This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.39 199.90 199.87 299.93 199.97 299.82 799.91 399.92 3399.75 599.93 599.89 31100.00 199.87 299.93 399.82 899.96 399.90 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.89 299.86 499.93 199.97 299.83 399.93 199.96 1299.77 499.89 1799.99 199.86 7599.84 599.89 899.81 999.97 199.88 7
SixPastTwentyTwo99.89 299.85 699.93 199.97 299.88 299.92 299.97 199.66 1399.94 499.94 1199.74 10499.81 799.97 199.89 199.96 399.89 5
test_part199.88 499.89 199.88 1299.96 799.90 199.83 1799.97 199.84 299.93 599.91 2399.83 8599.63 3999.89 899.88 299.96 399.95 1
pmmvs699.88 499.87 299.89 999.97 299.76 1699.89 599.96 1299.82 399.90 1599.92 1699.95 2599.68 2999.93 399.88 299.95 899.86 10
anonymousdsp99.87 699.86 499.88 1299.95 1099.75 2299.90 499.96 1299.69 899.83 5099.96 499.99 399.74 2199.95 299.83 599.91 2099.88 7
FC-MVSNet-test99.84 799.80 799.89 999.96 799.83 399.84 1499.95 2399.37 4499.77 6599.95 699.96 1399.85 399.93 399.83 599.95 899.72 35
UniMVSNet_ETH3D99.81 899.79 899.85 1999.98 199.76 1699.73 4599.96 1299.68 1099.87 2899.59 8099.91 5599.58 4799.90 799.85 499.96 399.81 17
TDRefinement99.81 899.76 1099.86 1699.83 8499.53 5699.89 599.91 3899.73 699.88 2299.83 4499.96 1399.76 1699.91 699.81 999.86 3699.59 63
WR-MVS99.79 1099.68 1499.91 599.95 1099.83 399.87 999.96 1299.39 4399.93 599.87 3599.29 14999.77 1499.83 1899.72 1699.97 199.82 14
MIMVSNet199.79 1099.75 1199.84 2099.89 3799.83 399.84 1499.89 4699.31 5099.93 599.92 1699.97 899.68 2999.89 899.64 2299.82 5099.66 47
pm-mvs199.77 1299.69 1399.86 1699.94 2099.68 3199.84 1499.93 2699.59 2299.87 2899.92 1699.21 15299.65 3599.88 1299.77 1299.93 1799.78 23
PEN-MVS99.77 1299.65 1799.91 599.95 1099.80 1299.86 1099.97 199.08 7999.89 1799.69 6499.68 11599.84 599.81 2299.64 2299.95 899.81 17
EU-MVSNet99.76 1499.74 1299.78 3799.82 8999.81 1099.88 799.87 5199.31 5099.75 7199.91 2399.76 10399.78 1299.84 1799.74 1599.56 12999.81 17
Vis-MVSNetpermissive99.76 1499.78 999.75 4699.92 2699.77 1599.83 1799.85 6299.43 3799.85 4199.84 41100.00 199.13 11199.83 1899.66 2099.90 2299.90 3
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DTE-MVSNet99.75 1699.61 2399.92 499.95 1099.81 1099.86 1099.96 1299.18 6799.92 1099.66 6799.45 13499.85 399.80 2399.56 2899.96 399.79 22
tfpnnormal99.74 1799.63 2099.86 1699.93 2399.75 2299.80 2699.89 4699.31 5099.88 2299.43 10199.66 11899.77 1499.80 2399.71 1799.92 1899.76 27
DeepC-MVS99.05 599.74 1799.64 1899.84 2099.90 3499.39 8799.79 2799.81 9299.69 899.90 1599.87 3599.98 499.81 799.62 4999.32 5599.83 4799.65 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thisisatest051599.73 1999.67 1599.81 2799.93 2399.74 2499.68 5399.91 3899.59 2299.88 2299.73 5399.81 9099.55 5199.59 5099.53 3399.89 2599.70 41
PS-CasMVS99.73 1999.59 2899.90 899.95 1099.80 1299.85 1399.97 198.95 9799.86 3499.73 5399.36 14199.81 799.83 1899.67 1999.95 899.83 13
WR-MVS_H99.73 1999.61 2399.88 1299.95 1099.82 799.83 1799.96 1299.01 8999.84 4599.71 6199.41 14099.74 2199.77 2899.70 1899.95 899.82 14
TransMVSNet (Re)99.72 2299.59 2899.88 1299.95 1099.76 1699.88 799.94 2499.58 2499.92 1099.90 2898.55 16799.65 3599.89 899.76 1399.95 899.70 41
ACMH99.11 499.72 2299.63 2099.84 2099.87 4999.59 4499.83 1799.88 5099.46 3699.87 2899.66 6799.95 2599.76 1699.73 3399.47 4199.84 4299.52 93
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train99.70 2499.67 1599.74 5299.94 2099.71 2799.82 2299.91 3899.14 7599.53 12999.70 6299.88 6799.33 8499.88 1299.61 2799.94 1599.77 24
COLMAP_ROBcopyleft99.18 299.70 2499.60 2699.81 2799.84 7899.37 9499.76 3399.84 7199.54 3099.82 5399.64 7199.95 2599.75 1899.79 2599.56 2899.83 4799.37 124
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+98.94 699.69 2699.59 2899.81 2799.88 4399.41 8499.75 3799.86 5599.43 3799.80 5799.54 8599.97 899.73 2499.82 2199.52 3599.85 3999.43 110
test20.0399.68 2799.60 2699.76 4299.91 3099.70 3099.68 5399.87 5199.05 8699.88 2299.92 1699.88 6799.50 6299.77 2899.42 4899.75 7199.49 96
CP-MVSNet99.68 2799.51 3899.89 999.95 1099.76 1699.83 1799.96 1298.83 11599.84 4599.65 7099.09 15499.80 1099.78 2699.62 2699.95 899.82 14
PVSNet_Blended_VisFu99.66 2999.64 1899.67 6499.91 3099.71 2799.61 6599.79 10299.41 3999.91 1399.85 3999.61 12199.00 12299.67 4099.42 4899.81 5399.81 17
