This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15397.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
IU-MVS98.77 586.00 4996.84 6581.26 26397.26 795.50 2399.13 399.03 8
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
PC_three_145282.47 23097.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
ACMMP_NAP94.74 1594.56 1895.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MP-MVS-pluss94.21 3194.00 4194.85 2598.17 3386.65 3094.82 13697.17 3986.26 14592.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS94.96 1295.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 24894.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
CP-MVS94.34 2694.21 3394.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
ZNCC-MVS94.47 2094.28 2995.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
MP-MVScopyleft94.25 2894.07 3894.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS93.89 4293.65 5394.62 4096.84 7586.43 3896.69 3297.49 685.15 17393.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
SF-MVS94.97 1194.90 1495.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
ACMMPR94.43 2394.28 2994.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
HFP-MVS94.52 1994.40 2294.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
MM95.68 588.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
MVS_030494.60 1794.38 2495.23 1195.41 12987.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
MTAPA94.42 2594.22 3295.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
region2R94.43 2394.27 3194.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
test9_res91.91 7898.71 3298.07 66
DeepPCF-MVS89.96 194.20 3394.77 1692.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
9.1494.47 1997.79 4996.08 6197.44 1586.13 15195.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
train_agg93.44 5493.08 6194.52 4397.53 5886.49 3694.07 18696.78 7281.86 24792.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
DeepC-MVS_fast89.43 294.04 3793.79 4594.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.94.85 1394.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
agg_prior290.54 10298.68 3798.27 52
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
MSLP-MVS++93.72 4794.08 3792.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 131
CDPH-MVS92.83 6892.30 7494.44 4497.79 4986.11 4894.06 18896.66 8580.09 27692.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
HPM-MVScopyleft94.02 3893.88 4394.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 4093.78 4694.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
CS-MVS-test94.02 3894.29 2893.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
MCST-MVS94.45 2194.20 3495.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
APD-MVScopyleft94.24 2994.07 3894.75 3598.06 3986.90 2295.88 7496.94 5585.68 15995.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS93.96 4193.72 4994.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
XVS94.45 2194.32 2594.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
X-MVStestdata88.31 17386.13 21994.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 39685.02 5999.49 2691.99 7498.56 4898.47 33
DELS-MVS93.43 5793.25 5893.97 5495.42 12885.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZD-MVS98.15 3486.62 3297.07 4583.63 20394.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
GST-MVS94.21 3193.97 4294.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
HPM-MVS_fast93.40 5893.22 5993.94 5698.36 2584.83 7497.15 1396.80 7185.77 15692.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
NCCC94.81 1494.69 1795.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
DeepC-MVS88.79 393.31 5992.99 6494.26 5196.07 10285.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG93.23 6293.05 6293.76 6498.04 4084.07 9696.22 4997.37 2184.15 19190.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29090.45 12095.92 10082.65 8798.84 8880.68 23798.26 5796.14 151
CS-MVS94.12 3694.44 2193.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
MVS_111021_HR93.45 5393.31 5693.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
EC-MVSNet93.44 5493.71 5092.63 10795.21 13882.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
新几何193.10 7997.30 6684.35 9295.56 16871.09 36691.26 11396.24 8582.87 8598.86 8479.19 25898.10 6296.07 157
patch_mono-293.74 4694.32 2592.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
dcpmvs_293.49 5194.19 3591.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
test_fmvsm_n_192094.71 1695.11 1093.50 6995.79 11484.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS94.23 3094.17 3694.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
3Dnovator86.66 591.73 8490.82 9594.44 4494.59 17086.37 4097.18 1297.02 4789.20 6084.31 25496.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
CANet93.54 5093.20 6094.55 4295.65 12085.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
DPM-MVS92.58 7291.74 8095.08 1596.19 9589.31 592.66 24896.56 9383.44 20991.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
APD-MVS_3200maxsize93.78 4493.77 4793.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
CPTT-MVS91.99 7891.80 7992.55 11198.24 3181.98 16096.76 3096.49 9581.89 24690.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
test_fmvsmconf_n94.60 1794.81 1593.98 5394.62 16984.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
SR-MVS-dyc-post93.82 4393.82 4493.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
RE-MVS-def93.68 5197.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
test22296.55 8481.70 16692.22 26495.01 20168.36 37290.20 12496.14 9280.26 11497.80 7496.05 159
test_fmvsmconf0.1_n94.20 3394.31 2793.88 5792.46 24784.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
3Dnovator+87.14 492.42 7591.37 8395.55 795.63 12188.73 697.07 1896.77 7490.84 1684.02 25896.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
EPNet91.79 8191.02 9194.10 5290.10 32885.25 6996.03 6692.05 29792.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmvis_n_192093.44 5493.55 5493.10 7993.67 21384.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 144
testdata90.49 20296.40 8977.89 26995.37 18672.51 35893.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 161
MVS_111021_LR92.47 7492.29 7592.98 8795.99 10884.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 132
test_fmvsmconf0.01_n93.19 6393.02 6393.71 6589.25 34084.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
MVSFormer91.68 8691.30 8492.80 9793.86 20383.88 10195.96 7195.90 14284.66 18591.76 10394.91 13777.92 14497.30 21889.64 10997.11 8597.24 104
