LTVRE_ROB | | 97.71 1 | 99.33 1 | 99.47 2 | 99.16 7 | 99.16 42 | 99.11 15 | 99.39 13 | 99.16 11 | 99.26 3 | 99.22 5 | 99.51 19 | 99.75 4 | 98.54 15 | 99.71 2 | 99.47 4 | 99.52 13 | 99.46 1 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
SixPastTwentyTwo | | | 99.25 2 | 99.20 4 | 99.32 1 | 99.53 15 | 99.32 9 | 99.64 2 | 99.19 10 | 98.05 11 | 99.19 6 | 99.74 4 | 98.96 51 | 99.03 2 | 99.69 3 | 99.58 2 | 99.32 26 | 99.06 7 |
|
WR-MVS | | | 99.22 3 | 99.15 6 | 99.30 2 | 99.54 11 | 99.62 1 | 99.63 4 | 99.45 1 | 97.75 15 | 98.47 22 | 99.71 6 | 99.05 42 | 98.88 4 | 99.54 6 | 99.49 3 | 99.81 1 | 98.87 10 |
|
test_part1 | | | 99.20 4 | 99.62 1 | 98.72 17 | 98.92 66 | 99.62 1 | 99.52 12 | 99.01 13 | 99.39 1 | 97.87 39 | 99.74 4 | 99.75 4 | 97.29 64 | 99.73 1 | 99.71 1 | 99.69 2 | 99.41 2 |
|
PS-CasMVS | | | 99.08 5 | 98.90 12 | 99.28 3 | 99.65 3 | 99.56 5 | 99.59 6 | 99.39 3 | 96.36 36 | 98.83 14 | 99.46 22 | 99.09 35 | 98.62 10 | 99.51 8 | 99.36 9 | 99.63 4 | 98.97 8 |
|
PEN-MVS | | | 99.08 5 | 98.95 9 | 99.23 5 | 99.65 3 | 99.59 3 | 99.64 2 | 99.34 6 | 96.68 28 | 98.65 17 | 99.43 24 | 99.33 17 | 98.47 17 | 99.50 9 | 99.32 10 | 99.60 6 | 98.79 12 |
|
v7n | | | 99.03 7 | 99.03 8 | 99.02 9 | 99.09 53 | 99.11 15 | 99.57 9 | 98.82 20 | 98.21 10 | 99.25 3 | 99.84 2 | 99.59 7 | 98.76 6 | 99.23 20 | 98.83 33 | 98.63 72 | 98.40 35 |
|
DTE-MVSNet | | | 99.03 7 | 98.88 13 | 99.21 6 | 99.66 2 | 99.59 3 | 99.62 5 | 99.34 6 | 96.92 24 | 98.52 19 | 99.36 30 | 98.98 47 | 98.57 13 | 99.49 10 | 99.23 13 | 99.56 10 | 98.55 26 |
|
TDRefinement | | | 99.00 9 | 99.13 7 | 98.86 10 | 98.99 63 | 99.05 20 | 99.58 7 | 98.29 51 | 98.96 5 | 97.96 37 | 99.40 27 | 98.67 77 | 98.87 5 | 99.60 4 | 99.46 5 | 99.46 19 | 98.74 15 |
|
WR-MVS_H | | | 98.97 10 | 98.82 15 | 99.14 8 | 99.56 9 | 99.56 5 | 99.54 11 | 99.42 2 | 96.07 41 | 98.37 24 | 99.34 32 | 99.09 35 | 98.43 18 | 99.45 11 | 99.41 6 | 99.53 11 | 98.86 11 |
|
UniMVSNet_ETH3D | | | 98.93 11 | 99.20 4 | 98.63 23 | 99.54 11 | 99.33 8 | 98.73 65 | 99.37 4 | 98.87 6 | 97.86 40 | 99.27 36 | 99.78 2 | 96.59 87 | 99.52 7 | 99.40 7 | 99.67 3 | 98.21 43 |
|
CP-MVSNet | | | 98.91 12 | 98.61 20 | 99.25 4 | 99.63 5 | 99.50 7 | 99.55 10 | 99.36 5 | 95.53 67 | 98.77 16 | 99.11 43 | 98.64 80 | 98.57 13 | 99.42 12 | 99.28 12 | 99.61 5 | 98.78 13 |
|
anonymousdsp | | | 98.85 13 | 98.88 13 | 98.83 11 | 98.69 85 | 98.20 79 | 99.68 1 | 97.35 125 | 97.09 23 | 98.98 10 | 99.86 1 | 99.43 11 | 98.94 3 | 99.28 15 | 99.19 14 | 99.33 24 | 99.08 6 |
|
pmmvs6 | | | 98.77 14 | 99.35 3 | 98.09 45 | 98.32 104 | 98.92 26 | 98.57 72 | 99.03 12 | 99.36 2 | 96.86 85 | 99.77 3 | 99.86 1 | 96.20 102 | 99.56 5 | 99.39 8 | 99.59 7 | 98.61 23 |
|
ACMH | | 95.26 7 | 98.75 15 | 98.93 10 | 98.54 27 | 98.86 69 | 99.01 22 | 99.58 7 | 98.10 70 | 98.67 7 | 97.30 63 | 99.18 40 | 99.42 12 | 98.40 19 | 99.19 22 | 98.86 31 | 98.99 48 | 98.19 44 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
COLMAP_ROB |  | 96.84 2 | 98.75 15 | 98.82 15 | 98.66 21 | 99.14 46 | 98.79 40 | 99.30 18 | 97.67 97 | 98.33 9 | 97.82 42 | 99.20 39 | 99.18 33 | 98.76 6 | 99.27 18 | 98.96 23 | 99.29 28 | 98.03 48 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
UA-Net | | | 98.66 17 | 98.60 23 | 98.73 15 | 99.83 1 | 99.28 10 | 98.56 74 | 99.24 8 | 96.04 42 | 97.12 72 | 98.44 78 | 98.95 52 | 98.17 28 | 99.15 25 | 99.00 22 | 99.48 18 | 99.33 4 |
|
DeepC-MVS | | 96.08 5 | 98.58 18 | 98.49 25 | 98.68 19 | 99.37 27 | 98.52 66 | 99.01 36 | 98.17 65 | 97.17 22 | 98.25 27 | 99.56 16 | 99.62 6 | 98.29 22 | 98.40 64 | 98.09 72 | 98.97 50 | 98.08 47 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TranMVSNet+NR-MVSNet | | | 98.45 19 | 98.22 32 | 98.72 17 | 99.32 32 | 99.06 18 | 98.99 37 | 98.89 15 | 95.52 68 | 97.53 51 | 99.42 26 | 98.83 64 | 98.01 34 | 98.55 56 | 98.34 59 | 99.57 9 | 97.80 59 |
|
CSCG | | | 98.45 19 | 98.61 20 | 98.26 39 | 99.11 50 | 99.06 18 | 98.17 93 | 97.49 110 | 97.93 13 | 97.37 60 | 98.88 55 | 99.29 20 | 98.10 29 | 98.40 64 | 97.51 89 | 99.32 26 | 99.16 5 |
|
DVP-MVS++ | | | 98.44 21 | 98.92 11 | 97.88 65 | 99.17 40 | 99.00 23 | 98.89 48 | 98.26 53 | 97.54 18 | 96.05 119 | 99.35 31 | 99.76 3 | 96.34 97 | 98.79 39 | 98.65 42 | 98.56 79 | 99.35 3 |
|
Gipuma |  | | 98.43 22 | 98.15 35 | 98.76 14 | 99.00 62 | 98.29 76 | 97.91 108 | 98.06 72 | 99.02 4 | 99.50 1 | 96.33 129 | 98.67 77 | 99.22 1 | 99.02 28 | 98.02 77 | 98.88 63 | 97.66 68 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ACMH+ | | 94.90 8 | 98.40 23 | 98.71 18 | 98.04 55 | 98.93 65 | 98.84 33 | 99.30 18 | 97.86 89 | 97.78 14 | 94.19 176 | 98.77 65 | 99.39 14 | 98.61 11 | 99.33 14 | 99.07 15 | 99.33 24 | 97.81 58 |
|
ACMMPR | | | 98.31 24 | 98.07 39 | 98.60 24 | 99.58 6 | 98.83 34 | 99.09 28 | 98.48 32 | 96.25 38 | 97.03 76 | 96.81 117 | 99.09 35 | 98.39 20 | 98.55 56 | 98.45 51 | 99.01 45 | 98.53 29 |
|
APDe-MVS | | | 98.29 25 | 98.42 27 | 98.14 42 | 99.45 22 | 98.90 27 | 99.18 24 | 98.30 49 | 95.96 49 | 95.13 152 | 98.79 62 | 99.25 28 | 97.92 39 | 98.80 37 | 98.71 37 | 98.85 65 | 98.54 27 |
|
DVP-MVS |  | | 98.27 26 | 98.61 20 | 97.87 66 | 99.17 40 | 99.03 21 | 99.07 30 | 98.17 65 | 96.75 27 | 94.35 171 | 98.92 51 | 99.58 8 | 97.86 42 | 98.67 48 | 98.70 38 | 98.63 72 | 98.63 21 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
TransMVSNet (Re) | | | 98.23 27 | 98.72 17 | 97.66 79 | 98.22 113 | 98.73 51 | 98.66 68 | 98.03 77 | 98.60 8 | 96.40 104 | 99.60 13 | 98.24 101 | 95.26 124 | 99.19 22 | 99.05 18 | 99.36 21 | 97.64 69 |
|
DU-MVS | | | 98.23 27 | 97.74 56 | 98.81 12 | 99.23 34 | 98.77 42 | 98.76 59 | 98.88 16 | 94.10 116 | 98.50 20 | 98.87 57 | 98.32 98 | 97.99 35 | 98.40 64 | 98.08 75 | 99.49 17 | 97.64 69 |
|
UniMVSNet (Re) | | | 98.23 27 | 97.85 48 | 98.67 20 | 99.15 43 | 98.87 29 | 98.74 62 | 98.84 18 | 94.27 114 | 97.94 38 | 99.01 45 | 98.39 94 | 97.82 43 | 98.35 69 | 98.29 64 | 99.51 16 | 97.78 60 |
|
MIMVSNet1 | | | 98.22 30 | 98.51 24 | 97.87 66 | 99.40 26 | 98.82 38 | 99.31 17 | 98.53 29 | 97.39 19 | 96.59 95 | 99.31 34 | 99.23 30 | 94.76 134 | 98.93 33 | 98.67 40 | 98.63 72 | 97.25 93 |
