LTVRE_ROB | | 97.71 1 | 99.33 1 | 99.47 2 | 99.16 7 | 99.16 41 | 99.11 12 | 99.39 13 | 99.16 11 | 99.26 3 | 99.22 5 | 99.51 19 | 99.75 3 | 98.54 15 | 99.71 2 | 99.47 4 | 99.52 13 | 99.46 1 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
SixPastTwentyTwo | | | 99.25 2 | 99.20 4 | 99.32 1 | 99.53 15 | 99.32 9 | 99.64 2 | 99.19 10 | 98.05 11 | 99.19 6 | 99.74 4 | 98.96 50 | 99.03 2 | 99.69 3 | 99.58 2 | 99.32 25 | 99.06 6 |
|
WR-MVS | | | 99.22 3 | 99.15 6 | 99.30 2 | 99.54 11 | 99.62 1 | 99.63 4 | 99.45 1 | 97.75 15 | 98.47 22 | 99.71 6 | 99.05 41 | 98.88 4 | 99.54 6 | 99.49 3 | 99.81 1 | 98.87 9 |
|
test_part1 | | | 99.20 4 | 99.62 1 | 98.72 16 | 98.92 66 | 99.62 1 | 99.52 12 | 99.01 13 | 99.39 1 | 97.87 37 | 99.74 4 | 99.75 3 | 97.29 61 | 99.73 1 | 99.71 1 | 99.69 2 | 99.41 2 |
|
PS-CasMVS | | | 99.08 5 | 98.90 11 | 99.28 3 | 99.65 3 | 99.56 5 | 99.59 6 | 99.39 3 | 96.36 34 | 98.83 14 | 99.46 22 | 99.09 34 | 98.62 10 | 99.51 8 | 99.36 9 | 99.63 4 | 98.97 7 |
|
PEN-MVS | | | 99.08 5 | 98.95 9 | 99.23 5 | 99.65 3 | 99.59 3 | 99.64 2 | 99.34 6 | 96.68 27 | 98.65 17 | 99.43 24 | 99.33 16 | 98.47 17 | 99.50 9 | 99.32 10 | 99.60 6 | 98.79 11 |
|
v7n | | | 99.03 7 | 99.03 8 | 99.02 9 | 99.09 53 | 99.11 12 | 99.57 9 | 98.82 19 | 98.21 10 | 99.25 3 | 99.84 2 | 99.59 6 | 98.76 6 | 99.23 17 | 98.83 28 | 98.63 67 | 98.40 34 |
|
DTE-MVSNet | | | 99.03 7 | 98.88 12 | 99.21 6 | 99.66 2 | 99.59 3 | 99.62 5 | 99.34 6 | 96.92 23 | 98.52 19 | 99.36 30 | 98.98 46 | 98.57 13 | 99.49 10 | 99.23 13 | 99.56 10 | 98.55 25 |
|
TDRefinement | | | 99.00 9 | 99.13 7 | 98.86 10 | 98.99 63 | 99.05 17 | 99.58 7 | 98.29 44 | 98.96 5 | 97.96 35 | 99.40 27 | 98.67 74 | 98.87 5 | 99.60 4 | 99.46 5 | 99.46 19 | 98.74 14 |
|
WR-MVS_H | | | 98.97 10 | 98.82 14 | 99.14 8 | 99.56 9 | 99.56 5 | 99.54 11 | 99.42 2 | 96.07 39 | 98.37 24 | 99.34 31 | 99.09 34 | 98.43 18 | 99.45 11 | 99.41 6 | 99.53 11 | 98.86 10 |
|
UniMVSNet_ETH3D | | | 98.93 11 | 99.20 4 | 98.63 21 | 99.54 11 | 99.33 8 | 98.73 61 | 99.37 4 | 98.87 6 | 97.86 38 | 99.27 35 | 99.78 2 | 96.59 81 | 99.52 7 | 99.40 7 | 99.67 3 | 98.21 41 |
|
CP-MVSNet | | | 98.91 12 | 98.61 19 | 99.25 4 | 99.63 5 | 99.50 7 | 99.55 10 | 99.36 5 | 95.53 63 | 98.77 16 | 99.11 41 | 98.64 77 | 98.57 13 | 99.42 12 | 99.28 12 | 99.61 5 | 98.78 12 |
|
anonymousdsp | | | 98.85 13 | 98.88 12 | 98.83 11 | 98.69 82 | 98.20 73 | 99.68 1 | 97.35 118 | 97.09 22 | 98.98 10 | 99.86 1 | 99.43 10 | 98.94 3 | 99.28 15 | 99.19 14 | 99.33 23 | 99.08 5 |
|
pmmvs6 | | | 98.77 14 | 99.35 3 | 98.09 42 | 98.32 98 | 98.92 22 | 98.57 67 | 99.03 12 | 99.36 2 | 96.86 84 | 99.77 3 | 99.86 1 | 96.20 96 | 99.56 5 | 99.39 8 | 99.59 7 | 98.61 22 |
|
ACMH | | 95.26 7 | 98.75 15 | 98.93 10 | 98.54 25 | 98.86 69 | 99.01 19 | 99.58 7 | 98.10 63 | 98.67 7 | 97.30 62 | 99.18 39 | 99.42 11 | 98.40 19 | 99.19 19 | 98.86 26 | 98.99 42 | 98.19 42 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
COLMAP_ROB |  | 96.84 2 | 98.75 15 | 98.82 14 | 98.66 20 | 99.14 45 | 98.79 33 | 99.30 16 | 97.67 90 | 98.33 9 | 97.82 40 | 99.20 38 | 99.18 32 | 98.76 6 | 99.27 16 | 98.96 20 | 99.29 27 | 98.03 46 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
UA-Net | | | 98.66 17 | 98.60 22 | 98.73 15 | 99.83 1 | 99.28 10 | 98.56 69 | 99.24 8 | 96.04 40 | 97.12 71 | 98.44 75 | 98.95 51 | 98.17 26 | 99.15 22 | 99.00 19 | 99.48 18 | 99.33 3 |
|
DeepC-MVS | | 96.08 5 | 98.58 18 | 98.49 24 | 98.68 18 | 99.37 27 | 98.52 60 | 99.01 33 | 98.17 57 | 97.17 21 | 98.25 27 | 99.56 16 | 99.62 5 | 98.29 22 | 98.40 57 | 98.09 66 | 98.97 44 | 98.08 45 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TranMVSNet+NR-MVSNet | | | 98.45 19 | 98.22 31 | 98.72 16 | 99.32 32 | 99.06 15 | 98.99 34 | 98.89 15 | 95.52 64 | 97.53 50 | 99.42 26 | 98.83 62 | 98.01 32 | 98.55 49 | 98.34 52 | 99.57 9 | 97.80 56 |
|
CSCG | | | 98.45 19 | 98.61 19 | 98.26 36 | 99.11 49 | 99.06 15 | 98.17 87 | 97.49 103 | 97.93 13 | 97.37 59 | 98.88 52 | 99.29 19 | 98.10 27 | 98.40 57 | 97.51 83 | 99.32 25 | 99.16 4 |
|
Gipuma |  | | 98.43 21 | 98.15 34 | 98.76 14 | 99.00 62 | 98.29 70 | 97.91 102 | 98.06 65 | 99.02 4 | 99.50 1 | 96.33 123 | 98.67 74 | 99.22 1 | 99.02 25 | 98.02 71 | 98.88 57 | 97.66 65 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ACMH+ | | 94.90 8 | 98.40 22 | 98.71 17 | 98.04 53 | 98.93 65 | 98.84 28 | 99.30 16 | 97.86 82 | 97.78 14 | 94.19 169 | 98.77 62 | 99.39 13 | 98.61 11 | 99.33 14 | 99.07 15 | 99.33 23 | 97.81 55 |
|
ACMMPR | | | 98.31 23 | 98.07 38 | 98.60 22 | 99.58 6 | 98.83 29 | 99.09 25 | 98.48 28 | 96.25 36 | 97.03 75 | 96.81 113 | 99.09 34 | 98.39 20 | 98.55 49 | 98.45 44 | 99.01 39 | 98.53 28 |
|
APDe-MVS | | | 98.29 24 | 98.42 26 | 98.14 39 | 99.45 22 | 98.90 23 | 99.18 22 | 98.30 42 | 95.96 45 | 95.13 148 | 98.79 59 | 99.25 27 | 97.92 36 | 98.80 33 | 98.71 31 | 98.85 59 | 98.54 26 |
|
DVP-MVS | | | 98.27 25 | 98.61 19 | 97.87 63 | 99.17 40 | 99.03 18 | 99.07 27 | 98.17 57 | 96.75 26 | 94.35 164 | 98.92 48 | 99.58 7 | 97.86 39 | 98.67 42 | 98.70 32 | 98.63 67 | 98.63 20 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
TransMVSNet (Re) | | | 98.23 26 | 98.72 16 | 97.66 74 | 98.22 107 | 98.73 44 | 98.66 63 | 98.03 70 | 98.60 8 | 96.40 102 | 99.60 13 | 98.24 98 | 95.26 118 | 99.19 19 | 99.05 18 | 99.36 20 | 97.64 66 |
|
DU-MVS | | | 98.23 26 | 97.74 55 | 98.81 12 | 99.23 34 | 98.77 35 | 98.76 55 | 98.88 16 | 94.10 112 | 98.50 20 | 98.87 54 | 98.32 95 | 97.99 33 | 98.40 57 | 98.08 69 | 99.49 17 | 97.64 66 |
|
UniMVSNet (Re) | | | 98.23 26 | 97.85 47 | 98.67 19 | 99.15 42 | 98.87 25 | 98.74 58 | 98.84 18 | 94.27 110 | 97.94 36 | 99.01 43 | 98.39 91 | 97.82 40 | 98.35 62 | 98.29 57 | 99.51 16 | 97.78 57 |
|
MIMVSNet1 | | | 98.22 29 | 98.51 23 | 97.87 63 | 99.40 26 | 98.82 31 | 99.31 15 | 98.53 26 | 97.39 18 | 96.59 93 | 99.31 33 | 99.23 29 | 94.76 128 | 98.93 29 | 98.67 34 | 98.63 67 | 97.25 89 |
