LTVRE_ROB | | 99.39 1 | 99.90 1 | 99.87 2 | 99.93 1 | 99.97 2 | 99.82 7 | 99.91 3 | 99.92 33 | 99.75 5 | 99.93 5 | 99.89 31 | 100.00 1 | 99.87 2 | 99.93 3 | 99.82 8 | 99.96 3 | 99.90 3 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v7n | | | 99.89 2 | 99.86 4 | 99.93 1 | 99.97 2 | 99.83 3 | 99.93 1 | 99.96 12 | 99.77 4 | 99.89 17 | 99.99 1 | 99.86 75 | 99.84 5 | 99.89 8 | 99.81 9 | 99.97 1 | 99.88 7 |
|
SixPastTwentyTwo | | | 99.89 2 | 99.85 6 | 99.93 1 | 99.97 2 | 99.88 2 | 99.92 2 | 99.97 1 | 99.66 13 | 99.94 4 | 99.94 11 | 99.74 104 | 99.81 7 | 99.97 1 | 99.89 1 | 99.96 3 | 99.89 5 |
|
test_part1 | | | 99.88 4 | 99.89 1 | 99.88 12 | 99.96 7 | 99.90 1 | 99.83 17 | 99.97 1 | 99.84 2 | 99.93 5 | 99.91 23 | 99.83 85 | 99.63 39 | 99.89 8 | 99.88 2 | 99.96 3 | 99.95 1 |
|
pmmvs6 | | | 99.88 4 | 99.87 2 | 99.89 9 | 99.97 2 | 99.76 16 | 99.89 5 | 99.96 12 | 99.82 3 | 99.90 15 | 99.92 16 | 99.95 25 | 99.68 29 | 99.93 3 | 99.88 2 | 99.95 8 | 99.86 10 |
|
anonymousdsp | | | 99.87 6 | 99.86 4 | 99.88 12 | 99.95 10 | 99.75 22 | 99.90 4 | 99.96 12 | 99.69 8 | 99.83 50 | 99.96 4 | 99.99 3 | 99.74 21 | 99.95 2 | 99.83 5 | 99.91 20 | 99.88 7 |
|
FC-MVSNet-test | | | 99.84 7 | 99.80 7 | 99.89 9 | 99.96 7 | 99.83 3 | 99.84 14 | 99.95 23 | 99.37 44 | 99.77 65 | 99.95 6 | 99.96 13 | 99.85 3 | 99.93 3 | 99.83 5 | 99.95 8 | 99.72 35 |
|
UniMVSNet_ETH3D | | | 99.81 8 | 99.79 8 | 99.85 19 | 99.98 1 | 99.76 16 | 99.73 45 | 99.96 12 | 99.68 10 | 99.87 28 | 99.59 80 | 99.91 55 | 99.58 47 | 99.90 7 | 99.85 4 | 99.96 3 | 99.81 17 |
|
TDRefinement | | | 99.81 8 | 99.76 10 | 99.86 16 | 99.83 84 | 99.53 56 | 99.89 5 | 99.91 38 | 99.73 6 | 99.88 22 | 99.83 44 | 99.96 13 | 99.76 16 | 99.91 6 | 99.81 9 | 99.86 36 | 99.59 63 |
|
WR-MVS | | | 99.79 10 | 99.68 14 | 99.91 5 | 99.95 10 | 99.83 3 | 99.87 9 | 99.96 12 | 99.39 43 | 99.93 5 | 99.87 35 | 99.29 149 | 99.77 14 | 99.83 18 | 99.72 16 | 99.97 1 | 99.82 14 |
|
MIMVSNet1 | | | 99.79 10 | 99.75 11 | 99.84 20 | 99.89 37 | 99.83 3 | 99.84 14 | 99.89 46 | 99.31 50 | 99.93 5 | 99.92 16 | 99.97 8 | 99.68 29 | 99.89 8 | 99.64 22 | 99.82 50 | 99.66 47 |
|
pm-mvs1 | | | 99.77 12 | 99.69 13 | 99.86 16 | 99.94 20 | 99.68 31 | 99.84 14 | 99.93 26 | 99.59 22 | 99.87 28 | 99.92 16 | 99.21 152 | 99.65 35 | 99.88 12 | 99.77 12 | 99.93 17 | 99.78 23 |
|
PEN-MVS | | | 99.77 12 | 99.65 17 | 99.91 5 | 99.95 10 | 99.80 12 | 99.86 10 | 99.97 1 | 99.08 79 | 99.89 17 | 99.69 64 | 99.68 115 | 99.84 5 | 99.81 22 | 99.64 22 | 99.95 8 | 99.81 17 |
|
EU-MVSNet | | | 99.76 14 | 99.74 12 | 99.78 37 | 99.82 89 | 99.81 10 | 99.88 7 | 99.87 51 | 99.31 50 | 99.75 71 | 99.91 23 | 99.76 103 | 99.78 12 | 99.84 17 | 99.74 15 | 99.56 129 | 99.81 17 |
|
Vis-MVSNet |  | | 99.76 14 | 99.78 9 | 99.75 46 | 99.92 26 | 99.77 15 | 99.83 17 | 99.85 62 | 99.43 37 | 99.85 41 | 99.84 41 | 100.00 1 | 99.13 111 | 99.83 18 | 99.66 20 | 99.90 22 | 99.90 3 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DTE-MVSNet | | | 99.75 16 | 99.61 23 | 99.92 4 | 99.95 10 | 99.81 10 | 99.86 10 | 99.96 12 | 99.18 67 | 99.92 10 | 99.66 67 | 99.45 134 | 99.85 3 | 99.80 23 | 99.56 28 | 99.96 3 | 99.79 22 |
|
tfpnnormal | | | 99.74 17 | 99.63 20 | 99.86 16 | 99.93 23 | 99.75 22 | 99.80 26 | 99.89 46 | 99.31 50 | 99.88 22 | 99.43 101 | 99.66 118 | 99.77 14 | 99.80 23 | 99.71 17 | 99.92 18 | 99.76 27 |
|
DeepC-MVS | | 99.05 5 | 99.74 17 | 99.64 18 | 99.84 20 | 99.90 34 | 99.39 87 | 99.79 27 | 99.81 92 | 99.69 8 | 99.90 15 | 99.87 35 | 99.98 4 | 99.81 7 | 99.62 49 | 99.32 55 | 99.83 47 | 99.65 50 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
thisisatest0515 | | | 99.73 19 | 99.67 15 | 99.81 27 | 99.93 23 | 99.74 24 | 99.68 53 | 99.91 38 | 99.59 22 | 99.88 22 | 99.73 53 | 99.81 90 | 99.55 51 | 99.59 50 | 99.53 33 | 99.89 25 | 99.70 41 |
|
PS-CasMVS | | | 99.73 19 | 99.59 28 | 99.90 8 | 99.95 10 | 99.80 12 | 99.85 13 | 99.97 1 | 98.95 97 | 99.86 34 | 99.73 53 | 99.36 141 | 99.81 7 | 99.83 18 | 99.67 19 | 99.95 8 | 99.83 13 |
|
WR-MVS_H | | | 99.73 19 | 99.61 23 | 99.88 12 | 99.95 10 | 99.82 7 | 99.83 17 | 99.96 12 | 99.01 89 | 99.84 45 | 99.71 61 | 99.41 140 | 99.74 21 | 99.77 28 | 99.70 18 | 99.95 8 | 99.82 14 |
|
TransMVSNet (Re) | | | 99.72 22 | 99.59 28 | 99.88 12 | 99.95 10 | 99.76 16 | 99.88 7 | 99.94 24 | 99.58 24 | 99.92 10 | 99.90 28 | 98.55 167 | 99.65 35 | 99.89 8 | 99.76 13 | 99.95 8 | 99.70 41 |
|
ACMH | | 99.11 4 | 99.72 22 | 99.63 20 | 99.84 20 | 99.87 49 | 99.59 44 | 99.83 17 | 99.88 50 | 99.46 36 | 99.87 28 | 99.66 67 | 99.95 25 | 99.76 16 | 99.73 33 | 99.47 41 | 99.84 42 | 99.52 93 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FC-MVSNet-train | | | 99.70 24 | 99.67 15 | 99.74 52 | 99.94 20 | 99.71 27 | 99.82 22 | 99.91 38 | 99.14 75 | 99.53 129 | 99.70 62 | 99.88 67 | 99.33 84 | 99.88 12 | 99.61 27 | 99.94 15 | 99.77 24 |
|
COLMAP_ROB |  | 99.18 2 | 99.70 24 | 99.60 26 | 99.81 27 | 99.84 78 | 99.37 94 | 99.76 33 | 99.84 71 | 99.54 30 | 99.82 53 | 99.64 71 | 99.95 25 | 99.75 18 | 99.79 25 | 99.56 28 | 99.83 47 | 99.37 124 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH+ | | 98.94 6 | 99.69 26 | 99.59 28 | 99.81 27 | 99.88 43 | 99.41 84 | 99.75 37 | 99.86 55 | 99.43 37 | 99.80 57 | 99.54 85 | 99.97 8 | 99.73 24 | 99.82 21 | 99.52 35 | 99.85 39 | 99.43 110 |
|
test20.03 | | | 99.68 27 | 99.60 26 | 99.76 42 | 99.91 30 | 99.70 30 | 99.68 53 | 99.87 51 | 99.05 86 | 99.88 22 | 99.92 16 | 99.88 67 | 99.50 62 | 99.77 28 | 99.42 48 | 99.75 71 | 99.49 96 |
|
CP-MVSNet | | | 99.68 27 | 99.51 38 | 99.89 9 | 99.95 10 | 99.76 16 | 99.83 17 | 99.96 12 | 98.83 115 | 99.84 45 | 99.65 70 | 99.09 154 | 99.80 10 | 99.78 26 | 99.62 26 | 99.95 8 | 99.82 14 |
|
PVSNet_Blended_VisFu | | | 99.66 29 | 99.64 18 | 99.67 64 | 99.91 30 | 99.71 27 | 99.61 65 | 99.79 102 | 99.41 39 | 99.91 13 | 99.85 39 | 99.61 121 | 99.00 122 | 99.67 40 | 99.42 48 | 99.81 53 | 99.81 17 |
