LTVRE_ROB | | 97.71 1 | 99.33 1 | 99.47 1 | 99.16 7 | 99.16 41 | 99.11 14 | 99.39 12 | 99.16 11 | 99.26 2 | 99.22 5 | 99.51 18 | 99.75 4 | 98.54 15 | 99.71 1 | 99.47 3 | 99.52 12 | 99.46 1 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
SixPastTwentyTwo | | | 99.25 2 | 99.20 3 | 99.32 1 | 99.53 14 | 99.32 8 | 99.64 2 | 99.19 10 | 98.05 10 | 99.19 6 | 99.74 4 | 98.96 49 | 99.03 2 | 99.69 2 | 99.58 1 | 99.32 25 | 99.06 6 |
|
WR-MVS | | | 99.22 3 | 99.15 5 | 99.30 2 | 99.54 10 | 99.62 1 | 99.63 4 | 99.45 1 | 97.75 14 | 98.47 22 | 99.71 5 | 99.05 39 | 98.88 4 | 99.54 5 | 99.49 2 | 99.81 1 | 98.87 9 |
|
PS-CasMVS | | | 99.08 4 | 98.90 11 | 99.28 3 | 99.65 3 | 99.56 4 | 99.59 6 | 99.39 3 | 96.36 35 | 98.83 14 | 99.46 21 | 99.09 32 | 98.62 10 | 99.51 7 | 99.36 8 | 99.63 3 | 98.97 7 |
|
PEN-MVS | | | 99.08 4 | 98.95 8 | 99.23 5 | 99.65 3 | 99.59 2 | 99.64 2 | 99.34 6 | 96.68 27 | 98.65 17 | 99.43 23 | 99.33 16 | 98.47 17 | 99.50 8 | 99.32 9 | 99.60 5 | 98.79 11 |
|
v7n | | | 99.03 6 | 99.03 7 | 99.02 9 | 99.09 52 | 99.11 14 | 99.57 9 | 98.82 19 | 98.21 9 | 99.25 3 | 99.84 2 | 99.59 6 | 98.76 6 | 99.23 19 | 98.83 32 | 98.63 71 | 98.40 33 |
|
DTE-MVSNet | | | 99.03 6 | 98.88 12 | 99.21 6 | 99.66 2 | 99.59 2 | 99.62 5 | 99.34 6 | 96.92 23 | 98.52 19 | 99.36 29 | 98.98 45 | 98.57 13 | 99.49 9 | 99.23 12 | 99.56 9 | 98.55 25 |
|
TDRefinement | | | 99.00 8 | 99.13 6 | 98.86 10 | 98.99 62 | 99.05 19 | 99.58 7 | 98.29 49 | 98.96 4 | 97.96 37 | 99.40 26 | 98.67 75 | 98.87 5 | 99.60 3 | 99.46 4 | 99.46 18 | 98.74 14 |
|
WR-MVS_H | | | 98.97 9 | 98.82 14 | 99.14 8 | 99.56 8 | 99.56 4 | 99.54 11 | 99.42 2 | 96.07 40 | 98.37 24 | 99.34 31 | 99.09 32 | 98.43 18 | 99.45 10 | 99.41 5 | 99.53 10 | 98.86 10 |
|
UniMVSNet_ETH3D | | | 98.93 10 | 99.20 3 | 98.63 22 | 99.54 10 | 99.33 7 | 98.73 63 | 99.37 4 | 98.87 5 | 97.86 39 | 99.27 35 | 99.78 2 | 96.59 85 | 99.52 6 | 99.40 6 | 99.67 2 | 98.21 41 |
|
CP-MVSNet | | | 98.91 11 | 98.61 19 | 99.25 4 | 99.63 5 | 99.50 6 | 99.55 10 | 99.36 5 | 95.53 66 | 98.77 16 | 99.11 42 | 98.64 78 | 98.57 13 | 99.42 11 | 99.28 11 | 99.61 4 | 98.78 12 |
|
anonymousdsp | | | 98.85 12 | 98.88 12 | 98.83 11 | 98.69 82 | 98.20 78 | 99.68 1 | 97.35 122 | 97.09 22 | 98.98 10 | 99.86 1 | 99.43 10 | 98.94 3 | 99.28 14 | 99.19 13 | 99.33 23 | 99.08 5 |
|
pmmvs6 | | | 98.77 13 | 99.35 2 | 98.09 43 | 98.32 101 | 98.92 25 | 98.57 70 | 99.03 12 | 99.36 1 | 96.86 83 | 99.77 3 | 99.86 1 | 96.20 100 | 99.56 4 | 99.39 7 | 99.59 6 | 98.61 22 |
|
ACMH | | 95.26 7 | 98.75 14 | 98.93 9 | 98.54 25 | 98.86 67 | 99.01 21 | 99.58 7 | 98.10 68 | 98.67 6 | 97.30 61 | 99.18 39 | 99.42 11 | 98.40 19 | 99.19 21 | 98.86 30 | 98.99 48 | 98.19 42 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
COLMAP_ROB |  | 96.84 2 | 98.75 14 | 98.82 14 | 98.66 20 | 99.14 45 | 98.79 39 | 99.30 17 | 97.67 95 | 98.33 8 | 97.82 41 | 99.20 38 | 99.18 30 | 98.76 6 | 99.27 17 | 98.96 22 | 99.29 27 | 98.03 46 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
UA-Net | | | 98.66 16 | 98.60 22 | 98.73 15 | 99.83 1 | 99.28 9 | 98.56 72 | 99.24 8 | 96.04 41 | 97.12 70 | 98.44 78 | 98.95 50 | 98.17 28 | 99.15 24 | 99.00 21 | 99.48 17 | 99.33 3 |
|
DeepC-MVS | | 96.08 5 | 98.58 17 | 98.49 24 | 98.68 18 | 99.37 26 | 98.52 64 | 99.01 35 | 98.17 63 | 97.17 21 | 98.25 27 | 99.56 15 | 99.62 5 | 98.29 22 | 98.40 62 | 98.09 70 | 98.97 50 | 98.08 45 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TranMVSNet+NR-MVSNet | | | 98.45 18 | 98.22 31 | 98.72 17 | 99.32 31 | 99.06 17 | 98.99 36 | 98.89 14 | 95.52 67 | 97.53 50 | 99.42 25 | 98.83 62 | 98.01 34 | 98.55 54 | 98.34 57 | 99.57 8 | 97.80 57 |
|
CSCG | | | 98.45 18 | 98.61 19 | 98.26 37 | 99.11 49 | 99.06 17 | 98.17 92 | 97.49 108 | 97.93 12 | 97.37 58 | 98.88 55 | 99.29 18 | 98.10 29 | 98.40 62 | 97.51 88 | 99.32 25 | 99.16 4 |
|
DVP-MVS++ | | | 98.44 20 | 98.92 10 | 97.88 63 | 99.17 39 | 99.00 22 | 98.89 46 | 98.26 51 | 97.54 17 | 96.05 117 | 99.35 30 | 99.76 3 | 96.34 95 | 98.79 37 | 98.65 41 | 98.56 77 | 99.35 2 |
|
Gipuma |  | | 98.43 21 | 98.15 34 | 98.76 14 | 99.00 61 | 98.29 75 | 97.91 107 | 98.06 70 | 99.02 3 | 99.50 1 | 96.33 128 | 98.67 75 | 99.22 1 | 99.02 27 | 98.02 75 | 98.88 62 | 97.66 65 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ACMH+ | | 94.90 8 | 98.40 22 | 98.71 17 | 98.04 53 | 98.93 64 | 98.84 32 | 99.30 17 | 97.86 87 | 97.78 13 | 94.19 174 | 98.77 65 | 99.39 13 | 98.61 11 | 99.33 13 | 99.07 14 | 99.33 23 | 97.81 56 |
|
ACMMPR | | | 98.31 23 | 98.07 38 | 98.60 23 | 99.58 6 | 98.83 33 | 99.09 27 | 98.48 31 | 96.25 37 | 97.03 74 | 96.81 116 | 99.09 32 | 98.39 20 | 98.55 54 | 98.45 49 | 99.01 45 | 98.53 28 |
|
APDe-MVS | | | 98.29 24 | 98.42 26 | 98.14 40 | 99.45 21 | 98.90 26 | 99.18 23 | 98.30 47 | 95.96 47 | 95.13 148 | 98.79 62 | 99.25 25 | 97.92 38 | 98.80 35 | 98.71 36 | 98.85 64 | 98.54 26 |
|
DVP-MVS |  | | 98.27 25 | 98.61 19 | 97.87 64 | 99.17 39 | 99.03 20 | 99.07 29 | 98.17 63 | 96.75 26 | 94.35 169 | 98.92 51 | 99.58 7 | 97.86 41 | 98.67 46 | 98.70 37 | 98.63 71 | 98.63 20 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
TransMVSNet (Re) | | | 98.23 26 | 98.72 16 | 97.66 77 | 98.22 110 | 98.73 50 | 98.66 66 | 98.03 75 | 98.60 7 | 96.40 102 | 99.60 12 | 98.24 99 | 95.26 122 | 99.19 21 | 99.05 17 | 99.36 20 | 97.64 66 |
|
DU-MVS | | | 98.23 26 | 97.74 54 | 98.81 12 | 99.23 33 | 98.77 41 | 98.76 57 | 98.88 15 | 94.10 114 | 98.50 20 | 98.87 57 | 98.32 96 | 97.99 35 | 98.40 62 | 98.08 73 | 99.49 16 | 97.64 66 |
|
UniMVSNet (Re) | | | 98.23 26 | 97.85 47 | 98.67 19 | 99.15 42 | 98.87 28 | 98.74 60 | 98.84 17 | 94.27 112 | 97.94 38 | 99.01 45 | 98.39 92 | 97.82 42 | 98.35 67 | 98.29 62 | 99.51 15 | 97.78 58 |
|
MIMVSNet1 | | | 98.22 29 | 98.51 23 | 97.87 64 | 99.40 25 | 98.82 37 | 99.31 16 | 98.53 28 | 97.39 18 | 96.59 93 | 99.31 33 | 99.23 27 | 94.76 132 | 98.93 32 | 98.67 39 | 98.63 71 | 97.25 90 |
|
HFP-MVS | | | 98.17 30 | 98.02 39 | 98.35 35 | 99.36 27 | 98.62 56 | 98.79 56 | 98.46 34 | 96.24 38 | 96.53 95 | 97.13 112 | 98.98 45 | 98.02 33 | 98.20 70 | 98.42 51 | 98.95 54 | 98.54 26 |