|
HFP-MVS | | | 98.17 30 | 98.02 39 | 98.35 34 | 99.36 28 | 98.62 50 | 98.79 54 | 98.46 32 | 96.24 37 | 96.53 95 | 97.13 110 | 98.98 46 | 98.02 31 | 98.20 65 | 98.42 46 | 98.95 48 | 98.54 26 |
|
Baseline_NR-MVSNet | | | 98.17 30 | 97.90 44 | 98.48 28 | 99.23 34 | 98.59 52 | 98.83 51 | 98.73 23 | 93.97 117 | 96.95 78 | 99.66 8 | 98.23 100 | 97.90 37 | 98.40 57 | 99.06 17 | 99.25 28 | 97.42 81 |
|
TSAR-MVS + MP. | | | 98.15 32 | 98.23 30 | 98.06 51 | 98.47 89 | 98.16 79 | 99.23 19 | 96.87 133 | 95.58 58 | 96.72 87 | 98.41 76 | 99.06 38 | 98.05 30 | 98.99 26 | 98.90 23 | 99.00 40 | 98.51 29 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
zzz-MVS | | | 98.14 33 | 97.78 52 | 98.55 24 | 99.58 6 | 98.58 54 | 98.98 36 | 98.48 28 | 95.98 43 | 97.39 57 | 94.73 152 | 99.27 23 | 97.98 35 | 98.81 32 | 98.64 38 | 98.90 52 | 98.46 30 |
|
pm-mvs1 | | | 98.14 33 | 98.66 18 | 97.53 82 | 97.93 128 | 98.49 62 | 98.14 89 | 98.19 53 | 97.95 12 | 96.17 113 | 99.63 11 | 98.85 59 | 95.41 116 | 98.91 30 | 98.89 24 | 99.34 22 | 97.86 54 |
|
SMA-MVS |  | | 98.13 35 | 98.22 31 | 98.02 56 | 99.44 24 | 98.73 44 | 98.24 84 | 97.87 81 | 95.22 71 | 96.76 86 | 98.66 68 | 99.35 15 | 97.03 69 | 98.53 52 | 98.39 48 | 98.80 62 | 98.69 16 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMMP_NAP | | | 98.12 36 | 98.08 37 | 98.18 38 | 99.34 29 | 98.74 43 | 98.97 37 | 98.00 72 | 95.13 75 | 96.90 79 | 97.54 98 | 99.27 23 | 97.18 63 | 98.72 38 | 98.45 44 | 98.68 66 | 98.69 16 |
|
UniMVSNet_NR-MVSNet | | | 98.12 36 | 97.56 62 | 98.78 13 | 99.13 47 | 98.89 24 | 98.76 55 | 98.78 20 | 93.81 120 | 98.50 20 | 98.81 58 | 97.64 120 | 97.99 33 | 98.18 68 | 97.92 74 | 99.53 11 | 97.64 66 |
|
ACMM | | 94.29 11 | 98.12 36 | 97.71 56 | 98.59 23 | 99.51 17 | 98.58 54 | 99.24 18 | 98.25 46 | 96.22 38 | 96.90 79 | 95.01 146 | 98.89 56 | 98.52 16 | 98.66 43 | 98.32 55 | 99.13 32 | 98.28 40 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
SteuartSystems-ACMMP | | | 98.06 39 | 97.78 52 | 98.39 32 | 99.54 11 | 98.79 33 | 98.94 41 | 98.42 34 | 93.98 116 | 95.85 122 | 96.66 118 | 99.25 27 | 98.61 11 | 98.71 40 | 98.38 49 | 98.97 44 | 98.67 19 |
Skip Steuart: Steuart Systems R&D Blog. |
SED-MVS | | | 98.05 40 | 98.46 25 | 97.57 78 | 99.01 59 | 98.99 20 | 98.82 53 | 98.24 47 | 95.76 53 | 94.70 157 | 98.96 45 | 99.49 9 | 96.19 97 | 98.74 34 | 98.65 36 | 98.46 81 | 98.63 20 |
|
OPM-MVS | | | 98.01 41 | 98.01 40 | 98.00 58 | 99.11 49 | 98.12 82 | 98.68 62 | 97.72 88 | 96.65 28 | 96.68 91 | 98.40 77 | 99.28 22 | 97.44 53 | 98.20 65 | 97.82 80 | 98.40 87 | 97.58 71 |
|
Vis-MVSNet |  | | 98.01 41 | 98.42 26 | 97.54 81 | 96.89 175 | 98.82 31 | 99.14 23 | 97.59 93 | 96.30 35 | 97.04 74 | 99.26 36 | 98.83 62 | 96.01 102 | 98.73 36 | 98.21 59 | 98.58 73 | 98.75 13 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
NR-MVSNet | | | 98.00 43 | 97.88 45 | 98.13 40 | 98.33 96 | 98.77 35 | 98.83 51 | 98.88 16 | 94.10 112 | 97.46 55 | 98.87 54 | 98.58 82 | 95.78 105 | 99.13 23 | 98.16 63 | 99.52 13 | 97.53 74 |
|
CP-MVS | | | 98.00 43 | 97.57 61 | 98.50 26 | 99.47 21 | 98.56 57 | 98.91 43 | 98.38 37 | 94.71 91 | 97.01 76 | 95.20 142 | 99.06 38 | 98.20 24 | 98.61 46 | 98.46 41 | 99.02 37 | 98.40 34 |
|
DPE-MVS |  | | 97.99 45 | 98.12 35 | 97.84 66 | 98.65 84 | 98.86 26 | 98.86 48 | 98.05 68 | 94.18 111 | 95.49 141 | 98.90 50 | 99.33 16 | 97.11 65 | 98.53 52 | 98.65 36 | 98.86 58 | 98.39 36 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ACMMP |  | | 97.99 45 | 97.60 60 | 98.45 30 | 99.53 15 | 98.83 29 | 99.13 24 | 98.30 42 | 94.57 97 | 96.39 106 | 95.32 140 | 98.95 51 | 98.37 21 | 98.61 46 | 98.47 40 | 99.00 40 | 98.45 31 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MP-MVS |  | | 97.98 47 | 97.53 64 | 98.50 26 | 99.56 9 | 98.58 54 | 98.97 37 | 98.39 36 | 93.49 123 | 97.14 68 | 96.08 129 | 99.23 29 | 98.06 29 | 98.50 54 | 98.38 49 | 98.90 52 | 98.44 32 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EG-PatchMatch MVS | | | 97.98 47 | 97.92 42 | 98.04 53 | 98.84 72 | 98.04 90 | 97.90 103 | 96.83 136 | 95.07 77 | 98.79 15 | 99.07 42 | 99.37 14 | 97.88 38 | 98.74 34 | 98.16 63 | 98.01 109 | 96.96 96 |
|
ACMP | | 94.03 12 | 97.97 49 | 97.61 59 | 98.39 32 | 99.43 25 | 98.51 61 | 98.97 37 | 98.06 65 | 94.63 95 | 96.10 115 | 96.12 128 | 99.20 31 | 98.63 9 | 98.68 41 | 98.20 62 | 99.14 31 | 97.93 51 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 97.96 50 | 97.53 64 | 98.45 30 | 99.45 22 | 98.64 49 | 99.09 25 | 98.27 45 | 92.99 135 | 96.04 117 | 96.57 119 | 99.29 19 | 98.66 8 | 98.73 36 | 98.42 46 | 99.19 30 | 98.09 44 |
|
LS3D | | | 97.93 51 | 97.80 49 | 98.08 46 | 99.20 37 | 98.77 35 | 98.89 45 | 97.92 77 | 96.59 29 | 96.99 77 | 96.71 116 | 97.14 133 | 96.39 90 | 99.04 24 | 98.96 20 | 99.10 36 | 97.39 82 |
|
SD-MVS | | | 97.84 52 | 97.78 52 | 97.90 61 | 98.33 96 | 98.06 87 | 97.95 99 | 97.80 87 | 96.03 42 | 96.72 87 | 97.57 96 | 99.18 32 | 97.50 51 | 97.88 71 | 97.08 96 | 99.11 34 | 98.68 18 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
RPSCF | | | 97.83 53 | 98.27 28 | 97.31 93 | 98.23 105 | 98.06 87 | 97.44 128 | 95.79 166 | 96.90 24 | 95.81 124 | 98.76 63 | 98.61 81 | 97.70 45 | 98.90 31 | 98.36 51 | 98.90 52 | 98.29 37 |
|
thisisatest0515 | | | 97.82 54 | 97.67 57 | 97.99 59 | 98.49 88 | 98.07 86 | 98.48 72 | 98.06 65 | 95.35 69 | 97.74 43 | 98.83 57 | 97.61 121 | 96.74 75 | 97.53 90 | 98.30 56 | 98.43 86 | 98.01 48 |
|
PGM-MVS | | | 97.82 54 | 97.25 72 | 98.48 28 | 99.54 11 | 98.75 42 | 99.02 29 | 98.35 40 | 92.41 139 | 96.84 85 | 95.39 139 | 98.99 45 | 98.24 23 | 98.43 56 | 98.34 52 | 98.90 52 | 98.41 33 |
|
