TDRefinement | | | 93.16 1 | 95.57 1 | 90.36 1 | 88.79 53 | 93.57 1 | 97.27 1 | 78.23 22 | 95.55 2 | 93.00 1 | 93.98 18 | 96.01 40 | 87.53 1 | 97.69 1 | 96.81 1 | 97.33 1 | 95.34 4 |
|
CP-MVS | | | 91.09 5 | 92.33 26 | 89.65 2 | 92.16 11 | 90.41 27 | 96.46 10 | 80.38 8 | 88.26 47 | 89.17 11 | 87.00 96 | 96.34 32 | 83.95 10 | 95.77 11 | 94.72 8 | 95.81 17 | 93.78 10 |
|
MP-MVS |  | | 90.84 6 | 91.95 35 | 89.55 3 | 92.92 5 | 90.90 19 | 96.56 6 | 79.60 11 | 86.83 61 | 88.75 13 | 89.00 74 | 94.38 79 | 84.01 9 | 94.94 25 | 94.34 11 | 95.45 24 | 93.24 23 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMPR | | | 91.30 4 | 92.88 12 | 89.46 4 | 91.92 12 | 91.61 5 | 96.60 5 | 79.46 14 | 90.08 32 | 88.53 14 | 89.54 66 | 95.57 49 | 84.25 7 | 95.24 20 | 94.27 13 | 95.97 11 | 93.85 8 |
|
zzz-MVS | | | 90.38 12 | 91.35 42 | 89.25 5 | 93.08 3 | 86.59 65 | 96.45 11 | 79.00 16 | 90.23 29 | 89.30 10 | 85.87 107 | 94.97 66 | 82.54 18 | 95.05 23 | 94.83 7 | 95.14 27 | 91.94 37 |
|
PGM-MVS | | | 90.42 11 | 91.58 38 | 89.05 6 | 91.77 15 | 91.06 13 | 96.51 7 | 78.94 17 | 85.41 73 | 87.67 19 | 87.02 95 | 95.26 57 | 83.62 12 | 95.01 24 | 93.94 16 | 95.79 19 | 93.40 20 |
|
CPTT-MVS | | | 89.63 26 | 90.52 50 | 88.59 7 | 90.95 32 | 90.74 21 | 95.71 17 | 79.13 15 | 87.70 52 | 85.68 39 | 80.05 140 | 95.74 47 | 84.77 6 | 94.28 30 | 92.68 27 | 95.28 26 | 92.45 32 |
|
ACMM | | 80.67 7 | 90.67 7 | 92.46 20 | 88.57 8 | 91.35 23 | 89.93 32 | 96.34 12 | 77.36 31 | 90.17 30 | 86.88 30 | 87.32 91 | 96.63 25 | 83.32 13 | 95.79 10 | 94.49 10 | 96.19 9 | 92.91 26 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMMP |  | | 90.63 8 | 92.40 21 | 88.56 9 | 91.24 29 | 91.60 6 | 96.49 9 | 77.53 27 | 87.89 50 | 86.87 31 | 87.24 93 | 96.46 27 | 82.87 16 | 95.59 15 | 94.50 9 | 96.35 6 | 93.51 18 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
LGP-MVS_train | | | 90.56 9 | 92.38 22 | 88.43 10 | 90.88 33 | 91.15 11 | 95.35 22 | 77.65 26 | 86.26 66 | 87.23 24 | 90.45 55 | 97.35 19 | 83.20 14 | 95.44 16 | 93.41 21 | 96.28 8 | 92.63 27 |
|
LTVRE_ROB | | 86.82 1 | 91.55 3 | 94.43 3 | 88.19 11 | 83.19 113 | 86.35 68 | 93.60 38 | 78.79 19 | 95.48 4 | 91.79 2 | 93.08 27 | 97.21 22 | 86.34 3 | 97.06 2 | 96.27 3 | 95.46 23 | 95.56 3 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
COLMAP_ROB |  | 85.66 2 | 91.85 2 | 95.01 2 | 88.16 12 | 88.98 52 | 92.86 2 | 95.51 20 | 72.17 60 | 94.95 5 | 91.27 3 | 94.11 17 | 97.77 12 | 84.22 8 | 96.49 4 | 95.27 5 | 96.79 2 | 93.60 12 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
SteuartSystems-ACMMP | | | 90.00 18 | 91.73 36 | 87.97 13 | 91.21 30 | 90.29 28 | 96.51 7 | 78.00 24 | 86.33 64 | 85.32 41 | 88.23 82 | 94.67 71 | 82.08 21 | 95.13 22 | 93.88 17 | 94.72 36 | 93.59 13 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 90.32 14 | 92.37 23 | 87.94 14 | 91.46 22 | 90.91 18 | 95.69 18 | 79.49 12 | 89.94 35 | 83.50 51 | 89.06 73 | 94.44 77 | 81.68 23 | 94.17 31 | 94.19 14 | 95.81 17 | 93.87 7 |
|
DeepC-MVS | | 83.59 4 | 90.37 13 | 92.56 19 | 87.82 15 | 91.26 28 | 92.33 3 | 94.72 31 | 80.04 9 | 90.01 33 | 84.61 43 | 93.33 23 | 94.22 80 | 80.59 28 | 92.90 45 | 92.52 29 | 95.69 21 | 92.57 28 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HPM-MVS++ |  | | 88.74 41 | 89.54 55 | 87.80 16 | 92.58 7 | 85.69 73 | 95.10 27 | 78.01 23 | 87.08 58 | 87.66 20 | 87.89 85 | 92.07 109 | 80.28 30 | 90.97 72 | 91.41 44 | 93.17 60 | 91.69 39 |
|
X-MVS | | | 89.36 29 | 90.73 48 | 87.77 17 | 91.50 21 | 91.23 8 | 96.76 4 | 78.88 18 | 87.29 56 | 87.14 26 | 78.98 145 | 94.53 73 | 76.47 59 | 95.25 19 | 94.28 12 | 95.85 14 | 93.55 16 |
|
SMA-MVS |  | | 90.13 16 | 92.26 28 | 87.64 18 | 91.68 17 | 90.44 26 | 95.22 25 | 77.34 33 | 90.79 23 | 87.80 17 | 90.42 56 | 92.05 111 | 79.05 35 | 93.89 33 | 93.59 19 | 94.77 34 | 94.62 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMP | | 80.00 8 | 90.12 17 | 92.30 27 | 87.58 19 | 90.83 35 | 91.10 12 | 94.96 29 | 76.06 41 | 87.47 54 | 85.33 40 | 88.91 77 | 97.65 16 | 82.13 20 | 95.31 17 | 93.44 20 | 96.14 10 | 92.22 34 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMMP_NAP | | | 89.86 20 | 91.96 34 | 87.42 20 | 91.00 31 | 90.08 30 | 96.00 16 | 76.61 37 | 89.28 36 | 87.73 18 | 90.04 58 | 91.80 114 | 78.71 38 | 94.36 29 | 93.82 18 | 94.48 40 | 94.32 6 |
|
PMVS |  | 79.51 9 | 90.23 15 | 92.67 15 | 87.39 21 | 90.16 40 | 88.75 42 | 93.64 37 | 75.78 45 | 90.00 34 | 83.70 48 | 92.97 29 | 92.22 106 | 86.13 4 | 97.01 3 | 96.79 2 | 94.94 30 | 90.96 47 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
SD-MVS | | | 89.91 19 | 92.23 31 | 87.19 22 | 91.31 25 | 89.79 35 | 94.31 33 | 75.34 48 | 89.26 39 | 81.79 70 | 92.68 32 | 95.08 63 | 83.88 11 | 93.10 40 | 92.69 26 | 96.54 4 | 93.02 24 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
OPM-MVS | | | 89.82 22 | 92.24 30 | 86.99 23 | 90.86 34 | 89.35 38 | 95.07 28 | 75.91 44 | 91.16 17 | 86.87 31 | 91.07 51 | 97.29 20 | 79.13 34 | 93.32 36 | 91.99 38 | 94.12 43 | 91.49 42 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
DPE-MVS |  | | 89.81 23 | 92.34 25 | 86.86 24 | 89.69 45 | 91.00 16 | 95.53 19 | 76.91 34 | 88.18 48 | 83.43 54 | 93.48 21 | 95.19 58 | 81.07 27 | 92.75 47 | 92.07 37 | 94.55 38 | 93.74 11 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APD-MVS |  | | 89.14 30 | 91.25 45 | 86.67 25 | 91.73 16 | 91.02 15 | 95.50 21 | 77.74 25 | 84.04 84 | 79.47 84 | 91.48 45 | 94.85 68 | 81.14 26 | 92.94 42 | 92.20 36 | 94.47 41 | 92.24 33 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + MP. | | | 89.67 25 | 92.25 29 | 86.65 26 | 91.53 19 | 90.98 17 | 96.15 14 | 73.30 57 | 87.88 51 | 81.83 69 | 92.92 30 | 95.15 61 | 82.23 19 | 93.58 35 | 92.25 34 | 94.87 31 | 93.01 25 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APDe-MVS | | | 89.85 21 | 92.91 11 | 86.29 27 | 90.47 39 | 91.34 7 | 96.04 15 | 76.41 40 | 91.11 18 | 78.50 89 | 93.44 22 | 95.82 44 | 81.55 24 | 93.16 38 | 91.90 39 | 94.77 34 | 93.58 15 |
|