|
Baseline_NR-MVSNet | | | 98.17 30 | 97.90 44 | 98.48 29 | 99.23 33 | 98.59 57 | 98.83 53 | 98.73 24 | 93.97 119 | 96.95 77 | 99.66 7 | 98.23 101 | 97.90 39 | 98.40 62 | 99.06 16 | 99.25 29 | 97.42 82 |
|
TSAR-MVS + MP. | | | 98.15 32 | 98.23 30 | 98.06 51 | 98.47 92 | 98.16 84 | 99.23 20 | 96.87 138 | 95.58 61 | 96.72 86 | 98.41 79 | 99.06 36 | 98.05 32 | 98.99 29 | 98.90 26 | 99.00 46 | 98.51 29 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
pm-mvs1 | | | 98.14 33 | 98.66 18 | 97.53 86 | 97.93 132 | 98.49 66 | 98.14 94 | 98.19 59 | 97.95 11 | 96.17 113 | 99.63 10 | 98.85 58 | 95.41 120 | 98.91 33 | 98.89 27 | 99.34 22 | 97.86 55 |
|
SMA-MVS |  | | 98.13 34 | 98.22 31 | 98.02 56 | 99.44 23 | 98.73 50 | 98.24 89 | 97.87 86 | 95.22 74 | 96.76 85 | 98.66 71 | 99.35 15 | 97.03 70 | 98.53 57 | 98.39 53 | 98.80 66 | 98.69 16 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMMP_NAP | | | 98.12 35 | 98.08 37 | 98.18 39 | 99.34 28 | 98.74 49 | 98.97 38 | 98.00 77 | 95.13 78 | 96.90 78 | 97.54 101 | 99.27 22 | 97.18 64 | 98.72 42 | 98.45 49 | 98.68 70 | 98.69 16 |
|
UniMVSNet_NR-MVSNet | | | 98.12 35 | 97.56 62 | 98.78 13 | 99.13 47 | 98.89 27 | 98.76 57 | 98.78 20 | 93.81 122 | 98.50 20 | 98.81 61 | 97.64 122 | 97.99 35 | 98.18 73 | 97.92 77 | 99.53 10 | 97.64 66 |
|
ACMM | | 94.29 11 | 98.12 35 | 97.71 55 | 98.59 24 | 99.51 16 | 98.58 59 | 99.24 19 | 98.25 52 | 96.22 39 | 96.90 78 | 95.01 152 | 98.89 55 | 98.52 16 | 98.66 47 | 98.32 60 | 99.13 36 | 98.28 39 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
SteuartSystems-ACMMP | | | 98.06 38 | 97.78 52 | 98.39 33 | 99.54 10 | 98.79 39 | 98.94 42 | 98.42 36 | 93.98 118 | 95.85 124 | 96.66 122 | 99.25 25 | 98.61 11 | 98.71 44 | 98.38 54 | 98.97 50 | 98.67 19 |
Skip Steuart: Steuart Systems R&D Blog. |
SED-MVS | | | 98.05 39 | 98.46 25 | 97.57 82 | 99.01 58 | 98.99 23 | 98.82 55 | 98.24 53 | 95.76 56 | 94.70 159 | 98.96 47 | 99.49 9 | 96.19 101 | 98.74 38 | 98.65 41 | 98.46 85 | 98.63 20 |
|
OPM-MVS | | | 98.01 40 | 98.01 40 | 98.00 58 | 99.11 49 | 98.12 87 | 98.68 64 | 97.72 93 | 96.65 29 | 96.68 90 | 98.40 80 | 99.28 21 | 97.44 55 | 98.20 70 | 97.82 83 | 98.40 91 | 97.58 71 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
Vis-MVSNet |  | | 98.01 40 | 98.42 26 | 97.54 85 | 96.89 181 | 98.82 37 | 99.14 24 | 97.59 98 | 96.30 36 | 97.04 73 | 99.26 36 | 98.83 62 | 96.01 106 | 98.73 40 | 98.21 64 | 98.58 76 | 98.75 13 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CS-MVS | | | 98.00 42 | 97.38 67 | 98.73 15 | 98.72 77 | 99.15 11 | 99.12 26 | 98.76 21 | 91.58 152 | 98.15 31 | 96.70 120 | 98.72 74 | 98.20 24 | 98.64 50 | 98.92 24 | 99.43 19 | 97.97 49 |
|
NR-MVSNet | | | 98.00 42 | 97.88 45 | 98.13 41 | 98.33 99 | 98.77 41 | 98.83 53 | 98.88 15 | 94.10 114 | 97.46 55 | 98.87 57 | 98.58 83 | 95.78 109 | 99.13 25 | 98.16 68 | 99.52 12 | 97.53 74 |
|
CP-MVS | | | 98.00 42 | 97.57 61 | 98.50 26 | 99.47 20 | 98.56 61 | 98.91 44 | 98.38 42 | 94.71 93 | 97.01 75 | 95.20 148 | 99.06 36 | 98.20 24 | 98.61 51 | 98.46 46 | 99.02 43 | 98.40 33 |
|
DPE-MVS |  | | 97.99 45 | 98.12 35 | 97.84 67 | 98.65 86 | 98.86 29 | 98.86 50 | 98.05 73 | 94.18 113 | 95.49 141 | 98.90 53 | 99.33 16 | 97.11 66 | 98.53 57 | 98.65 41 | 98.86 63 | 98.39 35 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ACMMP |  | | 97.99 45 | 97.60 60 | 98.45 31 | 99.53 14 | 98.83 33 | 99.13 25 | 98.30 47 | 94.57 99 | 96.39 106 | 95.32 146 | 98.95 50 | 98.37 21 | 98.61 51 | 98.47 45 | 99.00 46 | 98.45 30 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MP-MVS |  | | 97.98 47 | 97.53 63 | 98.50 26 | 99.56 8 | 98.58 59 | 98.97 38 | 98.39 41 | 93.49 125 | 97.14 67 | 96.08 135 | 99.23 27 | 98.06 31 | 98.50 59 | 98.38 54 | 98.90 58 | 98.44 31 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EG-PatchMatch MVS | | | 97.98 47 | 97.92 42 | 98.04 53 | 98.84 70 | 98.04 95 | 97.90 108 | 96.83 141 | 95.07 80 | 98.79 15 | 99.07 43 | 99.37 14 | 97.88 40 | 98.74 38 | 98.16 68 | 98.01 113 | 96.96 98 |
|
ACMP | | 94.03 12 | 97.97 49 | 97.61 59 | 98.39 33 | 99.43 24 | 98.51 65 | 98.97 38 | 98.06 70 | 94.63 97 | 96.10 115 | 96.12 134 | 99.20 29 | 98.63 9 | 98.68 45 | 98.20 67 | 99.14 33 | 97.93 52 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
CS-MVS-test | | | 97.96 50 | 97.38 67 | 98.64 21 | 98.57 88 | 99.13 12 | 99.36 13 | 98.66 25 | 91.67 151 | 98.17 30 | 96.91 115 | 98.84 60 | 97.99 35 | 98.80 35 | 98.88 28 | 99.08 41 | 97.43 81 |
|
LGP-MVS_train | | | 97.96 50 | 97.53 63 | 98.45 31 | 99.45 21 | 98.64 55 | 99.09 27 | 98.27 50 | 92.99 137 | 96.04 118 | 96.57 123 | 99.29 18 | 98.66 8 | 98.73 40 | 98.42 51 | 99.19 31 | 98.09 44 |
|
LS3D | | | 97.93 52 | 97.80 49 | 98.08 47 | 99.20 36 | 98.77 41 | 98.89 46 | 97.92 82 | 96.59 30 | 96.99 76 | 96.71 119 | 97.14 134 | 96.39 94 | 99.04 26 | 98.96 22 | 99.10 40 | 97.39 83 |
|
SD-MVS | | | 97.84 53 | 97.78 52 | 97.90 61 | 98.33 99 | 98.06 92 | 97.95 104 | 97.80 92 | 96.03 45 | 96.72 86 | 97.57 99 | 99.18 30 | 97.50 53 | 97.88 76 | 97.08 101 | 99.11 38 | 98.68 18 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
RPSCF | | | 97.83 54 | 98.27 28 | 97.31 97 | 98.23 108 | 98.06 92 | 97.44 133 | 95.79 171 | 96.90 24 | 95.81 126 | 98.76 66 | 98.61 82 | 97.70 47 | 98.90 34 | 98.36 56 | 98.90 58 | 98.29 36 |
|
thisisatest0515 | | | 97.82 55 | 97.67 56 | 97.99 59 | 98.49 91 | 98.07 91 | 98.48 77 | 98.06 70 | 95.35 72 | 97.74 43 | 98.83 60 | 97.61 123 | 96.74 77 | 97.53 94 | 98.30 61 | 98.43 90 | 98.01 48 |
|
PGM-MVS | | | 97.82 55 | 97.25 73 | 98.48 29 | 99.54 10 | 98.75 48 | 99.02 31 | 98.35 45 | 92.41 141 | 96.84 84 | 95.39 145 | 98.99 44 | 98.24 23 | 98.43 61 | 98.34 57 | 98.90 58 | 98.41 32 |
|
PMVS |  | 90.51 17 | 97.77 57 | 97.98 41 | 97.53 86 | 98.68 83 | 98.14 86 | 97.67 118 | 97.03 133 | 96.43 31 | 98.38 23 | 98.72 68 | 97.03 136 | 94.44 137 | 99.37 12 | 99.30 10 | 98.98 49 | 96.86 105 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MSP-MVS | | | 97.67 58 | 97.88 45 | 97.43 92 | 99.34 28 | 98.99 23 | 98.87 49 | 98.12 66 | 95.63 58 | 94.16 175 | 97.45 102 | 99.50 8 | 96.44 93 | 96.35 132 | 98.70 37 | 97.65 129 | 98.57 24 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