PMVS |  | 90.51 17 | 97.77 56 | 97.98 41 | 97.53 82 | 98.68 83 | 98.14 81 | 97.67 113 | 97.03 128 | 96.43 30 | 98.38 23 | 98.72 65 | 97.03 135 | 94.44 133 | 99.37 13 | 99.30 11 | 98.98 43 | 96.86 102 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MSP-MVS | | | 97.67 57 | 97.88 45 | 97.43 88 | 99.34 29 | 98.99 20 | 98.87 47 | 98.12 60 | 95.63 55 | 94.16 170 | 97.45 99 | 99.50 8 | 96.44 89 | 96.35 126 | 98.70 32 | 97.65 125 | 98.57 24 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
tfpnnormal | | | 97.66 58 | 97.79 50 | 97.52 84 | 98.32 98 | 98.53 59 | 98.45 75 | 97.69 89 | 97.59 17 | 96.12 114 | 97.79 91 | 96.70 139 | 95.69 110 | 98.35 62 | 98.34 52 | 98.85 59 | 97.22 92 |
|
FC-MVSNet-train | | | 97.65 59 | 98.16 33 | 97.05 105 | 98.85 70 | 98.85 27 | 99.34 14 | 98.08 64 | 94.50 102 | 94.41 162 | 99.21 37 | 98.80 66 | 92.66 158 | 98.98 27 | 98.85 27 | 98.96 46 | 97.94 50 |
|
v10 | | | 97.64 60 | 97.26 71 | 98.08 46 | 98.07 118 | 98.56 57 | 98.86 48 | 98.18 55 | 94.48 103 | 98.24 28 | 99.56 16 | 98.98 46 | 97.72 44 | 96.05 136 | 96.26 123 | 97.42 134 | 96.93 97 |
|
X-MVS | | | 97.60 61 | 97.00 87 | 98.29 35 | 99.50 18 | 98.76 38 | 98.90 44 | 98.37 38 | 94.67 94 | 96.40 102 | 91.47 191 | 98.78 68 | 97.60 50 | 98.55 49 | 98.50 39 | 98.96 46 | 98.29 37 |
|
3Dnovator+ | | 96.20 4 | 97.58 62 | 97.14 79 | 98.10 41 | 98.98 64 | 97.85 102 | 98.60 66 | 98.33 41 | 96.41 32 | 97.23 66 | 94.66 155 | 97.26 129 | 96.91 72 | 97.91 70 | 97.87 76 | 98.53 76 | 98.03 46 |
|
DCV-MVSNet | | | 97.56 63 | 97.63 58 | 97.47 86 | 98.41 93 | 99.12 11 | 98.63 64 | 98.57 24 | 95.71 54 | 95.60 138 | 93.79 170 | 98.01 109 | 94.25 136 | 99.16 21 | 98.88 25 | 99.35 21 | 98.74 14 |
|
HPM-MVS++ |  | | 97.56 63 | 97.11 83 | 98.09 42 | 99.18 39 | 97.95 97 | 98.57 67 | 98.20 51 | 94.08 114 | 97.25 65 | 95.96 133 | 98.81 65 | 97.13 64 | 97.51 91 | 97.30 93 | 98.21 97 | 98.15 43 |
|
FC-MVSNet-test | | | 97.54 65 | 98.26 29 | 96.70 122 | 98.87 68 | 97.79 110 | 98.49 71 | 98.56 25 | 96.04 40 | 90.39 198 | 99.65 9 | 98.67 74 | 95.15 120 | 99.23 17 | 99.07 15 | 98.73 65 | 97.39 82 |
|
TSAR-MVS + ACMM | | | 97.54 65 | 97.79 50 | 97.26 94 | 98.23 105 | 98.10 85 | 97.71 111 | 97.88 80 | 95.97 44 | 95.57 140 | 98.71 66 | 98.57 83 | 97.36 56 | 97.74 78 | 96.81 105 | 96.83 159 | 98.59 23 |
|
DeepC-MVS_fast | | 95.38 6 | 97.53 67 | 97.30 70 | 97.79 70 | 98.83 73 | 97.64 113 | 98.18 85 | 97.14 124 | 95.57 59 | 97.83 39 | 97.10 111 | 98.80 66 | 96.53 86 | 97.41 94 | 97.32 91 | 98.24 96 | 97.26 88 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
v1192 | | | 97.52 68 | 97.03 86 | 98.09 42 | 98.31 101 | 98.01 92 | 98.96 40 | 97.25 121 | 95.22 71 | 98.89 12 | 99.64 10 | 98.83 62 | 97.68 46 | 95.63 143 | 95.91 133 | 97.47 130 | 95.97 129 |
|
v1144 | | | 97.51 69 | 97.05 85 | 98.04 53 | 98.26 103 | 97.98 94 | 98.88 46 | 97.42 112 | 95.38 68 | 98.56 18 | 99.59 15 | 99.01 44 | 97.65 47 | 95.77 140 | 96.06 130 | 97.47 130 | 95.56 141 |
|
v8 | | | 97.51 69 | 97.16 77 | 97.91 60 | 97.99 124 | 98.48 63 | 98.76 55 | 98.17 57 | 94.54 101 | 97.69 45 | 99.48 21 | 98.76 71 | 97.63 49 | 96.10 135 | 96.14 125 | 97.20 144 | 96.64 109 |
|
v1921920 | | | 97.50 71 | 97.00 87 | 98.07 49 | 98.20 109 | 97.94 100 | 99.03 28 | 97.06 126 | 95.29 70 | 99.01 9 | 99.62 12 | 98.73 73 | 97.74 43 | 95.52 146 | 95.78 138 | 97.39 136 | 96.12 125 |
|
Anonymous20231211 | | | 97.49 72 | 97.91 43 | 97.00 109 | 98.31 101 | 98.72 46 | 98.27 81 | 97.84 84 | 94.76 90 | 94.77 156 | 98.14 84 | 98.38 93 | 93.60 146 | 98.96 28 | 98.66 35 | 99.22 29 | 97.77 60 |
|
v144192 | | | 97.49 72 | 96.99 89 | 98.07 49 | 98.11 117 | 97.95 97 | 99.02 29 | 97.21 122 | 94.90 86 | 98.88 13 | 99.53 18 | 98.89 56 | 97.75 42 | 95.59 144 | 95.90 134 | 97.43 133 | 96.16 123 |
|
GeoE | | | 97.48 74 | 96.84 95 | 98.22 37 | 99.01 59 | 98.39 66 | 98.85 50 | 98.76 21 | 92.37 140 | 97.53 50 | 97.58 95 | 98.23 100 | 97.11 65 | 97.57 89 | 96.98 99 | 98.10 105 | 96.78 105 |
|
APD-MVS |  | | 97.47 75 | 97.16 77 | 97.84 66 | 99.32 32 | 98.39 66 | 98.47 74 | 98.21 50 | 92.08 144 | 95.23 145 | 96.68 117 | 98.90 54 | 96.99 70 | 98.20 65 | 98.21 59 | 98.80 62 | 97.67 64 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PVSNet_Blended_VisFu | | | 97.44 76 | 97.14 79 | 97.79 70 | 99.15 42 | 98.44 64 | 98.32 79 | 97.66 91 | 93.74 122 | 97.73 44 | 98.79 59 | 96.93 138 | 95.64 115 | 97.69 80 | 96.91 102 | 98.25 95 | 97.50 77 |
|
PHI-MVS | | | 97.44 76 | 97.17 76 | 97.74 73 | 98.14 114 | 98.41 65 | 98.03 95 | 97.50 101 | 92.07 145 | 98.01 34 | 97.33 104 | 98.62 80 | 96.02 101 | 98.34 64 | 98.21 59 | 98.76 64 | 97.24 91 |
|
v1240 | | | 97.43 78 | 96.87 94 | 98.09 42 | 98.25 104 | 97.92 101 | 99.02 29 | 97.06 126 | 94.77 89 | 99.09 8 | 99.68 7 | 98.51 86 | 97.78 41 | 95.25 151 | 95.81 136 | 97.32 140 | 96.13 124 |
|
FMVSNet1 | | | 97.40 79 | 98.09 36 | 96.60 126 | 97.80 142 | 98.76 38 | 98.26 82 | 98.50 27 | 96.79 25 | 93.13 186 | 99.28 34 | 98.64 77 | 92.90 156 | 97.67 82 | 97.86 77 | 99.02 37 | 97.64 66 |
|
v2v482 | | | 97.33 80 | 96.84 95 | 97.90 61 | 98.19 110 | 97.83 103 | 98.74 58 | 97.44 109 | 95.42 67 | 98.23 29 | 99.46 22 | 98.84 61 | 97.46 52 | 95.51 147 | 96.10 128 | 97.36 138 | 94.72 150 |
|
xxxxxxxxxxxxxcwj | | | 97.32 81 | 97.55 63 | 97.05 105 | 98.80 75 | 97.83 103 | 96.02 176 | 97.44 109 | 94.98 80 | 95.74 128 | 97.16 107 | 99.30 18 | 95.72 107 | 97.85 72 | 97.97 72 | 98.60 70 | 97.78 57 |
|
EPP-MVSNet | | | 97.29 82 | 96.88 92 | 97.76 72 | 98.70 79 | 99.10 14 | 98.92 42 | 98.36 39 | 95.12 76 | 93.36 184 | 97.39 101 | 91.00 183 | 97.65 47 | 98.72 38 | 98.91 22 | 99.58 8 | 97.92 52 |
|
MVS_111021_HR | | | 97.27 83 | 97.11 83 | 97.46 87 | 98.46 90 | 97.82 107 | 97.50 124 | 96.86 134 | 94.97 82 | 97.13 70 | 96.99 112 | 98.39 91 | 96.82 74 | 97.65 85 | 97.38 86 | 98.02 108 | 96.56 112 |
|
SF-MVS | | | 97.26 84 | 97.43 66 | 97.05 105 | 98.80 75 | 97.83 103 | 96.02 176 | 97.44 109 | 94.98 80 | 95.74 128 | 97.16 107 | 98.45 90 | 95.72 107 | 97.85 72 | 97.97 72 | 98.60 70 | 97.78 57 |
|
