 5890.83 48
test_part187.86 4993.26 681.56 7487.23 7086.76 6290.91 5370.06 7196.50 176.74 9296.63 298.62 269.45 11392.93 4390.92 4694.98 2990.46 49
PS-CasMVS89.07 3293.23 784.21 5192.44 888.23 4790.54 6382.95 390.50 2575.31 10195.80 698.37 771.16 9996.30 593.32 2292.88 6090.11 52
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3892.18 4574.23 5293.55 882.66 5992.32 3698.35 880.29 2995.28 1892.34 3295.52 2290.43 50
PEN-MVS88.86 3992.92 984.11 5392.92 588.05 5090.83 5582.67 591.04 1874.83 10395.97 498.47 470.38 10695.70 1392.43 3193.05 5988.78 64
APDe-MVS89.85 2092.91 1086.29 2790.47 3891.34 796.04 1576.41 4091.11 1778.50 8893.44 2195.82 4381.55 2493.16 3891.90 3994.77 3493.58 14
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3188.53 1489.54 6595.57 4884.25 795.24 2094.27 1395.97 1193.85 7
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4890.96 5283.09 291.38 1476.21 9496.03 398.04 970.78 10595.65 1492.32 3393.18 5587.84 71
DVP-MVS89.40 2792.69 1385.56 3489.01 5089.85 3293.72 3575.42 4592.28 1180.49 7394.36 1394.87 6681.46 2592.49 5091.42 4293.27 5293.54 16
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PMVScopyleft79.51 990.23 1492.67 1487.39 2190.16 3988.75 4193.64 3675.78 4490.00 3383.70 4892.97 2892.22 10386.13 497.01 396.79 294.94 3090.96 46
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CP-MVSNet88.71 4192.63 1584.13 5292.39 988.09 4990.47 6882.86 488.79 4375.16 10294.87 997.68 1571.05 10196.16 693.18 2492.85 6189.64 56
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7587.16 5991.47 4868.79 8595.49 389.74 693.55 1998.50 377.96 4494.14 3289.57 6393.49 4789.94 54
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RPSCF88.05 4692.61 1782.73 6684.24 9588.40 4390.04 7466.29 10591.46 1382.29 6188.93 7596.01 3979.38 3295.15 2194.90 694.15 4093.40 19
DeepC-MVS83.59 490.37 1292.56 1887.82 1591.26 2792.33 394.72 3080.04 990.01 3284.61 4393.33 2294.22 7980.59 2892.90 4492.52 2995.69 2192.57 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM80.67 790.67 792.46 1988.57 891.35 2289.93 3196.34 1277.36 3190.17 2986.88 3087.32 9096.63 2483.32 1395.79 1094.49 1096.19 992.91 25
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMPcopyleft90.63 892.40 2088.56 991.24 2891.60 696.49 977.53 2787.89 4986.87 3187.24 9296.46 2682.87 1695.59 1594.50 996.35 693.51 17
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LGP-MVS_train90.56 992.38 2188.43 1090.88 3291.15 1195.35 2277.65 2686.26 6587.23 2490.45 5497.35 1883.20 1495.44 1693.41 2196.28 892.63 26
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3695.11 2575.98 4290.73 2380.15 7994.21 1594.51 7576.59 5492.94 4191.17 4593.46 4993.37 21
HFP-MVS90.32 1392.37 2287.94 1491.46 2190.91 1895.69 1879.49 1289.94 3483.50 5189.06 7294.44 7681.68 2394.17 3194.19 1495.81 1793.87 6
DPE-MVScopyleft89.81 2292.34 2486.86 2489.69 4491.00 1695.53 1976.91 3488.18 4783.43 5493.48 2095.19 5781.07 2792.75 4692.07 3794.55 3793.74 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4689.17 1187.00 9596.34 3183.95 1095.77 1194.72 895.81 1793.78 9
ACMP80.00 890.12 1692.30 2687.58 1990.83 3491.10 1294.96 2876.06 4187.47 5385.33 4088.91 7697.65 1682.13 2095.31 1793.44 2096.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft90.13 1592.26 2787.64 1891.68 1690.44 2695.22 2477.34 3390.79 2287.80 1790.42 5592.05 10879.05 3593.89 3393.59 1994.77 3494.62 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.89.67 2492.25 2886.65 2691.53 1890.98 1796.15 1473.30 5687.88 5081.83 6792.92 2995.15 6082.23 1993.58 3592.25 3494.87 3193.01 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS89.82 2192.24 2986.99 2390.86 3389.35 3795.07 2775.91 4391.16 1686.87 3191.07 5097.29 1979.13 3493.32 3691.99 3894.12 4191.49 41
SD-MVS89.91 1892.23 3087.19 2291.31 2489.79 3494.31 3275.34 4789.26 3881.79 6892.68 3195.08 6283.88 1193.10 3992.69 2696.54 493.02 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 9082.56 9290.53 6471.93 6091.95 1285.89 3694.22 1497.25 2085.42 595.73 1291.71 4195.08 2891.89 37
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5179.48 1388.86 4179.80 8093.01 2793.53 8883.17 1592.75 4692.45 3091.32 8293.59 12
ACMMP_NAP89.86 1991.96 3387.42 2091.00 3090.08 2996.00 1676.61 3789.28 3587.73 1890.04 5791.80 11178.71 3894.36 2993.82 1894.48 3894.32 5
MP-MVScopyleft90.84 691.95 3489.55 392.92 590.90 1996.56 679.60 1186.83 6088.75 1389.00 7394.38 7884.01 994.94 2594.34 1195.45 2493.24 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP90.00 1791.73 3587.97 1391.21 2990.29 2896.51 778.00 2486.33 6385.32 4188.23 8194.67 7082.08 2195.13 2293.88 1794.72 3693.59 12
Skip Steuart: Steuart Systems R&D Blog.
