This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5393.57 197.27 178.23 2295.55 293.00 193.98 1896.01 4087.53 197.69 196.81 197.33 195.34 4
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1288.98 5292.86 295.51 2072.17 6094.95 591.27 394.11 1797.77 1284.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS83.59 490.37 1392.56 1987.82 1591.26 2892.33 394.72 3180.04 990.01 3384.61 4393.33 2394.22 8080.59 2892.90 4592.52 2995.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS88.51 4391.36 4185.19 4090.63 3792.01 495.29 2377.52 2890.48 2780.21 7990.21 5796.08 3676.38 6188.30 9691.42 4291.12 9091.01 46
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMPR91.30 492.88 1289.46 491.92 1291.61 596.60 579.46 1490.08 3288.53 1489.54 6695.57 4984.25 795.24 2094.27 1395.97 1193.85 8
ACMMPcopyleft90.63 892.40 2188.56 991.24 2991.60 696.49 977.53 2787.89 5086.87 3187.24 9396.46 2782.87 1695.59 1594.50 996.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVS89.85 2192.91 1186.29 2790.47 3991.34 796.04 1576.41 4091.11 1878.50 8993.44 2295.82 4481.55 2493.16 3891.90 3994.77 3493.58 15
XVS91.28 2691.23 896.89 287.14 2694.53 7395.84 15
X-MVStestdata91.28 2691.23 896.89 287.14 2694.53 7395.84 15
X-MVS89.36 2990.73 4887.77 1791.50 2191.23 896.76 478.88 1887.29 5687.14 2678.98 14594.53 7376.47 5995.25 1994.28 1295.85 1493.55 16
LGP-MVS_train90.56 992.38 2288.43 1090.88 3391.15 1195.35 2277.65 2686.26 6687.23 2490.45 5597.35 1983.20 1495.44 1693.41 2196.28 892.63 27
ACMP80.00 890.12 1792.30 2787.58 1990.83 3591.10 1294.96 2976.06 4187.47 5485.33 4088.91 7797.65 1682.13 2095.31 1793.44 2096.14 1092.22 34
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PGM-MVS90.42 1191.58 3889.05 691.77 1591.06 1396.51 778.94 1785.41 7387.67 1987.02 9595.26 5783.62 1295.01 2493.94 1695.79 1993.40 20
3Dnovator+83.71 388.13 4590.00 5385.94 3086.82 7491.06 1394.26 3475.39 4788.85 4385.76 3885.74 10986.92 14878.02 4593.03 4192.21 3595.39 2592.21 35
APD-MVScopyleft89.14 3091.25 4586.67 2591.73 1691.02 1595.50 2177.74 2584.04 8479.47 8491.48 4594.85 6881.14 2692.94 4292.20 3694.47 4192.24 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DPE-MVScopyleft89.81 2392.34 2586.86 2489.69 4591.00 1695.53 1976.91 3488.18 4883.43 5493.48 2195.19 5881.07 2792.75 4792.07 3794.55 3893.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.89.67 2592.25 2986.65 2691.53 1990.98 1796.15 1473.30 5787.88 5181.83 6992.92 3095.15 6182.23 1993.58 3592.25 3494.87 3193.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS90.32 1492.37 2387.94 1491.46 2290.91 1895.69 1879.49 1289.94 3583.50 5189.06 7394.44 7781.68 2394.17 3194.19 1495.81 1793.87 7
MP-MVScopyleft90.84 691.95 3589.55 392.92 590.90 1996.56 679.60 1186.83 6188.75 1389.00 7494.38 7984.01 994.94 2594.34 1195.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D89.02 3491.69 3785.91 3189.72 4490.81 2092.56 4571.69 6690.83 2287.24 2389.71 6492.07 10978.37 4194.43 2892.59 2895.86 1391.35 43
CPTT-MVS89.63 2690.52 5088.59 790.95 3290.74 2195.71 1779.13 1587.70 5285.68 3980.05 14095.74 4784.77 694.28 3092.68 2795.28 2692.45 32
DeepC-MVS_fast81.78 587.38 5289.64 5484.75 4289.89 4390.70 2292.74 4474.45 5186.02 6782.16 6786.05 10591.99 11375.84 6791.16 6690.44 5193.41 5491.09 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OMC-MVS88.16 4491.34 4384.46 4786.85 7390.63 2393.01 4267.00 10390.35 2887.40 2286.86 9896.35 3177.66 5092.63 4990.84 4894.84 3291.68 40
TSAR-MVS + ACMM89.14 3092.11 3385.67 3289.27 4890.61 2490.98 5279.48 1388.86 4279.80 8193.01 2893.53 8983.17 1592.75 4792.45 3091.32 8593.59 13
CSCG88.12 4691.45 3984.23 4988.12 6390.59 2590.57 6268.60 9091.37 1683.45 5389.94 5995.14 6278.71 3891.45 6188.21 7695.96 1293.44 19
SMA-MVScopyleft90.13 1692.26 2887.64 1891.68 1790.44 2695.22 2577.34 3390.79 2387.80 1790.42 5692.05 11179.05 3593.89 3393.59 1994.77 3494.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS91.09 592.33 2689.65 292.16 1190.41 2796.46 1080.38 888.26 4789.17 1187.00 9696.34 3283.95 1095.77 1194.72 895.81 1793.78 10
DVP-MVS++.90.50 1094.18 486.21 2892.52 890.29 2895.29 2376.02 4294.24 682.82 5795.84 697.56 1776.82 5793.13 3991.20 4593.78 4997.01 1
SteuartSystems-ACMMP90.00 1891.73 3687.97 1391.21 3090.29 2896.51 778.00 2486.33 6485.32 4188.23 8294.67 7182.08 2195.13 2293.88 1794.72 3693.59 13