v1099.65 3099.51 3899.81 2799.83 8499.61 4099.75 3799.94 2499.56 2699.76 6899.94 1199.60 12399.73 2499.11 12599.01 9599.85 3999.74 30
CHOSEN 1792x268899.65 3099.55 3299.77 4199.93 2399.60 4199.79 2799.92 3399.73 699.74 7899.93 1499.98 499.80 1098.83 16699.01 9599.45 14899.76 27
UA-Net99.64 3299.62 2299.66 6699.97 299.82 799.14 15299.96 1298.95 9799.52 13599.38 10999.86 7599.55 5199.72 3499.66 2099.80 5799.94 2
GeoE99.63 3399.51 3899.78 3799.91 3099.57 4799.78 2999.97 199.23 5899.72 8799.72 5799.80 9699.50 6299.45 6999.10 8299.79 6099.71 40
Baseline_NR-MVSNet99.62 3499.48 4399.78 3799.85 7299.76 1699.59 7099.82 8498.84 11399.88 2299.91 2399.04 15599.61 4199.46 6299.78 1199.94 1599.60 61
pmmvs-eth3d99.61 3599.48 4399.75 4699.87 4999.30 11099.75 3799.89 4699.23 5899.85 4199.88 3499.97 899.49 6799.46 6299.01 9599.68 9099.52 93
v114499.61 3599.43 5199.82 2399.88 4399.41 8499.76 3399.86 5599.64 1699.84 4599.95 699.49 13299.74 2199.00 13698.93 10799.84 4299.58 71
v899.61 3599.45 4999.79 3699.80 9599.59 4499.73 4599.93 2699.48 3499.77 6599.90 2899.48 13399.67 3299.11 12598.89 11199.84 4299.73 32
casdiffmvs99.61 3599.55 3299.68 6299.89 3799.53 5699.64 5999.68 14299.51 3199.62 11299.90 2899.96 1399.37 7899.28 9599.25 5899.88 2799.44 107
CSCG99.61 3599.52 3799.71 5699.89 3799.62 3899.52 8799.76 12399.61 2099.69 9699.73 5399.96 1399.57 4999.27 9898.62 14299.81 5399.85 12
v119299.60 4099.41 5599.82 2399.89 3799.43 7999.81 2499.84 7199.63 1899.85 4199.95 699.35 14499.72 2699.01 13498.90 11099.82 5099.58 71
APDe-MVS99.60 4099.48 4399.73 5499.85 7299.51 6799.75 3799.85 6299.17 6899.81 5699.56 8399.94 3599.44 7499.42 7299.22 5999.67 9299.54 85
v192192099.59 4299.40 5899.82 2399.88 4399.45 7499.81 2499.83 7799.65 1499.86 3499.95 699.29 14999.75 1898.98 14098.86 11599.78 6299.59 63
TranMVSNet+NR-MVSNet99.59 4299.42 5499.80 3299.87 4999.55 5099.64 5999.86 5599.05 8699.88 2299.72 5799.33 14799.64 3799.47 6199.14 6999.91 2099.67 46
EG-PatchMatch MVS99.59 4299.49 4299.70 5999.82 8999.26 11799.39 11599.83 7798.99 9199.93 599.54 8599.92 4999.51 5899.78 2699.50 3699.73 8099.41 114
pmmvs599.58 4599.47 4699.70 5999.84 7899.50 6899.58 7499.80 9998.98 9499.73 8499.92 1699.81 9099.49 6799.28 9599.05 8999.77 6699.73 32
v14419299.58 4599.39 5999.80 3299.87 4999.44 7699.77 3099.84 7199.64 1699.86 3499.93 1499.35 14499.72 2698.92 14698.82 11999.74 7699.66 47
v14899.58 4599.43 5199.76 4299.87 4999.40 8699.76 3399.85 6299.48 3499.83 5099.82 4699.83 8599.51 5899.20 11198.82 11999.75 7199.45 104
v124099.58 4599.38 6299.82 2399.89 3799.49 6999.82 2299.83 7799.63 1899.86 3499.96 498.92 16199.75 1899.15 12198.96 10499.76 6899.56 78
V4299.57 4999.41 5599.75 4699.84 7899.37 9499.73 4599.83 7799.41 3999.75 7199.89 3199.42 13899.60 4399.15 12198.96 10499.76 6899.65 50
TSAR-MVS + MP.99.56 5099.54 3599.58 8399.69 13899.14 13899.73 4599.45 17999.50 3299.35 16699.60 7899.93 4199.50 6299.56 5399.37 5399.77 6699.64 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v2v48299.56 5099.35 6599.81 2799.87 4999.35 10099.75 3799.85 6299.56 2699.87 2899.95 699.44 13699.66 3398.91 14998.76 12599.86 3699.45 104
Gipumacopyleft99.55 5299.23 8499.91 599.87 4999.52 6399.86 1099.93 2699.87 199.96 296.72 20399.55 12899.97 199.77 2899.46 4399.87 3399.74 30
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DVP-MVS99.53 5399.51 3899.55 9199.82 8999.58 4699.54 8299.78 10799.28 5699.21 17699.70 6299.97 899.32 8799.32 8399.14 6999.64 10599.58 71
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
NR-MVSNet99.52 5499.29 7499.80 3299.96 799.38 9099.55 7899.81 9298.86 11099.87 2899.51 9598.81 16399.72 2699.86 1599.04 9199.89 2599.54 85
zzz-MVS99.51 5599.36 6399.68 6299.88 4399.38 9099.53 8399.84 7199.11 7899.59 12098.93 14799.95 2599.58 4799.44 7099.21 6199.65 9699.52 93
ACMMPR99.51 5599.32 6999.72 5599.87 4999.33 10399.61 6599.85 6299.19 6599.73 8498.73 15899.95 2599.61 4199.35 7899.14 6999.66 9499.58 71
UniMVSNet (Re)99.50 5799.29 7499.75 4699.86 6399.47 7299.51 9099.82 8498.90 10599.89 1799.64 7199.00 15699.55 5199.32 8399.08 8499.90 2299.59 63
FMVSNet199.50 5799.57 3199.42 11299.67 14599.65 3499.60 6999.91 3899.40 4199.39 15999.83 4499.27 15198.14 16099.68 3799.50 3699.81 5399.68 43
