LTVRE_ROB | | 99.39 1 | 99.90 1 | 99.87 1 | 99.93 1 | 99.97 2 | 99.82 8 | 99.91 3 | 99.92 37 | 99.75 4 | 99.93 5 | 99.89 30 | 100.00 1 | 99.87 2 | 99.93 3 | 99.82 10 | 99.96 3 | 99.90 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v7n | | | 99.89 2 | 99.86 3 | 99.93 1 | 99.97 2 | 99.83 4 | 99.93 1 | 99.96 12 | 99.77 3 | 99.89 17 | 99.99 1 | 99.86 76 | 99.84 5 | 99.89 11 | 99.81 11 | 99.97 1 | 99.88 6 |
|
SixPastTwentyTwo | | | 99.89 2 | 99.85 5 | 99.93 1 | 99.97 2 | 99.88 1 | 99.92 2 | 99.97 1 | 99.66 12 | 99.94 4 | 99.94 11 | 99.74 107 | 99.81 7 | 99.97 1 | 99.89 1 | 99.96 3 | 99.89 4 |
|
pmmvs6 | | | 99.88 4 | 99.87 1 | 99.89 9 | 99.97 2 | 99.76 21 | 99.89 5 | 99.96 12 | 99.82 2 | 99.90 15 | 99.92 16 | 99.95 25 | 99.68 31 | 99.93 3 | 99.88 3 | 99.95 7 | 99.86 11 |
|
anonymousdsp | | | 99.87 5 | 99.86 3 | 99.88 12 | 99.95 10 | 99.75 27 | 99.90 4 | 99.96 12 | 99.69 7 | 99.83 51 | 99.96 4 | 99.99 3 | 99.74 21 | 99.95 2 | 99.83 7 | 99.91 24 | 99.88 6 |
|
FC-MVSNet-test | | | 99.84 6 | 99.80 6 | 99.89 9 | 99.96 7 | 99.83 4 | 99.84 16 | 99.95 23 | 99.37 48 | 99.77 68 | 99.95 6 | 99.96 14 | 99.85 3 | 99.93 3 | 99.83 7 | 99.95 7 | 99.72 39 |
|
UniMVSNet_ETH3D | | | 99.81 7 | 99.79 7 | 99.85 18 | 99.98 1 | 99.76 21 | 99.73 47 | 99.96 12 | 99.68 9 | 99.87 29 | 99.59 84 | 99.91 56 | 99.58 51 | 99.90 10 | 99.85 6 | 99.96 3 | 99.81 19 |
|
TDRefinement | | | 99.81 7 | 99.76 9 | 99.86 15 | 99.83 88 | 99.53 62 | 99.89 5 | 99.91 43 | 99.73 5 | 99.88 23 | 99.83 45 | 99.96 14 | 99.76 16 | 99.91 9 | 99.81 11 | 99.86 41 | 99.59 68 |
|
WR-MVS | | | 99.79 9 | 99.68 13 | 99.91 5 | 99.95 10 | 99.83 4 | 99.87 9 | 99.96 12 | 99.39 46 | 99.93 5 | 99.87 35 | 99.29 150 | 99.77 14 | 99.83 22 | 99.72 20 | 99.97 1 | 99.82 16 |
|
MIMVSNet1 | | | 99.79 9 | 99.75 10 | 99.84 21 | 99.89 42 | 99.83 4 | 99.84 16 | 99.89 52 | 99.31 54 | 99.93 5 | 99.92 16 | 99.97 9 | 99.68 31 | 99.89 11 | 99.64 27 | 99.82 55 | 99.66 53 |
|
pm-mvs1 | | | 99.77 11 | 99.69 12 | 99.86 15 | 99.94 23 | 99.68 36 | 99.84 16 | 99.93 27 | 99.59 21 | 99.87 29 | 99.92 16 | 99.21 153 | 99.65 37 | 99.88 15 | 99.77 16 | 99.93 20 | 99.78 26 |
|
PEN-MVS | | | 99.77 11 | 99.65 18 | 99.91 5 | 99.95 10 | 99.80 15 | 99.86 10 | 99.97 1 | 99.08 82 | 99.89 17 | 99.69 67 | 99.68 116 | 99.84 5 | 99.81 27 | 99.64 27 | 99.95 7 | 99.81 19 |
|
EU-MVSNet | | | 99.76 13 | 99.74 11 | 99.78 41 | 99.82 93 | 99.81 12 | 99.88 7 | 99.87 57 | 99.31 54 | 99.75 76 | 99.91 23 | 99.76 106 | 99.78 12 | 99.84 21 | 99.74 19 | 99.56 136 | 99.81 19 |
|
Vis-MVSNet |  | | 99.76 13 | 99.78 8 | 99.75 51 | 99.92 30 | 99.77 20 | 99.83 19 | 99.85 68 | 99.43 40 | 99.85 42 | 99.84 42 | 100.00 1 | 99.13 117 | 99.83 22 | 99.66 24 | 99.90 28 | 99.90 2 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CS-MVS | | | 99.75 15 | 99.66 17 | 99.85 18 | 99.87 53 | 99.86 2 | 99.83 19 | 99.91 43 | 98.84 116 | 99.92 9 | 99.57 86 | 99.85 82 | 99.60 46 | 99.82 25 | 99.79 13 | 99.94 15 | 99.87 9 |
|
CS-MVS-test | | | 99.75 15 | 99.67 14 | 99.84 21 | 99.91 34 | 99.85 3 | 99.85 13 | 99.92 37 | 98.75 126 | 99.89 17 | 99.64 74 | 99.95 25 | 99.55 54 | 99.89 11 | 99.79 13 | 99.92 21 | 99.83 14 |
|
DTE-MVSNet | | | 99.75 15 | 99.61 24 | 99.92 4 | 99.95 10 | 99.81 12 | 99.86 10 | 99.96 12 | 99.18 71 | 99.92 9 | 99.66 70 | 99.45 135 | 99.85 3 | 99.80 28 | 99.56 33 | 99.96 3 | 99.79 25 |
|
tfpnnormal | | | 99.74 18 | 99.63 21 | 99.86 15 | 99.93 27 | 99.75 27 | 99.80 28 | 99.89 52 | 99.31 54 | 99.88 23 | 99.43 107 | 99.66 119 | 99.77 14 | 99.80 28 | 99.71 21 | 99.92 21 | 99.76 30 |
|
DeepC-MVS | | 99.05 5 | 99.74 18 | 99.64 19 | 99.84 21 | 99.90 39 | 99.39 93 | 99.79 29 | 99.81 97 | 99.69 7 | 99.90 15 | 99.87 35 | 99.98 5 | 99.81 7 | 99.62 54 | 99.32 61 | 99.83 52 | 99.65 56 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
thisisatest0515 | | | 99.73 20 | 99.67 14 | 99.81 31 | 99.93 27 | 99.74 29 | 99.68 56 | 99.91 43 | 99.59 21 | 99.88 23 | 99.73 56 | 99.81 92 | 99.55 54 | 99.59 55 | 99.53 38 | 99.89 31 | 99.70 47 |
|
PS-CasMVS | | | 99.73 20 | 99.59 30 | 99.90 8 | 99.95 10 | 99.80 15 | 99.85 13 | 99.97 1 | 98.95 100 | 99.86 35 | 99.73 56 | 99.36 142 | 99.81 7 | 99.83 22 | 99.67 23 | 99.95 7 | 99.83 14 |
|
WR-MVS_H | | | 99.73 20 | 99.61 24 | 99.88 12 | 99.95 10 | 99.82 8 | 99.83 19 | 99.96 12 | 99.01 92 | 99.84 46 | 99.71 64 | 99.41 141 | 99.74 21 | 99.77 33 | 99.70 22 | 99.95 7 | 99.82 16 |
|
TransMVSNet (Re) | | | 99.72 23 | 99.59 30 | 99.88 12 | 99.95 10 | 99.76 21 | 99.88 7 | 99.94 24 | 99.58 23 | 99.92 9 | 99.90 27 | 98.55 170 | 99.65 37 | 99.89 11 | 99.76 17 | 99.95 7 | 99.70 47 |
|
ACMH | | 99.11 4 | 99.72 23 | 99.63 21 | 99.84 21 | 99.87 53 | 99.59 49 | 99.83 19 | 99.88 56 | 99.46 37 | 99.87 29 | 99.66 70 | 99.95 25 | 99.76 16 | 99.73 38 | 99.47 47 | 99.84 47 | 99.52 100 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FC-MVSNet-train | | | 99.70 25 | 99.67 14 | 99.74 57 | 99.94 23 | 99.71 32 | 99.82 24 | 99.91 43 | 99.14 79 | 99.53 134 | 99.70 65 | 99.88 68 | 99.33 89 | 99.88 15 | 99.61 32 | 99.94 15 | 99.77 27 |
|
EC-MVSNet | | | 99.70 25 | 99.57 33 | 99.85 18 | 99.95 10 | 99.81 12 | 99.85 13 | 99.93 27 | 98.39 164 | 99.76 71 | 99.48 104 | 99.94 35 | 99.70 29 | 99.85 19 | 99.66 24 | 99.91 24 | 99.87 9 |
|
COLMAP_ROB |  | 99.18 2 | 99.70 25 | 99.60 28 | 99.81 31 | 99.84 82 | 99.37 100 | 99.76 35 | 99.84 77 | 99.54 29 | 99.82 54 | 99.64 74 | 99.95 25 | 99.75 18 | 99.79 30 | 99.56 33 | 99.83 52 | 99.37 130 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH+ | | 98.94 6 | 99.69 28 | 99.59 30 | 99.81 31 | 99.88 48 | 99.41 90 | 99.75 39 | 99.86 61 | 99.43 40 | 99.80 58 | 99.54 90 | 99.97 9 | 99.73 24 | 99.82 25 | 99.52 40 | 99.85 44 | 99.43 116 |
|
test20.03 | | | 99.68 29 | 99.60 28 | 99.76 47 | 99.91 34 | 99.70 35 | 99.68 56 | 99.87 57 | 99.05 89 | 99.88 23 | 99.92 16 | 99.88 68 | 99.50 67 | 99.77 33 | 99.42 54 | 99.75 76 | 99.49 102 |
|
CP-MVSNet | | | 99.68 29 | 99.51 42 | 99.89 9 | 99.95 10 | 99.76 21 | 99.83 19 | 99.96 12 | 98.83 120 | 99.84 46 | 99.65 73 | 99.09 156 | 99.80 10 | 99.78 31 | 99.62 31 | 99.95 7 | 99.82 16 |