TSAR-MVS + GP. | | | 97.26 84 | 97.33 69 | 97.18 99 | 98.21 108 | 98.06 87 | 96.38 167 | 97.66 91 | 93.92 119 | 95.23 145 | 98.48 73 | 98.33 94 | 97.41 54 | 97.63 87 | 97.35 87 | 98.18 99 | 97.57 72 |
|
OMC-MVS | | | 97.23 86 | 97.21 74 | 97.25 97 | 97.85 133 | 97.52 122 | 97.92 101 | 95.77 167 | 95.83 49 | 97.09 73 | 97.86 89 | 98.52 85 | 96.62 79 | 97.51 91 | 96.65 110 | 98.26 93 | 96.57 110 |
|
3Dnovator | | 96.31 3 | 97.22 87 | 97.19 75 | 97.25 97 | 98.14 114 | 97.95 97 | 98.03 95 | 96.77 139 | 96.42 31 | 97.14 68 | 95.11 143 | 97.59 122 | 95.14 122 | 97.79 76 | 97.72 81 | 98.26 93 | 97.76 62 |
|
MVS_0304 | | | 97.18 88 | 96.84 95 | 97.58 77 | 99.15 42 | 98.19 74 | 98.11 90 | 97.81 86 | 92.36 141 | 98.06 32 | 97.43 100 | 99.06 38 | 94.24 137 | 96.80 115 | 96.54 114 | 98.12 103 | 97.52 75 |
|
canonicalmvs | | | 97.11 89 | 96.88 92 | 97.38 89 | 98.34 95 | 98.72 46 | 97.52 123 | 97.94 75 | 95.60 56 | 95.01 153 | 94.58 156 | 94.50 164 | 96.59 81 | 97.84 74 | 98.03 70 | 98.90 52 | 98.91 8 |
|
V42 | | | 97.10 90 | 96.97 90 | 97.26 94 | 97.64 148 | 97.60 115 | 98.45 75 | 95.99 156 | 94.44 104 | 97.35 60 | 99.40 27 | 98.63 79 | 97.34 58 | 96.33 129 | 96.38 120 | 96.82 161 | 96.00 127 |
|
CPTT-MVS | | | 97.08 91 | 96.25 109 | 98.05 52 | 99.21 36 | 98.30 69 | 98.54 70 | 97.98 73 | 94.28 108 | 95.89 121 | 89.57 200 | 98.54 84 | 98.18 25 | 97.82 75 | 97.32 91 | 98.54 74 | 97.91 53 |
|
DeepPCF-MVS | | 94.55 10 | 97.05 92 | 97.13 82 | 96.95 111 | 96.06 189 | 97.12 139 | 98.01 97 | 95.44 173 | 95.18 73 | 97.50 52 | 97.86 89 | 98.08 105 | 97.31 60 | 97.23 99 | 97.00 98 | 97.36 138 | 97.45 79 |
|
QAPM | | | 97.04 93 | 97.14 79 | 96.93 113 | 97.78 145 | 98.02 91 | 97.36 133 | 96.72 140 | 94.68 93 | 96.23 108 | 97.21 106 | 97.68 118 | 95.70 109 | 97.37 95 | 97.24 95 | 97.78 118 | 97.77 60 |
|
CNVR-MVS | | | 97.03 94 | 96.77 100 | 97.34 90 | 98.89 67 | 97.67 112 | 97.64 116 | 97.17 123 | 94.40 106 | 95.70 134 | 94.02 165 | 98.76 71 | 96.49 88 | 97.78 77 | 97.29 94 | 98.12 103 | 97.47 78 |
|
casdiffmvs | | | 97.00 95 | 97.36 68 | 96.59 127 | 97.65 147 | 97.98 94 | 98.06 92 | 96.81 137 | 95.78 51 | 92.77 192 | 99.40 27 | 99.26 26 | 95.65 114 | 96.70 118 | 96.39 119 | 98.59 72 | 95.99 128 |
|
v148 | | | 96.99 96 | 96.70 102 | 97.34 90 | 97.89 131 | 97.23 131 | 98.33 78 | 96.96 129 | 95.57 59 | 97.12 71 | 98.99 44 | 99.40 12 | 97.23 62 | 96.22 132 | 95.45 143 | 96.50 166 | 94.02 162 |
|
DELS-MVS | | | 96.90 97 | 97.24 73 | 96.50 132 | 97.85 133 | 98.18 75 | 97.88 106 | 95.92 159 | 93.48 124 | 95.34 143 | 98.86 56 | 98.94 53 | 94.03 140 | 97.33 97 | 97.04 97 | 98.00 110 | 96.85 103 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_LR | | | 96.86 98 | 96.72 101 | 97.03 108 | 97.80 142 | 97.06 142 | 97.04 147 | 95.51 172 | 94.55 98 | 97.47 53 | 97.35 103 | 97.68 118 | 96.66 77 | 97.11 104 | 96.73 107 | 97.69 122 | 96.57 110 |
|
PM-MVS | | | 96.85 99 | 96.62 104 | 97.11 101 | 97.13 170 | 96.51 155 | 98.29 80 | 94.65 190 | 94.84 87 | 98.12 30 | 98.59 69 | 97.20 130 | 97.41 54 | 96.24 131 | 96.41 118 | 97.09 149 | 96.56 112 |
|
pmmvs-eth3d | | | 96.84 100 | 96.22 111 | 97.56 79 | 97.63 150 | 96.38 162 | 98.74 58 | 96.91 132 | 94.63 95 | 98.26 26 | 99.43 24 | 98.28 96 | 96.58 83 | 94.52 161 | 95.54 141 | 97.24 142 | 94.75 149 |
|
CANet | | | 96.81 101 | 96.50 105 | 97.17 100 | 99.10 51 | 97.96 96 | 97.86 107 | 97.51 99 | 91.30 150 | 97.75 42 | 97.64 93 | 97.89 112 | 93.39 150 | 96.98 111 | 96.73 107 | 97.40 135 | 96.99 95 |
|
Fast-Effi-MVS+ | | | 96.80 102 | 95.92 122 | 97.84 66 | 98.57 86 | 97.46 125 | 98.06 92 | 98.24 47 | 89.64 172 | 97.57 49 | 96.45 121 | 97.35 127 | 96.73 76 | 97.22 100 | 96.64 111 | 97.86 115 | 96.65 108 |
|
MCST-MVS | | | 96.79 103 | 96.08 115 | 97.62 75 | 98.78 77 | 97.52 122 | 98.01 97 | 97.32 119 | 93.20 127 | 95.84 123 | 93.97 167 | 98.12 103 | 97.34 58 | 96.34 127 | 95.88 135 | 98.45 82 | 97.51 76 |
|
UGNet | | | 96.79 103 | 97.82 48 | 95.58 155 | 97.57 153 | 98.39 66 | 98.48 72 | 97.84 84 | 95.85 48 | 94.68 158 | 97.91 88 | 99.07 37 | 87.12 197 | 97.71 79 | 97.51 83 | 97.80 116 | 98.29 37 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TAPA-MVS | | 93.96 13 | 96.79 103 | 96.70 102 | 96.90 115 | 97.64 148 | 97.58 116 | 97.54 122 | 94.50 192 | 95.14 74 | 96.64 92 | 96.76 115 | 97.90 111 | 96.63 78 | 95.98 137 | 96.14 125 | 98.45 82 | 97.39 82 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CLD-MVS | | | 96.73 106 | 96.92 91 | 96.51 131 | 98.70 79 | 97.57 118 | 97.64 116 | 92.07 199 | 93.10 133 | 96.31 107 | 98.29 79 | 99.02 43 | 95.99 103 | 97.20 101 | 96.47 116 | 98.37 89 | 96.81 104 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
train_agg | | | 96.68 107 | 95.93 121 | 97.56 79 | 99.08 54 | 97.16 135 | 98.44 77 | 97.37 115 | 91.12 154 | 95.18 147 | 95.43 138 | 98.48 88 | 97.36 56 | 96.48 123 | 95.52 142 | 97.95 113 | 97.34 86 |
|
CDPH-MVS | | | 96.68 107 | 95.99 118 | 97.48 85 | 99.13 47 | 97.64 113 | 98.08 91 | 97.46 105 | 90.56 160 | 95.13 148 | 94.87 150 | 98.27 97 | 96.56 84 | 97.09 105 | 96.45 117 | 98.54 74 | 97.08 94 |
|
MSLP-MVS++ | | | 96.66 109 | 96.46 108 | 96.89 116 | 98.02 120 | 97.71 111 | 95.57 184 | 96.96 129 | 94.36 107 | 96.19 112 | 91.37 192 | 98.24 98 | 97.07 67 | 97.69 80 | 97.89 75 | 97.52 128 | 97.95 49 |
|
TinyColmap | | | 96.64 110 | 96.07 116 | 97.32 92 | 97.84 138 | 96.40 159 | 97.63 118 | 96.25 150 | 95.86 47 | 98.98 10 | 97.94 87 | 96.34 146 | 96.17 98 | 97.30 98 | 95.38 146 | 97.04 151 | 93.24 169 |
|
IS_MVSNet | | | 96.62 111 | 96.48 107 | 96.78 120 | 98.46 90 | 98.68 48 | 98.61 65 | 98.24 47 | 92.23 142 | 89.63 202 | 95.90 134 | 94.40 165 | 96.23 93 | 98.65 44 | 98.77 29 | 99.52 13 | 96.76 106 |
|
NCCC | | | 96.56 112 | 95.68 124 | 97.59 76 | 99.04 58 | 97.54 121 | 97.67 113 | 97.56 97 | 94.84 87 | 96.10 115 | 87.91 204 | 98.09 104 | 96.98 71 | 97.20 101 | 96.80 106 | 98.21 97 | 97.38 85 |
|
