This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB97.71 199.33 199.47 299.16 799.16 4399.11 1399.39 1399.16 1199.26 399.22 599.51 1999.75 498.54 1599.71 299.47 499.52 1399.46 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo99.25 299.20 499.32 199.53 1599.32 999.64 299.19 1098.05 1199.19 699.74 498.96 5199.03 299.69 399.58 299.32 2699.06 7
WR-MVS99.22 399.15 699.30 299.54 1199.62 199.63 499.45 197.75 1598.47 2299.71 699.05 4298.88 499.54 699.49 399.81 198.87 10
test_part199.20 499.62 198.72 1698.92 6799.62 199.52 1299.01 1399.39 197.87 3899.74 499.75 497.29 6499.73 199.71 199.69 299.41 2
PS-CasMVS99.08 598.90 1299.28 399.65 399.56 599.59 699.39 396.36 3698.83 1499.46 2299.09 3598.62 1099.51 899.36 999.63 498.97 8
PEN-MVS99.08 598.95 999.23 599.65 399.59 399.64 299.34 696.68 2898.65 1799.43 2499.33 1798.47 1799.50 999.32 1099.60 698.79 12
v7n99.03 799.03 899.02 999.09 5499.11 1399.57 998.82 2198.21 1099.25 399.84 299.59 798.76 699.23 2098.83 3398.63 7298.40 35
DTE-MVSNet99.03 798.88 1399.21 699.66 299.59 399.62 599.34 696.92 2498.52 1999.36 3098.98 4798.57 1399.49 1099.23 1399.56 1098.55 26
TDRefinement99.00 999.13 798.86 1098.99 6499.05 1999.58 798.29 4998.96 597.96 3699.40 2798.67 7698.87 599.60 499.46 599.46 1998.74 15
WR-MVS_H98.97 1098.82 1599.14 899.56 999.56 599.54 1199.42 296.07 4198.37 2499.34 3299.09 3598.43 1899.45 1199.41 699.53 1198.86 11
UniMVSNet_ETH3D98.93 1199.20 498.63 2399.54 1199.33 898.73 6599.37 498.87 697.86 3999.27 3699.78 296.59 8799.52 799.40 799.67 398.21 43
CP-MVSNet98.91 1298.61 2099.25 499.63 599.50 799.55 1099.36 595.53 6798.77 1699.11 4398.64 7998.57 1399.42 1299.28 1299.61 598.78 13
anonymousdsp98.85 1398.88 1398.83 1198.69 8598.20 7999.68 197.35 12497.09 2398.98 1099.86 199.43 1198.94 399.28 1599.19 1499.33 2499.08 6
pmmvs698.77 1499.35 398.09 4598.32 10498.92 2598.57 7299.03 1299.36 296.86 8599.77 399.86 196.20 10299.56 599.39 899.59 798.61 23
ACMH95.26 798.75 1598.93 1098.54 2798.86 7099.01 2199.58 798.10 6998.67 797.30 6399.18 4099.42 1298.40 1999.19 2298.86 3198.99 4898.19 44
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft96.84 298.75 1598.82 1598.66 2299.14 4798.79 4099.30 1897.67 9698.33 997.82 4199.20 3999.18 3398.76 699.27 1898.96 2499.29 2898.03 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UA-Net98.66 1798.60 2398.73 1599.83 199.28 1098.56 7499.24 896.04 4297.12 7298.44 7898.95 5298.17 2899.15 2599.00 2399.48 1899.33 4
DeepC-MVS96.08 598.58 1898.49 2598.68 1999.37 2798.52 6699.01 3698.17 6497.17 2298.25 2899.56 1699.62 698.29 2298.40 6498.09 7298.97 5098.08 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TranMVSNet+NR-MVSNet98.45 1998.22 3298.72 1699.32 3299.06 1798.99 3798.89 1595.52 6897.53 5199.42 2698.83 6398.01 3498.55 5698.34 5999.57 997.80 60
CSCG98.45 1998.61 2098.26 3999.11 5199.06 1798.17 9397.49 10997.93 1397.37 6098.88 5599.29 2098.10 2998.40 6497.51 8999.32 2699.16 5
DVP-MVS++98.44 2198.92 1197.88 6599.17 4199.00 2298.89 4898.26 5197.54 1896.05 11999.35 3199.76 396.34 9798.79 3998.65 4298.56 7999.35 3
Gipumacopyleft98.43 2298.15 3598.76 1499.00 6398.29 7697.91 10898.06 7199.02 499.50 196.33 12898.67 7699.22 199.02 2898.02 7798.88 6397.66 69
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMH+94.90 898.40 2398.71 1898.04 5598.93 6698.84 3399.30 1897.86 8897.78 1494.19 17598.77 6599.39 1498.61 1199.33 1499.07 1599.33 2497.81 59
ACMMPR98.31 2498.07 3998.60 2499.58 698.83 3499.09 2898.48 3096.25 3897.03 7696.81 11799.09 3598.39 2098.55 5698.45 5199.01 4598.53 29
APDe-MVS98.29 2598.42 2798.14 4299.45 2298.90 2699.18 2598.30 4795.96 4995.13 15198.79 6299.25 2897.92 3998.80 3898.71 3798.85 6598.54 27
DVP-MVScopyleft98.27 2698.61 2097.87 6699.17 4199.03 2099.07 3098.17 6496.75 2794.35 17098.92 5199.58 897.86 4298.67 4898.70 3898.63 7298.63 21
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TransMVSNet (Re)98.23 2798.72 1797.66 7998.22 11398.73 5198.66 6898.03 7698.60 896.40 10499.60 1398.24 10195.26 12499.19 2299.05 1899.36 2197.64 70
DU-MVS98.23 2797.74 5698.81 1299.23 3598.77 4298.76 5998.88 1694.10 11698.50 2098.87 5798.32 9897.99 3598.40 6498.08 7599.49 1797.64 70
UniMVSNet (Re)98.23 2797.85 4898.67 2199.15 4498.87 2998.74 6298.84 1894.27 11497.94 3799.01 4598.39 9497.82 4398.35 6998.29 6499.51 1697.78 61
MIMVSNet198.22 3098.51 2497.87 6699.40 2698.82 3899.31 1798.53 2897.39 1996.59 9599.31 3499.23 3094.76 13498.93 3498.67 4098.63 7297.25 93