|
HFP-MVS | | | 98.17 31 | 98.02 40 | 98.35 37 | 99.36 28 | 98.62 57 | 98.79 58 | 98.46 36 | 96.24 39 | 96.53 97 | 97.13 113 | 98.98 47 | 98.02 33 | 98.20 72 | 98.42 53 | 98.95 54 | 98.54 27 |
|
Baseline_NR-MVSNet | | | 98.17 31 | 97.90 45 | 98.48 31 | 99.23 34 | 98.59 58 | 98.83 55 | 98.73 25 | 93.97 121 | 96.95 79 | 99.66 8 | 98.23 103 | 97.90 40 | 98.40 64 | 99.06 17 | 99.25 30 | 97.42 85 |
|
TSAR-MVS + MP. | | | 98.15 33 | 98.23 31 | 98.06 53 | 98.47 95 | 98.16 85 | 99.23 21 | 96.87 140 | 95.58 62 | 96.72 88 | 98.41 79 | 99.06 39 | 98.05 32 | 98.99 30 | 98.90 27 | 99.00 46 | 98.51 30 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
zzz-MVS | | | 98.14 34 | 97.78 53 | 98.55 26 | 99.58 6 | 98.58 60 | 98.98 39 | 98.48 32 | 95.98 47 | 97.39 58 | 94.73 160 | 99.27 24 | 97.98 38 | 98.81 36 | 98.64 45 | 98.90 58 | 98.46 31 |
|
pm-mvs1 | | | 98.14 34 | 98.66 19 | 97.53 88 | 97.93 135 | 98.49 68 | 98.14 95 | 98.19 61 | 97.95 12 | 96.17 115 | 99.63 11 | 98.85 60 | 95.41 122 | 98.91 34 | 98.89 28 | 99.34 23 | 97.86 57 |
|
SMA-MVS |  | | 98.13 36 | 98.22 32 | 98.02 58 | 99.44 24 | 98.73 51 | 98.24 90 | 97.87 88 | 95.22 75 | 96.76 87 | 98.66 71 | 99.35 16 | 97.03 72 | 98.53 59 | 98.39 55 | 98.80 67 | 98.69 17 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMMP_NAP | | | 98.12 37 | 98.08 38 | 98.18 41 | 99.34 29 | 98.74 50 | 98.97 40 | 98.00 79 | 95.13 79 | 96.90 80 | 97.54 101 | 99.27 24 | 97.18 66 | 98.72 44 | 98.45 51 | 98.68 71 | 98.69 17 |
|
UniMVSNet_NR-MVSNet | | | 98.12 37 | 97.56 63 | 98.78 13 | 99.13 48 | 98.89 28 | 98.76 59 | 98.78 21 | 93.81 124 | 98.50 20 | 98.81 61 | 97.64 124 | 97.99 35 | 98.18 75 | 97.92 80 | 99.53 11 | 97.64 69 |
|
ACMM | | 94.29 11 | 98.12 37 | 97.71 57 | 98.59 25 | 99.51 17 | 98.58 60 | 99.24 20 | 98.25 54 | 96.22 40 | 96.90 80 | 95.01 153 | 98.89 57 | 98.52 16 | 98.66 49 | 98.32 62 | 99.13 37 | 98.28 41 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
SteuartSystems-ACMMP | | | 98.06 40 | 97.78 53 | 98.39 35 | 99.54 11 | 98.79 40 | 98.94 44 | 98.42 38 | 93.98 120 | 95.85 126 | 96.66 123 | 99.25 28 | 98.61 11 | 98.71 46 | 98.38 56 | 98.97 50 | 98.67 20 |
Skip Steuart: Steuart Systems R&D Blog. |
SED-MVS | | | 98.05 41 | 98.46 26 | 97.57 84 | 99.01 59 | 98.99 24 | 98.82 57 | 98.24 55 | 95.76 57 | 94.70 163 | 98.96 47 | 99.49 10 | 96.19 103 | 98.74 40 | 98.65 42 | 98.46 87 | 98.63 21 |
|
OPM-MVS | | | 98.01 42 | 98.01 41 | 98.00 60 | 99.11 50 | 98.12 88 | 98.68 66 | 97.72 95 | 96.65 30 | 96.68 92 | 98.40 80 | 99.28 23 | 97.44 56 | 98.20 72 | 97.82 86 | 98.40 93 | 97.58 74 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
Vis-MVSNet |  | | 98.01 42 | 98.42 27 | 97.54 87 | 96.89 182 | 98.82 38 | 99.14 25 | 97.59 100 | 96.30 37 | 97.04 75 | 99.26 37 | 98.83 64 | 96.01 108 | 98.73 42 | 98.21 66 | 98.58 78 | 98.75 14 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CS-MVS | | | 98.00 44 | 97.38 69 | 98.73 15 | 98.72 80 | 99.15 12 | 99.12 27 | 98.76 22 | 91.58 154 | 98.15 31 | 96.70 121 | 98.72 76 | 98.20 24 | 98.64 52 | 98.92 25 | 99.43 20 | 97.97 51 |
|
NR-MVSNet | | | 98.00 44 | 97.88 46 | 98.13 43 | 98.33 102 | 98.77 42 | 98.83 55 | 98.88 16 | 94.10 116 | 97.46 56 | 98.87 57 | 98.58 85 | 95.78 111 | 99.13 26 | 98.16 70 | 99.52 13 | 97.53 77 |
|
CP-MVS | | | 98.00 44 | 97.57 62 | 98.50 28 | 99.47 21 | 98.56 63 | 98.91 46 | 98.38 44 | 94.71 95 | 97.01 77 | 95.20 149 | 99.06 39 | 98.20 24 | 98.61 53 | 98.46 48 | 99.02 43 | 98.40 35 |
|
DPE-MVS |  | | 97.99 47 | 98.12 36 | 97.84 69 | 98.65 89 | 98.86 30 | 98.86 52 | 98.05 75 | 94.18 115 | 95.49 145 | 98.90 53 | 99.33 17 | 97.11 68 | 98.53 59 | 98.65 42 | 98.86 64 | 98.39 37 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ACMMP |  | | 97.99 47 | 97.60 61 | 98.45 33 | 99.53 15 | 98.83 34 | 99.13 26 | 98.30 49 | 94.57 101 | 96.39 108 | 95.32 147 | 98.95 52 | 98.37 21 | 98.61 53 | 98.47 47 | 99.00 46 | 98.45 32 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MP-MVS |  | | 97.98 49 | 97.53 65 | 98.50 28 | 99.56 9 | 98.58 60 | 98.97 40 | 98.39 43 | 93.49 127 | 97.14 69 | 96.08 136 | 99.23 30 | 98.06 31 | 98.50 61 | 98.38 56 | 98.90 58 | 98.44 33 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EG-PatchMatch MVS | | | 97.98 49 | 97.92 43 | 98.04 55 | 98.84 72 | 98.04 96 | 97.90 109 | 96.83 143 | 95.07 81 | 98.79 15 | 99.07 44 | 99.37 15 | 97.88 41 | 98.74 40 | 98.16 70 | 98.01 115 | 96.96 101 |
|
ACMP | | 94.03 12 | 97.97 51 | 97.61 60 | 98.39 35 | 99.43 25 | 98.51 67 | 98.97 40 | 98.06 72 | 94.63 99 | 96.10 117 | 96.12 135 | 99.20 32 | 98.63 9 | 98.68 47 | 98.20 69 | 99.14 34 | 97.93 54 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
CS-MVS-test | | | 97.96 52 | 97.38 69 | 98.64 22 | 98.57 91 | 99.13 13 | 99.36 14 | 98.66 26 | 91.67 153 | 98.17 30 | 96.91 116 | 98.84 62 | 97.99 35 | 98.80 37 | 98.88 29 | 99.08 42 | 97.43 84 |
|
LGP-MVS_train | | | 97.96 52 | 97.53 65 | 98.45 33 | 99.45 22 | 98.64 56 | 99.09 28 | 98.27 52 | 92.99 139 | 96.04 120 | 96.57 124 | 99.29 20 | 98.66 8 | 98.73 42 | 98.42 53 | 99.19 32 | 98.09 46 |
|
LS3D | | | 97.93 54 | 97.80 50 | 98.08 49 | 99.20 37 | 98.77 42 | 98.89 48 | 97.92 84 | 96.59 31 | 96.99 78 | 96.71 120 | 97.14 137 | 96.39 96 | 99.04 27 | 98.96 23 | 99.10 41 | 97.39 86 |
|
SD-MVS | | | 97.84 55 | 97.78 53 | 97.90 63 | 98.33 102 | 98.06 93 | 97.95 105 | 97.80 94 | 96.03 46 | 96.72 88 | 97.57 99 | 99.18 33 | 97.50 54 | 97.88 78 | 97.08 102 | 99.11 39 | 98.68 19 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
RPSCF | | | 97.83 56 | 98.27 29 | 97.31 99 | 98.23 111 | 98.06 93 | 97.44 134 | 95.79 173 | 96.90 25 | 95.81 128 | 98.76 66 | 98.61 84 | 97.70 48 | 98.90 35 | 98.36 58 | 98.90 58 | 98.29 38 |
|
thisisatest0515 | | | 97.82 57 | 97.67 58 | 97.99 61 | 98.49 94 | 98.07 92 | 98.48 79 | 98.06 72 | 95.35 73 | 97.74 44 | 98.83 60 | 97.61 125 | 96.74 79 | 97.53 96 | 98.30 63 | 98.43 92 | 98.01 50 |
|
PGM-MVS | | | 97.82 57 | 97.25 75 | 98.48 31 | 99.54 11 | 98.75 49 | 99.02 32 | 98.35 47 | 92.41 143 | 96.84 86 | 95.39 146 | 98.99 46 | 98.24 23 | 98.43 63 | 98.34 59 | 98.90 58 | 98.41 34 |