|
v10 | | | 99.65 30 | 99.51 38 | 99.81 27 | 99.83 84 | 99.61 40 | 99.75 37 | 99.94 24 | 99.56 26 | 99.76 68 | 99.94 11 | 99.60 123 | 99.73 24 | 99.11 125 | 99.01 95 | 99.85 39 | 99.74 30 |
|
CHOSEN 1792x2688 | | | 99.65 30 | 99.55 32 | 99.77 41 | 99.93 23 | 99.60 41 | 99.79 27 | 99.92 33 | 99.73 6 | 99.74 78 | 99.93 14 | 99.98 4 | 99.80 10 | 98.83 166 | 99.01 95 | 99.45 148 | 99.76 27 |
|
UA-Net | | | 99.64 32 | 99.62 22 | 99.66 66 | 99.97 2 | 99.82 7 | 99.14 152 | 99.96 12 | 98.95 97 | 99.52 135 | 99.38 109 | 99.86 75 | 99.55 51 | 99.72 34 | 99.66 20 | 99.80 57 | 99.94 2 |
|
GeoE | | | 99.63 33 | 99.51 38 | 99.78 37 | 99.91 30 | 99.57 47 | 99.78 29 | 99.97 1 | 99.23 58 | 99.72 87 | 99.72 57 | 99.80 96 | 99.50 62 | 99.45 69 | 99.10 82 | 99.79 60 | 99.71 40 |
|
Baseline_NR-MVSNet | | | 99.62 34 | 99.48 43 | 99.78 37 | 99.85 72 | 99.76 16 | 99.59 70 | 99.82 84 | 98.84 113 | 99.88 22 | 99.91 23 | 99.04 155 | 99.61 41 | 99.46 62 | 99.78 11 | 99.94 15 | 99.60 61 |
|
pmmvs-eth3d | | | 99.61 35 | 99.48 43 | 99.75 46 | 99.87 49 | 99.30 110 | 99.75 37 | 99.89 46 | 99.23 58 | 99.85 41 | 99.88 34 | 99.97 8 | 99.49 67 | 99.46 62 | 99.01 95 | 99.68 90 | 99.52 93 |
|
v1144 | | | 99.61 35 | 99.43 51 | 99.82 23 | 99.88 43 | 99.41 84 | 99.76 33 | 99.86 55 | 99.64 16 | 99.84 45 | 99.95 6 | 99.49 132 | 99.74 21 | 99.00 136 | 98.93 107 | 99.84 42 | 99.58 71 |
|
v8 | | | 99.61 35 | 99.45 49 | 99.79 36 | 99.80 95 | 99.59 44 | 99.73 45 | 99.93 26 | 99.48 34 | 99.77 65 | 99.90 28 | 99.48 133 | 99.67 32 | 99.11 125 | 98.89 111 | 99.84 42 | 99.73 32 |
|
casdiffmvs | | | 99.61 35 | 99.55 32 | 99.68 62 | 99.89 37 | 99.53 56 | 99.64 59 | 99.68 142 | 99.51 31 | 99.62 112 | 99.90 28 | 99.96 13 | 99.37 78 | 99.28 95 | 99.25 58 | 99.88 27 | 99.44 107 |
|
CSCG | | | 99.61 35 | 99.52 37 | 99.71 56 | 99.89 37 | 99.62 38 | 99.52 87 | 99.76 123 | 99.61 20 | 99.69 96 | 99.73 53 | 99.96 13 | 99.57 49 | 99.27 98 | 98.62 142 | 99.81 53 | 99.85 12 |
|
v1192 | | | 99.60 40 | 99.41 55 | 99.82 23 | 99.89 37 | 99.43 79 | 99.81 24 | 99.84 71 | 99.63 18 | 99.85 41 | 99.95 6 | 99.35 144 | 99.72 26 | 99.01 134 | 98.90 110 | 99.82 50 | 99.58 71 |
|
APDe-MVS | | | 99.60 40 | 99.48 43 | 99.73 54 | 99.85 72 | 99.51 67 | 99.75 37 | 99.85 62 | 99.17 68 | 99.81 56 | 99.56 83 | 99.94 35 | 99.44 74 | 99.42 72 | 99.22 59 | 99.67 92 | 99.54 85 |
|
v1921920 | | | 99.59 42 | 99.40 58 | 99.82 23 | 99.88 43 | 99.45 74 | 99.81 24 | 99.83 77 | 99.65 14 | 99.86 34 | 99.95 6 | 99.29 149 | 99.75 18 | 98.98 140 | 98.86 115 | 99.78 62 | 99.59 63 |
|
TranMVSNet+NR-MVSNet | | | 99.59 42 | 99.42 54 | 99.80 32 | 99.87 49 | 99.55 50 | 99.64 59 | 99.86 55 | 99.05 86 | 99.88 22 | 99.72 57 | 99.33 147 | 99.64 37 | 99.47 61 | 99.14 69 | 99.91 20 | 99.67 46 |
|
EG-PatchMatch MVS | | | 99.59 42 | 99.49 42 | 99.70 59 | 99.82 89 | 99.26 117 | 99.39 115 | 99.83 77 | 98.99 91 | 99.93 5 | 99.54 85 | 99.92 49 | 99.51 58 | 99.78 26 | 99.50 36 | 99.73 80 | 99.41 114 |
|
pmmvs5 | | | 99.58 45 | 99.47 46 | 99.70 59 | 99.84 78 | 99.50 68 | 99.58 74 | 99.80 99 | 98.98 94 | 99.73 84 | 99.92 16 | 99.81 90 | 99.49 67 | 99.28 95 | 99.05 89 | 99.77 66 | 99.73 32 |
|
v144192 | | | 99.58 45 | 99.39 59 | 99.80 32 | 99.87 49 | 99.44 76 | 99.77 30 | 99.84 71 | 99.64 16 | 99.86 34 | 99.93 14 | 99.35 144 | 99.72 26 | 98.92 146 | 98.82 119 | 99.74 76 | 99.66 47 |
|
v148 | | | 99.58 45 | 99.43 51 | 99.76 42 | 99.87 49 | 99.40 86 | 99.76 33 | 99.85 62 | 99.48 34 | 99.83 50 | 99.82 46 | 99.83 85 | 99.51 58 | 99.20 111 | 98.82 119 | 99.75 71 | 99.45 104 |
|
v1240 | | | 99.58 45 | 99.38 62 | 99.82 23 | 99.89 37 | 99.49 69 | 99.82 22 | 99.83 77 | 99.63 18 | 99.86 34 | 99.96 4 | 98.92 161 | 99.75 18 | 99.15 121 | 98.96 104 | 99.76 68 | 99.56 78 |
|
V42 | | | 99.57 49 | 99.41 55 | 99.75 46 | 99.84 78 | 99.37 94 | 99.73 45 | 99.83 77 | 99.41 39 | 99.75 71 | 99.89 31 | 99.42 138 | 99.60 43 | 99.15 121 | 98.96 104 | 99.76 68 | 99.65 50 |
|
TSAR-MVS + MP. | | | 99.56 50 | 99.54 35 | 99.58 83 | 99.69 138 | 99.14 138 | 99.73 45 | 99.45 179 | 99.50 32 | 99.35 166 | 99.60 78 | 99.93 41 | 99.50 62 | 99.56 53 | 99.37 53 | 99.77 66 | 99.64 53 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
v2v482 | | | 99.56 50 | 99.35 65 | 99.81 27 | 99.87 49 | 99.35 100 | 99.75 37 | 99.85 62 | 99.56 26 | 99.87 28 | 99.95 6 | 99.44 136 | 99.66 33 | 98.91 149 | 98.76 125 | 99.86 36 | 99.45 104 |
|
Gipuma |  | | 99.55 52 | 99.23 84 | 99.91 5 | 99.87 49 | 99.52 63 | 99.86 10 | 99.93 26 | 99.87 1 | 99.96 2 | 96.72 203 | 99.55 128 | 99.97 1 | 99.77 28 | 99.46 43 | 99.87 33 | 99.74 30 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DVP-MVS | | | 99.53 53 | 99.51 38 | 99.55 91 | 99.82 89 | 99.58 46 | 99.54 82 | 99.78 107 | 99.28 56 | 99.21 176 | 99.70 62 | 99.97 8 | 99.32 87 | 99.32 83 | 99.14 69 | 99.64 105 | 99.58 71 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
NR-MVSNet | | | 99.52 54 | 99.29 74 | 99.80 32 | 99.96 7 | 99.38 90 | 99.55 78 | 99.81 92 | 98.86 110 | 99.87 28 | 99.51 95 | 98.81 163 | 99.72 26 | 99.86 15 | 99.04 91 | 99.89 25 | 99.54 85 |
|
zzz-MVS | | | 99.51 55 | 99.36 63 | 99.68 62 | 99.88 43 | 99.38 90 | 99.53 83 | 99.84 71 | 99.11 78 | 99.59 120 | 98.93 147 | 99.95 25 | 99.58 47 | 99.44 70 | 99.21 61 | 99.65 96 | 99.52 93 |
|
ACMMPR | | | 99.51 55 | 99.32 69 | 99.72 55 | 99.87 49 | 99.33 103 | 99.61 65 | 99.85 62 | 99.19 65 | 99.73 84 | 98.73 158 | 99.95 25 | 99.61 41 | 99.35 78 | 99.14 69 | 99.66 94 | 99.58 71 |
|
UniMVSNet (Re) | | | 99.50 57 | 99.29 74 | 99.75 46 | 99.86 63 | 99.47 72 | 99.51 90 | 99.82 84 | 98.90 105 | 99.89 17 | 99.64 71 | 99.00 156 | 99.55 51 | 99.32 83 | 99.08 84 | 99.90 22 | 99.59 63 |
|
FMVSNet1 | | | 99.50 57 | 99.57 31 | 99.42 112 | 99.67 145 | 99.65 34 | 99.60 69 | 99.91 38 | 99.40 41 | 99.39 159 | 99.83 44 | 99.27 151 | 98.14 160 | 99.68 37 | 99.50 36 | 99.81 53 | 99.68 43 |
|