HyFIR lowres test99.50 5799.26 7899.80 3299.95 1099.62 3899.76 3399.97 199.67 1199.56 12699.94 1198.40 17099.78 1298.84 16598.59 14599.76 6899.72 35
PM-MVS99.49 6099.43 5199.57 8699.76 11799.34 10299.53 8399.77 11498.93 10199.75 7199.46 9999.83 8599.11 11399.72 3499.29 5799.49 14399.46 103
Anonymous2023120699.48 6199.31 7199.69 6199.79 9999.57 4799.63 6399.79 10298.88 10799.91 1399.72 5799.93 4199.59 4499.24 10198.63 14199.43 15399.18 141
DU-MVS99.48 6199.26 7899.75 4699.85 7299.38 9099.50 9499.81 9298.86 11099.89 1799.51 9598.98 15799.59 4499.46 6298.97 10299.87 3399.63 54
RPSCF99.48 6199.45 4999.52 9899.73 13199.33 10399.13 15399.77 11499.33 4899.47 14699.39 10899.92 4999.36 7999.63 4699.13 7799.63 10899.41 114
ACMMP_NAP99.47 6499.33 6799.63 7499.85 7299.28 11599.56 7799.83 7798.75 12199.48 14399.03 14499.95 2599.47 7399.48 5899.19 6299.57 12699.59 63
Anonymous2023121199.47 6499.39 5999.57 8699.89 3799.60 4199.50 9499.69 13698.91 10499.62 11299.17 13099.35 14498.86 13599.63 4699.46 4399.84 4299.62 57
SteuartSystems-ACMMP99.47 6499.22 8799.76 4299.88 4399.36 9699.65 5899.84 7198.47 14599.80 5798.68 16199.96 1399.68 2999.37 7599.06 8699.72 8399.66 47
Skip Steuart: Steuart Systems R&D Blog.
ACMM98.37 1299.47 6499.23 8499.74 5299.86 6399.19 13299.68 5399.86 5599.16 7299.71 9398.52 17299.95 2599.62 4099.35 7899.02 9399.74 7699.42 113
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HFP-MVS99.46 6899.30 7299.65 6899.82 8999.25 12099.50 9499.82 8499.23 5899.58 12498.86 14999.94 3599.56 5099.14 12399.12 8099.63 10899.56 78
LGP-MVS_train99.46 6899.18 9799.78 3799.87 4999.25 12099.71 5199.87 5198.02 17799.79 6098.90 14899.96 1399.66 3399.49 5799.17 6599.79 6099.49 96
SED-MVS99.45 7099.46 4899.42 11299.77 11299.57 4799.42 10999.80 9999.06 8399.38 16099.66 6799.96 1398.65 14699.31 8599.14 6999.53 13499.55 83
ETV-MVS99.45 7099.32 6999.60 7999.79 9999.60 4199.40 11499.78 10797.88 18499.83 5099.33 11299.70 11298.97 12599.74 3199.43 4799.84 4299.58 71
ACMP98.32 1399.44 7299.18 9799.75 4699.83 8499.18 13399.64 5999.83 7798.81 11799.79 6098.42 17999.96 1399.64 3799.46 6298.98 10199.74 7699.44 107
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet99.43 7399.23 8499.67 6499.92 2699.76 1699.64 5999.93 2699.06 8399.68 10397.77 19198.97 15898.97 12599.72 3499.54 3299.88 2799.81 17
SMA-MVScopyleft99.43 7399.41 5599.45 10999.82 8999.31 10899.02 16799.59 15799.06 8399.34 16999.53 9199.96 1399.38 7799.29 9099.13 7799.53 13499.59 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testgi99.43 7399.47 4699.38 12199.90 3499.67 3399.30 13399.73 13198.64 13399.53 12999.52 9399.90 5898.08 16399.65 4499.40 5299.75 7199.55 83
DELS-MVS99.42 7699.53 3699.29 13599.52 17399.43 7999.42 10999.28 19599.16 7299.72 8799.82 4699.97 898.17 15799.56 5399.16 6699.65 9699.59 63
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator99.16 399.42 7699.22 8799.65 6899.78 10499.13 14299.50 9499.85 6299.40 4199.80 5798.59 16899.79 9999.30 9199.20 11199.06 8699.71 8699.35 127
DPE-MVScopyleft99.41 7899.36 6399.47 10599.66 14699.48 7099.46 10599.75 12898.65 12999.41 15699.67 6599.95 2598.82 13699.21 10899.14 6999.72 8399.40 119
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UniMVSNet_NR-MVSNet99.41 7899.12 10999.76 4299.86 6399.48 7099.50 9499.81 9298.84 11399.89 1799.45 10098.32 17399.59 4499.22 10598.89 11199.90 2299.63 54
CP-MVS99.41 7899.20 9299.65 6899.80 9599.23 12799.44 10799.75 12898.60 13899.74 7898.66 16299.93 4199.48 7099.33 8299.16 6699.73 8099.48 99
QAPM99.41 7899.21 9199.64 7399.78 10499.16 13599.51 9099.85 6299.20 6299.72 8799.43 10199.81 9099.25 9598.87 15598.71 13399.71 8699.30 132
UGNet99.40 8299.61 2399.16 15599.88 4399.64 3699.61 6599.77 11499.31 5099.63 11199.33 11299.93 4196.46 19899.63 4699.53 3399.63 10899.89 5
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)99.40 8299.28 7699.55 9199.92 2699.68 3199.31 12899.87 5198.69 12699.16 17899.08 13998.64 16699.20 9999.65 4499.46 4399.83 4799.72 35
OPM-MVS99.39 8499.22 8799.59 8099.76 11798.82 16799.51 9099.79 10299.17 6899.53 12999.31 11799.95 2599.35 8099.22 10598.79 12499.60 11899.27 135
Fast-Effi-MVS+99.39 8499.18 9799.63 7499.86 6399.28 11599.45 10699.91 3898.47 14599.61 11599.50 9799.57 12599.17 10099.24 10198.66 13899.78 6299.59 63
LS3D99.39 8499.28 7699.52 9899.77 11299.39 8799.55 7899.82 8498.93 10199.64 10998.52 17299.67 11798.58 15099.74 3199.63 2499.75 7199.06 157