HFP-MVS98.17 3198.02 4098.35 3799.36 2898.62 5798.79 5898.46 3496.24 3996.53 9797.13 11498.98 4798.02 3398.20 7298.42 5398.95 5498.54 27
Baseline_NR-MVSNet98.17 3197.90 4598.48 3199.23 3598.59 5898.83 5598.73 2593.97 12196.95 7999.66 898.23 10397.90 4098.40 6499.06 1799.25 3197.42 85
TSAR-MVS + MP.98.15 3398.23 3198.06 5398.47 9598.16 8599.23 2296.87 13995.58 6296.72 8898.41 7999.06 3998.05 3298.99 3198.90 2899.00 4698.51 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
zzz-MVS98.14 3497.78 5398.55 2699.58 698.58 6098.98 3998.48 3095.98 4797.39 5894.73 15999.27 2497.98 3798.81 3798.64 4598.90 5898.46 31
pm-mvs198.14 3498.66 1997.53 8897.93 13498.49 6898.14 9598.19 6097.95 1296.17 11599.63 1198.85 6095.41 12298.91 3598.89 2999.34 2397.86 58
SMA-MVScopyleft98.13 3698.22 3298.02 5899.44 2498.73 5198.24 9097.87 8795.22 7596.76 8798.66 7199.35 1697.03 7298.53 5998.39 5598.80 6798.69 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.12 3798.08 3898.18 4199.34 2998.74 5098.97 4098.00 7895.13 7996.90 8097.54 10299.27 2497.18 6698.72 4498.45 5198.68 7198.69 17
UniMVSNet_NR-MVSNet98.12 3797.56 6398.78 1399.13 4998.89 2898.76 5998.78 2293.81 12498.50 2098.81 6197.64 12497.99 3598.18 7597.92 8099.53 1197.64 70
ACMM94.29 1198.12 3797.71 5798.59 2599.51 1798.58 6099.24 2198.25 5296.22 4096.90 8095.01 15298.89 5798.52 1698.66 4998.32 6299.13 3898.28 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.06 4097.78 5398.39 3599.54 1198.79 4098.94 4498.42 3693.98 12095.85 12596.66 12299.25 2898.61 1198.71 4698.38 5698.97 5098.67 20
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS98.05 4198.46 2697.57 8499.01 6098.99 2398.82 5798.24 5395.76 5794.70 16298.96 4799.49 1096.19 10398.74 4098.65 4298.46 8798.63 21
CS-MVS98.05 4197.48 6798.72 1699.30 3498.90 2699.25 2098.21 5691.35 15498.30 2697.73 9598.72 7597.96 3898.65 5099.05 1899.29 2898.00 51
OPM-MVS98.01 4398.01 4198.00 6099.11 5198.12 8898.68 6697.72 9496.65 3096.68 9298.40 8099.28 2397.44 5698.20 7297.82 8698.40 9397.58 75
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive98.01 4398.42 2797.54 8796.89 18198.82 3899.14 2697.59 9996.30 3797.04 7599.26 3798.83 6396.01 10898.73 4298.21 6698.58 7898.75 14
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
NR-MVSNet98.00 4597.88 4698.13 4398.33 10298.77 4298.83 5598.88 1694.10 11697.46 5698.87 5798.58 8495.78 11199.13 2698.16 7099.52 1397.53 78
CP-MVS98.00 4597.57 6298.50 2899.47 2198.56 6398.91 4698.38 4294.71 9597.01 7795.20 14899.06 3998.20 2498.61 5398.46 4899.02 4398.40 35
DPE-MVScopyleft97.99 4798.12 3697.84 6998.65 9098.86 3098.86 5298.05 7494.18 11595.49 14498.90 5399.33 1797.11 6898.53 5998.65 4298.86 6498.39 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMPcopyleft97.99 4797.60 6198.45 3399.53 1598.83 3499.13 2798.30 4794.57 10196.39 10895.32 14698.95 5298.37 2198.61 5398.47 4799.00 4698.45 32
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft97.98 4997.53 6598.50 2899.56 998.58 6098.97 4098.39 4193.49 12797.14 6996.08 13599.23 3098.06 3198.50 6198.38 5698.90 5898.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EG-PatchMatch MVS97.98 4997.92 4398.04 5598.84 7398.04 9697.90 10996.83 14295.07 8198.79 1599.07 4499.37 1597.88 4198.74 4098.16 7098.01 11596.96 101
ACMP94.03 1297.97 5197.61 6098.39 3599.43 2598.51 6798.97 4098.06 7194.63 9996.10 11796.12 13499.20 3298.63 998.68 4798.20 6999.14 3597.93 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train97.96 5297.53 6598.45 3399.45 2298.64 5699.09 2898.27 5092.99 13996.04 12096.57 12399.29 2098.66 898.73 4298.42 5399.19 3398.09 46
CS-MVS-test97.93 5397.30 7298.68 1998.66 8799.07 1699.33 1598.83 1991.33 15597.64 4796.30 13198.52 8798.19 2599.00 2998.96 2499.40 2097.90 57
LS3D97.93 5397.80 5098.08 4999.20 3898.77 4298.89 4897.92 8396.59 3196.99 7896.71 12097.14 13796.39 9699.04 2798.96 2499.10 4297.39 86
SD-MVS97.84 5597.78 5397.90 6398.33 10298.06 9397.95 10597.80 9396.03 4696.72 8897.57 10099.18 3397.50 5497.88 7897.08 10299.11 4098.68 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
RPSCF97.83 5698.27 2997.31 9998.23 11198.06 9397.44 13495.79 17296.90 2595.81 12798.76 6698.61 8397.70 4898.90 3698.36 5898.90 5898.29 38
thisisatest051597.82 5797.67 5897.99 6198.49 9498.07 9298.48 7998.06 7195.35 7397.74 4398.83 6097.61 12596.74 7997.53 9698.30 6398.43 9298.01 50