HyFIR lowres test | | | 99.50 57 | 99.26 78 | 99.80 32 | 99.95 10 | 99.62 38 | 99.76 33 | 99.97 1 | 99.67 11 | 99.56 126 | 99.94 11 | 98.40 170 | 99.78 12 | 98.84 165 | 98.59 145 | 99.76 68 | 99.72 35 |
|
PM-MVS | | | 99.49 60 | 99.43 51 | 99.57 86 | 99.76 117 | 99.34 102 | 99.53 83 | 99.77 114 | 98.93 101 | 99.75 71 | 99.46 99 | 99.83 85 | 99.11 113 | 99.72 34 | 99.29 57 | 99.49 143 | 99.46 103 |
|
Anonymous20231206 | | | 99.48 61 | 99.31 71 | 99.69 61 | 99.79 99 | 99.57 47 | 99.63 63 | 99.79 102 | 98.88 107 | 99.91 13 | 99.72 57 | 99.93 41 | 99.59 44 | 99.24 101 | 98.63 141 | 99.43 153 | 99.18 141 |
|
DU-MVS | | | 99.48 61 | 99.26 78 | 99.75 46 | 99.85 72 | 99.38 90 | 99.50 94 | 99.81 92 | 98.86 110 | 99.89 17 | 99.51 95 | 98.98 157 | 99.59 44 | 99.46 62 | 98.97 102 | 99.87 33 | 99.63 54 |
|
RPSCF | | | 99.48 61 | 99.45 49 | 99.52 98 | 99.73 131 | 99.33 103 | 99.13 153 | 99.77 114 | 99.33 48 | 99.47 146 | 99.39 108 | 99.92 49 | 99.36 79 | 99.63 46 | 99.13 77 | 99.63 108 | 99.41 114 |
|
ACMMP_NAP | | | 99.47 64 | 99.33 67 | 99.63 74 | 99.85 72 | 99.28 115 | 99.56 77 | 99.83 77 | 98.75 121 | 99.48 143 | 99.03 144 | 99.95 25 | 99.47 73 | 99.48 58 | 99.19 62 | 99.57 126 | 99.59 63 |
|
Anonymous20231211 | | | 99.47 64 | 99.39 59 | 99.57 86 | 99.89 37 | 99.60 41 | 99.50 94 | 99.69 136 | 98.91 104 | 99.62 112 | 99.17 130 | 99.35 144 | 98.86 135 | 99.63 46 | 99.46 43 | 99.84 42 | 99.62 57 |
|
SteuartSystems-ACMMP | | | 99.47 64 | 99.22 87 | 99.76 42 | 99.88 43 | 99.36 96 | 99.65 58 | 99.84 71 | 98.47 145 | 99.80 57 | 98.68 161 | 99.96 13 | 99.68 29 | 99.37 75 | 99.06 86 | 99.72 83 | 99.66 47 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMM | | 98.37 12 | 99.47 64 | 99.23 84 | 99.74 52 | 99.86 63 | 99.19 132 | 99.68 53 | 99.86 55 | 99.16 72 | 99.71 93 | 98.52 172 | 99.95 25 | 99.62 40 | 99.35 78 | 99.02 93 | 99.74 76 | 99.42 113 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HFP-MVS | | | 99.46 68 | 99.30 72 | 99.65 68 | 99.82 89 | 99.25 120 | 99.50 94 | 99.82 84 | 99.23 58 | 99.58 124 | 98.86 149 | 99.94 35 | 99.56 50 | 99.14 123 | 99.12 80 | 99.63 108 | 99.56 78 |
|
LGP-MVS_train | | | 99.46 68 | 99.18 97 | 99.78 37 | 99.87 49 | 99.25 120 | 99.71 51 | 99.87 51 | 98.02 177 | 99.79 60 | 98.90 148 | 99.96 13 | 99.66 33 | 99.49 57 | 99.17 65 | 99.79 60 | 99.49 96 |
|
SED-MVS | | | 99.45 70 | 99.46 48 | 99.42 112 | 99.77 112 | 99.57 47 | 99.42 109 | 99.80 99 | 99.06 83 | 99.38 160 | 99.66 67 | 99.96 13 | 98.65 146 | 99.31 85 | 99.14 69 | 99.53 134 | 99.55 83 |
|
ETV-MVS | | | 99.45 70 | 99.32 69 | 99.60 79 | 99.79 99 | 99.60 41 | 99.40 114 | 99.78 107 | 97.88 184 | 99.83 50 | 99.33 112 | 99.70 112 | 98.97 125 | 99.74 31 | 99.43 47 | 99.84 42 | 99.58 71 |
|
ACMP | | 98.32 13 | 99.44 72 | 99.18 97 | 99.75 46 | 99.83 84 | 99.18 133 | 99.64 59 | 99.83 77 | 98.81 117 | 99.79 60 | 98.42 179 | 99.96 13 | 99.64 37 | 99.46 62 | 98.98 101 | 99.74 76 | 99.44 107 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DCV-MVSNet | | | 99.43 73 | 99.23 84 | 99.67 64 | 99.92 26 | 99.76 16 | 99.64 59 | 99.93 26 | 99.06 83 | 99.68 103 | 97.77 191 | 98.97 158 | 98.97 125 | 99.72 34 | 99.54 32 | 99.88 27 | 99.81 17 |
|
SMA-MVS |  | | 99.43 73 | 99.41 55 | 99.45 109 | 99.82 89 | 99.31 108 | 99.02 167 | 99.59 157 | 99.06 83 | 99.34 169 | 99.53 91 | 99.96 13 | 99.38 77 | 99.29 90 | 99.13 77 | 99.53 134 | 99.59 63 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
testgi | | | 99.43 73 | 99.47 46 | 99.38 121 | 99.90 34 | 99.67 33 | 99.30 133 | 99.73 131 | 98.64 133 | 99.53 129 | 99.52 93 | 99.90 58 | 98.08 163 | 99.65 44 | 99.40 52 | 99.75 71 | 99.55 83 |
|
DELS-MVS | | | 99.42 76 | 99.53 36 | 99.29 135 | 99.52 173 | 99.43 79 | 99.42 109 | 99.28 195 | 99.16 72 | 99.72 87 | 99.82 46 | 99.97 8 | 98.17 157 | 99.56 53 | 99.16 66 | 99.65 96 | 99.59 63 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
3Dnovator | | 99.16 3 | 99.42 76 | 99.22 87 | 99.65 68 | 99.78 104 | 99.13 142 | 99.50 94 | 99.85 62 | 99.40 41 | 99.80 57 | 98.59 168 | 99.79 99 | 99.30 91 | 99.20 111 | 99.06 86 | 99.71 86 | 99.35 127 |
|
DPE-MVS |  | | 99.41 78 | 99.36 63 | 99.47 105 | 99.66 146 | 99.48 70 | 99.46 105 | 99.75 128 | 98.65 129 | 99.41 156 | 99.67 65 | 99.95 25 | 98.82 136 | 99.21 108 | 99.14 69 | 99.72 83 | 99.40 119 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
UniMVSNet_NR-MVSNet | | | 99.41 78 | 99.12 109 | 99.76 42 | 99.86 63 | 99.48 70 | 99.50 94 | 99.81 92 | 98.84 113 | 99.89 17 | 99.45 100 | 98.32 173 | 99.59 44 | 99.22 105 | 98.89 111 | 99.90 22 | 99.63 54 |
|
CP-MVS | | | 99.41 78 | 99.20 92 | 99.65 68 | 99.80 95 | 99.23 127 | 99.44 107 | 99.75 128 | 98.60 138 | 99.74 78 | 98.66 162 | 99.93 41 | 99.48 70 | 99.33 82 | 99.16 66 | 99.73 80 | 99.48 99 |
|
QAPM | | | 99.41 78 | 99.21 91 | 99.64 73 | 99.78 104 | 99.16 135 | 99.51 90 | 99.85 62 | 99.20 62 | 99.72 87 | 99.43 101 | 99.81 90 | 99.25 95 | 98.87 155 | 98.71 133 | 99.71 86 | 99.30 132 |
|
UGNet | | | 99.40 82 | 99.61 23 | 99.16 155 | 99.88 43 | 99.64 36 | 99.61 65 | 99.77 114 | 99.31 50 | 99.63 111 | 99.33 112 | 99.93 41 | 96.46 198 | 99.63 46 | 99.53 33 | 99.63 108 | 99.89 5 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Vis-MVSNet (Re-imp) | | | 99.40 82 | 99.28 76 | 99.55 91 | 99.92 26 | 99.68 31 | 99.31 128 | 99.87 51 | 98.69 126 | 99.16 178 | 99.08 139 | 98.64 166 | 99.20 99 | 99.65 44 | 99.46 43 | 99.83 47 | 99.72 35 |
|
OPM-MVS | | | 99.39 84 | 99.22 87 | 99.59 80 | 99.76 117 | 98.82 167 | 99.51 90 | 99.79 102 | 99.17 68 | 99.53 129 | 99.31 117 | 99.95 25 | 99.35 80 | 99.22 105 | 98.79 124 | 99.60 118 | 99.27 135 |
|
Fast-Effi-MVS+ | | | 99.39 84 | 99.18 97 | 99.63 74 | 99.86 63 | 99.28 115 | 99.45 106 | 99.91 38 | 98.47 145 | 99.61 115 | 99.50 97 | 99.57 125 | 99.17 100 | 99.24 101 | 98.66 138 | 99.78 62 | 99.59 63 |
|