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6390.83 2187.24 2389.71 6392.07 10678.37 4194.43 2892.59 2895.86 1391.35 42
PGM-MVS90.42 1091.58 3789.05 691.77 1491.06 1396.51 778.94 1785.41 7287.67 1987.02 9495.26 5683.62 1295.01 2493.94 1695.79 1993.40 19
CSCG88.12 4591.45 3884.23 4888.12 6290.59 2590.57 6168.60 8791.37 1583.45 5389.94 5895.14 6178.71 3891.45 5988.21 7495.96 1293.44 18
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3394.76 2977.45 2985.41 7274.79 10488.83 7788.90 13578.67 4096.06 795.45 496.66 395.58 1
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2377.52 2890.48 2680.21 7890.21 5696.08 3576.38 5788.30 9391.42 4291.12 8791.01 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS90.38 1191.35 4189.25 593.08 386.59 6496.45 1179.00 1690.23 2889.30 1085.87 10694.97 6582.54 1895.05 2394.83 795.14 2791.94 36
OMC-MVS88.16 4391.34 4284.46 4686.85 7190.63 2393.01 4167.00 10090.35 2787.40 2286.86 9796.35 3077.66 4892.63 4890.84 4794.84 3291.68 39
xxxxxxxxxxxxxcwj88.03 4791.29 4384.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5789.90 5997.72 1377.91 4591.69 5490.04 5593.95 4492.47 28
APD-MVScopyleft89.14 2991.25 4486.67 2591.73 1591.02 1595.50 2177.74 2584.04 8379.47 8391.48 4494.85 6781.14 2692.94 4192.20 3694.47 3992.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet_ETH3D85.39 6491.12 4578.71 10090.48 3783.72 8281.76 13882.41 693.84 664.43 15795.41 798.76 163.72 14093.63 3489.74 5989.47 10582.74 111
SF-MVS87.85 5090.95 4684.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5789.90 5995.37 5477.91 4591.69 5490.04 5593.95 4492.47 28
X-MVS89.36 2890.73 4787.77 1791.50 2091.23 896.76 478.88 1887.29 5587.14 2678.98 14194.53 7276.47 5595.25 1994.28 1295.85 1493.55 15
anonymousdsp85.62 6190.53 4879.88 9264.64 20376.35 13996.28 1353.53 18885.63 6981.59 7092.81 3097.71 1486.88 294.56 2692.83 2596.35 693.84 8
CPTT-MVS89.63 2590.52 4988.59 790.95 3190.74 2195.71 1779.13 1587.70 5185.68 3980.05 13695.74 4684.77 694.28 3092.68 2795.28 2692.45 31
v7n87.11 5290.46 5083.19 5785.22 8583.69 8390.03 7568.20 9391.01 1986.71 3494.80 1098.46 577.69 4791.10 6685.98 8991.30 8388.19 67
DeepPCF-MVS81.61 687.95 4890.29 5185.22 3887.48 6690.01 3093.79 3473.54 5488.93 4083.89 4689.40 6790.84 12080.26 3190.62 7390.19 5492.36 7092.03 35
3Dnovator+83.71 388.13 4490.00 5285.94 2986.82 7291.06 1394.26 3375.39 4688.85 4285.76 3885.74 10886.92 14478.02 4393.03 4092.21 3595.39 2592.21 34
DeepC-MVS_fast81.78 587.38 5189.64 5384.75 4189.89 4290.70 2292.74 4374.45 5086.02 6682.16 6586.05 10491.99 11075.84 6391.16 6490.44 5093.41 5091.09 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft88.74 4089.54 5487.80 1692.58 785.69 7295.10 2678.01 2387.08 5787.66 2087.89 8492.07 10680.28 3090.97 7091.41 4493.17 5691.69 38
TranMVSNet+NR-MVSNet85.23 6789.38 5580.39 9088.78 5383.77 8187.40 9876.75 3585.47 7068.99 13995.18 897.55 1767.13 12591.61 5789.13 6793.26 5382.95 108
Gipumacopyleft86.47 5789.25 5683.23 5683.88 10278.78 12085.35 11568.42 8992.69 1089.03 1291.94 3796.32 3381.80 2294.45 2786.86 8290.91 8883.69 99
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSLP-MVS++86.29 5989.10 5783.01 5985.71 8289.79 3487.04 10574.39 5185.17 7478.92 8677.59 15093.57 8682.60 1793.23 3791.88 4089.42 10692.46 30
CNVR-MVS86.93 5388.98 5884.54 4490.11 4087.41 5793.23 4073.47 5586.31 6482.25 6282.96 12492.15 10476.04 6091.69 5490.69 4892.17 7391.64 40
CNLPA85.50 6388.58 5981.91 6984.55 9287.52 5690.89 5463.56 13688.18 4784.06 4583.85 12191.34 11776.46 5691.27 6189.00 6891.96 7488.88 63
UniMVSNet (Re)84.95 6988.53 6080.78 8187.82 6484.21 7888.03 9176.50 3881.18 10969.29 13792.63 3496.83 2369.07 11491.23 6389.60 6293.97 4384.00 97
CDPH-MVS86.66 5688.52 6184.48 4589.61 4588.27 4592.86 4272.69 5880.55 11682.71 5686.92 9693.32 9075.55 6591.00 6989.85 5893.47 4889.71 55
ambc88.38 6291.62 1787.97 5184.48 12288.64 4587.93 1687.38 8994.82 6974.53 7489.14 8483.86 11285.94 14686.84 76
TAPA-MVS78.00 1385.88 6088.37 6382.96 6184.69 8888.62 4290.62 5964.22 12689.15 3988.05 1578.83 14393.71 8376.20 5990.11 7888.22 7394.00 4289.97 53
