This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
ZNCC-MVS94.47 1794.28 2395.03 1498.52 1586.96 1796.85 2897.32 2588.24 8393.15 5097.04 3986.17 4099.62 192.40 4698.81 2298.52 24
DPE-MVScopyleft95.57 495.67 495.25 998.36 2587.28 1595.56 8297.51 489.13 5897.14 897.91 1191.64 799.62 194.61 1499.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++95.98 196.36 194.82 2897.78 5186.00 4798.29 197.49 590.75 1797.62 598.06 692.59 299.61 395.64 699.02 1298.86 10
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6199.61 396.03 199.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6199.61 396.03 199.06 999.07 5
test_0728_SECOND95.01 1598.79 286.43 3697.09 1697.49 599.61 395.62 899.08 798.99 8
GST-MVS94.21 2793.97 3594.90 2198.41 2286.82 2196.54 3697.19 3388.24 8393.26 4796.83 4885.48 4799.59 791.43 7398.40 5098.30 45
SED-MVS95.91 296.28 294.80 3098.77 585.99 4997.13 1497.44 1490.31 2697.71 198.07 492.31 499.58 895.66 499.13 398.84 13
test_241102_TWO97.44 1490.31 2697.62 598.07 491.46 1099.58 895.66 499.12 698.98 9
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3588.48 896.26 4597.28 2985.90 13897.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVS-pluss94.21 2794.00 3494.85 2398.17 3386.65 2894.82 12397.17 3786.26 13092.83 5997.87 1285.57 4699.56 1094.37 1798.92 1798.34 40
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA94.42 2294.22 2695.00 1698.42 2186.95 1894.36 15796.97 4891.07 1193.14 5197.56 1584.30 6299.56 1093.43 2798.75 2898.47 31
MP-MVScopyleft94.25 2494.07 3294.77 3298.47 1886.31 4196.71 3196.98 4789.04 6091.98 7997.19 3185.43 4899.56 1092.06 6098.79 2398.44 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVScopyleft95.67 396.02 394.64 3698.78 385.93 5297.09 1696.73 7690.27 2997.04 1098.05 891.47 899.55 1495.62 899.08 798.45 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD90.75 1797.04 1098.05 892.09 699.55 1495.64 699.13 399.13 2
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 2989.65 495.92 6396.96 5091.75 794.02 3596.83 4888.12 2499.55 1493.41 2998.94 1698.28 48
mPP-MVS93.99 3493.78 3994.63 3798.50 1685.90 5696.87 2696.91 5688.70 6991.83 8897.17 3383.96 6699.55 1491.44 7298.64 4198.43 36
CANet93.54 4293.20 4994.55 4095.65 11785.73 6194.94 11596.69 8191.89 690.69 10495.88 8881.99 9099.54 1893.14 3397.95 6698.39 37
ACMMP_NAP94.74 1594.56 1695.28 898.02 4187.70 1095.68 7497.34 2188.28 8295.30 2397.67 1485.90 4399.54 1893.91 2198.95 1598.60 21
region2R94.43 2094.27 2594.92 1898.65 886.67 2796.92 2497.23 3288.60 7393.58 4297.27 2585.22 5099.54 1892.21 5198.74 2998.56 23
ACMMPR94.43 2094.28 2394.91 1998.63 986.69 2596.94 2097.32 2588.63 7193.53 4597.26 2785.04 5399.54 1892.35 4898.78 2598.50 25
PGM-MVS93.96 3593.72 4194.68 3598.43 2086.22 4495.30 9097.78 187.45 10793.26 4797.33 2384.62 6099.51 2290.75 8598.57 4598.32 44
ACMMPcopyleft93.24 5192.88 5494.30 4898.09 3885.33 6596.86 2797.45 1388.33 7990.15 11397.03 4081.44 9399.51 2290.85 8495.74 10198.04 67
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HFP-MVS94.52 1694.40 1994.86 2298.61 1086.81 2296.94 2097.34 2188.63 7193.65 4097.21 2986.10 4199.49 2492.35 4898.77 2798.30 45
XVS94.45 1894.32 2094.85 2398.54 1386.60 3196.93 2297.19 3390.66 2292.85 5797.16 3485.02 5499.49 2491.99 6198.56 4698.47 31
X-MVStestdata88.31 15886.13 20494.85 2398.54 1386.60 3196.93 2297.19 3390.66 2292.85 5723.41 37485.02 5499.49 2491.99 6198.56 4698.47 31
NCCC94.81 1494.69 1595.17 1297.83 4887.46 1495.66 7696.93 5492.34 293.94 3696.58 6387.74 2799.44 2792.83 3798.40 5098.62 20
SteuartSystems-ACMMP95.20 895.32 994.85 2396.99 7286.33 3997.33 797.30 2791.38 1095.39 2197.46 1788.98 1999.40 2894.12 1898.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
test_241102_ONE98.77 585.99 4997.44 1490.26 3197.71 197.96 1092.31 499.38 29
DeepC-MVS88.79 393.31 4992.99 5294.26 4996.07 10285.83 5794.89 11896.99 4689.02 6389.56 11897.37 2282.51 7899.38 2992.20 5298.30 5397.57 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS94.97 1194.90 1395.20 1097.84 4787.76 996.65 3497.48 987.76 10195.71 1997.70 1388.28 2399.35 3193.89 2298.78 2598.48 28
APDe-MVS95.46 595.64 594.91 1998.26 2886.29 4397.46 697.40 1989.03 6196.20 1698.10 289.39 1699.34 3295.88 399.03 1199.10 4
MCST-MVS94.45 1894.20 2895.19 1198.46 1987.50 1395.00 11297.12 3987.13 11192.51 7096.30 7089.24 1799.34 3293.46 2698.62 4298.73 16
3Dnovator+87.14 492.42 6391.37 7195.55 695.63 11888.73 697.07 1896.77 7190.84 1484.02 24296.62 6175.95 15099.34 3287.77 11597.68 7398.59 22
CNVR-MVS95.40 795.37 795.50 798.11 3688.51 795.29 9296.96 5092.09 495.32 2297.08 3689.49 1599.33 3595.10 1198.85 1998.66 19
CP-MVS94.34 2394.21 2794.74 3498.39 2386.64 2997.60 497.24 3088.53 7592.73 6497.23 2885.20 5199.32 3692.15 5498.83 2198.25 53
PHI-MVS93.89 3693.65 4494.62 3896.84 7586.43 3696.69 3297.49 585.15 15893.56 4496.28 7185.60 4599.31 3792.45 4398.79 2398.12 62
MSP-MVS95.42 695.56 694.98 1798.49 1786.52 3396.91 2597.47 1091.73 896.10 1796.69 5389.90 1299.30 3894.70 1298.04 6399.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
QAPM89.51 12088.15 14593.59 6194.92 14584.58 7296.82 2996.70 8078.43 28083.41 25796.19 7773.18 19399.30 3877.11 26296.54 9296.89 117
ZD-MVS98.15 3486.62 3097.07 4383.63 18694.19 3196.91 4487.57 3199.26 4091.99 6198.44 49
DeepC-MVS_fast89.43 294.04 3193.79 3894.80 3097.48 6186.78 2395.65 7896.89 5889.40 5092.81 6096.97 4185.37 4999.24 4190.87 8398.69 3398.38 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1494.47 1797.79 4996.08 5497.44 1486.13 13695.10 2497.40 2088.34 2299.22 4293.25 3198.70 32
DELS-MVS93.43 4793.25 4793.97 5195.42 12485.04 6793.06 22397.13 3890.74 1991.84 8695.09 11786.32 3999.21 4391.22 7498.45 4897.65 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LS3D87.89 16886.32 19892.59 9696.07 10282.92 12295.23 9694.92 19675.66 30682.89 26495.98 8472.48 20299.21 4368.43 32195.23 11595.64 162
HPM-MVScopyleft94.02 3293.88 3694.43 4498.39 2385.78 5997.25 1097.07 4386.90 11992.62 6796.80 5284.85 5899.17 4592.43 4498.65 4098.33 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu91.38 7790.91 8192.80 8496.39 9083.17 11194.87 12096.66 8283.29 19689.27 12394.46 14280.29 10199.17 4587.57 11995.37 11096.05 146
3Dnovator86.66 591.73 7290.82 8394.44 4294.59 16186.37 3897.18 1297.02 4589.20 5584.31 23896.66 5673.74 18699.17 4586.74 13197.96 6597.79 81
CSCG93.23 5293.05 5193.76 5998.04 4084.07 8796.22 4797.37 2084.15 17490.05 11495.66 9887.77 2699.15 4889.91 9398.27 5498.07 64
TEST997.53 5886.49 3494.07 17396.78 6981.61 23592.77 6196.20 7487.71 2899.12 49
train_agg93.44 4593.08 5094.52 4197.53 5886.49 3494.07 17396.78 6981.86 22892.77 6196.20 7487.63 2999.12 4992.14 5598.69 3397.94 71
HPM-MVS_fast93.40 4893.22 4893.94 5398.36 2584.83 6997.15 1396.80 6885.77 14192.47 7197.13 3582.38 7999.07 5190.51 9098.40 5097.92 74
APD-MVScopyleft94.24 2594.07 3294.75 3398.06 3986.90 2095.88 6496.94 5385.68 14495.05 2597.18 3287.31 3399.07 5191.90 6798.61 4498.28 48
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
无先验93.28 21296.26 10473.95 32599.05 5380.56 22496.59 125