PGM-MVS97.82 5797.25 7598.48 3199.54 1198.75 4999.02 3298.35 4592.41 14396.84 8695.39 14598.99 4698.24 2398.43 6398.34 5998.90 5898.41 34
PMVScopyleft90.51 1797.77 5997.98 4297.53 8898.68 8698.14 8797.67 11997.03 13496.43 3298.38 2398.72 6897.03 13994.44 13999.37 1399.30 1198.98 4996.86 108
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSP-MVS97.67 6097.88 4697.43 9499.34 2998.99 2398.87 5198.12 6795.63 5994.16 17697.45 10399.50 996.44 9596.35 13298.70 3897.65 13198.57 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tfpnnormal97.66 6197.79 5197.52 9098.32 10498.53 6598.45 8297.69 9597.59 1796.12 11697.79 9496.70 14395.69 11698.35 6998.34 5998.85 6597.22 96
FC-MVSNet-train97.65 6298.16 3497.05 11198.85 7198.85 3199.34 1498.08 7094.50 10694.41 16899.21 3898.80 6792.66 16498.98 3298.85 3298.96 5297.94 53
v1097.64 6397.26 7498.08 4998.07 12498.56 6398.86 5298.18 6294.48 10798.24 2999.56 1698.98 4797.72 4796.05 14296.26 12997.42 14096.93 102
DROMVSNet97.63 6496.88 9798.50 2898.74 8099.16 1199.33 1598.83 1988.77 18396.62 9496.48 12597.75 11798.19 2599.00 2998.76 3599.29 2898.27 42
X-MVS97.60 6597.00 9298.29 3899.50 1898.76 4598.90 4798.37 4394.67 9896.40 10491.47 19898.78 6997.60 5398.55 5698.50 4698.96 5298.29 38
3Dnovator+96.20 497.58 6697.14 8398.10 4498.98 6597.85 10898.60 7198.33 4696.41 3497.23 6794.66 16297.26 13396.91 7697.91 7797.87 8298.53 8298.03 48
DCV-MVSNet97.56 6797.63 5997.47 9298.41 9999.12 1298.63 6998.57 2695.71 5895.60 14193.79 17798.01 11294.25 14299.16 2498.88 3099.35 2298.74 15
HPM-MVS++copyleft97.56 6797.11 8798.09 4599.18 4097.95 10398.57 7298.20 5894.08 11897.25 6695.96 13998.81 6697.13 6797.51 9797.30 9998.21 10398.15 45
FC-MVSNet-test97.54 6998.26 3096.70 12898.87 6997.79 11698.49 7898.56 2796.04 4290.39 20499.65 998.67 7695.15 12699.23 2099.07 1598.73 7097.39 86
TSAR-MVS + ACMM97.54 6997.79 5197.26 10098.23 11198.10 9197.71 11797.88 8695.97 4895.57 14398.71 6998.57 8597.36 5997.74 8596.81 11196.83 16598.59 24
DeepC-MVS_fast95.38 697.53 7197.30 7297.79 7498.83 7497.64 11998.18 9197.14 13095.57 6397.83 4097.10 11598.80 6796.53 9297.41 10097.32 9798.24 10297.26 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v119297.52 7297.03 9198.09 4598.31 10798.01 9898.96 4397.25 12795.22 7598.89 1299.64 1098.83 6397.68 4995.63 14995.91 13997.47 13695.97 135
v114497.51 7397.05 9098.04 5598.26 10997.98 10098.88 5097.42 11895.38 7298.56 1899.59 1599.01 4597.65 5095.77 14696.06 13697.47 13695.56 147
v897.51 7397.16 8197.91 6297.99 13098.48 6998.76 5998.17 6494.54 10597.69 4599.48 2198.76 7297.63 5296.10 14196.14 13197.20 15096.64 115
v192192097.50 7597.00 9298.07 5198.20 11597.94 10699.03 3197.06 13295.29 7499.01 999.62 1298.73 7497.74 4695.52 15295.78 14497.39 14296.12 131
Anonymous2023121197.49 7697.91 4497.00 11598.31 10798.72 5398.27 8897.84 9094.76 9494.77 16198.14 8798.38 9693.60 15298.96 3398.66 4199.22 3297.77 64
v14419297.49 7696.99 9498.07 5198.11 12397.95 10399.02 3297.21 12894.90 9098.88 1399.53 1898.89 5797.75 4595.59 15095.90 14097.43 13996.16 129
test111197.48 7897.20 7897.81 7398.78 7898.85 3198.68 6698.40 3796.68 2894.84 15999.13 4290.32 18997.01 7399.27 1899.05 1899.19 3397.10 98
GeoE97.48 7896.84 10198.22 4099.01 6098.39 7298.85 5498.76 2392.37 14497.53 5197.58 9998.23 10397.11 6897.57 9596.98 10598.10 11196.78 111
APD-MVScopyleft97.47 8097.16 8197.84 6999.32 3298.39 7298.47 8198.21 5692.08 14895.23 14896.68 12198.90 5596.99 7498.20 7298.21 6698.80 6797.67 68
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended_VisFu97.44 8197.14 8397.79 7499.15 4498.44 7098.32 8697.66 9793.74 12697.73 4498.79 6296.93 14295.64 12197.69 8796.91 10898.25 10197.50 81
PHI-MVS97.44 8197.17 8097.74 7798.14 12098.41 7198.03 10197.50 10792.07 14998.01 3597.33 10898.62 8296.02 10798.34 7198.21 6698.76 6997.24 95
v124097.43 8396.87 10098.09 4598.25 11097.92 10799.02 3297.06 13294.77 9399.09 899.68 798.51 8997.78 4495.25 15795.81 14297.32 14696.13 130
ECVR-MVScopyleft97.40 8497.11 8797.73 7898.66 8798.83 3498.50 7698.40 3796.04 4295.00 15798.95 4991.07 18696.70 8199.28 1599.04 2199.14 3596.58 116
FMVSNet197.40 8498.09 3796.60 13297.80 14898.76 4598.26 8998.50 2996.79 2693.13 19299.28 3598.64 7992.90 16297.67 8997.86 8399.02 4397.64 70
v2v48297.33 8696.84 10197.90 6398.19 11697.83 10998.74 6297.44 11595.42 7198.23 3099.46 2298.84 6297.46 5595.51 15396.10 13497.36 14494.72 156