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP85.51 6288.36 6482.19 6786.05 7987.69 5490.50 6670.60 6986.40 6282.33 6089.69 6492.52 9874.01 7987.53 9786.84 8389.63 10187.80 72
pmmvs680.46 10888.34 6571.26 14281.96 12177.51 12877.54 16268.83 8493.72 755.92 17693.94 1898.03 1055.94 16589.21 8385.61 9387.36 13080.38 129
DU-MVS84.88 7088.27 6680.92 7988.30 5783.59 8487.06 10378.35 2080.64 11470.49 13192.67 3296.91 2268.13 11891.79 5189.29 6693.20 5483.02 105
PHI-MVS86.37 5888.14 6784.30 4786.65 7487.56 5590.76 5870.16 7082.55 9089.65 784.89 11592.40 9975.97 6190.88 7189.70 6092.58 6589.03 62
Vis-MVSNetpermissive83.32 8388.12 6877.71 10777.91 15383.44 8690.58 6069.49 7681.11 11067.10 15189.85 6191.48 11571.71 9791.34 6089.37 6489.48 10490.26 51
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet84.62 7388.00 6980.68 8588.18 5983.83 8087.06 10376.47 3981.46 10570.49 13193.24 2395.56 4968.13 11890.43 7488.47 7093.78 4683.02 105
NCCC86.74 5487.97 7085.31 3690.64 3587.25 5893.27 3974.59 4986.50 6183.72 4775.92 16692.39 10077.08 5291.72 5390.68 4992.57 6791.30 43
train_agg86.67 5587.73 7185.43 3591.51 1982.72 8994.47 3174.22 5381.71 9881.54 7189.20 7192.87 9478.33 4290.12 7788.47 7092.51 6989.04 61
EG-PatchMatch MVS84.35 7487.55 7280.62 8686.38 7682.24 9486.75 10664.02 13184.24 7978.17 9089.38 6895.03 6478.78 3789.95 7986.33 8689.59 10285.65 85
PLCcopyleft76.06 1585.38 6587.46 7382.95 6285.79 8188.84 4088.86 8568.70 8687.06 5883.60 4979.02 13990.05 12677.37 5190.88 7189.66 6193.37 5186.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
NR-MVSNet82.89 8887.43 7477.59 10983.91 10183.59 8487.10 10278.35 2080.64 11468.85 14092.67 3296.50 2554.19 17587.19 10388.68 6993.16 5782.75 110
TSAR-MVS + GP.85.32 6687.41 7582.89 6390.07 4185.69 7289.07 8372.99 5782.45 9174.52 10785.09 11387.67 14179.24 3391.11 6590.41 5191.45 7989.45 57
CLD-MVS82.75 9287.22 7677.54 11088.01 6385.76 7190.23 7154.52 18282.28 9482.11 6688.48 8095.27 5563.95 13889.41 8188.29 7286.45 13981.01 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TransMVSNet (Re)79.05 12386.66 7770.18 15283.32 10875.99 14277.54 16263.98 13290.68 2455.84 17794.80 1096.06 3653.73 17886.27 11083.22 12086.65 13479.61 138
Baseline_NR-MVSNet82.79 9086.51 7878.44 10488.30 5775.62 14787.81 9374.97 4881.53 10266.84 15294.71 1296.46 2666.90 12691.79 5183.37 11985.83 14882.09 116
MCST-MVS84.79 7186.48 7982.83 6487.30 6787.03 6190.46 6969.33 7983.14 8682.21 6481.69 13292.14 10575.09 7087.27 10084.78 10292.58 6589.30 59
EPP-MVSNet82.76 9186.47 8078.45 10386.00 8084.47 7785.39 11468.42 8984.17 8062.97 16189.26 7076.84 17872.13 9392.56 4990.40 5295.76 2087.56 74
HQP-MVS85.02 6886.41 8183.40 5589.19 4886.59 6491.28 4971.60 6482.79 8983.48 5278.65 14593.54 8772.55 8886.49 10885.89 9292.28 7290.95 47
FC-MVSNet-train79.20 12286.29 8270.94 14684.06 9677.67 12785.68 11164.11 12882.90 8852.22 19092.57 3593.69 8449.52 19088.30 9386.93 8090.03 9581.95 118
MVS_030484.73 7286.19 8383.02 5888.32 5686.71 6391.55 4770.87 6773.79 14582.88 5585.13 11293.35 8972.55 8888.62 8787.69 7691.93 7588.05 70
TinyColmap83.79 7886.12 8481.07 7883.42 10781.44 9985.42 11368.55 8888.71 4489.46 887.60 8692.72 9570.34 10789.29 8281.94 12889.20 10781.12 124
MVS_111021_HR83.95 7786.10 8581.44 7584.62 9080.29 10790.51 6568.05 9484.07 8280.38 7684.74 11691.37 11674.23 7590.37 7587.25 7890.86 8984.59 90
3Dnovator79.41 1082.21 9486.07 8677.71 10779.31 13884.61 7687.18 10061.02 15685.65 6876.11 9585.07 11485.38 15170.96 10387.22 10186.47 8591.66 7788.12 69
canonicalmvs81.22 10686.04 8775.60 11883.17 11183.18 8780.29 14765.82 11485.97 6767.98 14777.74 14991.51 11465.17 13488.62 8786.15 8891.17 8689.09 60
UGNet79.62 11685.91 8872.28 13973.52 17483.91 7986.64 10769.51 7579.85 12162.57 16385.82 10789.63 12753.18 17988.39 9187.35 7788.28 12186.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121179.37 11885.78 8971.89 14082.87 11579.66 11478.77 15963.93 13483.36 8459.39 16890.54 5294.66 7156.46 16387.38 9884.12 10889.92 9780.74 126