ETV-MVS | | | 96.54 113 | 95.27 131 | 98.02 56 | 99.07 56 | 97.48 124 | 98.16 88 | 98.19 53 | 87.33 192 | 97.58 48 | 92.67 179 | 95.93 153 | 96.22 94 | 98.49 55 | 98.46 41 | 98.91 51 | 96.50 115 |
|
Effi-MVS+ | | | 96.46 114 | 95.28 130 | 97.85 65 | 98.64 85 | 97.16 135 | 97.15 145 | 98.75 22 | 90.27 164 | 98.03 33 | 93.93 168 | 96.21 147 | 96.55 85 | 96.34 127 | 96.69 109 | 97.97 112 | 96.33 119 |
|
IterMVS-LS | | | 96.35 115 | 95.85 123 | 96.93 113 | 97.53 154 | 98.00 93 | 97.37 131 | 97.97 74 | 95.49 66 | 96.71 90 | 98.94 47 | 93.23 171 | 94.82 127 | 93.15 180 | 95.05 149 | 97.17 146 | 97.12 93 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
USDC | | | 96.30 116 | 95.64 126 | 97.07 103 | 97.62 151 | 96.35 164 | 97.17 143 | 95.71 168 | 95.52 64 | 99.17 7 | 98.11 85 | 97.46 124 | 95.67 111 | 95.44 149 | 93.60 169 | 97.09 149 | 92.99 173 |
|
Vis-MVSNet (Re-imp) | | | 96.29 117 | 96.50 105 | 96.05 141 | 97.96 127 | 97.83 103 | 97.30 135 | 97.86 82 | 93.14 129 | 88.90 205 | 96.80 114 | 95.28 157 | 95.15 120 | 98.37 61 | 98.25 58 | 99.12 33 | 95.84 131 |
|
MSDG | | | 96.27 118 | 96.17 114 | 96.38 137 | 97.85 133 | 96.27 165 | 96.55 164 | 94.41 193 | 94.55 98 | 95.62 137 | 97.56 97 | 97.80 113 | 96.22 94 | 97.17 103 | 96.27 122 | 97.67 124 | 93.60 166 |
|
CS-MVS | | | 96.24 119 | 94.67 146 | 98.08 46 | 99.10 51 | 98.62 50 | 98.25 83 | 98.12 60 | 87.70 187 | 97.76 41 | 88.13 203 | 96.08 150 | 96.39 90 | 97.64 86 | 98.10 65 | 98.84 61 | 96.39 117 |
|
CNLPA | | | 96.24 119 | 95.97 119 | 96.57 129 | 97.48 159 | 97.10 141 | 96.75 157 | 94.95 184 | 94.92 85 | 96.20 111 | 94.81 151 | 96.61 141 | 96.25 92 | 96.94 112 | 95.64 139 | 97.79 117 | 95.74 137 |
|
EIA-MVS | | | 96.23 121 | 94.85 143 | 97.84 66 | 99.08 54 | 98.21 72 | 97.69 112 | 98.03 70 | 85.68 202 | 98.09 31 | 91.75 189 | 97.07 134 | 95.66 113 | 97.58 88 | 97.72 81 | 98.47 80 | 95.91 130 |
|
PLC |  | 92.55 15 | 96.10 122 | 95.36 127 | 96.96 110 | 98.13 116 | 96.88 146 | 96.49 165 | 96.67 144 | 94.07 115 | 95.71 133 | 91.14 193 | 96.09 149 | 96.84 73 | 96.70 118 | 96.58 113 | 97.92 114 | 96.03 126 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test20.03 | | | 96.08 123 | 96.80 98 | 95.25 164 | 99.19 38 | 97.58 116 | 97.24 140 | 97.56 97 | 94.95 84 | 91.91 193 | 98.58 70 | 98.03 107 | 87.88 193 | 97.43 93 | 96.94 101 | 97.69 122 | 94.05 161 |
|
TSAR-MVS + COLMAP | | | 96.05 124 | 95.94 120 | 96.18 140 | 97.46 160 | 96.41 158 | 97.26 139 | 95.83 163 | 94.69 92 | 95.30 144 | 98.31 78 | 96.52 142 | 94.71 129 | 95.48 148 | 94.87 151 | 96.54 165 | 95.33 144 |
|
EU-MVSNet | | | 96.03 125 | 96.23 110 | 95.80 149 | 95.48 202 | 94.18 183 | 98.99 34 | 91.51 201 | 97.22 20 | 97.66 46 | 99.15 40 | 98.51 86 | 98.08 28 | 95.92 138 | 92.88 176 | 93.09 189 | 95.72 138 |
|
PCF-MVS | | 92.69 14 | 95.98 126 | 95.05 138 | 97.06 104 | 98.43 92 | 97.56 119 | 97.76 109 | 96.65 145 | 89.95 169 | 95.70 134 | 96.18 127 | 98.48 88 | 95.74 106 | 93.64 172 | 93.35 173 | 98.09 107 | 96.18 122 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HQP-MVS | | | 95.97 127 | 95.01 140 | 97.08 102 | 98.72 78 | 97.19 133 | 97.07 146 | 96.69 143 | 91.49 148 | 95.77 127 | 92.19 185 | 97.93 110 | 96.15 99 | 94.66 158 | 94.16 160 | 98.10 105 | 97.45 79 |
|
Effi-MVS+-dtu | | | 95.94 128 | 95.08 137 | 96.94 112 | 98.54 87 | 97.38 126 | 96.66 161 | 97.89 79 | 88.68 177 | 95.92 119 | 92.90 178 | 97.28 128 | 94.18 139 | 96.68 120 | 96.13 127 | 98.45 82 | 96.51 114 |
|
diffmvs | | | 95.86 129 | 96.21 112 | 95.44 158 | 97.25 168 | 96.85 149 | 96.99 149 | 95.23 178 | 94.96 83 | 92.82 191 | 98.89 51 | 98.85 59 | 93.52 148 | 94.21 167 | 94.25 159 | 96.84 158 | 95.49 142 |
|
AdaColmap |  | | 95.85 130 | 94.65 147 | 97.26 94 | 98.70 79 | 97.20 132 | 97.33 134 | 97.30 120 | 91.28 152 | 95.90 120 | 88.16 202 | 96.17 148 | 96.60 80 | 97.34 96 | 96.82 104 | 97.71 119 | 95.60 140 |
|
FMVSNet2 | | | 95.77 131 | 96.20 113 | 95.27 162 | 96.77 178 | 98.18 75 | 97.28 136 | 97.90 78 | 93.12 130 | 91.37 195 | 98.25 81 | 96.05 151 | 90.04 178 | 94.96 156 | 95.94 132 | 98.28 90 | 96.90 98 |
|
OpenMVS |  | 94.63 9 | 95.75 132 | 95.04 139 | 96.58 128 | 97.85 133 | 97.55 120 | 96.71 159 | 96.07 153 | 90.15 167 | 96.47 97 | 90.77 198 | 95.95 152 | 94.41 134 | 97.01 110 | 96.95 100 | 98.00 110 | 96.90 98 |
|
pmmvs5 | | | 95.70 133 | 95.22 132 | 96.26 138 | 96.55 184 | 97.24 130 | 97.50 124 | 94.99 183 | 90.95 156 | 96.87 81 | 98.47 74 | 97.40 125 | 94.45 132 | 92.86 181 | 94.98 150 | 97.23 143 | 94.64 152 |
|
Anonymous20231206 | | | 95.69 134 | 95.68 124 | 95.70 151 | 98.32 98 | 96.95 144 | 97.37 131 | 96.65 145 | 93.33 125 | 93.61 178 | 98.70 67 | 98.03 107 | 91.04 167 | 95.07 154 | 94.59 158 | 97.20 144 | 93.09 172 |
|
MAR-MVS | | | 95.51 135 | 94.49 151 | 96.71 121 | 97.92 129 | 96.40 159 | 96.72 158 | 98.04 69 | 86.74 196 | 96.72 87 | 92.52 182 | 95.14 159 | 94.02 141 | 96.81 114 | 96.54 114 | 96.85 156 | 97.25 89 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DI_MVS_plusplus_trai | | | 95.48 136 | 94.51 149 | 96.61 125 | 97.13 170 | 97.30 128 | 98.05 94 | 96.79 138 | 93.75 121 | 95.08 151 | 96.38 122 | 89.76 186 | 94.95 123 | 93.97 171 | 94.82 155 | 97.64 126 | 95.63 139 |
|
MDA-MVSNet-bldmvs | | | 95.45 137 | 95.20 133 | 95.74 150 | 94.24 207 | 96.38 162 | 97.93 100 | 94.80 185 | 95.56 62 | 96.87 81 | 98.29 79 | 95.24 158 | 96.50 87 | 98.65 44 | 90.38 188 | 94.09 183 | 91.93 177 |
|
PVSNet_BlendedMVS | | | 95.44 138 | 95.09 135 | 95.86 147 | 97.31 165 | 97.13 137 | 96.31 170 | 95.01 181 | 88.55 180 | 96.23 108 | 94.55 159 | 97.75 114 | 92.56 160 | 96.42 124 | 95.44 144 | 97.71 119 | 95.81 132 |
|
PVSNet_Blended | | | 95.44 138 | 95.09 135 | 95.86 147 | 97.31 165 | 97.13 137 | 96.31 170 | 95.01 181 | 88.55 180 | 96.23 108 | 94.55 159 | 97.75 114 | 92.56 160 | 96.42 124 | 95.44 144 | 97.71 119 | 95.81 132 |
|