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP89.86 2091.96 3487.42 2091.00 3190.08 3096.00 1676.61 3789.28 3687.73 1890.04 5891.80 11478.71 3894.36 2993.82 1894.48 4094.32 6
DeepPCF-MVS81.61 687.95 4990.29 5285.22 3987.48 6790.01 3193.79 3573.54 5588.93 4183.89 4689.40 6890.84 12380.26 3190.62 7590.19 5592.36 7392.03 36
ACMM80.67 790.67 792.46 2088.57 891.35 2389.93 3296.34 1277.36 3190.17 3086.88 3087.32 9196.63 2583.32 1395.79 1094.49 1096.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVScopyleft89.40 2892.69 1485.56 3589.01 5189.85 3393.72 3675.42 4692.28 1280.49 7594.36 1494.87 6781.46 2592.49 5191.42 4293.27 5693.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UA-Net89.02 3491.44 4086.20 2994.88 189.84 3494.76 3077.45 2985.41 7374.79 10788.83 7888.90 13978.67 4096.06 795.45 496.66 395.58 2
SD-MVS89.91 1992.23 3187.19 2291.31 2589.79 3594.31 3375.34 4889.26 3981.79 7092.68 3295.08 6383.88 1193.10 4092.69 2696.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++86.29 6089.10 5883.01 6185.71 8589.79 3587.04 10674.39 5285.17 7578.92 8777.59 15493.57 8782.60 1793.23 3791.88 4089.42 10992.46 31
SED-MVS88.96 3892.37 2384.99 4188.64 5589.65 3795.11 2675.98 4390.73 2480.15 8094.21 1694.51 7676.59 5892.94 4291.17 4693.46 5393.37 22
OPM-MVS89.82 2292.24 3086.99 2390.86 3489.35 3895.07 2875.91 4491.16 1786.87 3191.07 5197.29 2079.13 3493.32 3691.99 3894.12 4391.49 42
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+79.05 1189.62 2793.08 985.58 3388.58 5689.26 3992.18 4674.23 5393.55 982.66 6192.32 3798.35 880.29 2995.28 1892.34 3295.52 2290.43 51
WR-MVS_H88.99 3693.28 683.99 5591.92 1289.13 4091.95 4783.23 190.14 3171.92 12695.85 598.01 1171.83 9995.82 993.19 2393.07 6290.83 49
PLCcopyleft76.06 1585.38 6687.46 7482.95 6485.79 8488.84 4188.86 8768.70 8987.06 5983.60 4979.02 14390.05 12977.37 5390.88 7389.66 6293.37 5586.74 79
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PMVScopyleft79.51 990.23 1592.67 1587.39 2190.16 4088.75 4293.64 3775.78 4590.00 3483.70 4892.97 2992.22 10686.13 497.01 396.79 294.94 3090.96 47
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TAPA-MVS78.00 1385.88 6188.37 6482.96 6384.69 9188.62 4390.62 6064.22 12889.15 4088.05 1578.83 14793.71 8476.20 6390.11 8288.22 7594.00 4489.97 54
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RPSCF88.05 4792.61 1882.73 6884.24 9888.40 4490.04 7566.29 10791.46 1482.29 6388.93 7696.01 4079.38 3295.15 2194.90 694.15 4293.40 20
PCF-MVS76.59 1484.11 7785.27 9482.76 6786.12 8188.30 4591.24 5169.10 8382.36 9484.45 4477.56 15590.40 12872.91 9085.88 11683.88 11392.72 6788.53 66
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CDPH-MVS86.66 5788.52 6284.48 4689.61 4688.27 4692.86 4372.69 5980.55 11782.71 5886.92 9793.32 9175.55 6991.00 7189.85 5993.47 5289.71 56
WR-MVS89.79 2493.66 585.27 3891.32 2488.27 4693.49 3979.86 1092.75 1075.37 10396.86 198.38 675.10 7395.93 894.07 1596.46 589.39 59
PS-CasMVS89.07 3393.23 884.21 5292.44 988.23 4890.54 6482.95 390.50 2675.31 10495.80 798.37 771.16 10296.30 593.32 2292.88 6490.11 53
DTE-MVSNet88.99 3692.77 1384.59 4493.31 288.10 4990.96 5383.09 291.38 1576.21 9696.03 398.04 970.78 10895.65 1492.32 3393.18 5987.84 73
CP-MVSNet88.71 4292.63 1684.13 5392.39 1088.09 5090.47 6982.86 488.79 4475.16 10594.87 1097.68 1571.05 10496.16 693.18 2492.85 6589.64 57
PEN-MVS88.86 4092.92 1084.11 5492.92 588.05 5190.83 5682.67 591.04 1974.83 10695.97 498.47 470.38 10995.70 1392.43 3193.05 6388.78 65
ambc88.38 6391.62 1887.97 5284.48 12588.64 4687.93 1687.38 9094.82 7074.53 7889.14 8883.86 11585.94 14986.84 78
xxxxxxxxxxxxxcwj88.03 4891.29 4484.22 5088.17 6187.90 5390.80 5771.80 6489.28 3682.70 5989.90 6097.72 1377.91 4791.69 5690.04 5693.95 4792.47 29
SF-MVS87.85 5190.95 4784.22 5088.17 6187.90 5390.80 5771.80 6489.28 3682.70 5989.90 6095.37 5577.91 4791.69 5690.04 5693.95 4792.47 29
TSAR-MVS + COLMAP85.51 6388.36 6582.19 7086.05 8287.69 5590.50 6770.60 7286.40 6382.33 6289.69 6592.52 10074.01 8387.53 10086.84 8789.63 10487.80 74
PHI-MVS86.37 5988.14 6884.30 4886.65 7687.56 5690.76 5970.16 7382.55 9189.65 784.89 11892.40 10275.97 6590.88 7389.70 6192.58 6889.03 63
CNLPA85.50 6488.58 6081.91 7284.55 9587.52 5790.89 5563.56 13888.18 4884.06 4583.85 12591.34 12076.46 6091.27 6389.00 6991.96 7788.88 64
CNVR-MVS86.93 5488.98 5984.54 4590.11 4187.41 5893.23 4173.47 5686.31 6582.25 6482.96 12892.15 10776.04 6491.69 5690.69 4992.17 7691.64 41