DP-MVS87.25 19985.36 23192.90 8197.65 5583.24 10894.81 12492.00 28474.99 31481.92 27695.00 11972.66 19999.05 5366.92 33292.33 16696.40 130
CDPH-MVS92.83 5692.30 6294.44 4297.79 4986.11 4694.06 17596.66 8280.09 25592.77 6196.63 6086.62 3699.04 5587.40 12198.66 3898.17 58
SR-MVS94.23 2694.17 3094.43 4498.21 3285.78 5996.40 3996.90 5788.20 8794.33 2997.40 2084.75 5999.03 5693.35 3097.99 6498.48 28
CANet_DTU90.26 10089.41 10992.81 8393.46 20883.01 11893.48 20194.47 21589.43 4987.76 14994.23 15270.54 22599.03 5684.97 15096.39 9696.38 131
DP-MVS Recon91.95 6791.28 7393.96 5298.33 2785.92 5494.66 13496.66 8282.69 20990.03 11595.82 9182.30 8299.03 5684.57 15796.48 9596.91 116
test_897.49 6086.30 4294.02 17896.76 7281.86 22892.70 6596.20 7487.63 2999.02 59
AdaColmapbinary89.89 11189.07 11792.37 10797.41 6283.03 11694.42 14995.92 12982.81 20786.34 17994.65 13673.89 18299.02 5980.69 22195.51 10595.05 176
SR-MVS-dyc-post93.82 3793.82 3793.82 5697.92 4384.57 7396.28 4396.76 7287.46 10593.75 3897.43 1884.24 6399.01 6192.73 3897.80 7097.88 75
test1294.34 4797.13 7086.15 4596.29 10191.04 10185.08 5299.01 6198.13 5997.86 77
EPNet91.79 6991.02 7994.10 5090.10 31185.25 6696.03 5892.05 28292.83 187.39 15795.78 9379.39 11499.01 6188.13 11197.48 7598.05 66
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OpenMVScopyleft83.78 1188.74 14887.29 16493.08 7292.70 23085.39 6496.57 3596.43 9478.74 27580.85 28696.07 8169.64 23599.01 6178.01 25396.65 9194.83 188
h-mvs3390.80 8690.15 9292.75 8796.01 10482.66 13295.43 8495.53 16089.80 3893.08 5295.64 9975.77 15199.00 6592.07 5778.05 32596.60 124
EI-MVSNet-Vis-set93.01 5492.92 5393.29 6395.01 13883.51 10294.48 14295.77 14190.87 1392.52 6996.67 5584.50 6199.00 6591.99 6194.44 13097.36 95
DPM-MVS92.58 6091.74 6895.08 1396.19 9589.31 592.66 23396.56 9083.44 19291.68 9295.04 11886.60 3898.99 6785.60 14597.92 6796.93 115
PS-MVSNAJ91.18 8290.92 8091.96 12395.26 12982.60 13592.09 25395.70 14686.27 12991.84 8692.46 21379.70 10998.99 6789.08 10195.86 10094.29 217
EI-MVSNet-UG-set92.74 5892.62 5893.12 7094.86 14983.20 11094.40 15095.74 14490.71 2192.05 7796.60 6284.00 6598.99 6791.55 7093.63 14097.17 103
agg_prior97.38 6385.92 5496.72 7892.16 7598.97 70
DeepPCF-MVS89.96 194.20 2994.77 1492.49 10196.52 8780.00 20494.00 18197.08 4290.05 3395.65 2097.29 2489.66 1398.97 7093.95 2098.71 3098.50 25
APD-MVS_3200maxsize93.78 3893.77 4093.80 5897.92 4384.19 8596.30 4196.87 6086.96 11593.92 3797.47 1683.88 6798.96 7292.71 4197.87 6898.26 52
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 3692.59 298.94 7392.25 5098.99 1498.84 13
TSAR-MVS + MP.94.85 1394.94 1194.58 3998.25 2986.33 3996.11 5396.62 8588.14 8996.10 1796.96 4289.09 1898.94 7394.48 1598.68 3598.48 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RPMNet83.95 26781.53 27791.21 15790.58 30279.34 22185.24 34296.76 7271.44 34285.55 19282.97 35070.87 21798.91 7561.01 35189.36 19995.40 167
xiu_mvs_v2_base91.13 8390.89 8291.86 13094.97 14182.42 13792.24 24795.64 15386.11 13791.74 9193.14 19379.67 11298.89 7689.06 10295.46 10894.28 218
UA-Net92.83 5692.54 5993.68 6096.10 10084.71 7195.66 7696.39 9691.92 593.22 4996.49 6683.16 7198.87 7784.47 15995.47 10797.45 94
test_prior93.82 5697.29 6784.49 7796.88 5998.87 7798.11 63
新几何193.10 7197.30 6684.35 8495.56 15671.09 34491.26 9996.24 7282.87 7598.86 7979.19 24298.10 6096.07 144
PCF-MVS84.11 1087.74 17386.08 20892.70 9194.02 18584.43 8289.27 30395.87 13573.62 32884.43 23094.33 14578.48 12698.86 7970.27 30794.45 12994.81 189
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_BlendedMVS89.98 10589.70 10290.82 17696.12 9781.25 16593.92 18696.83 6483.49 19189.10 12592.26 22181.04 9798.85 8186.72 13387.86 22892.35 298
PVSNet_Blended90.73 8990.32 8891.98 12196.12 9781.25 16592.55 23796.83 6482.04 22189.10 12592.56 21181.04 9798.85 8186.72 13395.91 9995.84 153
原ACMM192.01 11797.34 6481.05 17196.81 6778.89 27090.45 10695.92 8682.65 7698.84 8380.68 22298.26 5596.14 138
Anonymous2024052988.09 16486.59 18892.58 9796.53 8681.92 14895.99 5995.84 13774.11 32389.06 12795.21 11361.44 30398.81 8483.67 17187.47 23197.01 111
MAR-MVS90.30 9889.37 11093.07 7496.61 8184.48 7895.68 7495.67 14882.36 21487.85 14592.85 20076.63 14498.80 8580.01 23196.68 9095.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet89.95 10888.95 12092.95 7994.51 16783.31 10795.70 7395.23 17989.37 5187.58 15193.94 16464.00 28698.78 8683.92 16696.31 9796.74 121
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata298.75 8778.30 249
PLCcopyleft84.53 789.06 13988.03 14892.15 11597.27 6882.69 13194.29 15895.44 16879.71 26084.01 24394.18 15376.68 14398.75 8777.28 25993.41 14895.02 177
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
alignmvs93.08 5392.50 6094.81 2995.62 11987.61 1295.99 5996.07 11989.77 4294.12 3294.87 12380.56 9998.66 8992.42 4593.10 15598.15 59
MVS_111021_HR93.45 4493.31 4693.84 5596.99 7284.84 6893.24 21697.24 3088.76 6891.60 9395.85 8986.07 4298.66 8991.91 6598.16 5798.03 68
dcpmvs_293.49 4394.19 2991.38 15197.69 5476.78 27494.25 16096.29 10188.33 7994.46 2796.88 4588.07 2598.64 9193.62 2598.09 6198.73 16
VDD-MVS90.74 8889.92 10093.20 6796.27 9383.02 11795.73 7193.86 23988.42 7892.53 6896.84 4762.09 29798.64 9190.95 8192.62 16297.93 73
114514_t89.51 12088.50 13492.54 9998.11 3681.99 14595.16 10396.36 9870.19 34785.81 18695.25 11076.70 14298.63 9382.07 19596.86 8797.00 112
canonicalmvs93.27 5092.75 5694.85 2395.70 11687.66 1196.33 4096.41 9590.00 3594.09 3394.60 13882.33 8198.62 9492.40 4692.86 15998.27 50
TSAR-MVS + GP.93.66 4193.41 4594.41 4696.59 8286.78 2394.40 15093.93 23589.77 4294.21 3095.59 10187.35 3298.61 9592.72 4096.15 9897.83 79
CPTT-MVS91.99 6691.80 6792.55 9898.24 3181.98 14696.76 3096.49 9281.89 22790.24 10996.44 6878.59 12398.61 9589.68 9497.85 6997.06 107
FE-MVS87.40 19286.02 21091.57 14394.56 16579.69 21290.27 28393.72 24580.57 25088.80 13091.62 24665.32 27998.59 9774.97 28494.33 13296.44 129
xiu_mvs_v1_base_debu90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20695.46 16385.17 15592.25 7294.03 15670.59 22198.57 9890.97 7894.67 12094.18 219
xiu_mvs_v1_base90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20695.46 16385.17 15592.25 7294.03 15670.59 22198.57 9890.97 7894.67 12094.18 219
xiu_mvs_v1_base_debi90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20695.46 16385.17 15592.25 7294.03 15670.59 22198.57 9890.97 7894.67 12094.18 219
F-COLMAP87.95 16786.80 17791.40 15096.35 9280.88 17794.73 12995.45 16679.65 26182.04 27494.61 13771.13 21298.50 10176.24 27191.05 17794.80 190
tttt051788.61 15187.78 15391.11 16494.96 14277.81 25795.35 8689.69 33585.09 16088.05 14294.59 13966.93 26398.48 10283.27 17492.13 16897.03 110
PAPM_NR91.22 8190.78 8492.52 10097.60 5681.46 16094.37 15696.24 10786.39 12887.41 15494.80 12982.06 8898.48 10282.80 18395.37 11097.61 86
FA-MVS(test-final)89.66 11588.91 12291.93 12594.57 16480.27 19091.36 26794.74 20984.87 16389.82 11692.61 21074.72 16998.47 10483.97 16593.53 14397.04 109
thisisatest053088.67 14987.61 15691.86 13094.87 14880.07 19894.63 13589.90 33284.00 17788.46 13593.78 17366.88 26598.46 10583.30 17392.65 16197.06 107