pmmvs4 | | | 95.37 140 | 94.25 152 | 96.67 124 | 97.01 173 | 95.28 177 | 97.60 119 | 96.07 153 | 93.11 131 | 97.29 63 | 98.09 86 | 94.23 167 | 95.21 119 | 91.56 192 | 93.91 166 | 96.82 161 | 93.59 167 |
|
MVS_Test | | | 95.34 141 | 94.88 142 | 95.89 146 | 96.93 174 | 96.84 150 | 96.66 161 | 97.08 125 | 90.06 168 | 94.02 171 | 97.61 94 | 96.64 140 | 93.59 147 | 92.73 184 | 94.02 164 | 97.03 152 | 96.24 120 |
|
GBi-Net | | | 95.21 142 | 95.35 128 | 95.04 167 | 96.77 178 | 98.18 75 | 97.28 136 | 97.58 94 | 88.43 182 | 90.28 199 | 96.01 130 | 92.43 174 | 90.04 178 | 97.67 82 | 97.86 77 | 98.28 90 | 96.90 98 |
|
test1 | | | 95.21 142 | 95.35 128 | 95.04 167 | 96.77 178 | 98.18 75 | 97.28 136 | 97.58 94 | 88.43 182 | 90.28 199 | 96.01 130 | 92.43 174 | 90.04 178 | 97.67 82 | 97.86 77 | 98.28 90 | 96.90 98 |
|
IterMVS-SCA-FT | | | 95.16 144 | 93.95 156 | 96.56 130 | 97.89 131 | 96.69 152 | 96.94 151 | 96.05 155 | 93.06 134 | 97.35 60 | 98.79 59 | 91.45 179 | 95.93 104 | 92.78 182 | 91.00 186 | 95.22 179 | 93.91 164 |
|
HyFIR lowres test | | | 95.05 145 | 93.54 161 | 96.81 119 | 97.81 141 | 96.88 146 | 98.18 85 | 97.46 105 | 94.28 108 | 94.98 154 | 96.57 119 | 92.89 173 | 96.15 99 | 90.90 197 | 91.87 182 | 96.28 171 | 91.35 178 |
|
CHOSEN 1792x2688 | | | 94.98 146 | 94.69 145 | 95.31 160 | 97.27 167 | 95.58 174 | 97.90 103 | 95.56 171 | 95.03 78 | 93.77 177 | 95.65 136 | 99.29 19 | 95.30 117 | 91.51 193 | 91.28 185 | 92.05 197 | 94.50 154 |
|
CANet_DTU | | | 94.96 147 | 94.62 148 | 95.35 159 | 98.03 119 | 96.11 167 | 96.92 153 | 95.60 170 | 88.59 179 | 97.27 64 | 95.27 141 | 96.50 143 | 88.77 189 | 95.53 145 | 95.59 140 | 95.54 177 | 94.78 148 |
|
CDS-MVSNet | | | 94.91 148 | 95.17 134 | 94.60 175 | 97.85 133 | 96.21 166 | 96.90 155 | 96.39 148 | 90.81 157 | 93.40 182 | 97.24 105 | 94.54 163 | 85.78 203 | 96.25 130 | 96.15 124 | 97.26 141 | 95.01 147 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
DPM-MVS | | | 94.86 149 | 93.90 158 | 95.99 143 | 98.19 110 | 96.52 154 | 96.29 172 | 95.95 157 | 93.11 131 | 94.61 160 | 88.17 201 | 96.44 144 | 93.77 145 | 93.33 175 | 93.54 171 | 97.11 148 | 96.22 121 |
|
MS-PatchMatch | | | 94.84 150 | 94.76 144 | 94.94 170 | 96.38 185 | 94.69 182 | 95.90 179 | 94.03 195 | 92.49 138 | 93.81 175 | 95.79 135 | 96.38 145 | 94.54 130 | 94.70 157 | 94.85 152 | 94.97 181 | 94.43 156 |
|
thisisatest0530 | | | 94.81 151 | 93.06 167 | 96.85 118 | 98.01 121 | 97.18 134 | 96.93 152 | 97.36 116 | 89.73 171 | 95.80 125 | 94.98 147 | 77.88 207 | 94.89 124 | 96.73 117 | 97.35 87 | 98.13 102 | 97.54 73 |
|
tttt0517 | | | 94.81 151 | 93.04 168 | 96.88 117 | 98.15 113 | 97.37 127 | 96.99 149 | 97.36 116 | 89.51 173 | 95.74 128 | 94.89 149 | 77.53 209 | 94.89 124 | 96.94 112 | 97.35 87 | 98.17 100 | 97.70 63 |
|
testgi | | | 94.81 151 | 96.05 117 | 93.35 186 | 99.06 57 | 96.87 148 | 97.57 121 | 96.70 142 | 95.77 52 | 88.60 207 | 93.19 176 | 98.87 58 | 81.21 211 | 97.03 109 | 96.64 111 | 96.97 155 | 93.99 163 |
|
PatchMatch-RL | | | 94.79 154 | 93.75 160 | 96.00 142 | 96.80 177 | 95.00 179 | 95.47 189 | 95.25 177 | 90.68 159 | 95.80 125 | 92.97 177 | 93.64 169 | 95.67 111 | 96.13 134 | 95.81 136 | 96.99 154 | 92.01 176 |
|
FPMVS | | | 94.70 155 | 94.99 141 | 94.37 177 | 95.84 195 | 93.20 188 | 96.00 178 | 91.93 200 | 95.03 78 | 94.64 159 | 94.68 153 | 93.29 170 | 90.95 168 | 98.07 69 | 97.34 90 | 96.85 156 | 93.29 168 |
|
new-patchmatchnet | | | 94.48 156 | 94.02 154 | 95.02 169 | 97.51 158 | 95.00 179 | 95.68 183 | 94.26 194 | 97.32 19 | 95.73 131 | 99.60 13 | 98.22 102 | 91.30 163 | 94.13 168 | 84.41 198 | 95.65 176 | 89.45 189 |
|
IterMVS | | | 94.48 156 | 93.46 163 | 95.66 152 | 97.52 155 | 96.43 156 | 97.20 141 | 94.73 188 | 92.91 137 | 96.44 98 | 98.75 64 | 91.10 181 | 94.53 131 | 92.10 188 | 90.10 190 | 93.51 186 | 92.84 175 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MDTV_nov1_ep13_2view | | | 94.39 158 | 93.34 164 | 95.63 153 | 97.23 169 | 95.33 176 | 97.76 109 | 96.84 135 | 94.55 98 | 97.47 53 | 98.96 45 | 97.70 116 | 93.88 142 | 92.27 186 | 86.81 196 | 90.56 199 | 87.73 197 |
|
Fast-Effi-MVS+-dtu | | | 94.34 159 | 93.26 166 | 95.62 154 | 97.82 139 | 95.97 170 | 95.86 180 | 99.01 13 | 86.88 194 | 93.39 183 | 90.83 196 | 95.46 156 | 90.61 172 | 94.46 163 | 94.68 156 | 97.01 153 | 94.51 153 |
|
thres600view7 | | | 94.34 159 | 92.31 176 | 96.70 122 | 98.19 110 | 98.12 82 | 97.85 108 | 97.45 107 | 91.49 148 | 93.98 173 | 84.27 207 | 82.02 198 | 94.24 137 | 97.04 106 | 98.76 30 | 98.49 78 | 94.47 155 |
|
EPNet | | | 94.33 161 | 93.52 162 | 95.27 162 | 98.81 74 | 94.71 181 | 96.77 156 | 98.20 51 | 88.12 185 | 96.53 95 | 92.53 181 | 91.19 180 | 85.25 207 | 95.22 152 | 95.26 147 | 96.09 174 | 97.63 70 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
GA-MVS | | | 94.18 162 | 92.98 169 | 95.58 155 | 97.36 162 | 96.42 157 | 96.21 173 | 95.86 160 | 90.29 163 | 95.08 151 | 96.19 126 | 85.37 190 | 92.82 157 | 94.01 170 | 94.14 161 | 96.16 173 | 94.41 157 |
|
gg-mvs-nofinetune | | | 94.13 163 | 93.93 157 | 94.37 177 | 97.99 124 | 95.86 171 | 95.45 192 | 99.22 9 | 97.61 16 | 95.10 150 | 99.50 20 | 84.50 191 | 81.73 210 | 95.31 150 | 94.12 162 | 96.71 164 | 90.59 182 |
|
baseline | | | 94.07 164 | 94.50 150 | 93.57 184 | 96.34 186 | 93.40 187 | 95.56 187 | 92.39 198 | 92.07 145 | 94.00 172 | 98.24 82 | 97.51 123 | 89.19 184 | 91.75 190 | 92.72 177 | 93.96 185 | 95.79 134 |
|
FMVSNet3 | | | 94.06 165 | 93.85 159 | 94.31 180 | 95.46 203 | 97.80 109 | 96.34 168 | 97.58 94 | 88.43 182 | 90.28 199 | 96.01 130 | 92.43 174 | 88.67 190 | 91.82 189 | 93.96 165 | 97.53 127 | 96.50 115 |
|
thres400 | | | 94.04 166 | 91.94 179 | 96.50 132 | 97.98 126 | 97.82 107 | 97.66 115 | 96.96 129 | 90.96 155 | 94.20 167 | 83.24 208 | 82.82 196 | 93.80 143 | 96.50 122 | 98.09 66 | 98.38 88 | 94.15 159 |
|
CVMVSNet | | | 94.01 167 | 94.25 152 | 93.73 183 | 94.36 206 | 92.44 191 | 97.45 127 | 88.56 204 | 95.59 57 | 93.06 189 | 98.88 52 | 90.03 185 | 94.84 126 | 94.08 169 | 93.45 172 | 94.09 183 | 95.31 145 |