NCCC86.74 5587.97 7185.31 3790.64 3687.25 5993.27 4074.59 5086.50 6283.72 4775.92 17092.39 10377.08 5591.72 5590.68 5092.57 7091.30 44
ACMH78.40 1288.94 3992.62 1784.65 4386.45 7787.16 6091.47 4968.79 8895.49 389.74 693.55 2098.50 377.96 4694.14 3289.57 6493.49 5189.94 55
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AdaColmapbinary84.15 7685.14 9783.00 6289.08 5087.14 6190.56 6370.90 6982.40 9380.41 7673.82 18184.69 15775.19 7291.58 6089.90 5891.87 7986.48 80
MCST-MVS84.79 7286.48 8082.83 6687.30 6987.03 6290.46 7069.33 8283.14 8782.21 6681.69 13692.14 10875.09 7487.27 10384.78 10692.58 6889.30 60
test_part187.86 5093.26 781.56 7787.23 7286.76 6390.91 5470.06 7496.50 176.74 9496.63 298.62 269.45 11692.93 4490.92 4794.98 2990.46 50
MVS_030484.73 7386.19 8483.02 6088.32 5786.71 6491.55 4870.87 7073.79 14682.88 5685.13 11493.35 9072.55 9188.62 9187.69 7991.93 7888.05 72
zzz-MVS90.38 1291.35 4289.25 593.08 386.59 6596.45 1179.00 1690.23 2989.30 1085.87 10794.97 6682.54 1895.05 2394.83 795.14 2791.94 37
HQP-MVS85.02 6986.41 8283.40 5689.19 4986.59 6591.28 5071.60 6782.79 9083.48 5278.65 14993.54 8872.55 9186.49 11185.89 9692.28 7590.95 48
Effi-MVS+-dtu82.04 10183.39 12580.48 9285.48 8786.57 6788.40 9068.28 9469.04 17073.13 12076.26 16591.11 12274.74 7788.40 9487.76 7892.84 6684.57 95
LTVRE_ROB86.82 191.55 394.43 388.19 1183.19 11386.35 6893.60 3878.79 1995.48 491.79 293.08 2797.21 2286.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_Blended_VisFu83.00 9184.16 11481.65 7582.17 12386.01 6988.03 9271.23 6876.05 13979.54 8383.88 12483.44 15877.49 5287.38 10184.93 10491.41 8387.40 77
MAR-MVS81.98 10282.92 12780.88 8385.18 8985.85 7089.13 8469.52 7771.21 15982.25 6471.28 19288.89 14069.69 11188.71 8986.96 8389.52 10687.57 75
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
abl_679.30 10184.98 9085.78 7190.50 6766.88 10477.08 13474.02 11273.29 18589.34 13468.94 11890.49 9385.98 84
CLD-MVS82.75 9687.22 7777.54 11388.01 6485.76 7290.23 7254.52 18582.28 9582.11 6888.48 8195.27 5663.95 14189.41 8588.29 7486.45 14281.01 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HPM-MVS++copyleft88.74 4189.54 5587.80 1692.58 785.69 7395.10 2778.01 2387.08 5887.66 2087.89 8592.07 10980.28 3090.97 7291.41 4493.17 6091.69 39
TSAR-MVS + GP.85.32 6787.41 7682.89 6590.07 4285.69 7389.07 8572.99 5882.45 9274.52 11085.09 11587.67 14579.24 3391.11 6790.41 5291.45 8289.45 58
DPM-MVS81.42 10682.11 13180.62 8987.54 6685.30 7590.18 7468.96 8581.00 11379.15 8670.45 19883.29 16067.67 12582.81 14183.46 11790.19 9688.48 67
CANet82.84 9384.60 10780.78 8487.30 6985.20 7690.23 7269.00 8472.16 15578.73 8884.49 12290.70 12669.54 11487.65 9986.17 9189.87 10185.84 86
3Dnovator79.41 1082.21 9886.07 8777.71 11079.31 14184.61 7787.18 10161.02 15985.65 6976.11 9785.07 11685.38 15570.96 10687.22 10486.47 8991.66 8088.12 71
EPP-MVSNet82.76 9586.47 8178.45 10686.00 8384.47 7885.39 11768.42 9284.17 8162.97 16489.26 7176.84 18272.13 9692.56 5090.40 5395.76 2087.56 76
UniMVSNet (Re)84.95 7088.53 6180.78 8487.82 6584.21 7988.03 9276.50 3881.18 11069.29 14092.63 3596.83 2469.07 11791.23 6589.60 6393.97 4684.00 101
UGNet79.62 12085.91 8972.28 14273.52 17783.91 8086.64 10869.51 7879.85 12262.57 16685.82 10889.63 13053.18 18288.39 9587.35 8188.28 12486.43 81
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet84.62 7488.00 7080.68 8888.18 6083.83 8187.06 10476.47 3981.46 10670.49 13493.24 2495.56 5068.13 12190.43 7688.47 7293.78 4983.02 109
TranMVSNet+NR-MVSNet85.23 6889.38 5680.39 9388.78 5483.77 8287.40 9976.75 3585.47 7168.99 14295.18 997.55 1867.13 12891.61 5989.13 6893.26 5782.95 112
UniMVSNet_ETH3D85.39 6591.12 4678.71 10390.48 3883.72 8381.76 14182.41 693.84 764.43 16095.41 898.76 163.72 14393.63 3489.74 6089.47 10882.74 115
v7n87.11 5390.46 5183.19 5985.22 8883.69 8490.03 7668.20 9691.01 2086.71 3494.80 1198.46 577.69 4991.10 6885.98 9391.30 8688.19 68
DU-MVS84.88 7188.27 6780.92 8288.30 5883.59 8587.06 10478.35 2080.64 11570.49 13492.67 3396.91 2368.13 12191.79 5389.29 6793.20 5883.02 109
NR-MVSNet82.89 9287.43 7577.59 11283.91 10483.59 8587.10 10378.35 2080.64 11568.85 14392.67 3396.50 2654.19 17887.19 10688.68 7193.16 6182.75 114
Vis-MVSNetpermissive83.32 8688.12 6977.71 11077.91 15683.44 8790.58 6169.49 7981.11 11167.10 15489.85 6291.48 11871.71 10091.34 6289.37 6589.48 10790.26 52