|
PMVS |  | 90.51 17 | 97.77 59 | 97.98 42 | 97.53 88 | 98.68 86 | 98.14 87 | 97.67 119 | 97.03 135 | 96.43 32 | 98.38 23 | 98.72 68 | 97.03 139 | 94.44 139 | 99.37 13 | 99.30 11 | 98.98 49 | 96.86 108 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MSP-MVS | | | 97.67 60 | 97.88 46 | 97.43 94 | 99.34 29 | 98.99 24 | 98.87 51 | 98.12 68 | 95.63 59 | 94.16 177 | 97.45 102 | 99.50 9 | 96.44 95 | 96.35 133 | 98.70 38 | 97.65 131 | 98.57 25 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
tfpnnormal | | | 97.66 61 | 97.79 51 | 97.52 90 | 98.32 104 | 98.53 65 | 98.45 82 | 97.69 96 | 97.59 17 | 96.12 116 | 97.79 94 | 96.70 143 | 95.69 116 | 98.35 69 | 98.34 59 | 98.85 65 | 97.22 96 |
|
FC-MVSNet-train | | | 97.65 62 | 98.16 34 | 97.05 111 | 98.85 70 | 98.85 31 | 99.34 15 | 98.08 71 | 94.50 106 | 94.41 169 | 99.21 38 | 98.80 68 | 92.66 165 | 98.98 31 | 98.85 32 | 98.96 52 | 97.94 53 |
|
v10 | | | 97.64 63 | 97.26 74 | 98.08 49 | 98.07 124 | 98.56 63 | 98.86 52 | 98.18 63 | 94.48 107 | 98.24 28 | 99.56 16 | 98.98 47 | 97.72 47 | 96.05 143 | 96.26 130 | 97.42 140 | 96.93 102 |
|
DROMVSNet | | | 97.63 64 | 96.88 97 | 98.50 28 | 98.74 79 | 99.16 11 | 99.33 16 | 98.83 19 | 88.77 184 | 96.62 94 | 96.48 126 | 97.75 117 | 98.19 26 | 99.00 29 | 98.76 35 | 99.29 28 | 98.27 42 |
|
X-MVS | | | 97.60 65 | 97.00 92 | 98.29 38 | 99.50 18 | 98.76 45 | 98.90 47 | 98.37 45 | 94.67 98 | 96.40 104 | 91.47 199 | 98.78 70 | 97.60 53 | 98.55 56 | 98.50 46 | 98.96 52 | 98.29 38 |
|
3Dnovator+ | | 96.20 4 | 97.58 66 | 97.14 83 | 98.10 44 | 98.98 64 | 97.85 108 | 98.60 71 | 98.33 48 | 96.41 34 | 97.23 67 | 94.66 163 | 97.26 133 | 96.91 76 | 97.91 77 | 97.87 82 | 98.53 82 | 98.03 48 |
|
DCV-MVSNet | | | 97.56 67 | 97.63 59 | 97.47 92 | 98.41 99 | 99.12 14 | 98.63 69 | 98.57 27 | 95.71 58 | 95.60 142 | 93.79 178 | 98.01 112 | 94.25 142 | 99.16 24 | 98.88 29 | 99.35 22 | 98.74 15 |
|
HPM-MVS++ |  | | 97.56 67 | 97.11 87 | 98.09 45 | 99.18 39 | 97.95 103 | 98.57 72 | 98.20 59 | 94.08 118 | 97.25 66 | 95.96 140 | 98.81 67 | 97.13 67 | 97.51 97 | 97.30 99 | 98.21 103 | 98.15 45 |
|
FC-MVSNet-test | | | 97.54 69 | 98.26 30 | 96.70 128 | 98.87 68 | 97.79 116 | 98.49 78 | 98.56 28 | 96.04 42 | 90.39 205 | 99.65 9 | 98.67 77 | 95.15 126 | 99.23 20 | 99.07 15 | 98.73 70 | 97.39 86 |
|
TSAR-MVS + ACMM | | | 97.54 69 | 97.79 51 | 97.26 100 | 98.23 111 | 98.10 91 | 97.71 117 | 97.88 87 | 95.97 48 | 95.57 144 | 98.71 69 | 98.57 86 | 97.36 59 | 97.74 85 | 96.81 111 | 96.83 166 | 98.59 24 |
|
DeepC-MVS_fast | | 95.38 6 | 97.53 71 | 97.30 73 | 97.79 74 | 98.83 73 | 97.64 119 | 98.18 91 | 97.14 131 | 95.57 63 | 97.83 41 | 97.10 114 | 98.80 68 | 96.53 92 | 97.41 100 | 97.32 97 | 98.24 102 | 97.26 92 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
v1192 | | | 97.52 72 | 97.03 91 | 98.09 45 | 98.31 107 | 98.01 98 | 98.96 43 | 97.25 128 | 95.22 75 | 98.89 12 | 99.64 10 | 98.83 64 | 97.68 49 | 95.63 150 | 95.91 140 | 97.47 136 | 95.97 135 |
|
v1144 | | | 97.51 73 | 97.05 90 | 98.04 55 | 98.26 109 | 97.98 100 | 98.88 50 | 97.42 119 | 95.38 72 | 98.56 18 | 99.59 15 | 99.01 45 | 97.65 50 | 95.77 147 | 96.06 137 | 97.47 136 | 95.56 147 |
|
v8 | | | 97.51 73 | 97.16 81 | 97.91 62 | 97.99 131 | 98.48 69 | 98.76 59 | 98.17 65 | 94.54 105 | 97.69 46 | 99.48 21 | 98.76 73 | 97.63 52 | 96.10 142 | 96.14 132 | 97.20 150 | 96.64 115 |
|
v1921920 | | | 97.50 75 | 97.00 92 | 98.07 51 | 98.20 115 | 97.94 106 | 99.03 31 | 97.06 133 | 95.29 74 | 99.01 9 | 99.62 12 | 98.73 75 | 97.74 46 | 95.52 153 | 95.78 145 | 97.39 142 | 96.12 131 |
|
Anonymous20231211 | | | 97.49 76 | 97.91 44 | 97.00 115 | 98.31 107 | 98.72 53 | 98.27 88 | 97.84 91 | 94.76 94 | 94.77 162 | 98.14 87 | 98.38 96 | 93.60 152 | 98.96 32 | 98.66 41 | 99.22 31 | 97.77 63 |
|
v144192 | | | 97.49 76 | 96.99 94 | 98.07 51 | 98.11 123 | 97.95 103 | 99.02 32 | 97.21 129 | 94.90 90 | 98.88 13 | 99.53 18 | 98.89 57 | 97.75 45 | 95.59 151 | 95.90 141 | 97.43 139 | 96.16 129 |
|
test1111 | | | 97.48 78 | 97.20 78 | 97.81 73 | 98.78 77 | 98.85 31 | 98.68 66 | 98.40 39 | 96.68 28 | 94.84 160 | 99.13 42 | 90.32 190 | 97.01 73 | 99.27 18 | 99.05 18 | 99.19 32 | 97.10 98 |
|
GeoE | | | 97.48 78 | 96.84 101 | 98.22 40 | 99.01 59 | 98.39 72 | 98.85 54 | 98.76 22 | 92.37 144 | 97.53 51 | 97.58 98 | 98.23 103 | 97.11 68 | 97.57 95 | 96.98 105 | 98.10 111 | 96.78 111 |
|
APD-MVS |  | | 97.47 80 | 97.16 81 | 97.84 69 | 99.32 32 | 98.39 72 | 98.47 81 | 98.21 58 | 92.08 149 | 95.23 149 | 96.68 122 | 98.90 55 | 96.99 74 | 98.20 72 | 98.21 66 | 98.80 67 | 97.67 67 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PVSNet_Blended_VisFu | | | 97.44 81 | 97.14 83 | 97.79 74 | 99.15 43 | 98.44 70 | 98.32 86 | 97.66 98 | 93.74 126 | 97.73 45 | 98.79 62 | 96.93 142 | 95.64 121 | 97.69 87 | 96.91 108 | 98.25 101 | 97.50 80 |
|
PHI-MVS | | | 97.44 81 | 97.17 80 | 97.74 77 | 98.14 120 | 98.41 71 | 98.03 101 | 97.50 108 | 92.07 150 | 98.01 36 | 97.33 107 | 98.62 83 | 96.02 107 | 98.34 71 | 98.21 66 | 98.76 69 | 97.24 95 |
|
v1240 | | | 97.43 83 | 96.87 100 | 98.09 45 | 98.25 110 | 97.92 107 | 99.02 32 | 97.06 133 | 94.77 93 | 99.09 8 | 99.68 7 | 98.51 89 | 97.78 44 | 95.25 158 | 95.81 143 | 97.32 146 | 96.13 130 |
|
ECVR-MVS |  | | 97.40 84 | 97.11 87 | 97.73 78 | 98.66 87 | 98.83 34 | 98.50 76 | 98.40 39 | 96.04 42 | 95.00 158 | 98.95 49 | 91.07 187 | 96.70 81 | 99.28 15 | 99.04 20 | 99.14 34 | 96.58 116 |
|
FMVSNet1 | | | 97.40 84 | 98.09 37 | 96.60 133 | 97.80 149 | 98.76 45 | 98.26 89 | 98.50 31 | 96.79 26 | 93.13 193 | 99.28 35 | 98.64 80 | 92.90 163 | 97.67 89 | 97.86 83 | 99.02 43 | 97.64 69 |
|
v2v482 | | | 97.33 86 | 96.84 101 | 97.90 63 | 98.19 116 | 97.83 109 | 98.74 62 | 97.44 116 | 95.42 71 | 98.23 29 | 99.46 22 | 98.84 62 | 97.46 55 | 95.51 154 | 96.10 135 | 97.36 144 | 94.72 157 |
|
xxxxxxxxxxxxxcwj | | | 97.32 87 | 97.55 64 | 97.05 111 | 98.80 75 | 97.83 109 | 96.02 183 | 97.44 116 | 94.98 84 | 95.74 132 | 97.16 110 | 99.30 19 | 95.72 113 | 97.85 79 | 97.97 78 | 98.60 75 | 97.78 60 |
|