IB-MVS80.51 1585.24 25183.26 26391.19 15892.13 24279.86 20891.75 25991.29 30583.28 19780.66 28988.49 30961.28 30498.46 10580.99 21679.46 31995.25 172
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
API-MVS90.66 9290.07 9492.45 10396.36 9184.57 7396.06 5795.22 18182.39 21289.13 12494.27 15180.32 10098.46 10580.16 23096.71 8994.33 214
EIA-MVS91.95 6791.94 6591.98 12195.16 13380.01 20395.36 8596.73 7688.44 7689.34 12292.16 22383.82 6898.45 10889.35 9797.06 8097.48 92
patch_mono-293.74 3994.32 2092.01 11797.54 5778.37 24293.40 20497.19 3388.02 9194.99 2697.21 2988.35 2198.44 10994.07 1998.09 6199.23 1
PAPR90.02 10489.27 11592.29 11295.78 11280.95 17592.68 23296.22 10981.91 22586.66 17293.75 17682.23 8398.44 10979.40 24194.79 11897.48 92
test_yl90.69 9090.02 9892.71 8995.72 11482.41 13994.11 16895.12 18485.63 14691.49 9494.70 13274.75 16698.42 11186.13 13892.53 16397.31 96
DCV-MVSNet90.69 9090.02 9892.71 8995.72 11482.41 13994.11 16895.12 18485.63 14691.49 9494.70 13274.75 16698.42 11186.13 13892.53 16397.31 96
CHOSEN 1792x268888.84 14587.69 15492.30 11196.14 9681.42 16290.01 29395.86 13674.52 31987.41 15493.94 16475.46 15998.36 11380.36 22695.53 10497.12 106
MG-MVS91.77 7091.70 6992.00 12097.08 7180.03 20293.60 19895.18 18287.85 9990.89 10296.47 6782.06 8898.36 11385.07 14997.04 8197.62 85
OMC-MVS91.23 8090.62 8593.08 7296.27 9384.07 8793.52 20095.93 12886.95 11689.51 11996.13 8078.50 12598.35 11585.84 14392.90 15896.83 118
ETV-MVS92.74 5892.66 5792.97 7895.20 13284.04 8995.07 10896.51 9190.73 2092.96 5491.19 25784.06 6498.34 11691.72 6996.54 9296.54 128
LFMVS90.08 10289.13 11692.95 7996.71 7782.32 14196.08 5489.91 33186.79 12092.15 7696.81 5062.60 29598.34 11687.18 12593.90 13698.19 56
CS-MVS-test94.02 3294.29 2293.24 6596.69 7883.24 10897.49 596.92 5592.14 392.90 5595.77 9485.02 5498.33 11893.03 3498.62 4298.13 60
VDDNet89.56 11988.49 13692.76 8695.07 13782.09 14396.30 4193.19 25381.05 24791.88 8496.86 4661.16 30898.33 11888.43 10892.49 16597.84 78
EPP-MVSNet91.70 7391.56 7092.13 11695.88 10980.50 18797.33 795.25 17886.15 13489.76 11795.60 10083.42 7098.32 12087.37 12393.25 15297.56 90
Vis-MVSNetpermissive91.75 7191.23 7493.29 6395.32 12683.78 9496.14 5195.98 12589.89 3690.45 10696.58 6375.09 16298.31 12184.75 15596.90 8497.78 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest051587.33 19585.99 21191.37 15293.49 20679.55 21490.63 27989.56 33880.17 25387.56 15290.86 26867.07 26298.28 12281.50 20893.02 15696.29 133
CS-MVS94.12 3094.44 1893.17 6896.55 8483.08 11597.63 396.95 5291.71 993.50 4696.21 7385.61 4498.24 12393.64 2498.17 5698.19 56
Anonymous20240521187.68 17486.13 20492.31 11096.66 7980.74 18194.87 12091.49 30080.47 25189.46 12195.44 10354.72 33598.23 12482.19 19389.89 19097.97 70
HY-MVS83.01 1289.03 14087.94 15192.29 11294.86 14982.77 12492.08 25494.49 21481.52 23786.93 16492.79 20678.32 12898.23 12479.93 23290.55 18095.88 151
MVS87.44 19086.10 20791.44 14992.61 23283.62 9992.63 23495.66 15067.26 35181.47 27892.15 22477.95 13098.22 12679.71 23495.48 10692.47 293
ab-mvs89.41 12688.35 13892.60 9595.15 13582.65 13392.20 24995.60 15583.97 17888.55 13393.70 17774.16 17898.21 12782.46 18889.37 19896.94 114
VNet92.24 6591.91 6693.24 6596.59 8283.43 10394.84 12296.44 9389.19 5694.08 3495.90 8777.85 13498.17 12888.90 10393.38 14998.13 60
DROMVSNet93.44 4593.71 4292.63 9495.21 13182.43 13697.27 996.71 7990.57 2492.88 5695.80 9283.16 7198.16 12993.68 2398.14 5897.31 96
casdiffmvs_mvgpermissive92.96 5592.83 5593.35 6294.59 16183.40 10595.00 11296.34 9990.30 2892.05 7796.05 8283.43 6998.15 13092.07 5795.67 10298.49 27
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP_MVS90.60 9690.19 9091.82 13394.70 15782.73 12895.85 6596.22 10990.81 1586.91 16694.86 12474.23 17498.12 13188.15 10989.99 18694.63 193
plane_prior596.22 10998.12 13188.15 10989.99 18694.63 193
test111189.10 13488.64 12890.48 18995.53 12274.97 29296.08 5484.89 35388.13 9090.16 11296.65 5763.29 29198.10 13386.14 13696.90 8498.39 37
ECVR-MVScopyleft89.09 13688.53 13290.77 17895.62 11975.89 28596.16 4984.22 35587.89 9790.20 11096.65 5763.19 29398.10 13385.90 14196.94 8298.33 41
thres100view90087.63 17986.71 18190.38 19696.12 9778.55 23595.03 11191.58 29687.15 11088.06 14192.29 22068.91 24898.10 13370.13 31191.10 17394.48 209
tfpn200view987.58 18486.64 18490.41 19395.99 10678.64 23394.58 13791.98 28686.94 11788.09 13891.77 23969.18 24598.10 13370.13 31191.10 17394.48 209
thres600view787.65 17686.67 18390.59 18096.08 10178.72 23194.88 11991.58 29687.06 11388.08 14092.30 21968.91 24898.10 13370.05 31491.10 17394.96 181
thres40087.62 18186.64 18490.57 18195.99 10678.64 23394.58 13791.98 28686.94 11788.09 13891.77 23969.18 24598.10 13370.13 31191.10 17394.96 181
LPG-MVS_test89.45 12388.90 12391.12 16194.47 16881.49 15895.30 9096.14 11486.73 12285.45 20295.16 11469.89 23198.10 13387.70 11789.23 20293.77 246
LGP-MVS_train91.12 16194.47 16881.49 15896.14 11486.73 12285.45 20295.16 11469.89 23198.10 13387.70 11789.23 20293.77 246
test250687.21 20386.28 20090.02 21295.62 11973.64 30496.25 4671.38 37487.89 9790.45 10696.65 5755.29 33398.09 14186.03 14096.94 8298.33 41
MVS_Test91.31 7991.11 7691.93 12594.37 17480.14 19593.46 20395.80 13986.46 12691.35 9893.77 17482.21 8498.09 14187.57 11994.95 11797.55 91
TAPA-MVS84.62 688.16 16287.01 17291.62 14096.64 8080.65 18294.39 15296.21 11276.38 29986.19 18295.44 10379.75 10798.08 14362.75 34795.29 11296.13 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Effi-MVS+91.59 7591.11 7693.01 7694.35 17783.39 10694.60 13695.10 18687.10 11290.57 10593.10 19581.43 9498.07 14489.29 9994.48 12897.59 88
ACMM84.12 989.14 13388.48 13791.12 16194.65 16081.22 16795.31 8896.12 11685.31 15485.92 18594.34 14470.19 22998.06 14585.65 14488.86 20994.08 227
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PC_three_145282.47 21197.09 997.07 3892.72 198.04 14692.70 4299.02 1298.86 10
lupinMVS90.92 8590.21 8993.03 7593.86 19483.88 9292.81 23093.86 23979.84 25891.76 8994.29 14877.92 13198.04 14690.48 9197.11 7897.17 103
casdiffmvspermissive92.51 6192.43 6192.74 8894.41 17381.98 14694.54 14096.23 10889.57 4691.96 8196.17 7882.58 7798.01 14890.95 8195.45 10998.23 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres20087.21 20386.24 20290.12 20695.36 12578.53 23693.26 21392.10 28086.42 12788.00 14391.11 26369.24 24498.00 14969.58 31591.04 17893.83 240
baseline92.39 6492.29 6392.69 9294.46 17081.77 15194.14 16696.27 10389.22 5491.88 8496.00 8382.35 8097.99 15091.05 7695.27 11498.30 45
ACMP84.23 889.01 14288.35 13890.99 17294.73 15481.27 16495.07 10895.89 13486.48 12583.67 25094.30 14769.33 24097.99 15087.10 13088.55 21293.72 250
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP4-MVS85.43 20597.96 15294.51 203
HQP-MVS89.80 11389.28 11491.34 15394.17 18081.56 15494.39 15296.04 12288.81 6585.43 20593.97 16373.83 18497.96 15287.11 12889.77 19394.50 206
HyFIR lowres test88.09 16486.81 17691.93 12596.00 10580.63 18390.01 29395.79 14073.42 32987.68 15092.10 22973.86 18397.96 15280.75 22091.70 16997.19 102
jason90.80 8690.10 9392.90 8193.04 21983.53 10193.08 22194.15 22880.22 25291.41 9694.91 12176.87 13897.93 15590.28 9296.90 8497.24 99
jason: jason.
