This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB97.71 199.33 199.47 299.16 799.16 4199.11 1299.39 1399.16 1199.26 399.22 599.51 1999.75 398.54 1599.71 299.47 499.52 1399.46 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo99.25 299.20 499.32 199.53 1599.32 999.64 299.19 1098.05 1199.19 699.74 498.96 5099.03 299.69 399.58 299.32 2599.06 6
WR-MVS99.22 399.15 699.30 299.54 1199.62 199.63 499.45 197.75 1598.47 2299.71 699.05 4198.88 499.54 699.49 399.81 198.87 9
test_part199.20 499.62 198.72 1698.92 6699.62 199.52 1299.01 1399.39 197.87 3799.74 499.75 397.29 6199.73 199.71 199.69 299.41 2
PS-CasMVS99.08 598.90 1199.28 399.65 399.56 599.59 699.39 396.36 3498.83 1499.46 2299.09 3498.62 1099.51 899.36 999.63 498.97 7
PEN-MVS99.08 598.95 999.23 599.65 399.59 399.64 299.34 696.68 2798.65 1799.43 2499.33 1698.47 1799.50 999.32 1099.60 698.79 11
v7n99.03 799.03 899.02 999.09 5399.11 1299.57 998.82 1998.21 1099.25 399.84 299.59 698.76 699.23 1798.83 2898.63 6798.40 34
DTE-MVSNet99.03 798.88 1299.21 699.66 299.59 399.62 599.34 696.92 2398.52 1999.36 3098.98 4698.57 1399.49 1099.23 1399.56 1098.55 25
TDRefinement99.00 999.13 798.86 1098.99 6399.05 1799.58 798.29 4498.96 597.96 3599.40 2798.67 7498.87 599.60 499.46 599.46 1998.74 14
WR-MVS_H98.97 1098.82 1499.14 899.56 999.56 599.54 1199.42 296.07 3998.37 2499.34 3199.09 3498.43 1899.45 1199.41 699.53 1198.86 10
UniMVSNet_ETH3D98.93 1199.20 498.63 2199.54 1199.33 898.73 6199.37 498.87 697.86 3899.27 3599.78 296.59 8199.52 799.40 799.67 398.21 41
CP-MVSNet98.91 1298.61 1999.25 499.63 599.50 799.55 1099.36 595.53 6398.77 1699.11 4198.64 7798.57 1399.42 1299.28 1299.61 598.78 12
anonymousdsp98.85 1398.88 1298.83 1198.69 8298.20 7399.68 197.35 11897.09 2298.98 1099.86 199.43 1098.94 399.28 1599.19 1499.33 2399.08 5
pmmvs698.77 1499.35 398.09 4298.32 9898.92 2298.57 6799.03 1299.36 296.86 8499.77 399.86 196.20 9699.56 599.39 899.59 798.61 22
ACMH95.26 798.75 1598.93 1098.54 2598.86 6999.01 1999.58 798.10 6398.67 797.30 6299.18 3999.42 1198.40 1999.19 1998.86 2698.99 4298.19 42
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft96.84 298.75 1598.82 1498.66 2099.14 4598.79 3399.30 1697.67 9098.33 997.82 4099.20 3899.18 3298.76 699.27 1698.96 2099.29 2798.03 46
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UA-Net98.66 1798.60 2298.73 1599.83 199.28 1098.56 6999.24 896.04 4097.12 7198.44 7598.95 5198.17 2699.15 2299.00 1999.48 1899.33 3
DeepC-MVS96.08 598.58 1898.49 2498.68 1899.37 2798.52 6099.01 3398.17 5797.17 2198.25 2799.56 1699.62 598.29 2298.40 5798.09 6698.97 4498.08 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TranMVSNet+NR-MVSNet98.45 1998.22 3198.72 1699.32 3299.06 1598.99 3498.89 1595.52 6497.53 5099.42 2698.83 6298.01 3298.55 4998.34 5299.57 997.80 56
CSCG98.45 1998.61 1998.26 3699.11 4999.06 1598.17 8797.49 10397.93 1397.37 5998.88 5299.29 1998.10 2798.40 5797.51 8399.32 2599.16 4
Gipumacopyleft98.43 2198.15 3498.76 1499.00 6298.29 7097.91 10298.06 6599.02 499.50 196.33 12398.67 7499.22 199.02 2598.02 7198.88 5797.66 65
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMH+94.90 898.40 2298.71 1798.04 5398.93 6598.84 2899.30 1697.86 8297.78 1494.19 16998.77 6299.39 1398.61 1199.33 1499.07 1599.33 2397.81 55
ACMMPR98.31 2398.07 3898.60 2299.58 698.83 2999.09 2598.48 2896.25 3697.03 7596.81 11399.09 3498.39 2098.55 4998.45 4499.01 3998.53 28
APDe-MVS98.29 2498.42 2698.14 3999.45 2298.90 2399.18 2298.30 4295.96 4595.13 14898.79 5999.25 2797.92 3698.80 3398.71 3198.85 5998.54 26
DVP-MVS98.27 2598.61 1997.87 6399.17 4099.03 1899.07 2798.17 5796.75 2694.35 16498.92 4899.58 797.86 3998.67 4298.70 3298.63 6798.63 20
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TransMVSNet (Re)98.23 2698.72 1697.66 7498.22 10798.73 4498.66 6398.03 7098.60 896.40 10299.60 1398.24 9895.26 11899.19 1999.05 1899.36 2097.64 66
DU-MVS98.23 2697.74 5598.81 1299.23 3498.77 3598.76 5598.88 1694.10 11298.50 2098.87 5498.32 9597.99 3398.40 5798.08 6999.49 1797.64 66
UniMVSNet (Re)98.23 2697.85 4798.67 1999.15 4298.87 2598.74 5898.84 1894.27 11097.94 3699.01 4398.39 9197.82 4098.35 6298.29 5799.51 1697.78 57
MIMVSNet198.22 2998.51 2397.87 6399.40 2698.82 3199.31 1598.53 2697.39 1896.59 9399.31 3399.23 2994.76 12898.93 2998.67 3498.63 6797.25 89