lupinMVS90.92 9790.21 10193.03 8493.86 20383.88 10192.81 24593.86 25479.84 27891.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
EIA-MVS91.95 7991.94 7791.98 13495.16 14080.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
MG-MVS91.77 8291.70 8192.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
fmvsm_l_conf0.5_n_a94.20 3394.40 2293.60 6795.29 13284.98 7195.61 9296.28 10886.31 14396.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
test250687.21 21886.28 21590.02 22795.62 12273.64 32096.25 4871.38 39687.89 10790.45 12096.65 7055.29 35498.09 15486.03 15596.94 9098.33 43
ECVR-MVScopyleft89.09 14988.53 14690.77 19395.62 12275.89 30196.16 5384.22 37487.89 10790.20 12496.65 7063.19 31398.10 14685.90 15696.94 9098.33 43
test111189.10 14788.64 14290.48 20495.53 12674.97 30896.08 6184.89 37288.13 9990.16 12696.65 7063.29 31198.10 14686.14 15196.90 9298.39 39
jason90.80 9890.10 10592.90 9293.04 23183.53 11293.08 23594.15 24380.22 27391.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
Vis-MVSNetpermissive91.75 8391.23 8693.29 7195.32 13183.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
114514_t89.51 13388.50 14892.54 11298.11 3681.99 15995.16 11696.36 10270.19 36985.81 20295.25 12476.70 15598.63 10282.07 21096.86 9597.00 120
fmvsm_l_conf0.5_n94.29 2794.46 2093.79 6395.28 13385.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
Vis-MVSNet (Re-imp)89.59 13189.44 12090.03 22595.74 11675.85 30295.61 9290.80 33287.66 11587.83 16095.40 12076.79 15396.46 27578.37 26296.73 9797.80 84
API-MVS90.66 10490.07 10692.45 11696.36 9184.57 8096.06 6495.22 19382.39 23189.13 13894.27 16780.32 11298.46 11580.16 24596.71 9894.33 230
MAR-MVS90.30 11089.37 12393.07 8396.61 8184.48 8595.68 8595.67 16082.36 23387.85 15992.85 21676.63 15798.80 9080.01 24696.68 9995.91 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft83.78 1188.74 16287.29 17993.08 8192.70 24285.39 6796.57 3696.43 9778.74 29580.85 30396.07 9469.64 24999.01 6378.01 26996.65 10094.83 204
ETV-MVS92.74 7092.66 6992.97 8895.20 13984.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 140
QAPM89.51 13388.15 15993.59 6894.92 15384.58 7996.82 2996.70 8378.43 30083.41 27396.19 9073.18 20699.30 4077.11 27896.54 10196.89 127
IS-MVSNet91.43 8891.09 9092.46 11595.87 11381.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
DP-MVS Recon91.95 7991.28 8593.96 5598.33 2785.92 5694.66 14796.66 8582.69 22890.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
CANet_DTU90.26 11289.41 12292.81 9693.46 21983.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 143
UGNet89.95 12188.95 13392.95 9094.51 17683.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30498.78 9183.92 18196.31 10696.74 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.5_n93.76 4594.06 4092.86 9495.62 12283.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
fmvsm_s_conf0.1_n93.46 5293.66 5292.85 9593.75 20983.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
TSAR-MVS + GP.93.66 4893.41 5594.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
PVSNet_Blended90.73 10190.32 10091.98 13496.12 9781.25 17992.55 25296.83 6682.04 24089.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 166
PS-MVSNAJ91.18 9490.92 9291.96 13695.26 13682.60 14992.09 26995.70 15886.27 14491.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 233
ACMMPcopyleft93.24 6192.88 6694.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
casdiffmvs_mvgpermissive92.96 6792.83 6793.35 7094.59 17083.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LCM-MVSNet-Re88.30 17488.32 15588.27 27694.71 16472.41 33793.15 23190.98 32787.77 11079.25 32591.96 25178.35 14095.75 30783.04 19195.62 11496.65 135
CHOSEN 1792x268888.84 15887.69 16992.30 12496.14 9681.42 17690.01 31095.86 14674.52 33987.41 16893.94 18075.46 17298.36 12680.36 24195.53 11597.12 113
fmvsm_s_conf0.5_n_a93.57 4993.76 4893.00 8695.02 14583.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
AdaColmapbinary89.89 12489.07 13092.37 12097.41 6283.03 13094.42 16295.92 13982.81 22586.34 19594.65 15273.89 19599.02 6180.69 23695.51 11695.05 192
MVS87.44 20586.10 22291.44 16392.61 24483.62 10992.63 24995.66 16267.26 37381.47 29592.15 24077.95 14398.22 13979.71 24995.48 11892.47 309
UA-Net92.83 6892.54 7193.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
xiu_mvs_v2_base91.13 9590.89 9491.86 14494.97 14982.42 15192.24 26395.64 16586.11 15291.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 234
casdiffmvspermissive92.51 7392.43 7392.74 10194.41 18281.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a93.19 6393.26 5792.97 8892.49 24583.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
PVSNet_Blended_VisFu91.38 8990.91 9392.80 9796.39 9083.17 12294.87 13396.66 8583.29 21389.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 159
PAPM_NR91.22 9390.78 9692.52 11397.60 5681.46 17494.37 16996.24 11386.39 14287.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
CHOSEN 280x42085.15 26783.99 27088.65 26892.47 24678.40 25679.68 38492.76 27674.90 33681.41 29789.59 31169.85 24795.51 31479.92 24895.29 12592.03 321
TAPA-MVS84.62 688.16 17787.01 18791.62 15496.64 8080.65 19694.39 16596.21 11876.38 31986.19 19895.44 11779.75 11998.08 15662.75 36395.29 12596.13 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline92.39 7692.29 7592.69 10594.46 17981.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
LS3D87.89 18386.32 21392.59 10996.07 10282.92 13695.23 10994.92 20975.66 32682.89 28095.98 9872.48 21599.21 4568.43 33795.23 12895.64 175
test_vis1_n_192089.39 14289.84 11388.04 28392.97 23572.64 33294.71 14496.03 13386.18 14891.94 9796.56 7861.63 32095.74 30893.42 4195.11 12995.74 171
MVS_Test91.31 9191.11 8891.93 13894.37 18380.14 21093.46 21795.80 14986.46 14091.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
test_cas_vis1_n_192088.83 16188.85 13988.78 26291.15 29576.72 29093.85 20294.93 20883.23 21692.81 7296.00 9661.17 32894.45 32891.67 8394.84 13195.17 189
PAPR90.02 11789.27 12892.29 12595.78 11580.95 18992.68 24796.22 11581.91 24486.66 18893.75 19282.23 9598.44 12179.40 25794.79 13297.48 97
test_fmvs187.34 20987.56 17286.68 31690.59 31871.80 34194.01 19294.04 24878.30 30291.97 9495.22 12556.28 34993.71 34292.89 4994.71 13394.52 217
xiu_mvs_v1_base_debu90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
xiu_mvs_v1_base90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
xiu_mvs_v1_base_debi90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
gg-mvs-nofinetune81.77 29979.37 31488.99 26090.85 31077.73 27786.29 35679.63 38574.88 33783.19 27869.05 38660.34 33296.11 29175.46 29294.64 13793.11 290