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
canonicalmvs81.22 11086.04 8875.60 12183.17 11483.18 8880.29 15065.82 11685.97 6867.98 15077.74 15391.51 11765.17 13788.62 9186.15 9291.17 8989.09 61
v1083.17 9085.22 9680.78 8483.26 11282.99 8988.66 8966.49 10679.24 12683.60 4991.46 4695.47 5274.12 8082.60 14480.66 13988.53 12184.11 100
DROMVSNet83.70 8184.77 10582.46 6987.47 6882.79 9085.50 11472.00 6169.81 16377.66 9285.02 11789.63 13078.14 4390.40 7787.56 8094.00 4488.16 69
train_agg86.67 5687.73 7285.43 3691.51 2082.72 9194.47 3274.22 5481.71 9981.54 7389.20 7292.87 9578.33 4290.12 8188.47 7292.51 7289.04 62
DELS-MVS79.71 11883.74 12175.01 12879.31 14182.68 9284.79 12360.06 16675.43 14269.09 14186.13 10389.38 13367.16 12785.12 12283.87 11489.65 10383.57 104
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IS_MVSNet81.72 10485.01 9977.90 10986.19 8082.64 9385.56 11370.02 7580.11 12063.52 16287.28 9281.18 16767.26 12691.08 7089.33 6694.82 3383.42 106
SixPastTwentyTwo89.14 3092.19 3285.58 3384.62 9382.56 9490.53 6571.93 6391.95 1385.89 3694.22 1597.25 2185.42 595.73 1291.71 4195.08 2891.89 38
MSDG81.39 10884.23 11378.09 10882.40 12182.47 9585.31 12060.91 16079.73 12380.26 7886.30 10188.27 14369.67 11287.20 10584.98 10389.97 9980.67 130
EG-PatchMatch MVS84.35 7587.55 7380.62 8986.38 7882.24 9686.75 10764.02 13384.24 8078.17 9189.38 6995.03 6578.78 3789.95 8386.33 9089.59 10585.65 89
v119283.61 8285.23 9581.72 7484.05 10082.15 9789.54 8066.20 10881.38 10886.76 3391.79 4296.03 3874.88 7681.81 14980.92 13888.91 11582.50 117
QAPM80.43 11384.34 10975.86 11979.40 14082.06 9879.86 15561.94 15383.28 8674.73 10981.74 13585.44 15470.97 10584.99 12884.71 10888.29 12388.14 70
v882.20 9984.56 10879.45 9882.42 12081.65 9987.26 10064.27 12779.36 12581.70 7191.04 5295.75 4673.30 8982.82 14079.18 15187.74 12982.09 120
v114483.22 8885.01 9981.14 7983.76 10781.60 10088.95 8665.58 11881.89 9885.80 3791.68 4495.84 4374.04 8282.12 14680.56 14188.70 11881.41 125
TinyColmap83.79 7986.12 8581.07 8083.42 11081.44 10185.42 11668.55 9188.71 4589.46 887.60 8792.72 9770.34 11089.29 8681.94 13189.20 11081.12 127
Effi-MVS+82.33 9783.87 11880.52 9184.51 9681.32 10287.53 9768.05 9774.94 14479.67 8282.37 13392.31 10472.21 9385.06 12386.91 8591.18 8884.20 98
v124083.57 8384.94 10281.97 7184.05 10081.27 10389.46 8266.06 11081.31 10987.50 2191.88 4195.46 5376.25 6281.16 15480.51 14288.52 12282.98 111
v14419283.43 8584.97 10181.63 7683.43 10981.23 10489.42 8366.04 11281.45 10786.40 3591.46 4695.70 4875.76 6882.14 14580.23 14588.74 11682.57 116
v192192083.49 8484.94 10281.80 7383.78 10681.20 10589.50 8165.91 11381.64 10187.18 2591.70 4395.39 5475.85 6681.56 15280.27 14488.60 11982.80 113
DCV-MVSNet80.04 11585.67 9273.48 13682.91 11681.11 10680.44 14966.06 11085.01 7662.53 16778.84 14694.43 7858.51 15988.66 9085.91 9490.41 9485.73 88
EIA-MVS78.57 12877.90 14879.35 10087.24 7180.71 10786.16 11164.03 13262.63 19973.49 11773.60 18276.12 18673.83 8488.49 9384.93 10491.36 8478.78 145
Fast-Effi-MVS+81.42 10683.82 12078.62 10582.24 12280.62 10887.72 9563.51 13973.01 14974.75 10883.80 12692.70 9873.44 8888.15 9885.26 10090.05 9783.17 107
MVS_111021_HR83.95 7886.10 8681.44 7884.62 9380.29 10990.51 6668.05 9784.07 8380.38 7784.74 11991.37 11974.23 7990.37 7987.25 8290.86 9284.59 94
CS-MVS-test83.73 8084.09 11683.31 5786.38 7880.24 11085.50 11472.00 6165.58 18283.11 5584.64 12092.52 10078.14 4390.40 7788.92 7094.71 3786.34 83
v2v48282.20 9984.26 11179.81 9682.67 11980.18 11187.67 9663.96 13581.69 10084.73 4291.27 4996.33 3372.05 9781.94 14879.56 14887.79 12878.84 144
GeoE81.92 10383.87 11879.66 9784.64 9279.87 11289.75 7865.90 11476.12 13875.87 9984.62 12192.23 10571.96 9886.83 10883.60 11689.83 10283.81 102
IterMVS-SCA-FT77.23 13379.18 14274.96 13076.67 16879.85 11375.58 18261.34 15773.10 14773.79 11586.23 10279.61 17179.00 3680.28 16175.50 17083.41 16879.70 140
OpenMVScopyleft75.38 1678.44 12981.39 13574.99 12980.46 13279.85 11379.99 15258.31 17477.34 13373.85 11477.19 15882.33 16568.60 12084.67 13081.95 13088.72 11786.40 82
ETV-MVS79.01 12777.98 14780.22 9486.69 7579.73 11588.80 8868.27 9563.22 19471.56 12870.25 20073.63 19273.66 8690.30 8086.77 8892.33 7481.95 122
Anonymous2023121179.37 12285.78 9071.89 14382.87 11879.66 11678.77 16263.93 13683.36 8559.39 17190.54 5394.66 7256.46 16687.38 10184.12 11189.92 10080.74 129