xxxxxxxxxxxxxcwj97.32 8797.55 6497.05 11198.80 7697.83 10996.02 18297.44 11594.98 8495.74 13197.16 11199.30 1995.72 11397.85 7997.97 7898.60 7597.78 61
EPP-MVSNet97.29 8896.88 9797.76 7698.70 8299.10 1598.92 4598.36 4495.12 8093.36 19097.39 10591.00 18797.65 5098.72 4498.91 2799.58 897.92 55
MVS_111021_HR97.27 8997.11 8797.46 9398.46 9697.82 11397.50 13096.86 14094.97 8697.13 7196.99 11698.39 9496.82 7897.65 9297.38 9298.02 11496.56 119
SF-MVS97.26 9097.43 6897.05 11198.80 7697.83 10996.02 18297.44 11594.98 8495.74 13197.16 11198.45 9395.72 11397.85 7997.97 7898.60 7597.78 61
TSAR-MVS + GP.97.26 9097.33 7197.18 10598.21 11498.06 9396.38 17397.66 9793.92 12395.23 14898.48 7698.33 9797.41 5797.63 9397.35 9398.18 10597.57 76
OMC-MVS97.23 9297.21 7797.25 10397.85 13997.52 12897.92 10795.77 17395.83 5397.09 7497.86 9298.52 8796.62 8597.51 9796.65 11698.26 9996.57 117
3Dnovator96.31 397.22 9397.19 7997.25 10398.14 12097.95 10398.03 10196.77 14596.42 3397.14 6995.11 14997.59 12695.14 12897.79 8397.72 8798.26 9997.76 66
MVS_030497.18 9496.84 10197.58 8399.15 4498.19 8098.11 9697.81 9292.36 14598.06 3397.43 10499.06 3994.24 14396.80 12196.54 12098.12 10997.52 79
canonicalmvs97.11 9596.88 9797.38 9598.34 10198.72 5397.52 12997.94 8195.60 6095.01 15694.58 16394.50 16796.59 8797.84 8198.03 7698.90 5898.91 9
V4297.10 9696.97 9597.26 10097.64 15497.60 12198.45 8295.99 16294.44 10897.35 6199.40 2798.63 8197.34 6196.33 13596.38 12696.82 16796.00 133
CPTT-MVS97.08 9796.25 11598.05 5499.21 3798.30 7598.54 7597.98 7994.28 11295.89 12489.57 20798.54 8698.18 2797.82 8297.32 9798.54 8097.91 56
DeepPCF-MVS94.55 1097.05 9897.13 8696.95 11796.06 19597.12 14598.01 10395.44 17995.18 7797.50 5397.86 9298.08 10897.31 6397.23 10597.00 10497.36 14497.45 83
QAPM97.04 9997.14 8396.93 11997.78 15198.02 9797.36 13996.72 14694.68 9796.23 11097.21 11097.68 12295.70 11597.37 10197.24 10197.78 12497.77 64
CNVR-MVS97.03 10096.77 10697.34 9698.89 6897.67 11897.64 12297.17 12994.40 11095.70 13794.02 17298.76 7296.49 9497.78 8497.29 10098.12 10997.47 82
casdiffmvs97.00 10197.36 7096.59 13397.65 15397.98 10098.06 9896.81 14395.78 5592.77 19899.40 2799.26 2795.65 12096.70 12496.39 12598.59 7795.99 134
v14896.99 10296.70 10897.34 9697.89 13797.23 13798.33 8596.96 13595.57 6397.12 7298.99 4699.40 1397.23 6596.22 13895.45 14996.50 17294.02 168
DELS-MVS96.90 10397.24 7696.50 13897.85 13998.18 8197.88 11295.92 16593.48 12895.34 14698.86 5998.94 5494.03 14697.33 10397.04 10398.00 11696.85 109
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR96.86 10496.72 10797.03 11497.80 14897.06 14897.04 15395.51 17894.55 10297.47 5497.35 10797.68 12296.66 8397.11 11096.73 11397.69 12896.57 117
PM-MVS96.85 10596.62 11097.11 10797.13 17696.51 16198.29 8794.65 19694.84 9198.12 3198.59 7297.20 13497.41 5796.24 13796.41 12497.09 15596.56 119
pmmvs-eth3d96.84 10696.22 11797.56 8597.63 15696.38 16898.74 6296.91 13894.63 9998.26 2799.43 2498.28 9996.58 8994.52 16795.54 14797.24 14894.75 155
CANet96.81 10796.50 11197.17 10699.10 5397.96 10297.86 11397.51 10591.30 15697.75 4297.64 9797.89 11593.39 15696.98 11796.73 11397.40 14196.99 100
Fast-Effi-MVS+96.80 10895.92 12897.84 6998.57 9297.46 13198.06 9898.24 5389.64 17897.57 5096.45 12697.35 13196.73 8097.22 10696.64 11797.86 12196.65 114
MCST-MVS96.79 10996.08 12197.62 8198.78 7897.52 12898.01 10397.32 12593.20 13195.84 12693.97 17498.12 10697.34 6196.34 13395.88 14198.45 8897.51 80
UGNet96.79 10997.82 4995.58 16197.57 15998.39 7298.48 7997.84 9095.85 5294.68 16397.91 9199.07 3887.12 20397.71 8697.51 8997.80 12298.29 38
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAPA-MVS93.96 1396.79 10996.70 10896.90 12197.64 15497.58 12297.54 12894.50 19895.14 7896.64 9396.76 11997.90 11496.63 8495.98 14396.14 13198.45 8897.39 86
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS96.73 11296.92 9696.51 13798.70 8297.57 12497.64 12292.07 20593.10 13796.31 10998.29 8299.02 4495.99 10997.20 10796.47 12298.37 9596.81 110
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg96.68 11395.93 12797.56 8599.08 5597.16 14198.44 8497.37 12191.12 16095.18 15095.43 14498.48 9197.36 5996.48 12995.52 14897.95 11997.34 90
CDPH-MVS96.68 11395.99 12497.48 9199.13 4997.64 11998.08 9797.46 11190.56 16695.13 15194.87 15798.27 10096.56 9097.09 11196.45 12398.54 8097.08 99
MSLP-MVS++96.66 11596.46 11496.89 12298.02 12697.71 11795.57 19096.96 13594.36 11196.19 11491.37 19998.24 10197.07 7097.69 8797.89 8197.52 13497.95 52