BH-RMVSNet88.37 17187.48 17491.02 18395.28 13379.45 23292.89 24293.07 26985.45 16686.91 18094.84 14470.35 24097.76 17473.97 30594.59 13895.85 165
test_fmvs1_n87.03 22587.04 18686.97 30889.74 33671.86 33994.55 15294.43 23078.47 29891.95 9695.50 11651.16 36693.81 34093.02 4894.56 13995.26 186
diffmvspermissive91.37 9091.23 8691.77 15093.09 22880.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20292.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned88.60 16688.13 16090.01 22895.24 13778.50 25393.29 22694.15 24384.75 18284.46 24493.40 19775.76 16697.40 21177.59 27294.52 14194.12 239
Effi-MVS+91.59 8791.11 8893.01 8594.35 18683.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
PCF-MVS84.11 1087.74 18886.08 22392.70 10494.02 19484.43 8989.27 32295.87 14573.62 34884.43 24694.33 16178.48 13998.86 8470.27 32394.45 14394.81 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-Vis-set93.01 6692.92 6593.29 7195.01 14683.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
MS-PatchMatch85.05 26984.16 26687.73 28891.42 28378.51 25291.25 28693.53 26177.50 30980.15 31291.58 26461.99 31895.51 31475.69 29094.35 14589.16 361
FE-MVS87.40 20786.02 22591.57 15794.56 17479.69 22790.27 29993.72 25980.57 27188.80 14491.62 26265.32 29698.59 10674.97 29994.33 14696.44 141
mvs_anonymous89.37 14389.32 12589.51 24893.47 21874.22 31591.65 27994.83 21682.91 22385.45 21893.79 18881.23 10896.36 28286.47 15094.09 14797.94 74
test_vis1_n86.56 23986.49 20886.78 31588.51 34672.69 32994.68 14593.78 25879.55 28290.70 11795.31 12148.75 37193.28 34893.15 4593.99 14894.38 229
MVP-Stereo85.97 25084.86 25789.32 25090.92 30682.19 15692.11 26894.19 24178.76 29478.77 33091.63 26168.38 26996.56 26775.01 29893.95 14989.20 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LFMVS90.08 11589.13 12992.95 9096.71 7782.32 15596.08 6189.91 34786.79 13292.15 9096.81 6362.60 31598.34 12987.18 14093.90 15098.19 58
PVSNet78.82 1885.55 25784.65 26188.23 27994.72 16371.93 33887.12 35192.75 27778.80 29384.95 23490.53 29364.43 30296.71 25574.74 30093.86 15196.06 158
CNLPA89.07 15187.98 16392.34 12196.87 7484.78 7694.08 18593.24 26581.41 25984.46 24495.13 13275.57 17196.62 25977.21 27693.84 15295.61 178
EPNet_dtu86.49 24485.94 23088.14 28190.24 32672.82 32794.11 18192.20 29186.66 13779.42 32492.36 23373.52 20095.81 30571.26 31793.66 15395.80 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GeoE90.05 11689.43 12191.90 14395.16 14080.37 20495.80 7894.65 22683.90 19687.55 16794.75 14778.18 14297.62 18781.28 22593.63 15497.71 88
EI-MVSNet-UG-set92.74 7092.62 7093.12 7894.86 15783.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
Fast-Effi-MVS+89.41 13988.64 14291.71 15294.74 16180.81 19393.54 21395.10 19883.11 21786.82 18690.67 29179.74 12097.75 17780.51 24093.55 15696.57 138
FA-MVS(test-final)89.66 12888.91 13591.93 13894.57 17380.27 20591.36 28394.74 22284.87 17889.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
131487.51 20286.57 20490.34 21392.42 24979.74 22692.63 24995.35 18878.35 30180.14 31391.62 26274.05 19297.15 23181.05 22793.53 15794.12 239
BH-w/o87.57 20087.05 18589.12 25594.90 15577.90 26892.41 25493.51 26282.89 22483.70 26591.34 26775.75 16797.07 23875.49 29193.49 15992.39 313
PMMVS85.71 25684.96 25487.95 28588.90 34477.09 28588.68 33290.06 34372.32 36086.47 18990.76 29072.15 21894.40 33081.78 21893.49 15992.36 314
PatchMatch-RL86.77 23485.54 24090.47 20795.88 11182.71 14490.54 29692.31 28879.82 27984.32 25291.57 26668.77 26496.39 27973.16 31093.48 16192.32 316
PLCcopyleft84.53 789.06 15288.03 16292.15 12897.27 6882.69 14594.29 17195.44 18079.71 28084.01 25994.18 16976.68 15698.75 9377.28 27593.41 16295.02 193
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet92.24 7791.91 7893.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
test-LLR85.87 25285.41 24387.25 30090.95 30271.67 34389.55 31689.88 34983.41 21084.54 24187.95 33567.25 27495.11 32381.82 21693.37 16494.97 194
test-mter84.54 27683.64 27587.25 30090.95 30271.67 34389.55 31689.88 34979.17 28684.54 24187.95 33555.56 35195.11 32381.82 21693.37 16494.97 194
EPP-MVSNet91.70 8591.56 8292.13 12995.88 11180.50 20197.33 795.25 19086.15 14989.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
CDS-MVSNet89.45 13688.51 14792.29 12593.62 21483.61 11193.01 23894.68 22581.95 24287.82 16193.24 20578.69 13496.99 24380.34 24293.23 16796.28 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM86.68 23585.39 24490.53 19893.05 23079.33 23989.79 31394.77 22178.82 29281.95 29193.24 20576.81 15297.30 21866.94 34693.16 16894.95 200
alignmvs93.08 6592.50 7294.81 3195.62 12287.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
thisisatest051587.33 21085.99 22691.37 16693.49 21779.55 22990.63 29589.56 35480.17 27487.56 16690.86 28467.07 27898.28 13581.50 22393.02 17096.29 146
TAMVS89.21 14588.29 15691.96 13693.71 21082.62 14893.30 22594.19 24182.22 23587.78 16293.94 18078.83 13196.95 24577.70 27192.98 17196.32 144
OMC-MVS91.23 9290.62 9793.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 130
canonicalmvs93.27 6092.75 6894.85 2595.70 11987.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
TESTMET0.1,183.74 28682.85 28586.42 31989.96 33271.21 34789.55 31687.88 35977.41 31083.37 27487.31 34356.71 34793.65 34480.62 23892.85 17494.40 228
thisisatest053088.67 16387.61 17191.86 14494.87 15680.07 21394.63 14889.90 34884.00 19488.46 14993.78 18966.88 28198.46 11583.30 18892.65 17597.06 115
VDD-MVS90.74 10089.92 11293.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31798.64 10090.95 9592.62 17697.93 76
test_yl90.69 10290.02 11092.71 10295.72 11782.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
DCV-MVSNet90.69 10290.02 11092.71 10295.72 11782.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
VDDNet89.56 13288.49 15092.76 9995.07 14482.09 15796.30 4393.19 26781.05 26891.88 9896.86 5961.16 32998.33 13188.43 12392.49 17997.84 82
DP-MVS87.25 21485.36 24692.90 9297.65 5583.24 11994.81 13792.00 29974.99 33481.92 29295.00 13572.66 21299.05 5566.92 34892.33 18096.40 142
GG-mvs-BLEND87.94 28689.73 33777.91 26787.80 34178.23 38980.58 30783.86 36459.88 33695.33 32071.20 31892.22 18190.60 349
tttt051788.61 16587.78 16891.11 17894.96 15077.81 27295.35 9989.69 35185.09 17588.05 15694.59 15566.93 27998.48 11183.27 18992.13 18297.03 118
HyFIR lowres test88.09 17986.81 19191.93 13896.00 10580.63 19790.01 31095.79 15073.42 35087.68 16492.10 24573.86 19697.96 16580.75 23591.70 18397.19 107
sss88.93 15688.26 15890.94 18994.05 19380.78 19491.71 27695.38 18481.55 25788.63 14693.91 18475.04 17695.47 31882.47 20291.61 18496.57 138
cascas86.43 24584.98 25390.80 19292.10 25880.92 19090.24 30395.91 14173.10 35383.57 27088.39 32865.15 29897.46 19984.90 16891.43 18594.03 246