CS-MVS99.38 8799.19 9499.59 8099.86 6399.65 3499.28 13699.77 11497.97 18099.75 7198.42 17999.70 11299.03 12099.57 5299.42 4899.87 3399.61 59
diffmvs99.38 8799.33 6799.45 10999.87 4999.39 8799.28 13699.58 16099.55 2899.50 13999.85 3999.85 8198.94 13098.58 17898.68 13699.51 14099.39 121
CANet99.36 8999.39 5999.34 13299.80 9599.35 10099.41 11399.47 17799.20 6299.74 7899.54 8599.68 11598.05 16599.23 10398.97 10299.57 12699.73 32
MVS_030499.36 8999.35 6599.37 12799.85 7299.36 9699.39 11599.56 16399.36 4699.75 7199.23 12399.90 5897.97 17299.00 13698.83 11899.69 8999.77 24
ACMMPcopyleft99.36 8999.06 11699.71 5699.86 6399.36 9699.63 6399.85 6298.33 16099.72 8797.73 19399.94 3599.53 5499.37 7599.13 7799.65 9699.56 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS99.35 9299.26 7899.46 10799.66 14699.15 13798.92 17699.67 14599.55 2899.35 16698.83 15199.91 5599.35 8099.19 11498.53 14799.78 6299.68 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVScopyleft99.35 9299.09 11499.65 6899.84 7899.22 12899.59 7099.78 10798.13 16999.67 10498.44 17699.93 4199.43 7699.31 8599.09 8399.60 11899.49 96
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pmmvs499.34 9499.15 10499.57 8699.77 11298.90 15999.51 9099.77 11499.07 8199.73 8499.72 5799.84 8399.07 11598.85 16098.39 15699.55 13299.27 135
EPP-MVSNet99.34 9499.10 11299.62 7899.94 2099.74 2499.66 5799.80 9999.07 8198.93 18999.61 7596.13 18899.49 6799.67 4099.63 2499.92 1899.86 10
TSAR-MVS + GP.99.33 9699.17 10199.51 10099.71 13699.00 15498.84 18599.71 13398.23 16699.74 7899.53 9199.90 5899.35 8099.38 7498.85 11699.72 8399.31 130
PHI-MVS99.33 9699.19 9499.49 10399.69 13899.25 12099.27 13899.59 15798.44 14999.78 6499.15 13199.92 4998.95 12999.39 7399.04 9199.64 10599.18 141
MSP-MVS99.32 9899.26 7899.38 12199.76 11799.54 5399.42 10999.72 13298.92 10398.84 19698.96 14699.96 1398.91 13198.72 17399.14 6999.63 10899.58 71
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS99.32 9898.99 12599.71 5699.86 6399.31 10899.59 7099.86 5597.51 19399.75 7198.23 18399.94 3599.53 5499.29 9099.08 8499.65 9699.54 85
DeepC-MVS_fast98.69 999.32 9899.13 10799.53 9499.63 15398.78 17099.53 8399.33 19399.08 7999.77 6599.18 12999.89 6199.29 9299.00 13698.70 13499.65 9699.30 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG99.32 9899.09 11499.58 8399.75 12198.74 17499.36 12099.54 16699.14 7599.72 8799.24 12199.89 6199.51 5899.30 8798.76 12599.62 11498.54 176
TSAR-MVS + ACMM99.31 10299.26 7899.37 12799.66 14698.97 15799.20 14599.56 16399.33 4899.19 17799.54 8599.91 5599.32 8799.12 12498.34 15999.29 16799.65 50
3Dnovator+98.92 799.31 10299.03 12099.63 7499.77 11298.90 15999.52 8799.81 9299.37 4499.72 8798.03 18899.73 10799.32 8798.99 13998.81 12299.67 9299.36 125
X-MVS99.30 10498.99 12599.66 6699.85 7299.30 11099.49 10199.82 8498.32 16199.69 9697.31 20099.93 4199.50 6299.37 7599.16 6699.60 11899.53 88
MVS_111021_HR99.30 10499.14 10599.48 10499.58 16999.25 12099.27 13899.61 15298.74 12299.66 10699.02 14599.84 8399.33 8499.20 11198.76 12599.44 15099.18 141
TAPA-MVS98.54 1099.30 10499.24 8399.36 13199.44 18898.77 17299.00 16999.41 18499.23 5899.60 11899.50 9799.86 7599.15 10799.29 9098.95 10699.56 12999.08 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS99.30 10499.01 12499.63 7499.75 12198.89 16299.35 12399.60 15498.53 14399.86 3499.57 8299.94 3599.52 5798.96 14198.10 17299.70 8899.08 154
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
USDC99.29 10898.98 12799.65 6899.72 13398.87 16599.47 10399.66 14899.35 4799.87 2899.58 8199.87 7499.51 5898.85 16097.93 17899.65 9698.38 180
PMVScopyleft94.32 1799.27 10999.55 3298.94 17399.60 16299.43 7999.39 11599.54 16698.99 9199.69 9699.60 7899.81 9095.68 20399.88 1299.83 599.73 8099.31 130
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS_111021_LR99.25 11099.13 10799.39 11799.50 18199.14 13899.23 14399.50 17498.67 12799.61 11599.12 13599.81 9099.16 10399.28 9598.67 13799.35 16399.21 140
baseline99.24 11199.30 7299.17 15499.78 10499.14 13899.10 15799.69 13698.97 9599.49 14199.84 4199.88 6797.99 17198.85 16098.73 13198.98 18299.72 35
EIA-MVS99.23 11299.03 12099.47 10599.83 8499.64 3699.16 14999.81 9297.11 20099.65 10898.44 17699.78 10298.61 14999.46 6299.22 5999.75 7199.59 63