HFP-MVS98.17 3098.02 3998.35 3499.36 2898.62 5098.79 5498.46 3296.24 3796.53 9597.13 11098.98 4698.02 3198.20 6598.42 4698.95 4898.54 26
Baseline_NR-MVSNet98.17 3097.90 4498.48 2899.23 3498.59 5298.83 5198.73 2393.97 11796.95 7899.66 898.23 10097.90 3798.40 5799.06 1799.25 2897.42 81
TSAR-MVS + MP.98.15 3298.23 3098.06 5198.47 8998.16 7999.23 1996.87 13395.58 5896.72 8798.41 7699.06 3898.05 3098.99 2698.90 2399.00 4098.51 29
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
zzz-MVS98.14 3397.78 5298.55 2499.58 698.58 5498.98 3698.48 2895.98 4397.39 5794.73 15299.27 2397.98 3598.81 3298.64 3898.90 5298.46 30
pm-mvs198.14 3398.66 1897.53 8297.93 12898.49 6298.14 8998.19 5397.95 1296.17 11399.63 1198.85 5995.41 11698.91 3098.89 2499.34 2297.86 54
SMA-MVScopyleft98.13 3598.22 3198.02 5699.44 2498.73 4498.24 8497.87 8195.22 7196.76 8698.66 6899.35 1597.03 6998.53 5298.39 4898.80 6298.69 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.12 3698.08 3798.18 3899.34 2998.74 4398.97 3798.00 7295.13 7596.90 7997.54 9899.27 2397.18 6398.72 3898.45 4498.68 6698.69 16
UniMVSNet_NR-MVSNet98.12 3697.56 6298.78 1399.13 4798.89 2498.76 5598.78 2093.81 12098.50 2098.81 5897.64 12097.99 3398.18 6897.92 7499.53 1197.64 66
ACMM94.29 1198.12 3697.71 5698.59 2399.51 1798.58 5499.24 1898.25 4696.22 3896.90 7995.01 14698.89 5698.52 1698.66 4398.32 5599.13 3298.28 40
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.06 3997.78 5298.39 3299.54 1198.79 3398.94 4198.42 3493.98 11695.85 12296.66 11899.25 2798.61 1198.71 4098.38 4998.97 4498.67 19
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS98.05 4098.46 2597.57 7899.01 5998.99 2098.82 5398.24 4795.76 5394.70 15798.96 4599.49 996.19 9798.74 3498.65 3698.46 8198.63 20
OPM-MVS98.01 4198.01 4098.00 5899.11 4998.12 8298.68 6297.72 8896.65 2896.68 9198.40 7799.28 2297.44 5398.20 6597.82 8098.40 8797.58 71
Vis-MVSNetpermissive98.01 4198.42 2697.54 8196.89 17598.82 3199.14 2397.59 9396.30 3597.04 7499.26 3698.83 6296.01 10298.73 3698.21 5998.58 7398.75 13
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
NR-MVSNet98.00 4397.88 4598.13 4098.33 9698.77 3598.83 5198.88 1694.10 11297.46 5598.87 5498.58 8295.78 10599.13 2398.16 6399.52 1397.53 74
CP-MVS98.00 4397.57 6198.50 2699.47 2198.56 5798.91 4398.38 3794.71 9197.01 7695.20 14299.06 3898.20 2498.61 4698.46 4199.02 3798.40 34
DPE-MVScopyleft97.99 4598.12 3597.84 6698.65 8498.86 2698.86 4898.05 6894.18 11195.49 14198.90 5099.33 1697.11 6598.53 5298.65 3698.86 5898.39 36
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMPcopyleft97.99 4597.60 6098.45 3099.53 1598.83 2999.13 2498.30 4294.57 9796.39 10695.32 14098.95 5198.37 2198.61 4698.47 4099.00 4098.45 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft97.98 4797.53 6498.50 2699.56 998.58 5498.97 3798.39 3693.49 12397.14 6896.08 12999.23 2998.06 2998.50 5498.38 4998.90 5298.44 32
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EG-PatchMatch MVS97.98 4797.92 4298.04 5398.84 7298.04 9097.90 10396.83 13695.07 7798.79 1599.07 4299.37 1497.88 3898.74 3498.16 6398.01 10996.96 96
ACMP94.03 1297.97 4997.61 5998.39 3299.43 2598.51 6198.97 3798.06 6594.63 9596.10 11596.12 12899.20 3198.63 998.68 4198.20 6299.14 3197.93 51
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train97.96 5097.53 6498.45 3099.45 2298.64 4999.09 2598.27 4592.99 13596.04 11796.57 11999.29 1998.66 898.73 3698.42 4699.19 3098.09 44
LS3D97.93 5197.80 4998.08 4699.20 3798.77 3598.89 4597.92 7796.59 2996.99 7796.71 11697.14 13396.39 9099.04 2498.96 2099.10 3697.39 82
SD-MVS97.84 5297.78 5297.90 6198.33 9698.06 8797.95 9997.80 8796.03 4296.72 8797.57 9699.18 3297.50 5197.88 7197.08 9699.11 3498.68 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
RPSCF97.83 5398.27 2897.31 9398.23 10598.06 8797.44 12895.79 16696.90 2495.81 12498.76 6398.61 8197.70 4598.90 3198.36 5198.90 5298.29 37
thisisatest051597.82 5497.67 5797.99 5998.49 8898.07 8698.48 7298.06 6595.35 6997.74 4398.83 5797.61 12196.74 7597.53 9098.30 5698.43 8698.01 48
PGM-MVS97.82 5497.25 7298.48 2899.54 1198.75 4299.02 2998.35 4092.41 13996.84 8595.39 13998.99 4598.24 2398.43 5698.34 5298.90 5298.41 33
PMVScopyleft90.51 1797.77 5697.98 4197.53 8298.68 8398.14 8197.67 11397.03 12896.43 3098.38 2398.72 6597.03 13594.44 13399.37 1399.30 1198.98 4396.86 102