DVP-MVS++. | | | 90.50 10 | 94.18 4 | 86.21 28 | 92.52 8 | 90.29 28 | 95.29 23 | 76.02 42 | 94.24 6 | 82.82 57 | 95.84 6 | 97.56 17 | 76.82 57 | 93.13 39 | 91.20 45 | 93.78 49 | 97.01 1 |
|
UA-Net | | | 89.02 34 | 91.44 40 | 86.20 29 | 94.88 1 | 89.84 34 | 94.76 30 | 77.45 29 | 85.41 73 | 74.79 107 | 88.83 78 | 88.90 139 | 78.67 40 | 96.06 7 | 95.45 4 | 96.66 3 | 95.58 2 |
|
3Dnovator+ | | 83.71 3 | 88.13 45 | 90.00 53 | 85.94 30 | 86.82 74 | 91.06 13 | 94.26 34 | 75.39 47 | 88.85 43 | 85.76 38 | 85.74 109 | 86.92 148 | 78.02 45 | 93.03 41 | 92.21 35 | 95.39 25 | 92.21 35 |
|
LS3D | | | 89.02 34 | 91.69 37 | 85.91 31 | 89.72 44 | 90.81 20 | 92.56 45 | 71.69 66 | 90.83 22 | 87.24 23 | 89.71 64 | 92.07 109 | 78.37 41 | 94.43 28 | 92.59 28 | 95.86 13 | 91.35 43 |
|
TSAR-MVS + ACMM | | | 89.14 30 | 92.11 33 | 85.67 32 | 89.27 48 | 90.61 24 | 90.98 52 | 79.48 13 | 88.86 42 | 79.80 81 | 93.01 28 | 93.53 89 | 83.17 15 | 92.75 47 | 92.45 30 | 91.32 85 | 93.59 13 |
|
SixPastTwentyTwo | | | 89.14 30 | 92.19 32 | 85.58 33 | 84.62 93 | 82.56 94 | 90.53 65 | 71.93 63 | 91.95 13 | 85.89 36 | 94.22 15 | 97.25 21 | 85.42 5 | 95.73 12 | 91.71 41 | 95.08 28 | 91.89 38 |
|
ACMH+ | | 79.05 11 | 89.62 27 | 93.08 9 | 85.58 33 | 88.58 56 | 89.26 39 | 92.18 46 | 74.23 53 | 93.55 9 | 82.66 61 | 92.32 37 | 98.35 8 | 80.29 29 | 95.28 18 | 92.34 32 | 95.52 22 | 90.43 51 |
|
DVP-MVS |  | | 89.40 28 | 92.69 14 | 85.56 35 | 89.01 51 | 89.85 33 | 93.72 36 | 75.42 46 | 92.28 12 | 80.49 75 | 94.36 14 | 94.87 67 | 81.46 25 | 92.49 51 | 91.42 42 | 93.27 56 | 93.54 17 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
train_agg | | | 86.67 56 | 87.73 72 | 85.43 36 | 91.51 20 | 82.72 91 | 94.47 32 | 74.22 54 | 81.71 99 | 81.54 73 | 89.20 72 | 92.87 95 | 78.33 42 | 90.12 81 | 88.47 72 | 92.51 72 | 89.04 62 |
|
NCCC | | | 86.74 55 | 87.97 71 | 85.31 37 | 90.64 36 | 87.25 59 | 93.27 40 | 74.59 50 | 86.50 62 | 83.72 47 | 75.92 170 | 92.39 103 | 77.08 55 | 91.72 55 | 90.68 50 | 92.57 70 | 91.30 44 |
|
WR-MVS | | | 89.79 24 | 93.66 5 | 85.27 38 | 91.32 24 | 88.27 46 | 93.49 39 | 79.86 10 | 92.75 10 | 75.37 103 | 96.86 1 | 98.38 6 | 75.10 73 | 95.93 8 | 94.07 15 | 96.46 5 | 89.39 59 |
|
DeepPCF-MVS | | 81.61 6 | 87.95 49 | 90.29 52 | 85.22 39 | 87.48 67 | 90.01 31 | 93.79 35 | 73.54 55 | 88.93 41 | 83.89 46 | 89.40 68 | 90.84 123 | 80.26 31 | 90.62 75 | 90.19 55 | 92.36 73 | 92.03 36 |
|
MSP-MVS | | | 88.51 43 | 91.36 41 | 85.19 40 | 90.63 37 | 92.01 4 | 95.29 23 | 77.52 28 | 90.48 27 | 80.21 79 | 90.21 57 | 96.08 36 | 76.38 61 | 88.30 96 | 91.42 42 | 91.12 90 | 91.01 46 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SED-MVS | | | 88.96 38 | 92.37 23 | 84.99 41 | 88.64 55 | 89.65 37 | 95.11 26 | 75.98 43 | 90.73 24 | 80.15 80 | 94.21 16 | 94.51 76 | 76.59 58 | 92.94 42 | 91.17 46 | 93.46 53 | 93.37 22 |
|
DeepC-MVS_fast | | 81.78 5 | 87.38 52 | 89.64 54 | 84.75 42 | 89.89 43 | 90.70 22 | 92.74 44 | 74.45 51 | 86.02 67 | 82.16 67 | 86.05 105 | 91.99 113 | 75.84 67 | 91.16 66 | 90.44 51 | 93.41 54 | 91.09 45 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMH | | 78.40 12 | 88.94 39 | 92.62 17 | 84.65 43 | 86.45 77 | 87.16 60 | 91.47 49 | 68.79 88 | 95.49 3 | 89.74 6 | 93.55 20 | 98.50 3 | 77.96 46 | 94.14 32 | 89.57 64 | 93.49 51 | 89.94 55 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DTE-MVSNet | | | 88.99 36 | 92.77 13 | 84.59 44 | 93.31 2 | 88.10 49 | 90.96 53 | 83.09 2 | 91.38 15 | 76.21 96 | 96.03 3 | 98.04 9 | 70.78 108 | 95.65 14 | 92.32 33 | 93.18 59 | 87.84 73 |
|
CNVR-MVS | | | 86.93 54 | 88.98 59 | 84.54 45 | 90.11 41 | 87.41 58 | 93.23 41 | 73.47 56 | 86.31 65 | 82.25 64 | 82.96 128 | 92.15 107 | 76.04 64 | 91.69 56 | 90.69 49 | 92.17 76 | 91.64 41 |
|
CDPH-MVS | | | 86.66 57 | 88.52 62 | 84.48 46 | 89.61 46 | 88.27 46 | 92.86 43 | 72.69 59 | 80.55 117 | 82.71 58 | 86.92 97 | 93.32 91 | 75.55 69 | 91.00 71 | 89.85 59 | 93.47 52 | 89.71 56 |
|
OMC-MVS | | | 88.16 44 | 91.34 43 | 84.46 47 | 86.85 73 | 90.63 23 | 93.01 42 | 67.00 103 | 90.35 28 | 87.40 22 | 86.86 98 | 96.35 31 | 77.66 50 | 92.63 49 | 90.84 48 | 94.84 32 | 91.68 40 |
|
PHI-MVS | | | 86.37 59 | 88.14 68 | 84.30 48 | 86.65 76 | 87.56 56 | 90.76 59 | 70.16 73 | 82.55 91 | 89.65 7 | 84.89 118 | 92.40 102 | 75.97 65 | 90.88 73 | 89.70 61 | 92.58 68 | 89.03 63 |
|
CSCG | | | 88.12 46 | 91.45 39 | 84.23 49 | 88.12 63 | 90.59 25 | 90.57 62 | 68.60 90 | 91.37 16 | 83.45 53 | 89.94 59 | 95.14 62 | 78.71 38 | 91.45 61 | 88.21 76 | 95.96 12 | 93.44 19 |
|
xxxxxxxxxxxxxcwj | | | 88.03 48 | 91.29 44 | 84.22 50 | 88.17 61 | 87.90 53 | 90.80 57 | 71.80 64 | 89.28 36 | 82.70 59 | 89.90 60 | 97.72 13 | 77.91 47 | 91.69 56 | 90.04 56 | 93.95 47 | 92.47 29 |
|
SF-MVS | | | 87.85 51 | 90.95 47 | 84.22 50 | 88.17 61 | 87.90 53 | 90.80 57 | 71.80 64 | 89.28 36 | 82.70 59 | 89.90 60 | 95.37 55 | 77.91 47 | 91.69 56 | 90.04 56 | 93.95 47 | 92.47 29 |
|
PS-CasMVS | | | 89.07 33 | 93.23 8 | 84.21 52 | 92.44 9 | 88.23 48 | 90.54 64 | 82.95 3 | 90.50 26 | 75.31 104 | 95.80 7 | 98.37 7 | 71.16 102 | 96.30 5 | 93.32 22 | 92.88 64 | 90.11 53 |
|
CP-MVSNet | | | 88.71 42 | 92.63 16 | 84.13 53 | 92.39 10 | 88.09 50 | 90.47 69 | 82.86 4 | 88.79 44 | 75.16 105 | 94.87 10 | 97.68 15 | 71.05 104 | 96.16 6 | 93.18 24 | 92.85 65 | 89.64 57 |
|
PEN-MVS | | | 88.86 40 | 92.92 10 | 84.11 54 | 92.92 5 | 88.05 51 | 90.83 56 | 82.67 5 | 91.04 19 | 74.83 106 | 95.97 4 | 98.47 4 | 70.38 109 | 95.70 13 | 92.43 31 | 93.05 63 | 88.78 65 |
|
WR-MVS_H | | | 88.99 36 | 93.28 6 | 83.99 55 | 91.92 12 | 89.13 40 | 91.95 47 | 83.23 1 | 90.14 31 | 71.92 126 | 95.85 5 | 98.01 11 | 71.83 99 | 95.82 9 | 93.19 23 | 93.07 62 | 90.83 49 |
|
HQP-MVS | | | 85.02 69 | 86.41 82 | 83.40 56 | 89.19 49 | 86.59 65 | 91.28 50 | 71.60 67 | 82.79 90 | 83.48 52 | 78.65 149 | 93.54 88 | 72.55 91 | 86.49 111 | 85.89 96 | 92.28 75 | 90.95 48 |
|
CS-MVS-test | | | 83.73 80 | 84.09 116 | 83.31 57 | 86.38 78 | 80.24 110 | 85.50 114 | 72.00 61 | 65.58 182 | 83.11 55 | 84.64 120 | 92.52 100 | 78.14 43 | 90.40 77 | 88.92 70 | 94.71 37 | 86.34 83 |
|