tfpnnormal | | | 97.66 59 | 97.79 50 | 97.52 88 | 98.32 101 | 98.53 63 | 98.45 80 | 97.69 94 | 97.59 16 | 96.12 114 | 97.79 94 | 96.70 141 | 95.69 113 | 98.35 67 | 98.34 57 | 98.85 64 | 97.22 93 |
|
FC-MVSNet-train | | | 97.65 60 | 98.16 33 | 97.05 109 | 98.85 68 | 98.85 30 | 99.34 14 | 98.08 69 | 94.50 104 | 94.41 166 | 99.21 37 | 98.80 66 | 92.66 163 | 98.98 30 | 98.85 31 | 98.96 52 | 97.94 51 |
|
v10 | | | 97.64 61 | 97.26 72 | 98.08 47 | 98.07 121 | 98.56 61 | 98.86 50 | 98.18 61 | 94.48 105 | 98.24 28 | 99.56 15 | 98.98 45 | 97.72 46 | 96.05 142 | 96.26 129 | 97.42 138 | 96.93 99 |
|
EC-MVSNet | | | 97.63 62 | 96.88 95 | 98.50 26 | 98.74 76 | 99.16 10 | 99.33 15 | 98.83 18 | 88.77 181 | 96.62 92 | 96.48 125 | 97.75 115 | 98.19 26 | 99.00 28 | 98.76 34 | 99.29 27 | 98.27 40 |
|
X-MVS | | | 97.60 63 | 97.00 90 | 98.29 36 | 99.50 17 | 98.76 44 | 98.90 45 | 98.37 43 | 94.67 96 | 96.40 102 | 91.47 197 | 98.78 68 | 97.60 52 | 98.55 54 | 98.50 44 | 98.96 52 | 98.29 36 |
|
3Dnovator+ | | 96.20 4 | 97.58 64 | 97.14 81 | 98.10 42 | 98.98 63 | 97.85 107 | 98.60 69 | 98.33 46 | 96.41 33 | 97.23 65 | 94.66 161 | 97.26 131 | 96.91 74 | 97.91 75 | 97.87 79 | 98.53 80 | 98.03 46 |
|
DCV-MVSNet | | | 97.56 65 | 97.63 58 | 97.47 90 | 98.41 96 | 99.12 13 | 98.63 67 | 98.57 26 | 95.71 57 | 95.60 138 | 93.79 176 | 98.01 110 | 94.25 139 | 99.16 23 | 98.88 28 | 99.35 21 | 98.74 14 |
|
HPM-MVS++ |  | | 97.56 65 | 97.11 85 | 98.09 43 | 99.18 38 | 97.95 102 | 98.57 70 | 98.20 57 | 94.08 116 | 97.25 64 | 95.96 139 | 98.81 65 | 97.13 65 | 97.51 95 | 97.30 98 | 98.21 101 | 98.15 43 |
|
FC-MVSNet-test | | | 97.54 67 | 98.26 29 | 96.70 126 | 98.87 66 | 97.79 114 | 98.49 76 | 98.56 27 | 96.04 41 | 90.39 204 | 99.65 8 | 98.67 75 | 95.15 124 | 99.23 19 | 99.07 14 | 98.73 69 | 97.39 83 |
|
TSAR-MVS + ACMM | | | 97.54 67 | 97.79 50 | 97.26 98 | 98.23 108 | 98.10 90 | 97.71 116 | 97.88 85 | 95.97 46 | 95.57 140 | 98.71 69 | 98.57 84 | 97.36 58 | 97.74 83 | 96.81 110 | 96.83 164 | 98.59 23 |
|
DeepC-MVS_fast | | 95.38 6 | 97.53 69 | 97.30 71 | 97.79 72 | 98.83 71 | 97.64 117 | 98.18 90 | 97.14 129 | 95.57 62 | 97.83 40 | 97.10 113 | 98.80 66 | 96.53 90 | 97.41 98 | 97.32 96 | 98.24 100 | 97.26 89 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
v1192 | | | 97.52 70 | 97.03 89 | 98.09 43 | 98.31 104 | 98.01 97 | 98.96 41 | 97.25 125 | 95.22 74 | 98.89 12 | 99.64 9 | 98.83 62 | 97.68 48 | 95.63 149 | 95.91 139 | 97.47 134 | 95.97 135 |
|
v1144 | | | 97.51 71 | 97.05 88 | 98.04 53 | 98.26 106 | 97.98 99 | 98.88 48 | 97.42 116 | 95.38 71 | 98.56 18 | 99.59 14 | 99.01 43 | 97.65 49 | 95.77 146 | 96.06 136 | 97.47 134 | 95.56 147 |
|
v8 | | | 97.51 71 | 97.16 79 | 97.91 60 | 97.99 128 | 98.48 67 | 98.76 57 | 98.17 63 | 94.54 103 | 97.69 45 | 99.48 20 | 98.76 71 | 97.63 51 | 96.10 141 | 96.14 131 | 97.20 148 | 96.64 113 |
|
v1921920 | | | 97.50 73 | 97.00 90 | 98.07 49 | 98.20 112 | 97.94 105 | 99.03 30 | 97.06 131 | 95.29 73 | 99.01 9 | 99.62 11 | 98.73 73 | 97.74 45 | 95.52 152 | 95.78 144 | 97.39 140 | 96.12 131 |
|
Anonymous20231211 | | | 97.49 74 | 97.91 43 | 97.00 112 | 98.31 104 | 98.72 52 | 98.27 87 | 97.84 89 | 94.76 92 | 94.77 158 | 98.14 87 | 98.38 94 | 93.60 149 | 98.96 31 | 98.66 40 | 99.22 30 | 97.77 60 |
|
v144192 | | | 97.49 74 | 96.99 92 | 98.07 49 | 98.11 120 | 97.95 102 | 99.02 31 | 97.21 126 | 94.90 88 | 98.88 13 | 99.53 17 | 98.89 55 | 97.75 44 | 95.59 150 | 95.90 140 | 97.43 137 | 96.16 129 |
|
test1111 | | | 97.48 76 | 97.20 76 | 97.81 71 | 98.78 74 | 98.85 30 | 98.68 64 | 98.40 37 | 96.68 27 | 94.84 156 | 99.13 41 | 90.32 189 | 97.01 71 | 99.27 17 | 99.05 17 | 99.19 31 | 97.10 95 |
|
GeoE | | | 97.48 76 | 96.84 99 | 98.22 38 | 99.01 58 | 98.39 70 | 98.85 52 | 98.76 21 | 92.37 142 | 97.53 50 | 97.58 98 | 98.23 101 | 97.11 66 | 97.57 93 | 96.98 104 | 98.10 109 | 96.78 108 |
|
APD-MVS |  | | 97.47 78 | 97.16 79 | 97.84 67 | 99.32 31 | 98.39 70 | 98.47 79 | 98.21 56 | 92.08 147 | 95.23 145 | 96.68 121 | 98.90 53 | 96.99 72 | 98.20 70 | 98.21 64 | 98.80 66 | 97.67 64 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PVSNet_Blended_VisFu | | | 97.44 79 | 97.14 81 | 97.79 72 | 99.15 42 | 98.44 68 | 98.32 85 | 97.66 96 | 93.74 124 | 97.73 44 | 98.79 62 | 96.93 139 | 95.64 118 | 97.69 85 | 96.91 107 | 98.25 99 | 97.50 77 |
|
PHI-MVS | | | 97.44 79 | 97.17 78 | 97.74 75 | 98.14 117 | 98.41 69 | 98.03 100 | 97.50 106 | 92.07 148 | 98.01 36 | 97.33 107 | 98.62 81 | 96.02 105 | 98.34 69 | 98.21 64 | 98.76 68 | 97.24 92 |
|
v1240 | | | 97.43 81 | 96.87 98 | 98.09 43 | 98.25 107 | 97.92 106 | 99.02 31 | 97.06 131 | 94.77 91 | 99.09 8 | 99.68 6 | 98.51 87 | 97.78 43 | 95.25 157 | 95.81 142 | 97.32 144 | 96.13 130 |
|
ECVR-MVS |  | | 97.40 82 | 97.11 85 | 97.73 76 | 98.66 84 | 98.83 33 | 98.50 74 | 98.40 37 | 96.04 41 | 95.00 154 | 98.95 49 | 91.07 186 | 96.70 79 | 99.28 14 | 99.04 19 | 99.14 33 | 96.58 115 |
|
FMVSNet1 | | | 97.40 82 | 98.09 36 | 96.60 131 | 97.80 146 | 98.76 44 | 98.26 88 | 98.50 30 | 96.79 25 | 93.13 192 | 99.28 34 | 98.64 78 | 92.90 160 | 97.67 87 | 97.86 80 | 99.02 43 | 97.64 66 |
|
casdiffmvs_mvg |  | | 97.34 84 | 97.65 57 | 96.97 113 | 97.74 149 | 98.33 73 | 98.45 80 | 97.18 127 | 95.81 52 | 93.92 179 | 99.04 44 | 99.05 39 | 95.48 119 | 97.00 115 | 97.71 86 | 99.07 42 | 96.63 114 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
v2v482 | | | 97.33 85 | 96.84 99 | 97.90 61 | 98.19 113 | 97.83 108 | 98.74 60 | 97.44 114 | 95.42 70 | 98.23 29 | 99.46 21 | 98.84 60 | 97.46 54 | 95.51 153 | 96.10 134 | 97.36 142 | 94.72 156 |
|
EPP-MVSNet | | | 97.29 86 | 96.88 95 | 97.76 74 | 98.70 79 | 99.10 16 | 98.92 43 | 98.36 44 | 95.12 79 | 93.36 190 | 97.39 104 | 91.00 187 | 97.65 49 | 98.72 42 | 98.91 25 | 99.58 7 | 97.92 53 |
|
MVS_111021_HR | | | 97.27 87 | 97.11 85 | 97.46 91 | 98.46 93 | 97.82 111 | 97.50 129 | 96.86 139 | 94.97 84 | 97.13 69 | 96.99 114 | 98.39 92 | 96.82 76 | 97.65 90 | 97.38 91 | 98.02 112 | 96.56 118 |