TinyColmap96.64 11696.07 12297.32 9897.84 14496.40 16597.63 12496.25 15695.86 5198.98 1097.94 9096.34 15096.17 10497.30 10495.38 15297.04 15793.24 175
IS_MVSNet96.62 11796.48 11396.78 12698.46 9698.68 5598.61 7098.24 5392.23 14689.63 20895.90 14094.40 16896.23 9998.65 5098.77 3499.52 1396.76 112
NCCC96.56 11895.68 13097.59 8299.04 5997.54 12797.67 11997.56 10394.84 9196.10 11787.91 21098.09 10796.98 7597.20 10796.80 11298.21 10397.38 89
ETV-MVS96.54 11995.27 13798.02 5899.07 5797.48 13098.16 9498.19 6087.33 19897.58 4992.67 18695.93 15696.22 10098.49 6298.46 4898.91 5796.50 122
Effi-MVS+96.46 12095.28 13697.85 6898.64 9197.16 14197.15 15198.75 2490.27 17098.03 3493.93 17596.21 15196.55 9196.34 13396.69 11597.97 11896.33 125
IterMVS-LS96.35 12195.85 12996.93 11997.53 16098.00 9997.37 13797.97 8095.49 7096.71 9198.94 5093.23 17494.82 13393.15 18695.05 15597.17 15297.12 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC96.30 12295.64 13297.07 10997.62 15796.35 17097.17 14995.71 17495.52 6899.17 798.11 8897.46 12895.67 11795.44 15593.60 17597.09 15592.99 179
Vis-MVSNet (Re-imp)96.29 12396.50 11196.05 14797.96 13397.83 10997.30 14197.86 8893.14 13388.90 21196.80 11895.28 16095.15 12698.37 6898.25 6599.12 3995.84 137
MSDG96.27 12496.17 12096.38 14397.85 13996.27 17196.55 17094.41 19994.55 10295.62 14097.56 10197.80 11696.22 10097.17 10996.27 12897.67 13093.60 172
CNLPA96.24 12595.97 12596.57 13597.48 16597.10 14796.75 16394.95 19094.92 8996.20 11394.81 15896.61 14596.25 9896.94 11895.64 14597.79 12395.74 143
EIA-MVS96.23 12694.85 14997.84 6999.08 5598.21 7897.69 11898.03 7685.68 20898.09 3291.75 19697.07 13895.66 11997.58 9497.72 8798.47 8695.91 136
PLCcopyleft92.55 1596.10 12795.36 13396.96 11698.13 12296.88 15296.49 17196.67 15094.07 11995.71 13691.14 20096.09 15396.84 7796.70 12496.58 11997.92 12096.03 132
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test20.0396.08 12896.80 10495.25 17099.19 3997.58 12297.24 14697.56 10394.95 8891.91 19998.58 7398.03 11087.88 19997.43 9996.94 10797.69 12894.05 167
TSAR-MVS + COLMAP96.05 12995.94 12696.18 14697.46 16696.41 16497.26 14595.83 16994.69 9695.30 14798.31 8196.52 14694.71 13595.48 15494.87 15796.54 17195.33 150
EU-MVSNet96.03 13096.23 11695.80 15595.48 20894.18 18998.99 3791.51 20797.22 2197.66 4699.15 4198.51 8998.08 3095.92 14492.88 18293.09 19595.72 144
PCF-MVS92.69 1495.98 13195.05 14497.06 11098.43 9897.56 12597.76 11596.65 15189.95 17595.70 13796.18 13398.48 9195.74 11293.64 17893.35 17998.09 11396.18 128
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP-MVS95.97 13295.01 14697.08 10898.72 8197.19 13997.07 15296.69 14991.49 15295.77 13092.19 19297.93 11396.15 10594.66 16494.16 16698.10 11197.45 83
Effi-MVS+-dtu95.94 13395.08 14396.94 11898.54 9397.38 13296.66 16797.89 8588.68 18495.92 12292.90 18597.28 13294.18 14596.68 12696.13 13398.45 8896.51 121
diffmvs95.86 13496.21 11895.44 16497.25 17496.85 15596.99 15595.23 18494.96 8792.82 19798.89 5498.85 6093.52 15494.21 17394.25 16596.84 16495.49 148
AdaColmapbinary95.85 13594.65 15297.26 10098.70 8297.20 13897.33 14097.30 12691.28 15895.90 12388.16 20996.17 15296.60 8697.34 10296.82 11097.71 12595.60 146
FMVSNet295.77 13696.20 11995.27 16896.77 18498.18 8197.28 14297.90 8493.12 13491.37 20198.25 8496.05 15490.04 18494.96 16295.94 13898.28 9696.90 103
OpenMVScopyleft94.63 995.75 13795.04 14596.58 13497.85 13997.55 12696.71 16596.07 15990.15 17396.47 9990.77 20595.95 15594.41 14097.01 11696.95 10698.00 11696.90 103
pmmvs595.70 13895.22 13896.26 14496.55 19097.24 13697.50 13094.99 18990.95 16296.87 8298.47 7797.40 12994.45 13892.86 18794.98 15697.23 14994.64 158
Anonymous2023120695.69 13995.68 13095.70 15798.32 10496.95 15097.37 13796.65 15193.33 12993.61 18498.70 7098.03 11091.04 17395.07 16094.59 16497.20 15093.09 178
MAR-MVS95.51 14094.49 15696.71 12797.92 13596.40 16596.72 16498.04 7586.74 20296.72 8892.52 18995.14 16294.02 14796.81 12096.54 12096.85 16297.25 93
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DI_MVS_plusplus_trai95.48 14194.51 15496.61 13197.13 17697.30 13498.05 10096.79 14493.75 12595.08 15496.38 12789.76 19194.95 12993.97 17794.82 16197.64 13295.63 145
MDA-MVSNet-bldmvs95.45 14295.20 13995.74 15694.24 21396.38 16897.93 10694.80 19195.56 6696.87 8298.29 8295.24 16196.50 9398.65 5090.38 19494.09 18991.93 183