Gipuma |  | | 86.47 58 | 89.25 57 | 83.23 58 | 83.88 105 | 78.78 123 | 85.35 118 | 68.42 92 | 92.69 11 | 89.03 12 | 91.94 38 | 96.32 34 | 81.80 22 | 94.45 27 | 86.86 86 | 90.91 91 | 83.69 103 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
v7n | | | 87.11 53 | 90.46 51 | 83.19 59 | 85.22 88 | 83.69 84 | 90.03 76 | 68.20 96 | 91.01 20 | 86.71 34 | 94.80 11 | 98.46 5 | 77.69 49 | 91.10 68 | 85.98 93 | 91.30 86 | 88.19 68 |
|
MVS_0304 | | | 84.73 73 | 86.19 84 | 83.02 60 | 88.32 57 | 86.71 64 | 91.55 48 | 70.87 70 | 73.79 146 | 82.88 56 | 85.13 114 | 93.35 90 | 72.55 91 | 88.62 91 | 87.69 79 | 91.93 78 | 88.05 72 |
|
MSLP-MVS++ | | | 86.29 60 | 89.10 58 | 83.01 61 | 85.71 85 | 89.79 35 | 87.04 106 | 74.39 52 | 85.17 75 | 78.92 87 | 77.59 154 | 93.57 87 | 82.60 17 | 93.23 37 | 91.88 40 | 89.42 109 | 92.46 31 |
|
AdaColmap |  | | 84.15 76 | 85.14 97 | 83.00 62 | 89.08 50 | 87.14 61 | 90.56 63 | 70.90 69 | 82.40 93 | 80.41 76 | 73.82 181 | 84.69 157 | 75.19 72 | 91.58 60 | 89.90 58 | 91.87 79 | 86.48 80 |
|
TAPA-MVS | | 78.00 13 | 85.88 61 | 88.37 64 | 82.96 63 | 84.69 91 | 88.62 43 | 90.62 60 | 64.22 128 | 89.15 40 | 88.05 15 | 78.83 147 | 93.71 84 | 76.20 63 | 90.11 82 | 88.22 75 | 94.00 44 | 89.97 54 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PLC |  | 76.06 15 | 85.38 66 | 87.46 74 | 82.95 64 | 85.79 84 | 88.84 41 | 88.86 87 | 68.70 89 | 87.06 59 | 83.60 49 | 79.02 143 | 90.05 129 | 77.37 53 | 90.88 73 | 89.66 62 | 93.37 55 | 86.74 79 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TSAR-MVS + GP. | | | 85.32 67 | 87.41 76 | 82.89 65 | 90.07 42 | 85.69 73 | 89.07 85 | 72.99 58 | 82.45 92 | 74.52 110 | 85.09 115 | 87.67 145 | 79.24 33 | 91.11 67 | 90.41 52 | 91.45 82 | 89.45 58 |
|
MCST-MVS | | | 84.79 72 | 86.48 80 | 82.83 66 | 87.30 69 | 87.03 62 | 90.46 70 | 69.33 82 | 83.14 87 | 82.21 66 | 81.69 136 | 92.14 108 | 75.09 74 | 87.27 103 | 84.78 106 | 92.58 68 | 89.30 60 |
|
PCF-MVS | | 76.59 14 | 84.11 77 | 85.27 94 | 82.76 67 | 86.12 81 | 88.30 45 | 91.24 51 | 69.10 83 | 82.36 94 | 84.45 44 | 77.56 155 | 90.40 128 | 72.91 90 | 85.88 116 | 83.88 113 | 92.72 67 | 88.53 66 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
RPSCF | | | 88.05 47 | 92.61 18 | 82.73 68 | 84.24 98 | 88.40 44 | 90.04 75 | 66.29 107 | 91.46 14 | 82.29 63 | 88.93 76 | 96.01 40 | 79.38 32 | 95.15 21 | 94.90 6 | 94.15 42 | 93.40 20 |
|
DROMVSNet | | | 83.70 81 | 84.77 105 | 82.46 69 | 87.47 68 | 82.79 90 | 85.50 114 | 72.00 61 | 69.81 163 | 77.66 92 | 85.02 117 | 89.63 130 | 78.14 43 | 90.40 77 | 87.56 80 | 94.00 44 | 88.16 69 |
|
TSAR-MVS + COLMAP | | | 85.51 63 | 88.36 65 | 82.19 70 | 86.05 82 | 87.69 55 | 90.50 67 | 70.60 72 | 86.40 63 | 82.33 62 | 89.69 65 | 92.52 100 | 74.01 83 | 87.53 100 | 86.84 87 | 89.63 104 | 87.80 74 |
|
v1240 | | | 83.57 83 | 84.94 102 | 81.97 71 | 84.05 100 | 81.27 103 | 89.46 82 | 66.06 110 | 81.31 109 | 87.50 21 | 91.88 41 | 95.46 53 | 76.25 62 | 81.16 154 | 80.51 142 | 88.52 122 | 82.98 111 |
|
CNLPA | | | 85.50 64 | 88.58 60 | 81.91 72 | 84.55 95 | 87.52 57 | 90.89 55 | 63.56 138 | 88.18 48 | 84.06 45 | 83.85 125 | 91.34 120 | 76.46 60 | 91.27 63 | 89.00 69 | 91.96 77 | 88.88 64 |
|
v1921920 | | | 83.49 84 | 84.94 102 | 81.80 73 | 83.78 106 | 81.20 105 | 89.50 81 | 65.91 113 | 81.64 101 | 87.18 25 | 91.70 43 | 95.39 54 | 75.85 66 | 81.56 152 | 80.27 144 | 88.60 119 | 82.80 113 |
|
v1192 | | | 83.61 82 | 85.23 95 | 81.72 74 | 84.05 100 | 82.15 97 | 89.54 80 | 66.20 108 | 81.38 108 | 86.76 33 | 91.79 42 | 96.03 38 | 74.88 76 | 81.81 149 | 80.92 138 | 88.91 115 | 82.50 117 |
|
PVSNet_Blended_VisFu | | | 83.00 91 | 84.16 114 | 81.65 75 | 82.17 123 | 86.01 69 | 88.03 92 | 71.23 68 | 76.05 139 | 79.54 83 | 83.88 124 | 83.44 158 | 77.49 52 | 87.38 101 | 84.93 104 | 91.41 83 | 87.40 77 |
|
v144192 | | | 83.43 85 | 84.97 101 | 81.63 76 | 83.43 109 | 81.23 104 | 89.42 83 | 66.04 112 | 81.45 107 | 86.40 35 | 91.46 46 | 95.70 48 | 75.76 68 | 82.14 145 | 80.23 145 | 88.74 116 | 82.57 116 |
|
test_part1 | | | 87.86 50 | 93.26 7 | 81.56 77 | 87.23 72 | 86.76 63 | 90.91 54 | 70.06 74 | 96.50 1 | 76.74 94 | 96.63 2 | 98.62 2 | 69.45 116 | 92.93 44 | 90.92 47 | 94.98 29 | 90.46 50 |
|
MVS_111021_HR | | | 83.95 78 | 86.10 86 | 81.44 78 | 84.62 93 | 80.29 109 | 90.51 66 | 68.05 97 | 84.07 83 | 80.38 77 | 84.74 119 | 91.37 119 | 74.23 79 | 90.37 79 | 87.25 82 | 90.86 92 | 84.59 94 |
|
v1144 | | | 83.22 88 | 85.01 99 | 81.14 79 | 83.76 107 | 81.60 100 | 88.95 86 | 65.58 118 | 81.89 98 | 85.80 37 | 91.68 44 | 95.84 43 | 74.04 82 | 82.12 146 | 80.56 141 | 88.70 118 | 81.41 125 |
|
TinyColmap | | | 83.79 79 | 86.12 85 | 81.07 80 | 83.42 110 | 81.44 101 | 85.42 116 | 68.55 91 | 88.71 45 | 89.46 8 | 87.60 87 | 92.72 97 | 70.34 110 | 89.29 86 | 81.94 131 | 89.20 110 | 81.12 127 |
|
CS-MVS | | | 83.23 87 | 85.14 97 | 81.00 81 | 85.59 86 | 79.28 118 | 89.80 77 | 63.29 142 | 73.02 148 | 75.70 101 | 85.28 112 | 92.81 96 | 77.09 54 | 91.92 52 | 87.93 77 | 94.53 39 | 85.76 87 |
|
DU-MVS | | | 84.88 71 | 88.27 67 | 80.92 82 | 88.30 58 | 83.59 85 | 87.06 104 | 78.35 20 | 80.64 115 | 70.49 134 | 92.67 33 | 96.91 23 | 68.13 121 | 91.79 53 | 89.29 67 | 93.20 58 | 83.02 109 |
|
MAR-MVS | | | 81.98 102 | 82.92 127 | 80.88 83 | 85.18 89 | 85.85 70 | 89.13 84 | 69.52 77 | 71.21 159 | 82.25 64 | 71.28 192 | 88.89 140 | 69.69 111 | 88.71 89 | 86.96 83 | 89.52 106 | 87.57 75 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CANet | | | 82.84 93 | 84.60 107 | 80.78 84 | 87.30 69 | 85.20 76 | 90.23 72 | 69.00 84 | 72.16 155 | 78.73 88 | 84.49 122 | 90.70 126 | 69.54 114 | 87.65 99 | 86.17 91 | 89.87 101 | 85.84 86 |
|
v10 | | | 83.17 90 | 85.22 96 | 80.78 84 | 83.26 112 | 82.99 89 | 88.66 89 | 66.49 106 | 79.24 126 | 83.60 49 | 91.46 46 | 95.47 52 | 74.12 80 | 82.60 144 | 80.66 139 | 88.53 121 | 84.11 100 |
|
UniMVSNet (Re) | | | 84.95 70 | 88.53 61 | 80.78 84 | 87.82 65 | 84.21 79 | 88.03 92 | 76.50 38 | 81.18 110 | 69.29 140 | 92.63 35 | 96.83 24 | 69.07 117 | 91.23 65 | 89.60 63 | 93.97 46 | 84.00 101 |
|