|
casdiffmvs_mvg |  | | 99.67 31 | 99.61 24 | 99.74 57 | 99.94 23 | 99.60 45 | 99.62 70 | 99.77 120 | 99.54 29 | 99.67 109 | 99.82 47 | 99.80 98 | 99.52 61 | 99.40 76 | 99.51 41 | 99.91 24 | 99.59 68 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_Blended_VisFu | | | 99.66 32 | 99.64 19 | 99.67 69 | 99.91 34 | 99.71 32 | 99.61 71 | 99.79 108 | 99.41 42 | 99.91 13 | 99.85 40 | 99.61 122 | 99.00 127 | 99.67 45 | 99.42 54 | 99.81 58 | 99.81 19 |
|
v10 | | | 99.65 33 | 99.51 42 | 99.81 31 | 99.83 88 | 99.61 44 | 99.75 39 | 99.94 24 | 99.56 25 | 99.76 71 | 99.94 11 | 99.60 124 | 99.73 24 | 99.11 132 | 99.01 102 | 99.85 44 | 99.74 34 |
|
CHOSEN 1792x2688 | | | 99.65 33 | 99.55 36 | 99.77 46 | 99.93 27 | 99.60 45 | 99.79 29 | 99.92 37 | 99.73 5 | 99.74 82 | 99.93 14 | 99.98 5 | 99.80 10 | 98.83 172 | 99.01 102 | 99.45 154 | 99.76 30 |
|
UA-Net | | | 99.64 35 | 99.62 23 | 99.66 71 | 99.97 2 | 99.82 8 | 99.14 159 | 99.96 12 | 98.95 100 | 99.52 140 | 99.38 116 | 99.86 76 | 99.55 54 | 99.72 39 | 99.66 24 | 99.80 62 | 99.94 1 |
|
GeoE | | | 99.63 36 | 99.51 42 | 99.78 41 | 99.91 34 | 99.57 52 | 99.78 31 | 99.97 1 | 99.23 62 | 99.72 92 | 99.72 60 | 99.80 98 | 99.50 67 | 99.45 73 | 99.10 88 | 99.79 65 | 99.71 45 |
|
Baseline_NR-MVSNet | | | 99.62 37 | 99.48 47 | 99.78 41 | 99.85 76 | 99.76 21 | 99.59 76 | 99.82 89 | 98.84 116 | 99.88 23 | 99.91 23 | 99.04 157 | 99.61 44 | 99.46 66 | 99.78 15 | 99.94 15 | 99.60 66 |
|
pmmvs-eth3d | | | 99.61 38 | 99.48 47 | 99.75 51 | 99.87 53 | 99.30 116 | 99.75 39 | 99.89 52 | 99.23 62 | 99.85 42 | 99.88 34 | 99.97 9 | 99.49 72 | 99.46 66 | 99.01 102 | 99.68 96 | 99.52 100 |
|
v1144 | | | 99.61 38 | 99.43 55 | 99.82 26 | 99.88 48 | 99.41 90 | 99.76 35 | 99.86 61 | 99.64 15 | 99.84 46 | 99.95 6 | 99.49 133 | 99.74 21 | 99.00 142 | 98.93 114 | 99.84 47 | 99.58 77 |
|
v8 | | | 99.61 38 | 99.45 53 | 99.79 40 | 99.80 99 | 99.59 49 | 99.73 47 | 99.93 27 | 99.48 35 | 99.77 68 | 99.90 27 | 99.48 134 | 99.67 34 | 99.11 132 | 98.89 118 | 99.84 47 | 99.73 36 |
|
casdiffmvs |  | | 99.61 38 | 99.55 36 | 99.68 68 | 99.89 42 | 99.53 62 | 99.64 64 | 99.68 148 | 99.51 32 | 99.62 118 | 99.90 27 | 99.96 14 | 99.37 83 | 99.28 101 | 99.25 64 | 99.88 33 | 99.44 113 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CSCG | | | 99.61 38 | 99.52 41 | 99.71 62 | 99.89 42 | 99.62 42 | 99.52 92 | 99.76 129 | 99.61 19 | 99.69 101 | 99.73 56 | 99.96 14 | 99.57 52 | 99.27 104 | 98.62 148 | 99.81 58 | 99.85 13 |
|
v1192 | | | 99.60 43 | 99.41 59 | 99.82 26 | 99.89 42 | 99.43 85 | 99.81 26 | 99.84 77 | 99.63 17 | 99.85 42 | 99.95 6 | 99.35 145 | 99.72 26 | 99.01 140 | 98.90 117 | 99.82 55 | 99.58 77 |
|
APDe-MVS | | | 99.60 43 | 99.48 47 | 99.73 60 | 99.85 76 | 99.51 73 | 99.75 39 | 99.85 68 | 99.17 72 | 99.81 57 | 99.56 88 | 99.94 35 | 99.44 79 | 99.42 75 | 99.22 65 | 99.67 98 | 99.54 92 |
|
v1921920 | | | 99.59 45 | 99.40 62 | 99.82 26 | 99.88 48 | 99.45 80 | 99.81 26 | 99.83 82 | 99.65 13 | 99.86 35 | 99.95 6 | 99.29 150 | 99.75 18 | 98.98 146 | 98.86 122 | 99.78 67 | 99.59 68 |
|
TranMVSNet+NR-MVSNet | | | 99.59 45 | 99.42 58 | 99.80 36 | 99.87 53 | 99.55 56 | 99.64 64 | 99.86 61 | 99.05 89 | 99.88 23 | 99.72 60 | 99.33 148 | 99.64 41 | 99.47 65 | 99.14 74 | 99.91 24 | 99.67 52 |
|
EG-PatchMatch MVS | | | 99.59 45 | 99.49 46 | 99.70 65 | 99.82 93 | 99.26 123 | 99.39 121 | 99.83 82 | 98.99 94 | 99.93 5 | 99.54 90 | 99.92 50 | 99.51 63 | 99.78 31 | 99.50 42 | 99.73 85 | 99.41 120 |
|
pmmvs5 | | | 99.58 48 | 99.47 50 | 99.70 65 | 99.84 82 | 99.50 74 | 99.58 80 | 99.80 105 | 98.98 97 | 99.73 89 | 99.92 16 | 99.81 92 | 99.49 72 | 99.28 101 | 99.05 96 | 99.77 71 | 99.73 36 |
|
v144192 | | | 99.58 48 | 99.39 63 | 99.80 36 | 99.87 53 | 99.44 82 | 99.77 32 | 99.84 77 | 99.64 15 | 99.86 35 | 99.93 14 | 99.35 145 | 99.72 26 | 98.92 152 | 98.82 126 | 99.74 81 | 99.66 53 |
|
v148 | | | 99.58 48 | 99.43 55 | 99.76 47 | 99.87 53 | 99.40 92 | 99.76 35 | 99.85 68 | 99.48 35 | 99.83 51 | 99.82 47 | 99.83 87 | 99.51 63 | 99.20 118 | 98.82 126 | 99.75 76 | 99.45 110 |
|
v1240 | | | 99.58 48 | 99.38 66 | 99.82 26 | 99.89 42 | 99.49 75 | 99.82 24 | 99.83 82 | 99.63 17 | 99.86 35 | 99.96 4 | 98.92 163 | 99.75 18 | 99.15 128 | 98.96 111 | 99.76 73 | 99.56 84 |
|
V42 | | | 99.57 52 | 99.41 59 | 99.75 51 | 99.84 82 | 99.37 100 | 99.73 47 | 99.83 82 | 99.41 42 | 99.75 76 | 99.89 30 | 99.42 139 | 99.60 46 | 99.15 128 | 98.96 111 | 99.76 73 | 99.65 56 |
|
TSAR-MVS + MP. | | | 99.56 53 | 99.54 39 | 99.58 87 | 99.69 144 | 99.14 145 | 99.73 47 | 99.45 185 | 99.50 33 | 99.35 171 | 99.60 82 | 99.93 42 | 99.50 67 | 99.56 57 | 99.37 58 | 99.77 71 | 99.64 59 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
v2v482 | | | 99.56 53 | 99.35 68 | 99.81 31 | 99.87 53 | 99.35 106 | 99.75 39 | 99.85 68 | 99.56 25 | 99.87 29 | 99.95 6 | 99.44 137 | 99.66 35 | 98.91 155 | 98.76 132 | 99.86 41 | 99.45 110 |
|
Gipuma |  | | 99.55 55 | 99.23 87 | 99.91 5 | 99.87 53 | 99.52 69 | 99.86 10 | 99.93 27 | 99.87 1 | 99.96 2 | 96.72 209 | 99.55 129 | 99.97 1 | 99.77 33 | 99.46 49 | 99.87 39 | 99.74 34 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DVP-MVS |  | | 99.53 56 | 99.51 42 | 99.55 96 | 99.82 93 | 99.58 51 | 99.54 88 | 99.78 113 | 99.28 60 | 99.21 181 | 99.70 65 | 99.97 9 | 99.32 92 | 99.32 89 | 99.14 74 | 99.64 110 | 99.58 77 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
NR-MVSNet | | | 99.52 57 | 99.29 77 | 99.80 36 | 99.96 7 | 99.38 96 | 99.55 84 | 99.81 97 | 98.86 113 | 99.87 29 | 99.51 100 | 98.81 165 | 99.72 26 | 99.86 18 | 99.04 98 | 99.89 31 | 99.54 92 |
|
ACMMPR | | | 99.51 58 | 99.32 72 | 99.72 61 | 99.87 53 | 99.33 109 | 99.61 71 | 99.85 68 | 99.19 69 | 99.73 89 | 98.73 165 | 99.95 25 | 99.61 44 | 99.35 83 | 99.14 74 | 99.66 100 | 99.58 77 |
|
UniMVSNet (Re) | | | 99.50 59 | 99.29 77 | 99.75 51 | 99.86 68 | 99.47 78 | 99.51 95 | 99.82 89 | 98.90 108 | 99.89 17 | 99.64 74 | 99.00 158 | 99.55 54 | 99.32 89 | 99.08 91 | 99.90 28 | 99.59 68 |
|