Effi-MVS+-dtu88.65 16488.35 15289.54 24593.33 22276.39 29694.47 15894.36 23587.70 11285.43 22189.56 31373.45 20297.26 22485.57 16191.28 18694.97 194
thres100view90087.63 19486.71 19690.38 21196.12 9778.55 25095.03 12491.58 31187.15 12288.06 15592.29 23668.91 26298.10 14670.13 32791.10 18794.48 225
tfpn200view987.58 19986.64 19990.41 20895.99 10878.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32791.10 18794.48 225
thres600view787.65 19186.67 19890.59 19596.08 10178.72 24694.88 13291.58 31187.06 12588.08 15492.30 23568.91 26298.10 14670.05 33091.10 18794.96 197
thres40087.62 19686.64 19990.57 19695.99 10878.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32791.10 18794.96 197
F-COLMAP87.95 18286.80 19291.40 16496.35 9280.88 19194.73 14295.45 17879.65 28182.04 29094.61 15371.13 22698.50 11076.24 28791.05 19194.80 206
thres20087.21 21886.24 21790.12 22195.36 13078.53 25193.26 22892.10 29586.42 14188.00 15791.11 27969.24 25898.00 16269.58 33191.04 19293.83 256
WTY-MVS89.60 13088.92 13491.67 15395.47 12781.15 18392.38 25694.78 22083.11 21789.06 14194.32 16278.67 13596.61 26281.57 22290.89 19397.24 104
HY-MVS83.01 1289.03 15387.94 16592.29 12594.86 15782.77 13892.08 27094.49 22881.52 25886.93 17892.79 22278.32 14198.23 13779.93 24790.55 19495.88 164
CLD-MVS89.47 13588.90 13691.18 17394.22 18882.07 15892.13 26796.09 12687.90 10585.37 22792.45 23074.38 18597.56 19087.15 14190.43 19593.93 248
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CVMVSNet84.69 27584.79 25984.37 33791.84 26764.92 37393.70 20991.47 31666.19 37586.16 19995.28 12267.18 27693.33 34780.89 23390.42 19694.88 202
SCA86.32 24685.18 24989.73 24092.15 25476.60 29291.12 28891.69 30883.53 20785.50 21488.81 32166.79 28296.48 27276.65 28190.35 19796.12 153
Fast-Effi-MVS+-dtu87.44 20586.72 19589.63 24392.04 25977.68 27894.03 19093.94 24985.81 15482.42 28491.32 27070.33 24197.06 23980.33 24390.23 19894.14 238
OPM-MVS90.12 11489.56 11791.82 14793.14 22683.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 19993.65 269
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 10890.19 10291.82 14794.70 16582.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20094.63 209
plane_prior596.22 11598.12 14488.15 12489.99 20094.63 209
XVG-OURS89.40 14188.70 14091.52 15894.06 19281.46 17491.27 28596.07 12886.14 15088.89 14395.77 10868.73 26597.26 22487.39 13789.96 20295.83 167
baseline286.50 24285.39 24489.84 23391.12 29676.70 29191.88 27188.58 35782.35 23479.95 31790.95 28373.42 20397.63 18680.27 24489.95 20395.19 188
Anonymous20240521187.68 18986.13 21992.31 12396.66 7980.74 19594.87 13391.49 31580.47 27289.46 13595.44 11754.72 35698.23 13782.19 20889.89 20497.97 72
plane_prior82.73 14295.21 11189.66 4889.88 205
SDMVSNet90.19 11389.61 11691.93 13896.00 10583.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23688.90 11789.85 20695.63 176
sd_testset88.59 16787.85 16790.83 19096.00 10580.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27296.43 27779.64 25189.85 20695.63 176
TR-MVS86.78 23185.76 23789.82 23494.37 18378.41 25592.47 25392.83 27481.11 26786.36 19492.40 23168.73 26597.48 19773.75 30889.85 20693.57 271
HQP3-MVS96.04 13189.77 209
HQP-MVS89.80 12689.28 12791.34 16794.17 18981.56 16894.39 16596.04 13188.81 7285.43 22193.97 17973.83 19797.96 16587.11 14389.77 20994.50 222
XVG-OURS-SEG-HR89.95 12189.45 11991.47 16294.00 19881.21 18291.87 27296.06 13085.78 15588.55 14795.73 11074.67 18397.27 22288.71 12089.64 21195.91 162
GA-MVS86.61 23685.27 24890.66 19491.33 28878.71 24790.40 29893.81 25785.34 16885.12 23189.57 31261.25 32597.11 23580.99 23189.59 21296.15 150
1112_ss88.42 16987.33 17891.72 15194.92 15380.98 18792.97 24094.54 22778.16 30683.82 26293.88 18578.78 13397.91 16979.45 25389.41 21396.26 148
ab-mvs89.41 13988.35 15292.60 10895.15 14282.65 14792.20 26595.60 16783.97 19588.55 14793.70 19374.16 19198.21 14082.46 20389.37 21496.94 123
CR-MVSNet85.35 26283.76 27390.12 22190.58 31979.34 23685.24 36491.96 30378.27 30385.55 20887.87 33871.03 22895.61 31073.96 30689.36 21595.40 182
RPMNet83.95 28381.53 29291.21 17190.58 31979.34 23685.24 36496.76 7571.44 36485.55 20882.97 37170.87 23198.91 8061.01 36789.36 21595.40 182
DSMNet-mixed76.94 33676.29 33578.89 35683.10 37756.11 39287.78 34279.77 38460.65 38175.64 34988.71 32461.56 32288.34 37960.07 37089.29 21792.21 319
LPG-MVS_test89.45 13688.90 13691.12 17594.47 17781.49 17295.30 10396.14 12086.73 13585.45 21895.16 13069.89 24598.10 14687.70 13289.23 21893.77 262
LGP-MVS_train91.12 17594.47 17781.49 17296.14 12086.73 13585.45 21895.16 13069.89 24598.10 14687.70 13289.23 21893.77 262
Test_1112_low_res87.65 19186.51 20691.08 17994.94 15279.28 24091.77 27494.30 23776.04 32483.51 27192.37 23277.86 14697.73 17878.69 26189.13 22096.22 149
PatchmatchNetpermissive85.85 25384.70 26089.29 25191.76 27175.54 30588.49 33491.30 31981.63 25585.05 23288.70 32571.71 22096.24 28674.61 30289.05 22196.08 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
iter_conf_final89.42 13888.69 14191.60 15595.12 14382.93 13595.75 8192.14 29487.32 12087.12 17594.07 17067.09 27797.55 19190.61 10189.01 22294.32 231
iter_conf0588.85 15788.08 16191.17 17494.27 18781.64 16795.18 11392.15 29386.23 14787.28 17294.07 17063.89 30897.55 19190.63 10089.00 22394.32 231
MDTV_nov1_ep1383.56 27691.69 27669.93 35787.75 34491.54 31378.60 29784.86 23588.90 32069.54 25096.03 29370.25 32488.93 224
MIMVSNet82.59 29380.53 29888.76 26391.51 27978.32 25886.57 35590.13 34179.32 28380.70 30588.69 32652.98 36393.07 35266.03 35188.86 22594.90 201
ACMM84.12 989.14 14688.48 15191.12 17594.65 16881.22 18195.31 10196.12 12385.31 16985.92 20194.34 16070.19 24398.06 15885.65 15988.86 22594.08 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba89.96 12089.50 11891.33 16892.90 23881.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 22794.51 219
ACMP84.23 889.01 15588.35 15290.99 18694.73 16281.27 17895.07 12195.89 14486.48 13983.67 26694.30 16369.33 25497.99 16387.10 14588.55 22893.72 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf89.03 15388.64 14290.21 21590.74 31479.28 24095.96 7195.90 14284.66 18585.33 22992.94 21574.02 19397.30 21889.64 10988.53 22994.05 245
jajsoiax88.24 17587.50 17390.48 20490.89 30880.14 21095.31 10195.65 16484.97 17784.24 25594.02 17565.31 29797.42 20488.56 12188.52 23093.89 249
PatchT82.68 29281.27 29486.89 31290.09 32970.94 35184.06 37190.15 34074.91 33585.63 20783.57 36669.37 25294.87 32765.19 35388.50 23194.84 203
MSDG84.86 27283.09 28190.14 22093.80 20680.05 21589.18 32593.09 26878.89 29078.19 33191.91 25265.86 29597.27 22268.47 33688.45 23293.11 290