LS3D | | | 99.39 84 | 99.28 76 | 99.52 98 | 99.77 112 | 99.39 87 | 99.55 78 | 99.82 84 | 98.93 101 | 99.64 109 | 98.52 172 | 99.67 117 | 98.58 150 | 99.74 31 | 99.63 24 | 99.75 71 | 99.06 157 |
|
CS-MVS | | | 99.38 87 | 99.19 94 | 99.59 80 | 99.86 63 | 99.65 34 | 99.28 136 | 99.77 114 | 97.97 180 | 99.75 71 | 98.42 179 | 99.70 112 | 99.03 120 | 99.57 52 | 99.42 48 | 99.87 33 | 99.61 59 |
|
diffmvs | | | 99.38 87 | 99.33 67 | 99.45 109 | 99.87 49 | 99.39 87 | 99.28 136 | 99.58 160 | 99.55 28 | 99.50 139 | 99.85 39 | 99.85 81 | 98.94 130 | 98.58 178 | 98.68 136 | 99.51 140 | 99.39 121 |
|
CANet | | | 99.36 89 | 99.39 59 | 99.34 132 | 99.80 95 | 99.35 100 | 99.41 113 | 99.47 177 | 99.20 62 | 99.74 78 | 99.54 85 | 99.68 115 | 98.05 165 | 99.23 103 | 98.97 102 | 99.57 126 | 99.73 32 |
|
MVS_0304 | | | 99.36 89 | 99.35 65 | 99.37 127 | 99.85 72 | 99.36 96 | 99.39 115 | 99.56 163 | 99.36 46 | 99.75 71 | 99.23 123 | 99.90 58 | 97.97 172 | 99.00 136 | 98.83 118 | 99.69 89 | 99.77 24 |
|
ACMMP |  | | 99.36 89 | 99.06 116 | 99.71 56 | 99.86 63 | 99.36 96 | 99.63 63 | 99.85 62 | 98.33 160 | 99.72 87 | 97.73 193 | 99.94 35 | 99.53 54 | 99.37 75 | 99.13 77 | 99.65 96 | 99.56 78 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SD-MVS | | | 99.35 92 | 99.26 78 | 99.46 107 | 99.66 146 | 99.15 137 | 98.92 176 | 99.67 145 | 99.55 28 | 99.35 166 | 98.83 151 | 99.91 55 | 99.35 80 | 99.19 114 | 98.53 147 | 99.78 62 | 99.68 43 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MP-MVS |  | | 99.35 92 | 99.09 114 | 99.65 68 | 99.84 78 | 99.22 128 | 99.59 70 | 99.78 107 | 98.13 169 | 99.67 104 | 98.44 176 | 99.93 41 | 99.43 76 | 99.31 85 | 99.09 83 | 99.60 118 | 99.49 96 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
pmmvs4 | | | 99.34 94 | 99.15 104 | 99.57 86 | 99.77 112 | 98.90 159 | 99.51 90 | 99.77 114 | 99.07 81 | 99.73 84 | 99.72 57 | 99.84 83 | 99.07 115 | 98.85 160 | 98.39 156 | 99.55 132 | 99.27 135 |
|
EPP-MVSNet | | | 99.34 94 | 99.10 112 | 99.62 78 | 99.94 20 | 99.74 24 | 99.66 57 | 99.80 99 | 99.07 81 | 98.93 189 | 99.61 75 | 96.13 188 | 99.49 67 | 99.67 40 | 99.63 24 | 99.92 18 | 99.86 10 |
|
TSAR-MVS + GP. | | | 99.33 96 | 99.17 101 | 99.51 100 | 99.71 136 | 99.00 154 | 98.84 185 | 99.71 133 | 98.23 166 | 99.74 78 | 99.53 91 | 99.90 58 | 99.35 80 | 99.38 74 | 98.85 116 | 99.72 83 | 99.31 130 |
|
PHI-MVS | | | 99.33 96 | 99.19 94 | 99.49 103 | 99.69 138 | 99.25 120 | 99.27 138 | 99.59 157 | 98.44 149 | 99.78 64 | 99.15 131 | 99.92 49 | 98.95 129 | 99.39 73 | 99.04 91 | 99.64 105 | 99.18 141 |
|
MSP-MVS | | | 99.32 98 | 99.26 78 | 99.38 121 | 99.76 117 | 99.54 53 | 99.42 109 | 99.72 132 | 98.92 103 | 98.84 196 | 98.96 146 | 99.96 13 | 98.91 131 | 98.72 173 | 99.14 69 | 99.63 108 | 99.58 71 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 99.32 98 | 98.99 125 | 99.71 56 | 99.86 63 | 99.31 108 | 99.59 70 | 99.86 55 | 97.51 193 | 99.75 71 | 98.23 183 | 99.94 35 | 99.53 54 | 99.29 90 | 99.08 84 | 99.65 96 | 99.54 85 |
|
DeepC-MVS_fast | | 98.69 9 | 99.32 98 | 99.13 107 | 99.53 94 | 99.63 153 | 98.78 170 | 99.53 83 | 99.33 193 | 99.08 79 | 99.77 65 | 99.18 129 | 99.89 61 | 99.29 92 | 99.00 136 | 98.70 134 | 99.65 96 | 99.30 132 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSDG | | | 99.32 98 | 99.09 114 | 99.58 83 | 99.75 121 | 98.74 174 | 99.36 120 | 99.54 166 | 99.14 75 | 99.72 87 | 99.24 121 | 99.89 61 | 99.51 58 | 99.30 87 | 98.76 125 | 99.62 114 | 98.54 176 |
|
TSAR-MVS + ACMM | | | 99.31 102 | 99.26 78 | 99.37 127 | 99.66 146 | 98.97 157 | 99.20 145 | 99.56 163 | 99.33 48 | 99.19 177 | 99.54 85 | 99.91 55 | 99.32 87 | 99.12 124 | 98.34 159 | 99.29 167 | 99.65 50 |
|
3Dnovator+ | | 98.92 7 | 99.31 102 | 99.03 120 | 99.63 74 | 99.77 112 | 98.90 159 | 99.52 87 | 99.81 92 | 99.37 44 | 99.72 87 | 98.03 188 | 99.73 107 | 99.32 87 | 98.99 139 | 98.81 122 | 99.67 92 | 99.36 125 |
|
X-MVS | | | 99.30 104 | 98.99 125 | 99.66 66 | 99.85 72 | 99.30 110 | 99.49 101 | 99.82 84 | 98.32 161 | 99.69 96 | 97.31 200 | 99.93 41 | 99.50 62 | 99.37 75 | 99.16 66 | 99.60 118 | 99.53 88 |
|
MVS_111021_HR | | | 99.30 104 | 99.14 105 | 99.48 104 | 99.58 169 | 99.25 120 | 99.27 138 | 99.61 152 | 98.74 122 | 99.66 106 | 99.02 145 | 99.84 83 | 99.33 84 | 99.20 111 | 98.76 125 | 99.44 150 | 99.18 141 |
|
TAPA-MVS | | 98.54 10 | 99.30 104 | 99.24 83 | 99.36 131 | 99.44 188 | 98.77 172 | 99.00 169 | 99.41 184 | 99.23 58 | 99.60 118 | 99.50 97 | 99.86 75 | 99.15 107 | 99.29 90 | 98.95 106 | 99.56 129 | 99.08 154 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CLD-MVS | | | 99.30 104 | 99.01 124 | 99.63 74 | 99.75 121 | 98.89 162 | 99.35 123 | 99.60 154 | 98.53 143 | 99.86 34 | 99.57 82 | 99.94 35 | 99.52 57 | 98.96 141 | 98.10 172 | 99.70 88 | 99.08 154 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
USDC | | | 99.29 108 | 98.98 127 | 99.65 68 | 99.72 133 | 98.87 165 | 99.47 103 | 99.66 148 | 99.35 47 | 99.87 28 | 99.58 81 | 99.87 74 | 99.51 58 | 98.85 160 | 97.93 178 | 99.65 96 | 98.38 180 |
|
PMVS |  | 94.32 17 | 99.27 109 | 99.55 32 | 98.94 173 | 99.60 162 | 99.43 79 | 99.39 115 | 99.54 166 | 98.99 91 | 99.69 96 | 99.60 78 | 99.81 90 | 95.68 203 | 99.88 12 | 99.83 5 | 99.73 80 | 99.31 130 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVS_111021_LR | | | 99.25 110 | 99.13 107 | 99.39 117 | 99.50 181 | 99.14 138 | 99.23 143 | 99.50 174 | 98.67 127 | 99.61 115 | 99.12 135 | 99.81 90 | 99.16 103 | 99.28 95 | 98.67 137 | 99.35 163 | 99.21 140 |
|
baseline | | | 99.24 111 | 99.30 72 | 99.17 154 | 99.78 104 | 99.14 138 | 99.10 157 | 99.69 136 | 98.97 95 | 99.49 141 | 99.84 41 | 99.88 67 | 97.99 171 | 98.85 160 | 98.73 131 | 98.98 182 | 99.72 35 |
|
EIA-MVS | | | 99.23 112 | 99.03 120 | 99.47 105 | 99.83 84 | 99.64 36 | 99.16 149 | 99.81 92 | 97.11 200 | 99.65 108 | 98.44 176 | 99.78 102 | 98.61 149 | 99.46 62 | 99.22 59 | 99.75 71 | 99.59 63 |
|