EPP-MVSNet | | | 97.29 88 | 96.88 97 | 97.76 76 | 98.70 82 | 99.10 17 | 98.92 45 | 98.36 46 | 95.12 80 | 93.36 191 | 97.39 104 | 91.00 188 | 97.65 50 | 98.72 44 | 98.91 26 | 99.58 8 | 97.92 55 |
|
MVS_111021_HR | | | 97.27 89 | 97.11 87 | 97.46 93 | 98.46 96 | 97.82 113 | 97.50 130 | 96.86 141 | 94.97 86 | 97.13 71 | 96.99 115 | 98.39 94 | 96.82 78 | 97.65 92 | 97.38 92 | 98.02 114 | 96.56 119 |
|
SF-MVS | | | 97.26 90 | 97.43 67 | 97.05 111 | 98.80 75 | 97.83 109 | 96.02 183 | 97.44 116 | 94.98 84 | 95.74 132 | 97.16 110 | 98.45 93 | 95.72 113 | 97.85 79 | 97.97 78 | 98.60 75 | 97.78 60 |
|
TSAR-MVS + GP. | | | 97.26 90 | 97.33 72 | 97.18 105 | 98.21 114 | 98.06 93 | 96.38 174 | 97.66 98 | 93.92 123 | 95.23 149 | 98.48 76 | 98.33 97 | 97.41 57 | 97.63 93 | 97.35 93 | 98.18 105 | 97.57 75 |
|
OMC-MVS | | | 97.23 92 | 97.21 77 | 97.25 103 | 97.85 140 | 97.52 128 | 97.92 107 | 95.77 174 | 95.83 53 | 97.09 74 | 97.86 92 | 98.52 88 | 96.62 85 | 97.51 97 | 96.65 117 | 98.26 99 | 96.57 117 |
|
3Dnovator | | 96.31 3 | 97.22 93 | 97.19 79 | 97.25 103 | 98.14 120 | 97.95 103 | 98.03 101 | 96.77 146 | 96.42 33 | 97.14 69 | 95.11 150 | 97.59 126 | 95.14 128 | 97.79 83 | 97.72 87 | 98.26 99 | 97.76 65 |
|
MVS_0304 | | | 97.18 94 | 96.84 101 | 97.58 83 | 99.15 43 | 98.19 80 | 98.11 96 | 97.81 93 | 92.36 145 | 98.06 34 | 97.43 103 | 99.06 39 | 94.24 143 | 96.80 121 | 96.54 121 | 98.12 109 | 97.52 78 |
|
canonicalmvs | | | 97.11 95 | 96.88 97 | 97.38 95 | 98.34 101 | 98.72 53 | 97.52 129 | 97.94 82 | 95.60 60 | 95.01 157 | 94.58 164 | 94.50 167 | 96.59 87 | 97.84 81 | 98.03 76 | 98.90 58 | 98.91 9 |
|
V42 | | | 97.10 96 | 96.97 95 | 97.26 100 | 97.64 155 | 97.60 121 | 98.45 82 | 95.99 163 | 94.44 108 | 97.35 61 | 99.40 27 | 98.63 82 | 97.34 61 | 96.33 136 | 96.38 127 | 96.82 168 | 96.00 133 |
|
CPTT-MVS | | | 97.08 97 | 96.25 115 | 98.05 54 | 99.21 36 | 98.30 75 | 98.54 75 | 97.98 80 | 94.28 112 | 95.89 125 | 89.57 208 | 98.54 87 | 98.18 27 | 97.82 82 | 97.32 97 | 98.54 80 | 97.91 56 |
|
DeepPCF-MVS | | 94.55 10 | 97.05 98 | 97.13 86 | 96.95 117 | 96.06 196 | 97.12 146 | 98.01 103 | 95.44 180 | 95.18 77 | 97.50 53 | 97.86 92 | 98.08 108 | 97.31 63 | 97.23 105 | 97.00 104 | 97.36 144 | 97.45 82 |
|
QAPM | | | 97.04 99 | 97.14 83 | 96.93 119 | 97.78 152 | 98.02 97 | 97.36 139 | 96.72 147 | 94.68 97 | 96.23 110 | 97.21 109 | 97.68 122 | 95.70 115 | 97.37 101 | 97.24 101 | 97.78 124 | 97.77 63 |
|
CNVR-MVS | | | 97.03 100 | 96.77 106 | 97.34 96 | 98.89 67 | 97.67 118 | 97.64 122 | 97.17 130 | 94.40 110 | 95.70 138 | 94.02 173 | 98.76 73 | 96.49 94 | 97.78 84 | 97.29 100 | 98.12 109 | 97.47 81 |
|
casdiffmvs | | | 97.00 101 | 97.36 71 | 96.59 134 | 97.65 154 | 97.98 100 | 98.06 98 | 96.81 144 | 95.78 55 | 92.77 199 | 99.40 27 | 99.26 27 | 95.65 120 | 96.70 125 | 96.39 126 | 98.59 77 | 95.99 134 |
|
v148 | | | 96.99 102 | 96.70 108 | 97.34 96 | 97.89 138 | 97.23 138 | 98.33 85 | 96.96 136 | 95.57 63 | 97.12 72 | 98.99 46 | 99.40 13 | 97.23 65 | 96.22 139 | 95.45 150 | 96.50 173 | 94.02 169 |
|
DELS-MVS | | | 96.90 103 | 97.24 76 | 96.50 139 | 97.85 140 | 98.18 81 | 97.88 112 | 95.92 166 | 93.48 128 | 95.34 147 | 98.86 59 | 98.94 54 | 94.03 146 | 97.33 103 | 97.04 103 | 98.00 116 | 96.85 109 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_LR | | | 96.86 104 | 96.72 107 | 97.03 114 | 97.80 149 | 97.06 149 | 97.04 154 | 95.51 179 | 94.55 102 | 97.47 54 | 97.35 106 | 97.68 122 | 96.66 83 | 97.11 110 | 96.73 113 | 97.69 128 | 96.57 117 |
|
PM-MVS | | | 96.85 105 | 96.62 110 | 97.11 107 | 97.13 177 | 96.51 162 | 98.29 87 | 94.65 197 | 94.84 91 | 98.12 32 | 98.59 72 | 97.20 134 | 97.41 57 | 96.24 138 | 96.41 125 | 97.09 155 | 96.56 119 |
|
pmmvs-eth3d | | | 96.84 106 | 96.22 117 | 97.56 85 | 97.63 157 | 96.38 169 | 98.74 62 | 96.91 139 | 94.63 99 | 98.26 26 | 99.43 24 | 98.28 99 | 96.58 89 | 94.52 168 | 95.54 148 | 97.24 148 | 94.75 156 |
|
CANet | | | 96.81 107 | 96.50 111 | 97.17 106 | 99.10 52 | 97.96 102 | 97.86 113 | 97.51 106 | 91.30 157 | 97.75 43 | 97.64 96 | 97.89 115 | 93.39 156 | 96.98 117 | 96.73 113 | 97.40 141 | 96.99 100 |
|
Fast-Effi-MVS+ | | | 96.80 108 | 95.92 128 | 97.84 69 | 98.57 91 | 97.46 131 | 98.06 98 | 98.24 55 | 89.64 179 | 97.57 50 | 96.45 127 | 97.35 131 | 96.73 80 | 97.22 106 | 96.64 118 | 97.86 121 | 96.65 114 |
|
MCST-MVS | | | 96.79 109 | 96.08 121 | 97.62 81 | 98.78 77 | 97.52 128 | 98.01 103 | 97.32 126 | 93.20 131 | 95.84 127 | 93.97 175 | 98.12 106 | 97.34 61 | 96.34 134 | 95.88 142 | 98.45 88 | 97.51 79 |
|
UGNet | | | 96.79 109 | 97.82 49 | 95.58 162 | 97.57 160 | 98.39 72 | 98.48 79 | 97.84 91 | 95.85 52 | 94.68 164 | 97.91 91 | 99.07 38 | 87.12 204 | 97.71 86 | 97.51 89 | 97.80 122 | 98.29 38 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TAPA-MVS | | 93.96 13 | 96.79 109 | 96.70 108 | 96.90 121 | 97.64 155 | 97.58 122 | 97.54 128 | 94.50 199 | 95.14 78 | 96.64 93 | 96.76 119 | 97.90 114 | 96.63 84 | 95.98 144 | 96.14 132 | 98.45 88 | 97.39 86 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CLD-MVS | | | 96.73 112 | 96.92 96 | 96.51 138 | 98.70 82 | 97.57 124 | 97.64 122 | 92.07 206 | 93.10 137 | 96.31 109 | 98.29 82 | 99.02 44 | 95.99 109 | 97.20 107 | 96.47 123 | 98.37 95 | 96.81 110 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
train_agg | | | 96.68 113 | 95.93 127 | 97.56 85 | 99.08 54 | 97.16 142 | 98.44 84 | 97.37 122 | 91.12 161 | 95.18 151 | 95.43 145 | 98.48 91 | 97.36 59 | 96.48 130 | 95.52 149 | 97.95 119 | 97.34 90 |
|
CDPH-MVS | | | 96.68 113 | 95.99 124 | 97.48 91 | 99.13 48 | 97.64 119 | 98.08 97 | 97.46 112 | 90.56 167 | 95.13 152 | 94.87 158 | 98.27 100 | 96.56 90 | 97.09 111 | 96.45 124 | 98.54 80 | 97.08 99 |
|
MSLP-MVS++ | | | 96.66 115 | 96.46 114 | 96.89 122 | 98.02 126 | 97.71 117 | 95.57 191 | 96.96 136 | 94.36 111 | 96.19 114 | 91.37 200 | 98.24 101 | 97.07 70 | 97.69 87 | 97.89 81 | 97.52 134 | 97.95 52 |
|
TinyColmap | | | 96.64 116 | 96.07 122 | 97.32 98 | 97.84 145 | 96.40 166 | 97.63 124 | 96.25 157 | 95.86 51 | 98.98 10 | 97.94 90 | 96.34 150 | 96.17 104 | 97.30 104 | 95.38 153 | 97.04 157 | 93.24 176 |