|
thres200 | | | 93.98 168 | 91.90 180 | 96.40 136 | 97.66 146 | 98.12 82 | 97.20 141 | 97.45 107 | 90.16 166 | 93.82 174 | 83.08 209 | 83.74 194 | 93.80 143 | 97.04 106 | 97.48 85 | 98.49 78 | 93.70 165 |
|
baseline1 | | | 93.89 169 | 92.82 171 | 95.14 166 | 97.62 151 | 96.97 143 | 96.12 174 | 96.36 149 | 91.30 150 | 91.53 194 | 94.68 153 | 80.72 200 | 90.80 170 | 95.71 141 | 96.29 121 | 98.44 85 | 94.09 160 |
|
tfpn200view9 | | | 93.80 170 | 91.75 181 | 96.20 139 | 97.52 155 | 98.15 80 | 97.48 126 | 97.47 104 | 87.65 188 | 93.56 180 | 83.03 210 | 84.12 192 | 92.62 159 | 97.04 106 | 98.09 66 | 98.52 77 | 94.17 158 |
|
MIMVSNet | | | 93.68 171 | 93.96 155 | 93.35 186 | 97.82 139 | 96.08 168 | 96.34 168 | 98.46 32 | 91.28 152 | 86.67 212 | 94.95 148 | 94.87 161 | 84.39 208 | 94.53 159 | 94.65 157 | 96.45 168 | 91.34 179 |
|
pmnet_mix02 | | | 93.59 172 | 92.65 172 | 94.69 173 | 96.76 181 | 94.16 184 | 97.03 148 | 93.00 197 | 95.79 50 | 96.03 118 | 98.91 49 | 97.69 117 | 92.99 153 | 90.03 200 | 84.10 200 | 92.35 195 | 87.89 196 |
|
EPNet_dtu | | | 93.45 173 | 92.51 174 | 94.55 176 | 98.39 94 | 91.67 200 | 95.46 190 | 97.50 101 | 86.56 197 | 97.38 58 | 93.52 171 | 94.20 168 | 85.82 202 | 93.31 177 | 92.53 178 | 92.72 191 | 95.76 136 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IB-MVS | | 92.44 16 | 93.33 174 | 92.15 178 | 94.70 172 | 97.42 161 | 96.39 161 | 95.57 184 | 94.67 189 | 86.40 200 | 93.59 179 | 78.28 214 | 95.76 155 | 89.59 183 | 95.88 139 | 95.98 131 | 97.39 136 | 96.34 118 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ET-MVSNet_ETH3D | | | 93.18 175 | 90.80 186 | 95.95 144 | 96.05 190 | 96.07 169 | 96.92 153 | 96.51 147 | 89.34 174 | 95.63 136 | 94.08 164 | 72.31 218 | 93.13 151 | 94.33 165 | 94.83 153 | 97.44 132 | 94.65 151 |
|
thres100view900 | | | 92.93 176 | 90.89 185 | 95.31 160 | 97.52 155 | 96.82 151 | 96.41 166 | 95.08 179 | 87.65 188 | 93.56 180 | 83.03 210 | 84.12 192 | 91.12 166 | 94.53 159 | 96.91 102 | 98.17 100 | 93.21 170 |
|
N_pmnet | | | 92.46 177 | 92.38 175 | 92.55 192 | 97.91 130 | 93.47 186 | 97.42 129 | 94.01 196 | 96.40 33 | 88.48 208 | 98.50 72 | 98.07 106 | 88.14 192 | 91.04 196 | 84.30 199 | 89.35 204 | 84.85 203 |
|
TAMVS | | | 92.46 177 | 93.34 164 | 91.44 200 | 97.03 172 | 93.84 185 | 94.68 202 | 90.60 202 | 90.44 162 | 85.31 213 | 97.14 109 | 93.03 172 | 85.78 203 | 94.34 164 | 93.67 168 | 95.22 179 | 90.93 181 |
|
CMPMVS |  | 71.81 19 | 92.34 179 | 92.85 170 | 91.75 198 | 92.70 211 | 90.43 205 | 88.84 214 | 88.56 204 | 85.87 201 | 94.35 164 | 90.98 194 | 95.89 154 | 91.14 165 | 96.14 133 | 94.83 153 | 94.93 182 | 95.78 135 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
baseline2 | | | 92.06 180 | 89.82 189 | 94.68 174 | 97.32 163 | 95.72 172 | 94.97 199 | 95.08 179 | 84.75 205 | 94.34 166 | 90.68 199 | 77.75 208 | 90.13 177 | 93.38 173 | 93.58 170 | 96.25 172 | 92.90 174 |
|
MVSTER | | | 91.97 181 | 90.31 187 | 93.91 181 | 96.81 176 | 96.91 145 | 94.22 203 | 95.64 169 | 84.98 203 | 92.98 190 | 93.42 172 | 72.56 216 | 86.64 201 | 95.11 153 | 93.89 167 | 97.16 147 | 95.31 145 |
|
CR-MVSNet | | | 91.94 182 | 88.50 192 | 95.94 145 | 96.14 188 | 92.08 195 | 95.23 195 | 98.47 30 | 84.30 207 | 96.44 98 | 94.58 156 | 75.57 210 | 92.92 154 | 90.22 198 | 92.22 179 | 96.43 169 | 90.56 183 |
|
gm-plane-assit | | | 91.85 183 | 87.91 194 | 96.44 135 | 99.14 45 | 98.25 71 | 99.02 29 | 97.38 114 | 95.57 59 | 98.31 25 | 99.34 31 | 51.00 223 | 88.93 187 | 93.16 179 | 91.57 183 | 95.85 175 | 86.50 200 |
|
PMMVS | | | 91.67 184 | 91.47 183 | 91.91 197 | 89.43 216 | 88.61 211 | 94.99 198 | 85.67 209 | 87.50 190 | 93.80 176 | 94.42 162 | 94.88 160 | 90.71 171 | 92.26 187 | 92.96 175 | 96.83 159 | 89.65 187 |
|
CHOSEN 280x420 | | | 91.55 185 | 90.27 188 | 93.05 189 | 94.61 205 | 88.01 212 | 96.56 163 | 94.62 191 | 88.04 186 | 94.20 167 | 92.66 180 | 86.60 188 | 90.82 169 | 95.06 155 | 91.89 181 | 87.49 209 | 89.61 188 |
|
PatchT | | | 91.40 186 | 88.54 191 | 94.74 171 | 91.48 215 | 92.18 194 | 97.42 129 | 97.51 99 | 84.96 204 | 96.44 98 | 94.16 163 | 75.47 211 | 92.92 154 | 90.22 198 | 92.22 179 | 92.66 194 | 90.56 183 |
|
pmmvs3 | | | 91.20 187 | 91.40 184 | 90.96 202 | 91.71 214 | 91.08 201 | 95.41 193 | 81.34 213 | 87.36 191 | 94.57 161 | 95.02 145 | 94.30 166 | 90.42 173 | 94.28 166 | 89.26 192 | 92.30 196 | 88.49 194 |
|
test0.0.03 1 | | | 91.17 188 | 91.50 182 | 90.80 203 | 98.01 121 | 95.46 175 | 94.22 203 | 95.80 164 | 86.55 198 | 81.75 215 | 90.83 196 | 87.93 187 | 78.48 212 | 94.51 162 | 94.11 163 | 96.50 166 | 91.08 180 |
|
SCA | | | 91.15 189 | 87.65 196 | 95.23 165 | 96.15 187 | 95.68 173 | 96.68 160 | 98.18 55 | 90.46 161 | 97.21 67 | 92.44 183 | 80.17 202 | 93.51 149 | 86.04 207 | 83.58 203 | 89.68 203 | 85.21 202 |
|
new_pmnet | | | 90.85 190 | 92.26 177 | 89.21 206 | 93.68 210 | 89.05 210 | 93.20 211 | 84.16 212 | 92.99 135 | 84.25 214 | 97.72 92 | 94.60 162 | 86.80 200 | 93.20 178 | 91.30 184 | 93.21 187 | 86.94 199 |
|
RPMNet | | | 90.52 191 | 86.27 205 | 95.48 157 | 95.95 193 | 92.08 195 | 95.55 188 | 98.12 60 | 84.30 207 | 95.60 138 | 87.49 205 | 72.78 215 | 91.24 164 | 87.93 202 | 89.34 191 | 96.41 170 | 89.98 186 |
|
MDTV_nov1_ep13 | | | 90.30 192 | 87.32 200 | 93.78 182 | 96.00 192 | 92.97 189 | 95.46 190 | 95.39 174 | 88.61 178 | 95.41 142 | 94.45 161 | 80.39 201 | 89.87 181 | 86.58 205 | 83.54 204 | 90.56 199 | 84.71 204 |
|
PatchmatchNet |  | | 89.98 193 | 86.23 206 | 94.36 179 | 96.56 183 | 91.90 199 | 96.07 175 | 96.72 140 | 90.18 165 | 96.87 81 | 93.36 175 | 78.06 206 | 91.46 162 | 84.71 211 | 81.40 208 | 88.45 206 | 83.97 208 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