pm-mvs178.21 12785.68 9069.50 15780.38 13075.73 14576.25 17065.04 11987.59 5254.47 18193.16 2595.99 4154.20 17486.37 10982.98 12386.64 13577.96 147
DCV-MVSNet80.04 11185.67 9173.48 13382.91 11381.11 10480.44 14666.06 10885.01 7562.53 16478.84 14294.43 7758.51 15688.66 8685.91 9090.41 9185.73 84
MVS_111021_LR83.20 8585.33 9280.73 8482.88 11478.23 12489.61 7765.23 11882.08 9581.19 7285.31 11092.04 10975.22 6789.50 8085.90 9190.24 9284.23 93
PCF-MVS76.59 1484.11 7685.27 9382.76 6586.12 7888.30 4491.24 5069.10 8082.36 9384.45 4477.56 15190.40 12572.91 8785.88 11383.88 11092.72 6388.53 65
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v119283.61 7985.23 9481.72 7184.05 9782.15 9589.54 7866.20 10681.38 10786.76 3391.79 4196.03 3774.88 7281.81 14680.92 13588.91 11282.50 113
v1083.17 8685.22 9580.78 8183.26 10982.99 8888.66 8866.49 10479.24 12583.60 4991.46 4595.47 5174.12 7682.60 14180.66 13688.53 11884.11 96
AdaColmapbinary84.15 7585.14 9683.00 6089.08 4987.14 6090.56 6270.90 6682.40 9280.41 7473.82 17784.69 15375.19 6891.58 5889.90 5791.87 7686.48 78
v114483.22 8485.01 9781.14 7783.76 10481.60 9888.95 8465.58 11681.89 9785.80 3791.68 4395.84 4274.04 7882.12 14380.56 13888.70 11581.41 121
IS_MVSNet81.72 10085.01 9777.90 10686.19 7782.64 9185.56 11270.02 7280.11 11963.52 15987.28 9181.18 16367.26 12391.08 6889.33 6594.82 3383.42 102
v14419283.43 8284.97 9981.63 7383.43 10681.23 10289.42 8166.04 11081.45 10686.40 3591.46 4595.70 4775.76 6482.14 14280.23 14288.74 11382.57 112
v192192083.49 8184.94 10081.80 7083.78 10381.20 10389.50 7965.91 11181.64 10087.18 2591.70 4295.39 5375.85 6281.56 14980.27 14188.60 11682.80 109
v124083.57 8084.94 10081.97 6884.05 9781.27 10189.46 8066.06 10881.31 10887.50 2191.88 4095.46 5276.25 5881.16 15180.51 13988.52 11982.98 107
FMVSNet178.20 12884.83 10270.46 15078.62 14579.03 11777.90 16167.53 9983.02 8755.10 17987.19 9393.18 9255.65 16885.57 11483.39 11687.98 12382.40 114
Anonymous20240521184.68 10383.92 10079.45 11579.03 15767.79 9682.01 9688.77 7992.58 9755.93 16686.68 10684.26 10788.92 11178.98 140
CANet82.84 8984.60 10480.78 8187.30 6785.20 7590.23 7169.00 8172.16 15378.73 8784.49 11890.70 12369.54 11187.65 9686.17 8789.87 9885.84 83
v882.20 9584.56 10579.45 9582.42 11781.65 9787.26 9964.27 12579.36 12481.70 6991.04 5195.75 4573.30 8582.82 13779.18 14887.74 12682.09 116
QAPM80.43 10984.34 10675.86 11679.40 13782.06 9679.86 15261.94 15083.28 8574.73 10681.74 13185.44 15070.97 10284.99 12584.71 10488.29 12088.14 68
thisisatest051581.18 10784.32 10777.52 11176.73 16474.84 15385.06 11861.37 15381.05 11173.95 11088.79 7889.25 13275.49 6685.98 11284.78 10292.53 6885.56 86
tfpnnormal77.16 13184.26 10868.88 16081.02 12775.02 15076.52 16963.30 13987.29 5552.40 18891.24 4993.97 8054.85 17285.46 11781.08 13385.18 15475.76 154
v2v48282.20 9584.26 10879.81 9382.67 11680.18 10887.67 9563.96 13381.69 9984.73 4291.27 4896.33 3272.05 9481.94 14579.56 14587.79 12578.84 141
MSDG81.39 10484.23 11078.09 10582.40 11882.47 9385.31 11760.91 15779.73 12280.26 7786.30 10088.27 13969.67 10987.20 10284.98 9989.97 9680.67 127
PVSNet_Blended_VisFu83.00 8784.16 11181.65 7282.17 12086.01 6888.03 9171.23 6576.05 13879.54 8283.88 12083.44 15477.49 5087.38 9884.93 10091.41 8087.40 75
casdiffmvs79.93 11284.11 11275.05 12381.41 12678.99 11882.95 13062.90 14481.53 10268.60 14491.94 3796.03 3765.84 13282.89 13677.07 15988.59 11780.34 133
FPMVS81.56 10184.04 11378.66 10182.92 11275.96 14386.48 10965.66 11584.67 7871.47 12677.78 14883.22 15777.57 4991.24 6290.21 5387.84 12485.21 87
GeoE81.92 9983.87 11479.66 9484.64 8979.87 10989.75 7665.90 11276.12 13775.87 9784.62 11792.23 10271.96 9586.83 10583.60 11389.83 9983.81 98
Effi-MVS+82.33 9383.87 11480.52 8884.51 9381.32 10087.53 9668.05 9474.94 14379.67 8182.37 12992.31 10172.21 9085.06 12086.91 8191.18 8584.20 94
Fast-Effi-MVS+81.42 10283.82 11678.62 10282.24 11980.62 10687.72 9463.51 13773.01 14774.75 10583.80 12292.70 9673.44 8488.15 9585.26 9690.05 9483.17 103