HPM-MVS++copyleft99.23 11298.98 12799.53 9499.75 12199.02 15299.44 10799.77 11498.65 12999.52 13598.72 15999.92 4999.33 8498.77 17198.40 15599.40 15799.36 125
PMMVS299.23 11299.22 8799.24 14299.80 9599.14 13899.50 9499.82 8499.12 7798.41 21099.91 2399.98 498.51 15199.48 5898.76 12599.38 15998.14 188
CPTT-MVS99.21 11598.89 13899.58 8399.72 13399.12 14599.30 13399.76 12398.62 13499.66 10697.51 19699.89 6199.48 7099.01 13498.64 14099.58 12599.40 119
TinyColmap99.21 11598.89 13899.59 8099.61 15898.61 18399.47 10399.67 14599.02 8899.82 5399.15 13199.74 10499.35 8099.17 11998.33 16099.63 10898.22 186
Effi-MVS+99.20 11798.93 13399.50 10299.79 9999.26 11798.82 18899.96 1298.37 15999.60 11899.12 13598.36 17199.05 11898.93 14498.82 11999.78 6299.68 43
PVSNet_BlendedMVS99.20 11799.17 10199.23 14399.69 13899.33 10399.04 16299.13 19898.41 15599.79 6099.33 11299.36 14198.10 16199.29 9098.87 11399.65 9699.56 78
PVSNet_Blended99.20 11799.17 10199.23 14399.69 13899.33 10399.04 16299.13 19898.41 15599.79 6099.33 11299.36 14198.10 16199.29 9098.87 11399.65 9699.56 78
MCST-MVS99.17 12098.82 14699.57 8699.75 12198.70 17899.25 14299.69 13698.62 13499.59 12098.54 17099.79 9999.53 5498.48 18298.15 16899.64 10599.43 110
APD-MVScopyleft99.17 12098.92 13499.46 10799.78 10499.24 12599.34 12499.78 10797.79 18799.48 14398.25 18299.88 6798.77 13999.18 11798.92 10899.63 10899.18 141
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.82 899.17 12098.85 14299.53 9499.75 12199.06 15099.36 12099.82 8498.28 16399.76 6898.47 17499.61 12198.91 13198.80 16898.70 13499.60 11899.04 161
IterMVS-LS99.16 12398.82 14699.57 8699.87 4999.71 2799.58 7499.92 3399.24 5799.71 9399.73 5395.79 18998.91 13198.82 16798.66 13899.43 15399.77 24
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS98.38 1199.16 12399.20 9299.12 15999.20 20598.71 17798.85 18499.06 20199.17 6898.96 18899.61 7599.86 7599.29 9299.17 11998.72 13299.36 16199.15 149
IterMVS-SCA-FT99.15 12598.96 13099.38 12199.87 4999.54 5399.53 8399.79 10298.94 9999.82 5399.92 1697.65 18098.82 13698.95 14398.26 16298.45 19199.47 102
CDS-MVSNet99.15 12599.10 11299.21 14999.59 16699.22 12899.48 10299.47 17798.89 10699.41 15699.84 4198.11 17697.76 17599.26 10099.01 9599.57 12699.38 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS_MVSNet99.15 12599.12 10999.19 15299.92 2699.73 2699.55 7899.86 5598.45 14896.91 21698.74 15798.33 17299.02 12199.54 5599.47 4199.88 2799.61 59
MDA-MVSNet-bldmvs99.11 12899.11 11199.12 15999.91 3099.38 9099.77 3098.72 20599.31 5099.85 4199.43 10198.26 17499.48 7099.85 1698.47 15096.99 20299.08 154
OMC-MVS99.11 12898.95 13199.29 13599.37 19498.57 18599.19 14699.20 19798.87 10999.58 12499.13 13399.88 6799.00 12299.19 11498.46 15199.43 15398.57 175
MVS_Test99.09 13098.92 13499.29 13599.61 15899.07 14999.04 16299.81 9298.58 14099.37 16399.74 5198.87 16298.41 15498.61 17798.01 17699.50 14299.57 77
CNVR-MVS99.08 13198.83 14399.37 12799.61 15898.74 17499.15 15099.54 16698.59 13999.37 16398.15 18599.88 6799.08 11498.91 14998.46 15199.48 14499.06 157
IterMVS99.08 13198.90 13799.29 13599.87 4999.53 5699.52 8799.77 11498.94 9999.75 7199.91 2397.52 18498.72 14398.86 15898.14 16998.09 19499.43 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet299.07 13399.19 9498.93 17599.02 21099.53 5699.31 12899.84 7198.86 11098.88 19299.64 7198.44 16996.92 19299.35 7899.00 9999.61 11599.53 88
CVMVSNet99.06 13498.88 14199.28 13999.52 17399.53 5699.42 10999.69 13698.74 12298.27 21299.89 3195.48 19299.44 7499.46 6299.33 5499.32 16699.75 29
CDPH-MVS99.05 13598.63 15399.54 9399.75 12198.78 17099.59 7099.68 14297.79 18799.37 16398.20 18499.86 7599.14 10998.58 17898.01 17699.68 9099.16 147
TAMVS99.05 13599.02 12399.08 16499.69 13899.22 12899.33 12599.32 19499.16 7298.97 18799.87 3597.36 18597.76 17599.21 10899.00 9999.44 15099.33 128
CANet_DTU99.03 13799.18 9798.87 17899.58 16999.03 15199.18 14799.41 18498.65 12999.74 7899.55 8499.71 10996.13 20199.19 11498.92 10899.17 17699.18 141
Effi-MVS+-dtu99.01 13899.05 11798.98 16899.60 16299.13 14299.03 16699.61 15298.52 14499.01 18498.53 17199.83 8596.95 19199.48 5898.59 14599.66 9499.25 139
canonicalmvs99.00 13998.68 15299.37 12799.68 14499.42 8398.94 17599.89 4699.00 9098.99 18598.43 17895.69 19098.96 12899.18 11799.18 6399.74 7699.88 7