MVS-HIRNet73.70 34172.20 34478.18 35991.81 27056.42 39182.94 37782.58 37855.24 38368.88 37366.48 38755.32 35395.13 32258.12 37488.42 23383.01 376
mvs_tets88.06 18187.28 18090.38 21190.94 30479.88 22295.22 11095.66 16285.10 17484.21 25693.94 18063.53 30997.40 21188.50 12288.40 23493.87 252
ET-MVSNet_ETH3D87.51 20285.91 23192.32 12293.70 21283.93 9992.33 26090.94 32884.16 19072.09 36592.52 22869.90 24495.85 30289.20 11488.36 23597.17 108
FIs90.51 10990.35 9990.99 18693.99 19980.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22685.18 16388.31 23694.76 207
PS-MVSNAJss89.97 11989.62 11591.02 18391.90 26580.85 19295.26 10895.98 13486.26 14586.21 19794.29 16479.70 12197.65 18288.87 11988.10 23794.57 214
CMPMVSbinary59.16 2180.52 31479.20 31884.48 33683.98 37467.63 36689.95 31293.84 25664.79 37766.81 37691.14 27857.93 34495.17 32176.25 28688.10 23790.65 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FC-MVSNet-test90.27 11190.18 10390.53 19893.71 21079.85 22495.77 8097.59 389.31 5686.27 19694.67 15181.93 10397.01 24284.26 17688.09 23994.71 208
ACMMP++88.01 240
D2MVS85.90 25185.09 25188.35 27490.79 31177.42 28191.83 27395.70 15880.77 27080.08 31590.02 30366.74 28496.37 28081.88 21587.97 24191.26 337
UniMVSNet_ETH3D87.53 20186.37 21091.00 18592.44 24878.96 24594.74 14195.61 16684.07 19385.36 22894.52 15759.78 33797.34 21682.93 19387.88 24296.71 134
PVSNet_BlendedMVS89.98 11889.70 11490.82 19196.12 9781.25 17993.92 19996.83 6683.49 20889.10 13992.26 23781.04 10998.85 8686.72 14887.86 24392.35 315
Syy-MVS80.07 31979.78 30880.94 35291.92 26359.93 38389.75 31487.40 36481.72 25178.82 32787.20 34566.29 29091.29 36647.06 38487.84 24491.60 329
myMVS_eth3d79.67 32478.79 32382.32 35091.92 26364.08 37589.75 31487.40 36481.72 25178.82 32787.20 34545.33 37791.29 36659.09 37387.84 24491.60 329
bld_raw_dy_0_6487.60 19886.73 19490.21 21591.72 27280.26 20795.09 12088.61 35685.68 15985.55 20894.38 15963.93 30796.66 25687.73 13187.84 24493.72 266
anonymousdsp87.84 18487.09 18390.12 22189.13 34180.54 20094.67 14695.55 16982.05 23883.82 26292.12 24271.47 22497.15 23187.15 14187.80 24792.67 303
testing380.46 31579.59 31383.06 34593.44 22064.64 37493.33 22085.47 36984.34 18979.93 31890.84 28644.35 37992.39 35657.06 37787.56 24892.16 320
Anonymous2024052988.09 17986.59 20392.58 11096.53 8681.92 16295.99 6995.84 14774.11 34389.06 14195.21 12761.44 32398.81 8983.67 18687.47 24997.01 119
ACMMP++_ref87.47 249
XVG-ACMP-BASELINE86.00 24984.84 25889.45 24991.20 29078.00 26591.70 27795.55 16985.05 17682.97 27992.25 23854.49 35797.48 19782.93 19387.45 25192.89 298
EI-MVSNet89.10 14788.86 13889.80 23791.84 26778.30 25993.70 20995.01 20185.73 15787.15 17395.28 12279.87 11897.21 22983.81 18387.36 25293.88 251
MVSTER88.84 15888.29 15690.51 20192.95 23680.44 20293.73 20695.01 20184.66 18587.15 17393.12 21072.79 21197.21 22987.86 12987.36 25293.87 252
EG-PatchMatch MVS82.37 29580.34 30188.46 27190.27 32579.35 23592.80 24694.33 23677.14 31473.26 36290.18 29947.47 37496.72 25370.25 32487.32 25489.30 358
EPMVS83.90 28582.70 28787.51 29290.23 32772.67 33088.62 33381.96 38081.37 26085.01 23388.34 32966.31 28994.45 32875.30 29487.12 25595.43 181
tpm284.08 28082.94 28387.48 29591.39 28471.27 34589.23 32490.37 33671.95 36284.64 23889.33 31467.30 27396.55 26975.17 29587.09 25694.63 209
CostFormer85.77 25584.94 25588.26 27791.16 29472.58 33589.47 32091.04 32676.26 32286.45 19289.97 30570.74 23396.86 25182.35 20587.07 25795.34 185
Patchmatch-test81.37 30779.30 31587.58 29190.92 30674.16 31780.99 38087.68 36270.52 36876.63 34388.81 32171.21 22592.76 35460.01 37186.93 25895.83 167
RRT_MVS89.09 14988.62 14590.49 20292.85 23979.65 22896.41 3994.41 23288.22 9485.50 21494.77 14669.36 25397.31 21789.33 11286.73 25994.51 219
mvsany_test185.42 26085.30 24785.77 32687.95 35775.41 30787.61 34880.97 38276.82 31688.68 14595.83 10477.44 14890.82 37085.90 15686.51 26091.08 344
test_fmvs283.98 28184.03 26883.83 34287.16 36067.53 36793.93 19892.89 27277.62 30886.89 18393.53 19547.18 37592.02 36090.54 10286.51 26091.93 323
LTVRE_ROB82.13 1386.26 24784.90 25690.34 21394.44 18181.50 17092.31 26294.89 21083.03 21979.63 32292.67 22369.69 24897.79 17271.20 31886.26 26291.72 326
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft80.39 1683.96 28282.04 28989.74 23895.28 13379.75 22594.25 17392.28 28975.17 33278.02 33493.77 19058.60 34297.84 17165.06 35685.92 26391.63 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPSCF85.07 26884.27 26587.48 29592.91 23770.62 35391.69 27892.46 28376.20 32382.67 28395.22 12563.94 30597.29 22177.51 27485.80 26494.53 216
USDC82.76 29081.26 29587.26 29991.17 29274.55 31189.27 32293.39 26478.26 30475.30 35192.08 24654.43 35896.63 25871.64 31585.79 26590.61 347
dmvs_re84.20 27983.22 28087.14 30691.83 26977.81 27290.04 30990.19 33984.70 18481.49 29489.17 31664.37 30391.13 36871.58 31685.65 26692.46 310
GBi-Net87.26 21285.98 22791.08 17994.01 19583.10 12595.14 11794.94 20483.57 20484.37 24791.64 25866.59 28696.34 28378.23 26685.36 26793.79 257
test187.26 21285.98 22791.08 17994.01 19583.10 12595.14 11794.94 20483.57 20484.37 24791.64 25866.59 28696.34 28378.23 26685.36 26793.79 257
FMVSNet387.40 20786.11 22191.30 16993.79 20883.64 10894.20 17794.81 21883.89 19784.37 24791.87 25468.45 26896.56 26778.23 26685.36 26793.70 268
FMVSNet287.19 22085.82 23391.30 16994.01 19583.67 10694.79 13894.94 20483.57 20483.88 26192.05 24966.59 28696.51 27077.56 27385.01 27093.73 265
ACMH80.38 1785.36 26183.68 27490.39 20994.45 18080.63 19794.73 14294.85 21482.09 23777.24 33892.65 22460.01 33597.58 18872.25 31484.87 27192.96 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF88.24 27891.88 26677.05 28692.92 27185.54 16480.13 31493.30 20257.29 34696.20 28772.46 31384.71 27291.49 332
JIA-IIPM81.04 31078.98 32287.25 30088.64 34573.48 32281.75 37989.61 35373.19 35282.05 28973.71 38366.07 29495.87 30171.18 32084.60 27392.41 312
tt080586.92 22785.74 23990.48 20492.22 25279.98 22095.63 9194.88 21283.83 19984.74 23792.80 22157.61 34597.67 17985.48 16284.42 27493.79 257
OpenMVS_ROBcopyleft74.94 1979.51 32577.03 33286.93 30987.00 36176.23 29992.33 26090.74 33368.93 37174.52 35688.23 33249.58 36996.62 25957.64 37584.29 27587.94 370
AllTest83.42 28781.39 29389.52 24695.01 14677.79 27493.12 23290.89 33077.41 31076.12 34693.34 19854.08 35997.51 19568.31 33884.27 27693.26 281
TestCases89.52 24695.01 14677.79 27490.89 33077.41 31076.12 34693.34 19854.08 35997.51 19568.31 33884.27 27693.26 281
tpm84.73 27384.02 26986.87 31390.33 32468.90 36089.06 32789.94 34680.85 26985.75 20389.86 30768.54 26795.97 29677.76 27084.05 27895.75 170