Anonymous20240521184.68 10683.92 10379.45 11779.03 16067.79 9982.01 9788.77 8092.58 9955.93 16986.68 10984.26 11088.92 11478.98 143
CS-MVS83.23 8785.14 9781.00 8185.59 8679.28 11889.80 7763.29 14273.02 14875.70 10185.28 11292.81 9677.09 5491.92 5287.93 7794.53 3985.76 87
Fast-Effi-MVS+-dtu76.92 13577.18 15376.62 11779.55 13879.17 11984.80 12277.40 3064.46 18968.75 14570.81 19686.57 14963.36 14881.74 15081.76 13285.86 15075.78 156
FMVSNet178.20 13184.83 10470.46 15378.62 14879.03 12077.90 16467.53 10283.02 8855.10 18287.19 9493.18 9355.65 17185.57 11783.39 11987.98 12682.40 118
casdiffmvs79.93 11684.11 11575.05 12681.41 12978.99 12182.95 13362.90 14781.53 10368.60 14791.94 3896.03 3865.84 13582.89 13977.07 16288.59 12080.34 136
USDC81.39 10883.07 12679.43 9981.48 12778.95 12282.62 13666.17 10987.45 5590.73 482.40 13293.65 8666.57 13183.63 13677.97 15489.00 11377.45 152
Gipumacopyleft86.47 5889.25 5783.23 5883.88 10578.78 12385.35 11868.42 9292.69 1189.03 1291.94 3896.32 3481.80 2294.45 2786.86 8690.91 9183.69 103
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PVSNet_BlendedMVS76.45 14078.12 14574.49 13276.76 16178.46 12479.65 15663.26 14365.42 18573.15 11875.05 17588.96 13766.51 13282.73 14277.66 15787.61 13078.60 147
PVSNet_Blended76.45 14078.12 14574.49 13276.76 16178.46 12479.65 15663.26 14365.42 18573.15 11875.05 17588.96 13766.51 13282.73 14277.66 15787.61 13078.60 147
HyFIR lowres test73.29 15774.14 17372.30 14173.08 17978.33 12683.12 13062.41 15163.81 19162.13 16876.67 16278.50 17571.09 10374.13 18377.47 16081.98 17270.10 174
MVS_111021_LR83.20 8985.33 9380.73 8782.88 11778.23 12789.61 7965.23 12082.08 9681.19 7485.31 11192.04 11275.22 7189.50 8485.90 9590.24 9584.23 97
CANet_DTU75.04 15078.45 14371.07 14677.27 15877.96 12883.88 12858.00 17564.11 19068.67 14675.65 17288.37 14253.92 18082.05 14781.11 13584.67 15979.88 139
IterMVS-LS79.79 11782.56 12976.56 11881.83 12577.85 12979.90 15469.42 8178.93 12871.21 13090.47 5485.20 15670.86 10780.54 15980.57 14086.15 14484.36 96
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-train79.20 12586.29 8370.94 14984.06 9977.67 13085.68 11264.11 13082.90 8952.22 19392.57 3693.69 8549.52 19388.30 9686.93 8490.03 9881.95 122
pmmvs680.46 11288.34 6671.26 14581.96 12477.51 13177.54 16568.83 8793.72 855.92 17993.94 1998.03 1055.94 16889.21 8785.61 9787.36 13380.38 132
IB-MVS71.28 1775.21 14977.00 15573.12 14076.76 16177.45 13283.05 13158.92 17163.01 19564.31 16159.99 21387.57 14668.64 11986.26 11482.34 12987.05 13682.36 119
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GBi-Net73.17 15877.64 14967.95 16976.76 16177.36 13375.77 17764.57 12462.99 19651.83 19476.05 16677.76 17852.73 18685.57 11783.39 11986.04 14680.37 133
test173.17 15877.64 14967.95 16976.76 16177.36 13375.77 17764.57 12462.99 19651.83 19476.05 16677.76 17852.73 18685.57 11783.39 11986.04 14680.37 133
FMVSNet274.43 15379.70 13868.27 16676.76 16177.36 13375.77 17765.36 11972.28 15352.97 18881.92 13485.61 15352.73 18680.66 15879.73 14786.04 14680.37 133
EPNet79.36 12379.44 14079.27 10289.51 4777.20 13688.35 9177.35 3268.27 17274.29 11176.31 16379.22 17259.63 15585.02 12785.45 9986.49 14184.61 93
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS73.62 15576.53 15870.23 15471.83 18477.18 13780.69 14753.22 19272.23 15466.62 15685.21 11378.96 17369.54 11476.28 17871.63 18179.45 17674.25 162
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
V4279.59 12183.59 12374.93 13169.61 19077.05 13886.59 10955.84 18078.42 13077.29 9389.84 6395.08 6374.12 8083.05 13780.11 14686.12 14581.59 124
DI_MVS_plusplus_trai77.64 13279.64 13975.31 12479.87 13776.89 13981.55 14463.64 13776.21 13772.03 12585.59 11082.97 16266.63 13079.27 16577.78 15688.14 12578.76 146
FMVSNet371.40 16975.20 17066.97 17375.00 17576.59 14074.29 18464.57 12462.99 19651.83 19476.05 16677.76 17851.49 19176.58 17577.03 16384.62 16079.43 142
tfpn200view972.01 16575.40 16768.06 16877.97 15476.44 14177.04 16962.67 14866.81 17550.82 19867.30 20475.67 18852.46 18985.06 12382.64 12787.41 13273.86 163
anonymousdsp85.62 6290.53 4979.88 9564.64 20676.35 14296.28 1353.53 19185.63 7081.59 7292.81 3197.71 1486.88 294.56 2692.83 2596.35 693.84 9
thres600view774.34 15478.43 14469.56 15980.47 13176.28 14378.65 16362.56 14977.39 13252.53 18974.03 17976.78 18355.90 17085.06 12385.19 10187.25 13474.29 161