OPM-MVS90.12 10189.56 10491.82 13393.14 21483.90 9194.16 16595.74 14488.96 6487.86 14495.43 10572.48 20297.91 15688.10 11390.18 18593.65 253
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
1112_ss88.42 15487.33 16391.72 13794.92 14580.98 17392.97 22694.54 21378.16 28683.82 24693.88 16978.78 12097.91 15679.45 23789.41 19796.26 135
COLMAP_ROBcopyleft80.39 1683.96 26682.04 27389.74 22395.28 12779.75 21094.25 16092.28 27475.17 31278.02 31593.77 17458.60 32197.84 15865.06 34085.92 24591.63 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LTVRE_ROB82.13 1386.26 23284.90 24190.34 19894.44 17281.50 15692.31 24694.89 19783.03 20179.63 30592.67 20769.69 23497.79 15971.20 30286.26 24491.72 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IS-MVSNet91.43 7691.09 7892.46 10295.87 11181.38 16396.95 1993.69 24689.72 4489.50 12095.98 8478.57 12497.77 16083.02 17796.50 9498.22 55
MSLP-MVS++93.72 4094.08 3192.65 9397.31 6583.43 10395.79 6897.33 2390.03 3493.58 4296.96 4284.87 5797.76 16192.19 5398.66 3896.76 119
BH-RMVSNet88.37 15687.48 15991.02 16995.28 12779.45 21792.89 22893.07 25585.45 15186.91 16694.84 12870.35 22697.76 16173.97 29094.59 12495.85 152
MVS_111021_LR92.47 6292.29 6392.98 7795.99 10684.43 8293.08 22196.09 11788.20 8791.12 10095.72 9781.33 9597.76 16191.74 6897.37 7796.75 120
Fast-Effi-MVS+89.41 12688.64 12891.71 13894.74 15380.81 17993.54 19995.10 18683.11 19986.82 17090.67 27479.74 10897.75 16480.51 22593.55 14296.57 126
Test_1112_low_res87.65 17686.51 19191.08 16594.94 14479.28 22591.77 25894.30 22276.04 30483.51 25592.37 21677.86 13397.73 16578.69 24589.13 20496.22 136
tt080586.92 21285.74 22490.48 18992.22 23879.98 20595.63 7994.88 19983.83 18284.74 22192.80 20557.61 32497.67 16685.48 14784.42 25593.79 241
AUN-MVS87.78 17286.54 19091.48 14794.82 15281.05 17193.91 18893.93 23583.00 20286.93 16493.53 17969.50 23797.67 16686.14 13677.12 33195.73 160
hse-mvs289.88 11289.34 11191.51 14594.83 15181.12 17093.94 18493.91 23889.80 3893.08 5293.60 17875.77 15197.66 16892.07 5777.07 33295.74 158
PS-MVSNAJss89.97 10689.62 10391.02 16991.90 24980.85 17895.26 9595.98 12586.26 13086.21 18194.29 14879.70 10997.65 16988.87 10488.10 22294.57 198
testdata90.49 18796.40 8977.89 25495.37 17472.51 33793.63 4196.69 5382.08 8797.65 16983.08 17597.39 7695.94 148
mvsmamba89.96 10789.50 10591.33 15492.90 22681.82 14996.68 3392.37 27089.03 6187.00 16294.85 12673.05 19497.65 16991.03 7788.63 21194.51 203
nrg03091.08 8490.39 8693.17 6893.07 21786.91 1996.41 3796.26 10488.30 8188.37 13794.85 12682.19 8597.64 17291.09 7582.95 27094.96 181
baseline286.50 22785.39 22989.84 21891.12 27876.70 27591.88 25588.58 34182.35 21579.95 30190.95 26773.42 19097.63 17380.27 22989.95 18995.19 173
GeoE90.05 10389.43 10891.90 12995.16 13380.37 18995.80 6794.65 21283.90 17987.55 15394.75 13178.18 12997.62 17481.28 21093.63 14097.71 83
ACMH80.38 1785.36 24683.68 25990.39 19494.45 17180.63 18394.73 12994.85 20182.09 21877.24 31992.65 20860.01 31497.58 17572.25 29984.87 25292.96 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
gm-plane-assit89.60 32268.00 34677.28 29388.99 30097.57 17679.44 238
CLD-MVS89.47 12288.90 12391.18 15994.22 17982.07 14492.13 25196.09 11787.90 9585.37 21192.45 21474.38 17297.56 17787.15 12690.43 18193.93 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final89.42 12588.69 12791.60 14195.12 13682.93 12195.75 7092.14 27987.32 10987.12 16194.07 15467.09 26197.55 17890.61 8789.01 20694.32 215
iter_conf0588.85 14488.08 14791.17 16094.27 17881.64 15395.18 10092.15 27886.23 13287.28 15894.07 15463.89 28997.55 17890.63 8689.00 20794.32 215
ACMH+81.04 1485.05 25483.46 26289.82 21994.66 15979.37 21994.44 14794.12 23182.19 21778.04 31492.82 20358.23 32297.54 18073.77 29282.90 27492.54 290
v7n86.81 21485.76 22289.95 21590.72 29779.25 22795.07 10895.92 12984.45 17282.29 26990.86 26872.60 20197.53 18179.42 24080.52 30993.08 276
AllTest83.42 27281.39 27889.52 23195.01 13877.79 25893.12 21890.89 31577.41 29076.12 32793.34 18254.08 33897.51 18268.31 32284.27 25793.26 265
TestCases89.52 23195.01 13877.79 25890.89 31577.41 29076.12 32793.34 18254.08 33897.51 18268.31 32284.27 25793.26 265
XVG-ACMP-BASELINE86.00 23484.84 24389.45 23491.20 27378.00 25091.70 26195.55 15785.05 16182.97 26392.25 22254.49 33697.48 18482.93 17887.45 23392.89 282
TR-MVS86.78 21685.76 22289.82 21994.37 17478.41 24092.47 23892.83 26081.11 24686.36 17892.40 21568.73 25197.48 18473.75 29389.85 19293.57 255
cascas86.43 23084.98 23890.80 17792.10 24480.92 17690.24 28795.91 13173.10 33283.57 25488.39 31065.15 28197.46 18684.90 15391.43 17194.03 230
v14419287.19 20586.35 19689.74 22390.64 29978.24 24693.92 18695.43 16981.93 22485.51 19791.05 26574.21 17697.45 18782.86 18081.56 28993.53 256
v2v48287.84 16987.06 16990.17 20290.99 28279.23 22894.00 18195.13 18384.87 16385.53 19592.07 23274.45 17197.45 18784.71 15681.75 28793.85 239
diffmvspermissive91.37 7891.23 7491.77 13693.09 21680.27 19092.36 24295.52 16187.03 11491.40 9794.93 12080.08 10397.44 18992.13 5694.56 12597.61 86
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v124086.78 21685.85 21789.56 22990.45 30677.79 25893.61 19795.37 17481.65 23285.43 20591.15 26171.50 20997.43 19081.47 20982.05 28393.47 260
v119287.25 19986.33 19790.00 21490.76 29579.04 22993.80 18995.48 16282.57 21085.48 20091.18 25973.38 19297.42 19182.30 19182.06 28193.53 256
v114487.61 18286.79 17890.06 20991.01 28179.34 22193.95 18395.42 17183.36 19585.66 19091.31 25574.98 16497.42 19183.37 17282.06 28193.42 262
jajsoiax88.24 16087.50 15890.48 18990.89 29080.14 19595.31 8895.65 15284.97 16284.24 23994.02 15965.31 28097.42 19188.56 10688.52 21493.89 233
v887.50 18986.71 18189.89 21691.37 26879.40 21894.50 14195.38 17284.81 16683.60 25391.33 25276.05 14797.42 19182.84 18180.51 31092.84 284
v1087.25 19986.38 19489.85 21791.19 27479.50 21594.48 14295.45 16683.79 18383.62 25291.19 25775.13 16197.42 19181.94 19880.60 30592.63 289
v192192086.97 21186.06 20989.69 22790.53 30578.11 24993.80 18995.43 16981.90 22685.33 21391.05 26572.66 19997.41 19682.05 19681.80 28693.53 256
V4287.68 17486.86 17490.15 20490.58 30280.14 19594.24 16295.28 17783.66 18585.67 18991.33 25274.73 16897.41 19684.43 16081.83 28592.89 282
mvs_tets88.06 16687.28 16590.38 19690.94 28679.88 20795.22 9795.66 15085.10 15984.21 24093.94 16463.53 29097.40 19888.50 10788.40 21893.87 236
VPA-MVSNet89.62 11688.96 11991.60 14193.86 19482.89 12395.46 8397.33 2387.91 9488.43 13693.31 18574.17 17797.40 19887.32 12482.86 27594.52 201
BH-untuned88.60 15288.13 14690.01 21395.24 13078.50 23893.29 21194.15 22884.75 16784.46 22893.40 18175.76 15397.40 19877.59 25694.52 12794.12 223
UniMVSNet (Re)89.80 11389.07 11792.01 11793.60 20484.52 7694.78 12697.47 1089.26 5386.44 17792.32 21882.10 8697.39 20184.81 15480.84 30394.12 223