MVS_111021_LR | | | 83.20 89 | 85.33 93 | 80.73 87 | 82.88 117 | 78.23 127 | 89.61 79 | 65.23 120 | 82.08 96 | 81.19 74 | 85.31 111 | 92.04 112 | 75.22 71 | 89.50 84 | 85.90 95 | 90.24 95 | 84.23 97 |
|
UniMVSNet_NR-MVSNet | | | 84.62 74 | 88.00 70 | 80.68 88 | 88.18 60 | 83.83 81 | 87.06 104 | 76.47 39 | 81.46 106 | 70.49 134 | 93.24 24 | 95.56 50 | 68.13 121 | 90.43 76 | 88.47 72 | 93.78 49 | 83.02 109 |
|
DPM-MVS | | | 81.42 106 | 82.11 131 | 80.62 89 | 87.54 66 | 85.30 75 | 90.18 74 | 68.96 85 | 81.00 113 | 79.15 86 | 70.45 198 | 83.29 160 | 67.67 125 | 82.81 141 | 83.46 117 | 90.19 96 | 88.48 67 |
|
EG-PatchMatch MVS | | | 84.35 75 | 87.55 73 | 80.62 89 | 86.38 78 | 82.24 96 | 86.75 107 | 64.02 133 | 84.24 80 | 78.17 91 | 89.38 69 | 95.03 65 | 78.78 37 | 89.95 83 | 86.33 90 | 89.59 105 | 85.65 89 |
|
Effi-MVS+ | | | 82.33 97 | 83.87 118 | 80.52 91 | 84.51 96 | 81.32 102 | 87.53 97 | 68.05 97 | 74.94 144 | 79.67 82 | 82.37 133 | 92.31 104 | 72.21 93 | 85.06 123 | 86.91 85 | 91.18 88 | 84.20 98 |
|
Effi-MVS+-dtu | | | 82.04 101 | 83.39 125 | 80.48 92 | 85.48 87 | 86.57 67 | 88.40 90 | 68.28 94 | 69.04 170 | 73.13 120 | 76.26 165 | 91.11 122 | 74.74 77 | 88.40 94 | 87.76 78 | 92.84 66 | 84.57 95 |
|
TranMVSNet+NR-MVSNet | | | 85.23 68 | 89.38 56 | 80.39 93 | 88.78 54 | 83.77 82 | 87.40 99 | 76.75 35 | 85.47 71 | 68.99 142 | 95.18 9 | 97.55 18 | 67.13 128 | 91.61 59 | 89.13 68 | 93.26 57 | 82.95 112 |
|
ETV-MVS | | | 79.01 127 | 77.98 147 | 80.22 94 | 86.69 75 | 79.73 115 | 88.80 88 | 68.27 95 | 63.22 194 | 71.56 128 | 70.25 200 | 73.63 192 | 73.66 86 | 90.30 80 | 86.77 88 | 92.33 74 | 81.95 122 |
|
anonymousdsp | | | 85.62 62 | 90.53 49 | 79.88 95 | 64.64 206 | 76.35 142 | 96.28 13 | 53.53 191 | 85.63 70 | 81.59 72 | 92.81 31 | 97.71 14 | 86.88 2 | 94.56 26 | 92.83 25 | 96.35 6 | 93.84 9 |
|
v2v482 | | | 82.20 99 | 84.26 111 | 79.81 96 | 82.67 119 | 80.18 111 | 87.67 96 | 63.96 135 | 81.69 100 | 84.73 42 | 91.27 49 | 96.33 33 | 72.05 97 | 81.94 148 | 79.56 148 | 87.79 128 | 78.84 144 |
|
GeoE | | | 81.92 103 | 83.87 118 | 79.66 97 | 84.64 92 | 79.87 112 | 89.75 78 | 65.90 114 | 76.12 138 | 75.87 99 | 84.62 121 | 92.23 105 | 71.96 98 | 86.83 108 | 83.60 116 | 89.83 102 | 83.81 102 |
|
v8 | | | 82.20 99 | 84.56 108 | 79.45 98 | 82.42 120 | 81.65 99 | 87.26 100 | 64.27 127 | 79.36 125 | 81.70 71 | 91.04 52 | 95.75 46 | 73.30 89 | 82.82 140 | 79.18 151 | 87.74 129 | 82.09 120 |
|
USDC | | | 81.39 108 | 83.07 126 | 79.43 99 | 81.48 127 | 78.95 122 | 82.62 136 | 66.17 109 | 87.45 55 | 90.73 4 | 82.40 132 | 93.65 86 | 66.57 131 | 83.63 136 | 77.97 154 | 89.00 113 | 77.45 152 |
|
EIA-MVS | | | 78.57 128 | 77.90 148 | 79.35 100 | 87.24 71 | 80.71 107 | 86.16 111 | 64.03 132 | 62.63 199 | 73.49 117 | 73.60 182 | 76.12 186 | 73.83 84 | 88.49 93 | 84.93 104 | 91.36 84 | 78.78 145 |
|
abl_6 | | | | | 79.30 101 | 84.98 90 | 85.78 71 | 90.50 67 | 66.88 104 | 77.08 134 | 74.02 112 | 73.29 185 | 89.34 134 | 68.94 118 | | | 90.49 93 | 85.98 84 |
|
EPNet | | | 79.36 123 | 79.44 140 | 79.27 102 | 89.51 47 | 77.20 136 | 88.35 91 | 77.35 32 | 68.27 172 | 74.29 111 | 76.31 163 | 79.22 172 | 59.63 155 | 85.02 127 | 85.45 99 | 86.49 141 | 84.61 93 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
UniMVSNet_ETH3D | | | 85.39 65 | 91.12 46 | 78.71 103 | 90.48 38 | 83.72 83 | 81.76 141 | 82.41 6 | 93.84 7 | 64.43 160 | 95.41 8 | 98.76 1 | 63.72 143 | 93.63 34 | 89.74 60 | 89.47 108 | 82.74 115 |
|
FPMVS | | | 81.56 105 | 84.04 117 | 78.66 104 | 82.92 115 | 75.96 146 | 86.48 110 | 65.66 117 | 84.67 79 | 71.47 129 | 77.78 152 | 83.22 161 | 77.57 51 | 91.24 64 | 90.21 54 | 87.84 127 | 85.21 91 |
|
Fast-Effi-MVS+ | | | 81.42 106 | 83.82 120 | 78.62 105 | 82.24 122 | 80.62 108 | 87.72 95 | 63.51 139 | 73.01 149 | 74.75 108 | 83.80 126 | 92.70 98 | 73.44 88 | 88.15 98 | 85.26 100 | 90.05 97 | 83.17 107 |
|
EPP-MVSNet | | | 82.76 95 | 86.47 81 | 78.45 106 | 86.00 83 | 84.47 78 | 85.39 117 | 68.42 92 | 84.17 81 | 62.97 164 | 89.26 71 | 76.84 182 | 72.13 96 | 92.56 50 | 90.40 53 | 95.76 20 | 87.56 76 |
|
Baseline_NR-MVSNet | | | 82.79 94 | 86.51 79 | 78.44 107 | 88.30 58 | 75.62 150 | 87.81 94 | 74.97 49 | 81.53 103 | 66.84 155 | 94.71 13 | 96.46 27 | 66.90 129 | 91.79 53 | 83.37 122 | 85.83 151 | 82.09 120 |
|
MSDG | | | 81.39 108 | 84.23 113 | 78.09 108 | 82.40 121 | 82.47 95 | 85.31 120 | 60.91 160 | 79.73 123 | 80.26 78 | 86.30 101 | 88.27 143 | 69.67 112 | 87.20 105 | 84.98 103 | 89.97 99 | 80.67 130 |
|
IS_MVSNet | | | 81.72 104 | 85.01 99 | 77.90 109 | 86.19 80 | 82.64 93 | 85.56 113 | 70.02 75 | 80.11 120 | 63.52 162 | 87.28 92 | 81.18 167 | 67.26 126 | 91.08 70 | 89.33 66 | 94.82 33 | 83.42 106 |
|
Vis-MVSNet |  | | 83.32 86 | 88.12 69 | 77.71 110 | 77.91 156 | 83.44 87 | 90.58 61 | 69.49 79 | 81.11 111 | 67.10 154 | 89.85 62 | 91.48 118 | 71.71 100 | 91.34 62 | 89.37 65 | 89.48 107 | 90.26 52 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
3Dnovator | | 79.41 10 | 82.21 98 | 86.07 87 | 77.71 110 | 79.31 141 | 84.61 77 | 87.18 101 | 61.02 159 | 85.65 69 | 76.11 97 | 85.07 116 | 85.38 155 | 70.96 106 | 87.22 104 | 86.47 89 | 91.66 80 | 88.12 71 |
|
NR-MVSNet | | | 82.89 92 | 87.43 75 | 77.59 112 | 83.91 104 | 83.59 85 | 87.10 103 | 78.35 20 | 80.64 115 | 68.85 143 | 92.67 33 | 96.50 26 | 54.19 178 | 87.19 106 | 88.68 71 | 93.16 61 | 82.75 114 |
|
CLD-MVS | | | 82.75 96 | 87.22 77 | 77.54 113 | 88.01 64 | 85.76 72 | 90.23 72 | 54.52 185 | 82.28 95 | 82.11 68 | 88.48 81 | 95.27 56 | 63.95 141 | 89.41 85 | 88.29 74 | 86.45 142 | 81.01 128 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
thisisatest0515 | | | 81.18 111 | 84.32 110 | 77.52 114 | 76.73 167 | 74.84 156 | 85.06 121 | 61.37 156 | 81.05 112 | 73.95 113 | 88.79 79 | 89.25 136 | 75.49 70 | 85.98 115 | 84.78 106 | 92.53 71 | 85.56 90 |
|
pmmvs-eth3d | | | 79.64 119 | 82.06 132 | 76.83 115 | 80.05 135 | 72.64 164 | 87.47 98 | 66.59 105 | 80.83 114 | 73.50 116 | 89.32 70 | 93.20 92 | 67.78 123 | 80.78 157 | 81.64 134 | 85.58 154 | 76.01 154 |
|