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSP-MVS97.67 5797.88 4597.43 8899.34 2998.99 2098.87 4798.12 6095.63 5594.16 17097.45 9999.50 896.44 8996.35 12698.70 3297.65 12598.57 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tfpnnormal97.66 5897.79 5097.52 8498.32 9898.53 5998.45 7597.69 8997.59 1796.12 11497.79 9196.70 13995.69 11098.35 6298.34 5298.85 5997.22 92
FC-MVSNet-train97.65 5998.16 3397.05 10598.85 7098.85 2799.34 1498.08 6494.50 10294.41 16299.21 3798.80 6692.66 15898.98 2798.85 2798.96 4697.94 50
v1097.64 6097.26 7198.08 4698.07 11898.56 5798.86 4898.18 5594.48 10398.24 2899.56 1698.98 4697.72 4496.05 13696.26 12397.42 13496.93 97
X-MVS97.60 6197.00 8798.29 3599.50 1898.76 3898.90 4498.37 3894.67 9496.40 10291.47 19198.78 6897.60 5098.55 4998.50 3998.96 4698.29 37
3Dnovator+96.20 497.58 6297.14 7998.10 4198.98 6497.85 10298.60 6698.33 4196.41 3297.23 6694.66 15597.26 12996.91 7297.91 7097.87 7698.53 7698.03 46
DCV-MVSNet97.56 6397.63 5897.47 8698.41 9399.12 1198.63 6498.57 2495.71 5495.60 13893.79 17098.01 10994.25 13699.16 2198.88 2599.35 2198.74 14
HPM-MVS++copyleft97.56 6397.11 8398.09 4299.18 3997.95 9798.57 6798.20 5194.08 11497.25 6595.96 13398.81 6597.13 6497.51 9197.30 9398.21 9798.15 43
FC-MVSNet-test97.54 6598.26 2996.70 12298.87 6897.79 11098.49 7198.56 2596.04 4090.39 19899.65 998.67 7495.15 12099.23 1799.07 1598.73 6597.39 82
TSAR-MVS + ACMM97.54 6597.79 5097.26 9498.23 10598.10 8597.71 11197.88 8095.97 4495.57 14098.71 6698.57 8397.36 5697.74 7896.81 10596.83 15998.59 23
DeepC-MVS_fast95.38 697.53 6797.30 7097.79 7098.83 7397.64 11398.18 8597.14 12495.57 5997.83 3997.10 11198.80 6696.53 8697.41 9497.32 9198.24 9697.26 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v119297.52 6897.03 8698.09 4298.31 10198.01 9298.96 4097.25 12195.22 7198.89 1299.64 1098.83 6297.68 4695.63 14395.91 13397.47 13095.97 129
v114497.51 6997.05 8598.04 5398.26 10397.98 9498.88 4697.42 11295.38 6898.56 1899.59 1599.01 4497.65 4795.77 14096.06 13097.47 13095.56 141
v897.51 6997.16 7797.91 6097.99 12498.48 6398.76 5598.17 5794.54 10197.69 4599.48 2198.76 7197.63 4996.10 13596.14 12597.20 14496.64 109
v192192097.50 7197.00 8798.07 4998.20 10997.94 10099.03 2897.06 12695.29 7099.01 999.62 1298.73 7397.74 4395.52 14695.78 13897.39 13696.12 125
Anonymous2023121197.49 7297.91 4397.00 10998.31 10198.72 4698.27 8197.84 8494.76 9094.77 15698.14 8498.38 9393.60 14698.96 2898.66 3599.22 2997.77 60
v14419297.49 7296.99 8998.07 4998.11 11797.95 9799.02 2997.21 12294.90 8698.88 1399.53 1898.89 5697.75 4295.59 14495.90 13497.43 13396.16 123
GeoE97.48 7496.84 9598.22 3799.01 5998.39 6698.85 5098.76 2192.37 14097.53 5097.58 9598.23 10097.11 6597.57 8996.98 9998.10 10596.78 105
APD-MVScopyleft97.47 7597.16 7797.84 6699.32 3298.39 6698.47 7498.21 5092.08 14495.23 14596.68 11798.90 5496.99 7098.20 6598.21 5998.80 6297.67 64
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended_VisFu97.44 7697.14 7997.79 7099.15 4298.44 6498.32 7997.66 9193.74 12297.73 4498.79 5996.93 13895.64 11597.69 8096.91 10298.25 9597.50 77
PHI-MVS97.44 7697.17 7697.74 7398.14 11498.41 6598.03 9597.50 10192.07 14598.01 3497.33 10498.62 8096.02 10198.34 6498.21 5998.76 6497.24 91
v124097.43 7896.87 9498.09 4298.25 10497.92 10199.02 2997.06 12694.77 8999.09 899.68 798.51 8697.78 4195.25 15195.81 13697.32 14096.13 124
FMVSNet197.40 7998.09 3696.60 12697.80 14298.76 3898.26 8298.50 2796.79 2593.13 18699.28 3498.64 7792.90 15697.67 8297.86 7799.02 3797.64 66
v2v48297.33 8096.84 9597.90 6198.19 11097.83 10398.74 5897.44 10995.42 6798.23 2999.46 2298.84 6197.46 5295.51 14796.10 12897.36 13894.72 150
xxxxxxxxxxxxxcwj97.32 8197.55 6397.05 10598.80 7597.83 10396.02 17697.44 10994.98 8095.74 12897.16 10799.30 1895.72 10797.85 7297.97 7298.60 7097.78 57
EPP-MVSNet97.29 8296.88 9297.76 7298.70 7999.10 1498.92 4298.36 3995.12 7693.36 18497.39 10191.00 18397.65 4798.72 3898.91 2299.58 897.92 52
MVS_111021_HR97.27 8397.11 8397.46 8798.46 9097.82 10797.50 12496.86 13494.97 8297.13 7096.99 11298.39 9196.82 7497.65 8597.38 8698.02 10896.56 112
SF-MVS97.26 8497.43 6697.05 10598.80 7597.83 10396.02 17697.44 10994.98 8095.74 12897.16 10798.45 9095.72 10797.85 7297.97 7298.60 7097.78 57