MIMVSNet99.00 13999.03 12098.97 17299.32 20099.32 10799.39 11599.91 3898.41 15598.76 19999.24 12199.17 15397.13 18599.30 8798.80 12399.29 16799.01 162
CHOSEN 280x42098.99 14198.91 13699.07 16599.77 11299.26 11799.55 7899.92 3398.62 13498.67 20399.62 7497.20 18698.44 15399.50 5699.18 6398.08 19598.99 165
xxxxxxxxxxxxxcwj98.97 14298.97 12998.98 16899.64 15198.89 16298.00 21499.58 16098.42 15299.08 18298.63 16499.96 1398.04 16799.02 13298.76 12599.52 13699.13 150
SF-MVS98.96 14398.95 13198.98 16899.64 15198.89 16298.00 21499.58 16098.42 15299.08 18298.63 16499.83 8598.04 16799.02 13298.76 12599.52 13699.13 150
GBi-Net98.96 14399.05 11798.85 17999.02 21099.53 5699.31 12899.78 10798.13 16998.48 20699.43 10197.58 18196.92 19299.68 3799.50 3699.61 11599.53 88
test198.96 14399.05 11798.85 17999.02 21099.53 5699.31 12899.78 10798.13 16998.48 20699.43 10197.58 18196.92 19299.68 3799.50 3699.61 11599.53 88
PCF-MVS97.86 1598.95 14698.53 15899.44 11199.70 13798.80 16998.96 17199.69 13698.65 12999.59 12099.33 11299.94 3599.12 11298.01 19297.11 18999.59 12497.83 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch98.94 14798.71 15199.21 14999.52 17398.22 20198.97 17099.53 17198.76 11999.50 13998.59 16899.56 12798.68 14498.63 17698.45 15399.05 17998.73 172
AdaColmapbinary98.93 14898.53 15899.39 11799.52 17398.65 18199.11 15699.59 15798.08 17399.44 14997.46 19899.45 13499.24 9698.92 14698.44 15499.44 15098.73 172
MSLP-MVS++98.92 14998.73 15099.14 15699.44 18899.00 15498.36 20499.35 19098.82 11699.38 16096.06 20599.79 9999.07 11598.88 15499.05 8999.27 16999.53 88
new_pmnet98.91 15098.89 13898.94 17399.51 17998.27 19799.15 15098.66 20699.17 6899.48 14399.79 4999.80 9698.49 15299.23 10398.20 16698.34 19297.74 196
train_agg98.89 15198.48 16399.38 12199.69 13898.76 17399.31 12899.60 15497.71 18998.98 18697.89 18999.89 6199.29 9298.32 18397.59 18599.42 15699.16 147
NCCC98.88 15298.42 16499.42 11299.62 15498.81 16899.10 15799.54 16698.76 11999.53 12995.97 20699.80 9699.16 10398.49 18198.06 17599.55 13299.05 159
PLCcopyleft97.83 1698.88 15298.52 16099.30 13499.45 18698.60 18498.65 19499.49 17598.66 12899.59 12096.33 20499.59 12499.17 10098.87 15598.53 14799.46 14699.05 159
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs398.85 15498.60 15499.13 15799.66 14698.72 17699.37 11999.06 20198.44 14999.76 6899.74 5199.55 12899.15 10799.04 13096.00 19797.80 19698.72 174
Fast-Effi-MVS+-dtu98.82 15598.80 14898.84 18199.51 17998.90 15998.96 17199.91 3898.29 16299.11 18198.47 17499.63 12096.03 20299.21 10898.12 17099.52 13699.01 162
CNLPA98.82 15598.52 16099.18 15399.21 20498.50 18998.73 19299.34 19298.73 12499.56 12697.55 19599.42 13899.06 11798.93 14498.10 17299.21 17598.38 180
PatchMatch-RL98.80 15798.52 16099.12 15999.38 19398.70 17898.56 19799.55 16597.81 18699.34 16997.57 19499.31 14898.67 14599.27 9898.62 14299.22 17498.35 182
thisisatest053098.78 15898.26 16799.39 11799.78 10499.43 7999.07 15999.64 15098.44 14999.42 15499.22 12492.68 20398.63 14799.30 8799.14 6999.80 5799.60 61
tttt051798.77 15998.25 16999.38 12199.79 9999.46 7399.07 15999.64 15098.40 15899.38 16099.21 12692.54 20498.63 14799.34 8199.14 6999.80 5799.62 57
DI_MVS_plusplus_trai98.74 16098.08 17799.51 10099.79 9999.29 11499.61 6599.60 15499.20 6299.46 14799.09 13892.93 19798.97 12598.27 18698.35 15899.65 9699.45 104
TSAR-MVS + COLMAP98.74 16098.58 15698.93 17599.29 20198.23 19899.04 16299.24 19698.79 11898.80 19899.37 11099.71 10998.06 16498.02 19197.46 18799.16 17798.48 178
MDTV_nov1_ep13_2view98.73 16298.31 16699.22 14699.75 12199.24 12599.75 3799.93 2699.31 5099.84 4599.86 3899.81 9099.31 9097.40 20094.77 19996.73 20497.81 193
PMMVS98.71 16398.55 15798.90 17799.28 20298.45 19198.53 20099.45 17997.67 19199.15 18098.76 15599.54 13097.79 17498.77 17198.23 16499.16 17798.46 179
HQP-MVS98.70 16498.19 17399.28 13999.61 15898.52 18798.71 19399.35 19097.97 18099.53 12997.38 19999.85 8199.14 10997.53 19696.85 19399.36 16199.26 138
N_pmnet98.64 16598.23 17299.11 16299.78 10499.25 12099.75 3799.39 18899.65 1499.70 9599.78 5099.89 6198.81 13897.60 19594.28 20097.24 20197.15 200
CMPMVSbinary76.62 1998.64 16598.60 15498.68 18699.33 19897.07 21398.11 21298.50 20797.69 19099.26 17298.35 18199.66 11897.62 17899.43 7199.02 9399.24 17299.01 162