|
IS_MVSNet | | | 96.62 117 | 96.48 113 | 96.78 126 | 98.46 96 | 98.68 55 | 98.61 70 | 98.24 55 | 92.23 146 | 89.63 209 | 95.90 141 | 94.40 168 | 96.23 99 | 98.65 50 | 98.77 34 | 99.52 13 | 96.76 112 |
|
NCCC | | | 96.56 118 | 95.68 130 | 97.59 82 | 99.04 58 | 97.54 127 | 97.67 119 | 97.56 104 | 94.84 91 | 96.10 117 | 87.91 211 | 98.09 107 | 96.98 75 | 97.20 107 | 96.80 112 | 98.21 103 | 97.38 89 |
|
ETV-MVS | | | 96.54 119 | 95.27 138 | 98.02 58 | 99.07 56 | 97.48 130 | 98.16 94 | 98.19 61 | 87.33 199 | 97.58 49 | 92.67 187 | 95.93 156 | 96.22 100 | 98.49 62 | 98.46 48 | 98.91 57 | 96.50 122 |
|
Effi-MVS+ | | | 96.46 120 | 95.28 137 | 97.85 68 | 98.64 90 | 97.16 142 | 97.15 152 | 98.75 24 | 90.27 171 | 98.03 35 | 93.93 176 | 96.21 151 | 96.55 91 | 96.34 134 | 96.69 116 | 97.97 118 | 96.33 125 |
|
IterMVS-LS | | | 96.35 121 | 95.85 129 | 96.93 119 | 97.53 161 | 98.00 99 | 97.37 137 | 97.97 81 | 95.49 70 | 96.71 91 | 98.94 50 | 93.23 175 | 94.82 133 | 93.15 187 | 95.05 156 | 97.17 152 | 97.12 97 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
USDC | | | 96.30 122 | 95.64 132 | 97.07 109 | 97.62 158 | 96.35 171 | 97.17 150 | 95.71 175 | 95.52 68 | 99.17 7 | 98.11 88 | 97.46 128 | 95.67 117 | 95.44 156 | 93.60 176 | 97.09 155 | 92.99 180 |
|
Vis-MVSNet (Re-imp) | | | 96.29 123 | 96.50 111 | 96.05 148 | 97.96 134 | 97.83 109 | 97.30 142 | 97.86 89 | 93.14 133 | 88.90 212 | 96.80 118 | 95.28 160 | 95.15 126 | 98.37 68 | 98.25 65 | 99.12 38 | 95.84 137 |
|
MSDG | | | 96.27 124 | 96.17 120 | 96.38 144 | 97.85 140 | 96.27 172 | 96.55 171 | 94.41 200 | 94.55 102 | 95.62 141 | 97.56 100 | 97.80 116 | 96.22 100 | 97.17 109 | 96.27 129 | 97.67 130 | 93.60 173 |
|
CNLPA | | | 96.24 125 | 95.97 125 | 96.57 136 | 97.48 166 | 97.10 148 | 96.75 164 | 94.95 191 | 94.92 89 | 96.20 113 | 94.81 159 | 96.61 145 | 96.25 98 | 96.94 118 | 95.64 146 | 97.79 123 | 95.74 143 |
|
EIA-MVS | | | 96.23 126 | 94.85 150 | 97.84 69 | 99.08 54 | 98.21 78 | 97.69 118 | 98.03 77 | 85.68 209 | 98.09 33 | 91.75 197 | 97.07 138 | 95.66 119 | 97.58 94 | 97.72 87 | 98.47 86 | 95.91 136 |
|
PLC |  | 92.55 15 | 96.10 127 | 95.36 134 | 96.96 116 | 98.13 122 | 96.88 153 | 96.49 172 | 96.67 151 | 94.07 119 | 95.71 137 | 91.14 201 | 96.09 153 | 96.84 77 | 96.70 125 | 96.58 120 | 97.92 120 | 96.03 132 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test20.03 | | | 96.08 128 | 96.80 104 | 95.25 171 | 99.19 38 | 97.58 122 | 97.24 147 | 97.56 104 | 94.95 88 | 91.91 200 | 98.58 73 | 98.03 110 | 87.88 200 | 97.43 99 | 96.94 107 | 97.69 128 | 94.05 168 |
|
FA-MVS(training) | | | 96.07 129 | 95.59 133 | 96.63 131 | 98.00 130 | 97.44 132 | 97.36 139 | 98.53 29 | 92.21 147 | 95.97 122 | 96.18 133 | 94.22 171 | 92.98 160 | 96.79 122 | 96.70 115 | 96.95 162 | 95.56 147 |
|
TSAR-MVS + COLMAP | | | 96.05 130 | 95.94 126 | 96.18 147 | 97.46 167 | 96.41 165 | 97.26 146 | 95.83 170 | 94.69 96 | 95.30 148 | 98.31 81 | 96.52 146 | 94.71 135 | 95.48 155 | 94.87 158 | 96.54 172 | 95.33 151 |
|
EU-MVSNet | | | 96.03 131 | 96.23 116 | 95.80 156 | 95.48 209 | 94.18 190 | 98.99 37 | 91.51 208 | 97.22 21 | 97.66 47 | 99.15 41 | 98.51 89 | 98.08 30 | 95.92 145 | 92.88 183 | 93.09 196 | 95.72 144 |
|
PCF-MVS | | 92.69 14 | 95.98 132 | 95.05 145 | 97.06 110 | 98.43 98 | 97.56 125 | 97.76 115 | 96.65 152 | 89.95 176 | 95.70 138 | 96.18 133 | 98.48 91 | 95.74 112 | 93.64 179 | 93.35 180 | 98.09 113 | 96.18 128 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HQP-MVS | | | 95.97 133 | 95.01 147 | 97.08 108 | 98.72 80 | 97.19 140 | 97.07 153 | 96.69 150 | 91.49 155 | 95.77 131 | 92.19 193 | 97.93 113 | 96.15 105 | 94.66 165 | 94.16 167 | 98.10 111 | 97.45 82 |
|
Effi-MVS+-dtu | | | 95.94 134 | 95.08 144 | 96.94 118 | 98.54 93 | 97.38 133 | 96.66 168 | 97.89 86 | 88.68 185 | 95.92 123 | 92.90 186 | 97.28 132 | 94.18 145 | 96.68 127 | 96.13 134 | 98.45 88 | 96.51 121 |
|
diffmvs | | | 95.86 135 | 96.21 118 | 95.44 165 | 97.25 175 | 96.85 156 | 96.99 156 | 95.23 185 | 94.96 87 | 92.82 198 | 98.89 54 | 98.85 60 | 93.52 154 | 94.21 174 | 94.25 166 | 96.84 165 | 95.49 149 |
|
AdaColmap |  | | 95.85 136 | 94.65 153 | 97.26 100 | 98.70 82 | 97.20 139 | 97.33 141 | 97.30 127 | 91.28 159 | 95.90 124 | 88.16 210 | 96.17 152 | 96.60 86 | 97.34 102 | 96.82 110 | 97.71 125 | 95.60 146 |
|
FMVSNet2 | | | 95.77 137 | 96.20 119 | 95.27 169 | 96.77 185 | 98.18 81 | 97.28 143 | 97.90 85 | 93.12 134 | 91.37 202 | 98.25 84 | 96.05 154 | 90.04 185 | 94.96 163 | 95.94 139 | 98.28 96 | 96.90 103 |
|
OpenMVS |  | 94.63 9 | 95.75 138 | 95.04 146 | 96.58 135 | 97.85 140 | 97.55 126 | 96.71 166 | 96.07 160 | 90.15 174 | 96.47 99 | 90.77 206 | 95.95 155 | 94.41 140 | 97.01 116 | 96.95 106 | 98.00 116 | 96.90 103 |
|
pmmvs5 | | | 95.70 139 | 95.22 139 | 96.26 145 | 96.55 191 | 97.24 137 | 97.50 130 | 94.99 190 | 90.95 163 | 96.87 82 | 98.47 77 | 97.40 129 | 94.45 138 | 92.86 188 | 94.98 157 | 97.23 149 | 94.64 159 |
|
Anonymous20231206 | | | 95.69 140 | 95.68 130 | 95.70 158 | 98.32 104 | 96.95 151 | 97.37 137 | 96.65 152 | 93.33 129 | 93.61 185 | 98.70 70 | 98.03 110 | 91.04 174 | 95.07 161 | 94.59 165 | 97.20 150 | 93.09 179 |
|
MAR-MVS | | | 95.51 141 | 94.49 157 | 96.71 127 | 97.92 136 | 96.40 166 | 96.72 165 | 98.04 76 | 86.74 203 | 96.72 88 | 92.52 190 | 95.14 162 | 94.02 147 | 96.81 120 | 96.54 121 | 96.85 163 | 97.25 93 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DI_MVS_plusplus_trai | | | 95.48 142 | 94.51 155 | 96.61 132 | 97.13 177 | 97.30 135 | 98.05 100 | 96.79 145 | 93.75 125 | 95.08 155 | 96.38 128 | 89.76 192 | 94.95 129 | 93.97 178 | 94.82 162 | 97.64 132 | 95.63 145 |
|
MDA-MVSNet-bldmvs | | | 95.45 143 | 95.20 140 | 95.74 157 | 94.24 214 | 96.38 169 | 97.93 106 | 94.80 192 | 95.56 66 | 96.87 82 | 98.29 82 | 95.24 161 | 96.50 93 | 98.65 50 | 90.38 195 | 94.09 190 | 91.93 184 |
|
PVSNet_BlendedMVS | | | 95.44 144 | 95.09 142 | 95.86 154 | 97.31 172 | 97.13 144 | 96.31 177 | 95.01 188 | 88.55 188 | 96.23 110 | 94.55 167 | 97.75 117 | 92.56 167 | 96.42 131 | 95.44 151 | 97.71 125 | 95.81 138 |