|
SF-MVS | | | 97.26 88 | 97.43 65 | 97.05 109 | 98.80 73 | 97.83 108 | 96.02 182 | 97.44 114 | 94.98 83 | 95.74 130 | 97.16 110 | 98.45 91 | 95.72 111 | 97.85 77 | 97.97 76 | 98.60 74 | 97.78 58 |
|
TSAR-MVS + GP. | | | 97.26 88 | 97.33 70 | 97.18 103 | 98.21 111 | 98.06 92 | 96.38 173 | 97.66 96 | 93.92 121 | 95.23 145 | 98.48 76 | 98.33 95 | 97.41 56 | 97.63 91 | 97.35 92 | 98.18 103 | 97.57 72 |
|
OMC-MVS | | | 97.23 90 | 97.21 75 | 97.25 101 | 97.85 137 | 97.52 126 | 97.92 106 | 95.77 172 | 95.83 51 | 97.09 72 | 97.86 92 | 98.52 86 | 96.62 83 | 97.51 95 | 96.65 116 | 98.26 97 | 96.57 116 |
|
3Dnovator | | 96.31 3 | 97.22 91 | 97.19 77 | 97.25 101 | 98.14 117 | 97.95 102 | 98.03 100 | 96.77 144 | 96.42 32 | 97.14 67 | 95.11 149 | 97.59 124 | 95.14 126 | 97.79 81 | 97.72 84 | 98.26 97 | 97.76 62 |
|
MVS_0304 | | | 97.18 92 | 96.84 99 | 97.58 81 | 99.15 42 | 98.19 79 | 98.11 95 | 97.81 91 | 92.36 143 | 98.06 34 | 97.43 103 | 99.06 36 | 94.24 140 | 96.80 120 | 96.54 120 | 98.12 107 | 97.52 75 |
|
canonicalmvs | | | 97.11 93 | 96.88 95 | 97.38 93 | 98.34 98 | 98.72 52 | 97.52 128 | 97.94 80 | 95.60 59 | 95.01 153 | 94.58 162 | 94.50 165 | 96.59 85 | 97.84 78 | 98.03 74 | 98.90 58 | 98.91 8 |
|
V42 | | | 97.10 94 | 96.97 93 | 97.26 98 | 97.64 153 | 97.60 119 | 98.45 80 | 95.99 160 | 94.44 106 | 97.35 59 | 99.40 26 | 98.63 80 | 97.34 60 | 96.33 135 | 96.38 126 | 96.82 166 | 96.00 133 |
|
CPTT-MVS | | | 97.08 95 | 96.25 113 | 98.05 52 | 99.21 35 | 98.30 74 | 98.54 73 | 97.98 78 | 94.28 110 | 95.89 123 | 89.57 206 | 98.54 85 | 98.18 27 | 97.82 80 | 97.32 96 | 98.54 78 | 97.91 54 |
|
DeepPCF-MVS | | 94.55 10 | 97.05 96 | 97.13 84 | 96.95 115 | 96.06 195 | 97.12 143 | 98.01 102 | 95.44 178 | 95.18 76 | 97.50 52 | 97.86 92 | 98.08 106 | 97.31 62 | 97.23 103 | 97.00 103 | 97.36 142 | 97.45 79 |
|
QAPM | | | 97.04 97 | 97.14 81 | 96.93 117 | 97.78 148 | 98.02 96 | 97.36 138 | 96.72 145 | 94.68 95 | 96.23 108 | 97.21 109 | 97.68 120 | 95.70 112 | 97.37 99 | 97.24 100 | 97.78 122 | 97.77 60 |
|
CNVR-MVS | | | 97.03 98 | 96.77 104 | 97.34 94 | 98.89 65 | 97.67 116 | 97.64 121 | 97.17 128 | 94.40 108 | 95.70 134 | 94.02 171 | 98.76 71 | 96.49 92 | 97.78 82 | 97.29 99 | 98.12 107 | 97.47 78 |
|
casdiffmvs |  | | 97.00 99 | 97.36 69 | 96.59 132 | 97.65 152 | 97.98 99 | 98.06 97 | 96.81 142 | 95.78 54 | 92.77 198 | 99.40 26 | 99.26 24 | 95.65 117 | 96.70 124 | 96.39 125 | 98.59 75 | 95.99 134 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
v148 | | | 96.99 100 | 96.70 106 | 97.34 94 | 97.89 135 | 97.23 135 | 98.33 84 | 96.96 134 | 95.57 62 | 97.12 70 | 98.99 46 | 99.40 12 | 97.23 63 | 96.22 138 | 95.45 149 | 96.50 172 | 94.02 168 |
|
DELS-MVS | | | 96.90 101 | 97.24 74 | 96.50 137 | 97.85 137 | 98.18 80 | 97.88 111 | 95.92 164 | 93.48 126 | 95.34 143 | 98.86 59 | 98.94 52 | 94.03 143 | 97.33 101 | 97.04 102 | 98.00 114 | 96.85 106 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_LR | | | 96.86 102 | 96.72 105 | 97.03 111 | 97.80 146 | 97.06 146 | 97.04 152 | 95.51 177 | 94.55 100 | 97.47 53 | 97.35 106 | 97.68 120 | 96.66 81 | 97.11 108 | 96.73 112 | 97.69 126 | 96.57 116 |
|
PM-MVS | | | 96.85 103 | 96.62 108 | 97.11 105 | 97.13 176 | 96.51 159 | 98.29 86 | 94.65 195 | 94.84 89 | 98.12 32 | 98.59 72 | 97.20 132 | 97.41 56 | 96.24 137 | 96.41 124 | 97.09 153 | 96.56 118 |
|
pmmvs-eth3d | | | 96.84 104 | 96.22 115 | 97.56 83 | 97.63 155 | 96.38 166 | 98.74 60 | 96.91 137 | 94.63 97 | 98.26 26 | 99.43 23 | 98.28 97 | 96.58 87 | 94.52 167 | 95.54 147 | 97.24 146 | 94.75 155 |
|
CANet | | | 96.81 105 | 96.50 109 | 97.17 104 | 99.10 51 | 97.96 101 | 97.86 112 | 97.51 104 | 91.30 155 | 97.75 42 | 97.64 96 | 97.89 113 | 93.39 153 | 96.98 116 | 96.73 112 | 97.40 139 | 96.99 97 |
|
Fast-Effi-MVS+ | | | 96.80 106 | 95.92 126 | 97.84 67 | 98.57 88 | 97.46 129 | 98.06 97 | 98.24 53 | 89.64 176 | 97.57 49 | 96.45 126 | 97.35 129 | 96.73 78 | 97.22 104 | 96.64 117 | 97.86 119 | 96.65 112 |
|
MCST-MVS | | | 96.79 107 | 96.08 119 | 97.62 79 | 98.78 74 | 97.52 126 | 98.01 102 | 97.32 123 | 93.20 129 | 95.84 125 | 93.97 173 | 98.12 104 | 97.34 60 | 96.34 133 | 95.88 141 | 98.45 86 | 97.51 76 |
|
UGNet | | | 96.79 107 | 97.82 48 | 95.58 160 | 97.57 158 | 98.39 70 | 98.48 77 | 97.84 89 | 95.85 50 | 94.68 160 | 97.91 91 | 99.07 35 | 87.12 203 | 97.71 84 | 97.51 88 | 97.80 120 | 98.29 36 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TAPA-MVS | | 93.96 13 | 96.79 107 | 96.70 106 | 96.90 119 | 97.64 153 | 97.58 120 | 97.54 127 | 94.50 197 | 95.14 77 | 96.64 91 | 96.76 118 | 97.90 112 | 96.63 82 | 95.98 143 | 96.14 131 | 98.45 86 | 97.39 83 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CLD-MVS | | | 96.73 110 | 96.92 94 | 96.51 136 | 98.70 79 | 97.57 122 | 97.64 121 | 92.07 204 | 93.10 135 | 96.31 107 | 98.29 82 | 99.02 42 | 95.99 107 | 97.20 105 | 96.47 122 | 98.37 93 | 96.81 107 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
train_agg | | | 96.68 111 | 95.93 125 | 97.56 83 | 99.08 53 | 97.16 139 | 98.44 83 | 97.37 119 | 91.12 159 | 95.18 147 | 95.43 144 | 98.48 89 | 97.36 58 | 96.48 129 | 95.52 148 | 97.95 117 | 97.34 87 |
|
CDPH-MVS | | | 96.68 111 | 95.99 122 | 97.48 89 | 99.13 47 | 97.64 117 | 98.08 96 | 97.46 110 | 90.56 165 | 95.13 148 | 94.87 157 | 98.27 98 | 96.56 88 | 97.09 109 | 96.45 123 | 98.54 78 | 97.08 96 |
|
MSLP-MVS++ | | | 96.66 113 | 96.46 112 | 96.89 120 | 98.02 123 | 97.71 115 | 95.57 189 | 96.96 134 | 94.36 109 | 96.19 112 | 91.37 198 | 98.24 99 | 97.07 68 | 97.69 85 | 97.89 78 | 97.52 132 | 97.95 50 |
|
TinyColmap | | | 96.64 114 | 96.07 120 | 97.32 96 | 97.84 142 | 96.40 163 | 97.63 123 | 96.25 155 | 95.86 49 | 98.98 10 | 97.94 90 | 96.34 148 | 96.17 102 | 97.30 102 | 95.38 152 | 97.04 155 | 93.24 175 |
|
IS_MVSNet | | | 96.62 115 | 96.48 111 | 96.78 124 | 98.46 93 | 98.68 54 | 98.61 68 | 98.24 53 | 92.23 144 | 89.63 208 | 95.90 140 | 94.40 166 | 96.23 97 | 98.65 48 | 98.77 33 | 99.52 12 | 96.76 109 |
|