FMVSNet1 | | | 99.50 59 | 99.57 33 | 99.42 118 | 99.67 151 | 99.65 39 | 99.60 75 | 99.91 43 | 99.40 44 | 99.39 164 | 99.83 45 | 99.27 152 | 98.14 166 | 99.68 42 | 99.50 42 | 99.81 58 | 99.68 49 |
|
HyFIR lowres test | | | 99.50 59 | 99.26 81 | 99.80 36 | 99.95 10 | 99.62 42 | 99.76 35 | 99.97 1 | 99.67 10 | 99.56 130 | 99.94 11 | 98.40 173 | 99.78 12 | 98.84 171 | 98.59 151 | 99.76 73 | 99.72 39 |
|
PM-MVS | | | 99.49 62 | 99.43 55 | 99.57 91 | 99.76 121 | 99.34 108 | 99.53 89 | 99.77 120 | 98.93 104 | 99.75 76 | 99.46 105 | 99.83 87 | 99.11 119 | 99.72 39 | 99.29 63 | 99.49 149 | 99.46 109 |
|
Anonymous20231206 | | | 99.48 63 | 99.31 74 | 99.69 67 | 99.79 103 | 99.57 52 | 99.63 68 | 99.79 108 | 98.88 110 | 99.91 13 | 99.72 60 | 99.93 42 | 99.59 48 | 99.24 107 | 98.63 147 | 99.43 158 | 99.18 147 |
|
DU-MVS | | | 99.48 63 | 99.26 81 | 99.75 51 | 99.85 76 | 99.38 96 | 99.50 99 | 99.81 97 | 98.86 113 | 99.89 17 | 99.51 100 | 98.98 159 | 99.59 48 | 99.46 66 | 98.97 109 | 99.87 39 | 99.63 60 |
|
RPSCF | | | 99.48 63 | 99.45 53 | 99.52 103 | 99.73 137 | 99.33 109 | 99.13 160 | 99.77 120 | 99.33 52 | 99.47 151 | 99.39 115 | 99.92 50 | 99.36 84 | 99.63 51 | 99.13 82 | 99.63 113 | 99.41 120 |
|
ACMMP_NAP | | | 99.47 66 | 99.33 70 | 99.63 79 | 99.85 76 | 99.28 121 | 99.56 83 | 99.83 82 | 98.75 126 | 99.48 148 | 99.03 152 | 99.95 25 | 99.47 78 | 99.48 62 | 99.19 67 | 99.57 132 | 99.59 68 |
|
Anonymous20231211 | | | 99.47 66 | 99.39 63 | 99.57 91 | 99.89 42 | 99.60 45 | 99.50 99 | 99.69 142 | 98.91 107 | 99.62 118 | 99.17 138 | 99.35 145 | 98.86 140 | 99.63 51 | 99.46 49 | 99.84 47 | 99.62 63 |
|
SteuartSystems-ACMMP | | | 99.47 66 | 99.22 90 | 99.76 47 | 99.88 48 | 99.36 102 | 99.65 63 | 99.84 77 | 98.47 151 | 99.80 58 | 98.68 168 | 99.96 14 | 99.68 31 | 99.37 80 | 99.06 93 | 99.72 89 | 99.66 53 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMM | | 98.37 12 | 99.47 66 | 99.23 87 | 99.74 57 | 99.86 68 | 99.19 139 | 99.68 56 | 99.86 61 | 99.16 76 | 99.71 98 | 98.52 178 | 99.95 25 | 99.62 43 | 99.35 83 | 99.02 100 | 99.74 81 | 99.42 119 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DVP-MVS++ | | | 99.46 70 | 99.57 33 | 99.33 139 | 99.75 125 | 99.57 52 | 99.44 112 | 99.81 97 | 99.38 47 | 98.56 210 | 99.81 51 | 99.99 3 | 98.79 144 | 99.33 87 | 99.13 82 | 99.62 119 | 99.81 19 |
|
HFP-MVS | | | 99.46 70 | 99.30 75 | 99.65 73 | 99.82 93 | 99.25 127 | 99.50 99 | 99.82 89 | 99.23 62 | 99.58 128 | 98.86 156 | 99.94 35 | 99.56 53 | 99.14 130 | 99.12 86 | 99.63 113 | 99.56 84 |
|
LGP-MVS_train | | | 99.46 70 | 99.18 99 | 99.78 41 | 99.87 53 | 99.25 127 | 99.71 54 | 99.87 57 | 98.02 183 | 99.79 62 | 98.90 155 | 99.96 14 | 99.66 35 | 99.49 61 | 99.17 70 | 99.79 65 | 99.49 102 |
|
SED-MVS | | | 99.45 73 | 99.46 52 | 99.42 118 | 99.77 116 | 99.57 52 | 99.42 115 | 99.80 105 | 99.06 86 | 99.38 165 | 99.66 70 | 99.96 14 | 98.65 152 | 99.31 91 | 99.14 74 | 99.53 141 | 99.55 89 |
|
ETV-MVS | | | 99.45 73 | 99.32 72 | 99.60 84 | 99.79 103 | 99.60 45 | 99.40 120 | 99.78 113 | 97.88 189 | 99.83 51 | 99.33 119 | 99.70 114 | 98.97 130 | 99.74 36 | 99.43 53 | 99.84 47 | 99.58 77 |
|
ACMP | | 98.32 13 | 99.44 75 | 99.18 99 | 99.75 51 | 99.83 88 | 99.18 140 | 99.64 64 | 99.83 82 | 98.81 122 | 99.79 62 | 98.42 185 | 99.96 14 | 99.64 41 | 99.46 66 | 98.98 108 | 99.74 81 | 99.44 113 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DCV-MVSNet | | | 99.43 76 | 99.23 87 | 99.67 69 | 99.92 30 | 99.76 21 | 99.64 64 | 99.93 27 | 99.06 86 | 99.68 108 | 97.77 196 | 98.97 160 | 98.97 130 | 99.72 39 | 99.54 37 | 99.88 33 | 99.81 19 |
|
SMA-MVS |  | | 99.43 76 | 99.41 59 | 99.45 114 | 99.82 93 | 99.31 114 | 99.02 174 | 99.59 164 | 99.06 86 | 99.34 174 | 99.53 96 | 99.96 14 | 99.38 82 | 99.29 96 | 99.13 82 | 99.53 141 | 99.59 68 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
testgi | | | 99.43 76 | 99.47 50 | 99.38 127 | 99.90 39 | 99.67 38 | 99.30 139 | 99.73 137 | 98.64 139 | 99.53 134 | 99.52 98 | 99.90 59 | 98.08 169 | 99.65 49 | 99.40 57 | 99.75 76 | 99.55 89 |
|
DELS-MVS | | | 99.42 79 | 99.53 40 | 99.29 142 | 99.52 179 | 99.43 85 | 99.42 115 | 99.28 200 | 99.16 76 | 99.72 92 | 99.82 47 | 99.97 9 | 98.17 163 | 99.56 57 | 99.16 71 | 99.65 102 | 99.59 68 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
3Dnovator | | 99.16 3 | 99.42 79 | 99.22 90 | 99.65 73 | 99.78 108 | 99.13 149 | 99.50 99 | 99.85 68 | 99.40 44 | 99.80 58 | 98.59 174 | 99.79 102 | 99.30 96 | 99.20 118 | 99.06 93 | 99.71 92 | 99.35 133 |
|
DPE-MVS |  | | 99.41 81 | 99.36 67 | 99.47 110 | 99.66 152 | 99.48 76 | 99.46 110 | 99.75 134 | 98.65 135 | 99.41 161 | 99.67 68 | 99.95 25 | 98.82 141 | 99.21 115 | 99.14 74 | 99.72 89 | 99.40 125 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
UniMVSNet_NR-MVSNet | | | 99.41 81 | 99.12 111 | 99.76 47 | 99.86 68 | 99.48 76 | 99.50 99 | 99.81 97 | 98.84 116 | 99.89 17 | 99.45 106 | 98.32 176 | 99.59 48 | 99.22 111 | 98.89 118 | 99.90 28 | 99.63 60 |
|
CP-MVS | | | 99.41 81 | 99.20 95 | 99.65 73 | 99.80 99 | 99.23 134 | 99.44 112 | 99.75 134 | 98.60 144 | 99.74 82 | 98.66 169 | 99.93 42 | 99.48 75 | 99.33 87 | 99.16 71 | 99.73 85 | 99.48 105 |
|
QAPM | | | 99.41 81 | 99.21 94 | 99.64 78 | 99.78 108 | 99.16 142 | 99.51 95 | 99.85 68 | 99.20 66 | 99.72 92 | 99.43 107 | 99.81 92 | 99.25 101 | 98.87 161 | 98.71 139 | 99.71 92 | 99.30 138 |
|
UGNet | | | 99.40 85 | 99.61 24 | 99.16 161 | 99.88 48 | 99.64 40 | 99.61 71 | 99.77 120 | 99.31 54 | 99.63 117 | 99.33 119 | 99.93 42 | 96.46 203 | 99.63 51 | 99.53 38 | 99.63 113 | 99.89 4 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Vis-MVSNet (Re-imp) | | | 99.40 85 | 99.28 79 | 99.55 96 | 99.92 30 | 99.68 36 | 99.31 134 | 99.87 57 | 98.69 132 | 99.16 183 | 99.08 147 | 98.64 169 | 99.20 105 | 99.65 49 | 99.46 49 | 99.83 52 | 99.72 39 |
|
OPM-MVS | | | 99.39 87 | 99.22 90 | 99.59 85 | 99.76 121 | 98.82 173 | 99.51 95 | 99.79 108 | 99.17 72 | 99.53 134 | 99.31 124 | 99.95 25 | 99.35 85 | 99.22 111 | 98.79 131 | 99.60 124 | 99.27 141 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