DELS-MVS79.71 11483.74 11775.01 12579.31 13882.68 9084.79 12060.06 16375.43 14169.09 13886.13 10289.38 12967.16 12485.12 11983.87 11189.65 10083.57 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PM-MVS80.42 11083.63 11876.67 11378.04 15072.37 16387.14 10160.18 16280.13 11871.75 12486.12 10393.92 8277.08 5286.56 10785.12 9885.83 14881.18 122
FC-MVSNet-test75.91 14283.59 11966.95 17176.63 16669.07 17385.33 11664.97 12084.87 7741.95 20493.17 2487.04 14347.78 19391.09 6785.56 9485.06 15574.34 157
V4279.59 11783.59 11974.93 12869.61 18777.05 13586.59 10855.84 17778.42 12977.29 9189.84 6295.08 6274.12 7683.05 13480.11 14386.12 14281.59 120
Effi-MVS+-dtu82.04 9783.39 12180.48 8985.48 8486.57 6688.40 8968.28 9169.04 16773.13 11776.26 16191.11 11974.74 7388.40 9087.76 7592.84 6284.57 91
USDC81.39 10483.07 12279.43 9681.48 12478.95 11982.62 13366.17 10787.45 5490.73 482.40 12893.65 8566.57 12883.63 13377.97 15189.00 11077.45 149
MAR-MVS81.98 9882.92 12380.88 8085.18 8685.85 6989.13 8269.52 7471.21 15782.25 6271.28 18888.89 13669.69 10888.71 8586.96 7989.52 10387.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MDA-MVSNet-bldmvs76.51 13582.87 12469.09 15950.71 21474.72 15584.05 12460.27 16181.62 10171.16 12888.21 8291.58 11269.62 11092.78 4577.48 15678.75 17673.69 162
IterMVS-LS79.79 11382.56 12576.56 11581.83 12277.85 12679.90 15169.42 7878.93 12771.21 12790.47 5385.20 15270.86 10480.54 15680.57 13786.15 14184.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14879.33 12182.32 12675.84 11780.14 13175.74 14481.98 13757.06 17481.51 10479.36 8489.42 6696.42 2871.32 9881.54 15075.29 16885.20 15376.32 150
DPM-MVS81.42 10282.11 12780.62 8687.54 6585.30 7490.18 7368.96 8281.00 11279.15 8570.45 19483.29 15667.67 12282.81 13883.46 11490.19 9388.48 66
pmmvs-eth3d79.64 11582.06 12876.83 11280.05 13272.64 16187.47 9766.59 10380.83 11373.50 11389.32 6993.20 9167.78 12080.78 15481.64 13185.58 15176.01 151
MIMVSNet173.40 15381.85 12963.55 18372.90 17764.37 18784.58 12153.60 18790.84 2053.92 18287.75 8596.10 3445.31 19685.37 11879.32 14770.98 19169.18 176
diffmvs76.74 13381.61 13071.06 14475.64 16974.45 15680.68 14557.57 17377.48 13067.62 15088.95 7493.94 8161.98 14779.74 15976.18 16382.85 16680.50 128
OpenMVScopyleft75.38 1678.44 12681.39 13174.99 12680.46 12979.85 11079.99 14958.31 17177.34 13273.85 11177.19 15482.33 16168.60 11784.67 12781.95 12788.72 11486.40 80
Vis-MVSNet (Re-imp)76.15 13980.84 13270.68 14783.66 10574.80 15481.66 14069.59 7380.48 11746.94 19987.44 8880.63 16553.14 18086.87 10484.56 10589.12 10871.12 167
EU-MVSNet76.48 13680.53 13371.75 14167.62 19370.30 16881.74 13954.06 18575.47 14071.01 12980.10 13493.17 9373.67 8183.73 13277.85 15282.40 16783.07 104
FMVSNet274.43 15079.70 13468.27 16376.76 15877.36 13075.77 17465.36 11772.28 15152.97 18581.92 13085.61 14952.73 18380.66 15579.73 14486.04 14380.37 130
DI_MVS_plusplus_trai77.64 12979.64 13575.31 12179.87 13476.89 13681.55 14163.64 13576.21 13672.03 12285.59 10982.97 15866.63 12779.27 16277.78 15388.14 12278.76 143
EPNet79.36 11979.44 13679.27 9989.51 4677.20 13388.35 9077.35 3268.27 16974.29 10876.31 15979.22 16859.63 15285.02 12485.45 9586.49 13884.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_Test76.72 13479.40 13773.60 13278.85 14474.99 15179.91 15061.56 15269.67 16172.44 11885.98 10590.78 12163.50 14378.30 16475.74 16685.33 15280.31 134
IterMVS-SCA-FT77.23 13079.18 13874.96 12776.67 16579.85 11075.58 17961.34 15473.10 14673.79 11286.23 10179.61 16779.00 3680.28 15875.50 16783.41 16579.70 137
CANet_DTU75.04 14778.45 13971.07 14377.27 15577.96 12583.88 12558.00 17264.11 18768.67 14375.65 16888.37 13853.92 17782.05 14481.11 13284.67 15679.88 136
thres600view774.34 15178.43 14069.56 15680.47 12876.28 14078.65 16062.56 14677.39 13152.53 18674.03 17576.78 17955.90 16785.06 12085.19 9787.25 13174.29 158
PVSNet_BlendedMVS76.45 13778.12 14174.49 12976.76 15878.46 12179.65 15363.26 14065.42 18273.15 11575.05 17188.96 13366.51 12982.73 13977.66 15487.61 12778.60 144
PVSNet_Blended76.45 13778.12 14174.49 12976.76 15878.46 12179.65 15363.26 14065.42 18273.15 11575.05 17188.96 13366.51 12982.73 13977.66 15487.61 12778.60 144
ETV-MVS79.01 12477.98 14380.22 9186.69 7379.73 11388.80 8668.27 9263.22 19171.56 12570.25 19673.63 18973.66 8290.30 7686.77 8492.33 7181.95 118