TSAR-MVS + GP.97.26 8497.33 6997.18 9998.21 10898.06 8796.38 16797.66 9193.92 11995.23 14598.48 7398.33 9497.41 5497.63 8797.35 8798.18 9997.57 72
OMC-MVS97.23 8697.21 7497.25 9797.85 13397.52 12297.92 10195.77 16795.83 4997.09 7397.86 8998.52 8596.62 7997.51 9196.65 11098.26 9396.57 110
3Dnovator96.31 397.22 8797.19 7597.25 9798.14 11497.95 9798.03 9596.77 13996.42 3197.14 6895.11 14397.59 12295.14 12297.79 7697.72 8198.26 9397.76 62
MVS_030497.18 8896.84 9597.58 7799.15 4298.19 7498.11 9097.81 8692.36 14198.06 3297.43 10099.06 3894.24 13796.80 11596.54 11498.12 10397.52 75
canonicalmvs97.11 8996.88 9297.38 8998.34 9598.72 4697.52 12397.94 7595.60 5695.01 15394.58 15694.50 16496.59 8197.84 7498.03 7098.90 5298.91 8
V4297.10 9096.97 9097.26 9497.64 14897.60 11598.45 7595.99 15694.44 10497.35 6099.40 2798.63 7997.34 5896.33 12996.38 12096.82 16196.00 127
CPTT-MVS97.08 9196.25 10998.05 5299.21 3698.30 6998.54 7097.98 7394.28 10895.89 12189.57 20098.54 8498.18 2597.82 7597.32 9198.54 7497.91 53
DeepPCF-MVS94.55 1097.05 9297.13 8296.95 11196.06 18997.12 13998.01 9795.44 17395.18 7397.50 5297.86 8998.08 10597.31 6097.23 9997.00 9897.36 13897.45 79
QAPM97.04 9397.14 7996.93 11397.78 14598.02 9197.36 13396.72 14094.68 9396.23 10897.21 10697.68 11895.70 10997.37 9597.24 9597.78 11897.77 60
CNVR-MVS97.03 9496.77 10097.34 9098.89 6797.67 11297.64 11697.17 12394.40 10695.70 13494.02 16598.76 7196.49 8897.78 7797.29 9498.12 10397.47 78
casdiffmvs97.00 9597.36 6896.59 12797.65 14797.98 9498.06 9296.81 13795.78 5192.77 19299.40 2799.26 2695.65 11496.70 11896.39 11998.59 7295.99 128
v14896.99 9696.70 10297.34 9097.89 13197.23 13198.33 7896.96 12995.57 5997.12 7198.99 4499.40 1297.23 6296.22 13295.45 14396.50 16694.02 162
DELS-MVS96.90 9797.24 7396.50 13297.85 13398.18 7597.88 10695.92 15993.48 12495.34 14398.86 5698.94 5394.03 14097.33 9797.04 9798.00 11096.85 103
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR96.86 9896.72 10197.03 10897.80 14297.06 14297.04 14795.51 17294.55 9897.47 5397.35 10397.68 11896.66 7797.11 10496.73 10797.69 12296.57 110
PM-MVS96.85 9996.62 10497.11 10197.13 17096.51 15598.29 8094.65 19094.84 8798.12 3098.59 6997.20 13097.41 5496.24 13196.41 11897.09 14996.56 112
pmmvs-eth3d96.84 10096.22 11197.56 7997.63 15096.38 16298.74 5896.91 13294.63 9598.26 2699.43 2498.28 9696.58 8394.52 16195.54 14197.24 14294.75 149
CANet96.81 10196.50 10597.17 10099.10 5197.96 9697.86 10797.51 9991.30 15097.75 4297.64 9397.89 11293.39 15096.98 11196.73 10797.40 13596.99 95
Fast-Effi-MVS+96.80 10295.92 12297.84 6698.57 8697.46 12598.06 9298.24 4789.64 17297.57 4996.45 12197.35 12796.73 7697.22 10096.64 11197.86 11596.65 108
MCST-MVS96.79 10396.08 11597.62 7598.78 7797.52 12298.01 9797.32 11993.20 12795.84 12393.97 16798.12 10397.34 5896.34 12795.88 13598.45 8297.51 76
UGNet96.79 10397.82 4895.58 15597.57 15398.39 6698.48 7297.84 8495.85 4894.68 15897.91 8899.07 3787.12 19797.71 7997.51 8397.80 11698.29 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAPA-MVS93.96 1396.79 10396.70 10296.90 11597.64 14897.58 11697.54 12294.50 19295.14 7496.64 9296.76 11597.90 11196.63 7895.98 13796.14 12598.45 8297.39 82
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS96.73 10696.92 9196.51 13198.70 7997.57 11897.64 11692.07 19993.10 13396.31 10798.29 7999.02 4395.99 10397.20 10196.47 11698.37 8996.81 104
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg96.68 10795.93 12197.56 7999.08 5497.16 13598.44 7797.37 11591.12 15495.18 14795.43 13898.48 8897.36 5696.48 12395.52 14297.95 11397.34 86
CDPH-MVS96.68 10795.99 11897.48 8599.13 4797.64 11398.08 9197.46 10590.56 16095.13 14894.87 15098.27 9796.56 8497.09 10596.45 11798.54 7497.08 94
MSLP-MVS++96.66 10996.46 10896.89 11698.02 12097.71 11195.57 18496.96 12994.36 10796.19 11291.37 19298.24 9897.07 6797.69 8097.89 7597.52 12897.95 49
TinyColmap96.64 11096.07 11697.32 9297.84 13896.40 15997.63 11896.25 15095.86 4798.98 1097.94 8796.34 14696.17 9897.30 9895.38 14697.04 15193.24 169
IS_MVSNet96.62 11196.48 10796.78 12098.46 9098.68 4898.61 6598.24 4792.23 14289.63 20295.90 13494.40 16596.23 9398.65 4498.77 2999.52 1396.76 106
NCCC96.56 11295.68 12497.59 7699.04 5897.54 12197.67 11397.56 9794.84 8796.10 11587.91 20498.09 10496.98 7197.20 10196.80 10698.21 9797.38 85