NCCC | | | 96.56 116 | 95.68 128 | 97.59 80 | 99.04 57 | 97.54 125 | 97.67 118 | 97.56 102 | 94.84 89 | 96.10 115 | 87.91 209 | 98.09 105 | 96.98 73 | 97.20 105 | 96.80 111 | 98.21 101 | 97.38 86 |
|
ETV-MVS | | | 96.54 117 | 95.27 136 | 98.02 56 | 99.07 55 | 97.48 128 | 98.16 93 | 98.19 59 | 87.33 196 | 97.58 48 | 92.67 185 | 95.93 154 | 96.22 98 | 98.49 60 | 98.46 46 | 98.91 57 | 96.50 121 |
|
Effi-MVS+ | | | 96.46 118 | 95.28 135 | 97.85 66 | 98.64 87 | 97.16 139 | 97.15 150 | 98.75 23 | 90.27 169 | 98.03 35 | 93.93 174 | 96.21 149 | 96.55 89 | 96.34 133 | 96.69 115 | 97.97 116 | 96.33 124 |
|
IterMVS-LS | | | 96.35 119 | 95.85 127 | 96.93 117 | 97.53 159 | 98.00 98 | 97.37 136 | 97.97 79 | 95.49 69 | 96.71 89 | 98.94 50 | 93.23 173 | 94.82 131 | 93.15 186 | 95.05 155 | 97.17 150 | 97.12 94 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
USDC | | | 96.30 120 | 95.64 130 | 97.07 107 | 97.62 156 | 96.35 168 | 97.17 149 | 95.71 173 | 95.52 67 | 99.17 7 | 98.11 88 | 97.46 126 | 95.67 114 | 95.44 155 | 93.60 175 | 97.09 153 | 92.99 179 |
|
Vis-MVSNet (Re-imp) | | | 96.29 121 | 96.50 109 | 96.05 145 | 97.96 131 | 97.83 108 | 97.30 141 | 97.86 87 | 93.14 131 | 88.90 211 | 96.80 117 | 95.28 158 | 95.15 124 | 98.37 66 | 98.25 63 | 99.12 37 | 95.84 137 |
|
MSDG | | | 96.27 122 | 96.17 118 | 96.38 141 | 97.85 137 | 96.27 170 | 96.55 170 | 94.41 198 | 94.55 100 | 95.62 137 | 97.56 100 | 97.80 114 | 96.22 98 | 97.17 107 | 96.27 128 | 97.67 128 | 93.60 172 |
|
CNLPA | | | 96.24 123 | 95.97 123 | 96.57 134 | 97.48 165 | 97.10 145 | 96.75 163 | 94.95 189 | 94.92 87 | 96.20 111 | 94.81 158 | 96.61 143 | 96.25 96 | 96.94 117 | 95.64 145 | 97.79 121 | 95.74 143 |
|
EIA-MVS | | | 96.23 124 | 94.85 148 | 97.84 67 | 99.08 53 | 98.21 77 | 97.69 117 | 98.03 75 | 85.68 206 | 98.09 33 | 91.75 196 | 97.07 135 | 95.66 116 | 97.58 92 | 97.72 84 | 98.47 84 | 95.91 136 |
|
PLC |  | 92.55 15 | 96.10 125 | 95.36 132 | 96.96 114 | 98.13 119 | 96.88 150 | 96.49 171 | 96.67 149 | 94.07 117 | 95.71 133 | 91.14 199 | 96.09 151 | 96.84 75 | 96.70 124 | 96.58 119 | 97.92 118 | 96.03 132 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test20.03 | | | 96.08 126 | 96.80 102 | 95.25 169 | 99.19 37 | 97.58 120 | 97.24 146 | 97.56 102 | 94.95 86 | 91.91 199 | 98.58 73 | 98.03 108 | 87.88 199 | 97.43 97 | 96.94 106 | 97.69 126 | 94.05 167 |
|
FA-MVS(training) | | | 96.07 127 | 95.59 131 | 96.63 129 | 98.00 127 | 97.44 130 | 97.36 138 | 98.53 28 | 92.21 145 | 95.97 120 | 96.18 132 | 94.22 169 | 92.98 157 | 96.79 121 | 96.70 114 | 96.95 160 | 95.56 147 |
|
TSAR-MVS + COLMAP | | | 96.05 128 | 95.94 124 | 96.18 144 | 97.46 166 | 96.41 162 | 97.26 145 | 95.83 168 | 94.69 94 | 95.30 144 | 98.31 81 | 96.52 144 | 94.71 133 | 95.48 154 | 94.87 157 | 96.54 171 | 95.33 150 |
|
EU-MVSNet | | | 96.03 129 | 96.23 114 | 95.80 154 | 95.48 208 | 94.18 189 | 98.99 36 | 91.51 206 | 97.22 20 | 97.66 46 | 99.15 40 | 98.51 87 | 98.08 30 | 95.92 144 | 92.88 182 | 93.09 195 | 95.72 144 |
|
PCF-MVS | | 92.69 14 | 95.98 130 | 95.05 143 | 97.06 108 | 98.43 95 | 97.56 123 | 97.76 114 | 96.65 150 | 89.95 174 | 95.70 134 | 96.18 132 | 98.48 89 | 95.74 110 | 93.64 178 | 93.35 179 | 98.09 111 | 96.18 128 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HQP-MVS | | | 95.97 131 | 95.01 145 | 97.08 106 | 98.72 77 | 97.19 137 | 97.07 151 | 96.69 148 | 91.49 153 | 95.77 129 | 92.19 191 | 97.93 111 | 96.15 103 | 94.66 164 | 94.16 166 | 98.10 109 | 97.45 79 |
|
Effi-MVS+-dtu | | | 95.94 132 | 95.08 142 | 96.94 116 | 98.54 90 | 97.38 131 | 96.66 167 | 97.89 84 | 88.68 182 | 95.92 121 | 92.90 184 | 97.28 130 | 94.18 142 | 96.68 126 | 96.13 133 | 98.45 86 | 96.51 120 |
|
diffmvs |  | | 95.86 133 | 96.21 116 | 95.44 163 | 97.25 174 | 96.85 153 | 96.99 155 | 95.23 183 | 94.96 85 | 92.82 197 | 98.89 54 | 98.85 58 | 93.52 151 | 94.21 173 | 94.25 165 | 96.84 163 | 95.49 149 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
AdaColmap |  | | 95.85 134 | 94.65 151 | 97.26 98 | 98.70 79 | 97.20 136 | 97.33 140 | 97.30 124 | 91.28 157 | 95.90 122 | 88.16 208 | 96.17 150 | 96.60 84 | 97.34 100 | 96.82 109 | 97.71 123 | 95.60 146 |
|
FMVSNet2 | | | 95.77 135 | 96.20 117 | 95.27 167 | 96.77 184 | 98.18 80 | 97.28 142 | 97.90 83 | 93.12 132 | 91.37 201 | 98.25 84 | 96.05 152 | 90.04 183 | 94.96 162 | 95.94 138 | 98.28 94 | 96.90 100 |
|
OpenMVS |  | 94.63 9 | 95.75 136 | 95.04 144 | 96.58 133 | 97.85 137 | 97.55 124 | 96.71 165 | 96.07 157 | 90.15 172 | 96.47 97 | 90.77 204 | 95.95 153 | 94.41 138 | 97.01 114 | 96.95 105 | 98.00 114 | 96.90 100 |
|
pmmvs5 | | | 95.70 137 | 95.22 137 | 96.26 142 | 96.55 190 | 97.24 134 | 97.50 129 | 94.99 188 | 90.95 161 | 96.87 80 | 98.47 77 | 97.40 127 | 94.45 136 | 92.86 187 | 94.98 156 | 97.23 147 | 94.64 158 |
|
Anonymous20231206 | | | 95.69 138 | 95.68 128 | 95.70 156 | 98.32 101 | 96.95 148 | 97.37 136 | 96.65 150 | 93.33 127 | 93.61 184 | 98.70 70 | 98.03 108 | 91.04 172 | 95.07 160 | 94.59 164 | 97.20 148 | 93.09 178 |
|
MAR-MVS | | | 95.51 139 | 94.49 155 | 96.71 125 | 97.92 133 | 96.40 163 | 96.72 164 | 98.04 74 | 86.74 200 | 96.72 86 | 92.52 188 | 95.14 160 | 94.02 144 | 96.81 119 | 96.54 120 | 96.85 161 | 97.25 90 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DI_MVS_plusplus_trai | | | 95.48 140 | 94.51 153 | 96.61 130 | 97.13 176 | 97.30 133 | 98.05 99 | 96.79 143 | 93.75 123 | 95.08 151 | 96.38 127 | 89.76 191 | 94.95 127 | 93.97 177 | 94.82 161 | 97.64 130 | 95.63 145 |
|
MDA-MVSNet-bldmvs | | | 95.45 141 | 95.20 138 | 95.74 155 | 94.24 213 | 96.38 166 | 97.93 105 | 94.80 190 | 95.56 65 | 96.87 80 | 98.29 82 | 95.24 159 | 96.50 91 | 98.65 48 | 90.38 194 | 94.09 189 | 91.93 183 |
|
PVSNet_BlendedMVS | | | 95.44 142 | 95.09 140 | 95.86 152 | 97.31 171 | 97.13 141 | 96.31 176 | 95.01 186 | 88.55 185 | 96.23 108 | 94.55 165 | 97.75 115 | 92.56 165 | 96.42 130 | 95.44 150 | 97.71 123 | 95.81 138 |
|
PVSNet_Blended | | | 95.44 142 | 95.09 140 | 95.86 152 | 97.31 171 | 97.13 141 | 96.31 176 | 95.01 186 | 88.55 185 | 96.23 108 | 94.55 165 | 97.75 115 | 92.56 165 | 96.42 130 | 95.44 150 | 97.71 123 | 95.81 138 |