|
PVSNet_Blended | | | 95.44 144 | 95.09 142 | 95.86 154 | 97.31 172 | 97.13 144 | 96.31 177 | 95.01 188 | 88.55 188 | 96.23 110 | 94.55 167 | 97.75 117 | 92.56 167 | 96.42 131 | 95.44 151 | 97.71 125 | 95.81 138 |
|
pmmvs4 | | | 95.37 146 | 94.25 158 | 96.67 130 | 97.01 180 | 95.28 184 | 97.60 125 | 96.07 160 | 93.11 135 | 97.29 64 | 98.09 89 | 94.23 170 | 95.21 125 | 91.56 199 | 93.91 173 | 96.82 168 | 93.59 174 |
|
MVS_Test | | | 95.34 147 | 94.88 149 | 95.89 153 | 96.93 181 | 96.84 157 | 96.66 168 | 97.08 132 | 90.06 175 | 94.02 178 | 97.61 97 | 96.64 144 | 93.59 153 | 92.73 191 | 94.02 171 | 97.03 158 | 96.24 126 |
|
GBi-Net | | | 95.21 148 | 95.35 135 | 95.04 174 | 96.77 185 | 98.18 81 | 97.28 143 | 97.58 101 | 88.43 190 | 90.28 206 | 96.01 137 | 92.43 178 | 90.04 185 | 97.67 89 | 97.86 83 | 98.28 96 | 96.90 103 |
|
test1 | | | 95.21 148 | 95.35 135 | 95.04 174 | 96.77 185 | 98.18 81 | 97.28 143 | 97.58 101 | 88.43 190 | 90.28 206 | 96.01 137 | 92.43 178 | 90.04 185 | 97.67 89 | 97.86 83 | 98.28 96 | 96.90 103 |
|
IterMVS-SCA-FT | | | 95.16 150 | 93.95 162 | 96.56 137 | 97.89 138 | 96.69 159 | 96.94 158 | 96.05 162 | 93.06 138 | 97.35 61 | 98.79 62 | 91.45 183 | 95.93 110 | 92.78 189 | 91.00 193 | 95.22 186 | 93.91 171 |
|
HyFIR lowres test | | | 95.05 151 | 93.54 167 | 96.81 125 | 97.81 148 | 96.88 153 | 98.18 91 | 97.46 112 | 94.28 112 | 94.98 159 | 96.57 124 | 92.89 177 | 96.15 105 | 90.90 204 | 91.87 189 | 96.28 178 | 91.35 185 |
|
CHOSEN 1792x2688 | | | 94.98 152 | 94.69 152 | 95.31 167 | 97.27 174 | 95.58 181 | 97.90 109 | 95.56 178 | 95.03 82 | 93.77 184 | 95.65 143 | 99.29 20 | 95.30 123 | 91.51 200 | 91.28 192 | 92.05 204 | 94.50 161 |
|
CANet_DTU | | | 94.96 153 | 94.62 154 | 95.35 166 | 98.03 125 | 96.11 174 | 96.92 160 | 95.60 177 | 88.59 187 | 97.27 65 | 95.27 148 | 96.50 147 | 88.77 196 | 95.53 152 | 95.59 147 | 95.54 184 | 94.78 155 |
|
CDS-MVSNet | | | 94.91 154 | 95.17 141 | 94.60 182 | 97.85 140 | 96.21 173 | 96.90 162 | 96.39 155 | 90.81 164 | 93.40 189 | 97.24 108 | 94.54 166 | 85.78 210 | 96.25 137 | 96.15 131 | 97.26 147 | 95.01 154 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
DPM-MVS | | | 94.86 155 | 93.90 164 | 95.99 150 | 98.19 116 | 96.52 161 | 96.29 179 | 95.95 164 | 93.11 135 | 94.61 166 | 88.17 209 | 96.44 148 | 93.77 151 | 93.33 182 | 93.54 178 | 97.11 154 | 96.22 127 |
|
MS-PatchMatch | | | 94.84 156 | 94.76 151 | 94.94 177 | 96.38 192 | 94.69 189 | 95.90 186 | 94.03 202 | 92.49 142 | 93.81 182 | 95.79 142 | 96.38 149 | 94.54 136 | 94.70 164 | 94.85 159 | 94.97 188 | 94.43 163 |
|
thisisatest0530 | | | 94.81 157 | 93.06 173 | 96.85 124 | 98.01 127 | 97.18 141 | 96.93 159 | 97.36 123 | 89.73 178 | 95.80 129 | 94.98 154 | 77.88 213 | 94.89 130 | 96.73 124 | 97.35 93 | 98.13 108 | 97.54 76 |
|
tttt0517 | | | 94.81 157 | 93.04 174 | 96.88 123 | 98.15 119 | 97.37 134 | 96.99 156 | 97.36 123 | 89.51 180 | 95.74 132 | 94.89 156 | 77.53 215 | 94.89 130 | 96.94 118 | 97.35 93 | 98.17 106 | 97.70 66 |
|
testgi | | | 94.81 157 | 96.05 123 | 93.35 193 | 99.06 57 | 96.87 155 | 97.57 127 | 96.70 149 | 95.77 56 | 88.60 214 | 93.19 184 | 98.87 59 | 81.21 218 | 97.03 115 | 96.64 118 | 96.97 161 | 93.99 170 |
|
PatchMatch-RL | | | 94.79 160 | 93.75 166 | 96.00 149 | 96.80 184 | 95.00 186 | 95.47 196 | 95.25 184 | 90.68 166 | 95.80 129 | 92.97 185 | 93.64 173 | 95.67 117 | 96.13 141 | 95.81 143 | 96.99 160 | 92.01 183 |
|
FPMVS | | | 94.70 161 | 94.99 148 | 94.37 184 | 95.84 202 | 93.20 195 | 96.00 185 | 91.93 207 | 95.03 82 | 94.64 165 | 94.68 161 | 93.29 174 | 90.95 175 | 98.07 76 | 97.34 96 | 96.85 163 | 93.29 175 |
|
new-patchmatchnet | | | 94.48 162 | 94.02 160 | 95.02 176 | 97.51 165 | 95.00 186 | 95.68 190 | 94.26 201 | 97.32 20 | 95.73 135 | 99.60 13 | 98.22 105 | 91.30 170 | 94.13 175 | 84.41 205 | 95.65 183 | 89.45 196 |
|
IterMVS | | | 94.48 162 | 93.46 169 | 95.66 159 | 97.52 162 | 96.43 163 | 97.20 148 | 94.73 195 | 92.91 141 | 96.44 100 | 98.75 67 | 91.10 185 | 94.53 137 | 92.10 195 | 90.10 197 | 93.51 193 | 92.84 182 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MDTV_nov1_ep13_2view | | | 94.39 164 | 93.34 170 | 95.63 160 | 97.23 176 | 95.33 183 | 97.76 115 | 96.84 142 | 94.55 102 | 97.47 54 | 98.96 47 | 97.70 120 | 93.88 148 | 92.27 193 | 86.81 203 | 90.56 206 | 87.73 204 |
|
Fast-Effi-MVS+-dtu | | | 94.34 165 | 93.26 172 | 95.62 161 | 97.82 146 | 95.97 177 | 95.86 187 | 99.01 13 | 86.88 201 | 93.39 190 | 90.83 204 | 95.46 159 | 90.61 179 | 94.46 170 | 94.68 163 | 97.01 159 | 94.51 160 |
|
thres600view7 | | | 94.34 165 | 92.31 182 | 96.70 128 | 98.19 116 | 98.12 88 | 97.85 114 | 97.45 114 | 91.49 155 | 93.98 180 | 84.27 214 | 82.02 204 | 94.24 143 | 97.04 112 | 98.76 35 | 98.49 84 | 94.47 162 |
|
EPNet | | | 94.33 167 | 93.52 168 | 95.27 169 | 98.81 74 | 94.71 188 | 96.77 163 | 98.20 59 | 88.12 193 | 96.53 97 | 92.53 189 | 91.19 184 | 85.25 214 | 95.22 159 | 95.26 154 | 96.09 181 | 97.63 73 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test2506 | | | 94.29 168 | 91.43 190 | 97.64 80 | 98.66 87 | 98.83 34 | 98.50 76 | 98.40 39 | 96.04 42 | 94.45 168 | 94.88 157 | 55.05 229 | 96.70 81 | 99.28 15 | 99.04 20 | 99.14 34 | 96.87 107 |
|
GA-MVS | | | 94.18 169 | 92.98 175 | 95.58 162 | 97.36 169 | 96.42 164 | 96.21 180 | 95.86 167 | 90.29 170 | 95.08 155 | 96.19 132 | 85.37 196 | 92.82 164 | 94.01 177 | 94.14 168 | 96.16 180 | 94.41 164 |
|
gg-mvs-nofinetune | | | 94.13 170 | 93.93 163 | 94.37 184 | 97.99 131 | 95.86 178 | 95.45 199 | 99.22 9 | 97.61 16 | 95.10 154 | 99.50 20 | 84.50 197 | 81.73 217 | 95.31 157 | 94.12 169 | 96.71 171 | 90.59 189 |
|
baseline | | | 94.07 171 | 94.50 156 | 93.57 191 | 96.34 193 | 93.40 194 | 95.56 194 | 92.39 205 | 92.07 150 | 94.00 179 | 98.24 85 | 97.51 127 | 89.19 191 | 91.75 197 | 92.72 184 | 93.96 192 | 95.79 140 |
|
FMVSNet3 | | | 94.06 172 | 93.85 165 | 94.31 187 | 95.46 210 | 97.80 115 | 96.34 175 | 97.58 101 | 88.43 190 | 90.28 206 | 96.01 137 | 92.43 178 | 88.67 197 | 91.82 196 | 93.96 172 | 97.53 133 | 96.50 122 |