ETV-MVS96.54 11395.27 13198.02 5699.07 5697.48 12498.16 8898.19 5387.33 19297.58 4892.67 17995.93 15396.22 9498.49 5598.46 4198.91 5196.50 115
Effi-MVS+96.46 11495.28 13097.85 6598.64 8597.16 13597.15 14598.75 2290.27 16498.03 3393.93 16896.21 14796.55 8596.34 12796.69 10997.97 11296.33 119
IterMVS-LS96.35 11595.85 12396.93 11397.53 15498.00 9397.37 13197.97 7495.49 6696.71 9098.94 4793.23 17194.82 12793.15 18095.05 14997.17 14697.12 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC96.30 11695.64 12697.07 10397.62 15196.35 16497.17 14395.71 16895.52 6499.17 798.11 8597.46 12495.67 11195.44 14993.60 16997.09 14992.99 173
Vis-MVSNet (Re-imp)96.29 11796.50 10596.05 14197.96 12797.83 10397.30 13597.86 8293.14 12988.90 20596.80 11495.28 15795.15 12098.37 6198.25 5899.12 3395.84 131
MSDG96.27 11896.17 11496.38 13797.85 13396.27 16596.55 16494.41 19394.55 9895.62 13797.56 9797.80 11396.22 9497.17 10396.27 12297.67 12493.60 166
CS-MVS96.24 11994.67 14698.08 4699.10 5198.62 5098.25 8398.12 6087.70 18797.76 4188.13 20396.08 15096.39 9097.64 8698.10 6598.84 6196.39 117
CNLPA96.24 11995.97 11996.57 12997.48 15997.10 14196.75 15794.95 18494.92 8596.20 11194.81 15196.61 14196.25 9296.94 11295.64 13997.79 11795.74 137
EIA-MVS96.23 12194.85 14397.84 6699.08 5498.21 7297.69 11298.03 7085.68 20298.09 3191.75 18997.07 13495.66 11397.58 8897.72 8198.47 8095.91 130
PLCcopyleft92.55 1596.10 12295.36 12796.96 11098.13 11696.88 14696.49 16596.67 14494.07 11595.71 13391.14 19396.09 14996.84 7396.70 11896.58 11397.92 11496.03 126
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test20.0396.08 12396.80 9895.25 16499.19 3897.58 11697.24 14097.56 9794.95 8491.91 19398.58 7098.03 10787.88 19397.43 9396.94 10197.69 12294.05 161
TSAR-MVS + COLMAP96.05 12495.94 12096.18 14097.46 16096.41 15897.26 13995.83 16394.69 9295.30 14498.31 7896.52 14294.71 12995.48 14894.87 15196.54 16595.33 144
EU-MVSNet96.03 12596.23 11095.80 14995.48 20294.18 18398.99 3491.51 20197.22 2097.66 4699.15 4098.51 8698.08 2895.92 13892.88 17693.09 18995.72 138
PCF-MVS92.69 1495.98 12695.05 13897.06 10498.43 9297.56 11997.76 10996.65 14589.95 16995.70 13496.18 12798.48 8895.74 10693.64 17293.35 17398.09 10796.18 122
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP-MVS95.97 12795.01 14097.08 10298.72 7897.19 13397.07 14696.69 14391.49 14895.77 12792.19 18597.93 11096.15 9994.66 15894.16 16098.10 10597.45 79
Effi-MVS+-dtu95.94 12895.08 13796.94 11298.54 8797.38 12696.66 16197.89 7988.68 17795.92 11992.90 17897.28 12894.18 13996.68 12096.13 12798.45 8296.51 114
diffmvs95.86 12996.21 11295.44 15897.25 16896.85 14996.99 14995.23 17894.96 8392.82 19198.89 5198.85 5993.52 14894.21 16794.25 15996.84 15895.49 142
AdaColmapbinary95.85 13094.65 14797.26 9498.70 7997.20 13297.33 13497.30 12091.28 15295.90 12088.16 20296.17 14896.60 8097.34 9696.82 10497.71 11995.60 140
FMVSNet295.77 13196.20 11395.27 16296.77 17898.18 7597.28 13697.90 7893.12 13091.37 19598.25 8196.05 15190.04 17894.96 15695.94 13298.28 9096.90 98
OpenMVScopyleft94.63 995.75 13295.04 13996.58 12897.85 13397.55 12096.71 15996.07 15390.15 16796.47 9790.77 19895.95 15294.41 13497.01 11096.95 10098.00 11096.90 98
pmmvs595.70 13395.22 13296.26 13896.55 18497.24 13097.50 12494.99 18390.95 15696.87 8198.47 7497.40 12594.45 13292.86 18194.98 15097.23 14394.64 152
Anonymous2023120695.69 13495.68 12495.70 15198.32 9896.95 14497.37 13196.65 14593.33 12593.61 17898.70 6798.03 10791.04 16795.07 15494.59 15897.20 14493.09 172
MAR-MVS95.51 13594.49 15196.71 12197.92 12996.40 15996.72 15898.04 6986.74 19696.72 8792.52 18295.14 15994.02 14196.81 11496.54 11496.85 15697.25 89
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DI_MVS_plusplus_trai95.48 13694.51 14996.61 12597.13 17097.30 12898.05 9496.79 13893.75 12195.08 15196.38 12289.76 18694.95 12393.97 17194.82 15597.64 12695.63 139
MDA-MVSNet-bldmvs95.45 13795.20 13395.74 15094.24 20796.38 16297.93 10094.80 18595.56 6296.87 8198.29 7995.24 15896.50 8798.65 4490.38 18894.09 18391.93 177
PVSNet_BlendedMVS95.44 13895.09 13595.86 14797.31 16597.13 13796.31 17095.01 18188.55 18096.23 10894.55 15997.75 11492.56 16096.42 12495.44 14497.71 11995.81 132
PVSNet_Blended95.44 13895.09 13595.86 14797.31 16597.13 13796.31 17095.01 18188.55 18096.23 10894.55 15997.75 11492.56 16096.42 12495.44 14497.71 11995.81 132