|
pmmvs4 | | | 95.37 144 | 94.25 156 | 96.67 128 | 97.01 179 | 95.28 183 | 97.60 124 | 96.07 157 | 93.11 133 | 97.29 62 | 98.09 89 | 94.23 168 | 95.21 123 | 91.56 198 | 93.91 172 | 96.82 166 | 93.59 173 |
|
MVS_Test | | | 95.34 145 | 94.88 147 | 95.89 151 | 96.93 180 | 96.84 154 | 96.66 167 | 97.08 130 | 90.06 173 | 94.02 176 | 97.61 97 | 96.64 142 | 93.59 150 | 92.73 190 | 94.02 170 | 97.03 156 | 96.24 125 |
|
GBi-Net | | | 95.21 146 | 95.35 133 | 95.04 172 | 96.77 184 | 98.18 80 | 97.28 142 | 97.58 99 | 88.43 187 | 90.28 205 | 96.01 136 | 92.43 177 | 90.04 183 | 97.67 87 | 97.86 80 | 98.28 94 | 96.90 100 |
|
test1 | | | 95.21 146 | 95.35 133 | 95.04 172 | 96.77 184 | 98.18 80 | 97.28 142 | 97.58 99 | 88.43 187 | 90.28 205 | 96.01 136 | 92.43 177 | 90.04 183 | 97.67 87 | 97.86 80 | 98.28 94 | 96.90 100 |
|
IterMVS-SCA-FT | | | 95.16 148 | 93.95 160 | 96.56 135 | 97.89 135 | 96.69 156 | 96.94 157 | 96.05 159 | 93.06 136 | 97.35 59 | 98.79 62 | 91.45 182 | 95.93 108 | 92.78 188 | 91.00 192 | 95.22 185 | 93.91 170 |
|
HyFIR lowres test | | | 95.05 149 | 93.54 165 | 96.81 123 | 97.81 145 | 96.88 150 | 98.18 90 | 97.46 110 | 94.28 110 | 94.98 155 | 96.57 123 | 92.89 176 | 96.15 103 | 90.90 203 | 91.87 188 | 96.28 177 | 91.35 184 |
|
CHOSEN 1792x2688 | | | 94.98 150 | 94.69 150 | 95.31 165 | 97.27 173 | 95.58 179 | 97.90 108 | 95.56 176 | 95.03 81 | 93.77 183 | 95.65 142 | 99.29 18 | 95.30 121 | 91.51 199 | 91.28 191 | 92.05 203 | 94.50 160 |
|
CANet_DTU | | | 94.96 151 | 94.62 152 | 95.35 164 | 98.03 122 | 96.11 172 | 96.92 159 | 95.60 175 | 88.59 184 | 97.27 63 | 95.27 147 | 96.50 145 | 88.77 195 | 95.53 151 | 95.59 146 | 95.54 183 | 94.78 154 |
|
CDS-MVSNet | | | 94.91 152 | 95.17 139 | 94.60 180 | 97.85 137 | 96.21 171 | 96.90 161 | 96.39 153 | 90.81 162 | 93.40 188 | 97.24 108 | 94.54 164 | 85.78 209 | 96.25 136 | 96.15 130 | 97.26 145 | 95.01 153 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
DPM-MVS | | | 94.86 153 | 93.90 162 | 95.99 147 | 98.19 113 | 96.52 158 | 96.29 178 | 95.95 161 | 93.11 133 | 94.61 162 | 88.17 207 | 96.44 146 | 93.77 148 | 93.33 181 | 93.54 177 | 97.11 152 | 96.22 126 |
|
MS-PatchMatch | | | 94.84 154 | 94.76 149 | 94.94 175 | 96.38 191 | 94.69 188 | 95.90 184 | 94.03 200 | 92.49 140 | 93.81 181 | 95.79 141 | 96.38 147 | 94.54 134 | 94.70 163 | 94.85 158 | 94.97 187 | 94.43 162 |
|
thisisatest0530 | | | 94.81 155 | 93.06 171 | 96.85 122 | 98.01 124 | 97.18 138 | 96.93 158 | 97.36 120 | 89.73 175 | 95.80 127 | 94.98 153 | 77.88 212 | 94.89 128 | 96.73 123 | 97.35 92 | 98.13 106 | 97.54 73 |
|
tttt0517 | | | 94.81 155 | 93.04 172 | 96.88 121 | 98.15 116 | 97.37 132 | 96.99 155 | 97.36 120 | 89.51 177 | 95.74 130 | 94.89 155 | 77.53 214 | 94.89 128 | 96.94 117 | 97.35 92 | 98.17 104 | 97.70 63 |
|
testgi | | | 94.81 155 | 96.05 121 | 93.35 191 | 99.06 56 | 96.87 152 | 97.57 126 | 96.70 147 | 95.77 55 | 88.60 213 | 93.19 182 | 98.87 57 | 81.21 217 | 97.03 113 | 96.64 117 | 96.97 159 | 93.99 169 |
|
PatchMatch-RL | | | 94.79 158 | 93.75 164 | 96.00 146 | 96.80 183 | 95.00 185 | 95.47 194 | 95.25 182 | 90.68 164 | 95.80 127 | 92.97 183 | 93.64 171 | 95.67 114 | 96.13 140 | 95.81 142 | 96.99 158 | 92.01 182 |
|
FPMVS | | | 94.70 159 | 94.99 146 | 94.37 182 | 95.84 201 | 93.20 194 | 96.00 183 | 91.93 205 | 95.03 81 | 94.64 161 | 94.68 159 | 93.29 172 | 90.95 173 | 98.07 74 | 97.34 95 | 96.85 161 | 93.29 174 |
|
new-patchmatchnet | | | 94.48 160 | 94.02 158 | 95.02 174 | 97.51 163 | 95.00 185 | 95.68 188 | 94.26 199 | 97.32 19 | 95.73 132 | 99.60 12 | 98.22 103 | 91.30 168 | 94.13 174 | 84.41 204 | 95.65 182 | 89.45 195 |
|
IterMVS | | | 94.48 160 | 93.46 167 | 95.66 157 | 97.52 160 | 96.43 160 | 97.20 147 | 94.73 193 | 92.91 139 | 96.44 98 | 98.75 67 | 91.10 184 | 94.53 135 | 92.10 194 | 90.10 196 | 93.51 192 | 92.84 181 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MDTV_nov1_ep13_2view | | | 94.39 162 | 93.34 168 | 95.63 158 | 97.23 175 | 95.33 182 | 97.76 114 | 96.84 140 | 94.55 100 | 97.47 53 | 98.96 47 | 97.70 118 | 93.88 145 | 92.27 192 | 86.81 202 | 90.56 205 | 87.73 203 |
|
Fast-Effi-MVS+-dtu | | | 94.34 163 | 93.26 170 | 95.62 159 | 97.82 143 | 95.97 175 | 95.86 185 | 99.01 13 | 86.88 198 | 93.39 189 | 90.83 202 | 95.46 157 | 90.61 177 | 94.46 169 | 94.68 162 | 97.01 157 | 94.51 159 |
|
thres600view7 | | | 94.34 163 | 92.31 181 | 96.70 126 | 98.19 113 | 98.12 87 | 97.85 113 | 97.45 112 | 91.49 153 | 93.98 178 | 84.27 212 | 82.02 203 | 94.24 140 | 97.04 110 | 98.76 34 | 98.49 82 | 94.47 161 |
|
EPNet | | | 94.33 165 | 93.52 166 | 95.27 167 | 98.81 72 | 94.71 187 | 96.77 162 | 98.20 57 | 88.12 190 | 96.53 95 | 92.53 187 | 91.19 183 | 85.25 213 | 95.22 158 | 95.26 153 | 96.09 180 | 97.63 70 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test2506 | | | 94.29 166 | 91.43 189 | 97.64 78 | 98.66 84 | 98.83 33 | 98.50 74 | 98.40 37 | 96.04 41 | 94.45 165 | 94.88 156 | 55.05 228 | 96.70 79 | 99.28 14 | 99.04 19 | 99.14 33 | 96.87 104 |
|
GA-MVS | | | 94.18 167 | 92.98 173 | 95.58 160 | 97.36 168 | 96.42 161 | 96.21 179 | 95.86 165 | 90.29 168 | 95.08 151 | 96.19 131 | 85.37 195 | 92.82 161 | 94.01 176 | 94.14 167 | 96.16 179 | 94.41 163 |
|
gg-mvs-nofinetune | | | 94.13 168 | 93.93 161 | 94.37 182 | 97.99 128 | 95.86 176 | 95.45 197 | 99.22 9 | 97.61 15 | 95.10 150 | 99.50 19 | 84.50 196 | 81.73 216 | 95.31 156 | 94.12 168 | 96.71 169 | 90.59 188 |
|
baseline | | | 94.07 169 | 94.50 154 | 93.57 189 | 96.34 192 | 93.40 193 | 95.56 192 | 92.39 203 | 92.07 148 | 94.00 177 | 98.24 85 | 97.51 125 | 89.19 189 | 91.75 196 | 92.72 183 | 93.96 191 | 95.79 140 |
|
FMVSNet3 | | | 94.06 170 | 93.85 163 | 94.31 185 | 95.46 209 | 97.80 113 | 96.34 174 | 97.58 99 | 88.43 187 | 90.28 205 | 96.01 136 | 92.43 177 | 88.67 196 | 91.82 195 | 93.96 171 | 97.53 131 | 96.50 121 |
|
thres400 | | | 94.04 171 | 91.94 184 | 96.50 137 | 97.98 130 | 97.82 111 | 97.66 120 | 96.96 134 | 90.96 160 | 94.20 172 | 83.24 214 | 82.82 201 | 93.80 146 | 96.50 128 | 98.09 70 | 98.38 92 | 94.15 165 |