PVSNet_BlendedMVS95.44 14395.09 14195.86 15397.31 17197.13 14396.31 17695.01 18788.55 18796.23 11094.55 16697.75 11792.56 16696.42 13095.44 15097.71 12595.81 138
PVSNet_Blended95.44 14395.09 14195.86 15397.31 17197.13 14396.31 17695.01 18788.55 18796.23 11094.55 16697.75 11792.56 16696.42 13095.44 15097.71 12595.81 138
pmmvs495.37 14594.25 15796.67 13097.01 17995.28 18397.60 12596.07 15993.11 13597.29 6498.09 8994.23 17095.21 12591.56 19893.91 17296.82 16793.59 173
MVS_Test95.34 14694.88 14895.89 15296.93 18096.84 15696.66 16797.08 13190.06 17494.02 17797.61 9896.64 14493.59 15392.73 19094.02 17097.03 15896.24 126
GBi-Net95.21 14795.35 13495.04 17396.77 18498.18 8197.28 14297.58 10088.43 18990.28 20596.01 13692.43 17790.04 18497.67 8997.86 8398.28 9696.90 103
test195.21 14795.35 13495.04 17396.77 18498.18 8197.28 14297.58 10088.43 18990.28 20596.01 13692.43 17790.04 18497.67 8997.86 8398.28 9696.90 103
IterMVS-SCA-FT95.16 14993.95 16196.56 13697.89 13796.69 15896.94 15796.05 16193.06 13897.35 6198.79 6291.45 18295.93 11092.78 18891.00 19295.22 18593.91 170
HyFIR lowres test95.05 15093.54 16696.81 12597.81 14796.88 15298.18 9197.46 11194.28 11294.98 15896.57 12392.89 17696.15 10590.90 20391.87 18896.28 17791.35 184
CHOSEN 1792x268894.98 15194.69 15195.31 16697.27 17395.58 18097.90 10995.56 17795.03 8293.77 18395.65 14299.29 2095.30 12391.51 19991.28 19192.05 20394.50 160
CANet_DTU94.96 15294.62 15395.35 16598.03 12596.11 17396.92 15995.60 17688.59 18697.27 6595.27 14796.50 14788.77 19595.53 15195.59 14695.54 18394.78 154
CDS-MVSNet94.91 15395.17 14094.60 18197.85 13996.21 17296.90 16196.39 15490.81 16393.40 18897.24 10994.54 16685.78 20996.25 13696.15 13097.26 14795.01 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DPM-MVS94.86 15493.90 16395.99 14998.19 11696.52 16096.29 17895.95 16393.11 13594.61 16588.17 20896.44 14893.77 15193.33 18193.54 17797.11 15496.22 127
MS-PatchMatch94.84 15594.76 15094.94 17696.38 19194.69 18895.90 18594.03 20192.49 14293.81 18195.79 14196.38 14994.54 13694.70 16394.85 15894.97 18794.43 162
thisisatest053094.81 15693.06 17296.85 12498.01 12797.18 14096.93 15897.36 12289.73 17795.80 12894.98 15377.88 21294.89 13096.73 12397.35 9398.13 10897.54 77
tttt051794.81 15693.04 17396.88 12398.15 11997.37 13396.99 15597.36 12289.51 17995.74 13194.89 15577.53 21494.89 13096.94 11897.35 9398.17 10697.70 67
testgi94.81 15696.05 12393.35 19299.06 5896.87 15497.57 12796.70 14895.77 5688.60 21393.19 18398.87 5981.21 21797.03 11596.64 11796.97 16193.99 169
PatchMatch-RL94.79 15993.75 16596.00 14896.80 18395.00 18595.47 19595.25 18390.68 16595.80 12892.97 18493.64 17295.67 11796.13 14095.81 14296.99 16092.01 182
FPMVS94.70 16094.99 14794.37 18395.84 20193.20 19496.00 18491.93 20695.03 8294.64 16494.68 16093.29 17390.95 17498.07 7697.34 9696.85 16293.29 174
new-patchmatchnet94.48 16194.02 15995.02 17597.51 16495.00 18595.68 18994.26 20097.32 2095.73 13499.60 1398.22 10591.30 16994.13 17484.41 20495.65 18289.45 195
IterMVS94.48 16193.46 16895.66 15897.52 16196.43 16297.20 14794.73 19492.91 14196.44 10098.75 6791.10 18494.53 13792.10 19490.10 19693.51 19292.84 181
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDTV_nov1_ep13_2view94.39 16393.34 16995.63 15997.23 17595.33 18297.76 11596.84 14194.55 10297.47 5498.96 4797.70 12093.88 14892.27 19286.81 20290.56 20587.73 203
Fast-Effi-MVS+-dtu94.34 16493.26 17195.62 16097.82 14595.97 17695.86 18699.01 1386.88 20093.39 18990.83 20395.46 15990.61 17894.46 16994.68 16297.01 15994.51 159
thres600view794.34 16492.31 18196.70 12898.19 11698.12 8897.85 11497.45 11391.49 15293.98 17984.27 21382.02 20394.24 14397.04 11298.76 3598.49 8494.47 161
EPNet94.33 16693.52 16795.27 16898.81 7594.71 18796.77 16298.20 5888.12 19296.53 9792.53 18891.19 18385.25 21395.22 15895.26 15396.09 18097.63 74
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test250694.29 16791.43 18997.64 8098.66 8798.83 3498.50 7698.40 3796.04 4294.45 16794.88 15655.05 22896.70 8199.28 1599.04 2199.14 3596.87 107
GA-MVS94.18 16892.98 17495.58 16197.36 16896.42 16396.21 17995.86 16690.29 16995.08 15496.19 13285.37 19592.82 16394.01 17694.14 16796.16 17994.41 163
gg-mvs-nofinetune94.13 16993.93 16294.37 18397.99 13095.86 17795.45 19899.22 997.61 1695.10 15399.50 2084.50 19681.73 21695.31 15694.12 16896.71 17090.59 188
baseline94.07 17094.50 15593.57 19096.34 19293.40 19395.56 19392.39 20492.07 14994.00 17898.24 8597.51 12789.19 19091.75 19692.72 18393.96 19195.79 140