PM-MVS | | | 80.42 114 | 83.63 122 | 76.67 116 | 78.04 153 | 72.37 166 | 87.14 102 | 60.18 165 | 80.13 119 | 71.75 127 | 86.12 104 | 93.92 83 | 77.08 55 | 86.56 110 | 85.12 102 | 85.83 151 | 81.18 126 |
|
Fast-Effi-MVS+-dtu | | | 76.92 135 | 77.18 153 | 76.62 117 | 79.55 138 | 79.17 119 | 84.80 122 | 77.40 30 | 64.46 189 | 68.75 145 | 70.81 196 | 86.57 149 | 63.36 148 | 81.74 150 | 81.76 132 | 85.86 150 | 75.78 156 |
|
IterMVS-LS | | | 79.79 117 | 82.56 129 | 76.56 118 | 81.83 125 | 77.85 129 | 79.90 154 | 69.42 81 | 78.93 128 | 71.21 130 | 90.47 54 | 85.20 156 | 70.86 107 | 80.54 159 | 80.57 140 | 86.15 144 | 84.36 96 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
QAPM | | | 80.43 113 | 84.34 109 | 75.86 119 | 79.40 140 | 82.06 98 | 79.86 155 | 61.94 153 | 83.28 86 | 74.73 109 | 81.74 135 | 85.44 154 | 70.97 105 | 84.99 128 | 84.71 108 | 88.29 123 | 88.14 70 |
|
v148 | | | 79.33 124 | 82.32 130 | 75.84 120 | 80.14 134 | 75.74 147 | 81.98 140 | 57.06 177 | 81.51 105 | 79.36 85 | 89.42 67 | 96.42 29 | 71.32 101 | 81.54 153 | 75.29 171 | 85.20 156 | 76.32 153 |
|
canonicalmvs | | | 81.22 110 | 86.04 88 | 75.60 121 | 83.17 114 | 83.18 88 | 80.29 150 | 65.82 116 | 85.97 68 | 67.98 150 | 77.74 153 | 91.51 117 | 65.17 137 | 88.62 91 | 86.15 92 | 91.17 89 | 89.09 61 |
|
tttt0517 | | | 75.86 146 | 76.23 161 | 75.42 122 | 75.55 173 | 74.06 160 | 82.73 134 | 60.31 162 | 69.24 166 | 70.24 136 | 79.18 142 | 58.79 210 | 72.17 94 | 84.49 131 | 83.08 124 | 91.54 81 | 84.80 92 |
|
PatchMatch-RL | | | 76.05 143 | 76.64 157 | 75.36 123 | 77.84 157 | 69.87 174 | 81.09 146 | 63.43 140 | 71.66 157 | 68.34 149 | 71.70 188 | 81.76 166 | 74.98 75 | 84.83 129 | 83.44 118 | 86.45 142 | 73.22 167 |
|
ET-MVSNet_ETH3D | | | 74.71 152 | 74.19 172 | 75.31 124 | 79.22 143 | 75.29 151 | 82.70 135 | 64.05 131 | 65.45 184 | 70.96 133 | 77.15 159 | 57.70 212 | 65.89 134 | 84.40 132 | 81.65 133 | 89.03 112 | 77.67 151 |
|
DI_MVS_plusplus_trai | | | 77.64 132 | 79.64 139 | 75.31 124 | 79.87 137 | 76.89 139 | 81.55 144 | 63.64 137 | 76.21 137 | 72.03 125 | 85.59 110 | 82.97 162 | 66.63 130 | 79.27 165 | 77.78 156 | 88.14 125 | 78.76 146 |
|
thisisatest0530 | | | 75.54 148 | 75.95 165 | 75.05 126 | 75.08 174 | 73.56 161 | 82.15 139 | 60.31 162 | 69.17 167 | 69.32 139 | 79.02 143 | 58.78 211 | 72.17 94 | 83.88 134 | 83.08 124 | 91.30 86 | 84.20 98 |
|
casdiffmvs | | | 79.93 116 | 84.11 115 | 75.05 126 | 81.41 129 | 78.99 121 | 82.95 133 | 62.90 147 | 81.53 103 | 68.60 147 | 91.94 38 | 96.03 38 | 65.84 135 | 82.89 139 | 77.07 162 | 88.59 120 | 80.34 136 |
|
DELS-MVS | | | 79.71 118 | 83.74 121 | 75.01 128 | 79.31 141 | 82.68 92 | 84.79 123 | 60.06 166 | 75.43 142 | 69.09 141 | 86.13 103 | 89.38 133 | 67.16 127 | 85.12 122 | 83.87 114 | 89.65 103 | 83.57 104 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OpenMVS |  | 75.38 16 | 78.44 129 | 81.39 135 | 74.99 129 | 80.46 132 | 79.85 113 | 79.99 152 | 58.31 174 | 77.34 133 | 73.85 114 | 77.19 158 | 82.33 165 | 68.60 120 | 84.67 130 | 81.95 130 | 88.72 117 | 86.40 82 |
|
IterMVS-SCA-FT | | | 77.23 133 | 79.18 142 | 74.96 130 | 76.67 168 | 79.85 113 | 75.58 182 | 61.34 157 | 73.10 147 | 73.79 115 | 86.23 102 | 79.61 171 | 79.00 36 | 80.28 161 | 75.50 170 | 83.41 168 | 79.70 140 |
|
V42 | | | 79.59 121 | 83.59 123 | 74.93 131 | 69.61 190 | 77.05 138 | 86.59 109 | 55.84 180 | 78.42 130 | 77.29 93 | 89.84 63 | 95.08 63 | 74.12 80 | 83.05 137 | 80.11 146 | 86.12 145 | 81.59 124 |
|
PVSNet_BlendedMVS | | | 76.45 140 | 78.12 145 | 74.49 132 | 76.76 161 | 78.46 124 | 79.65 156 | 63.26 143 | 65.42 185 | 73.15 118 | 75.05 175 | 88.96 137 | 66.51 132 | 82.73 142 | 77.66 157 | 87.61 130 | 78.60 147 |
|
PVSNet_Blended | | | 76.45 140 | 78.12 145 | 74.49 132 | 76.76 161 | 78.46 124 | 79.65 156 | 63.26 143 | 65.42 185 | 73.15 118 | 75.05 175 | 88.96 137 | 66.51 132 | 82.73 142 | 77.66 157 | 87.61 130 | 78.60 147 |
|
pmmvs4 | | | 75.92 144 | 77.48 152 | 74.10 134 | 78.21 152 | 70.94 168 | 84.06 126 | 64.78 123 | 75.13 143 | 68.47 148 | 84.12 123 | 83.32 159 | 64.74 140 | 75.93 179 | 79.14 152 | 84.31 161 | 73.77 164 |
|
MVS_Test | | | 76.72 137 | 79.40 141 | 73.60 135 | 78.85 147 | 74.99 154 | 79.91 153 | 61.56 155 | 69.67 164 | 72.44 121 | 85.98 106 | 90.78 124 | 63.50 146 | 78.30 167 | 75.74 169 | 85.33 155 | 80.31 137 |
|
DCV-MVSNet | | | 80.04 115 | 85.67 92 | 73.48 136 | 82.91 116 | 81.11 106 | 80.44 149 | 66.06 110 | 85.01 76 | 62.53 167 | 78.84 146 | 94.43 78 | 58.51 159 | 88.66 90 | 85.91 94 | 90.41 94 | 85.73 88 |
|
gm-plane-assit | | | 71.56 167 | 69.99 182 | 73.39 137 | 84.43 97 | 73.21 162 | 90.42 71 | 51.36 198 | 84.08 82 | 76.00 98 | 91.30 48 | 37.09 224 | 59.01 157 | 73.65 186 | 70.24 185 | 79.09 178 | 60.37 199 |
|
GA-MVS | | | 75.01 151 | 76.39 159 | 73.39 137 | 78.37 149 | 75.66 149 | 80.03 151 | 58.40 173 | 70.51 161 | 75.85 100 | 83.24 127 | 76.14 185 | 63.75 142 | 77.28 171 | 76.62 165 | 83.97 163 | 75.30 159 |
|
CVMVSNet | | | 75.65 147 | 77.62 151 | 73.35 139 | 71.95 183 | 69.89 173 | 83.04 132 | 60.84 161 | 69.12 168 | 68.76 144 | 79.92 141 | 78.93 174 | 73.64 87 | 81.02 155 | 81.01 137 | 81.86 173 | 83.43 105 |
|
IB-MVS | | 71.28 17 | 75.21 149 | 77.00 155 | 73.12 140 | 76.76 161 | 77.45 132 | 83.05 131 | 58.92 171 | 63.01 195 | 64.31 161 | 59.99 213 | 87.57 146 | 68.64 119 | 86.26 114 | 82.34 129 | 87.05 136 | 82.36 119 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
HyFIR lowres test | | | 73.29 157 | 74.14 173 | 72.30 141 | 73.08 179 | 78.33 126 | 83.12 130 | 62.41 151 | 63.81 191 | 62.13 168 | 76.67 162 | 78.50 175 | 71.09 103 | 74.13 183 | 77.47 160 | 81.98 172 | 70.10 174 |
|
UGNet | | | 79.62 120 | 85.91 89 | 72.28 142 | 73.52 177 | 83.91 80 | 86.64 108 | 69.51 78 | 79.85 122 | 62.57 166 | 85.82 108 | 89.63 130 | 53.18 182 | 88.39 95 | 87.35 81 | 88.28 124 | 86.43 81 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20231211 | | | 79.37 122 | 85.78 90 | 71.89 143 | 82.87 118 | 79.66 116 | 78.77 162 | 63.93 136 | 83.36 85 | 59.39 171 | 90.54 53 | 94.66 72 | 56.46 166 | 87.38 101 | 84.12 111 | 89.92 100 | 80.74 129 |