Anonymous2023121186.59 22385.13 23590.98 17496.52 8781.50 15696.14 5196.16 11373.78 32683.65 25192.15 22463.26 29297.37 20282.82 18281.74 28894.06 228
UniMVSNet_ETH3D87.53 18686.37 19591.00 17192.44 23478.96 23094.74 12895.61 15484.07 17685.36 21294.52 14159.78 31697.34 20382.93 17887.88 22796.71 122
RRT_MVS89.09 13688.62 13190.49 18792.85 22779.65 21396.41 3794.41 21888.22 8585.50 19894.77 13069.36 23997.31 20489.33 9886.73 24194.51 203
MVSFormer91.68 7491.30 7292.80 8493.86 19483.88 9295.96 6195.90 13284.66 16991.76 8994.91 12177.92 13197.30 20589.64 9597.11 7897.24 99
test_djsdf89.03 14088.64 12890.21 20090.74 29679.28 22595.96 6195.90 13284.66 16985.33 21392.94 19974.02 18097.30 20589.64 9588.53 21394.05 229
PAPM86.68 22085.39 22990.53 18393.05 21879.33 22489.79 29694.77 20878.82 27281.95 27593.24 18976.81 13997.30 20566.94 33093.16 15494.95 184
RPSCF85.07 25384.27 25087.48 28092.91 22570.62 33791.69 26292.46 26876.20 30382.67 26795.22 11163.94 28797.29 20877.51 25885.80 24694.53 200
XVG-OURS-SEG-HR89.95 10889.45 10691.47 14894.00 18981.21 16891.87 25696.06 12185.78 14088.55 13395.73 9674.67 17097.27 20988.71 10589.64 19595.91 149
MSDG84.86 25783.09 26590.14 20593.80 19780.05 20089.18 30693.09 25478.89 27078.19 31291.91 23665.86 27897.27 20968.47 32088.45 21693.11 274
Effi-MVS+-dtu88.65 15088.35 13889.54 23093.33 21076.39 28094.47 14594.36 22087.70 10285.43 20589.56 29673.45 18997.26 21185.57 14691.28 17294.97 178
XVG-OURS89.40 12888.70 12691.52 14494.06 18381.46 16091.27 26996.07 11986.14 13588.89 12995.77 9468.73 25197.26 21187.39 12289.96 18895.83 154
FIs90.51 9790.35 8790.99 17293.99 19080.98 17395.73 7197.54 389.15 5786.72 17194.68 13481.83 9297.24 21385.18 14888.31 22094.76 191
UniMVSNet_NR-MVSNet89.92 11089.29 11391.81 13593.39 20983.72 9594.43 14897.12 3989.80 3886.46 17493.32 18483.16 7197.23 21484.92 15181.02 29994.49 208
DU-MVS89.34 13188.50 13491.85 13293.04 21983.72 9594.47 14596.59 8789.50 4786.46 17493.29 18777.25 13697.23 21484.92 15181.02 29994.59 196
EI-MVSNet89.10 13488.86 12589.80 22291.84 25178.30 24493.70 19595.01 18985.73 14287.15 15995.28 10879.87 10697.21 21683.81 16887.36 23493.88 235
MVSTER88.84 14588.29 14290.51 18692.95 22480.44 18893.73 19295.01 18984.66 16987.15 15993.12 19472.79 19897.21 21687.86 11487.36 23493.87 236
anonymousdsp87.84 16987.09 16890.12 20689.13 32380.54 18694.67 13395.55 15782.05 21983.82 24692.12 22671.47 21097.15 21887.15 12687.80 23092.67 287
131487.51 18786.57 18990.34 19892.42 23579.74 21192.63 23495.35 17678.35 28180.14 29791.62 24674.05 17997.15 21881.05 21293.53 14394.12 223
VPNet88.20 16187.47 16090.39 19493.56 20579.46 21694.04 17695.54 15988.67 7086.96 16394.58 14069.33 24097.15 21884.05 16480.53 30894.56 199
旧先验293.36 20571.25 34394.37 2897.13 22186.74 131
GA-MVS86.61 22185.27 23390.66 17991.33 27178.71 23290.40 28293.81 24285.34 15385.12 21589.57 29561.25 30597.11 22280.99 21689.59 19696.15 137
tpmvs83.35 27482.07 27287.20 28991.07 28071.00 33488.31 31891.70 29278.91 26980.49 29287.18 32869.30 24397.08 22368.12 32583.56 26593.51 259
BH-w/o87.57 18587.05 17089.12 24094.90 14777.90 25392.41 23993.51 24882.89 20683.70 24991.34 25175.75 15497.07 22475.49 27693.49 14592.39 296
Fast-Effi-MVS+-dtu87.44 19086.72 18089.63 22892.04 24577.68 26294.03 17793.94 23485.81 13982.42 26891.32 25470.33 22797.06 22580.33 22890.23 18494.14 222
v14887.04 20986.32 19889.21 23790.94 28677.26 26893.71 19494.43 21684.84 16584.36 23490.80 27176.04 14897.05 22682.12 19479.60 31893.31 264
NR-MVSNet88.58 15387.47 16091.93 12593.04 21984.16 8694.77 12796.25 10689.05 5980.04 30093.29 18779.02 11797.05 22681.71 20680.05 31394.59 196
FC-MVSNet-test90.27 9990.18 9190.53 18393.71 20079.85 20995.77 6997.59 289.31 5286.27 18094.67 13581.93 9197.01 22884.26 16188.09 22494.71 192
CDS-MVSNet89.45 12388.51 13392.29 11293.62 20383.61 10093.01 22494.68 21181.95 22387.82 14793.24 18978.69 12196.99 22980.34 22793.23 15396.28 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TranMVSNet+NR-MVSNet88.84 14587.95 15091.49 14692.68 23183.01 11894.92 11796.31 10089.88 3785.53 19593.85 17176.63 14496.96 23081.91 19979.87 31694.50 206
tfpnnormal84.72 25983.23 26489.20 23892.79 22980.05 20094.48 14295.81 13882.38 21381.08 28491.21 25669.01 24796.95 23161.69 34980.59 30690.58 331
TAMVS89.21 13288.29 14291.96 12393.71 20082.62 13493.30 21094.19 22682.22 21687.78 14893.94 16478.83 11896.95 23177.70 25592.98 15796.32 132
IterMVS-LS88.36 15787.91 15289.70 22693.80 19778.29 24593.73 19295.08 18885.73 14284.75 22091.90 23779.88 10596.92 23383.83 16782.51 27693.89 233
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SD-MVS94.96 1295.33 893.88 5497.25 6986.69 2596.19 4897.11 4190.42 2596.95 1297.27 2589.53 1496.91 23494.38 1698.85 1998.03 68
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WR-MVS88.38 15587.67 15590.52 18593.30 21180.18 19393.26 21395.96 12788.57 7485.47 20192.81 20476.12 14696.91 23481.24 21182.29 27994.47 211
SixPastTwentyTwo83.91 26882.90 26886.92 29490.99 28270.67 33693.48 20191.99 28585.54 14977.62 31892.11 22860.59 31096.87 23676.05 27377.75 32693.20 270
CostFormer85.77 24084.94 24088.26 26191.16 27772.58 31989.47 30191.04 31176.26 30286.45 17689.97 28870.74 21996.86 23782.35 19087.07 23995.34 170
eth_miper_zixun_eth86.50 22785.77 22188.68 25191.94 24875.81 28790.47 28194.89 19782.05 21984.05 24190.46 27775.96 14996.77 23882.76 18479.36 32093.46 261
OurMVSNet-221017-085.35 24784.64 24787.49 27990.77 29472.59 31894.01 17994.40 21984.72 16879.62 30693.17 19161.91 29996.72 23981.99 19781.16 29393.16 272
EG-PatchMatch MVS82.37 28080.34 28688.46 25590.27 30879.35 22092.80 23194.33 22177.14 29473.26 34390.18 28247.47 35496.72 23970.25 30887.32 23689.30 339
PVSNet78.82 1885.55 24284.65 24688.23 26394.72 15571.93 32287.12 33092.75 26378.80 27384.95 21890.53 27664.43 28596.71 24174.74 28593.86 13796.06 145
bld_raw_dy_0_6487.60 18386.73 17990.21 20091.72 25580.26 19295.09 10788.61 34085.68 14485.55 19294.38 14363.93 28896.66 24287.73 11687.84 22993.72 250
miper_enhance_ethall86.90 21386.18 20389.06 24291.66 26077.58 26490.22 28994.82 20479.16 26784.48 22789.10 29979.19 11696.66 24284.06 16382.94 27192.94 280
USDC82.76 27581.26 28087.26 28491.17 27574.55 29589.27 30393.39 25078.26 28475.30 33292.08 23054.43 33796.63 24471.64 30085.79 24790.61 328
miper_ehance_all_eth87.22 20286.62 18789.02 24492.13 24277.40 26790.91 27594.81 20581.28 24184.32 23690.08 28579.26 11596.62 24583.81 16882.94 27193.04 277
CNLPA89.07 13887.98 14992.34 10896.87 7484.78 7094.08 17293.24 25181.41 23884.46 22895.13 11675.57 15896.62 24577.21 26093.84 13895.61 163
OpenMVS_ROBcopyleft74.94 1979.51 30777.03 31486.93 29387.00 34276.23 28392.33 24490.74 31868.93 34974.52 33788.23 31449.58 34896.62 24557.64 35784.29 25687.94 350