|
thres400 | | | 94.04 173 | 91.94 185 | 96.50 139 | 97.98 133 | 97.82 113 | 97.66 121 | 96.96 136 | 90.96 162 | 94.20 174 | 83.24 215 | 82.82 202 | 93.80 149 | 96.50 129 | 98.09 72 | 98.38 94 | 94.15 166 |
|
CVMVSNet | | | 94.01 174 | 94.25 158 | 93.73 190 | 94.36 213 | 92.44 198 | 97.45 133 | 88.56 211 | 95.59 61 | 93.06 196 | 98.88 55 | 90.03 191 | 94.84 132 | 94.08 176 | 93.45 179 | 94.09 190 | 95.31 152 |
|
thres200 | | | 93.98 175 | 91.90 186 | 96.40 143 | 97.66 153 | 98.12 88 | 97.20 148 | 97.45 114 | 90.16 173 | 93.82 181 | 83.08 216 | 83.74 200 | 93.80 149 | 97.04 112 | 97.48 91 | 98.49 84 | 93.70 172 |
|
baseline1 | | | 93.89 176 | 92.82 177 | 95.14 173 | 97.62 158 | 96.97 150 | 96.12 181 | 96.36 156 | 91.30 157 | 91.53 201 | 94.68 161 | 80.72 206 | 90.80 177 | 95.71 148 | 96.29 128 | 98.44 91 | 94.09 167 |
|
tfpn200view9 | | | 93.80 177 | 91.75 187 | 96.20 146 | 97.52 162 | 98.15 86 | 97.48 132 | 97.47 111 | 87.65 195 | 93.56 187 | 83.03 217 | 84.12 198 | 92.62 166 | 97.04 112 | 98.09 72 | 98.52 83 | 94.17 165 |
|
MIMVSNet | | | 93.68 178 | 93.96 161 | 93.35 193 | 97.82 146 | 96.08 175 | 96.34 175 | 98.46 36 | 91.28 159 | 86.67 219 | 94.95 155 | 94.87 164 | 84.39 215 | 94.53 166 | 94.65 164 | 96.45 175 | 91.34 186 |
|
pmnet_mix02 | | | 93.59 179 | 92.65 178 | 94.69 180 | 96.76 188 | 94.16 191 | 97.03 155 | 93.00 204 | 95.79 54 | 96.03 121 | 98.91 52 | 97.69 121 | 92.99 159 | 90.03 207 | 84.10 207 | 92.35 202 | 87.89 203 |
|
EPNet_dtu | | | 93.45 180 | 92.51 180 | 94.55 183 | 98.39 100 | 91.67 207 | 95.46 197 | 97.50 108 | 86.56 204 | 97.38 59 | 93.52 179 | 94.20 172 | 85.82 209 | 93.31 184 | 92.53 185 | 92.72 198 | 95.76 142 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IB-MVS | | 92.44 16 | 93.33 181 | 92.15 184 | 94.70 179 | 97.42 168 | 96.39 168 | 95.57 191 | 94.67 196 | 86.40 207 | 93.59 186 | 78.28 221 | 95.76 158 | 89.59 190 | 95.88 146 | 95.98 138 | 97.39 142 | 96.34 124 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ET-MVSNet_ETH3D | | | 93.18 182 | 90.80 193 | 95.95 151 | 96.05 197 | 96.07 176 | 96.92 160 | 96.51 154 | 89.34 181 | 95.63 140 | 94.08 172 | 72.31 224 | 93.13 157 | 94.33 172 | 94.83 160 | 97.44 138 | 94.65 158 |
|
thres100view900 | | | 92.93 183 | 90.89 192 | 95.31 167 | 97.52 162 | 96.82 158 | 96.41 173 | 95.08 186 | 87.65 195 | 93.56 187 | 83.03 217 | 84.12 198 | 91.12 173 | 94.53 166 | 96.91 108 | 98.17 106 | 93.21 177 |
|
N_pmnet | | | 92.46 184 | 92.38 181 | 92.55 199 | 97.91 137 | 93.47 193 | 97.42 135 | 94.01 203 | 96.40 35 | 88.48 215 | 98.50 75 | 98.07 109 | 88.14 199 | 91.04 203 | 84.30 206 | 89.35 211 | 84.85 210 |
|
TAMVS | | | 92.46 184 | 93.34 170 | 91.44 207 | 97.03 179 | 93.84 192 | 94.68 209 | 90.60 209 | 90.44 169 | 85.31 220 | 97.14 112 | 93.03 176 | 85.78 210 | 94.34 171 | 93.67 175 | 95.22 186 | 90.93 188 |
|
CMPMVS |  | 71.81 19 | 92.34 186 | 92.85 176 | 91.75 205 | 92.70 218 | 90.43 212 | 88.84 221 | 88.56 211 | 85.87 208 | 94.35 171 | 90.98 202 | 95.89 157 | 91.14 172 | 96.14 140 | 94.83 160 | 94.93 189 | 95.78 141 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
baseline2 | | | 92.06 187 | 89.82 196 | 94.68 181 | 97.32 170 | 95.72 179 | 94.97 206 | 95.08 186 | 84.75 212 | 94.34 173 | 90.68 207 | 77.75 214 | 90.13 184 | 93.38 180 | 93.58 177 | 96.25 179 | 92.90 181 |
|
MVSTER | | | 91.97 188 | 90.31 194 | 93.91 188 | 96.81 183 | 96.91 152 | 94.22 210 | 95.64 176 | 84.98 210 | 92.98 197 | 93.42 180 | 72.56 222 | 86.64 208 | 95.11 160 | 93.89 174 | 97.16 153 | 95.31 152 |
|
CR-MVSNet | | | 91.94 189 | 88.50 199 | 95.94 152 | 96.14 195 | 92.08 202 | 95.23 202 | 98.47 34 | 84.30 214 | 96.44 100 | 94.58 164 | 75.57 216 | 92.92 161 | 90.22 205 | 92.22 186 | 96.43 176 | 90.56 190 |
|
gm-plane-assit | | | 91.85 190 | 87.91 201 | 96.44 142 | 99.14 46 | 98.25 77 | 99.02 32 | 97.38 121 | 95.57 63 | 98.31 25 | 99.34 32 | 51.00 230 | 88.93 194 | 93.16 186 | 91.57 190 | 95.85 182 | 86.50 207 |
|
PMMVS | | | 91.67 191 | 91.47 189 | 91.91 204 | 89.43 223 | 88.61 218 | 94.99 205 | 85.67 216 | 87.50 197 | 93.80 183 | 94.42 170 | 94.88 163 | 90.71 178 | 92.26 194 | 92.96 182 | 96.83 166 | 89.65 194 |
|
CHOSEN 280x420 | | | 91.55 192 | 90.27 195 | 93.05 196 | 94.61 212 | 88.01 219 | 96.56 170 | 94.62 198 | 88.04 194 | 94.20 174 | 92.66 188 | 86.60 194 | 90.82 176 | 95.06 162 | 91.89 188 | 87.49 216 | 89.61 195 |
|
PatchT | | | 91.40 193 | 88.54 198 | 94.74 178 | 91.48 222 | 92.18 201 | 97.42 135 | 97.51 106 | 84.96 211 | 96.44 100 | 94.16 171 | 75.47 217 | 92.92 161 | 90.22 205 | 92.22 186 | 92.66 201 | 90.56 190 |
|
pmmvs3 | | | 91.20 194 | 91.40 191 | 90.96 209 | 91.71 221 | 91.08 208 | 95.41 200 | 81.34 220 | 87.36 198 | 94.57 167 | 95.02 152 | 94.30 169 | 90.42 180 | 94.28 173 | 89.26 199 | 92.30 203 | 88.49 201 |
|
test0.0.03 1 | | | 91.17 195 | 91.50 188 | 90.80 210 | 98.01 127 | 95.46 182 | 94.22 210 | 95.80 171 | 86.55 205 | 81.75 222 | 90.83 204 | 87.93 193 | 78.48 219 | 94.51 169 | 94.11 170 | 96.50 173 | 91.08 187 |
|
SCA | | | 91.15 196 | 87.65 203 | 95.23 172 | 96.15 194 | 95.68 180 | 96.68 167 | 98.18 63 | 90.46 168 | 97.21 68 | 92.44 191 | 80.17 208 | 93.51 155 | 86.04 214 | 83.58 210 | 89.68 210 | 85.21 209 |
|
new_pmnet | | | 90.85 197 | 92.26 183 | 89.21 213 | 93.68 217 | 89.05 217 | 93.20 218 | 84.16 219 | 92.99 139 | 84.25 221 | 97.72 95 | 94.60 165 | 86.80 207 | 93.20 185 | 91.30 191 | 93.21 194 | 86.94 206 |
|
RPMNet | | | 90.52 198 | 86.27 212 | 95.48 164 | 95.95 200 | 92.08 202 | 95.55 195 | 98.12 68 | 84.30 214 | 95.60 142 | 87.49 212 | 72.78 221 | 91.24 171 | 87.93 209 | 89.34 198 | 96.41 177 | 89.98 193 |
|
MDTV_nov1_ep13 | | | 90.30 199 | 87.32 207 | 93.78 189 | 96.00 199 | 92.97 196 | 95.46 197 | 95.39 181 | 88.61 186 | 95.41 146 | 94.45 169 | 80.39 207 | 89.87 188 | 86.58 212 | 83.54 211 | 90.56 206 | 84.71 211 |
|
PatchmatchNet |  | | 89.98 200 | 86.23 213 | 94.36 186 | 96.56 190 | 91.90 206 | 96.07 182 | 96.72 147 | 90.18 172 | 96.87 82 | 93.36 183 | 78.06 212 | 91.46 169 | 84.71 218 | 81.40 215 | 88.45 213 | 83.97 215 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