|
EU-MVSNet | | | 76.48 139 | 80.53 137 | 71.75 144 | 67.62 196 | 70.30 171 | 81.74 142 | 54.06 188 | 75.47 141 | 71.01 132 | 80.10 138 | 93.17 94 | 73.67 85 | 83.73 135 | 77.85 155 | 82.40 170 | 83.07 108 |
|
pmmvs6 | | | 80.46 112 | 88.34 66 | 71.26 145 | 81.96 124 | 77.51 131 | 77.54 165 | 68.83 87 | 93.72 8 | 55.92 179 | 93.94 19 | 98.03 10 | 55.94 168 | 89.21 87 | 85.61 97 | 87.36 133 | 80.38 132 |
|
CANet_DTU | | | 75.04 150 | 78.45 143 | 71.07 146 | 77.27 158 | 77.96 128 | 83.88 128 | 58.00 175 | 64.11 190 | 68.67 146 | 75.65 172 | 88.37 142 | 53.92 180 | 82.05 147 | 81.11 135 | 84.67 159 | 79.88 139 |
|
diffmvs | | | 76.74 136 | 81.61 134 | 71.06 147 | 75.64 172 | 74.45 159 | 80.68 148 | 57.57 176 | 77.48 131 | 67.62 153 | 88.95 75 | 93.94 82 | 61.98 150 | 79.74 162 | 76.18 166 | 82.85 169 | 80.50 131 |
|
CR-MVSNet | | | 69.56 174 | 68.34 187 | 70.99 148 | 72.78 182 | 67.63 180 | 64.47 206 | 67.74 100 | 59.93 205 | 72.30 122 | 80.10 138 | 56.77 214 | 65.04 138 | 71.64 191 | 72.91 177 | 83.61 166 | 69.40 177 |
|
FC-MVSNet-train | | | 79.20 125 | 86.29 83 | 70.94 149 | 84.06 99 | 77.67 130 | 85.68 112 | 64.11 130 | 82.90 89 | 52.22 193 | 92.57 36 | 93.69 85 | 49.52 193 | 88.30 96 | 86.93 84 | 90.03 98 | 81.95 122 |
|
Vis-MVSNet (Re-imp) | | | 76.15 142 | 80.84 136 | 70.68 150 | 83.66 108 | 74.80 157 | 81.66 143 | 69.59 76 | 80.48 118 | 46.94 202 | 87.44 89 | 80.63 169 | 53.14 183 | 86.87 107 | 84.56 109 | 89.12 111 | 71.12 170 |
|
EPNet_dtu | | | 71.90 166 | 73.03 178 | 70.59 151 | 78.28 150 | 61.64 195 | 82.44 137 | 64.12 129 | 63.26 193 | 69.74 137 | 71.47 190 | 82.41 163 | 51.89 190 | 78.83 166 | 78.01 153 | 77.07 180 | 75.60 158 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPMNet | | | 67.02 183 | 63.99 198 | 70.56 152 | 71.55 185 | 67.63 180 | 75.81 175 | 69.44 80 | 59.93 205 | 63.24 163 | 64.32 208 | 47.51 223 | 59.68 154 | 70.37 196 | 69.64 187 | 83.64 165 | 68.49 180 |
|
FMVSNet1 | | | 78.20 131 | 84.83 104 | 70.46 153 | 78.62 148 | 79.03 120 | 77.90 164 | 67.53 102 | 83.02 88 | 55.10 182 | 87.19 94 | 93.18 93 | 55.65 171 | 85.57 117 | 83.39 119 | 87.98 126 | 82.40 118 |
|
IterMVS | | | 73.62 155 | 76.53 158 | 70.23 154 | 71.83 184 | 77.18 137 | 80.69 147 | 53.22 192 | 72.23 154 | 66.62 156 | 85.21 113 | 78.96 173 | 69.54 114 | 76.28 178 | 71.63 181 | 79.45 176 | 74.25 162 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TransMVSNet (Re) | | | 79.05 126 | 86.66 78 | 70.18 155 | 83.32 111 | 75.99 145 | 77.54 165 | 63.98 134 | 90.68 25 | 55.84 180 | 94.80 11 | 96.06 37 | 53.73 181 | 86.27 113 | 83.22 123 | 86.65 137 | 79.61 141 |
|
MDTV_nov1_ep13_2view | | | 72.96 162 | 75.59 166 | 69.88 156 | 71.15 187 | 64.86 189 | 82.31 138 | 54.45 186 | 76.30 136 | 78.32 90 | 86.52 99 | 91.58 115 | 61.35 151 | 76.80 172 | 66.83 192 | 71.70 187 | 66.26 183 |
|
gg-mvs-nofinetune | | | 72.68 163 | 75.21 169 | 69.73 157 | 81.48 127 | 69.04 177 | 70.48 194 | 76.67 36 | 86.92 60 | 67.80 152 | 88.06 84 | 64.67 200 | 42.12 203 | 77.60 169 | 73.65 174 | 79.81 175 | 66.57 182 |
|
SCA | | | 68.54 179 | 67.52 189 | 69.73 157 | 67.79 195 | 75.04 152 | 76.96 170 | 68.94 86 | 66.41 177 | 67.86 151 | 74.03 179 | 60.96 203 | 65.55 136 | 68.99 199 | 65.67 193 | 71.30 192 | 61.54 198 |
|
thres600view7 | | | 74.34 154 | 78.43 144 | 69.56 159 | 80.47 131 | 76.28 143 | 78.65 163 | 62.56 149 | 77.39 132 | 52.53 189 | 74.03 179 | 76.78 183 | 55.90 170 | 85.06 123 | 85.19 101 | 87.25 134 | 74.29 161 |
|
pm-mvs1 | | | 78.21 130 | 85.68 91 | 69.50 160 | 80.38 133 | 75.73 148 | 76.25 173 | 65.04 121 | 87.59 53 | 54.47 184 | 93.16 26 | 95.99 42 | 54.20 177 | 86.37 112 | 82.98 126 | 86.64 138 | 77.96 150 |
|
baseline2 | | | 68.71 178 | 68.34 187 | 69.14 161 | 75.69 171 | 69.70 175 | 76.60 171 | 55.53 182 | 60.13 204 | 62.07 169 | 66.76 206 | 60.35 205 | 60.77 152 | 76.53 177 | 74.03 173 | 84.19 162 | 70.88 171 |
|
MDA-MVSNet-bldmvs | | | 76.51 138 | 82.87 128 | 69.09 162 | 50.71 217 | 74.72 158 | 84.05 127 | 60.27 164 | 81.62 102 | 71.16 131 | 88.21 83 | 91.58 115 | 69.62 113 | 92.78 46 | 77.48 159 | 78.75 179 | 73.69 165 |
|
tfpnnormal | | | 77.16 134 | 84.26 111 | 68.88 163 | 81.02 130 | 75.02 153 | 76.52 172 | 63.30 141 | 87.29 56 | 52.40 191 | 91.24 50 | 93.97 81 | 54.85 175 | 85.46 120 | 81.08 136 | 85.18 157 | 75.76 157 |
|
thres400 | | | 73.13 160 | 76.99 156 | 68.62 164 | 79.46 139 | 74.93 155 | 77.23 167 | 61.23 158 | 75.54 140 | 52.31 192 | 72.20 187 | 77.10 181 | 54.89 173 | 82.92 138 | 82.62 128 | 86.57 140 | 73.66 166 |
|
CDS-MVSNet | | | 73.07 161 | 77.02 154 | 68.46 165 | 81.62 126 | 72.89 163 | 79.56 158 | 70.78 71 | 69.56 165 | 52.52 190 | 77.37 157 | 81.12 168 | 42.60 201 | 84.20 133 | 83.93 112 | 83.65 164 | 70.07 175 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
FMVSNet2 | | | 74.43 153 | 79.70 138 | 68.27 166 | 76.76 161 | 77.36 133 | 75.77 177 | 65.36 119 | 72.28 153 | 52.97 188 | 81.92 134 | 85.61 153 | 52.73 186 | 80.66 158 | 79.73 147 | 86.04 146 | 80.37 133 |
|
thres200 | | | 72.41 164 | 76.00 164 | 68.21 167 | 78.28 150 | 76.28 143 | 74.94 183 | 62.56 149 | 72.14 156 | 51.35 197 | 69.59 202 | 76.51 184 | 54.89 173 | 85.06 123 | 80.51 142 | 87.25 134 | 71.92 169 |
|
tfpn200view9 | | | 72.01 165 | 75.40 167 | 68.06 168 | 77.97 154 | 76.44 141 | 77.04 169 | 62.67 148 | 66.81 175 | 50.82 198 | 67.30 204 | 75.67 188 | 52.46 189 | 85.06 123 | 82.64 127 | 87.41 132 | 73.86 163 |
|
GBi-Net | | | 73.17 158 | 77.64 149 | 67.95 169 | 76.76 161 | 77.36 133 | 75.77 177 | 64.57 124 | 62.99 196 | 51.83 194 | 76.05 166 | 77.76 178 | 52.73 186 | 85.57 117 | 83.39 119 | 86.04 146 | 80.37 133 |
|
test1 | | | 73.17 158 | 77.64 149 | 67.95 169 | 76.76 161 | 77.36 133 | 75.77 177 | 64.57 124 | 62.99 196 | 51.83 194 | 76.05 166 | 77.76 178 | 52.73 186 | 85.57 117 | 83.39 119 | 86.04 146 | 80.37 133 |
|
MS-PatchMatch | | | 71.18 170 | 73.99 174 | 67.89 171 | 77.16 159 | 71.76 167 | 77.18 168 | 56.38 179 | 67.35 173 | 55.04 183 | 74.63 177 | 75.70 187 | 62.38 149 | 76.62 174 | 75.97 168 | 79.22 177 | 75.90 155 |