c3_l87.14 20786.50 19289.04 24392.20 23977.26 26891.22 27194.70 21082.01 22284.34 23590.43 27878.81 11996.61 24883.70 17081.09 29693.25 267
WTY-MVS89.60 11788.92 12191.67 13995.47 12381.15 16992.38 24194.78 20783.11 19989.06 12794.32 14678.67 12296.61 24881.57 20790.89 17997.24 99
cl2286.78 21685.98 21289.18 23992.34 23677.62 26390.84 27694.13 23081.33 24083.97 24490.15 28373.96 18196.60 25084.19 16282.94 27193.33 263
cl____86.52 22685.78 21988.75 24892.03 24676.46 27890.74 27794.30 22281.83 23083.34 25990.78 27275.74 15696.57 25181.74 20481.54 29093.22 269
DIV-MVS_self_test86.53 22585.78 21988.75 24892.02 24776.45 27990.74 27794.30 22281.83 23083.34 25990.82 27075.75 15496.57 25181.73 20581.52 29193.24 268
MVP-Stereo85.97 23584.86 24289.32 23590.92 28882.19 14292.11 25294.19 22678.76 27478.77 31191.63 24568.38 25596.56 25375.01 28393.95 13589.20 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet387.40 19286.11 20691.30 15593.79 19983.64 9894.20 16494.81 20583.89 18084.37 23191.87 23868.45 25496.56 25378.23 25085.36 24893.70 252
tpm284.08 26482.94 26787.48 28091.39 26771.27 32989.23 30590.37 32171.95 34084.64 22289.33 29767.30 25796.55 25575.17 28087.09 23894.63 193
FMVSNet287.19 20585.82 21891.30 15594.01 18683.67 9794.79 12594.94 19283.57 18783.88 24592.05 23366.59 27096.51 25677.56 25785.01 25193.73 249
pmmvs683.42 27281.60 27688.87 24688.01 33777.87 25594.96 11494.24 22574.67 31878.80 31091.09 26460.17 31396.49 25777.06 26475.40 33792.23 301
patchmatchnet-post83.76 34571.53 20896.48 258
SCA86.32 23185.18 23489.73 22592.15 24076.60 27691.12 27291.69 29383.53 19085.50 19888.81 30366.79 26696.48 25876.65 26590.35 18396.12 140
pm-mvs186.61 22185.54 22589.82 21991.44 26380.18 19395.28 9494.85 20183.84 18181.66 27792.62 20972.45 20496.48 25879.67 23578.06 32492.82 285
Vis-MVSNet (Re-imp)89.59 11889.44 10790.03 21095.74 11375.85 28695.61 8090.80 31787.66 10487.83 14695.40 10676.79 14096.46 26178.37 24696.73 8897.80 80
TDRefinement79.81 30577.34 30987.22 28879.24 36475.48 29093.12 21892.03 28376.45 29875.01 33391.58 24849.19 34996.44 26270.22 31069.18 35089.75 335
lessismore_v086.04 30588.46 33168.78 34580.59 36473.01 34490.11 28455.39 33196.43 26375.06 28265.06 35792.90 281
PatchMatch-RL86.77 21985.54 22590.47 19295.88 10982.71 13090.54 28092.31 27379.82 25984.32 23691.57 25068.77 25096.39 26473.16 29593.48 14792.32 299
D2MVS85.90 23685.09 23688.35 25890.79 29377.42 26691.83 25795.70 14680.77 24980.08 29990.02 28666.74 26896.37 26581.88 20087.97 22691.26 317
test_040281.30 29479.17 30287.67 27493.19 21378.17 24792.98 22591.71 29175.25 31176.02 32990.31 28059.23 31896.37 26550.22 36383.63 26488.47 348
mvs_anonymous89.37 13089.32 11289.51 23393.47 20774.22 29991.65 26394.83 20382.91 20585.45 20293.79 17281.23 9696.36 26786.47 13594.09 13397.94 71
GBi-Net87.26 19785.98 21291.08 16594.01 18683.10 11295.14 10494.94 19283.57 18784.37 23191.64 24266.59 27096.34 26878.23 25085.36 24893.79 241
test187.26 19785.98 21291.08 16594.01 18683.10 11295.14 10494.94 19283.57 18784.37 23191.64 24266.59 27096.34 26878.23 25085.36 24893.79 241
FMVSNet185.85 23884.11 25291.08 16592.81 22883.10 11295.14 10494.94 19281.64 23382.68 26691.64 24259.01 32096.34 26875.37 27883.78 26093.79 241
PatchmatchNetpermissive85.85 23884.70 24589.29 23691.76 25475.54 28988.49 31591.30 30481.63 23485.05 21688.70 30771.71 20696.24 27174.61 28789.05 20596.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline188.10 16387.28 16590.57 18194.96 14280.07 19894.27 15991.29 30586.74 12187.41 15494.00 16176.77 14196.20 27280.77 21979.31 32195.44 165
ITE_SJBPF88.24 26291.88 25077.05 27192.92 25785.54 14980.13 29893.30 18657.29 32596.20 27272.46 29884.71 25391.49 312
TinyColmap79.76 30677.69 30885.97 30691.71 25773.12 30889.55 29790.36 32275.03 31372.03 34790.19 28146.22 35696.19 27463.11 34581.03 29888.59 347
tpm cat181.96 28180.27 28787.01 29191.09 27971.02 33387.38 32891.53 29966.25 35280.17 29586.35 33468.22 25696.15 27569.16 31682.29 27993.86 238
gg-mvs-nofinetune81.77 28479.37 29788.99 24590.85 29277.73 26186.29 33479.63 36674.88 31783.19 26269.05 36460.34 31196.11 27675.46 27794.64 12393.11 274
Baseline_NR-MVSNet87.07 20886.63 18688.40 25691.44 26377.87 25594.23 16392.57 26784.12 17585.74 18892.08 23077.25 13696.04 27782.29 19279.94 31491.30 316
MDTV_nov1_ep1383.56 26191.69 25969.93 34187.75 32391.54 29878.60 27784.86 21988.90 30269.54 23696.03 27870.25 30888.93 208
tpmrst85.35 24784.99 23786.43 30290.88 29167.88 34888.71 31291.43 30280.13 25486.08 18488.80 30573.05 19496.02 27982.48 18683.40 26995.40 167
WR-MVS_H87.80 17187.37 16289.10 24193.23 21278.12 24895.61 8097.30 2787.90 9583.72 24892.01 23479.65 11396.01 28076.36 26880.54 30793.16 272
tpm84.73 25884.02 25486.87 29790.33 30768.90 34489.06 30889.94 33080.85 24885.75 18789.86 29068.54 25395.97 28177.76 25484.05 25995.75 157
TransMVSNet (Re)84.43 26283.06 26688.54 25491.72 25578.44 23995.18 10092.82 26182.73 20879.67 30492.12 22673.49 18895.96 28271.10 30668.73 35391.21 319
PEN-MVS86.80 21586.27 20188.40 25692.32 23775.71 28895.18 10096.38 9787.97 9282.82 26593.15 19273.39 19195.92 28376.15 27279.03 32393.59 254
dp81.47 29180.23 28885.17 31689.92 31665.49 35586.74 33190.10 32676.30 30181.10 28387.12 32962.81 29495.92 28368.13 32479.88 31594.09 226
test_post10.29 37570.57 22495.91 285
JIA-IIPM81.04 29578.98 30587.25 28588.64 32773.48 30681.75 35789.61 33773.19 33182.05 27373.71 36166.07 27795.87 28671.18 30484.60 25492.41 295
ET-MVSNet_ETH3D87.51 18785.91 21692.32 10993.70 20283.93 9092.33 24490.94 31384.16 17372.09 34692.52 21269.90 23095.85 28789.20 10088.36 21997.17 103
CP-MVSNet87.63 17987.26 16788.74 25093.12 21576.59 27795.29 9296.58 8888.43 7783.49 25692.98 19875.28 16095.83 28878.97 24381.15 29593.79 241
DTE-MVSNet86.11 23385.48 22787.98 26991.65 26174.92 29394.93 11695.75 14387.36 10882.26 27093.04 19772.85 19795.82 28974.04 28977.46 32993.20 270
EPNet_dtu86.49 22985.94 21588.14 26590.24 30972.82 31194.11 16892.20 27686.66 12479.42 30792.36 21773.52 18795.81 29071.26 30193.66 13995.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-CasMVS87.32 19686.88 17388.63 25392.99 22276.33 28295.33 8796.61 8688.22 8583.30 26193.07 19673.03 19695.79 29178.36 24781.00 30193.75 248
LCM-MVSNet-Re88.30 15988.32 14188.27 26094.71 15672.41 32193.15 21790.98 31287.77 10079.25 30891.96 23578.35 12795.75 29283.04 17695.62 10396.65 123
test_vis1_n_192089.39 12989.84 10188.04 26892.97 22372.64 31694.71 13196.03 12486.18 13391.94 8396.56 6561.63 30095.74 29393.42 2895.11 11695.74 158
pmmvs485.43 24483.86 25790.16 20390.02 31482.97 12090.27 28392.67 26575.93 30580.73 28791.74 24171.05 21395.73 29478.85 24483.46 26791.78 307
CR-MVSNet85.35 24783.76 25890.12 20690.58 30279.34 22185.24 34291.96 28878.27 28385.55 19287.87 32071.03 21495.61 29573.96 29189.36 19995.40 167