HPM-MVS++ |  | | 99.23 112 | 98.98 127 | 99.53 94 | 99.75 121 | 99.02 152 | 99.44 107 | 99.77 114 | 98.65 129 | 99.52 135 | 98.72 159 | 99.92 49 | 99.33 84 | 98.77 171 | 98.40 155 | 99.40 157 | 99.36 125 |
|
PMMVS2 | | | 99.23 112 | 99.22 87 | 99.24 142 | 99.80 95 | 99.14 138 | 99.50 94 | 99.82 84 | 99.12 77 | 98.41 210 | 99.91 23 | 99.98 4 | 98.51 151 | 99.48 58 | 98.76 125 | 99.38 159 | 98.14 188 |
|
CPTT-MVS | | | 99.21 115 | 98.89 138 | 99.58 83 | 99.72 133 | 99.12 145 | 99.30 133 | 99.76 123 | 98.62 134 | 99.66 106 | 97.51 196 | 99.89 61 | 99.48 70 | 99.01 134 | 98.64 140 | 99.58 125 | 99.40 119 |
|
TinyColmap | | | 99.21 115 | 98.89 138 | 99.59 80 | 99.61 158 | 98.61 183 | 99.47 103 | 99.67 145 | 99.02 88 | 99.82 53 | 99.15 131 | 99.74 104 | 99.35 80 | 99.17 119 | 98.33 160 | 99.63 108 | 98.22 186 |
|
Effi-MVS+ | | | 99.20 117 | 98.93 133 | 99.50 102 | 99.79 99 | 99.26 117 | 98.82 188 | 99.96 12 | 98.37 159 | 99.60 118 | 99.12 135 | 98.36 171 | 99.05 118 | 98.93 144 | 98.82 119 | 99.78 62 | 99.68 43 |
|
PVSNet_BlendedMVS | | | 99.20 117 | 99.17 101 | 99.23 143 | 99.69 138 | 99.33 103 | 99.04 162 | 99.13 198 | 98.41 155 | 99.79 60 | 99.33 112 | 99.36 141 | 98.10 161 | 99.29 90 | 98.87 113 | 99.65 96 | 99.56 78 |
|
PVSNet_Blended | | | 99.20 117 | 99.17 101 | 99.23 143 | 99.69 138 | 99.33 103 | 99.04 162 | 99.13 198 | 98.41 155 | 99.79 60 | 99.33 112 | 99.36 141 | 98.10 161 | 99.29 90 | 98.87 113 | 99.65 96 | 99.56 78 |
|
MCST-MVS | | | 99.17 120 | 98.82 146 | 99.57 86 | 99.75 121 | 98.70 178 | 99.25 142 | 99.69 136 | 98.62 134 | 99.59 120 | 98.54 170 | 99.79 99 | 99.53 54 | 98.48 182 | 98.15 168 | 99.64 105 | 99.43 110 |
|
APD-MVS |  | | 99.17 120 | 98.92 134 | 99.46 107 | 99.78 104 | 99.24 125 | 99.34 124 | 99.78 107 | 97.79 187 | 99.48 143 | 98.25 182 | 99.88 67 | 98.77 139 | 99.18 117 | 98.92 108 | 99.63 108 | 99.18 141 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
OpenMVS |  | 98.82 8 | 99.17 120 | 98.85 142 | 99.53 94 | 99.75 121 | 99.06 150 | 99.36 120 | 99.82 84 | 98.28 163 | 99.76 68 | 98.47 174 | 99.61 121 | 98.91 131 | 98.80 168 | 98.70 134 | 99.60 118 | 99.04 161 |
|
IterMVS-LS | | | 99.16 123 | 98.82 146 | 99.57 86 | 99.87 49 | 99.71 27 | 99.58 74 | 99.92 33 | 99.24 57 | 99.71 93 | 99.73 53 | 95.79 189 | 98.91 131 | 98.82 167 | 98.66 138 | 99.43 153 | 99.77 24 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DeepPCF-MVS | | 98.38 11 | 99.16 123 | 99.20 92 | 99.12 159 | 99.20 205 | 98.71 177 | 98.85 184 | 99.06 201 | 99.17 68 | 98.96 188 | 99.61 75 | 99.86 75 | 99.29 92 | 99.17 119 | 98.72 132 | 99.36 161 | 99.15 149 |
|
IterMVS-SCA-FT | | | 99.15 125 | 98.96 130 | 99.38 121 | 99.87 49 | 99.54 53 | 99.53 83 | 99.79 102 | 98.94 99 | 99.82 53 | 99.92 16 | 97.65 180 | 98.82 136 | 98.95 143 | 98.26 162 | 98.45 191 | 99.47 102 |
|
CDS-MVSNet | | | 99.15 125 | 99.10 112 | 99.21 149 | 99.59 166 | 99.22 128 | 99.48 102 | 99.47 177 | 98.89 106 | 99.41 156 | 99.84 41 | 98.11 176 | 97.76 175 | 99.26 100 | 99.01 95 | 99.57 126 | 99.38 122 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IS_MVSNet | | | 99.15 125 | 99.12 109 | 99.19 152 | 99.92 26 | 99.73 26 | 99.55 78 | 99.86 55 | 98.45 148 | 96.91 216 | 98.74 157 | 98.33 172 | 99.02 121 | 99.54 55 | 99.47 41 | 99.88 27 | 99.61 59 |
|
MDA-MVSNet-bldmvs | | | 99.11 128 | 99.11 111 | 99.12 159 | 99.91 30 | 99.38 90 | 99.77 30 | 98.72 205 | 99.31 50 | 99.85 41 | 99.43 101 | 98.26 174 | 99.48 70 | 99.85 16 | 98.47 150 | 96.99 202 | 99.08 154 |
|
OMC-MVS | | | 99.11 128 | 98.95 131 | 99.29 135 | 99.37 194 | 98.57 185 | 99.19 146 | 99.20 197 | 98.87 109 | 99.58 124 | 99.13 133 | 99.88 67 | 99.00 122 | 99.19 114 | 98.46 151 | 99.43 153 | 98.57 175 |
|
MVS_Test | | | 99.09 130 | 98.92 134 | 99.29 135 | 99.61 158 | 99.07 149 | 99.04 162 | 99.81 92 | 98.58 140 | 99.37 163 | 99.74 51 | 98.87 162 | 98.41 154 | 98.61 177 | 98.01 176 | 99.50 142 | 99.57 77 |
|
CNVR-MVS | | | 99.08 131 | 98.83 143 | 99.37 127 | 99.61 158 | 98.74 174 | 99.15 150 | 99.54 166 | 98.59 139 | 99.37 163 | 98.15 185 | 99.88 67 | 99.08 114 | 98.91 149 | 98.46 151 | 99.48 144 | 99.06 157 |
|
IterMVS | | | 99.08 131 | 98.90 137 | 99.29 135 | 99.87 49 | 99.53 56 | 99.52 87 | 99.77 114 | 98.94 99 | 99.75 71 | 99.91 23 | 97.52 184 | 98.72 143 | 98.86 158 | 98.14 169 | 98.09 194 | 99.43 110 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet2 | | | 99.07 133 | 99.19 94 | 98.93 175 | 99.02 210 | 99.53 56 | 99.31 128 | 99.84 71 | 98.86 110 | 98.88 192 | 99.64 71 | 98.44 169 | 96.92 192 | 99.35 78 | 99.00 99 | 99.61 115 | 99.53 88 |
|
CVMVSNet | | | 99.06 134 | 98.88 141 | 99.28 139 | 99.52 173 | 99.53 56 | 99.42 109 | 99.69 136 | 98.74 122 | 98.27 212 | 99.89 31 | 95.48 192 | 99.44 74 | 99.46 62 | 99.33 54 | 99.32 166 | 99.75 29 |
|
CDPH-MVS | | | 99.05 135 | 98.63 153 | 99.54 93 | 99.75 121 | 98.78 170 | 99.59 70 | 99.68 142 | 97.79 187 | 99.37 163 | 98.20 184 | 99.86 75 | 99.14 109 | 98.58 178 | 98.01 176 | 99.68 90 | 99.16 147 |
|
TAMVS | | | 99.05 135 | 99.02 123 | 99.08 164 | 99.69 138 | 99.22 128 | 99.33 125 | 99.32 194 | 99.16 72 | 98.97 187 | 99.87 35 | 97.36 185 | 97.76 175 | 99.21 108 | 99.00 99 | 99.44 150 | 99.33 128 |
|
CANet_DTU | | | 99.03 137 | 99.18 97 | 98.87 178 | 99.58 169 | 99.03 151 | 99.18 147 | 99.41 184 | 98.65 129 | 99.74 78 | 99.55 84 | 99.71 109 | 96.13 201 | 99.19 114 | 98.92 108 | 99.17 176 | 99.18 141 |
|
Effi-MVS+-dtu | | | 99.01 138 | 99.05 117 | 98.98 168 | 99.60 162 | 99.13 142 | 99.03 166 | 99.61 152 | 98.52 144 | 99.01 184 | 98.53 171 | 99.83 85 | 96.95 191 | 99.48 58 | 98.59 145 | 99.66 94 | 99.25 139 |
|
canonicalmvs | | | 99.00 139 | 98.68 152 | 99.37 127 | 99.68 144 | 99.42 83 | 98.94 175 | 99.89 46 | 99.00 90 | 98.99 185 | 98.43 178 | 95.69 190 | 98.96 128 | 99.18 117 | 99.18 63 | 99.74 76 | 99.88 7 |
|
MIMVSNet | | | 99.00 139 | 99.03 120 | 98.97 172 | 99.32 200 | 99.32 107 | 99.39 115 | 99.91 38 | 98.41 155 | 98.76 199 | 99.24 121 | 99.17 153 | 97.13 185 | 99.30 87 | 98.80 123 | 99.29 167 | 99.01 162 |