EIA-MVS78.57 12577.90 14479.35 9787.24 6980.71 10586.16 11064.03 13062.63 19673.49 11473.60 17876.12 18273.83 8088.49 8984.93 10091.36 8178.78 142
CS-MVS79.35 12077.74 14581.22 7685.59 8379.85 11088.78 8766.61 10267.63 17080.41 7467.82 20075.07 18773.27 8688.31 9284.36 10692.63 6481.18 122
GBi-Net73.17 15577.64 14667.95 16676.76 15877.36 13075.77 17464.57 12262.99 19351.83 19176.05 16277.76 17452.73 18385.57 11483.39 11686.04 14380.37 130
test173.17 15577.64 14667.95 16676.76 15877.36 13075.77 17464.57 12262.99 19351.83 19176.05 16277.76 17452.73 18385.57 11483.39 11686.04 14380.37 130
CVMVSNet75.65 14477.62 14873.35 13671.95 18069.89 17083.04 12960.84 15869.12 16568.76 14179.92 13778.93 17073.64 8381.02 15281.01 13481.86 17083.43 101
pmmvs475.92 14177.48 14974.10 13178.21 14970.94 16584.06 12364.78 12175.13 14268.47 14584.12 11983.32 15564.74 13775.93 17679.14 14984.31 15873.77 161
Fast-Effi-MVS+-dtu76.92 13277.18 15076.62 11479.55 13579.17 11684.80 11977.40 3064.46 18668.75 14270.81 19286.57 14563.36 14581.74 14781.76 12985.86 14775.78 153
CDS-MVSNet73.07 15877.02 15168.46 16281.62 12372.89 16079.56 15570.78 6869.56 16252.52 18777.37 15381.12 16442.60 19884.20 13083.93 10983.65 16170.07 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IB-MVS71.28 1775.21 14677.00 15273.12 13776.76 15877.45 12983.05 12858.92 16863.01 19264.31 15859.99 21087.57 14268.64 11686.26 11182.34 12687.05 13382.36 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres40073.13 15776.99 15368.62 16179.46 13674.93 15277.23 16461.23 15575.54 13952.31 18972.20 18377.10 17754.89 17082.92 13582.62 12586.57 13773.66 163
PatchMatch-RL76.05 14076.64 15475.36 12077.84 15469.87 17181.09 14363.43 13871.66 15568.34 14671.70 18481.76 16274.98 7184.83 12683.44 11586.45 13973.22 164
IterMVS73.62 15276.53 15570.23 15171.83 18177.18 13480.69 14453.22 18972.23 15266.62 15385.21 11178.96 16969.54 11176.28 17571.63 17879.45 17374.25 159
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS75.01 14876.39 15673.39 13478.37 14675.66 14680.03 14858.40 17070.51 15975.85 9883.24 12376.14 18163.75 13977.28 16876.62 16283.97 16075.30 156
CMPMVSbinary55.74 1871.56 16476.26 15766.08 17668.11 19163.91 18963.17 20550.52 19768.79 16875.49 9970.78 19385.67 14863.54 14281.58 14877.20 15875.63 17885.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tttt051775.86 14376.23 15875.42 11975.55 17074.06 15782.73 13160.31 15969.24 16370.24 13379.18 13858.79 20772.17 9184.49 12883.08 12191.54 7884.80 88
test20.0369.91 16876.20 15962.58 18484.01 9967.34 17975.67 17865.88 11379.98 12040.28 20882.65 12589.31 13139.63 20377.41 16773.28 17269.98 19263.40 187
testgi68.20 17776.05 16059.04 19079.99 13367.32 18081.16 14251.78 19384.91 7639.36 20973.42 17995.19 5732.79 20976.54 17370.40 18169.14 19564.55 183
thres20072.41 16176.00 16168.21 16478.28 14776.28 14074.94 18062.56 14672.14 15451.35 19469.59 19876.51 18054.89 17085.06 12080.51 13987.25 13171.92 166
thisisatest053075.54 14575.95 16275.05 12375.08 17173.56 15882.15 13660.31 15969.17 16469.32 13679.02 13958.78 20872.17 9183.88 13183.08 12191.30 8384.20 94
MDTV_nov1_ep13_2view72.96 15975.59 16369.88 15371.15 18464.86 18682.31 13554.45 18376.30 13578.32 8986.52 9891.58 11261.35 14876.80 16966.83 18971.70 18466.26 180
tfpn200view972.01 16275.40 16468.06 16577.97 15176.44 13877.04 16662.67 14566.81 17350.82 19567.30 20175.67 18452.46 18685.06 12082.64 12487.41 12973.86 160
baseline69.33 17275.37 16562.28 18666.54 19966.67 18273.95 18348.07 19866.10 17659.26 16982.45 12686.30 14654.44 17374.42 17973.25 17371.42 18778.43 146
gg-mvs-nofinetune72.68 16075.21 16669.73 15481.48 12469.04 17470.48 19176.67 3686.92 5967.80 14988.06 8364.67 19742.12 20077.60 16673.65 17179.81 17266.57 179
FMVSNet371.40 16675.20 16766.97 17075.00 17276.59 13774.29 18164.57 12262.99 19351.83 19176.05 16277.76 17451.49 18876.58 17277.03 16084.62 15779.43 139
pmmvs568.91 17374.35 16862.56 18567.45 19566.78 18171.70 18751.47 19467.17 17256.25 17582.41 12788.59 13747.21 19573.21 18674.23 16981.30 17168.03 178