|
dmvs_re | | | 94.02 172 | 92.39 179 | 95.91 150 | 97.71 150 | 95.43 181 | 97.00 154 | 95.94 162 | 82.49 215 | 94.61 162 | 83.69 213 | 93.01 175 | 92.71 162 | 97.83 79 | 97.56 87 | 97.50 133 | 96.73 110 |
|
CVMVSNet | | | 94.01 173 | 94.25 156 | 93.73 188 | 94.36 212 | 92.44 197 | 97.45 132 | 88.56 209 | 95.59 60 | 93.06 195 | 98.88 55 | 90.03 190 | 94.84 130 | 94.08 175 | 93.45 178 | 94.09 189 | 95.31 151 |
|
thres200 | | | 93.98 174 | 91.90 185 | 96.40 140 | 97.66 151 | 98.12 87 | 97.20 147 | 97.45 112 | 90.16 171 | 93.82 180 | 83.08 215 | 83.74 199 | 93.80 146 | 97.04 110 | 97.48 90 | 98.49 82 | 93.70 171 |
|
baseline1 | | | 93.89 175 | 92.82 175 | 95.14 171 | 97.62 156 | 96.97 147 | 96.12 180 | 96.36 154 | 91.30 155 | 91.53 200 | 94.68 159 | 80.72 205 | 90.80 175 | 95.71 147 | 96.29 127 | 98.44 89 | 94.09 166 |
|
tfpn200view9 | | | 93.80 176 | 91.75 186 | 96.20 143 | 97.52 160 | 98.15 85 | 97.48 131 | 97.47 109 | 87.65 192 | 93.56 186 | 83.03 216 | 84.12 197 | 92.62 164 | 97.04 110 | 98.09 70 | 98.52 81 | 94.17 164 |
|
MIMVSNet | | | 93.68 177 | 93.96 159 | 93.35 191 | 97.82 143 | 96.08 173 | 96.34 174 | 98.46 34 | 91.28 157 | 86.67 218 | 94.95 154 | 94.87 162 | 84.39 214 | 94.53 165 | 94.65 163 | 96.45 174 | 91.34 185 |
|
pmnet_mix02 | | | 93.59 178 | 92.65 176 | 94.69 178 | 96.76 187 | 94.16 190 | 97.03 153 | 93.00 202 | 95.79 53 | 96.03 119 | 98.91 52 | 97.69 119 | 92.99 156 | 90.03 206 | 84.10 206 | 92.35 201 | 87.89 202 |
|
EPNet_dtu | | | 93.45 179 | 92.51 178 | 94.55 181 | 98.39 97 | 91.67 206 | 95.46 195 | 97.50 106 | 86.56 201 | 97.38 57 | 93.52 177 | 94.20 170 | 85.82 208 | 93.31 183 | 92.53 184 | 92.72 197 | 95.76 142 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IB-MVS | | 92.44 16 | 93.33 180 | 92.15 183 | 94.70 177 | 97.42 167 | 96.39 165 | 95.57 189 | 94.67 194 | 86.40 204 | 93.59 185 | 78.28 220 | 95.76 156 | 89.59 188 | 95.88 145 | 95.98 137 | 97.39 140 | 96.34 123 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ET-MVSNet_ETH3D | | | 93.18 181 | 90.80 192 | 95.95 148 | 96.05 196 | 96.07 174 | 96.92 159 | 96.51 152 | 89.34 178 | 95.63 136 | 94.08 170 | 72.31 223 | 93.13 154 | 94.33 171 | 94.83 159 | 97.44 136 | 94.65 157 |
|
thres100view900 | | | 92.93 182 | 90.89 191 | 95.31 165 | 97.52 160 | 96.82 155 | 96.41 172 | 95.08 184 | 87.65 192 | 93.56 186 | 83.03 216 | 84.12 197 | 91.12 171 | 94.53 165 | 96.91 107 | 98.17 104 | 93.21 176 |
|
N_pmnet | | | 92.46 183 | 92.38 180 | 92.55 197 | 97.91 134 | 93.47 192 | 97.42 134 | 94.01 201 | 96.40 34 | 88.48 214 | 98.50 75 | 98.07 107 | 88.14 198 | 91.04 202 | 84.30 205 | 89.35 210 | 84.85 209 |
|
TAMVS | | | 92.46 183 | 93.34 168 | 91.44 205 | 97.03 178 | 93.84 191 | 94.68 208 | 90.60 207 | 90.44 167 | 85.31 219 | 97.14 111 | 93.03 174 | 85.78 209 | 94.34 170 | 93.67 174 | 95.22 185 | 90.93 187 |
|
CMPMVS |  | 71.81 19 | 92.34 185 | 92.85 174 | 91.75 203 | 92.70 217 | 90.43 211 | 88.84 220 | 88.56 209 | 85.87 205 | 94.35 169 | 90.98 200 | 95.89 155 | 91.14 170 | 96.14 139 | 94.83 159 | 94.93 188 | 95.78 141 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
baseline2 | | | 92.06 186 | 89.82 195 | 94.68 179 | 97.32 169 | 95.72 177 | 94.97 205 | 95.08 184 | 84.75 209 | 94.34 171 | 90.68 205 | 77.75 213 | 90.13 182 | 93.38 179 | 93.58 176 | 96.25 178 | 92.90 180 |
|
MVSTER | | | 91.97 187 | 90.31 193 | 93.91 186 | 96.81 182 | 96.91 149 | 94.22 209 | 95.64 174 | 84.98 207 | 92.98 196 | 93.42 178 | 72.56 221 | 86.64 207 | 95.11 159 | 93.89 173 | 97.16 151 | 95.31 151 |
|
CR-MVSNet | | | 91.94 188 | 88.50 198 | 95.94 149 | 96.14 194 | 92.08 201 | 95.23 200 | 98.47 32 | 84.30 211 | 96.44 98 | 94.58 162 | 75.57 215 | 92.92 158 | 90.22 204 | 92.22 185 | 96.43 175 | 90.56 189 |
|
gm-plane-assit | | | 91.85 189 | 87.91 200 | 96.44 139 | 99.14 45 | 98.25 76 | 99.02 31 | 97.38 118 | 95.57 62 | 98.31 25 | 99.34 31 | 51.00 229 | 88.93 192 | 93.16 185 | 91.57 189 | 95.85 181 | 86.50 206 |
|
PMMVS | | | 91.67 190 | 91.47 188 | 91.91 202 | 89.43 222 | 88.61 217 | 94.99 204 | 85.67 214 | 87.50 194 | 93.80 182 | 94.42 168 | 94.88 161 | 90.71 176 | 92.26 193 | 92.96 181 | 96.83 164 | 89.65 193 |
|
CHOSEN 280x420 | | | 91.55 191 | 90.27 194 | 93.05 194 | 94.61 211 | 88.01 218 | 96.56 169 | 94.62 196 | 88.04 191 | 94.20 172 | 92.66 186 | 86.60 193 | 90.82 174 | 95.06 161 | 91.89 187 | 87.49 215 | 89.61 194 |
|
PatchT | | | 91.40 192 | 88.54 197 | 94.74 176 | 91.48 221 | 92.18 200 | 97.42 134 | 97.51 104 | 84.96 208 | 96.44 98 | 94.16 169 | 75.47 216 | 92.92 158 | 90.22 204 | 92.22 185 | 92.66 200 | 90.56 189 |
|
pmmvs3 | | | 91.20 193 | 91.40 190 | 90.96 207 | 91.71 220 | 91.08 207 | 95.41 198 | 81.34 218 | 87.36 195 | 94.57 164 | 95.02 151 | 94.30 167 | 90.42 178 | 94.28 172 | 89.26 198 | 92.30 202 | 88.49 200 |
|
test0.0.03 1 | | | 91.17 194 | 91.50 187 | 90.80 208 | 98.01 124 | 95.46 180 | 94.22 209 | 95.80 169 | 86.55 202 | 81.75 221 | 90.83 202 | 87.93 192 | 78.48 218 | 94.51 168 | 94.11 169 | 96.50 172 | 91.08 186 |
|
SCA | | | 91.15 195 | 87.65 202 | 95.23 170 | 96.15 193 | 95.68 178 | 96.68 166 | 98.18 61 | 90.46 166 | 97.21 66 | 92.44 189 | 80.17 207 | 93.51 152 | 86.04 213 | 83.58 209 | 89.68 209 | 85.21 208 |
|
new_pmnet | | | 90.85 196 | 92.26 182 | 89.21 211 | 93.68 216 | 89.05 216 | 93.20 217 | 84.16 217 | 92.99 137 | 84.25 220 | 97.72 95 | 94.60 163 | 86.80 206 | 93.20 184 | 91.30 190 | 93.21 193 | 86.94 205 |
|
RPMNet | | | 90.52 197 | 86.27 211 | 95.48 162 | 95.95 199 | 92.08 201 | 95.55 193 | 98.12 66 | 84.30 211 | 95.60 138 | 87.49 210 | 72.78 220 | 91.24 169 | 87.93 208 | 89.34 197 | 96.41 176 | 89.98 192 |
|
MDTV_nov1_ep13 | | | 90.30 198 | 87.32 206 | 93.78 187 | 96.00 198 | 92.97 195 | 95.46 195 | 95.39 179 | 88.61 183 | 95.41 142 | 94.45 167 | 80.39 206 | 89.87 186 | 86.58 211 | 83.54 210 | 90.56 205 | 84.71 210 |
|
PatchmatchNet |  | | 89.98 199 | 86.23 212 | 94.36 184 | 96.56 189 | 91.90 205 | 96.07 181 | 96.72 145 | 90.18 170 | 96.87 80 | 93.36 181 | 78.06 211 | 91.46 167 | 84.71 217 | 81.40 214 | 88.45 212 | 83.97 214 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