pmmvs495.37 14094.25 15296.67 12497.01 17395.28 17797.60 11996.07 15393.11 13197.29 6398.09 8694.23 16795.21 11991.56 19293.91 16696.82 16193.59 167
MVS_Test95.34 14194.88 14295.89 14696.93 17496.84 15096.66 16197.08 12590.06 16894.02 17197.61 9496.64 14093.59 14792.73 18494.02 16497.03 15296.24 120
GBi-Net95.21 14295.35 12895.04 16796.77 17898.18 7597.28 13697.58 9488.43 18290.28 19996.01 13092.43 17490.04 17897.67 8297.86 7798.28 9096.90 98
test195.21 14295.35 12895.04 16796.77 17898.18 7597.28 13697.58 9488.43 18290.28 19996.01 13092.43 17490.04 17897.67 8297.86 7798.28 9096.90 98
IterMVS-SCA-FT95.16 14493.95 15696.56 13097.89 13196.69 15296.94 15196.05 15593.06 13497.35 6098.79 5991.45 17995.93 10492.78 18291.00 18695.22 17993.91 164
HyFIR lowres test95.05 14593.54 16196.81 11997.81 14196.88 14698.18 8597.46 10594.28 10894.98 15496.57 11992.89 17396.15 9990.90 19791.87 18296.28 17191.35 178
CHOSEN 1792x268894.98 14694.69 14595.31 16097.27 16795.58 17497.90 10395.56 17195.03 7893.77 17795.65 13699.29 1995.30 11791.51 19391.28 18592.05 19794.50 154
CANet_DTU94.96 14794.62 14895.35 15998.03 11996.11 16796.92 15395.60 17088.59 17997.27 6495.27 14196.50 14388.77 18995.53 14595.59 14095.54 17794.78 148
CDS-MVSNet94.91 14895.17 13494.60 17597.85 13396.21 16696.90 15596.39 14890.81 15793.40 18297.24 10594.54 16385.78 20396.25 13096.15 12497.26 14195.01 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DPM-MVS94.86 14993.90 15895.99 14398.19 11096.52 15496.29 17295.95 15793.11 13194.61 16088.17 20196.44 14493.77 14593.33 17593.54 17197.11 14896.22 121
MS-PatchMatch94.84 15094.76 14494.94 17096.38 18594.69 18295.90 17994.03 19592.49 13893.81 17595.79 13596.38 14594.54 13094.70 15794.85 15294.97 18194.43 156
thisisatest053094.81 15193.06 16796.85 11898.01 12197.18 13496.93 15297.36 11689.73 17195.80 12594.98 14777.88 20794.89 12496.73 11797.35 8798.13 10297.54 73
tttt051794.81 15193.04 16896.88 11798.15 11397.37 12796.99 14997.36 11689.51 17395.74 12894.89 14977.53 20994.89 12496.94 11297.35 8798.17 10097.70 63
testgi94.81 15196.05 11793.35 18699.06 5796.87 14897.57 12196.70 14295.77 5288.60 20793.19 17698.87 5881.21 21197.03 10996.64 11196.97 15593.99 163
PatchMatch-RL94.79 15493.75 16096.00 14296.80 17795.00 17995.47 18995.25 17790.68 15995.80 12592.97 17793.64 16995.67 11196.13 13495.81 13696.99 15492.01 176
FPMVS94.70 15594.99 14194.37 17795.84 19593.20 18896.00 17891.93 20095.03 7894.64 15994.68 15393.29 17090.95 16898.07 6997.34 9096.85 15693.29 168
new-patchmatchnet94.48 15694.02 15495.02 16997.51 15895.00 17995.68 18394.26 19497.32 1995.73 13199.60 1398.22 10291.30 16394.13 16884.41 19895.65 17689.45 189
IterMVS94.48 15693.46 16395.66 15297.52 15596.43 15697.20 14194.73 18892.91 13796.44 9898.75 6491.10 18194.53 13192.10 18890.10 19093.51 18692.84 175
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDTV_nov1_ep13_2view94.39 15893.34 16495.63 15397.23 16995.33 17697.76 10996.84 13594.55 9897.47 5398.96 4597.70 11693.88 14292.27 18686.81 19690.56 19987.73 197
Fast-Effi-MVS+-dtu94.34 15993.26 16695.62 15497.82 13995.97 17095.86 18099.01 1386.88 19493.39 18390.83 19695.46 15690.61 17294.46 16394.68 15697.01 15394.51 153
thres600view794.34 15992.31 17696.70 12298.19 11098.12 8297.85 10897.45 10791.49 14893.98 17384.27 20782.02 19894.24 13797.04 10698.76 3098.49 7894.47 155
EPNet94.33 16193.52 16295.27 16298.81 7494.71 18196.77 15698.20 5188.12 18596.53 9592.53 18191.19 18085.25 20795.22 15295.26 14796.09 17497.63 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GA-MVS94.18 16292.98 16995.58 15597.36 16296.42 15796.21 17395.86 16090.29 16395.08 15196.19 12685.37 19092.82 15794.01 17094.14 16196.16 17394.41 157
gg-mvs-nofinetune94.13 16393.93 15794.37 17797.99 12495.86 17195.45 19299.22 997.61 1695.10 15099.50 2084.50 19181.73 21095.31 15094.12 16296.71 16490.59 182
baseline94.07 16494.50 15093.57 18496.34 18693.40 18795.56 18792.39 19892.07 14594.00 17298.24 8297.51 12389.19 18491.75 19092.72 17793.96 18595.79 134
FMVSNet394.06 16593.85 15994.31 18095.46 20397.80 10996.34 16897.58 9488.43 18290.28 19996.01 13092.43 17488.67 19091.82 18993.96 16597.53 12796.50 115