Fast-Effi-MVS+ | | | 99.39 87 | 99.18 99 | 99.63 79 | 99.86 68 | 99.28 121 | 99.45 111 | 99.91 43 | 98.47 151 | 99.61 121 | 99.50 102 | 99.57 126 | 99.17 106 | 99.24 107 | 98.66 144 | 99.78 67 | 99.59 68 |
|
LS3D | | | 99.39 87 | 99.28 79 | 99.52 103 | 99.77 116 | 99.39 93 | 99.55 84 | 99.82 89 | 98.93 104 | 99.64 115 | 98.52 178 | 99.67 118 | 98.58 156 | 99.74 36 | 99.63 29 | 99.75 76 | 99.06 163 |
|
diffmvs |  | | 99.38 90 | 99.33 70 | 99.45 114 | 99.87 53 | 99.39 93 | 99.28 143 | 99.58 167 | 99.55 27 | 99.50 144 | 99.85 40 | 99.85 82 | 98.94 135 | 98.58 184 | 98.68 142 | 99.51 146 | 99.39 127 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CANet | | | 99.36 91 | 99.39 63 | 99.34 138 | 99.80 99 | 99.35 106 | 99.41 119 | 99.47 183 | 99.20 66 | 99.74 82 | 99.54 90 | 99.68 116 | 98.05 171 | 99.23 109 | 98.97 109 | 99.57 132 | 99.73 36 |
|
MVS_0304 | | | 99.36 91 | 99.35 68 | 99.37 133 | 99.85 76 | 99.36 102 | 99.39 121 | 99.56 169 | 99.36 50 | 99.75 76 | 99.23 130 | 99.90 59 | 97.97 177 | 99.00 142 | 98.83 125 | 99.69 95 | 99.77 27 |
|
ACMMP |  | | 99.36 91 | 99.06 119 | 99.71 62 | 99.86 68 | 99.36 102 | 99.63 68 | 99.85 68 | 98.33 166 | 99.72 92 | 97.73 198 | 99.94 35 | 99.53 58 | 99.37 80 | 99.13 82 | 99.65 102 | 99.56 84 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SD-MVS | | | 99.35 94 | 99.26 81 | 99.46 112 | 99.66 152 | 99.15 144 | 98.92 183 | 99.67 152 | 99.55 27 | 99.35 171 | 98.83 158 | 99.91 56 | 99.35 85 | 99.19 121 | 98.53 153 | 99.78 67 | 99.68 49 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MP-MVS |  | | 99.35 94 | 99.09 117 | 99.65 73 | 99.84 82 | 99.22 135 | 99.59 76 | 99.78 113 | 98.13 175 | 99.67 109 | 98.44 182 | 99.93 42 | 99.43 81 | 99.31 91 | 99.09 90 | 99.60 124 | 99.49 102 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
pmmvs4 | | | 99.34 96 | 99.15 106 | 99.57 91 | 99.77 116 | 98.90 166 | 99.51 95 | 99.77 120 | 99.07 84 | 99.73 89 | 99.72 60 | 99.84 85 | 99.07 121 | 98.85 166 | 98.39 162 | 99.55 139 | 99.27 141 |
|
EPP-MVSNet | | | 99.34 96 | 99.10 115 | 99.62 83 | 99.94 23 | 99.74 29 | 99.66 62 | 99.80 105 | 99.07 84 | 98.93 193 | 99.61 79 | 96.13 191 | 99.49 72 | 99.67 45 | 99.63 29 | 99.92 21 | 99.86 11 |
|
TSAR-MVS + GP. | | | 99.33 98 | 99.17 103 | 99.51 105 | 99.71 142 | 99.00 161 | 98.84 191 | 99.71 139 | 98.23 172 | 99.74 82 | 99.53 96 | 99.90 59 | 99.35 85 | 99.38 79 | 98.85 123 | 99.72 89 | 99.31 136 |
|
PHI-MVS | | | 99.33 98 | 99.19 97 | 99.49 108 | 99.69 144 | 99.25 127 | 99.27 144 | 99.59 164 | 98.44 155 | 99.78 66 | 99.15 139 | 99.92 50 | 98.95 134 | 99.39 77 | 99.04 98 | 99.64 110 | 99.18 147 |
|
MSP-MVS | | | 99.32 100 | 99.26 81 | 99.38 127 | 99.76 121 | 99.54 59 | 99.42 115 | 99.72 138 | 98.92 106 | 98.84 200 | 98.96 154 | 99.96 14 | 98.91 136 | 98.72 179 | 99.14 74 | 99.63 113 | 99.58 77 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 99.32 100 | 98.99 128 | 99.71 62 | 99.86 68 | 99.31 114 | 99.59 76 | 99.86 61 | 97.51 198 | 99.75 76 | 98.23 188 | 99.94 35 | 99.53 58 | 99.29 96 | 99.08 91 | 99.65 102 | 99.54 92 |
|
DeepC-MVS_fast | | 98.69 9 | 99.32 100 | 99.13 109 | 99.53 99 | 99.63 158 | 98.78 176 | 99.53 89 | 99.33 198 | 99.08 82 | 99.77 68 | 99.18 137 | 99.89 62 | 99.29 97 | 99.00 142 | 98.70 140 | 99.65 102 | 99.30 138 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSDG | | | 99.32 100 | 99.09 117 | 99.58 87 | 99.75 125 | 98.74 180 | 99.36 126 | 99.54 172 | 99.14 79 | 99.72 92 | 99.24 128 | 99.89 62 | 99.51 63 | 99.30 93 | 98.76 132 | 99.62 119 | 98.54 182 |
|
TSAR-MVS + ACMM | | | 99.31 104 | 99.26 81 | 99.37 133 | 99.66 152 | 98.97 164 | 99.20 152 | 99.56 169 | 99.33 52 | 99.19 182 | 99.54 90 | 99.91 56 | 99.32 92 | 99.12 131 | 98.34 165 | 99.29 172 | 99.65 56 |
|
3Dnovator+ | | 98.92 7 | 99.31 104 | 99.03 123 | 99.63 79 | 99.77 116 | 98.90 166 | 99.52 92 | 99.81 97 | 99.37 48 | 99.72 92 | 98.03 193 | 99.73 110 | 99.32 92 | 98.99 145 | 98.81 129 | 99.67 98 | 99.36 131 |
|
X-MVS | | | 99.30 106 | 98.99 128 | 99.66 71 | 99.85 76 | 99.30 116 | 99.49 106 | 99.82 89 | 98.32 167 | 99.69 101 | 97.31 207 | 99.93 42 | 99.50 67 | 99.37 80 | 99.16 71 | 99.60 124 | 99.53 95 |
|
MVS_111021_HR | | | 99.30 106 | 99.14 107 | 99.48 109 | 99.58 175 | 99.25 127 | 99.27 144 | 99.61 159 | 98.74 128 | 99.66 112 | 99.02 153 | 99.84 85 | 99.33 89 | 99.20 118 | 98.76 132 | 99.44 155 | 99.18 147 |
|
TAPA-MVS | | 98.54 10 | 99.30 106 | 99.24 86 | 99.36 137 | 99.44 194 | 98.77 178 | 99.00 176 | 99.41 189 | 99.23 62 | 99.60 123 | 99.50 102 | 99.86 76 | 99.15 113 | 99.29 96 | 98.95 113 | 99.56 136 | 99.08 159 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CLD-MVS | | | 99.30 106 | 99.01 127 | 99.63 79 | 99.75 125 | 98.89 169 | 99.35 129 | 99.60 161 | 98.53 149 | 99.86 35 | 99.57 86 | 99.94 35 | 99.52 61 | 98.96 147 | 98.10 178 | 99.70 94 | 99.08 159 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
USDC | | | 99.29 110 | 98.98 130 | 99.65 73 | 99.72 139 | 98.87 171 | 99.47 108 | 99.66 155 | 99.35 51 | 99.87 29 | 99.58 85 | 99.87 75 | 99.51 63 | 98.85 166 | 97.93 184 | 99.65 102 | 98.38 186 |
|
PMVS |  | 94.32 17 | 99.27 111 | 99.55 36 | 98.94 178 | 99.60 167 | 99.43 85 | 99.39 121 | 99.54 172 | 98.99 94 | 99.69 101 | 99.60 82 | 99.81 92 | 95.68 208 | 99.88 15 | 99.83 7 | 99.73 85 | 99.31 136 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
FA-MVS(training) | | | 99.26 112 | 99.12 111 | 99.44 116 | 99.60 167 | 99.26 123 | 99.24 149 | 99.97 1 | 98.84 116 | 99.76 71 | 99.43 107 | 98.74 166 | 98.47 159 | 99.39 77 | 99.10 88 | 99.57 132 | 99.07 162 |
|
MVS_111021_LR | | | 99.25 113 | 99.13 109 | 99.39 123 | 99.50 187 | 99.14 145 | 99.23 150 | 99.50 180 | 98.67 133 | 99.61 121 | 99.12 143 | 99.81 92 | 99.16 109 | 99.28 101 | 98.67 143 | 99.35 168 | 99.21 146 |
|
ECVR-MVS |  | | 99.24 114 | 98.74 153 | 99.82 26 | 99.95 10 | 99.78 17 | 99.67 60 | 99.93 27 | 99.45 38 | 99.80 58 | 99.86 38 | 92.58 207 | 99.65 37 | 99.93 3 | 99.88 3 | 99.94 15 | 99.71 45 |
|
baseline | | | 99.24 114 | 99.30 75 | 99.17 160 | 99.78 108 | 99.14 145 | 99.10 164 | 99.69 142 | 98.97 98 | 99.49 146 | 99.84 42 | 99.88 68 | 97.99 176 | 98.85 166 | 98.73 137 | 98.98 187 | 99.72 39 |