thres20072.41 16476.00 16468.21 16778.28 15076.28 14374.94 18362.56 14972.14 15651.35 19769.59 20276.51 18454.89 17385.06 12380.51 14287.25 13471.92 169
TransMVSNet (Re)79.05 12686.66 7870.18 15583.32 11175.99 14577.54 16563.98 13490.68 2555.84 18094.80 1196.06 3753.73 18186.27 11383.22 12386.65 13779.61 141
FPMVS81.56 10584.04 11778.66 10482.92 11575.96 14686.48 11065.66 11784.67 7971.47 12977.78 15283.22 16177.57 5191.24 6490.21 5487.84 12785.21 91
v14879.33 12482.32 13075.84 12080.14 13475.74 14781.98 14057.06 17781.51 10579.36 8589.42 6796.42 2971.32 10181.54 15375.29 17185.20 15676.32 153
pm-mvs178.21 13085.68 9169.50 16080.38 13375.73 14876.25 17365.04 12187.59 5354.47 18493.16 2695.99 4254.20 17786.37 11282.98 12686.64 13877.96 150
GA-MVS75.01 15176.39 15973.39 13778.37 14975.66 14980.03 15158.40 17370.51 16175.85 10083.24 12776.14 18563.75 14277.28 17176.62 16583.97 16375.30 159
Baseline_NR-MVSNet82.79 9486.51 7978.44 10788.30 5875.62 15087.81 9474.97 4981.53 10366.84 15594.71 1396.46 2766.90 12991.79 5383.37 12285.83 15182.09 120
ET-MVSNet_ETH3D74.71 15274.19 17275.31 12479.22 14375.29 15182.70 13564.05 13165.45 18470.96 13377.15 15957.70 21265.89 13484.40 13281.65 13389.03 11277.67 151
SCA68.54 17967.52 18969.73 15767.79 19575.04 15276.96 17068.94 8666.41 17767.86 15174.03 17960.96 20365.55 13668.99 19965.67 19371.30 19261.54 198
tfpnnormal77.16 13484.26 11168.88 16381.02 13075.02 15376.52 17263.30 14187.29 5652.40 19191.24 5093.97 8154.85 17585.46 12081.08 13685.18 15775.76 157
MVS_Test76.72 13779.40 14173.60 13578.85 14774.99 15479.91 15361.56 15569.67 16472.44 12185.98 10690.78 12463.50 14678.30 16775.74 16985.33 15580.31 137
thres40073.13 16076.99 15668.62 16479.46 13974.93 15577.23 16761.23 15875.54 14052.31 19272.20 18777.10 18154.89 17382.92 13882.62 12886.57 14073.66 166
thisisatest051581.18 11184.32 11077.52 11476.73 16774.84 15685.06 12161.37 15681.05 11273.95 11388.79 7989.25 13675.49 7085.98 11584.78 10692.53 7185.56 90
Vis-MVSNet (Re-imp)76.15 14280.84 13670.68 15083.66 10874.80 15781.66 14369.59 7680.48 11846.94 20287.44 8980.63 16953.14 18386.87 10784.56 10989.12 11171.12 170
MDA-MVSNet-bldmvs76.51 13882.87 12869.09 16250.71 21774.72 15884.05 12760.27 16481.62 10271.16 13188.21 8391.58 11569.62 11392.78 4677.48 15978.75 17973.69 165
diffmvs76.74 13681.61 13471.06 14775.64 17274.45 15980.68 14857.57 17677.48 13167.62 15388.95 7593.94 8261.98 15079.74 16276.18 16682.85 16980.50 131
tttt051775.86 14676.23 16175.42 12275.55 17374.06 16082.73 13460.31 16269.24 16670.24 13679.18 14258.79 21072.17 9484.49 13183.08 12491.54 8184.80 92
thisisatest053075.54 14875.95 16575.05 12675.08 17473.56 16182.15 13960.31 16269.17 16769.32 13979.02 14358.78 21172.17 9483.88 13483.08 12491.30 8684.20 98
gm-plane-assit71.56 16769.99 18273.39 13784.43 9773.21 16290.42 7151.36 19884.08 8276.00 9891.30 4837.09 22459.01 15773.65 18670.24 18579.09 17860.37 199
CDS-MVSNet73.07 16177.02 15468.46 16581.62 12672.89 16379.56 15870.78 7169.56 16552.52 19077.37 15781.12 16842.60 20184.20 13383.93 11283.65 16470.07 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs-eth3d79.64 11982.06 13276.83 11580.05 13572.64 16487.47 9866.59 10580.83 11473.50 11689.32 7093.20 9267.78 12380.78 15781.64 13485.58 15476.01 154
thres100view90069.86 17272.97 17966.24 17677.97 15472.49 16573.29 18759.12 16966.81 17550.82 19867.30 20475.67 18850.54 19278.24 16879.40 14985.71 15370.88 171
PM-MVS80.42 11483.63 12276.67 11678.04 15372.37 16687.14 10260.18 16580.13 11971.75 12786.12 10493.92 8377.08 5586.56 11085.12 10285.83 15181.18 126
MS-PatchMatch71.18 17073.99 17467.89 17177.16 15971.76 16777.18 16856.38 17967.35 17355.04 18374.63 17775.70 18762.38 14976.62 17475.97 16879.22 17775.90 155
pmmvs475.92 14477.48 15274.10 13478.21 15270.94 16884.06 12664.78 12375.13 14368.47 14884.12 12383.32 15964.74 14075.93 17979.14 15284.31 16173.77 164
our_test_373.27 17870.91 16983.26 129
baseline169.62 17373.55 17665.02 18578.95 14670.39 17071.38 19362.03 15270.97 16047.95 20178.47 15068.19 19847.77 19779.65 16476.94 16482.05 17170.27 173
EU-MVSNet76.48 13980.53 13771.75 14467.62 19670.30 17181.74 14254.06 18875.47 14171.01 13280.10 13893.17 9473.67 8583.73 13577.85 15582.40 17083.07 108
MVSTER68.08 18169.73 18366.16 17766.33 20470.06 17275.71 18052.36 19455.18 21358.64 17370.23 20156.72 21557.34 16379.68 16376.03 16786.61 13980.20 138