ADS-MVSNet | | | 89.89 201 | 87.70 202 | 92.43 201 | 95.52 207 | 90.91 210 | 95.57 191 | 95.33 182 | 93.19 132 | 91.21 203 | 93.41 181 | 82.12 203 | 89.05 192 | 86.21 213 | 83.77 209 | 87.92 214 | 84.31 212 |
|
tpm | | | 89.84 202 | 86.81 209 | 93.36 192 | 96.60 189 | 91.92 205 | 95.02 204 | 97.39 120 | 86.79 202 | 96.54 96 | 95.03 151 | 69.70 225 | 87.66 201 | 88.79 208 | 86.19 204 | 86.95 218 | 89.27 197 |
|
test-LLR | | | 89.77 203 | 87.47 205 | 92.45 200 | 98.01 127 | 89.77 214 | 93.25 216 | 95.80 171 | 81.56 219 | 89.19 210 | 92.08 194 | 79.59 209 | 85.77 212 | 91.47 201 | 89.04 201 | 92.69 199 | 88.75 198 |
|
FMVSNet5 | | | 89.65 204 | 87.60 204 | 92.04 203 | 95.63 206 | 96.61 160 | 94.82 208 | 94.75 193 | 80.11 223 | 87.72 217 | 77.73 222 | 73.81 220 | 83.81 216 | 95.64 149 | 96.08 136 | 95.49 185 | 93.21 177 |
|
EPMVS | | | 89.28 205 | 86.28 211 | 92.79 198 | 96.01 198 | 92.00 204 | 95.83 188 | 95.85 169 | 90.78 165 | 91.00 204 | 94.58 164 | 74.65 218 | 88.93 194 | 85.00 216 | 82.88 213 | 89.09 212 | 84.09 214 |
|
test-mter | | | 89.16 206 | 88.14 200 | 90.37 211 | 94.79 211 | 91.05 209 | 93.60 215 | 85.26 217 | 81.65 218 | 88.32 216 | 92.22 192 | 79.35 211 | 87.03 205 | 92.28 192 | 90.12 196 | 93.19 195 | 90.29 192 |
|
CostFormer | | | 89.06 207 | 85.65 214 | 93.03 197 | 95.88 201 | 92.40 199 | 95.30 201 | 95.86 167 | 86.49 206 | 93.12 195 | 93.40 182 | 74.18 219 | 88.25 198 | 82.99 219 | 81.46 214 | 89.77 209 | 88.66 200 |
|
MVS-HIRNet | | | 88.72 208 | 86.49 210 | 91.33 208 | 91.81 220 | 85.66 220 | 87.02 223 | 96.25 157 | 81.48 221 | 94.82 161 | 96.31 131 | 92.14 181 | 90.32 182 | 87.60 210 | 83.82 208 | 87.74 215 | 78.42 219 |
|
TESTMET0.1,1 | | | 88.60 209 | 87.47 205 | 89.93 212 | 94.23 215 | 89.77 214 | 93.25 216 | 84.47 218 | 81.56 219 | 89.19 210 | 92.08 194 | 79.59 209 | 85.77 212 | 91.47 201 | 89.04 201 | 92.69 199 | 88.75 198 |
|
dps | | | 88.36 210 | 84.32 217 | 93.07 195 | 93.86 216 | 92.29 200 | 94.89 207 | 95.93 165 | 83.50 216 | 93.13 193 | 91.87 196 | 67.79 227 | 90.32 182 | 85.99 215 | 83.22 212 | 90.28 208 | 85.56 208 |
|
tpmrst | | | 87.60 211 | 84.13 218 | 91.66 206 | 95.65 205 | 89.73 216 | 93.77 213 | 94.74 194 | 88.85 183 | 93.35 192 | 95.60 144 | 72.37 223 | 87.40 202 | 81.24 220 | 78.19 217 | 85.02 221 | 82.90 218 |
|
tpm cat1 | | | 87.19 212 | 82.78 219 | 92.33 202 | 95.66 204 | 90.61 211 | 94.19 212 | 95.27 183 | 86.97 200 | 94.38 170 | 90.91 203 | 69.40 226 | 87.21 203 | 79.57 222 | 77.82 218 | 87.25 217 | 84.18 213 |
|
E-PMN | | | 86.94 213 | 85.10 215 | 89.09 215 | 95.77 203 | 83.54 223 | 89.89 220 | 86.55 213 | 92.18 148 | 87.34 218 | 94.02 173 | 83.42 201 | 89.63 189 | 93.32 183 | 77.11 219 | 85.33 219 | 72.09 220 |
|
EMVS | | | 86.63 214 | 84.48 216 | 89.15 214 | 95.51 208 | 83.66 222 | 90.19 219 | 86.14 215 | 91.78 152 | 88.68 213 | 93.83 177 | 81.97 205 | 89.05 192 | 92.76 190 | 76.09 220 | 85.31 220 | 71.28 221 |
|
PMMVS2 | | | 86.47 215 | 92.62 179 | 79.29 217 | 92.01 219 | 85.63 221 | 93.74 214 | 86.37 214 | 93.95 122 | 54.18 227 | 98.19 86 | 97.39 130 | 58.46 220 | 96.57 128 | 93.07 181 | 90.99 205 | 83.55 217 |
|
MVE |  | 72.99 18 | 85.37 216 | 89.43 197 | 80.63 216 | 74.43 224 | 71.94 225 | 88.25 222 | 89.81 210 | 93.27 130 | 67.32 225 | 96.32 130 | 91.83 182 | 90.40 181 | 93.36 181 | 90.79 194 | 73.55 224 | 88.49 201 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 61.30 217 | 70.45 220 | 50.62 218 | 22.69 226 | 30.92 227 | 68.31 226 | 25.76 222 | 80.56 222 | 68.71 223 | 82.80 219 | 91.08 186 | 44.64 221 | 80.50 221 | 56.70 221 | 73.64 223 | 70.58 222 |
|
GG-mvs-BLEND | | | 61.03 218 | 87.02 208 | 30.71 220 | 0.74 229 | 90.01 213 | 78.90 225 | 0.74 226 | 84.56 213 | 9.46 228 | 79.17 220 | 90.69 189 | 1.37 225 | 91.74 198 | 89.13 200 | 93.04 197 | 83.83 216 |
|
testmvs | | | 4.99 219 | 6.88 221 | 2.78 222 | 1.73 227 | 2.04 229 | 3.10 229 | 1.71 224 | 7.27 225 | 3.92 230 | 12.18 224 | 6.71 231 | 3.31 224 | 6.94 223 | 5.51 223 | 2.94 226 | 7.51 223 |
|
test123 | | | 4.41 220 | 5.71 222 | 2.88 221 | 1.28 228 | 2.21 228 | 3.09 230 | 1.65 225 | 6.35 226 | 4.98 229 | 8.53 225 | 3.88 232 | 3.46 223 | 5.79 224 | 5.71 222 | 2.85 227 | 7.50 224 |
|
uanet_test | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
RE-MVS-def | | | | | | | | | | | 99.38 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 96.98 141 | | | | | |
|
SR-MVS | | | | | | 99.33 31 | | | 98.40 39 | | | | 98.90 55 | | | | | |
|
Anonymous202405211 | | | | 97.39 68 | | 98.85 70 | 98.59 58 | 97.89 111 | 97.93 83 | 94.41 109 | | 97.37 105 | 96.99 140 | 93.09 158 | 98.61 53 | 98.46 48 | 99.11 39 | 97.27 91 |
|
our_test_3 | | | | | | 97.32 170 | 95.13 185 | 97.59 126 | | | | | | | | | | |
|
ambc | | | | 96.78 105 | | 99.01 59 | 97.11 147 | 95.73 189 | | 95.91 50 | 99.25 3 | 98.56 74 | 97.17 135 | 97.04 71 | 96.76 123 | 95.22 155 | 96.72 170 | 96.73 113 |
|
MTAPA | | | | | | | | | | | 97.43 57 | | 99.27 24 | | | | | |
|
MTMP | | | | | | | | | | | 97.63 48 | | 99.03 43 | | | | | |
|
Patchmatch-RL test | | | | | | | | 17.42 228 | | | | | | | | | | |
|
tmp_tt | | | | | 45.72 219 | 60.00 225 | 38.74 226 | 45.50 227 | 12.18 223 | 79.58 224 | 68.42 224 | 67.62 223 | 65.04 228 | 22.12 222 | 84.83 217 | 78.72 216 | 66.08 225 | |
|
XVS | | | | | | 99.48 19 | 98.76 45 | 99.22 22 | | | 96.40 104 | | 98.78 70 | | | | 98.94 55 | |
|
X-MVStestdata | | | | | | 99.48 19 | 98.76 45 | 99.22 22 | | | 96.40 104 | | 98.78 70 | | | | 98.94 55 | |
|
abl_6 | | | | | 96.45 141 | 97.79 151 | 97.28 136 | 97.16 151 | 96.16 159 | 89.92 177 | 95.72 136 | 91.59 198 | 97.16 136 | 94.37 141 | | | 97.51 135 | 95.49 149 |
|
mPP-MVS | | | | | | 99.58 6 | | | | | | | 98.98 47 | | | | | |
|
NP-MVS | | | | | | | | | | 89.27 182 | | | | | | | | |
|
Patchmtry | | | | | | | 92.70 197 | 95.23 202 | 98.47 34 | | 96.44 100 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 72.99 224 | 80.14 224 | 37.34 221 | 83.46 217 | 60.13 226 | 84.40 213 | 85.48 195 | 86.93 206 | 87.22 211 | | 79.61 222 | 87.32 205 |
|