|
EIA-MVS | | | 99.23 116 | 99.03 123 | 99.47 110 | 99.83 88 | 99.64 40 | 99.16 156 | 99.81 97 | 97.11 205 | 99.65 114 | 98.44 182 | 99.78 105 | 98.61 155 | 99.46 66 | 99.22 65 | 99.75 76 | 99.59 68 |
|
HPM-MVS++ |  | | 99.23 116 | 98.98 130 | 99.53 99 | 99.75 125 | 99.02 159 | 99.44 112 | 99.77 120 | 98.65 135 | 99.52 140 | 98.72 166 | 99.92 50 | 99.33 89 | 98.77 177 | 98.40 161 | 99.40 162 | 99.36 131 |
|
PMMVS2 | | | 99.23 116 | 99.22 90 | 99.24 149 | 99.80 99 | 99.14 145 | 99.50 99 | 99.82 89 | 99.12 81 | 98.41 216 | 99.91 23 | 99.98 5 | 98.51 157 | 99.48 62 | 98.76 132 | 99.38 164 | 98.14 194 |
|
test1111 | | | 99.21 119 | 98.67 157 | 99.84 21 | 99.96 7 | 99.82 8 | 99.72 51 | 99.94 24 | 99.54 29 | 99.78 66 | 99.89 30 | 91.89 210 | 99.69 30 | 99.93 3 | 99.89 1 | 99.95 7 | 99.75 32 |
|
CPTT-MVS | | | 99.21 119 | 98.89 140 | 99.58 87 | 99.72 139 | 99.12 152 | 99.30 139 | 99.76 129 | 98.62 140 | 99.66 112 | 97.51 203 | 99.89 62 | 99.48 75 | 99.01 140 | 98.64 146 | 99.58 131 | 99.40 125 |
|
TinyColmap | | | 99.21 119 | 98.89 140 | 99.59 85 | 99.61 163 | 98.61 188 | 99.47 108 | 99.67 152 | 99.02 91 | 99.82 54 | 99.15 139 | 99.74 107 | 99.35 85 | 99.17 126 | 98.33 166 | 99.63 113 | 98.22 192 |
|
Effi-MVS+ | | | 99.20 122 | 98.93 135 | 99.50 107 | 99.79 103 | 99.26 123 | 98.82 194 | 99.96 12 | 98.37 165 | 99.60 123 | 99.12 143 | 98.36 174 | 99.05 124 | 98.93 150 | 98.82 126 | 99.78 67 | 99.68 49 |
|
PVSNet_BlendedMVS | | | 99.20 122 | 99.17 103 | 99.23 150 | 99.69 144 | 99.33 109 | 99.04 169 | 99.13 203 | 98.41 160 | 99.79 62 | 99.33 119 | 99.36 142 | 98.10 167 | 99.29 96 | 98.87 120 | 99.65 102 | 99.56 84 |
|
PVSNet_Blended | | | 99.20 122 | 99.17 103 | 99.23 150 | 99.69 144 | 99.33 109 | 99.04 169 | 99.13 203 | 98.41 160 | 99.79 62 | 99.33 119 | 99.36 142 | 98.10 167 | 99.29 96 | 98.87 120 | 99.65 102 | 99.56 84 |
|
MCST-MVS | | | 99.17 125 | 98.82 148 | 99.57 91 | 99.75 125 | 98.70 184 | 99.25 148 | 99.69 142 | 98.62 140 | 99.59 125 | 98.54 176 | 99.79 102 | 99.53 58 | 98.48 188 | 98.15 174 | 99.64 110 | 99.43 116 |
|
APD-MVS |  | | 99.17 125 | 98.92 136 | 99.46 112 | 99.78 108 | 99.24 132 | 99.34 130 | 99.78 113 | 97.79 192 | 99.48 148 | 98.25 187 | 99.88 68 | 98.77 145 | 99.18 124 | 98.92 115 | 99.63 113 | 99.18 147 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
OpenMVS |  | 98.82 8 | 99.17 125 | 98.85 144 | 99.53 99 | 99.75 125 | 99.06 157 | 99.36 126 | 99.82 89 | 98.28 169 | 99.76 71 | 98.47 180 | 99.61 122 | 98.91 136 | 98.80 174 | 98.70 140 | 99.60 124 | 99.04 167 |
|
IterMVS-LS | | | 99.16 128 | 98.82 148 | 99.57 91 | 99.87 53 | 99.71 32 | 99.58 80 | 99.92 37 | 99.24 61 | 99.71 98 | 99.73 56 | 95.79 192 | 98.91 136 | 98.82 173 | 98.66 144 | 99.43 158 | 99.77 27 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DeepPCF-MVS | | 98.38 11 | 99.16 128 | 99.20 95 | 99.12 165 | 99.20 211 | 98.71 183 | 98.85 190 | 99.06 206 | 99.17 72 | 98.96 192 | 99.61 79 | 99.86 76 | 99.29 97 | 99.17 126 | 98.72 138 | 99.36 166 | 99.15 155 |
|
IterMVS-SCA-FT | | | 99.15 130 | 98.96 132 | 99.38 127 | 99.87 53 | 99.54 59 | 99.53 89 | 99.79 108 | 98.94 102 | 99.82 54 | 99.92 16 | 97.65 183 | 98.82 141 | 98.95 149 | 98.26 168 | 98.45 197 | 99.47 108 |
|
CDS-MVSNet | | | 99.15 130 | 99.10 115 | 99.21 156 | 99.59 172 | 99.22 135 | 99.48 107 | 99.47 183 | 98.89 109 | 99.41 161 | 99.84 42 | 98.11 179 | 97.76 180 | 99.26 106 | 99.01 102 | 99.57 132 | 99.38 128 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IS_MVSNet | | | 99.15 130 | 99.12 111 | 99.19 158 | 99.92 30 | 99.73 31 | 99.55 84 | 99.86 61 | 98.45 154 | 96.91 222 | 98.74 164 | 98.33 175 | 99.02 126 | 99.54 59 | 99.47 47 | 99.88 33 | 99.61 65 |
|
dmvs_re | | | 99.14 133 | 98.76 151 | 99.58 87 | 99.75 125 | 99.38 96 | 99.30 139 | 99.68 148 | 96.94 210 | 99.74 82 | 97.70 199 | 99.20 154 | 99.29 97 | 99.22 111 | 99.35 59 | 99.73 85 | 99.55 89 |
|
MDA-MVSNet-bldmvs | | | 99.11 134 | 99.11 114 | 99.12 165 | 99.91 34 | 99.38 96 | 99.77 32 | 98.72 210 | 99.31 54 | 99.85 42 | 99.43 107 | 98.26 177 | 99.48 75 | 99.85 19 | 98.47 156 | 96.99 208 | 99.08 159 |
|
OMC-MVS | | | 99.11 134 | 98.95 133 | 99.29 142 | 99.37 200 | 98.57 190 | 99.19 153 | 99.20 202 | 98.87 112 | 99.58 128 | 99.13 141 | 99.88 68 | 99.00 127 | 99.19 121 | 98.46 157 | 99.43 158 | 98.57 181 |
|
MVS_Test | | | 99.09 136 | 98.92 136 | 99.29 142 | 99.61 163 | 99.07 156 | 99.04 169 | 99.81 97 | 98.58 146 | 99.37 168 | 99.74 54 | 98.87 164 | 98.41 161 | 98.61 183 | 98.01 182 | 99.50 148 | 99.57 83 |
|
CNVR-MVS | | | 99.08 137 | 98.83 145 | 99.37 133 | 99.61 163 | 98.74 180 | 99.15 157 | 99.54 172 | 98.59 145 | 99.37 168 | 98.15 190 | 99.88 68 | 99.08 120 | 98.91 155 | 98.46 157 | 99.48 150 | 99.06 163 |
|
IterMVS | | | 99.08 137 | 98.90 139 | 99.29 142 | 99.87 53 | 99.53 62 | 99.52 92 | 99.77 120 | 98.94 102 | 99.75 76 | 99.91 23 | 97.52 187 | 98.72 149 | 98.86 164 | 98.14 175 | 98.09 200 | 99.43 116 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet2 | | | 99.07 139 | 99.19 97 | 98.93 180 | 99.02 216 | 99.53 62 | 99.31 134 | 99.84 77 | 98.86 113 | 98.88 196 | 99.64 74 | 98.44 172 | 96.92 197 | 99.35 83 | 99.00 106 | 99.61 121 | 99.53 95 |
|
CVMVSNet | | | 99.06 140 | 98.88 143 | 99.28 146 | 99.52 179 | 99.53 62 | 99.42 115 | 99.69 142 | 98.74 128 | 98.27 218 | 99.89 30 | 95.48 195 | 99.44 79 | 99.46 66 | 99.33 60 | 99.32 171 | 99.75 32 |
|
CDPH-MVS | | | 99.05 141 | 98.63 158 | 99.54 98 | 99.75 125 | 98.78 176 | 99.59 76 | 99.68 148 | 97.79 192 | 99.37 168 | 98.20 189 | 99.86 76 | 99.14 115 | 98.58 184 | 98.01 182 | 99.68 96 | 99.16 153 |
|
TAMVS | | | 99.05 141 | 99.02 126 | 99.08 170 | 99.69 144 | 99.22 135 | 99.33 131 | 99.32 199 | 99.16 76 | 98.97 191 | 99.87 35 | 97.36 188 | 97.76 180 | 99.21 115 | 99.00 106 | 99.44 155 | 99.33 134 |
|
CANet_DTU | | | 99.03 143 | 99.18 99 | 98.87 183 | 99.58 175 | 99.03 158 | 99.18 154 | 99.41 189 | 98.65 135 | 99.74 82 | 99.55 89 | 99.71 111 | 96.13 206 | 99.19 121 | 98.92 115 | 99.17 181 | 99.18 147 |
|