CVMVSNet75.65 14777.62 15173.35 13971.95 18369.89 17383.04 13260.84 16169.12 16868.76 14479.92 14178.93 17473.64 8781.02 15581.01 13781.86 17383.43 105
PatchMatch-RL76.05 14376.64 15775.36 12377.84 15769.87 17481.09 14663.43 14071.66 15768.34 14971.70 18881.76 16674.98 7584.83 12983.44 11886.45 14273.22 167
baseline268.71 17868.34 18769.14 16175.69 17169.70 17576.60 17155.53 18260.13 20462.07 16966.76 20660.35 20560.77 15276.53 17774.03 17384.19 16270.88 171
FC-MVSNet-test75.91 14583.59 12366.95 17476.63 16969.07 17685.33 11964.97 12284.87 7841.95 20793.17 2587.04 14747.78 19691.09 6985.56 9885.06 15874.34 160
gg-mvs-nofinetune72.68 16375.21 16969.73 15781.48 12769.04 17770.48 19476.67 3686.92 6067.80 15288.06 8464.67 20042.12 20377.60 16973.65 17479.81 17566.57 182
CHOSEN 1792x268868.80 17771.09 18066.13 17869.11 19268.89 17878.98 16154.68 18361.63 20156.69 17671.56 18978.39 17667.69 12472.13 19072.01 18069.63 19773.02 168
CostFormer66.81 18466.94 19066.67 17572.79 18168.25 17979.55 15955.57 18165.52 18362.77 16576.98 16060.09 20656.73 16565.69 20762.35 19672.59 18669.71 176
CR-MVSNet69.56 17468.34 18770.99 14872.78 18267.63 18064.47 20667.74 10059.93 20572.30 12280.10 13856.77 21465.04 13871.64 19172.91 17783.61 16669.40 177
RPMNet67.02 18363.99 19870.56 15271.55 18567.63 18075.81 17569.44 8059.93 20563.24 16364.32 20847.51 22359.68 15470.37 19669.64 18783.64 16568.49 180
test20.0369.91 17176.20 16262.58 18784.01 10267.34 18275.67 18165.88 11579.98 12140.28 21182.65 12989.31 13539.63 20677.41 17073.28 17569.98 19563.40 190
testgi68.20 18076.05 16359.04 19379.99 13667.32 18381.16 14551.78 19684.91 7739.36 21273.42 18395.19 5832.79 21276.54 17670.40 18469.14 19864.55 186
pmmvs568.91 17674.35 17162.56 18867.45 19866.78 18471.70 19051.47 19767.17 17456.25 17882.41 13188.59 14147.21 19873.21 18974.23 17281.30 17468.03 181
baseline69.33 17575.37 16862.28 18966.54 20266.67 18573.95 18648.07 20166.10 17859.26 17282.45 13086.30 15054.44 17674.42 18273.25 17671.42 19078.43 149
GG-mvs-BLEND41.63 21360.36 20819.78 2140.14 22566.04 18655.66 2160.17 22257.64 2092.42 22451.82 21469.42 1970.28 22164.11 21058.29 20460.02 20655.18 208
tpm cat164.79 18962.74 20367.17 17274.61 17665.91 18776.18 17459.32 16864.88 18866.41 15771.21 19353.56 22059.17 15661.53 21158.16 20567.33 20163.95 187
dps65.14 18664.50 19665.89 18171.41 18665.81 18871.44 19261.59 15458.56 20861.43 17075.45 17352.70 22158.06 16169.57 19864.65 19471.39 19164.77 185
MDTV_nov1_ep13_2view72.96 16275.59 16669.88 15671.15 18764.86 18982.31 13854.45 18676.30 13678.32 9086.52 9991.58 11561.35 15176.80 17266.83 19271.70 18766.26 183
MIMVSNet173.40 15681.85 13363.55 18672.90 18064.37 19084.58 12453.60 19090.84 2153.92 18587.75 8696.10 3545.31 19985.37 12179.32 15070.98 19469.18 179
test0.0.03 161.79 19865.33 19457.65 19679.07 14464.09 19168.51 20362.93 14561.59 20233.71 21561.58 21271.58 19633.43 21170.95 19468.68 18968.26 20058.82 202
CMPMVSbinary55.74 1871.56 16776.26 16066.08 17968.11 19463.91 19263.17 20850.52 20068.79 17175.49 10270.78 19785.67 15263.54 14581.58 15177.20 16175.63 18185.86 85
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120667.28 18273.41 17760.12 19276.45 17063.61 19374.21 18556.52 17876.35 13542.23 20675.81 17190.47 12741.51 20474.52 18069.97 18669.83 19663.17 191
MDTV_nov1_ep1364.96 18764.77 19565.18 18467.08 19962.46 19475.80 17651.10 19962.27 20069.74 13774.12 17862.65 20155.64 17268.19 20162.16 20071.70 18761.57 197
EPNet_dtu71.90 16673.03 17870.59 15178.28 15061.64 19582.44 13764.12 12963.26 19369.74 13771.47 19082.41 16351.89 19078.83 16678.01 15377.07 18075.60 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT66.25 18566.76 19165.67 18255.87 21260.75 19670.17 19559.00 17059.80 20772.30 12278.68 14854.12 21965.04 13871.64 19172.91 17771.63 18969.40 177
FMVSNet556.37 20760.14 20951.98 20860.83 20859.58 19766.85 20542.37 20752.68 21541.33 20947.09 21654.68 21835.28 20973.88 18470.77 18365.24 20462.26 194
MIMVSNet63.02 19069.02 18556.01 19868.20 19359.26 19870.01 19753.79 18971.56 15841.26 21071.38 19182.38 16436.38 20871.43 19367.32 19166.45 20359.83 201
PatchmatchNetpermissive64.81 18863.74 19966.06 18069.21 19158.62 19973.16 18860.01 16765.92 17966.19 15876.27 16459.09 20760.45 15366.58 20461.47 20267.33 20158.24 204