FMVSNet394.06 17193.85 16494.31 18695.46 20997.80 11596.34 17497.58 10088.43 18990.28 20596.01 13692.43 17788.67 19691.82 19593.96 17197.53 13396.50 122
thres40094.04 17291.94 18496.50 13897.98 13297.82 11397.66 12196.96 13590.96 16194.20 17383.24 21482.82 20193.80 14996.50 12898.09 7298.38 9494.15 165
CVMVSNet94.01 17394.25 15793.73 18994.36 21292.44 19797.45 13388.56 21095.59 6193.06 19598.88 5590.03 19094.84 13294.08 17593.45 17894.09 18995.31 151
thres20093.98 17491.90 18596.40 14297.66 15298.12 8897.20 14797.45 11390.16 17293.82 18083.08 21583.74 19993.80 14997.04 11297.48 9198.49 8493.70 171
baseline193.89 17592.82 17695.14 17297.62 15796.97 14996.12 18096.36 15591.30 15691.53 20094.68 16080.72 20590.80 17695.71 14796.29 12798.44 9194.09 166
tfpn200view993.80 17691.75 18696.20 14597.52 16198.15 8697.48 13297.47 11087.65 19493.56 18683.03 21684.12 19792.62 16597.04 11298.09 7298.52 8394.17 164
MIMVSNet93.68 17793.96 16093.35 19297.82 14596.08 17496.34 17498.46 3491.28 15886.67 21894.95 15494.87 16484.39 21494.53 16594.65 16396.45 17491.34 185
pmnet_mix0293.59 17892.65 17794.69 17996.76 18794.16 19097.03 15493.00 20395.79 5496.03 12198.91 5297.69 12192.99 15990.03 20684.10 20692.35 20187.89 202
EPNet_dtu93.45 17992.51 17994.55 18298.39 10091.67 20695.46 19697.50 10786.56 20397.38 5993.52 17894.20 17185.82 20893.31 18392.53 18492.72 19795.76 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS92.44 1693.33 18092.15 18394.70 17897.42 16796.39 16795.57 19094.67 19586.40 20693.59 18578.28 22095.76 15889.59 18995.88 14595.98 13797.39 14296.34 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D93.18 18190.80 19295.95 15096.05 19696.07 17596.92 15996.51 15389.34 18095.63 13994.08 17172.31 22393.13 15794.33 17194.83 15997.44 13894.65 157
thres100view90092.93 18290.89 19195.31 16697.52 16196.82 15796.41 17295.08 18587.65 19493.56 18683.03 21684.12 19791.12 17294.53 16596.91 10898.17 10693.21 176
N_pmnet92.46 18392.38 18092.55 19897.91 13693.47 19297.42 13594.01 20296.40 3588.48 21498.50 7598.07 10988.14 19891.04 20284.30 20589.35 21084.85 209
TAMVS92.46 18393.34 16991.44 20697.03 17893.84 19194.68 20890.60 20890.44 16885.31 21997.14 11393.03 17585.78 20994.34 17093.67 17495.22 18590.93 187
CMPMVSbinary71.81 1992.34 18592.85 17591.75 20492.70 21790.43 21188.84 22088.56 21085.87 20794.35 17090.98 20195.89 15791.14 17196.14 13994.83 15994.93 18895.78 141
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline292.06 18689.82 19594.68 18097.32 16995.72 17894.97 20595.08 18584.75 21194.34 17290.68 20677.75 21390.13 18393.38 17993.58 17696.25 17892.90 180
MVSTER91.97 18790.31 19393.91 18796.81 18296.91 15194.22 20995.64 17584.98 20992.98 19693.42 17972.56 22186.64 20795.11 15993.89 17397.16 15395.31 151
CR-MVSNet91.94 18888.50 19895.94 15196.14 19492.08 20195.23 20198.47 3284.30 21396.44 10094.58 16375.57 21592.92 16090.22 20492.22 18596.43 17590.56 189
gm-plane-assit91.85 18987.91 20096.44 14199.14 4798.25 7799.02 3297.38 12095.57 6398.31 2599.34 3251.00 22988.93 19393.16 18591.57 18995.85 18186.50 206
PMMVS91.67 19091.47 18891.91 20389.43 22288.61 21794.99 20485.67 21587.50 19693.80 18294.42 16994.88 16390.71 17792.26 19392.96 18196.83 16589.65 193
CHOSEN 280x42091.55 19190.27 19493.05 19594.61 21188.01 21896.56 16994.62 19788.04 19394.20 17392.66 18786.60 19390.82 17595.06 16191.89 18787.49 21589.61 194
PatchT91.40 19288.54 19794.74 17791.48 22192.18 20097.42 13597.51 10584.96 21096.44 10094.16 17075.47 21692.92 16090.22 20492.22 18592.66 20090.56 189
pmmvs391.20 19391.40 19090.96 20891.71 22091.08 20795.41 19981.34 21987.36 19794.57 16695.02 15194.30 16990.42 17994.28 17289.26 19892.30 20288.49 200
test0.0.03 191.17 19491.50 18790.80 20998.01 12795.46 18194.22 20995.80 17086.55 20481.75 22190.83 20387.93 19278.48 21894.51 16894.11 16996.50 17291.08 186
SCA91.15 19587.65 20295.23 17196.15 19395.68 17996.68 16698.18 6290.46 16797.21 6892.44 19080.17 20793.51 15586.04 21383.58 20989.68 20985.21 208
new_pmnet90.85 19692.26 18289.21 21293.68 21689.05 21693.20 21784.16 21892.99 13984.25 22097.72 9694.60 16586.80 20693.20 18491.30 19093.21 19386.94 205
RPMNet90.52 19786.27 21195.48 16395.95 19992.08 20195.55 19498.12 6784.30 21395.60 14187.49 21172.78 22091.24 17087.93 20889.34 19796.41 17689.98 192