Effi-MVS+-dtu | | | 99.01 144 | 99.05 120 | 98.98 174 | 99.60 167 | 99.13 149 | 99.03 173 | 99.61 159 | 98.52 150 | 99.01 188 | 98.53 177 | 99.83 87 | 96.95 196 | 99.48 62 | 98.59 151 | 99.66 100 | 99.25 145 |
|
canonicalmvs | | | 99.00 145 | 98.68 156 | 99.37 133 | 99.68 150 | 99.42 89 | 98.94 182 | 99.89 52 | 99.00 93 | 98.99 189 | 98.43 184 | 95.69 193 | 98.96 133 | 99.18 124 | 99.18 68 | 99.74 81 | 99.88 6 |
|
MIMVSNet | | | 99.00 145 | 99.03 123 | 98.97 177 | 99.32 206 | 99.32 113 | 99.39 121 | 99.91 43 | 98.41 160 | 98.76 203 | 99.24 128 | 99.17 155 | 97.13 190 | 99.30 93 | 98.80 130 | 99.29 172 | 99.01 168 |
|
CHOSEN 280x420 | | | 98.99 147 | 98.91 138 | 99.07 171 | 99.77 116 | 99.26 123 | 99.55 84 | 99.92 37 | 98.62 140 | 98.67 207 | 99.62 78 | 97.20 189 | 98.44 160 | 99.50 60 | 99.18 68 | 98.08 201 | 98.99 171 |
|
SF-MVS | | | 98.96 148 | 98.95 133 | 98.98 174 | 99.64 157 | 98.89 169 | 98.00 220 | 99.58 167 | 98.42 158 | 99.08 187 | 98.63 171 | 99.83 87 | 98.04 173 | 99.02 139 | 98.76 132 | 99.52 143 | 99.13 156 |
|
GBi-Net | | | 98.96 148 | 99.05 120 | 98.85 184 | 99.02 216 | 99.53 62 | 99.31 134 | 99.78 113 | 98.13 175 | 98.48 212 | 99.43 107 | 97.58 184 | 96.92 197 | 99.68 42 | 99.50 42 | 99.61 121 | 99.53 95 |
|
test1 | | | 98.96 148 | 99.05 120 | 98.85 184 | 99.02 216 | 99.53 62 | 99.31 134 | 99.78 113 | 98.13 175 | 98.48 212 | 99.43 107 | 97.58 184 | 96.92 197 | 99.68 42 | 99.50 42 | 99.61 121 | 99.53 95 |
|
PCF-MVS | | 97.86 15 | 98.95 151 | 98.53 163 | 99.44 116 | 99.70 143 | 98.80 175 | 98.96 178 | 99.69 142 | 98.65 135 | 99.59 125 | 99.33 119 | 99.94 35 | 99.12 118 | 98.01 198 | 97.11 195 | 99.59 130 | 97.83 198 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MS-PatchMatch | | | 98.94 152 | 98.71 155 | 99.21 156 | 99.52 179 | 98.22 206 | 98.97 177 | 99.53 177 | 98.76 124 | 99.50 144 | 98.59 174 | 99.56 128 | 98.68 150 | 98.63 182 | 98.45 159 | 99.05 184 | 98.73 178 |
|
AdaColmap |  | | 98.93 153 | 98.53 163 | 99.39 123 | 99.52 179 | 98.65 187 | 99.11 163 | 99.59 164 | 98.08 179 | 99.44 154 | 97.46 205 | 99.45 135 | 99.24 102 | 98.92 152 | 98.44 160 | 99.44 155 | 98.73 178 |
|
MSLP-MVS++ | | | 98.92 154 | 98.73 154 | 99.14 162 | 99.44 194 | 99.00 161 | 98.36 210 | 99.35 195 | 98.82 121 | 99.38 165 | 96.06 211 | 99.79 102 | 99.07 121 | 98.88 160 | 99.05 96 | 99.27 174 | 99.53 95 |
|
new_pmnet | | | 98.91 155 | 98.89 140 | 98.94 178 | 99.51 185 | 98.27 202 | 99.15 157 | 98.66 211 | 99.17 72 | 99.48 148 | 99.79 52 | 99.80 98 | 98.49 158 | 99.23 109 | 98.20 172 | 98.34 198 | 97.74 202 |
|
train_agg | | | 98.89 156 | 98.48 168 | 99.38 127 | 99.69 144 | 98.76 179 | 99.31 134 | 99.60 161 | 97.71 194 | 98.98 190 | 97.89 194 | 99.89 62 | 99.29 97 | 98.32 189 | 97.59 191 | 99.42 161 | 99.16 153 |
|
NCCC | | | 98.88 157 | 98.42 169 | 99.42 118 | 99.62 159 | 98.81 174 | 99.10 164 | 99.54 172 | 98.76 124 | 99.53 134 | 95.97 212 | 99.80 98 | 99.16 109 | 98.49 187 | 98.06 181 | 99.55 139 | 99.05 165 |
|
PLC |  | 97.83 16 | 98.88 157 | 98.52 165 | 99.30 141 | 99.45 192 | 98.60 189 | 98.65 200 | 99.49 181 | 98.66 134 | 99.59 125 | 96.33 210 | 99.59 125 | 99.17 106 | 98.87 161 | 98.53 153 | 99.46 152 | 99.05 165 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
pmmvs3 | | | 98.85 159 | 98.60 159 | 99.13 163 | 99.66 152 | 98.72 182 | 99.37 125 | 99.06 206 | 98.44 155 | 99.76 71 | 99.74 54 | 99.55 129 | 99.15 113 | 99.04 137 | 96.00 203 | 97.80 202 | 98.72 180 |
|
Fast-Effi-MVS+-dtu | | | 98.82 160 | 98.80 150 | 98.84 186 | 99.51 185 | 98.90 166 | 98.96 178 | 99.91 43 | 98.29 168 | 99.11 186 | 98.47 180 | 99.63 121 | 96.03 207 | 99.21 115 | 98.12 176 | 99.52 143 | 99.01 168 |
|
CNLPA | | | 98.82 160 | 98.52 165 | 99.18 159 | 99.21 210 | 98.50 194 | 98.73 198 | 99.34 197 | 98.73 130 | 99.56 130 | 97.55 202 | 99.42 139 | 99.06 123 | 98.93 150 | 98.10 178 | 99.21 180 | 98.38 186 |
|
PatchMatch-RL | | | 98.80 162 | 98.52 165 | 99.12 165 | 99.38 199 | 98.70 184 | 98.56 203 | 99.55 171 | 97.81 191 | 99.34 174 | 97.57 201 | 99.31 149 | 98.67 151 | 99.27 104 | 98.62 148 | 99.22 179 | 98.35 188 |
|
thisisatest0530 | | | 98.78 163 | 98.26 172 | 99.39 123 | 99.78 108 | 99.43 85 | 99.07 166 | 99.64 157 | 98.44 155 | 99.42 159 | 99.22 131 | 92.68 206 | 98.63 153 | 99.30 93 | 99.14 74 | 99.80 62 | 99.60 66 |
|
tttt0517 | | | 98.77 164 | 98.25 174 | 99.38 127 | 99.79 103 | 99.46 79 | 99.07 166 | 99.64 157 | 98.40 163 | 99.38 165 | 99.21 133 | 92.54 208 | 98.63 153 | 99.34 86 | 99.14 74 | 99.80 62 | 99.62 63 |
|
DI_MVS_plusplus_trai | | | 98.74 165 | 98.08 182 | 99.51 105 | 99.79 103 | 99.29 120 | 99.61 71 | 99.60 161 | 99.20 66 | 99.46 152 | 99.09 146 | 92.93 200 | 98.97 130 | 98.27 192 | 98.35 164 | 99.65 102 | 99.45 110 |
|
TSAR-MVS + COLMAP | | | 98.74 165 | 98.58 161 | 98.93 180 | 99.29 207 | 98.23 203 | 99.04 169 | 99.24 201 | 98.79 123 | 98.80 202 | 99.37 117 | 99.71 111 | 98.06 170 | 98.02 197 | 97.46 193 | 99.16 182 | 98.48 184 |
|
MDTV_nov1_ep13_2view | | | 98.73 167 | 98.31 171 | 99.22 153 | 99.75 125 | 99.24 132 | 99.75 39 | 99.93 27 | 99.31 54 | 99.84 46 | 99.86 38 | 99.81 92 | 99.31 95 | 97.40 206 | 94.77 205 | 96.73 210 | 97.81 199 |
|
PMMVS | | | 98.71 168 | 98.55 162 | 98.90 182 | 99.28 208 | 98.45 196 | 98.53 206 | 99.45 185 | 97.67 196 | 99.15 185 | 98.76 162 | 99.54 131 | 97.79 179 | 98.77 177 | 98.23 170 | 99.16 182 | 98.46 185 |
|
HQP-MVS | | | 98.70 169 | 98.19 178 | 99.28 146 | 99.61 163 | 98.52 192 | 98.71 199 | 99.35 195 | 97.97 186 | 99.53 134 | 97.38 206 | 99.85 82 | 99.14 115 | 97.53 202 | 96.85 199 | 99.36 166 | 99.26 144 |
|
N_pmnet | | | 98.64 170 | 98.23 177 | 99.11 168 | 99.78 108 | 99.25 127 | 99.75 39 | 99.39 193 | 99.65 13 | 99.70 100 | 99.78 53 | 99.89 62 | 98.81 143 | 97.60 201 | 94.28 206 | 97.24 207 | 97.15 206 |
|
CMPMVS |  | 76.62 19 | 98.64 170 | 98.60 159 | 98.68 191 | 99.33 204 | 97.07 219 | 98.11 218 | 98.50 212 | 97.69 195 | 99.26 177 | 98.35 186 | 99.66 119 | 97.62 183 | 99.43 74 | 99.02 100 | 99.24 177 | 99.01 168 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FMVSNet3 | | | 98.63 172 | 98.75 152 | 98.49 197 | 98.10 222 | 99.44 82 | 99.02 174 | 99.78 113 | 98.13 175 | 98.48 212 | 99.43 107 | 97.58 184 | 96.16 205 | 98.85 166 | 98.39 162 | 99.40 162 | 99.41 120 |