pmmvs584.21 26382.84 27088.34 25988.95 32576.94 27292.41 23991.91 29075.63 30780.28 29491.18 25964.59 28495.57 29677.09 26383.47 26692.53 291
MVS_030483.46 27181.92 27488.10 26690.63 30077.49 26593.26 21393.75 24480.04 25680.44 29387.24 32747.94 35295.55 29775.79 27488.16 22191.26 317
test_post188.00 3209.81 37669.31 24295.53 29876.65 265
K. test v381.59 28880.15 29085.91 30989.89 31769.42 34392.57 23687.71 34585.56 14873.44 34289.71 29355.58 32995.52 29977.17 26169.76 34792.78 286
CHOSEN 280x42085.15 25283.99 25588.65 25292.47 23378.40 24179.68 36292.76 26274.90 31681.41 28089.59 29469.85 23395.51 30079.92 23395.29 11292.03 303
MS-PatchMatch85.05 25484.16 25187.73 27391.42 26678.51 23791.25 27093.53 24777.50 28980.15 29691.58 24861.99 29895.51 30075.69 27594.35 13189.16 342
Patchmtry82.71 27680.93 28288.06 26790.05 31376.37 28184.74 34791.96 28872.28 33981.32 28287.87 32071.03 21495.50 30268.97 31780.15 31292.32 299
XXY-MVS87.65 17686.85 17590.03 21092.14 24180.60 18593.76 19195.23 17982.94 20484.60 22394.02 15974.27 17395.49 30381.04 21383.68 26394.01 231
sss88.93 14388.26 14490.94 17594.05 18480.78 18091.71 26095.38 17281.55 23688.63 13293.91 16875.04 16395.47 30482.47 18791.61 17096.57 126
ppachtmachnet_test81.84 28380.07 29187.15 29088.46 33174.43 29889.04 30992.16 27775.33 31077.75 31688.99 30066.20 27495.37 30565.12 33977.60 32791.65 309
GG-mvs-BLEND87.94 27189.73 32077.91 25287.80 32178.23 37080.58 29083.86 34459.88 31595.33 30671.20 30292.22 16790.60 330
CMPMVSbinary59.16 2180.52 29979.20 30184.48 32083.98 35567.63 35089.95 29593.84 24164.79 35566.81 35691.14 26257.93 32395.17 30776.25 27088.10 22290.65 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS-HIRNet73.70 32272.20 32578.18 34091.81 25356.42 37182.94 35582.58 35955.24 36168.88 35366.48 36555.32 33295.13 30858.12 35688.42 21783.01 356
test-LLR85.87 23785.41 22887.25 28590.95 28471.67 32789.55 29789.88 33383.41 19384.54 22587.95 31767.25 25895.11 30981.82 20193.37 15094.97 178
test-mter84.54 26183.64 26087.25 28590.95 28471.67 32789.55 29789.88 33379.17 26684.54 22587.95 31755.56 33095.11 30981.82 20193.37 15094.97 178
ambc83.06 32979.99 36263.51 35977.47 36392.86 25974.34 33984.45 34328.74 36495.06 31173.06 29668.89 35290.61 328
IterMVS-SCA-FT85.45 24384.53 24988.18 26491.71 25776.87 27390.19 29092.65 26685.40 15281.44 27990.54 27566.79 26695.00 31281.04 21381.05 29792.66 288
PatchT82.68 27781.27 27986.89 29690.09 31270.94 33584.06 34990.15 32474.91 31585.63 19183.57 34669.37 23894.87 31365.19 33788.50 21594.84 187
EPMVS83.90 26982.70 27187.51 27790.23 31072.67 31488.62 31481.96 36181.37 23985.01 21788.34 31166.31 27394.45 31475.30 27987.12 23795.43 166
PMMVS85.71 24184.96 23987.95 27088.90 32677.09 27088.68 31390.06 32772.32 33886.47 17390.76 27372.15 20594.40 31581.78 20393.49 14592.36 297
our_test_381.93 28280.46 28586.33 30488.46 33173.48 30688.46 31691.11 30776.46 29776.69 32388.25 31366.89 26494.36 31668.75 31879.08 32291.14 321
Anonymous2024052180.44 30079.21 30084.11 32485.75 35067.89 34792.86 22993.23 25275.61 30875.59 33187.47 32450.03 34694.33 31771.14 30581.21 29290.12 333
miper_lstm_enhance85.27 25084.59 24887.31 28291.28 27274.63 29487.69 32494.09 23281.20 24581.36 28189.85 29174.97 16594.30 31881.03 21579.84 31793.01 278
IterMVS84.88 25683.98 25687.60 27591.44 26376.03 28490.18 29192.41 26983.24 19881.06 28590.42 27966.60 26994.28 31979.46 23680.98 30292.48 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LF4IMVS80.37 30179.07 30484.27 32386.64 34369.87 34289.39 30291.05 31076.38 29974.97 33490.00 28747.85 35394.25 32074.55 28880.82 30488.69 346
MDA-MVSNet-bldmvs78.85 31176.31 31686.46 30189.76 31873.88 30288.79 31190.42 32079.16 26759.18 36088.33 31260.20 31294.04 32162.00 34868.96 35191.48 313
KD-MVS_2432*160078.50 31276.02 31985.93 30786.22 34574.47 29684.80 34592.33 27179.29 26476.98 32185.92 33653.81 34093.97 32267.39 32757.42 36589.36 337
miper_refine_blended78.50 31276.02 31985.93 30786.22 34574.47 29684.80 34592.33 27179.29 26476.98 32185.92 33653.81 34093.97 32267.39 32757.42 36589.36 337
pmmvs-eth3d80.97 29778.72 30687.74 27284.99 35479.97 20690.11 29291.65 29475.36 30973.51 34186.03 33559.45 31793.96 32475.17 28072.21 34289.29 340
test_fmvs1_n87.03 21087.04 17186.97 29289.74 31971.86 32394.55 13994.43 21678.47 27891.95 8295.50 10251.16 34593.81 32593.02 3594.56 12595.26 171
ADS-MVSNet81.56 28979.78 29386.90 29591.35 26971.82 32483.33 35289.16 33972.90 33482.24 27185.77 33864.98 28293.76 32664.57 34183.74 26195.12 174
test_fmvs187.34 19487.56 15786.68 30090.59 30171.80 32594.01 17994.04 23378.30 28291.97 8095.22 11156.28 32893.71 32792.89 3694.71 11994.52 201
PVSNet_073.20 2077.22 31774.83 32284.37 32190.70 29871.10 33283.09 35489.67 33672.81 33673.93 34083.13 34860.79 30993.70 32868.54 31950.84 36888.30 349
TESTMET0.1,183.74 27082.85 26986.42 30389.96 31571.21 33189.55 29787.88 34377.41 29083.37 25887.31 32556.71 32693.65 32980.62 22392.85 16094.40 212
Patchmatch-RL test81.67 28679.96 29286.81 29885.42 35271.23 33082.17 35687.50 34778.47 27877.19 32082.50 35170.81 21893.48 33082.66 18572.89 34195.71 161
PM-MVS78.11 31476.12 31884.09 32583.54 35770.08 34088.97 31085.27 35279.93 25774.73 33686.43 33234.70 36393.48 33079.43 23972.06 34388.72 345
CVMVSNet84.69 26084.79 24484.37 32191.84 25164.92 35793.70 19591.47 30166.19 35386.16 18395.28 10867.18 26093.33 33280.89 21890.42 18294.88 186
test_vis1_n86.56 22486.49 19386.78 29988.51 32872.69 31394.68 13293.78 24379.55 26290.70 10395.31 10748.75 35093.28 33393.15 3293.99 13494.38 213
UnsupCasMVSNet_bld76.23 32073.27 32385.09 31783.79 35672.92 30985.65 33993.47 24971.52 34168.84 35479.08 35649.77 34793.21 33466.81 33460.52 36289.13 344
ADS-MVSNet281.66 28779.71 29587.50 27891.35 26974.19 30083.33 35288.48 34272.90 33482.24 27185.77 33864.98 28293.20 33564.57 34183.74 26195.12 174
Anonymous2023120681.03 29679.77 29484.82 31887.85 34070.26 33991.42 26692.08 28173.67 32777.75 31689.25 29862.43 29693.08 33661.50 35082.00 28491.12 322
MIMVSNet82.59 27880.53 28388.76 24791.51 26278.32 24386.57 33390.13 32579.32 26380.70 28888.69 30852.98 34293.07 33766.03 33588.86 20994.90 185
KD-MVS_self_test80.20 30279.24 29983.07 32885.64 35165.29 35691.01 27493.93 23578.71 27676.32 32586.40 33359.20 31992.93 33872.59 29769.35 34891.00 326
Patchmatch-test81.37 29279.30 29887.58 27690.92 28874.16 30180.99 35887.68 34670.52 34676.63 32488.81 30371.21 21192.76 33960.01 35586.93 24095.83 154
CL-MVSNet_self_test81.74 28580.53 28385.36 31385.96 34772.45 32090.25 28593.07 25581.24 24379.85 30387.29 32670.93 21692.52 34066.95 32969.23 34991.11 323
FMVSNet581.52 29079.60 29687.27 28391.17 27577.95 25191.49 26592.26 27576.87 29576.16 32687.91 31951.67 34392.34 34167.74 32681.16 29391.52 311