FMVSNet185.85 25384.11 26791.08 17992.81 24083.10 12595.14 11794.94 20481.64 25482.68 28291.64 25859.01 34196.34 28375.37 29383.78 27993.79 257
ADS-MVSNet281.66 30279.71 31187.50 29391.35 28674.19 31683.33 37488.48 35872.90 35582.24 28785.77 35764.98 29993.20 35064.57 35783.74 28095.12 190
ADS-MVSNet81.56 30479.78 30886.90 31191.35 28671.82 34083.33 37489.16 35572.90 35582.24 28785.77 35764.98 29993.76 34164.57 35783.74 28095.12 190
XXY-MVS87.65 19186.85 19090.03 22592.14 25580.60 19993.76 20595.23 19182.94 22284.60 23994.02 17574.27 18695.49 31781.04 22883.68 28294.01 247
test_040281.30 30979.17 31987.67 28993.19 22578.17 26292.98 23991.71 30675.25 33176.02 34890.31 29759.23 33996.37 28050.22 38283.63 28388.47 367
tpmvs83.35 28982.07 28887.20 30491.07 29871.00 35088.31 33791.70 30778.91 28980.49 30987.18 34769.30 25797.08 23668.12 34183.56 28493.51 275
pmmvs584.21 27882.84 28688.34 27588.95 34376.94 28792.41 25491.91 30575.63 32780.28 31091.18 27564.59 30195.57 31177.09 27983.47 28592.53 307
pmmvs485.43 25983.86 27290.16 21890.02 33182.97 13490.27 29992.67 28075.93 32580.73 30491.74 25771.05 22795.73 30978.85 26083.46 28691.78 325
test0.0.03 182.41 29481.69 29084.59 33588.23 35272.89 32690.24 30387.83 36083.41 21079.86 31989.78 30967.25 27488.99 37865.18 35483.42 28791.90 324
tpmrst85.35 26284.99 25286.43 31890.88 30967.88 36488.71 33191.43 31780.13 27586.08 20088.80 32373.05 20796.02 29482.48 20183.40 28895.40 182
nrg03091.08 9690.39 9893.17 7693.07 22986.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 28994.96 197
cl2286.78 23185.98 22789.18 25492.34 25077.62 27990.84 29294.13 24581.33 26183.97 26090.15 30073.96 19496.60 26484.19 17782.94 29093.33 279
miper_ehance_all_eth87.22 21786.62 20289.02 25992.13 25677.40 28290.91 29194.81 21881.28 26284.32 25290.08 30279.26 12796.62 25983.81 18382.94 29093.04 293
miper_enhance_ethall86.90 22886.18 21889.06 25791.66 27777.58 28090.22 30594.82 21779.16 28784.48 24389.10 31779.19 12996.66 25684.06 17882.94 29092.94 296
ACMH+81.04 1485.05 26983.46 27789.82 23494.66 16779.37 23494.44 16094.12 24682.19 23678.04 33392.82 21958.23 34397.54 19373.77 30782.90 29392.54 306
VPA-MVSNet89.62 12988.96 13291.60 15593.86 20382.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21187.32 13982.86 29494.52 217
IterMVS-LS88.36 17287.91 16689.70 24193.80 20678.29 26093.73 20695.08 20085.73 15784.75 23691.90 25379.88 11796.92 24783.83 18282.51 29593.89 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testgi80.94 31380.20 30483.18 34387.96 35666.29 36891.28 28490.70 33483.70 20178.12 33292.84 21751.37 36590.82 37063.34 36082.46 29692.43 311
test_vis1_rt77.96 33376.46 33382.48 34885.89 36771.74 34290.25 30178.89 38671.03 36771.30 36981.35 37542.49 38191.05 36984.55 17382.37 29784.65 373
WR-MVS88.38 17087.67 17090.52 20093.30 22380.18 20893.26 22895.96 13788.57 8385.47 21792.81 22076.12 15996.91 24881.24 22682.29 29894.47 227
tpm cat181.96 29680.27 30287.01 30791.09 29771.02 34987.38 34991.53 31466.25 37480.17 31186.35 35368.22 27096.15 29069.16 33282.29 29893.86 254
v119287.25 21486.33 21290.00 22990.76 31379.04 24493.80 20395.48 17482.57 22985.48 21691.18 27573.38 20597.42 20482.30 20682.06 30093.53 272
v114487.61 19786.79 19390.06 22491.01 29979.34 23693.95 19695.42 18383.36 21285.66 20691.31 27174.98 17797.42 20483.37 18782.06 30093.42 278
v124086.78 23185.85 23289.56 24490.45 32377.79 27493.61 21195.37 18681.65 25385.43 22191.15 27771.50 22397.43 20381.47 22482.05 30293.47 276
Anonymous2023120681.03 31179.77 31084.82 33487.85 35870.26 35591.42 28292.08 29673.67 34777.75 33589.25 31562.43 31693.08 35161.50 36682.00 30391.12 341
V4287.68 18986.86 18990.15 21990.58 31980.14 21094.24 17595.28 18983.66 20285.67 20591.33 26874.73 18197.41 20984.43 17581.83 30492.89 298
v192192086.97 22686.06 22489.69 24290.53 32278.11 26493.80 20395.43 18181.90 24585.33 22991.05 28172.66 21297.41 20982.05 21181.80 30593.53 272
v2v48287.84 18487.06 18490.17 21790.99 30079.23 24394.00 19495.13 19584.87 17885.53 21192.07 24874.45 18497.45 20084.71 17181.75 30693.85 255
Anonymous2023121186.59 23885.13 25090.98 18896.52 8781.50 17096.14 5796.16 11973.78 34683.65 26792.15 24063.26 31297.37 21582.82 19781.74 30794.06 244
v14419287.19 22086.35 21189.74 23890.64 31778.24 26193.92 19995.43 18181.93 24385.51 21391.05 28174.21 18997.45 20082.86 19581.56 30893.53 272
cl____86.52 24185.78 23488.75 26492.03 26076.46 29490.74 29394.30 23781.83 24983.34 27590.78 28975.74 16996.57 26581.74 21981.54 30993.22 285
DIV-MVS_self_test86.53 24085.78 23488.75 26492.02 26176.45 29590.74 29394.30 23781.83 24983.34 27590.82 28775.75 16796.57 26581.73 22081.52 31093.24 284
Anonymous2024052180.44 31679.21 31784.11 34085.75 36967.89 36392.86 24493.23 26675.61 32875.59 35087.47 34250.03 36794.33 33271.14 32181.21 31190.12 352
OurMVSNet-221017-085.35 26284.64 26287.49 29490.77 31272.59 33494.01 19294.40 23384.72 18379.62 32393.17 20761.91 31996.72 25381.99 21281.16 31293.16 288
FMVSNet581.52 30579.60 31287.27 29891.17 29277.95 26691.49 28192.26 29076.87 31576.16 34587.91 33751.67 36492.34 35767.74 34281.16 31291.52 331
CP-MVSNet87.63 19487.26 18288.74 26693.12 22776.59 29395.29 10596.58 9188.43 8683.49 27292.98 21475.28 17395.83 30378.97 25981.15 31493.79 257
c3_l87.14 22286.50 20789.04 25892.20 25377.26 28391.22 28794.70 22482.01 24184.34 25190.43 29578.81 13296.61 26283.70 18581.09 31593.25 283
IterMVS-SCA-FT85.45 25884.53 26488.18 28091.71 27476.87 28890.19 30692.65 28185.40 16781.44 29690.54 29266.79 28295.00 32681.04 22881.05 31692.66 304
TinyColmap79.76 32377.69 32685.97 32291.71 27473.12 32489.55 31690.36 33775.03 33372.03 36690.19 29846.22 37696.19 28963.11 36181.03 31788.59 366
UniMVSNet_NR-MVSNet89.92 12389.29 12691.81 14993.39 22183.72 10494.43 16197.12 4189.80 4186.46 19093.32 20083.16 7997.23 22784.92 16681.02 31894.49 224
DU-MVS89.34 14488.50 14891.85 14693.04 23183.72 10494.47 15896.59 9089.50 5086.46 19093.29 20377.25 14997.23 22784.92 16681.02 31894.59 212
PS-CasMVS87.32 21186.88 18888.63 26992.99 23476.33 29895.33 10096.61 8988.22 9483.30 27793.07 21273.03 20995.79 30678.36 26381.00 32093.75 264
IterMVS84.88 27183.98 27187.60 29091.44 28076.03 30090.18 30792.41 28483.24 21581.06 30290.42 29666.60 28594.28 33479.46 25280.98 32192.48 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)89.80 12689.07 13092.01 13093.60 21584.52 8394.78 13997.47 1189.26 5886.44 19392.32 23482.10 9897.39 21484.81 16980.84 32294.12 239
LF4IMVS80.37 31779.07 32184.27 33986.64 36269.87 35889.39 32191.05 32576.38 31974.97 35390.00 30447.85 37394.25 33574.55 30380.82 32388.69 365