thres40094.04 16691.94 17996.50 13297.98 12697.82 10797.66 11596.96 12990.96 15594.20 16783.24 20882.82 19693.80 14396.50 12298.09 6698.38 8894.15 159
CVMVSNet94.01 16794.25 15293.73 18394.36 20692.44 19197.45 12788.56 20495.59 5793.06 18998.88 5290.03 18594.84 12694.08 16993.45 17294.09 18395.31 145
thres20093.98 16891.90 18096.40 13697.66 14698.12 8297.20 14197.45 10790.16 16693.82 17483.08 20983.74 19493.80 14397.04 10697.48 8598.49 7893.70 165
baseline193.89 16992.82 17195.14 16697.62 15196.97 14396.12 17496.36 14991.30 15091.53 19494.68 15380.72 20090.80 17095.71 14196.29 12198.44 8594.09 160
tfpn200view993.80 17091.75 18196.20 13997.52 15598.15 8097.48 12697.47 10487.65 18893.56 18083.03 21084.12 19292.62 15997.04 10698.09 6698.52 7794.17 158
MIMVSNet93.68 17193.96 15593.35 18697.82 13996.08 16896.34 16898.46 3291.28 15286.67 21294.95 14894.87 16184.39 20894.53 15994.65 15796.45 16891.34 179
pmnet_mix0293.59 17292.65 17294.69 17396.76 18194.16 18497.03 14893.00 19795.79 5096.03 11898.91 4997.69 11792.99 15390.03 20084.10 20092.35 19587.89 196
EPNet_dtu93.45 17392.51 17494.55 17698.39 9491.67 20095.46 19097.50 10186.56 19797.38 5893.52 17194.20 16885.82 20293.31 17792.53 17892.72 19195.76 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS92.44 1693.33 17492.15 17894.70 17297.42 16196.39 16195.57 18494.67 18986.40 20093.59 17978.28 21495.76 15589.59 18395.88 13995.98 13197.39 13696.34 118
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D93.18 17590.80 18695.95 14496.05 19096.07 16996.92 15396.51 14789.34 17495.63 13694.08 16472.31 21893.13 15194.33 16594.83 15397.44 13294.65 151
thres100view90092.93 17690.89 18595.31 16097.52 15596.82 15196.41 16695.08 17987.65 18893.56 18083.03 21084.12 19291.12 16694.53 15996.91 10298.17 10093.21 170
N_pmnet92.46 17792.38 17592.55 19297.91 13093.47 18697.42 12994.01 19696.40 3388.48 20898.50 7298.07 10688.14 19291.04 19684.30 19989.35 20484.85 203
TAMVS92.46 17793.34 16491.44 20097.03 17293.84 18594.68 20290.60 20290.44 16285.31 21397.14 10993.03 17285.78 20394.34 16493.67 16895.22 17990.93 181
CMPMVSbinary71.81 1992.34 17992.85 17091.75 19892.70 21190.43 20588.84 21488.56 20485.87 20194.35 16490.98 19495.89 15491.14 16596.14 13394.83 15394.93 18295.78 135
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline292.06 18089.82 18994.68 17497.32 16395.72 17294.97 19995.08 17984.75 20594.34 16690.68 19977.75 20890.13 17793.38 17393.58 17096.25 17292.90 174
MVSTER91.97 18190.31 18793.91 18196.81 17696.91 14594.22 20395.64 16984.98 20392.98 19093.42 17272.56 21686.64 20195.11 15393.89 16797.16 14795.31 145
CR-MVSNet91.94 18288.50 19295.94 14596.14 18892.08 19595.23 19598.47 3084.30 20796.44 9894.58 15675.57 21092.92 15490.22 19892.22 17996.43 16990.56 183
gm-plane-assit91.85 18387.91 19496.44 13599.14 4598.25 7199.02 2997.38 11495.57 5998.31 2599.34 3151.00 22388.93 18793.16 17991.57 18395.85 17586.50 200
PMMVS91.67 18491.47 18391.91 19789.43 21688.61 21194.99 19885.67 20987.50 19093.80 17694.42 16294.88 16090.71 17192.26 18792.96 17596.83 15989.65 187
CHOSEN 280x42091.55 18590.27 18893.05 18994.61 20588.01 21296.56 16394.62 19188.04 18694.20 16792.66 18086.60 18890.82 16995.06 15591.89 18187.49 20989.61 188
PatchT91.40 18688.54 19194.74 17191.48 21592.18 19497.42 12997.51 9984.96 20496.44 9894.16 16375.47 21192.92 15490.22 19892.22 17992.66 19490.56 183
pmmvs391.20 18791.40 18490.96 20291.71 21491.08 20195.41 19381.34 21387.36 19194.57 16195.02 14594.30 16690.42 17394.28 16689.26 19292.30 19688.49 194
test0.0.03 191.17 18891.50 18290.80 20398.01 12195.46 17594.22 20395.80 16486.55 19881.75 21590.83 19687.93 18778.48 21294.51 16294.11 16396.50 16691.08 180
SCA91.15 18987.65 19695.23 16596.15 18795.68 17396.68 16098.18 5590.46 16197.21 6792.44 18380.17 20293.51 14986.04 20783.58 20389.68 20385.21 202
new_pmnet90.85 19092.26 17789.21 20693.68 21089.05 21093.20 21184.16 21292.99 13584.25 21497.72 9294.60 16286.80 20093.20 17891.30 18493.21 18786.94 199
RPMNet90.52 19186.27 20595.48 15795.95 19392.08 19595.55 18898.12 6084.30 20795.60 13887.49 20572.78 21591.24 16487.93 20289.34 19196.41 17089.98 186
MDTV_nov1_ep1390.30 19287.32 20093.78 18296.00 19292.97 18995.46 19095.39 17488.61 17895.41 14294.45 16180.39 20189.87 18186.58 20583.54 20490.56 19984.71 204