ADS-MVSNet | | | 89.89 200 | 87.70 201 | 92.43 199 | 95.52 206 | 90.91 209 | 95.57 189 | 95.33 180 | 93.19 130 | 91.21 202 | 93.41 179 | 82.12 202 | 89.05 190 | 86.21 212 | 83.77 208 | 87.92 213 | 84.31 211 |
|
tpm | | | 89.84 201 | 86.81 208 | 93.36 190 | 96.60 188 | 91.92 204 | 95.02 203 | 97.39 117 | 86.79 199 | 96.54 94 | 95.03 150 | 69.70 224 | 87.66 200 | 88.79 207 | 86.19 203 | 86.95 217 | 89.27 196 |
|
test-LLR | | | 89.77 202 | 87.47 204 | 92.45 198 | 98.01 124 | 89.77 213 | 93.25 215 | 95.80 169 | 81.56 217 | 89.19 209 | 92.08 192 | 79.59 208 | 85.77 211 | 91.47 200 | 89.04 200 | 92.69 198 | 88.75 197 |
|
FMVSNet5 | | | 89.65 203 | 87.60 203 | 92.04 201 | 95.63 205 | 96.61 157 | 94.82 207 | 94.75 191 | 80.11 221 | 87.72 216 | 77.73 221 | 73.81 219 | 83.81 215 | 95.64 148 | 96.08 135 | 95.49 184 | 93.21 176 |
|
EPMVS | | | 89.28 204 | 86.28 210 | 92.79 196 | 96.01 197 | 92.00 203 | 95.83 186 | 95.85 167 | 90.78 163 | 91.00 203 | 94.58 162 | 74.65 217 | 88.93 192 | 85.00 215 | 82.88 212 | 89.09 211 | 84.09 213 |
|
test-mter | | | 89.16 205 | 88.14 199 | 90.37 209 | 94.79 210 | 91.05 208 | 93.60 214 | 85.26 215 | 81.65 216 | 88.32 215 | 92.22 190 | 79.35 210 | 87.03 204 | 92.28 191 | 90.12 195 | 93.19 194 | 90.29 191 |
|
CostFormer | | | 89.06 206 | 85.65 213 | 93.03 195 | 95.88 200 | 92.40 198 | 95.30 199 | 95.86 165 | 86.49 203 | 93.12 194 | 93.40 180 | 74.18 218 | 88.25 197 | 82.99 218 | 81.46 213 | 89.77 208 | 88.66 199 |
|
MVS-HIRNet | | | 88.72 207 | 86.49 209 | 91.33 206 | 91.81 219 | 85.66 219 | 87.02 222 | 96.25 155 | 81.48 219 | 94.82 157 | 96.31 130 | 92.14 180 | 90.32 180 | 87.60 209 | 83.82 207 | 87.74 214 | 78.42 218 |
|
TESTMET0.1,1 | | | 88.60 208 | 87.47 204 | 89.93 210 | 94.23 214 | 89.77 213 | 93.25 215 | 84.47 216 | 81.56 217 | 89.19 209 | 92.08 192 | 79.59 208 | 85.77 211 | 91.47 200 | 89.04 200 | 92.69 198 | 88.75 197 |
|
dps | | | 88.36 209 | 84.32 216 | 93.07 193 | 93.86 215 | 92.29 199 | 94.89 206 | 95.93 163 | 83.50 213 | 93.13 192 | 91.87 194 | 67.79 226 | 90.32 180 | 85.99 214 | 83.22 211 | 90.28 207 | 85.56 207 |
|
tpmrst | | | 87.60 210 | 84.13 217 | 91.66 204 | 95.65 204 | 89.73 215 | 93.77 212 | 94.74 192 | 88.85 180 | 93.35 191 | 95.60 143 | 72.37 222 | 87.40 201 | 81.24 219 | 78.19 216 | 85.02 220 | 82.90 217 |
|
tpm cat1 | | | 87.19 211 | 82.78 218 | 92.33 200 | 95.66 203 | 90.61 210 | 94.19 211 | 95.27 181 | 86.97 197 | 94.38 167 | 90.91 201 | 69.40 225 | 87.21 202 | 79.57 221 | 77.82 217 | 87.25 216 | 84.18 212 |
|
E-PMN | | | 86.94 212 | 85.10 214 | 89.09 213 | 95.77 202 | 83.54 222 | 89.89 219 | 86.55 211 | 92.18 146 | 87.34 217 | 94.02 171 | 83.42 200 | 89.63 187 | 93.32 182 | 77.11 218 | 85.33 218 | 72.09 219 |
|
EMVS | | | 86.63 213 | 84.48 215 | 89.15 212 | 95.51 207 | 83.66 221 | 90.19 218 | 86.14 213 | 91.78 150 | 88.68 212 | 93.83 175 | 81.97 204 | 89.05 190 | 92.76 189 | 76.09 219 | 85.31 219 | 71.28 220 |
|
PMMVS2 | | | 86.47 214 | 92.62 177 | 79.29 215 | 92.01 218 | 85.63 220 | 93.74 213 | 86.37 212 | 93.95 120 | 54.18 226 | 98.19 86 | 97.39 128 | 58.46 219 | 96.57 127 | 93.07 180 | 90.99 204 | 83.55 216 |
|
MVE |  | 72.99 18 | 85.37 215 | 89.43 196 | 80.63 214 | 74.43 223 | 71.94 224 | 88.25 221 | 89.81 208 | 93.27 128 | 67.32 224 | 96.32 129 | 91.83 181 | 90.40 179 | 93.36 180 | 90.79 193 | 73.55 223 | 88.49 200 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 61.30 216 | 70.45 219 | 50.62 216 | 22.69 225 | 30.92 226 | 68.31 225 | 25.76 220 | 80.56 220 | 68.71 222 | 82.80 218 | 91.08 185 | 44.64 220 | 80.50 220 | 56.70 220 | 73.64 222 | 70.58 221 |
|
GG-mvs-BLEND | | | 61.03 217 | 87.02 207 | 30.71 218 | 0.74 228 | 90.01 212 | 78.90 224 | 0.74 224 | 84.56 210 | 9.46 227 | 79.17 219 | 90.69 188 | 1.37 224 | 91.74 197 | 89.13 199 | 93.04 196 | 83.83 215 |
|
testmvs | | | 4.99 218 | 6.88 220 | 2.78 220 | 1.73 226 | 2.04 228 | 3.10 228 | 1.71 222 | 7.27 223 | 3.92 229 | 12.18 223 | 6.71 230 | 3.31 223 | 6.94 222 | 5.51 222 | 2.94 225 | 7.51 222 |
|
test123 | | | 4.41 219 | 5.71 221 | 2.88 219 | 1.28 227 | 2.21 227 | 3.09 229 | 1.65 223 | 6.35 224 | 4.98 228 | 8.53 224 | 3.88 231 | 3.46 222 | 5.79 223 | 5.71 221 | 2.85 226 | 7.50 223 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
TPM-MVS | | | | | | 97.49 164 | 96.32 169 | 95.05 202 | | | 94.36 168 | 91.82 195 | 96.92 140 | 88.89 194 | | | 96.67 170 | 96.22 126 |
|
RE-MVS-def | | | | | | | | | | | 99.38 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 96.98 138 | | | | | |
|
SR-MVS | | | | | | 99.33 30 | | | 98.40 37 | | | | 98.90 53 | | | | | |
|
Anonymous202405211 | | | | 97.39 66 | | 98.85 68 | 98.59 57 | 97.89 110 | 97.93 81 | 94.41 107 | | 97.37 105 | 96.99 137 | 93.09 155 | 98.61 51 | 98.46 46 | 99.11 38 | 97.27 88 |
|
our_test_3 | | | | | | 97.32 169 | 95.13 184 | 97.59 125 | | | | | | | | | | |
|
ambc | | | | 96.78 103 | | 99.01 58 | 97.11 144 | 95.73 187 | | 95.91 48 | 99.25 3 | 98.56 74 | 97.17 133 | 97.04 69 | 96.76 122 | 95.22 154 | 96.72 168 | 96.73 110 |
|
MTAPA | | | | | | | | | | | 97.43 56 | | 99.27 22 | | | | | |
|
MTMP | | | | | | | | | | | 97.63 47 | | 99.03 41 | | | | | |
|
Patchmatch-RL test | | | | | | | | 17.42 227 | | | | | | | | | | |
|
tmp_tt | | | | | 45.72 217 | 60.00 224 | 38.74 225 | 45.50 226 | 12.18 221 | 79.58 222 | 68.42 223 | 67.62 222 | 65.04 227 | 22.12 221 | 84.83 216 | 78.72 215 | 66.08 224 | |
|
XVS | | | | | | 99.48 18 | 98.76 44 | 99.22 21 | | | 96.40 102 | | 98.78 68 | | | | 98.94 55 | |
|
X-MVStestdata | | | | | | 99.48 18 | 98.76 44 | 99.22 21 | | | 96.40 102 | | 98.78 68 | | | | 98.94 55 | |
|
mPP-MVS | | | | | | 99.58 6 | | | | | | | 98.98 45 | | | | | |
|
NP-MVS | | | | | | | | | | 89.27 179 | | | | | | | | |
|
Patchmtry | | | | | | | 92.70 196 | 95.23 200 | 98.47 32 | | 96.44 98 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 72.99 223 | 80.14 223 | 37.34 219 | 83.46 214 | 60.13 225 | 84.40 211 | 85.48 194 | 86.93 205 | 87.22 210 | | 79.61 221 | 87.32 204 |
|