|
GA-MVS | | | 98.59 173 | 98.15 179 | 99.09 169 | 99.59 172 | 99.13 149 | 98.84 191 | 99.52 179 | 98.61 143 | 99.35 171 | 99.67 68 | 93.03 199 | 97.73 182 | 98.90 159 | 98.26 168 | 99.51 146 | 99.48 105 |
|
MAR-MVS | | | 98.54 174 | 98.15 179 | 98.98 174 | 99.37 200 | 98.09 209 | 98.56 203 | 99.65 156 | 96.11 220 | 99.27 176 | 97.16 208 | 99.50 132 | 98.03 174 | 98.87 161 | 98.23 170 | 99.01 185 | 99.13 156 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
new-patchmatchnet | | | 98.49 175 | 97.60 184 | 99.53 99 | 99.90 39 | 99.55 56 | 99.77 32 | 99.48 182 | 99.67 10 | 99.86 35 | 99.98 3 | 99.98 5 | 99.50 67 | 96.90 208 | 91.52 212 | 98.67 194 | 95.62 212 |
|
FPMVS | | | 98.48 176 | 98.83 145 | 98.07 207 | 99.09 214 | 97.98 212 | 99.07 166 | 98.04 218 | 98.99 94 | 99.22 180 | 98.85 157 | 99.43 138 | 93.79 216 | 99.66 47 | 99.11 87 | 99.24 177 | 97.76 200 |
|
MVS-HIRNet | | | 98.45 177 | 98.25 174 | 98.69 190 | 99.12 212 | 97.81 218 | 98.55 205 | 99.85 68 | 98.58 146 | 99.67 109 | 99.61 79 | 99.86 76 | 97.46 186 | 97.95 199 | 96.37 201 | 97.49 204 | 97.56 203 |
|
test0.0.03 1 | | | 98.41 178 | 98.41 170 | 98.40 201 | 99.62 159 | 99.16 142 | 98.87 188 | 99.41 189 | 97.15 203 | 96.60 224 | 99.31 124 | 97.00 190 | 96.55 202 | 98.91 155 | 98.51 155 | 99.37 165 | 98.82 175 |
|
gg-mvs-nofinetune | | | 98.40 179 | 98.26 172 | 98.57 195 | 99.83 88 | 98.86 172 | 98.77 197 | 99.97 1 | 99.57 24 | 99.99 1 | 99.99 1 | 93.81 197 | 93.50 217 | 98.91 155 | 98.20 172 | 99.33 170 | 98.52 183 |
|
baseline1 | | | 98.39 180 | 97.59 185 | 99.31 140 | 99.78 108 | 99.45 80 | 99.13 160 | 99.53 177 | 98.06 181 | 98.87 197 | 98.63 171 | 90.04 214 | 98.76 146 | 98.85 166 | 98.84 124 | 99.81 58 | 99.28 140 |
|
pmnet_mix02 | | | 98.28 181 | 97.48 187 | 99.22 153 | 99.78 108 | 99.12 152 | 99.68 56 | 99.39 193 | 99.49 34 | 99.86 35 | 99.82 47 | 99.89 62 | 99.23 103 | 95.54 211 | 92.36 209 | 97.38 205 | 96.14 210 |
|
PatchT | | | 98.11 182 | 97.12 193 | 99.26 148 | 99.65 156 | 98.34 200 | 99.57 82 | 99.97 1 | 97.48 199 | 99.43 156 | 99.04 151 | 90.84 212 | 98.15 164 | 98.04 195 | 97.78 185 | 98.82 191 | 98.30 189 |
|
DPM-MVS | | | 98.10 183 | 97.32 191 | 99.01 173 | 99.52 179 | 97.92 213 | 98.47 208 | 99.45 185 | 98.25 170 | 98.91 194 | 93.99 216 | 99.69 115 | 98.73 148 | 96.29 210 | 96.32 202 | 99.00 186 | 98.77 176 |
|
EPNet_dtu | | | 98.09 184 | 98.25 174 | 97.91 209 | 99.58 175 | 98.02 211 | 98.19 215 | 99.67 152 | 97.94 187 | 99.74 82 | 99.07 149 | 98.71 168 | 93.40 218 | 97.50 203 | 97.09 196 | 96.89 209 | 99.44 113 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPNet | | | 98.06 185 | 98.11 181 | 98.00 208 | 99.60 167 | 98.99 163 | 98.38 209 | 99.68 148 | 98.18 174 | 98.85 199 | 97.89 194 | 95.60 194 | 92.72 219 | 98.30 190 | 98.10 178 | 98.76 192 | 99.72 39 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CR-MVSNet | | | 97.91 186 | 96.80 196 | 99.22 153 | 99.60 167 | 98.23 203 | 98.91 184 | 99.97 1 | 96.89 213 | 99.43 156 | 99.10 145 | 89.24 217 | 98.15 164 | 98.04 195 | 97.78 185 | 99.26 175 | 98.30 189 |
|
thres200 | | | 97.87 187 | 96.56 198 | 99.39 123 | 99.76 121 | 99.52 69 | 99.13 160 | 99.76 129 | 96.88 215 | 98.66 208 | 92.87 220 | 88.77 220 | 99.16 109 | 99.11 132 | 99.42 54 | 99.88 33 | 99.33 134 |
|
baseline2 | | | 97.87 187 | 97.18 192 | 98.67 192 | 99.34 203 | 99.17 141 | 98.48 207 | 98.82 209 | 97.08 206 | 98.83 201 | 98.75 163 | 89.47 216 | 97.03 195 | 98.67 181 | 98.27 167 | 99.52 143 | 98.83 174 |
|
thres600view7 | | | 97.86 189 | 96.53 201 | 99.41 121 | 99.84 82 | 99.52 69 | 99.36 126 | 99.76 129 | 97.32 201 | 98.38 217 | 93.24 217 | 87.25 222 | 99.23 103 | 99.11 132 | 99.75 18 | 99.88 33 | 99.48 105 |
|
tfpn200view9 | | | 97.85 190 | 96.54 199 | 99.38 127 | 99.74 135 | 99.52 69 | 99.17 155 | 99.76 129 | 96.10 221 | 98.70 205 | 92.99 218 | 89.10 218 | 99.00 127 | 99.11 132 | 99.56 33 | 99.88 33 | 99.41 120 |
|
thres400 | | | 97.82 191 | 96.47 202 | 99.40 122 | 99.81 98 | 99.44 82 | 99.29 142 | 99.69 142 | 97.15 203 | 98.57 209 | 92.82 221 | 87.96 221 | 99.16 109 | 98.96 147 | 99.55 36 | 99.86 41 | 99.41 120 |
|
IB-MVS | | 98.10 14 | 97.76 192 | 97.40 190 | 98.18 203 | 99.62 159 | 99.11 154 | 98.24 213 | 98.35 214 | 96.56 217 | 99.44 154 | 91.28 222 | 98.96 162 | 93.84 215 | 98.09 194 | 98.62 148 | 99.56 136 | 99.18 147 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-LLR | | | 97.74 193 | 97.46 188 | 98.08 205 | 99.62 159 | 98.37 198 | 98.26 211 | 99.41 189 | 97.03 207 | 97.38 220 | 99.54 90 | 92.89 201 | 95.12 212 | 98.78 175 | 97.68 189 | 98.65 195 | 97.90 196 |
|
RPMNet | | | 97.70 194 | 96.54 199 | 99.06 172 | 99.57 178 | 98.23 203 | 98.95 181 | 99.97 1 | 96.89 213 | 99.49 146 | 99.13 141 | 89.63 215 | 97.09 192 | 96.68 209 | 97.02 197 | 99.26 175 | 98.19 193 |
|
thres100view900 | | | 97.69 195 | 96.37 203 | 99.23 150 | 99.74 135 | 99.21 138 | 98.81 195 | 99.43 188 | 96.10 221 | 98.70 205 | 92.99 218 | 89.10 218 | 98.88 139 | 98.58 184 | 99.31 62 | 99.82 55 | 99.27 141 |
|
FMVSNet5 | | | 97.69 195 | 96.98 194 | 98.53 196 | 98.53 220 | 99.36 102 | 98.90 187 | 99.54 172 | 96.38 218 | 98.44 215 | 95.38 214 | 90.08 213 | 97.05 194 | 99.46 66 | 99.06 93 | 98.73 193 | 99.12 158 |
|
MVE |  | 91.08 18 | 97.68 197 | 97.65 183 | 97.71 215 | 98.46 221 | 91.62 225 | 97.92 221 | 98.86 208 | 98.73 130 | 97.99 219 | 98.64 170 | 99.96 14 | 99.17 106 | 99.59 55 | 97.75 187 | 93.87 224 | 97.27 204 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test-mter | | | 97.65 198 | 97.57 186 | 97.75 213 | 98.90 219 | 98.56 191 | 98.15 216 | 98.45 213 | 96.92 212 | 96.84 223 | 99.52 98 | 92.53 209 | 95.24 211 | 99.04 137 | 98.12 176 | 98.90 189 | 98.29 191 |
|
TESTMET0.1,1 | | | 97.62 199 | 97.46 188 | 97.81 211 | 99.07 215 | 98.37 198 | 98.26 211 | 98.35 214 | 97.03 207 | 97.38 220 | 99.54 90 | 92.89 201 | 95.12 212 | 98.78 175 | 97.68 189 | 98.65 195 | 97.90 196 |