ET-MVSNet_ETH3D74.71 14974.19 16975.31 12179.22 14075.29 14882.70 13264.05 12965.45 18170.96 13077.15 15557.70 20965.89 13184.40 12981.65 13089.03 10977.67 148
HyFIR lowres test73.29 15474.14 17072.30 13873.08 17678.33 12383.12 12762.41 14863.81 18862.13 16576.67 15878.50 17171.09 10074.13 18077.47 15781.98 16970.10 171
MS-PatchMatch71.18 16773.99 17167.89 16877.16 15671.76 16477.18 16556.38 17667.35 17155.04 18074.63 17375.70 18362.38 14676.62 17175.97 16579.22 17475.90 152
new-patchmatchnet62.59 19273.79 17249.53 20676.98 15753.57 20253.46 21454.64 18185.43 7128.81 21391.94 3796.41 2925.28 21176.80 16953.66 20957.99 20758.69 200
baseline169.62 17073.55 17365.02 18278.95 14370.39 16771.38 19062.03 14970.97 15847.95 19878.47 14668.19 19547.77 19479.65 16176.94 16182.05 16870.27 170
Anonymous2023120667.28 17973.41 17460.12 18976.45 16763.61 19074.21 18256.52 17576.35 13442.23 20375.81 16790.47 12441.51 20174.52 17769.97 18369.83 19363.17 188
EPNet_dtu71.90 16373.03 17570.59 14878.28 14761.64 19282.44 13464.12 12763.26 19069.74 13471.47 18682.41 15951.89 18778.83 16378.01 15077.07 17775.60 155
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres100view90069.86 16972.97 17666.24 17377.97 15172.49 16273.29 18459.12 16666.81 17350.82 19567.30 20175.67 18450.54 18978.24 16579.40 14685.71 15070.88 168
CHOSEN 1792x268868.80 17471.09 17766.13 17569.11 18968.89 17578.98 15854.68 18061.63 19856.69 17371.56 18578.39 17267.69 12172.13 18772.01 17769.63 19473.02 165
pmnet_mix0262.60 19170.81 17853.02 20266.56 19850.44 20862.81 20646.84 20079.13 12643.76 20287.45 8790.75 12239.85 20270.48 19257.09 20358.27 20660.32 197
gm-plane-assit71.56 16469.99 17973.39 13484.43 9473.21 15990.42 7051.36 19584.08 8176.00 9691.30 4737.09 22159.01 15473.65 18370.24 18279.09 17560.37 196
MVSTER68.08 17869.73 18066.16 17466.33 20170.06 16975.71 17752.36 19155.18 21058.64 17070.23 19756.72 21257.34 16079.68 16076.03 16486.61 13680.20 135
TAMVS63.02 18769.30 18155.70 19770.12 18556.89 19869.63 19545.13 20170.23 16038.00 21077.79 14775.15 18642.60 19874.48 17872.81 17668.70 19657.75 203
MIMVSNet63.02 18769.02 18256.01 19568.20 19059.26 19570.01 19453.79 18671.56 15641.26 20771.38 18782.38 16036.38 20571.43 19067.32 18866.45 20059.83 198
pmmvs362.72 19068.71 18355.74 19650.74 21357.10 19770.05 19328.82 21161.57 20057.39 17271.19 19085.73 14753.96 17673.36 18569.43 18573.47 18262.55 190
baseline268.71 17568.34 18469.14 15875.69 16869.70 17276.60 16855.53 17960.13 20162.07 16666.76 20360.35 20260.77 14976.53 17474.03 17084.19 15970.88 168
CR-MVSNet69.56 17168.34 18470.99 14572.78 17967.63 17764.47 20367.74 9759.93 20272.30 11980.10 13456.77 21165.04 13571.64 18872.91 17483.61 16369.40 174
SCA68.54 17667.52 18669.73 15467.79 19275.04 14976.96 16768.94 8366.41 17567.86 14874.03 17560.96 20065.55 13368.99 19665.67 19071.30 18961.54 195
CostFormer66.81 18166.94 18766.67 17272.79 17868.25 17679.55 15655.57 17865.52 18062.77 16276.98 15660.09 20356.73 16265.69 20462.35 19372.59 18369.71 173
PatchT66.25 18266.76 18865.67 17955.87 20960.75 19370.17 19259.00 16759.80 20472.30 11978.68 14454.12 21665.04 13571.64 18872.91 17471.63 18669.40 174
N_pmnet54.95 20665.90 18942.18 20766.37 20043.86 21457.92 21139.79 20679.54 12317.24 21886.31 9987.91 14025.44 21064.68 20551.76 21146.33 21347.23 210
PMMVS61.98 19465.61 19057.74 19245.03 21551.76 20669.54 19635.05 20855.49 20955.32 17868.23 19978.39 17258.09 15770.21 19471.56 17983.42 16463.66 185
test0.0.03 161.79 19565.33 19157.65 19379.07 14164.09 18868.51 20062.93 14261.59 19933.71 21261.58 20971.58 19333.43 20870.95 19168.68 18668.26 19758.82 199
MDTV_nov1_ep1364.96 18464.77 19265.18 18167.08 19662.46 19175.80 17351.10 19662.27 19769.74 13474.12 17462.65 19855.64 16968.19 19862.16 19771.70 18461.57 194
dps65.14 18364.50 19365.89 17871.41 18365.81 18571.44 18961.59 15158.56 20561.43 16775.45 16952.70 21858.06 15869.57 19564.65 19171.39 18864.77 182
PMMVS248.13 20964.06 19429.55 21044.06 21636.69 21651.95 21529.97 21074.75 1448.90 22076.02 16591.24 1187.53 21473.78 18255.91 20434.87 21540.01 214