v1087.25 21486.38 20989.85 23291.19 29179.50 23094.48 15595.45 17883.79 20083.62 26891.19 27375.13 17497.42 20481.94 21380.60 32492.63 305
tfpnnormal84.72 27483.23 27989.20 25392.79 24180.05 21594.48 15595.81 14882.38 23281.08 30191.21 27269.01 26196.95 24561.69 36580.59 32590.58 350
WR-MVS_H87.80 18687.37 17789.10 25693.23 22478.12 26395.61 9297.30 2987.90 10583.72 26492.01 25079.65 12596.01 29576.36 28480.54 32693.16 288
VPNet88.20 17687.47 17590.39 20993.56 21679.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23184.05 17980.53 32794.56 215
v7n86.81 22985.76 23789.95 23090.72 31579.25 24295.07 12195.92 13984.45 18882.29 28590.86 28472.60 21497.53 19479.42 25680.52 32893.08 292
v887.50 20486.71 19689.89 23191.37 28579.40 23394.50 15495.38 18484.81 18183.60 26991.33 26876.05 16097.42 20482.84 19680.51 32992.84 300
EU-MVSNet81.32 30880.95 29682.42 34988.50 34863.67 37793.32 22191.33 31864.02 37880.57 30892.83 21861.21 32792.27 35876.34 28580.38 33091.32 335
Patchmtry82.71 29180.93 29788.06 28290.05 33076.37 29784.74 36991.96 30372.28 36181.32 29987.87 33871.03 22895.50 31668.97 33380.15 33192.32 316
NR-MVSNet88.58 16887.47 17591.93 13893.04 23184.16 9594.77 14096.25 11289.05 6580.04 31693.29 20379.02 13097.05 24081.71 22180.05 33294.59 212
Baseline_NR-MVSNet87.07 22386.63 20188.40 27291.44 28077.87 27094.23 17692.57 28284.12 19285.74 20492.08 24677.25 14996.04 29282.29 20779.94 33391.30 336
dp81.47 30680.23 30385.17 33289.92 33365.49 37186.74 35390.10 34276.30 32181.10 30087.12 34862.81 31495.92 29868.13 34079.88 33494.09 242
TranMVSNet+NR-MVSNet88.84 15887.95 16491.49 16092.68 24383.01 13294.92 13096.31 10489.88 3985.53 21193.85 18776.63 15796.96 24481.91 21479.87 33594.50 222
miper_lstm_enhance85.27 26584.59 26387.31 29791.28 28974.63 31087.69 34594.09 24781.20 26681.36 29889.85 30874.97 17894.30 33381.03 23079.84 33693.01 294
v14887.04 22486.32 21389.21 25290.94 30477.26 28393.71 20894.43 23084.84 18084.36 25090.80 28876.04 16197.05 24082.12 20979.60 33793.31 280
IB-MVS80.51 1585.24 26683.26 27891.19 17292.13 25679.86 22391.75 27591.29 32083.28 21480.66 30688.49 32761.28 32498.46 11580.99 23179.46 33895.25 187
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
eth_miper_zixun_eth86.50 24285.77 23688.68 26791.94 26275.81 30390.47 29794.89 21082.05 23884.05 25790.46 29475.96 16296.77 25282.76 19979.36 33993.46 277
baseline188.10 17887.28 18090.57 19694.96 15080.07 21394.27 17291.29 32086.74 13487.41 16894.00 17776.77 15496.20 28780.77 23479.31 34095.44 180
our_test_381.93 29780.46 30086.33 32088.46 34973.48 32288.46 33591.11 32276.46 31776.69 34288.25 33166.89 28094.36 33168.75 33479.08 34191.14 340
PEN-MVS86.80 23086.27 21688.40 27292.32 25175.71 30495.18 11396.38 10187.97 10282.82 28193.15 20873.39 20495.92 29876.15 28879.03 34293.59 270
pm-mvs186.61 23685.54 24089.82 23491.44 28080.18 20895.28 10794.85 21483.84 19881.66 29392.62 22572.45 21796.48 27279.67 25078.06 34392.82 301
h-mvs3390.80 9890.15 10492.75 10096.01 10482.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 34496.60 136
SixPastTwentyTwo83.91 28482.90 28486.92 31090.99 30070.67 35293.48 21591.99 30085.54 16477.62 33792.11 24460.59 33196.87 25076.05 28977.75 34593.20 286
ppachtmachnet_test81.84 29880.07 30687.15 30588.46 34974.43 31489.04 32892.16 29275.33 33077.75 33588.99 31866.20 29195.37 31965.12 35577.60 34691.65 327
MIMVSNet179.38 32677.28 32885.69 32786.35 36373.67 31991.61 28092.75 27778.11 30772.64 36488.12 33348.16 37291.97 36260.32 36877.49 34791.43 334
DTE-MVSNet86.11 24885.48 24287.98 28491.65 27874.92 30994.93 12995.75 15387.36 11982.26 28693.04 21372.85 21095.82 30474.04 30477.46 34893.20 286
N_pmnet68.89 34668.44 34870.23 36789.07 34228.79 40488.06 33819.50 40469.47 37071.86 36784.93 36061.24 32691.75 36354.70 37977.15 34990.15 351
AUN-MVS87.78 18786.54 20591.48 16194.82 16081.05 18593.91 20193.93 25083.00 22086.93 17893.53 19569.50 25197.67 17986.14 15177.12 35095.73 173
hse-mvs289.88 12589.34 12491.51 15994.83 15981.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35195.74 171
dmvs_testset74.57 34075.81 33970.86 36687.72 35940.47 39987.05 35277.90 39182.75 22671.15 37085.47 35967.98 27184.12 38845.26 38576.98 35288.00 369
test20.0379.95 32179.08 32082.55 34785.79 36867.74 36591.09 28991.08 32381.23 26574.48 35789.96 30661.63 32090.15 37260.08 36976.38 35389.76 353
FPMVS64.63 35162.55 35370.88 36570.80 39156.71 38784.42 37084.42 37351.78 38649.57 38681.61 37423.49 39181.48 39140.61 39176.25 35474.46 384
test_fmvs377.67 33477.16 33179.22 35579.52 38461.14 38192.34 25991.64 31073.98 34478.86 32686.59 34927.38 38987.03 38088.12 12775.97 35589.50 355
EGC-MVSNET61.97 35256.37 35678.77 35789.63 33873.50 32189.12 32682.79 3770.21 4011.24 40284.80 36139.48 38290.04 37344.13 38675.94 35672.79 385
pmmvs683.42 28781.60 29188.87 26188.01 35577.87 27094.96 12794.24 24074.67 33878.80 32991.09 28060.17 33496.49 27177.06 28075.40 35792.23 318
new_pmnet72.15 34270.13 34678.20 35882.95 37865.68 36983.91 37282.40 37962.94 38064.47 37779.82 37742.85 38086.26 38457.41 37674.44 35882.65 378
MDA-MVSNet_test_wron79.21 32877.19 33085.29 33088.22 35372.77 32885.87 35890.06 34374.34 34062.62 38087.56 34166.14 29291.99 36166.90 34973.01 35991.10 343
YYNet179.22 32777.20 32985.28 33188.20 35472.66 33185.87 35890.05 34574.33 34162.70 37887.61 34066.09 29392.03 35966.94 34672.97 36091.15 339
Patchmatch-RL test81.67 30179.96 30786.81 31485.42 37171.23 34682.17 37887.50 36378.47 29877.19 33982.50 37370.81 23293.48 34582.66 20072.89 36195.71 174
pmmvs-eth3d80.97 31278.72 32487.74 28784.99 37379.97 22190.11 30891.65 30975.36 32973.51 36086.03 35459.45 33893.96 33975.17 29572.21 36289.29 359
PM-MVS78.11 33276.12 33684.09 34183.54 37670.08 35688.97 32985.27 37179.93 27774.73 35586.43 35134.70 38593.48 34579.43 25572.06 36388.72 364
test_f71.95 34370.87 34575.21 36274.21 38959.37 38585.07 36685.82 36765.25 37670.42 37183.13 36823.62 39082.93 39078.32 26471.94 36483.33 375
Gipumacopyleft57.99 35754.91 35967.24 37388.51 34665.59 37052.21 39290.33 33843.58 38942.84 39251.18 39320.29 39585.07 38534.77 39270.45 36551.05 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD_test169.04 34566.26 35177.36 36180.51 38262.79 38085.46 36383.51 37654.11 38559.14 38384.79 36223.40 39289.61 37455.22 37870.24 36679.68 382
K. test v381.59 30380.15 30585.91 32589.89 33469.42 35992.57 25187.71 36185.56 16373.44 36189.71 31055.58 35095.52 31377.17 27769.76 36792.78 302
KD-MVS_self_test80.20 31879.24 31683.07 34485.64 37065.29 37291.01 29093.93 25078.71 29676.32 34486.40 35259.20 34092.93 35372.59 31269.35 36891.00 345
CL-MVSNet_self_test81.74 30080.53 29885.36 32985.96 36672.45 33690.25 30193.07 26981.24 26479.85 32087.29 34470.93 23092.52 35566.95 34569.23 36991.11 342