ADS-MVSNet | | | 89.89 194 | 87.70 195 | 92.43 194 | 95.52 200 | 90.91 203 | 95.57 184 | 95.33 175 | 93.19 128 | 91.21 196 | 93.41 173 | 82.12 197 | 89.05 185 | 86.21 206 | 83.77 202 | 87.92 207 | 84.31 205 |
|
tpm | | | 89.84 195 | 86.81 202 | 93.36 185 | 96.60 182 | 91.92 198 | 95.02 197 | 97.39 113 | 86.79 195 | 96.54 94 | 95.03 144 | 69.70 219 | 87.66 194 | 88.79 201 | 86.19 197 | 86.95 211 | 89.27 190 |
|
test-LLR | | | 89.77 196 | 87.47 198 | 92.45 193 | 98.01 121 | 89.77 207 | 93.25 209 | 95.80 164 | 81.56 212 | 89.19 203 | 92.08 186 | 79.59 203 | 85.77 205 | 91.47 194 | 89.04 194 | 92.69 192 | 88.75 191 |
|
FMVSNet5 | | | 89.65 197 | 87.60 197 | 92.04 196 | 95.63 199 | 96.61 153 | 94.82 201 | 94.75 186 | 80.11 216 | 87.72 210 | 77.73 215 | 73.81 214 | 83.81 209 | 95.64 142 | 96.08 129 | 95.49 178 | 93.21 170 |
|
EPMVS | | | 89.28 198 | 86.28 204 | 92.79 191 | 96.01 191 | 92.00 197 | 95.83 181 | 95.85 162 | 90.78 158 | 91.00 197 | 94.58 156 | 74.65 212 | 88.93 187 | 85.00 209 | 82.88 206 | 89.09 205 | 84.09 207 |
|
test-mter | | | 89.16 199 | 88.14 193 | 90.37 204 | 94.79 204 | 91.05 202 | 93.60 208 | 85.26 210 | 81.65 211 | 88.32 209 | 92.22 184 | 79.35 205 | 87.03 198 | 92.28 185 | 90.12 189 | 93.19 188 | 90.29 185 |
|
CostFormer | | | 89.06 200 | 85.65 207 | 93.03 190 | 95.88 194 | 92.40 192 | 95.30 194 | 95.86 160 | 86.49 199 | 93.12 188 | 93.40 174 | 74.18 213 | 88.25 191 | 82.99 212 | 81.46 207 | 89.77 202 | 88.66 193 |
|
MVS-HIRNet | | | 88.72 201 | 86.49 203 | 91.33 201 | 91.81 213 | 85.66 213 | 87.02 216 | 96.25 150 | 81.48 214 | 94.82 155 | 96.31 125 | 92.14 177 | 90.32 175 | 87.60 203 | 83.82 201 | 87.74 208 | 78.42 212 |
|
TESTMET0.1,1 | | | 88.60 202 | 87.47 198 | 89.93 205 | 94.23 208 | 89.77 207 | 93.25 209 | 84.47 211 | 81.56 212 | 89.19 203 | 92.08 186 | 79.59 203 | 85.77 205 | 91.47 194 | 89.04 194 | 92.69 192 | 88.75 191 |
|
dps | | | 88.36 203 | 84.32 210 | 93.07 188 | 93.86 209 | 92.29 193 | 94.89 200 | 95.93 158 | 83.50 209 | 93.13 186 | 91.87 188 | 67.79 221 | 90.32 175 | 85.99 208 | 83.22 205 | 90.28 201 | 85.56 201 |
|
tpmrst | | | 87.60 204 | 84.13 211 | 91.66 199 | 95.65 198 | 89.73 209 | 93.77 206 | 94.74 187 | 88.85 176 | 93.35 185 | 95.60 137 | 72.37 217 | 87.40 195 | 81.24 213 | 78.19 210 | 85.02 214 | 82.90 211 |
|
tpm cat1 | | | 87.19 205 | 82.78 212 | 92.33 195 | 95.66 197 | 90.61 204 | 94.19 205 | 95.27 176 | 86.97 193 | 94.38 163 | 90.91 195 | 69.40 220 | 87.21 196 | 79.57 215 | 77.82 211 | 87.25 210 | 84.18 206 |
|
E-PMN | | | 86.94 206 | 85.10 208 | 89.09 208 | 95.77 196 | 83.54 216 | 89.89 213 | 86.55 206 | 92.18 143 | 87.34 211 | 94.02 165 | 83.42 195 | 89.63 182 | 93.32 176 | 77.11 212 | 85.33 212 | 72.09 213 |
|
EMVS | | | 86.63 207 | 84.48 209 | 89.15 207 | 95.51 201 | 83.66 215 | 90.19 212 | 86.14 208 | 91.78 147 | 88.68 206 | 93.83 169 | 81.97 199 | 89.05 185 | 92.76 183 | 76.09 213 | 85.31 213 | 71.28 214 |
|
PMMVS2 | | | 86.47 208 | 92.62 173 | 79.29 210 | 92.01 212 | 85.63 214 | 93.74 207 | 86.37 207 | 93.95 118 | 54.18 220 | 98.19 83 | 97.39 126 | 58.46 213 | 96.57 121 | 93.07 174 | 90.99 198 | 83.55 210 |
|
MVE |  | 72.99 18 | 85.37 209 | 89.43 190 | 80.63 209 | 74.43 217 | 71.94 218 | 88.25 215 | 89.81 203 | 93.27 126 | 67.32 218 | 96.32 124 | 91.83 178 | 90.40 174 | 93.36 174 | 90.79 187 | 73.55 217 | 88.49 194 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 61.30 210 | 70.45 213 | 50.62 211 | 22.69 219 | 30.92 220 | 68.31 219 | 25.76 215 | 80.56 215 | 68.71 216 | 82.80 212 | 91.08 182 | 44.64 214 | 80.50 214 | 56.70 214 | 73.64 216 | 70.58 215 |
|
GG-mvs-BLEND | | | 61.03 211 | 87.02 201 | 30.71 213 | 0.74 222 | 90.01 206 | 78.90 218 | 0.74 219 | 84.56 206 | 9.46 221 | 79.17 213 | 90.69 184 | 1.37 218 | 91.74 191 | 89.13 193 | 93.04 190 | 83.83 209 |
|
testmvs | | | 4.99 212 | 6.88 214 | 2.78 215 | 1.73 220 | 2.04 222 | 3.10 222 | 1.71 217 | 7.27 218 | 3.92 223 | 12.18 217 | 6.71 224 | 3.31 217 | 6.94 216 | 5.51 216 | 2.94 219 | 7.51 216 |
|
test123 | | | 4.41 213 | 5.71 215 | 2.88 214 | 1.28 221 | 2.21 221 | 3.09 223 | 1.65 218 | 6.35 219 | 4.98 222 | 8.53 218 | 3.88 225 | 3.46 216 | 5.79 217 | 5.71 215 | 2.85 220 | 7.50 217 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 99.38 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 96.98 137 | | | | | |
|
SR-MVS | | | | | | 99.33 31 | | | 98.40 35 | | | | 98.90 54 | | | | | |
|
Anonymous202405211 | | | | 97.39 67 | | 98.85 70 | 98.59 52 | 97.89 105 | 97.93 76 | 94.41 105 | | 97.37 102 | 96.99 136 | 93.09 152 | 98.61 46 | 98.46 41 | 99.11 34 | 97.27 87 |
|
our_test_3 | | | | | | 97.32 163 | 95.13 178 | 97.59 120 | | | | | | | | | | |
|
ambc | | | | 96.78 99 | | 99.01 59 | 97.11 140 | 95.73 182 | | 95.91 46 | 99.25 3 | 98.56 71 | 97.17 131 | 97.04 68 | 96.76 116 | 95.22 148 | 96.72 163 | 96.73 107 |
|
MTAPA | | | | | | | | | | | 97.43 56 | | 99.27 23 | | | | | |
|
MTMP | | | | | | | | | | | 97.63 47 | | 99.03 42 | | | | | |
|
Patchmatch-RL test | | | | | | | | 17.42 221 | | | | | | | | | | |
|
tmp_tt | | | | | 45.72 212 | 60.00 218 | 38.74 219 | 45.50 220 | 12.18 216 | 79.58 217 | 68.42 217 | 67.62 216 | 65.04 222 | 22.12 215 | 84.83 210 | 78.72 209 | 66.08 218 | |
|
XVS | | | | | | 99.48 19 | 98.76 38 | 99.22 20 | | | 96.40 102 | | 98.78 68 | | | | 98.94 49 | |
|
X-MVStestdata | | | | | | 99.48 19 | 98.76 38 | 99.22 20 | | | 96.40 102 | | 98.78 68 | | | | 98.94 49 | |
|
abl_6 | | | | | 96.45 134 | 97.79 144 | 97.28 129 | 97.16 144 | 96.16 152 | 89.92 170 | 95.72 132 | 91.59 190 | 97.16 132 | 94.37 135 | | | 97.51 129 | 95.49 142 |
|
mPP-MVS | | | | | | 99.58 6 | | | | | | | 98.98 46 | | | | | |
|
NP-MVS | | | | | | | | | | 89.27 175 | | | | | | | | |
|
Patchmtry | | | | | | | 92.70 190 | 95.23 195 | 98.47 30 | | 96.44 98 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 72.99 217 | 80.14 217 | 37.34 214 | 83.46 210 | 60.13 219 | 84.40 206 | 85.48 189 | 86.93 199 | 87.22 204 | | 79.61 215 | 87.32 198 |
|