|
test2506 | | | 97.57 200 | 95.67 209 | 99.78 41 | 99.95 10 | 99.78 17 | 99.67 60 | 99.93 27 | 99.45 38 | 99.55 133 | 99.20 134 | 71.73 229 | 99.65 37 | 99.93 3 | 99.88 3 | 99.94 15 | 99.72 39 |
|
MVSTER | | | 97.55 201 | 96.75 197 | 98.48 198 | 99.46 191 | 99.54 59 | 98.24 213 | 99.77 120 | 97.56 197 | 99.41 161 | 99.31 124 | 84.86 224 | 94.66 214 | 98.86 164 | 97.75 187 | 99.34 169 | 99.38 128 |
|
ET-MVSNet_ETH3D | | | 97.44 202 | 96.29 204 | 98.78 187 | 97.93 223 | 98.95 165 | 98.91 184 | 99.09 205 | 98.00 184 | 99.24 178 | 98.83 158 | 84.62 225 | 98.02 175 | 97.43 205 | 97.38 194 | 99.48 150 | 98.84 173 |
|
MDTV_nov1_ep13 | | | 97.41 203 | 96.26 205 | 98.76 188 | 99.47 189 | 98.43 197 | 99.26 147 | 99.82 89 | 98.06 181 | 99.23 179 | 99.22 131 | 92.86 203 | 98.05 171 | 95.33 213 | 93.66 208 | 96.73 210 | 96.26 209 |
|
ADS-MVSNet | | | 97.29 204 | 96.17 206 | 98.59 194 | 99.59 172 | 98.70 184 | 99.32 132 | 99.86 61 | 98.47 151 | 99.56 130 | 99.08 147 | 98.16 178 | 97.34 188 | 92.92 215 | 91.17 213 | 95.91 213 | 94.72 215 |
|
SCA | | | 97.25 205 | 96.05 207 | 98.64 193 | 99.36 202 | 99.02 159 | 99.27 144 | 99.96 12 | 98.25 170 | 99.69 101 | 98.71 167 | 94.66 196 | 97.95 178 | 93.95 214 | 92.35 210 | 95.64 214 | 95.40 214 |
|
gm-plane-assit | | | 96.82 206 | 94.84 214 | 99.13 163 | 99.95 10 | 99.78 17 | 99.69 55 | 99.92 37 | 99.19 69 | 99.84 46 | 99.92 16 | 72.93 228 | 96.44 204 | 98.21 193 | 97.01 198 | 98.92 188 | 96.87 208 |
|
PatchmatchNet |  | | 96.81 207 | 95.41 211 | 98.43 200 | 99.43 196 | 98.30 201 | 99.23 150 | 99.93 27 | 98.19 173 | 99.64 115 | 98.81 161 | 93.50 198 | 97.43 187 | 92.89 216 | 90.78 215 | 94.94 219 | 95.41 213 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 96.76 208 | 95.30 213 | 98.46 199 | 99.42 197 | 98.47 195 | 99.32 132 | 99.91 43 | 98.42 158 | 99.51 142 | 99.07 149 | 92.81 204 | 97.12 191 | 92.39 217 | 91.71 211 | 95.51 215 | 94.20 217 |
|
E-PMN | | | 96.72 209 | 95.78 208 | 97.81 211 | 99.45 192 | 95.46 222 | 98.14 217 | 98.33 216 | 97.99 185 | 98.73 204 | 98.09 191 | 98.97 160 | 97.54 185 | 97.45 204 | 91.09 214 | 94.70 221 | 91.40 220 |
|
tpm | | | 96.56 210 | 94.68 215 | 98.74 189 | 99.12 212 | 97.90 214 | 98.79 196 | 99.93 27 | 96.79 216 | 99.69 101 | 99.19 136 | 81.48 227 | 97.56 184 | 95.46 212 | 93.97 207 | 97.37 206 | 97.99 195 |
|
EMVS | | | 96.47 211 | 95.38 212 | 97.74 214 | 99.42 197 | 95.37 223 | 98.07 219 | 98.27 217 | 97.85 190 | 98.90 195 | 97.48 204 | 98.73 167 | 97.20 189 | 97.21 207 | 90.39 216 | 94.59 223 | 90.65 221 |
|
tpmrst | | | 96.18 212 | 94.47 216 | 98.18 203 | 99.52 179 | 97.89 215 | 98.96 178 | 99.79 108 | 98.07 180 | 99.16 183 | 99.30 127 | 92.69 205 | 96.69 200 | 90.76 219 | 88.85 219 | 94.96 218 | 93.69 218 |
|
CostFormer | | | 95.61 213 | 93.35 219 | 98.24 202 | 99.48 188 | 98.03 210 | 98.65 200 | 99.83 82 | 96.93 211 | 99.42 159 | 98.83 158 | 83.65 226 | 97.08 193 | 90.39 220 | 89.54 218 | 94.94 219 | 96.11 211 |
|
dps | | | 95.59 214 | 93.46 218 | 98.08 205 | 99.33 204 | 98.22 206 | 98.87 188 | 99.70 140 | 96.17 219 | 98.87 197 | 97.75 197 | 86.85 223 | 96.60 201 | 91.24 218 | 89.62 217 | 95.10 217 | 94.34 216 |
|
tpm cat1 | | | 95.52 215 | 93.49 217 | 97.88 210 | 99.28 208 | 97.87 216 | 98.65 200 | 99.77 120 | 97.27 202 | 99.46 152 | 98.04 192 | 90.99 211 | 95.46 209 | 88.57 221 | 88.14 220 | 94.64 222 | 93.54 219 |
|
test_method | | | 91.96 216 | 95.51 210 | 87.82 217 | 70.84 225 | 82.79 226 | 92.13 225 | 87.74 220 | 98.88 110 | 95.40 225 | 99.20 134 | 98.04 180 | 85.65 221 | 97.71 200 | 94.95 204 | 95.13 216 | 97.00 207 |
|
GG-mvs-BLEND | | | 70.44 217 | 96.91 195 | 39.57 218 | 3.32 228 | 96.51 220 | 91.01 226 | 4.05 224 | 97.03 207 | 33.20 227 | 94.67 215 | 97.75 182 | 7.59 224 | 98.28 191 | 96.85 199 | 98.24 199 | 97.26 205 |
|
testmvs | | | 22.33 218 | 29.66 220 | 13.79 219 | 8.97 226 | 10.35 227 | 15.53 229 | 8.09 223 | 32.51 223 | 19.87 228 | 45.18 223 | 30.56 231 | 17.05 223 | 29.96 222 | 24.74 221 | 13.21 225 | 34.30 222 |
|
test123 | | | 21.52 219 | 28.47 221 | 13.42 220 | 7.29 227 | 10.12 228 | 15.70 228 | 8.31 222 | 31.54 224 | 19.34 229 | 36.33 224 | 37.40 230 | 17.14 222 | 27.45 223 | 23.17 222 | 12.73 226 | 33.30 223 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
TPM-MVS | | | | | | 99.47 189 | 97.86 217 | 97.79 222 | | | 98.49 211 | 97.62 200 | 99.83 87 | 95.33 210 | | | 98.90 189 | 98.77 176 |
|
RE-MVS-def | | | | | | | | | | | 99.96 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.57 126 | | | | | |
|
SR-MVS | | | | | | 99.73 137 | | | 99.74 136 | | | | 99.88 68 | | | | | |
|
Anonymous202405211 | | | | 99.14 107 | | 99.87 53 | 99.55 56 | 99.50 99 | 99.70 140 | 98.55 148 | | 98.61 173 | 98.46 171 | 98.76 146 | 99.66 47 | 99.50 42 | 99.85 44 | 99.63 60 |
|
our_test_3 | | | | | | 99.75 125 | 99.11 154 | 99.74 46 | | | | | | | | | | |
|
ambc | | | | 98.83 145 | | 99.72 139 | 98.52 192 | 98.84 191 | | 98.96 99 | 99.92 9 | 99.34 118 | 99.74 107 | 99.04 125 | 98.68 180 | 97.57 192 | 99.46 152 | 98.99 171 |
|
MTAPA | | | | | | | | | | | 99.62 118 | | 99.95 25 | | | | | |
|
MTMP | | | | | | | | | | | 99.53 134 | | 99.92 50 | | | | | |
|
Patchmatch-RL test | | | | | | | | 65.75 227 | | | | | | | | | | |
|
tmp_tt | | | | | 88.14 216 | 96.68 224 | 91.91 224 | 93.70 224 | 61.38 221 | 99.61 19 | 90.51 226 | 99.40 114 | 99.71 111 | 90.32 220 | 99.22 111 | 99.44 52 | 96.25 212 | |
|
XVS | | | | | | 99.86 68 | 99.30 116 | 99.72 51 | | | 99.69 101 | | 99.93 42 | | | | 99.60 124 | |
|
X-MVStestdata | | | | | | 99.86 68 | 99.30 116 | 99.72 51 | | | 99.69 101 | | 99.93 42 | | | | 99.60 124 | |
|
mPP-MVS | | | | | | 99.84 82 | | | | | | | 99.92 50 | | | | | |
|
NP-MVS | | | | | | | | | | 97.37 200 | | | | | | | | |
|
Patchmtry | | | | | | | 98.19 208 | 98.91 184 | 99.97 1 | | 99.43 156 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 96.39 221 | 97.15 223 | 88.89 219 | 97.94 187 | 99.51 142 | 95.71 213 | 97.88 181 | 98.19 162 | 98.92 152 | | 97.73 203 | 97.75 201 |
|