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet398.63 16798.75 14998.49 19298.10 21699.44 7699.02 16799.78 10798.13 16998.48 20699.43 10197.58 18196.16 20098.85 16098.39 15699.40 15799.41 114
GA-MVS98.59 16898.15 17499.09 16399.59 16699.13 14298.84 18599.52 17398.61 13799.35 16699.67 6593.03 19697.73 17798.90 15398.26 16299.51 14099.48 99
MAR-MVS98.54 16998.15 17498.98 16899.37 19498.09 20498.56 19799.65 14996.11 21599.27 17197.16 20299.50 13198.03 16998.87 15598.23 16499.01 18099.13 150
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
new-patchmatchnet98.49 17097.60 17999.53 9499.90 3499.55 5099.77 3099.48 17699.67 1199.86 3499.98 399.98 499.50 6296.90 20291.52 20698.67 18895.62 206
FPMVS98.48 17198.83 14398.07 20299.09 20897.98 20799.07 15998.04 21398.99 9199.22 17598.85 15099.43 13793.79 21099.66 4299.11 8199.24 17297.76 194
MVS-HIRNet98.45 17298.25 16998.69 18599.12 20697.81 21298.55 19999.85 6298.58 14099.67 10499.61 7599.86 7597.46 18197.95 19396.37 19597.49 19897.56 197
test0.0.03 198.41 17398.41 16598.40 19699.62 15499.16 13598.87 18299.41 18497.15 19896.60 21899.31 11797.00 18796.55 19798.91 14998.51 14999.37 16098.82 170
gg-mvs-nofinetune98.40 17498.26 16798.57 19099.83 8498.86 16698.77 19199.97 199.57 2599.99 199.99 193.81 19493.50 21198.91 14998.20 16699.33 16598.52 177
baseline198.39 17597.59 18099.31 13399.78 10499.45 7499.13 15399.53 17198.06 17598.87 19398.63 16490.04 20998.76 14098.85 16098.84 11799.81 5399.28 134
pmnet_mix0298.28 17697.48 18299.22 14699.78 10499.12 14599.68 5399.39 18899.49 3399.86 3499.82 4699.89 6199.23 9795.54 20592.36 20397.38 19996.14 204
PatchT98.11 17797.12 18899.26 14199.65 15098.34 19599.57 7699.97 197.48 19499.43 15199.04 14390.84 20798.15 15898.04 18997.78 17998.82 18598.30 183
DPM-MVS98.10 17897.32 18699.01 16799.52 17397.92 20898.47 20299.45 17998.25 16498.91 19093.99 21099.69 11498.73 14296.29 20496.32 19699.00 18198.77 171
EPNet_dtu98.09 17998.25 16997.91 20499.58 16998.02 20698.19 20999.67 14597.94 18299.74 7899.07 14198.71 16593.40 21297.50 19797.09 19096.89 20399.44 107
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.06 18098.11 17698.00 20399.60 16298.99 15698.38 20399.68 14298.18 16898.85 19597.89 18995.60 19192.72 21398.30 18498.10 17298.76 18699.72 35
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet97.91 18196.80 19199.22 14699.60 16298.23 19898.91 17799.97 196.89 20899.43 15199.10 13789.24 21298.15 15898.04 18997.78 17999.26 17098.30 183
thres20097.87 18296.56 19399.39 11799.76 11799.52 6399.13 15399.76 12396.88 21098.66 20492.87 21488.77 21599.16 10399.11 12599.42 4899.88 2799.33 128
baseline297.87 18297.18 18798.67 18799.34 19799.17 13498.48 20198.82 20497.08 20198.83 19798.75 15689.47 21197.03 19098.67 17598.27 16199.52 13698.83 169
thres600view797.86 18496.53 19699.41 11599.84 7899.52 6399.36 12099.76 12397.32 19698.38 21193.24 21187.25 21799.23 9799.11 12599.75 1499.88 2799.48 99
tfpn200view997.85 18596.54 19499.38 12199.74 12999.52 6399.17 14899.76 12396.10 21698.70 20192.99 21289.10 21399.00 12299.11 12599.56 2899.88 2799.41 114
thres40097.82 18696.47 19799.40 11699.81 9499.44 7699.29 13599.69 13697.15 19898.57 20592.82 21587.96 21699.16 10398.96 14199.55 3199.86 3699.41 114
IB-MVS98.10 1497.76 18797.40 18598.18 19899.62 15499.11 14798.24 20798.35 20996.56 21299.44 14991.28 21698.96 16093.84 20998.09 18898.62 14299.56 12999.18 141
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR97.74 18897.46 18398.08 20099.62 15498.37 19398.26 20599.41 18497.03 20397.38 21499.54 8592.89 19895.12 20698.78 16997.68 18398.65 18997.90 190
RPMNet97.70 18996.54 19499.06 16699.57 17298.23 19898.95 17499.97 196.89 20899.49 14199.13 13389.63 21097.09 18796.68 20397.02 19199.26 17098.19 187
thres100view90097.69 19096.37 19899.23 14399.74 12999.21 13198.81 18999.43 18396.10 21698.70 20192.99 21289.10 21398.88 13498.58 17899.31 5699.82 5099.27 135
FMVSNet597.69 19096.98 18998.53 19198.53 21499.36 9698.90 18099.54 16696.38 21398.44 20995.38 20890.08 20897.05 18999.46 6299.06 8698.73 18799.12 153
MVEpermissive91.08 1897.68 19297.65 17897.71 21098.46 21591.62 21997.92 21698.86 20398.73 12497.99 21398.64 16399.96 1399.17 10099.59 5097.75 18193.87 21897.27 198