|
CHOSEN 280x420 | | | 98.99 141 | 98.91 136 | 99.07 165 | 99.77 112 | 99.26 117 | 99.55 78 | 99.92 33 | 98.62 134 | 98.67 203 | 99.62 74 | 97.20 186 | 98.44 153 | 99.50 56 | 99.18 63 | 98.08 195 | 98.99 165 |
|
xxxxxxxxxxxxxcwj | | | 98.97 142 | 98.97 129 | 98.98 168 | 99.64 151 | 98.89 162 | 98.00 214 | 99.58 160 | 98.42 152 | 99.08 182 | 98.63 164 | 99.96 13 | 98.04 167 | 99.02 132 | 98.76 125 | 99.52 136 | 99.13 150 |
|
SF-MVS | | | 98.96 143 | 98.95 131 | 98.98 168 | 99.64 151 | 98.89 162 | 98.00 214 | 99.58 160 | 98.42 152 | 99.08 182 | 98.63 164 | 99.83 85 | 98.04 167 | 99.02 132 | 98.76 125 | 99.52 136 | 99.13 150 |
|
GBi-Net | | | 98.96 143 | 99.05 117 | 98.85 179 | 99.02 210 | 99.53 56 | 99.31 128 | 99.78 107 | 98.13 169 | 98.48 206 | 99.43 101 | 97.58 181 | 96.92 192 | 99.68 37 | 99.50 36 | 99.61 115 | 99.53 88 |
|
test1 | | | 98.96 143 | 99.05 117 | 98.85 179 | 99.02 210 | 99.53 56 | 99.31 128 | 99.78 107 | 98.13 169 | 98.48 206 | 99.43 101 | 97.58 181 | 96.92 192 | 99.68 37 | 99.50 36 | 99.61 115 | 99.53 88 |
|
PCF-MVS | | 97.86 15 | 98.95 146 | 98.53 158 | 99.44 111 | 99.70 137 | 98.80 169 | 98.96 171 | 99.69 136 | 98.65 129 | 99.59 120 | 99.33 112 | 99.94 35 | 99.12 112 | 98.01 192 | 97.11 189 | 99.59 124 | 97.83 192 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MS-PatchMatch | | | 98.94 147 | 98.71 151 | 99.21 149 | 99.52 173 | 98.22 201 | 98.97 170 | 99.53 171 | 98.76 119 | 99.50 139 | 98.59 168 | 99.56 127 | 98.68 144 | 98.63 176 | 98.45 153 | 99.05 179 | 98.73 172 |
|
AdaColmap |  | | 98.93 148 | 98.53 158 | 99.39 117 | 99.52 173 | 98.65 181 | 99.11 156 | 99.59 157 | 98.08 173 | 99.44 149 | 97.46 198 | 99.45 134 | 99.24 96 | 98.92 146 | 98.44 154 | 99.44 150 | 98.73 172 |
|
MSLP-MVS++ | | | 98.92 149 | 98.73 150 | 99.14 156 | 99.44 188 | 99.00 154 | 98.36 204 | 99.35 190 | 98.82 116 | 99.38 160 | 96.06 205 | 99.79 99 | 99.07 115 | 98.88 154 | 99.05 89 | 99.27 169 | 99.53 88 |
|
new_pmnet | | | 98.91 150 | 98.89 138 | 98.94 173 | 99.51 179 | 98.27 197 | 99.15 150 | 98.66 206 | 99.17 68 | 99.48 143 | 99.79 49 | 99.80 96 | 98.49 152 | 99.23 103 | 98.20 166 | 98.34 192 | 97.74 196 |
|
train_agg | | | 98.89 151 | 98.48 163 | 99.38 121 | 99.69 138 | 98.76 173 | 99.31 128 | 99.60 154 | 97.71 189 | 98.98 186 | 97.89 189 | 99.89 61 | 99.29 92 | 98.32 183 | 97.59 185 | 99.42 156 | 99.16 147 |
|
NCCC | | | 98.88 152 | 98.42 164 | 99.42 112 | 99.62 154 | 98.81 168 | 99.10 157 | 99.54 166 | 98.76 119 | 99.53 129 | 95.97 206 | 99.80 96 | 99.16 103 | 98.49 181 | 98.06 175 | 99.55 132 | 99.05 159 |
|
PLC |  | 97.83 16 | 98.88 152 | 98.52 160 | 99.30 134 | 99.45 186 | 98.60 184 | 98.65 194 | 99.49 175 | 98.66 128 | 99.59 120 | 96.33 204 | 99.59 124 | 99.17 100 | 98.87 155 | 98.53 147 | 99.46 146 | 99.05 159 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
pmmvs3 | | | 98.85 154 | 98.60 154 | 99.13 157 | 99.66 146 | 98.72 176 | 99.37 119 | 99.06 201 | 98.44 149 | 99.76 68 | 99.74 51 | 99.55 128 | 99.15 107 | 99.04 130 | 96.00 197 | 97.80 196 | 98.72 174 |
|
Fast-Effi-MVS+-dtu | | | 98.82 155 | 98.80 148 | 98.84 181 | 99.51 179 | 98.90 159 | 98.96 171 | 99.91 38 | 98.29 162 | 99.11 181 | 98.47 174 | 99.63 120 | 96.03 202 | 99.21 108 | 98.12 170 | 99.52 136 | 99.01 162 |
|
CNLPA | | | 98.82 155 | 98.52 160 | 99.18 153 | 99.21 204 | 98.50 189 | 98.73 192 | 99.34 192 | 98.73 124 | 99.56 126 | 97.55 195 | 99.42 138 | 99.06 117 | 98.93 144 | 98.10 172 | 99.21 175 | 98.38 180 |
|
PatchMatch-RL | | | 98.80 157 | 98.52 160 | 99.12 159 | 99.38 193 | 98.70 178 | 98.56 197 | 99.55 165 | 97.81 186 | 99.34 169 | 97.57 194 | 99.31 148 | 98.67 145 | 99.27 98 | 98.62 142 | 99.22 174 | 98.35 182 |
|
thisisatest0530 | | | 98.78 158 | 98.26 167 | 99.39 117 | 99.78 104 | 99.43 79 | 99.07 159 | 99.64 150 | 98.44 149 | 99.42 154 | 99.22 124 | 92.68 203 | 98.63 147 | 99.30 87 | 99.14 69 | 99.80 57 | 99.60 61 |
|
tttt0517 | | | 98.77 159 | 98.25 169 | 99.38 121 | 99.79 99 | 99.46 73 | 99.07 159 | 99.64 150 | 98.40 158 | 99.38 160 | 99.21 126 | 92.54 204 | 98.63 147 | 99.34 81 | 99.14 69 | 99.80 57 | 99.62 57 |
|
DI_MVS_plusplus_trai | | | 98.74 160 | 98.08 177 | 99.51 100 | 99.79 99 | 99.29 114 | 99.61 65 | 99.60 154 | 99.20 62 | 99.46 147 | 99.09 138 | 92.93 197 | 98.97 125 | 98.27 186 | 98.35 158 | 99.65 96 | 99.45 104 |
|
TSAR-MVS + COLMAP | | | 98.74 160 | 98.58 156 | 98.93 175 | 99.29 201 | 98.23 198 | 99.04 162 | 99.24 196 | 98.79 118 | 98.80 198 | 99.37 110 | 99.71 109 | 98.06 164 | 98.02 191 | 97.46 187 | 99.16 177 | 98.48 178 |
|
MDTV_nov1_ep13_2view | | | 98.73 162 | 98.31 166 | 99.22 146 | 99.75 121 | 99.24 125 | 99.75 37 | 99.93 26 | 99.31 50 | 99.84 45 | 99.86 38 | 99.81 90 | 99.31 90 | 97.40 200 | 94.77 199 | 96.73 204 | 97.81 193 |
|
PMMVS | | | 98.71 163 | 98.55 157 | 98.90 177 | 99.28 202 | 98.45 191 | 98.53 200 | 99.45 179 | 97.67 191 | 99.15 180 | 98.76 155 | 99.54 130 | 97.79 174 | 98.77 171 | 98.23 164 | 99.16 177 | 98.46 179 |
|
HQP-MVS | | | 98.70 164 | 98.19 173 | 99.28 139 | 99.61 158 | 98.52 187 | 98.71 193 | 99.35 190 | 97.97 180 | 99.53 129 | 97.38 199 | 99.85 81 | 99.14 109 | 97.53 196 | 96.85 193 | 99.36 161 | 99.26 138 |
|
N_pmnet | | | 98.64 165 | 98.23 172 | 99.11 162 | 99.78 104 | 99.25 120 | 99.75 37 | 99.39 188 | 99.65 14 | 99.70 95 | 99.78 50 | 99.89 61 | 98.81 138 | 97.60 195 | 94.28 200 | 97.24 201 | 97.15 200 |
|
CMPMVS |  | 76.62 19 | 98.64 165 | 98.60 154 | 98.68 186 | 99.33 198 | 97.07 213 | 98.11 212 | 98.50 207 | 97.69 190 | 99.26 172 | 98.35 181 | 99.66 118 | 97.62 178 | 99.43 71 | 99.02 93 | 99.24 172 | 99.01 162 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FMVSNet3 | | | 98.63 167 | 98.75 149 | 98.49 192 | 98.10 216 | 99.44 76 | 99.02 167 | 99.78 107 | 98.13 169 | 98.48 206 | 99.43 101 | 97.58 181 | 96.16 200 | 98.85 160 | 98.39 156 | 99.40 157 | 99.41 114 |