TDRefinement79.81 32277.34 32787.22 30379.24 38575.48 30693.12 23292.03 29876.45 31875.01 35291.58 26449.19 37096.44 27670.22 32669.18 37089.75 354
MDA-MVSNet-bldmvs78.85 32976.31 33486.46 31789.76 33573.88 31888.79 33090.42 33579.16 28759.18 38288.33 33060.20 33394.04 33662.00 36468.96 37191.48 333
ambc83.06 34579.99 38363.51 37877.47 38592.86 27374.34 35884.45 36328.74 38695.06 32573.06 31168.89 37290.61 347
TransMVSNet (Re)84.43 27783.06 28288.54 27091.72 27278.44 25495.18 11392.82 27582.73 22779.67 32192.12 24273.49 20195.96 29771.10 32268.73 37391.21 338
mvsany_test374.95 33973.26 34380.02 35474.61 38763.16 37985.53 36278.42 38774.16 34274.89 35486.46 35036.02 38489.09 37782.39 20466.91 37487.82 371
PMVScopyleft47.18 2252.22 35848.46 36263.48 37445.72 40246.20 39773.41 38878.31 38841.03 39230.06 39565.68 3886.05 40283.43 38930.04 39365.86 37560.80 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt65.12 35062.60 35272.69 36471.44 39060.71 38287.17 35065.55 39763.80 37953.22 38565.65 38914.54 39989.44 37676.65 28165.38 37667.91 388
lessismore_v086.04 32188.46 34968.78 36180.59 38373.01 36390.11 30155.39 35296.43 27775.06 29765.06 37792.90 297
new-patchmatchnet76.41 33775.17 34080.13 35382.65 37959.61 38487.66 34691.08 32378.23 30569.85 37283.22 36754.76 35591.63 36564.14 35964.89 37889.16 361
pmmvs371.81 34468.71 34781.11 35175.86 38670.42 35486.74 35383.66 37558.95 38268.64 37580.89 37636.93 38389.52 37563.10 36263.59 37983.39 374
UnsupCasMVSNet_eth80.07 31978.27 32585.46 32885.24 37272.63 33388.45 33694.87 21382.99 22171.64 36888.07 33456.34 34891.75 36373.48 30963.36 38092.01 322
LCM-MVSNet66.00 34962.16 35477.51 36064.51 39758.29 38683.87 37390.90 32948.17 38754.69 38473.31 38416.83 39886.75 38165.47 35261.67 38187.48 372
UnsupCasMVSNet_bld76.23 33873.27 34285.09 33383.79 37572.92 32585.65 36193.47 26371.52 36368.84 37479.08 37849.77 36893.21 34966.81 35060.52 38289.13 363
testf159.54 35456.11 35769.85 36869.28 39256.61 38980.37 38276.55 39442.58 39045.68 38975.61 37911.26 40084.18 38643.20 38860.44 38368.75 386
APD_test259.54 35456.11 35769.85 36869.28 39256.61 38980.37 38276.55 39442.58 39045.68 38975.61 37911.26 40084.18 38643.20 38860.44 38368.75 386
KD-MVS_2432*160078.50 33076.02 33785.93 32386.22 36474.47 31284.80 36792.33 28679.29 28476.98 34085.92 35553.81 36193.97 33767.39 34357.42 38589.36 356
miper_refine_blended78.50 33076.02 33785.93 32386.22 36474.47 31284.80 36792.33 28679.29 28476.98 34085.92 35553.81 36193.97 33767.39 34357.42 38589.36 356
DeepMVS_CXcopyleft56.31 37774.23 38851.81 39456.67 40244.85 38848.54 38875.16 38127.87 38858.74 39840.92 39052.22 38758.39 391
WB-MVS67.92 34767.49 34969.21 37081.09 38041.17 39888.03 33978.00 39073.50 34962.63 37983.11 37063.94 30586.52 38225.66 39551.45 38879.94 381
PVSNet_073.20 2077.22 33574.83 34184.37 33790.70 31671.10 34883.09 37689.67 35272.81 35773.93 35983.13 36860.79 33093.70 34368.54 33550.84 38988.30 368
test_method50.52 35948.47 36156.66 37652.26 40118.98 40641.51 39481.40 38110.10 39644.59 39175.01 38228.51 38768.16 39453.54 38049.31 39082.83 377
SSC-MVS67.06 34866.56 35068.56 37280.54 38140.06 40087.77 34377.37 39372.38 35961.75 38182.66 37263.37 31086.45 38324.48 39648.69 39179.16 383
PMMVS259.60 35356.40 35569.21 37068.83 39446.58 39673.02 38977.48 39255.07 38449.21 38772.95 38517.43 39780.04 39249.32 38344.33 39280.99 380
MVEpermissive39.65 2343.39 36038.59 36657.77 37556.52 39948.77 39555.38 39158.64 40129.33 39528.96 39652.65 3924.68 40364.62 39728.11 39433.07 39359.93 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 36142.29 36346.03 37865.58 39637.41 40173.51 38764.62 39833.99 39328.47 39747.87 39419.90 39667.91 39522.23 39724.45 39432.77 393
ANet_high58.88 35654.22 36072.86 36356.50 40056.67 38880.75 38186.00 36673.09 35437.39 39364.63 39022.17 39379.49 39343.51 38723.96 39582.43 379
EMVS42.07 36241.12 36444.92 37963.45 39835.56 40373.65 38663.48 39933.05 39426.88 39845.45 39521.27 39467.14 39619.80 39823.02 39632.06 394
tmp_tt35.64 36339.24 36524.84 38014.87 40323.90 40562.71 39051.51 4036.58 39836.66 39462.08 39144.37 37830.34 40052.40 38122.00 39720.27 395
wuyk23d21.27 36520.48 36823.63 38168.59 39536.41 40249.57 3936.85 4059.37 3977.89 3994.46 4014.03 40431.37 39917.47 39916.07 3983.12 396
testmvs8.92 36611.52 3691.12 3831.06 4040.46 40886.02 3570.65 4060.62 3992.74 4009.52 3990.31 4060.45 4022.38 4000.39 3992.46 398
test1238.76 36711.22 3701.39 3820.85 4050.97 40785.76 3600.35 4070.54 4002.45 4018.14 4000.60 4050.48 4012.16 4010.17 4002.71 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k22.14 36429.52 3670.00 3840.00 4060.00 4090.00 39595.76 1520.00 4020.00 40394.29 16475.66 1700.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.64 3698.86 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40279.70 1210.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.82 36810.43 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40393.88 1850.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS64.08 37559.14 372
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 406
eth-test0.00 406
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 153
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 153
sam_mvs70.60 234
MTGPAbinary96.97 50
test_post188.00 3409.81 39869.31 25695.53 31276.65 281
test_post10.29 39770.57 23895.91 300
patchmatchnet-post83.76 36571.53 22296.48 272
MTMP96.16 5360.64 400
gm-plane-assit89.60 33968.00 36277.28 31388.99 31897.57 18979.44 254
TEST997.53 5886.49 3694.07 18696.78 7281.61 25692.77 7496.20 8787.71 2899.12 51
test_897.49 6086.30 4494.02 19196.76 7581.86 24792.70 7896.20 8787.63 2999.02 61
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
test_prior485.96 5394.11 181
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
旧先验293.36 21971.25 36594.37 3997.13 23486.74 146
新几何293.11 234
无先验93.28 22796.26 11073.95 34599.05 5580.56 23996.59 137
原ACMM292.94 241
testdata298.75 9378.30 265
segment_acmp87.16 36
testdata192.15 26687.94 103
plane_prior794.70 16582.74 141
plane_prior694.52 17582.75 13974.23 187
plane_prior494.86 140
plane_prior382.75 13990.26 3386.91 180
plane_prior295.85 7590.81 17
plane_prior194.59 170
n20.00 408
nn0.00 408
door-mid85.49 368
test1196.57 92
door85.33 370
HQP5-MVS81.56 168
HQP-NCC94.17 18994.39 16588.81 7285.43 221
ACMP_Plane94.17 18994.39 16588.81 7285.43 221
BP-MVS87.11 143
HQP4-MVS85.43 22197.96 16594.51 219
HQP2-MVS73.83 197
NP-MVS94.37 18382.42 15193.98 178
MDTV_nov1_ep13_2view55.91 39387.62 34773.32 35184.59 24070.33 24174.65 30195.50 179
Test By Simon80.02 116