|
tpm cat1 | | | 64.79 189 | 62.74 203 | 67.17 172 | 74.61 176 | 65.91 187 | 76.18 174 | 59.32 168 | 64.88 188 | 66.41 157 | 71.21 193 | 53.56 220 | 59.17 156 | 61.53 211 | 58.16 205 | 67.33 201 | 63.95 187 |
|
FMVSNet3 | | | 71.40 169 | 75.20 170 | 66.97 173 | 75.00 175 | 76.59 140 | 74.29 184 | 64.57 124 | 62.99 196 | 51.83 194 | 76.05 166 | 77.76 178 | 51.49 191 | 76.58 175 | 77.03 163 | 84.62 160 | 79.43 142 |
|
FC-MVSNet-test | | | 75.91 145 | 83.59 123 | 66.95 174 | 76.63 169 | 69.07 176 | 85.33 119 | 64.97 122 | 84.87 78 | 41.95 207 | 93.17 25 | 87.04 147 | 47.78 196 | 91.09 69 | 85.56 98 | 85.06 158 | 74.34 160 |
|
CostFormer | | | 66.81 184 | 66.94 190 | 66.67 175 | 72.79 181 | 68.25 179 | 79.55 159 | 55.57 181 | 65.52 183 | 62.77 165 | 76.98 160 | 60.09 206 | 56.73 165 | 65.69 207 | 62.35 196 | 72.59 186 | 69.71 176 |
|
thres100view900 | | | 69.86 172 | 72.97 179 | 66.24 176 | 77.97 154 | 72.49 165 | 73.29 187 | 59.12 169 | 66.81 175 | 50.82 198 | 67.30 204 | 75.67 188 | 50.54 192 | 78.24 168 | 79.40 149 | 85.71 153 | 70.88 171 |
|
MVSTER | | | 68.08 181 | 69.73 183 | 66.16 177 | 66.33 204 | 70.06 172 | 75.71 180 | 52.36 194 | 55.18 213 | 58.64 173 | 70.23 201 | 56.72 215 | 57.34 163 | 79.68 163 | 76.03 167 | 86.61 139 | 80.20 138 |
|
CHOSEN 1792x2688 | | | 68.80 177 | 71.09 180 | 66.13 178 | 69.11 192 | 68.89 178 | 78.98 161 | 54.68 183 | 61.63 201 | 56.69 176 | 71.56 189 | 78.39 176 | 67.69 124 | 72.13 190 | 72.01 180 | 69.63 197 | 73.02 168 |
|
CMPMVS |  | 55.74 18 | 71.56 167 | 76.26 160 | 66.08 179 | 68.11 194 | 63.91 192 | 63.17 208 | 50.52 200 | 68.79 171 | 75.49 102 | 70.78 197 | 85.67 152 | 63.54 145 | 81.58 151 | 77.20 161 | 75.63 181 | 85.86 85 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PatchmatchNet |  | | 64.81 188 | 63.74 199 | 66.06 180 | 69.21 191 | 58.62 199 | 73.16 188 | 60.01 167 | 65.92 179 | 66.19 158 | 76.27 164 | 59.09 207 | 60.45 153 | 66.58 204 | 61.47 202 | 67.33 201 | 58.24 204 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
dps | | | 65.14 186 | 64.50 196 | 65.89 181 | 71.41 186 | 65.81 188 | 71.44 192 | 61.59 154 | 58.56 208 | 61.43 170 | 75.45 173 | 52.70 221 | 58.06 161 | 69.57 198 | 64.65 194 | 71.39 191 | 64.77 185 |
|
PatchT | | | 66.25 185 | 66.76 191 | 65.67 182 | 55.87 212 | 60.75 196 | 70.17 195 | 59.00 170 | 59.80 207 | 72.30 122 | 78.68 148 | 54.12 219 | 65.04 138 | 71.64 191 | 72.91 177 | 71.63 189 | 69.40 177 |
|
test-LLR | | | 62.15 196 | 59.46 212 | 65.29 183 | 79.07 144 | 52.66 207 | 69.46 200 | 62.93 145 | 50.76 216 | 53.81 186 | 63.11 210 | 58.91 208 | 52.87 184 | 66.54 205 | 62.34 197 | 73.59 183 | 61.87 195 |
|
MDTV_nov1_ep13 | | | 64.96 187 | 64.77 195 | 65.18 184 | 67.08 199 | 62.46 194 | 75.80 176 | 51.10 199 | 62.27 200 | 69.74 137 | 74.12 178 | 62.65 201 | 55.64 172 | 68.19 201 | 62.16 200 | 71.70 187 | 61.57 197 |
|
baseline1 | | | 69.62 173 | 73.55 176 | 65.02 185 | 78.95 146 | 70.39 170 | 71.38 193 | 62.03 152 | 70.97 160 | 47.95 201 | 78.47 150 | 68.19 198 | 47.77 197 | 79.65 164 | 76.94 164 | 82.05 171 | 70.27 173 |
|
MIMVSNet1 | | | 73.40 156 | 81.85 133 | 63.55 186 | 72.90 180 | 64.37 190 | 84.58 124 | 53.60 190 | 90.84 21 | 53.92 185 | 87.75 86 | 96.10 35 | 45.31 199 | 85.37 121 | 79.32 150 | 70.98 194 | 69.18 179 |
|
test20.03 | | | 69.91 171 | 76.20 162 | 62.58 187 | 84.01 102 | 67.34 182 | 75.67 181 | 65.88 115 | 79.98 121 | 40.28 211 | 82.65 129 | 89.31 135 | 39.63 206 | 77.41 170 | 73.28 175 | 69.98 195 | 63.40 190 |
|
pmmvs5 | | | 68.91 176 | 74.35 171 | 62.56 188 | 67.45 198 | 66.78 184 | 71.70 190 | 51.47 197 | 67.17 174 | 56.25 178 | 82.41 131 | 88.59 141 | 47.21 198 | 73.21 189 | 74.23 172 | 81.30 174 | 68.03 181 |
|
baseline | | | 69.33 175 | 75.37 168 | 62.28 189 | 66.54 202 | 66.67 185 | 73.95 186 | 48.07 201 | 66.10 178 | 59.26 172 | 82.45 130 | 86.30 150 | 54.44 176 | 74.42 182 | 73.25 176 | 71.42 190 | 78.43 149 |
|
tpm | | | 62.79 192 | 63.25 200 | 62.26 190 | 70.09 189 | 53.78 204 | 71.65 191 | 47.31 202 | 65.72 181 | 76.70 95 | 80.62 137 | 56.40 217 | 48.11 195 | 64.20 209 | 58.54 203 | 59.70 207 | 63.47 189 |
|
MVS-HIRNet | | | 59.74 199 | 58.74 215 | 60.92 191 | 57.74 211 | 45.81 215 | 56.02 215 | 58.69 172 | 55.69 211 | 65.17 159 | 70.86 195 | 71.66 194 | 56.75 164 | 61.11 212 | 53.74 211 | 71.17 193 | 52.28 210 |
|
Anonymous20231206 | | | 67.28 182 | 73.41 177 | 60.12 192 | 76.45 170 | 63.61 193 | 74.21 185 | 56.52 178 | 76.35 135 | 42.23 206 | 75.81 171 | 90.47 127 | 41.51 204 | 74.52 180 | 69.97 186 | 69.83 196 | 63.17 191 |
|
testgi | | | 68.20 180 | 76.05 163 | 59.04 193 | 79.99 136 | 67.32 183 | 81.16 145 | 51.78 196 | 84.91 77 | 39.36 212 | 73.42 183 | 95.19 58 | 32.79 212 | 76.54 176 | 70.40 184 | 69.14 198 | 64.55 186 |
|
tpmrst | | | 59.42 200 | 60.02 210 | 58.71 194 | 67.56 197 | 53.10 206 | 66.99 204 | 51.88 195 | 63.80 192 | 57.68 174 | 76.73 161 | 56.49 216 | 48.73 194 | 56.47 215 | 55.55 208 | 59.43 208 | 58.02 205 |
|
PMMVS | | | 61.98 197 | 65.61 193 | 57.74 195 | 45.03 218 | 51.76 209 | 69.54 199 | 35.05 211 | 55.49 212 | 55.32 181 | 68.23 203 | 78.39 176 | 58.09 160 | 70.21 197 | 71.56 182 | 83.42 167 | 63.66 188 |
|
test0.0.03 1 | | | 61.79 198 | 65.33 194 | 57.65 196 | 79.07 144 | 64.09 191 | 68.51 203 | 62.93 145 | 61.59 202 | 33.71 215 | 61.58 212 | 71.58 196 | 33.43 211 | 70.95 194 | 68.68 189 | 68.26 200 | 58.82 202 |
|
test-mter | | | 59.39 201 | 61.59 205 | 56.82 197 | 53.21 213 | 54.82 203 | 73.12 189 | 26.57 216 | 53.19 214 | 56.31 177 | 64.71 207 | 60.47 204 | 56.36 167 | 68.69 200 | 64.27 195 | 75.38 182 | 65.00 184 |
|
MIMVSNet | | | 63.02 190 | 69.02 185 | 56.01 198 | 68.20 193 | 59.26 198 | 70.01 197 | 53.79 189 | 71.56 158 | 41.26 210 | 71.38 191 | 82.38 164 | 36.38 208 | 71.43 193 | 67.32 191 | 66.45 203 | 59.83 201 |
|
pmmvs3 | | | 62.72 193 | 68.71 186 | 55.74 199 | 50.74 216 | 57.10 200 | 70.05 196 | 28.82 214 | 61.57 203 | 57.39 175 | 71.19 194 | 85.73 151 | 53.96 179 | 73.36 188 | 69.43 188 | 73.47 185 | 62.55 193 |