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs362.72 19368.71 18655.74 19950.74 21657.10 20070.05 19628.82 21461.57 20357.39 17571.19 19485.73 15153.96 17973.36 18869.43 18873.47 18562.55 193
TAMVS63.02 19069.30 18455.70 20070.12 18856.89 20169.63 19845.13 20470.23 16238.00 21377.79 15175.15 19042.60 20174.48 18172.81 17968.70 19957.75 206
Patchmtry56.88 20264.47 20667.74 10072.30 122
test-mter59.39 20161.59 20556.82 19753.21 21354.82 20373.12 18926.57 21653.19 21456.31 17764.71 20760.47 20456.36 16768.69 20064.27 19575.38 18265.00 184
tpm62.79 19263.25 20062.26 19070.09 18953.78 20471.65 19147.31 20265.72 18176.70 9580.62 13756.40 21748.11 19564.20 20958.54 20359.70 20763.47 189
new-patchmatchnet62.59 19573.79 17549.53 20976.98 16053.57 20553.46 21754.64 18485.43 7228.81 21691.94 3896.41 3025.28 21476.80 17253.66 21257.99 21058.69 203
tpmrst59.42 20060.02 21058.71 19467.56 19753.10 20666.99 20451.88 19563.80 19257.68 17476.73 16156.49 21648.73 19456.47 21555.55 20859.43 20858.02 205
test-LLR62.15 19659.46 21265.29 18379.07 14452.66 20769.46 20062.93 14550.76 21653.81 18663.11 21058.91 20852.87 18466.54 20562.34 19773.59 18361.87 195
TESTMET0.1,157.21 20459.46 21254.60 20350.95 21552.66 20769.46 20026.91 21550.76 21653.81 18663.11 21058.91 20852.87 18466.54 20562.34 19773.59 18361.87 195
PMMVS61.98 19765.61 19357.74 19545.03 21851.76 20969.54 19935.05 21155.49 21255.32 18168.23 20378.39 17658.09 16070.21 19771.56 18283.42 16763.66 188
EPMVS56.62 20659.77 21152.94 20662.41 20750.55 21060.66 21152.83 19365.15 18741.80 20877.46 15657.28 21342.68 20059.81 21354.82 20957.23 21153.35 209
pmnet_mix0262.60 19470.81 18153.02 20566.56 20150.44 21162.81 20946.84 20379.13 12743.76 20587.45 8890.75 12539.85 20570.48 19557.09 20658.27 20960.32 200
EMVS58.97 20362.63 20454.70 20266.26 20548.71 21261.74 21042.71 20672.80 15246.00 20373.01 18671.66 19457.91 16280.41 16050.68 21553.55 21441.11 216
ADS-MVSNet56.89 20561.09 20652.00 20759.48 20948.10 21358.02 21354.37 18772.82 15149.19 20075.32 17465.97 19937.96 20759.34 21454.66 21052.99 21551.42 211
E-PMN59.07 20262.79 20254.72 20167.01 20047.81 21460.44 21243.40 20572.95 15044.63 20470.42 19973.17 19358.73 15880.97 15651.98 21354.14 21342.26 215
MVS-HIRNet59.74 19958.74 21560.92 19157.74 21145.81 21556.02 21558.69 17255.69 21165.17 15970.86 19571.66 19456.75 16461.11 21253.74 21171.17 19352.28 210
new_pmnet52.29 21063.16 20139.61 21258.89 21044.70 21648.78 21934.73 21265.88 18017.85 22073.42 18380.00 17023.06 21567.00 20362.28 19954.36 21248.81 212
N_pmnet54.95 20965.90 19242.18 21066.37 20343.86 21757.92 21439.79 20979.54 12417.24 22186.31 10087.91 14425.44 21364.68 20851.76 21446.33 21647.23 213
CHOSEN 280x42056.32 20858.85 21453.36 20451.63 21439.91 21869.12 20238.61 21056.29 21036.79 21448.84 21562.59 20263.39 14773.61 18767.66 19060.61 20563.07 192
PMMVS248.13 21264.06 19729.55 21344.06 21936.69 21951.95 21829.97 21374.75 1458.90 22376.02 16991.24 1217.53 21773.78 18555.91 20734.87 21840.01 217
MVEpermissive41.12 1951.80 21160.92 20741.16 21135.21 22034.14 22048.45 22041.39 20869.11 16919.53 21963.33 20973.80 19163.56 14467.19 20261.51 20138.85 21757.38 207
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft17.78 22120.40 2226.69 21731.41 2199.80 22238.61 21734.88 22533.78 21028.41 21823.59 22045.77 214
tmp_tt13.54 21616.73 2216.42 2228.49 2232.36 21928.69 22027.44 21718.40 21913.51 2263.70 21833.23 21636.26 21622.54 221
test_method22.69 21426.99 21617.67 2152.13 2224.31 22327.50 2214.53 21837.94 21824.52 21836.20 21851.40 22215.26 21629.86 21717.09 21732.07 21912.16 218
test1231.06 2151.41 2170.64 2170.39 2230.48 2240.52 2260.25 2211.11 2221.37 2252.01 2211.98 2270.87 2191.43 2191.27 2180.46 2231.62 220
testmvs0.93 2161.37 2180.41 2180.36 2240.36 2250.62 2250.39 2201.48 2210.18 2262.41 2201.31 2280.41 2201.25 2201.08 2190.48 2221.68 219
uanet_test0.00 2170.00 2190.00 2190.00 2260.00 2260.00 2270.00 2230.00 2230.00 2270.00 2220.00 2290.00 2220.00 2210.00 2200.00 2240.00 221
sosnet-low-res0.00 2170.00 2190.00 2190.00 2260.00 2260.00 2270.00 2230.00 2230.00 2270.00 2220.00 2290.00 2220.00 2210.00 2200.00 2240.00 221
sosnet0.00 2170.00 2190.00 2190.00 2260.00 2260.00 2270.00 2230.00 2230.00 2270.00 2220.00 2290.00 2220.00 2210.00 2200.00 2240.00 221
RE-MVS-def87.10 29
9.1489.43 132
SR-MVS91.82 1480.80 795.53 51
MTAPA89.37 994.85 68
MTMP90.54 595.16 60
Patchmatch-RL test4.13 224
mPP-MVS93.05 495.77 45
NP-MVS78.65 129