MDTV_nov1_ep1390.30 19887.32 20693.78 18896.00 19892.97 19595.46 19695.39 18088.61 18595.41 14594.45 16880.39 20689.87 18786.58 21183.54 21090.56 20584.71 210
PatchmatchNetpermissive89.98 19986.23 21294.36 18596.56 18991.90 20596.07 18196.72 14690.18 17196.87 8293.36 18278.06 21191.46 16884.71 21781.40 21488.45 21283.97 214
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet89.89 20087.70 20192.43 20095.52 20690.91 20995.57 19095.33 18193.19 13291.21 20293.41 18082.12 20289.05 19186.21 21283.77 20887.92 21384.31 211
tpm89.84 20186.81 20893.36 19196.60 18891.92 20495.02 20397.39 11986.79 20196.54 9695.03 15069.70 22487.66 20088.79 20786.19 20386.95 21789.27 196
test-LLR89.77 20287.47 20492.45 19998.01 12789.77 21393.25 21595.80 17081.56 21889.19 20992.08 19379.59 20885.77 21191.47 20089.04 20092.69 19888.75 197
FMVSNet589.65 20387.60 20392.04 20295.63 20596.61 15994.82 20794.75 19280.11 22287.72 21677.73 22173.81 21983.81 21595.64 14896.08 13595.49 18493.21 176
EPMVS89.28 20486.28 21092.79 19796.01 19792.00 20395.83 18795.85 16890.78 16491.00 20394.58 16374.65 21788.93 19385.00 21582.88 21289.09 21184.09 213
test-mter89.16 20588.14 19990.37 21094.79 21091.05 20893.60 21485.26 21681.65 21788.32 21592.22 19179.35 21087.03 20492.28 19190.12 19593.19 19490.29 191
CostFormer89.06 20685.65 21393.03 19695.88 20092.40 19895.30 20095.86 16686.49 20593.12 19493.40 18174.18 21888.25 19782.99 21881.46 21389.77 20888.66 199
MVS-HIRNet88.72 20786.49 20991.33 20791.81 21985.66 21987.02 22296.25 15681.48 22094.82 16096.31 13092.14 18090.32 18187.60 20983.82 20787.74 21478.42 218
TESTMET0.1,188.60 20887.47 20489.93 21194.23 21489.77 21393.25 21584.47 21781.56 21889.19 20992.08 19379.59 20885.77 21191.47 20089.04 20092.69 19888.75 197
dps88.36 20984.32 21693.07 19493.86 21592.29 19994.89 20695.93 16483.50 21593.13 19291.87 19567.79 22690.32 18185.99 21483.22 21190.28 20785.56 207
tpmrst87.60 21084.13 21791.66 20595.65 20489.73 21593.77 21294.74 19388.85 18293.35 19195.60 14372.37 22287.40 20181.24 21978.19 21685.02 22082.90 217
tpm cat187.19 21182.78 21892.33 20195.66 20390.61 21094.19 21195.27 18286.97 19994.38 16990.91 20269.40 22587.21 20279.57 22177.82 21787.25 21684.18 212
E-PMN86.94 21285.10 21489.09 21495.77 20283.54 22289.89 21986.55 21292.18 14787.34 21794.02 17283.42 20089.63 18893.32 18277.11 21885.33 21872.09 219
EMVS86.63 21384.48 21589.15 21395.51 20783.66 22190.19 21886.14 21491.78 15188.68 21293.83 17681.97 20489.05 19192.76 18976.09 21985.31 21971.28 220
PMMVS286.47 21492.62 17879.29 21692.01 21885.63 22093.74 21386.37 21393.95 12254.18 22698.19 8697.39 13058.46 21996.57 12793.07 18090.99 20483.55 216
MVEpermissive72.99 1885.37 21589.43 19680.63 21574.43 22371.94 22488.25 22189.81 20993.27 13067.32 22496.32 12991.83 18190.40 18093.36 18090.79 19373.55 22388.49 200
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method61.30 21670.45 21950.62 21722.69 22530.92 22668.31 22525.76 22180.56 22168.71 22282.80 21891.08 18544.64 22080.50 22056.70 22073.64 22270.58 221
GG-mvs-BLEND61.03 21787.02 20730.71 2190.74 22890.01 21278.90 2240.74 22584.56 2129.46 22779.17 21990.69 1881.37 22491.74 19789.13 19993.04 19683.83 215
testmvs4.99 2186.88 2202.78 2211.73 2262.04 2283.10 2281.71 2237.27 2243.92 22912.18 2236.71 2303.31 2236.94 2225.51 2222.94 2257.51 222
test1234.41 2195.71 2212.88 2201.28 2272.21 2273.09 2291.65 2246.35 2254.98 2288.53 2243.88 2313.46 2225.79 2235.71 2212.85 2267.50 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def99.38 2
9.1496.98 141
SR-MVS99.33 3198.40 3798.90 55
Anonymous20240521197.39 6998.85 7198.59 5897.89 11197.93 8294.41 10997.37 10696.99 14093.09 15898.61 5398.46 4899.11 4097.27 91
our_test_397.32 16995.13 18497.59 126
ambc96.78 10599.01 6097.11 14695.73 18895.91 5099.25 398.56 7497.17 13597.04 7196.76 12295.22 15496.72 16996.73 113
MTAPA97.43 5799.27 24
MTMP97.63 4899.03 43
Patchmatch-RL test17.42 227
tmp_tt45.72 21860.00 22438.74 22545.50 22612.18 22279.58 22368.42 22367.62 22265.04 22722.12 22184.83 21678.72 21566.08 224
XVS99.48 1998.76 4599.22 2396.40 10498.78 6998.94 55
X-MVStestdata99.48 1998.76 4599.22 2396.40 10498.78 6998.94 55
abl_696.45 14097.79 15097.28 13597.16 15096.16 15889.92 17695.72 13591.59 19797.16 13694.37 14197.51 13595.49 148
mPP-MVS99.58 698.98 47
NP-MVS89.27 181
Patchmtry92.70 19695.23 20198.47 3296.44 100
DeepMVS_CXcopyleft72.99 22380.14 22337.34 22083.46 21660.13 22584.40 21285.48 19486.93 20587.22 21079.61 22187.32 204