|
TAMVS | | | 63.02 190 | 69.30 184 | 55.70 200 | 70.12 188 | 56.89 201 | 69.63 198 | 45.13 204 | 70.23 162 | 38.00 213 | 77.79 151 | 75.15 190 | 42.60 201 | 74.48 181 | 72.81 179 | 68.70 199 | 57.75 206 |
|
E-PMN | | | 59.07 202 | 62.79 202 | 54.72 201 | 67.01 200 | 47.81 214 | 60.44 212 | 43.40 205 | 72.95 150 | 44.63 204 | 70.42 199 | 73.17 193 | 58.73 158 | 80.97 156 | 51.98 213 | 54.14 213 | 42.26 215 |
|
EMVS | | | 58.97 203 | 62.63 204 | 54.70 202 | 66.26 205 | 48.71 212 | 61.74 210 | 42.71 206 | 72.80 152 | 46.00 203 | 73.01 186 | 71.66 194 | 57.91 162 | 80.41 160 | 50.68 215 | 53.55 214 | 41.11 216 |
|
TESTMET0.1,1 | | | 57.21 204 | 59.46 212 | 54.60 203 | 50.95 215 | 52.66 207 | 69.46 200 | 26.91 215 | 50.76 216 | 53.81 186 | 63.11 210 | 58.91 208 | 52.87 184 | 66.54 205 | 62.34 197 | 73.59 183 | 61.87 195 |
|
CHOSEN 280x420 | | | 56.32 208 | 58.85 214 | 53.36 204 | 51.63 214 | 39.91 218 | 69.12 202 | 38.61 210 | 56.29 210 | 36.79 214 | 48.84 215 | 62.59 202 | 63.39 147 | 73.61 187 | 67.66 190 | 60.61 205 | 63.07 192 |
|
pmnet_mix02 | | | 62.60 194 | 70.81 181 | 53.02 205 | 66.56 201 | 50.44 211 | 62.81 209 | 46.84 203 | 79.13 127 | 43.76 205 | 87.45 88 | 90.75 125 | 39.85 205 | 70.48 195 | 57.09 206 | 58.27 209 | 60.32 200 |
|
EPMVS | | | 56.62 206 | 59.77 211 | 52.94 206 | 62.41 207 | 50.55 210 | 60.66 211 | 52.83 193 | 65.15 187 | 41.80 208 | 77.46 156 | 57.28 213 | 42.68 200 | 59.81 213 | 54.82 209 | 57.23 211 | 53.35 209 |
|
ADS-MVSNet | | | 56.89 205 | 61.09 206 | 52.00 207 | 59.48 209 | 48.10 213 | 58.02 213 | 54.37 187 | 72.82 151 | 49.19 200 | 75.32 174 | 65.97 199 | 37.96 207 | 59.34 214 | 54.66 210 | 52.99 215 | 51.42 211 |
|
FMVSNet5 | | | 56.37 207 | 60.14 209 | 51.98 208 | 60.83 208 | 59.58 197 | 66.85 205 | 42.37 207 | 52.68 215 | 41.33 209 | 47.09 216 | 54.68 218 | 35.28 209 | 73.88 184 | 70.77 183 | 65.24 204 | 62.26 194 |
|
new-patchmatchnet | | | 62.59 195 | 73.79 175 | 49.53 209 | 76.98 160 | 53.57 205 | 53.46 217 | 54.64 184 | 85.43 72 | 28.81 216 | 91.94 38 | 96.41 30 | 25.28 214 | 76.80 172 | 53.66 212 | 57.99 210 | 58.69 203 |
|
N_pmnet | | | 54.95 209 | 65.90 192 | 42.18 210 | 66.37 203 | 43.86 217 | 57.92 214 | 39.79 209 | 79.54 124 | 17.24 221 | 86.31 100 | 87.91 144 | 25.44 213 | 64.68 208 | 51.76 214 | 46.33 216 | 47.23 213 |
|
MVE |  | 41.12 19 | 51.80 211 | 60.92 207 | 41.16 211 | 35.21 220 | 34.14 220 | 48.45 220 | 41.39 208 | 69.11 169 | 19.53 219 | 63.33 209 | 73.80 191 | 63.56 144 | 67.19 202 | 61.51 201 | 38.85 217 | 57.38 207 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
new_pmnet | | | 52.29 210 | 63.16 201 | 39.61 212 | 58.89 210 | 44.70 216 | 48.78 219 | 34.73 212 | 65.88 180 | 17.85 220 | 73.42 183 | 80.00 170 | 23.06 215 | 67.00 203 | 62.28 199 | 54.36 212 | 48.81 212 |
|
PMMVS2 | | | 48.13 212 | 64.06 197 | 29.55 213 | 44.06 219 | 36.69 219 | 51.95 218 | 29.97 213 | 74.75 145 | 8.90 223 | 76.02 169 | 91.24 121 | 7.53 217 | 73.78 185 | 55.91 207 | 34.87 218 | 40.01 217 |
|
GG-mvs-BLEND | | | 41.63 213 | 60.36 208 | 19.78 214 | 0.14 225 | 66.04 186 | 55.66 216 | 0.17 222 | 57.64 209 | 2.42 224 | 51.82 214 | 69.42 197 | 0.28 221 | 64.11 210 | 58.29 204 | 60.02 206 | 55.18 208 |
|
test_method | | | 22.69 214 | 26.99 216 | 17.67 215 | 2.13 222 | 4.31 223 | 27.50 221 | 4.53 218 | 37.94 218 | 24.52 218 | 36.20 218 | 51.40 222 | 15.26 216 | 29.86 217 | 17.09 217 | 32.07 219 | 12.16 218 |
|
tmp_tt | | | | | 13.54 216 | 16.73 221 | 6.42 222 | 8.49 223 | 2.36 219 | 28.69 220 | 27.44 217 | 18.40 219 | 13.51 226 | 3.70 218 | 33.23 216 | 36.26 216 | 22.54 221 | |
|
test123 | | | 1.06 215 | 1.41 217 | 0.64 217 | 0.39 223 | 0.48 224 | 0.52 226 | 0.25 221 | 1.11 222 | 1.37 225 | 2.01 221 | 1.98 227 | 0.87 219 | 1.43 219 | 1.27 218 | 0.46 223 | 1.62 220 |
|
testmvs | | | 0.93 216 | 1.37 218 | 0.41 218 | 0.36 224 | 0.36 225 | 0.62 225 | 0.39 220 | 1.48 221 | 0.18 226 | 2.41 220 | 1.31 228 | 0.41 220 | 1.25 220 | 1.08 219 | 0.48 222 | 1.68 219 |
|
uanet_test | | | 0.00 217 | 0.00 219 | 0.00 219 | 0.00 226 | 0.00 226 | 0.00 227 | 0.00 223 | 0.00 223 | 0.00 227 | 0.00 222 | 0.00 229 | 0.00 222 | 0.00 221 | 0.00 220 | 0.00 224 | 0.00 221 |
|
sosnet-low-res | | | 0.00 217 | 0.00 219 | 0.00 219 | 0.00 226 | 0.00 226 | 0.00 227 | 0.00 223 | 0.00 223 | 0.00 227 | 0.00 222 | 0.00 229 | 0.00 222 | 0.00 221 | 0.00 220 | 0.00 224 | 0.00 221 |
|
sosnet | | | 0.00 217 | 0.00 219 | 0.00 219 | 0.00 226 | 0.00 226 | 0.00 227 | 0.00 223 | 0.00 223 | 0.00 227 | 0.00 222 | 0.00 229 | 0.00 222 | 0.00 221 | 0.00 220 | 0.00 224 | 0.00 221 |
|
RE-MVS-def | | | | | | | | | | | 87.10 29 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 89.43 132 | | | | | |
|
SR-MVS | | | | | | 91.82 14 | | | 80.80 7 | | | | 95.53 51 | | | | | |
|
Anonymous202405211 | | | | 84.68 106 | | 83.92 103 | 79.45 117 | 79.03 160 | 67.79 99 | 82.01 97 | | 88.77 80 | 92.58 99 | 55.93 169 | 86.68 109 | 84.26 110 | 88.92 114 | 78.98 143 |
|
our_test_3 | | | | | | 73.27 178 | 70.91 169 | 83.26 129 | | | | | | | | | | |
|
ambc | | | | 88.38 63 | | 91.62 18 | 87.97 52 | 84.48 125 | | 88.64 46 | 87.93 16 | 87.38 90 | 94.82 70 | 74.53 78 | 89.14 88 | 83.86 115 | 85.94 149 | 86.84 78 |
|
MTAPA | | | | | | | | | | | 89.37 9 | | 94.85 68 | | | | | |
|
MTMP | | | | | | | | | | | 90.54 5 | | 95.16 60 | | | | | |
|
Patchmatch-RL test | | | | | | | | 4.13 224 | | | | | | | | | | |
|
XVS | | | | | | 91.28 26 | 91.23 8 | 96.89 2 | | | 87.14 26 | | 94.53 73 | | | | 95.84 15 | |
|
X-MVStestdata | | | | | | 91.28 26 | 91.23 8 | 96.89 2 | | | 87.14 26 | | 94.53 73 | | | | 95.84 15 | |
|
mPP-MVS | | | | | | 93.05 4 | | | | | | | 95.77 45 | | | | | |
|
NP-MVS | | | | | | | | | | 78.65 129 | | | | | | | | |
|
Patchmtry | | | | | | | 56.88 202 | 64.47 206 | 67.74 100 | | 72.30 122 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 17.78 221 | 20.40 222 | 6.69 217 | 31.41 219 | 9.80 222 | 38.61 217 | 34.88 225 | 33.78 210 | 28.41 218 | | 23.59 220 | 45.77 214 |
|