PatchmatchNetpermissive89.98 19386.23 20694.36 17996.56 18391.90 19996.07 17596.72 14090.18 16596.87 8193.36 17578.06 20691.46 16284.71 21181.40 20888.45 20683.97 208
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet89.89 19487.70 19592.43 19495.52 20090.91 20395.57 18495.33 17593.19 12891.21 19693.41 17382.12 19789.05 18586.21 20683.77 20287.92 20784.31 205
tpm89.84 19586.81 20293.36 18596.60 18291.92 19895.02 19797.39 11386.79 19596.54 9495.03 14469.70 21987.66 19488.79 20186.19 19786.95 21189.27 190
test-LLR89.77 19687.47 19892.45 19398.01 12189.77 20793.25 20995.80 16481.56 21289.19 20392.08 18679.59 20385.77 20591.47 19489.04 19492.69 19288.75 191
FMVSNet589.65 19787.60 19792.04 19695.63 19996.61 15394.82 20194.75 18680.11 21687.72 21077.73 21573.81 21483.81 20995.64 14296.08 12995.49 17893.21 170
EPMVS89.28 19886.28 20492.79 19196.01 19192.00 19795.83 18195.85 16290.78 15891.00 19794.58 15674.65 21288.93 18785.00 20982.88 20689.09 20584.09 207
test-mter89.16 19988.14 19390.37 20494.79 20491.05 20293.60 20885.26 21081.65 21188.32 20992.22 18479.35 20587.03 19892.28 18590.12 18993.19 18890.29 185
CostFormer89.06 20085.65 20793.03 19095.88 19492.40 19295.30 19495.86 16086.49 19993.12 18893.40 17474.18 21388.25 19182.99 21281.46 20789.77 20288.66 193
MVS-HIRNet88.72 20186.49 20391.33 20191.81 21385.66 21387.02 21696.25 15081.48 21494.82 15596.31 12592.14 17790.32 17587.60 20383.82 20187.74 20878.42 212
TESTMET0.1,188.60 20287.47 19889.93 20594.23 20889.77 20793.25 20984.47 21181.56 21289.19 20392.08 18679.59 20385.77 20591.47 19489.04 19492.69 19288.75 191
dps88.36 20384.32 21093.07 18893.86 20992.29 19394.89 20095.93 15883.50 20993.13 18691.87 18867.79 22190.32 17585.99 20883.22 20590.28 20185.56 201
tpmrst87.60 20484.13 21191.66 19995.65 19889.73 20993.77 20694.74 18788.85 17693.35 18595.60 13772.37 21787.40 19581.24 21378.19 21085.02 21482.90 211
tpm cat187.19 20582.78 21292.33 19595.66 19790.61 20494.19 20595.27 17686.97 19394.38 16390.91 19569.40 22087.21 19679.57 21577.82 21187.25 21084.18 206
E-PMN86.94 20685.10 20889.09 20895.77 19683.54 21689.89 21386.55 20692.18 14387.34 21194.02 16583.42 19589.63 18293.32 17677.11 21285.33 21272.09 213
EMVS86.63 20784.48 20989.15 20795.51 20183.66 21590.19 21286.14 20891.78 14788.68 20693.83 16981.97 19989.05 18592.76 18376.09 21385.31 21371.28 214
PMMVS286.47 20892.62 17379.29 21092.01 21285.63 21493.74 20786.37 20793.95 11854.18 22098.19 8397.39 12658.46 21396.57 12193.07 17490.99 19883.55 210
MVEpermissive72.99 1885.37 20989.43 19080.63 20974.43 21771.94 21888.25 21589.81 20393.27 12667.32 21896.32 12491.83 17890.40 17493.36 17490.79 18773.55 21788.49 194
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method61.30 21070.45 21350.62 21122.69 21930.92 22068.31 21925.76 21580.56 21568.71 21682.80 21291.08 18244.64 21480.50 21456.70 21473.64 21670.58 215
GG-mvs-BLEND61.03 21187.02 20130.71 2130.74 22290.01 20678.90 2180.74 21984.56 2069.46 22179.17 21390.69 1841.37 21891.74 19189.13 19393.04 19083.83 209
testmvs4.99 2126.88 2142.78 2151.73 2202.04 2223.10 2221.71 2177.27 2183.92 22312.18 2176.71 2243.31 2176.94 2165.51 2162.94 2197.51 216
test1234.41 2135.71 2152.88 2141.28 2212.21 2213.09 2231.65 2186.35 2194.98 2228.53 2183.88 2253.46 2165.79 2175.71 2152.85 2207.50 217
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def99.38 2
9.1496.98 137
SR-MVS99.33 3198.40 3598.90 54
Anonymous20240521197.39 6798.85 7098.59 5297.89 10597.93 7694.41 10597.37 10296.99 13693.09 15298.61 4698.46 4199.11 3497.27 87
our_test_397.32 16395.13 17897.59 120
ambc96.78 9999.01 5997.11 14095.73 18295.91 4699.25 398.56 7197.17 13197.04 6896.76 11695.22 14896.72 16396.73 107
MTAPA97.43 5699.27 23
MTMP97.63 4799.03 42
Patchmatch-RL test17.42 221
tmp_tt45.72 21260.00 21838.74 21945.50 22012.18 21679.58 21768.42 21767.62 21665.04 22222.12 21584.83 21078.72 20966.08 218
XVS99.48 1998.76 3899.22 2096.40 10298.78 6898.94 49
X-MVStestdata99.48 1998.76 3899.22 2096.40 10298.78 6898.94 49
abl_696.45 13497.79 14497.28 12997.16 14496.16 15289.92 17095.72 13291.59 19097.16 13294.37 13597.51 12995.49 142
mPP-MVS99.58 698.98 46
NP-MVS89.27 175
Patchmtry92.70 19095.23 19598.47 3096.44 98
DeepMVS_CXcopyleft72.99 21780.14 21737.34 21483.46 21060.13 21984.40 20685.48 18986.93 19987.22 20479.61 21587.32 198