|
GA-MVS | | | 98.59 168 | 98.15 174 | 99.09 163 | 99.59 166 | 99.13 142 | 98.84 185 | 99.52 173 | 98.61 137 | 99.35 166 | 99.67 65 | 93.03 196 | 97.73 177 | 98.90 153 | 98.26 162 | 99.51 140 | 99.48 99 |
|
MAR-MVS | | | 98.54 169 | 98.15 174 | 98.98 168 | 99.37 194 | 98.09 204 | 98.56 197 | 99.65 149 | 96.11 215 | 99.27 171 | 97.16 202 | 99.50 131 | 98.03 169 | 98.87 155 | 98.23 164 | 99.01 180 | 99.13 150 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
new-patchmatchnet | | | 98.49 170 | 97.60 179 | 99.53 94 | 99.90 34 | 99.55 50 | 99.77 30 | 99.48 176 | 99.67 11 | 99.86 34 | 99.98 3 | 99.98 4 | 99.50 62 | 96.90 202 | 91.52 206 | 98.67 188 | 95.62 206 |
|
FPMVS | | | 98.48 171 | 98.83 143 | 98.07 202 | 99.09 208 | 97.98 207 | 99.07 159 | 98.04 213 | 98.99 91 | 99.22 175 | 98.85 150 | 99.43 137 | 93.79 210 | 99.66 42 | 99.11 81 | 99.24 172 | 97.76 194 |
|
MVS-HIRNet | | | 98.45 172 | 98.25 169 | 98.69 185 | 99.12 206 | 97.81 212 | 98.55 199 | 99.85 62 | 98.58 140 | 99.67 104 | 99.61 75 | 99.86 75 | 97.46 181 | 97.95 193 | 96.37 195 | 97.49 198 | 97.56 197 |
|
test0.0.03 1 | | | 98.41 173 | 98.41 165 | 98.40 196 | 99.62 154 | 99.16 135 | 98.87 182 | 99.41 184 | 97.15 198 | 96.60 218 | 99.31 117 | 97.00 187 | 96.55 197 | 98.91 149 | 98.51 149 | 99.37 160 | 98.82 170 |
|
gg-mvs-nofinetune | | | 98.40 174 | 98.26 167 | 98.57 190 | 99.83 84 | 98.86 166 | 98.77 191 | 99.97 1 | 99.57 25 | 99.99 1 | 99.99 1 | 93.81 194 | 93.50 211 | 98.91 149 | 98.20 166 | 99.33 165 | 98.52 177 |
|
baseline1 | | | 98.39 175 | 97.59 180 | 99.31 133 | 99.78 104 | 99.45 74 | 99.13 153 | 99.53 171 | 98.06 175 | 98.87 193 | 98.63 164 | 90.04 209 | 98.76 140 | 98.85 160 | 98.84 117 | 99.81 53 | 99.28 134 |
|
pmnet_mix02 | | | 98.28 176 | 97.48 182 | 99.22 146 | 99.78 104 | 99.12 145 | 99.68 53 | 99.39 188 | 99.49 33 | 99.86 34 | 99.82 46 | 99.89 61 | 99.23 97 | 95.54 205 | 92.36 203 | 97.38 199 | 96.14 204 |
|
PatchT | | | 98.11 177 | 97.12 188 | 99.26 141 | 99.65 150 | 98.34 195 | 99.57 76 | 99.97 1 | 97.48 194 | 99.43 151 | 99.04 143 | 90.84 207 | 98.15 158 | 98.04 189 | 97.78 179 | 98.82 185 | 98.30 183 |
|
DPM-MVS | | | 98.10 178 | 97.32 186 | 99.01 167 | 99.52 173 | 97.92 208 | 98.47 202 | 99.45 179 | 98.25 164 | 98.91 190 | 93.99 210 | 99.69 114 | 98.73 142 | 96.29 204 | 96.32 196 | 99.00 181 | 98.77 171 |
|
EPNet_dtu | | | 98.09 179 | 98.25 169 | 97.91 204 | 99.58 169 | 98.02 206 | 98.19 209 | 99.67 145 | 97.94 182 | 99.74 78 | 99.07 141 | 98.71 165 | 93.40 212 | 97.50 197 | 97.09 190 | 96.89 203 | 99.44 107 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPNet | | | 98.06 180 | 98.11 176 | 98.00 203 | 99.60 162 | 98.99 156 | 98.38 203 | 99.68 142 | 98.18 168 | 98.85 195 | 97.89 189 | 95.60 191 | 92.72 213 | 98.30 184 | 98.10 172 | 98.76 186 | 99.72 35 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CR-MVSNet | | | 97.91 181 | 96.80 191 | 99.22 146 | 99.60 162 | 98.23 198 | 98.91 177 | 99.97 1 | 96.89 208 | 99.43 151 | 99.10 137 | 89.24 212 | 98.15 158 | 98.04 189 | 97.78 179 | 99.26 170 | 98.30 183 |
|
thres200 | | | 97.87 182 | 96.56 193 | 99.39 117 | 99.76 117 | 99.52 63 | 99.13 153 | 99.76 123 | 96.88 210 | 98.66 204 | 92.87 214 | 88.77 215 | 99.16 103 | 99.11 125 | 99.42 48 | 99.88 27 | 99.33 128 |
|
baseline2 | | | 97.87 182 | 97.18 187 | 98.67 187 | 99.34 197 | 99.17 134 | 98.48 201 | 98.82 204 | 97.08 201 | 98.83 197 | 98.75 156 | 89.47 211 | 97.03 190 | 98.67 175 | 98.27 161 | 99.52 136 | 98.83 169 |
|
thres600view7 | | | 97.86 184 | 96.53 196 | 99.41 115 | 99.84 78 | 99.52 63 | 99.36 120 | 99.76 123 | 97.32 196 | 98.38 211 | 93.24 211 | 87.25 217 | 99.23 97 | 99.11 125 | 99.75 14 | 99.88 27 | 99.48 99 |
|
tfpn200view9 | | | 97.85 185 | 96.54 194 | 99.38 121 | 99.74 129 | 99.52 63 | 99.17 148 | 99.76 123 | 96.10 216 | 98.70 201 | 92.99 212 | 89.10 213 | 99.00 122 | 99.11 125 | 99.56 28 | 99.88 27 | 99.41 114 |
|
thres400 | | | 97.82 186 | 96.47 197 | 99.40 116 | 99.81 94 | 99.44 76 | 99.29 135 | 99.69 136 | 97.15 198 | 98.57 205 | 92.82 215 | 87.96 216 | 99.16 103 | 98.96 141 | 99.55 31 | 99.86 36 | 99.41 114 |
|
IB-MVS | | 98.10 14 | 97.76 187 | 97.40 185 | 98.18 198 | 99.62 154 | 99.11 147 | 98.24 207 | 98.35 209 | 96.56 212 | 99.44 149 | 91.28 216 | 98.96 160 | 93.84 209 | 98.09 188 | 98.62 142 | 99.56 129 | 99.18 141 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-LLR | | | 97.74 188 | 97.46 183 | 98.08 200 | 99.62 154 | 98.37 193 | 98.26 205 | 99.41 184 | 97.03 203 | 97.38 214 | 99.54 85 | 92.89 198 | 95.12 206 | 98.78 169 | 97.68 183 | 98.65 189 | 97.90 190 |
|
RPMNet | | | 97.70 189 | 96.54 194 | 99.06 166 | 99.57 172 | 98.23 198 | 98.95 174 | 99.97 1 | 96.89 208 | 99.49 141 | 99.13 133 | 89.63 210 | 97.09 187 | 96.68 203 | 97.02 191 | 99.26 170 | 98.19 187 |
|
thres100view900 | | | 97.69 190 | 96.37 198 | 99.23 143 | 99.74 129 | 99.21 131 | 98.81 189 | 99.43 183 | 96.10 216 | 98.70 201 | 92.99 212 | 89.10 213 | 98.88 134 | 98.58 178 | 99.31 56 | 99.82 50 | 99.27 135 |
|
FMVSNet5 | | | 97.69 190 | 96.98 189 | 98.53 191 | 98.53 214 | 99.36 96 | 98.90 180 | 99.54 166 | 96.38 213 | 98.44 209 | 95.38 208 | 90.08 208 | 97.05 189 | 99.46 62 | 99.06 86 | 98.73 187 | 99.12 153 |
|
MVE |  | 91.08 18 | 97.68 192 | 97.65 178 | 97.71 210 | 98.46 215 | 91.62 219 | 97.92 216 | 98.86 203 | 98.73 124 | 97.99 213 | 98.64 163 | 99.96 13 | 99.17 100 | 99.59 50 | 97.75 181 | 93.87 218 | 97.27 198 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test-mter | | | 97.65 193 | 97.57 181 | 97.75 208 | 98.90 213 | 98.56 186 | 98.15 210 | 98.45 208 | 96.92 207 | 96.84 217 | 99.52 93 | 92.53 205 | 95.24 205 | 99.04 130 | 98.12 170 | 98.90 184 | 98.29 185 |
|
TESTMET0.1,1 | | | 97.62 194 | 97.46 183 | 97.81 206 | 99.07 209 | 98.37 193 | 98.26 205 | 98.35 209 | 97.03 203 | 97.38 214 | 99.54 85 | 92.89 198 | 95.12 206 | 98.78 169 | 97.68 183 | 98.65 189 | 97.90 190 |