RPMNet67.02 18063.99 19570.56 14971.55 18267.63 17775.81 17269.44 7759.93 20263.24 16064.32 20547.51 22059.68 15170.37 19369.64 18483.64 16268.49 177
PatchmatchNetpermissive64.81 18563.74 19666.06 17769.21 18858.62 19673.16 18560.01 16465.92 17766.19 15576.27 16059.09 20460.45 15066.58 20161.47 19967.33 19858.24 201
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm62.79 18963.25 19762.26 18770.09 18653.78 20171.65 18847.31 19965.72 17976.70 9380.62 13356.40 21448.11 19264.20 20658.54 20059.70 20463.47 186
new_pmnet52.29 20763.16 19839.61 20958.89 20744.70 21348.78 21634.73 20965.88 17817.85 21773.42 17980.00 16623.06 21267.00 20062.28 19654.36 20948.81 209
E-PMN59.07 19962.79 19954.72 19867.01 19747.81 21160.44 20943.40 20272.95 14844.63 20170.42 19573.17 19058.73 15580.97 15351.98 21054.14 21042.26 212
tpm cat164.79 18662.74 20067.17 16974.61 17365.91 18476.18 17159.32 16564.88 18566.41 15471.21 18953.56 21759.17 15361.53 20858.16 20267.33 19863.95 184
EMVS58.97 20062.63 20154.70 19966.26 20248.71 20961.74 20742.71 20372.80 15046.00 20073.01 18271.66 19157.91 15980.41 15750.68 21253.55 21141.11 213
test-mter59.39 19861.59 20256.82 19453.21 21054.82 20073.12 18626.57 21353.19 21156.31 17464.71 20460.47 20156.36 16468.69 19764.27 19275.38 17965.00 181
ADS-MVSNet56.89 20261.09 20352.00 20459.48 20648.10 21058.02 21054.37 18472.82 14949.19 19775.32 17065.97 19637.96 20459.34 21154.66 20752.99 21251.42 208
MVEpermissive41.12 1951.80 20860.92 20441.16 20835.21 21734.14 21748.45 21741.39 20569.11 16619.53 21663.33 20673.80 18863.56 14167.19 19961.51 19838.85 21457.38 204
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND41.63 21060.36 20519.78 2110.14 22266.04 18355.66 2130.17 21957.64 2062.42 22151.82 21169.42 1940.28 21864.11 20758.29 20160.02 20355.18 205
FMVSNet556.37 20460.14 20651.98 20560.83 20559.58 19466.85 20242.37 20452.68 21241.33 20647.09 21354.68 21535.28 20673.88 18170.77 18065.24 20162.26 191
tpmrst59.42 19760.02 20758.71 19167.56 19453.10 20366.99 20151.88 19263.80 18957.68 17176.73 15756.49 21348.73 19156.47 21255.55 20559.43 20558.02 202
EPMVS56.62 20359.77 20852.94 20362.41 20450.55 20760.66 20852.83 19065.15 18441.80 20577.46 15257.28 21042.68 19759.81 21054.82 20657.23 20853.35 206
test-LLR62.15 19359.46 20965.29 18079.07 14152.66 20469.46 19762.93 14250.76 21353.81 18363.11 20758.91 20552.87 18166.54 20262.34 19473.59 18061.87 192
TESTMET0.1,157.21 20159.46 20954.60 20050.95 21252.66 20469.46 19726.91 21250.76 21353.81 18363.11 20758.91 20552.87 18166.54 20262.34 19473.59 18061.87 192
CHOSEN 280x42056.32 20558.85 21153.36 20151.63 21139.91 21569.12 19938.61 20756.29 20736.79 21148.84 21262.59 19963.39 14473.61 18467.66 18760.61 20263.07 189
MVS-HIRNet59.74 19658.74 21260.92 18857.74 20845.81 21256.02 21258.69 16955.69 20865.17 15670.86 19171.66 19156.75 16161.11 20953.74 20871.17 19052.28 207
test_method22.69 21126.99 21317.67 2122.13 2194.31 22027.50 2184.53 21537.94 21524.52 21536.20 21551.40 21915.26 21329.86 21417.09 21432.07 21612.16 215
test1231.06 2121.41 2140.64 2140.39 2200.48 2210.52 2230.25 2181.11 2191.37 2222.01 2181.98 2240.87 2161.43 2161.27 2150.46 2201.62 217
testmvs0.93 2131.37 2150.41 2150.36 2210.36 2220.62 2220.39 2171.48 2180.18 2232.41 2171.31 2250.41 2171.25 2171.08 2160.48 2191.68 216
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def87.10 29
9.1489.43 128
SR-MVS91.82 1380.80 795.53 50
our_test_373.27 17570.91 16683.26 126
MTAPA89.37 994.85 67
MTMP90.54 595.16 59
Patchmatch-RL test4.13 221
tmp_tt13.54 21316.73 2186.42 2198.49 2202.36 21628.69 21727.44 21418.40 21613.51 2233.70 21533.23 21336.26 21322.54 218
XVS91.28 2591.23 896.89 287.14 2694.53 7295.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2694.53 7295.84 15
abl_679.30 9884.98 8785.78 7090.50 6666.88 10177.08 13374.02 10973.29 18189.34 13068.94 11590.49 9085.98 81
mPP-MVS93.05 495.77 44
NP-MVS78.65 128
Patchmtry56.88 19964.47 20367.74 9772.30 119
DeepMVS_CXcopyleft17.78 21820.40 2196.69 21431.41 2169.80 21938.61 21434.88 22233.78 20728.41 21523.59 21745.77 211