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-mter97.65 19397.57 18197.75 20898.90 21398.56 18698.15 21098.45 20896.92 20796.84 21799.52 9392.53 20595.24 20599.04 13098.12 17098.90 18498.29 185
TESTMET0.1,197.62 19497.46 18397.81 20699.07 20998.37 19398.26 20598.35 20997.03 20397.38 21499.54 8592.89 19895.12 20698.78 16997.68 18398.65 18997.90 190
MVSTER97.55 19596.75 19298.48 19399.46 18599.54 5398.24 20799.77 11497.56 19299.41 15699.31 11784.86 21994.66 20898.86 15897.75 18199.34 16499.38 122
ET-MVSNet_ETH3D97.44 19696.29 19998.78 18297.93 21798.95 15898.91 17799.09 20098.00 17899.24 17398.83 15184.62 22098.02 17097.43 19997.38 18899.48 14498.84 167
MDTV_nov1_ep1397.41 19796.26 20098.76 18399.47 18498.43 19299.26 14199.82 8498.06 17599.23 17499.22 12492.86 20098.05 16595.33 20793.66 20296.73 20496.26 203
ADS-MVSNet97.29 19896.17 20198.59 18999.59 16698.70 17899.32 12699.86 5598.47 14599.56 12699.08 13998.16 17597.34 18392.92 20991.17 20795.91 20794.72 209
SCA97.25 19996.05 20298.64 18899.36 19699.02 15299.27 13899.96 1298.25 16499.69 9698.71 16094.66 19397.95 17393.95 20892.35 20495.64 20895.40 208
gm-plane-assit96.82 20094.84 20899.13 15799.95 1099.78 1499.69 5299.92 3399.19 6599.84 4599.92 1672.93 22396.44 19998.21 18797.01 19298.92 18396.87 202
PatchmatchNetpermissive96.81 20195.41 20598.43 19599.43 19098.30 19699.23 14399.93 2698.19 16799.64 10998.81 15493.50 19597.43 18292.89 21090.78 20994.94 21395.41 207
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.76 20295.30 20798.46 19499.42 19198.47 19099.32 12699.91 3898.42 15299.51 13799.07 14192.81 20197.12 18692.39 21191.71 20595.51 20994.20 211
E-PMN96.72 20395.78 20397.81 20699.45 18695.46 21698.14 21198.33 21197.99 17998.73 20098.09 18698.97 15897.54 18097.45 19891.09 20894.70 21591.40 214
tpm96.56 20494.68 20998.74 18499.12 20697.90 20998.79 19099.93 2696.79 21199.69 9699.19 12881.48 22297.56 17995.46 20693.97 20197.37 20097.99 189
EMVS96.47 20595.38 20697.74 20999.42 19195.37 21798.07 21398.27 21297.85 18598.90 19197.48 19798.73 16497.20 18497.21 20190.39 21094.59 21790.65 215
tpmrst96.18 20694.47 21098.18 19899.52 17397.89 21098.96 17199.79 10298.07 17499.16 17899.30 12092.69 20296.69 19590.76 21388.85 21394.96 21293.69 212
CostFormer95.61 20793.35 21398.24 19799.48 18398.03 20598.65 19499.83 7796.93 20699.42 15498.83 15183.65 22197.08 18890.39 21489.54 21294.94 21396.11 205
dps95.59 20893.46 21298.08 20099.33 19898.22 20198.87 18299.70 13496.17 21498.87 19397.75 19286.85 21896.60 19691.24 21289.62 21195.10 21194.34 210
tpm cat195.52 20993.49 21197.88 20599.28 20297.87 21198.65 19499.77 11497.27 19799.46 14798.04 18790.99 20695.46 20488.57 21588.14 21494.64 21693.54 213
test_method91.96 21095.51 20487.82 21270.84 21982.79 22092.13 21987.74 21598.88 10795.40 21999.20 12798.04 17785.65 21597.71 19494.95 19895.13 21097.00 201
GG-mvs-BLEND70.44 21196.91 19039.57 2133.32 22296.51 21491.01 2204.05 21997.03 20333.20 22194.67 20997.75 1797.59 21898.28 18596.85 19398.24 19397.26 199
testmvs22.33 21229.66 21413.79 2148.97 22010.35 22115.53 2238.09 21832.51 21819.87 22245.18 21730.56 22517.05 21729.96 21624.74 21513.21 21934.30 216
test12321.52 21328.47 21513.42 2157.29 22110.12 22215.70 2228.31 21731.54 21919.34 22336.33 21837.40 22417.14 21627.45 21723.17 21612.73 22033.30 217
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def99.96 2
9.1499.57 125
SR-MVS99.73 13199.74 13099.88 67
Anonymous20240521199.14 10599.87 4999.55 5099.50 9499.70 13498.55 14298.61 16798.46 16898.76 14099.66 4299.50 3699.85 3999.63 54
our_test_399.75 12199.11 14799.74 44
ambc98.83 14399.72 13398.52 18798.84 18598.96 9699.92 1099.34 11199.74 10499.04 11998.68 17497.57 18699.46 14698.99 165
MTAPA99.62 11299.95 25
MTMP99.53 12999.92 49
Patchmatch-RL test65.75 221
tmp_tt88.14 21196.68 21891.91 21893.70 21861.38 21699.61 2090.51 22099.40 10799.71 10990.32 21499.22 10599.44 4696.25 206
XVS99.86 6399.30 11099.72 4999.69 9699.93 4199.60 118
X-MVStestdata99.86 6399.30 11099.72 4999.69 9699.93 4199.60 118
abl_699.21 14999.49 18298.62 18298.90 18099.44 18297.08 20199.61 11597.19 20199.73 10798.35 15599.45 14898.84 167
mPP-MVS99.84 7899.92 49
NP-MVS97.37 195
Patchmtry98.19 20398.91 17799.97 199.43 151
DeepMVS_CXcopyleft96.39 21597.15 21788.89 21497.94 18299.51 13795.71 20797.88 17898.19 15698.92 14697.73 19797.75 195