|
MVSTER | | | 97.55 195 | 96.75 192 | 98.48 193 | 99.46 185 | 99.54 53 | 98.24 207 | 99.77 114 | 97.56 192 | 99.41 156 | 99.31 117 | 84.86 219 | 94.66 208 | 98.86 158 | 97.75 181 | 99.34 164 | 99.38 122 |
|
ET-MVSNet_ETH3D | | | 97.44 196 | 96.29 199 | 98.78 182 | 97.93 217 | 98.95 158 | 98.91 177 | 99.09 200 | 98.00 178 | 99.24 173 | 98.83 151 | 84.62 220 | 98.02 170 | 97.43 199 | 97.38 188 | 99.48 144 | 98.84 167 |
|
MDTV_nov1_ep13 | | | 97.41 197 | 96.26 200 | 98.76 183 | 99.47 184 | 98.43 192 | 99.26 141 | 99.82 84 | 98.06 175 | 99.23 174 | 99.22 124 | 92.86 200 | 98.05 165 | 95.33 207 | 93.66 202 | 96.73 204 | 96.26 203 |
|
ADS-MVSNet | | | 97.29 198 | 96.17 201 | 98.59 189 | 99.59 166 | 98.70 178 | 99.32 126 | 99.86 55 | 98.47 145 | 99.56 126 | 99.08 139 | 98.16 175 | 97.34 183 | 92.92 209 | 91.17 207 | 95.91 207 | 94.72 209 |
|
SCA | | | 97.25 199 | 96.05 202 | 98.64 188 | 99.36 196 | 99.02 152 | 99.27 138 | 99.96 12 | 98.25 164 | 99.69 96 | 98.71 160 | 94.66 193 | 97.95 173 | 93.95 208 | 92.35 204 | 95.64 208 | 95.40 208 |
|
gm-plane-assit | | | 96.82 200 | 94.84 208 | 99.13 157 | 99.95 10 | 99.78 14 | 99.69 52 | 99.92 33 | 99.19 65 | 99.84 45 | 99.92 16 | 72.93 223 | 96.44 199 | 98.21 187 | 97.01 192 | 98.92 183 | 96.87 202 |
|
PatchmatchNet |  | | 96.81 201 | 95.41 205 | 98.43 195 | 99.43 190 | 98.30 196 | 99.23 143 | 99.93 26 | 98.19 167 | 99.64 109 | 98.81 154 | 93.50 195 | 97.43 182 | 92.89 210 | 90.78 209 | 94.94 213 | 95.41 207 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 96.76 202 | 95.30 207 | 98.46 194 | 99.42 191 | 98.47 190 | 99.32 126 | 99.91 38 | 98.42 152 | 99.51 137 | 99.07 141 | 92.81 201 | 97.12 186 | 92.39 211 | 91.71 205 | 95.51 209 | 94.20 211 |
|
E-PMN | | | 96.72 203 | 95.78 203 | 97.81 206 | 99.45 186 | 95.46 216 | 98.14 211 | 98.33 211 | 97.99 179 | 98.73 200 | 98.09 186 | 98.97 158 | 97.54 180 | 97.45 198 | 91.09 208 | 94.70 215 | 91.40 214 |
|
tpm | | | 96.56 204 | 94.68 209 | 98.74 184 | 99.12 206 | 97.90 209 | 98.79 190 | 99.93 26 | 96.79 211 | 99.69 96 | 99.19 128 | 81.48 222 | 97.56 179 | 95.46 206 | 93.97 201 | 97.37 200 | 97.99 189 |
|
EMVS | | | 96.47 205 | 95.38 206 | 97.74 209 | 99.42 191 | 95.37 217 | 98.07 213 | 98.27 212 | 97.85 185 | 98.90 191 | 97.48 197 | 98.73 164 | 97.20 184 | 97.21 201 | 90.39 210 | 94.59 217 | 90.65 215 |
|
tpmrst | | | 96.18 206 | 94.47 210 | 98.18 198 | 99.52 173 | 97.89 210 | 98.96 171 | 99.79 102 | 98.07 174 | 99.16 178 | 99.30 120 | 92.69 202 | 96.69 195 | 90.76 213 | 88.85 213 | 94.96 212 | 93.69 212 |
|
CostFormer | | | 95.61 207 | 93.35 213 | 98.24 197 | 99.48 183 | 98.03 205 | 98.65 194 | 99.83 77 | 96.93 206 | 99.42 154 | 98.83 151 | 83.65 221 | 97.08 188 | 90.39 214 | 89.54 212 | 94.94 213 | 96.11 205 |
|
dps | | | 95.59 208 | 93.46 212 | 98.08 200 | 99.33 198 | 98.22 201 | 98.87 182 | 99.70 134 | 96.17 214 | 98.87 193 | 97.75 192 | 86.85 218 | 96.60 196 | 91.24 212 | 89.62 211 | 95.10 211 | 94.34 210 |
|
tpm cat1 | | | 95.52 209 | 93.49 211 | 97.88 205 | 99.28 202 | 97.87 211 | 98.65 194 | 99.77 114 | 97.27 197 | 99.46 147 | 98.04 187 | 90.99 206 | 95.46 204 | 88.57 215 | 88.14 214 | 94.64 216 | 93.54 213 |
|
test_method | | | 91.96 210 | 95.51 204 | 87.82 212 | 70.84 219 | 82.79 220 | 92.13 219 | 87.74 215 | 98.88 107 | 95.40 219 | 99.20 127 | 98.04 177 | 85.65 215 | 97.71 194 | 94.95 198 | 95.13 210 | 97.00 201 |
|
GG-mvs-BLEND | | | 70.44 211 | 96.91 190 | 39.57 213 | 3.32 222 | 96.51 214 | 91.01 220 | 4.05 219 | 97.03 203 | 33.20 221 | 94.67 209 | 97.75 179 | 7.59 218 | 98.28 185 | 96.85 193 | 98.24 193 | 97.26 199 |
|
testmvs | | | 22.33 212 | 29.66 214 | 13.79 214 | 8.97 220 | 10.35 221 | 15.53 223 | 8.09 218 | 32.51 218 | 19.87 222 | 45.18 217 | 30.56 225 | 17.05 217 | 29.96 216 | 24.74 215 | 13.21 219 | 34.30 216 |
|
test123 | | | 21.52 213 | 28.47 215 | 13.42 215 | 7.29 221 | 10.12 222 | 15.70 222 | 8.31 217 | 31.54 219 | 19.34 223 | 36.33 218 | 37.40 224 | 17.14 216 | 27.45 217 | 23.17 216 | 12.73 220 | 33.30 217 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 99.96 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.57 125 | | | | | |
|
SR-MVS | | | | | | 99.73 131 | | | 99.74 130 | | | | 99.88 67 | | | | | |
|
Anonymous202405211 | | | | 99.14 105 | | 99.87 49 | 99.55 50 | 99.50 94 | 99.70 134 | 98.55 142 | | 98.61 167 | 98.46 168 | 98.76 140 | 99.66 42 | 99.50 36 | 99.85 39 | 99.63 54 |
|
our_test_3 | | | | | | 99.75 121 | 99.11 147 | 99.74 44 | | | | | | | | | | |
|
ambc | | | | 98.83 143 | | 99.72 133 | 98.52 187 | 98.84 185 | | 98.96 96 | 99.92 10 | 99.34 111 | 99.74 104 | 99.04 119 | 98.68 174 | 97.57 186 | 99.46 146 | 98.99 165 |
|
MTAPA | | | | | | | | | | | 99.62 112 | | 99.95 25 | | | | | |
|
MTMP | | | | | | | | | | | 99.53 129 | | 99.92 49 | | | | | |
|
Patchmatch-RL test | | | | | | | | 65.75 221 | | | | | | | | | | |
|
tmp_tt | | | | | 88.14 211 | 96.68 218 | 91.91 218 | 93.70 218 | 61.38 216 | 99.61 20 | 90.51 220 | 99.40 107 | 99.71 109 | 90.32 214 | 99.22 105 | 99.44 46 | 96.25 206 | |
|
XVS | | | | | | 99.86 63 | 99.30 110 | 99.72 49 | | | 99.69 96 | | 99.93 41 | | | | 99.60 118 | |
|
X-MVStestdata | | | | | | 99.86 63 | 99.30 110 | 99.72 49 | | | 99.69 96 | | 99.93 41 | | | | 99.60 118 | |
|
abl_6 | | | | | 99.21 149 | 99.49 182 | 98.62 182 | 98.90 180 | 99.44 182 | 97.08 201 | 99.61 115 | 97.19 201 | 99.73 107 | 98.35 155 | | | 99.45 148 | 98.84 167 |
|
mPP-MVS | | | | | | 99.84 78 | | | | | | | 99.92 49 | | | | | |
|
NP-MVS | | | | | | | | | | 97.37 195 | | | | | | | | |
|
Patchmtry | | | | | | | 98.19 203 | 98.91 177 | 99.97 1 | | 99.43 151 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 96.39 215 | 97.15 217 | 88.89 214 | 97.94 182 | 99.51 137 | 95.71 207 | 97.88 178 | 98.19 156 | 98.92 146 | | 97.73 197 | 97.75 195 |
|