EU-MVSNet81.32 29380.95 28182.42 33288.50 33063.67 35893.32 20691.33 30364.02 35680.57 29192.83 20261.21 30792.27 34276.34 26980.38 31191.32 315
YYNet179.22 30977.20 31185.28 31588.20 33672.66 31585.87 33690.05 32974.33 32162.70 35887.61 32266.09 27692.03 34366.94 33072.97 34091.15 320
test_fmvs283.98 26584.03 25383.83 32687.16 34167.53 35193.93 18592.89 25877.62 28886.89 16993.53 17947.18 35592.02 34490.54 8886.51 24291.93 305
MDA-MVSNet_test_wron79.21 31077.19 31285.29 31488.22 33572.77 31285.87 33690.06 32774.34 32062.62 35987.56 32366.14 27591.99 34566.90 33373.01 33991.10 324
MIMVSNet179.38 30877.28 31085.69 31186.35 34473.67 30391.61 26492.75 26378.11 28772.64 34588.12 31548.16 35191.97 34660.32 35277.49 32891.43 314
UnsupCasMVSNet_eth80.07 30378.27 30785.46 31285.24 35372.63 31788.45 31794.87 20082.99 20371.64 34988.07 31656.34 32791.75 34773.48 29463.36 36092.01 304
N_pmnet68.89 32768.44 32970.23 34789.07 32428.79 38188.06 31919.50 38269.47 34871.86 34884.93 34061.24 30691.75 34754.70 36077.15 33090.15 332
new-patchmatchnet76.41 31975.17 32180.13 33482.65 36059.61 36487.66 32591.08 30878.23 28569.85 35283.22 34754.76 33491.63 34964.14 34364.89 35889.16 342
test_vis1_rt77.96 31576.46 31582.48 33185.89 34871.74 32690.25 28578.89 36771.03 34571.30 35081.35 35342.49 35991.05 35084.55 15882.37 27884.65 353
mvsany_test185.42 24585.30 23285.77 31087.95 33975.41 29187.61 32780.97 36376.82 29688.68 13195.83 9077.44 13590.82 35185.90 14186.51 24291.08 325
testgi80.94 29880.20 28983.18 32787.96 33866.29 35291.28 26890.70 31983.70 18478.12 31392.84 20151.37 34490.82 35163.34 34482.46 27792.43 294
test20.0379.95 30479.08 30382.55 33085.79 34967.74 34991.09 27391.08 30881.23 24474.48 33889.96 28961.63 30090.15 35360.08 35376.38 33389.76 334
EGC-MVSNET61.97 33156.37 33578.77 33889.63 32173.50 30589.12 30782.79 3580.21 3791.24 38084.80 34139.48 36090.04 35444.13 36575.94 33672.79 363
APD_test169.04 32666.26 33077.36 34280.51 36162.79 36185.46 34183.51 35754.11 36359.14 36184.79 34223.40 37089.61 35555.22 35970.24 34679.68 361
pmmvs371.81 32568.71 32881.11 33375.86 36570.42 33886.74 33183.66 35658.95 36068.64 35580.89 35436.93 36189.52 35663.10 34663.59 35983.39 354
test_vis3_rt65.12 32962.60 33172.69 34571.44 36960.71 36387.17 32965.55 37563.80 35753.22 36365.65 36714.54 37789.44 35776.65 26565.38 35667.91 366
mvsany_test374.95 32173.26 32480.02 33574.61 36663.16 36085.53 34078.42 36874.16 32274.89 33586.46 33136.02 36289.09 35882.39 18966.91 35487.82 351
test0.0.03 182.41 27981.69 27584.59 31988.23 33472.89 31090.24 28787.83 34483.41 19379.86 30289.78 29267.25 25888.99 35965.18 33883.42 26891.90 306
DSMNet-mixed76.94 31876.29 31778.89 33783.10 35856.11 37287.78 32279.77 36560.65 35975.64 33088.71 30661.56 30288.34 36060.07 35489.29 20192.21 302
test_fmvs377.67 31677.16 31379.22 33679.52 36361.14 36292.34 24391.64 29573.98 32478.86 30986.59 33027.38 36787.03 36188.12 11275.97 33589.50 336
LCM-MVSNet66.00 32862.16 33377.51 34164.51 37658.29 36683.87 35190.90 31448.17 36554.69 36273.31 36216.83 37686.75 36265.47 33661.67 36187.48 352
new_pmnet72.15 32370.13 32778.20 33982.95 35965.68 35383.91 35082.40 36062.94 35864.47 35779.82 35542.85 35886.26 36357.41 35874.44 33882.65 358
Gipumacopyleft57.99 33654.91 33867.24 35188.51 32865.59 35452.21 37090.33 32343.58 36742.84 37051.18 37120.29 37385.07 36434.77 37170.45 34551.05 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf159.54 33356.11 33669.85 34869.28 37156.61 36980.37 36076.55 37242.58 36845.68 36775.61 35711.26 37884.18 36543.20 36760.44 36368.75 364
APD_test259.54 33356.11 33669.85 34869.28 37156.61 36980.37 36076.55 37242.58 36845.68 36775.61 35711.26 37884.18 36543.20 36760.44 36368.75 364
PMVScopyleft47.18 2252.22 33748.46 34163.48 35245.72 38146.20 37773.41 36678.31 36941.03 37030.06 37365.68 3666.05 38083.43 36730.04 37265.86 35560.80 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f71.95 32470.87 32675.21 34374.21 36859.37 36585.07 34485.82 34965.25 35470.42 35183.13 34823.62 36882.93 36878.32 24871.94 34483.33 355
FPMVS64.63 33062.55 33270.88 34670.80 37056.71 36784.42 34884.42 35451.78 36449.57 36481.61 35223.49 36981.48 36940.61 37076.25 33474.46 362
PMMVS259.60 33256.40 33469.21 35068.83 37346.58 37673.02 36777.48 37155.07 36249.21 36572.95 36317.43 37580.04 37049.32 36444.33 37080.99 360
ANet_high58.88 33554.22 33972.86 34456.50 37956.67 36880.75 35986.00 34873.09 33337.39 37164.63 36822.17 37179.49 37143.51 36623.96 37382.43 359
test_method50.52 33848.47 34056.66 35452.26 38018.98 38341.51 37281.40 36210.10 37444.59 36975.01 36028.51 36568.16 37253.54 36149.31 36982.83 357
E-PMN43.23 34042.29 34246.03 35665.58 37537.41 37873.51 36564.62 37633.99 37128.47 37547.87 37219.90 37467.91 37322.23 37424.45 37232.77 371
EMVS42.07 34141.12 34344.92 35763.45 37735.56 38073.65 36463.48 37733.05 37226.88 37645.45 37321.27 37267.14 37419.80 37523.02 37432.06 372
MVEpermissive39.65 2343.39 33938.59 34557.77 35356.52 37848.77 37555.38 36958.64 37929.33 37328.96 37452.65 3704.68 38164.62 37528.11 37333.07 37159.93 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft56.31 35574.23 36751.81 37456.67 38044.85 36648.54 36675.16 35927.87 36658.74 37640.92 36952.22 36758.39 369
wuyk23d21.27 34420.48 34723.63 35968.59 37436.41 37949.57 3716.85 3839.37 3757.89 3774.46 3794.03 38231.37 37717.47 37616.07 3763.12 374
tmp_tt35.64 34239.24 34424.84 35814.87 38223.90 38262.71 36851.51 3816.58 37636.66 37262.08 36944.37 35730.34 37852.40 36222.00 37520.27 373
test1238.76 34611.22 3491.39 3600.85 3840.97 38485.76 3380.35 3850.54 3782.45 3798.14 3780.60 3830.48 3792.16 3780.17 3782.71 375
testmvs8.92 34511.52 3481.12 3611.06 3830.46 38586.02 3350.65 3840.62 3772.74 3789.52 3770.31 3840.45 3802.38 3770.39 3772.46 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k22.14 34329.52 3460.00 3620.00 3850.00 3860.00 37395.76 1420.00 3800.00 38194.29 14875.66 1570.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.64 3488.86 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38079.70 1090.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re7.82 34710.43 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38193.88 1690.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS198.86 185.54 6398.29 197.49 589.79 4196.29 15
test_one_060198.58 1185.83 5797.44 1491.05 1296.78 1398.06 691.45 11
eth-test20.00 385
eth-test0.00 385
RE-MVS-def93.68 4397.92 4384.57 7396.28 4396.76 7287.46 10593.75 3897.43 1882.94 7492.73 3897.80 7097.88 75
IU-MVS98.77 586.00 4796.84 6381.26 24297.26 795.50 1099.13 399.03 7
save fliter97.85 4685.63 6295.21 9896.82 6689.44 48
test072698.78 385.93 5297.19 1197.47 1090.27 2997.64 498.13 191.47 8
GSMVS96.12 140
test_part298.55 1287.22 1696.40 14
sam_mvs171.70 20796.12 140
sam_mvs70.60 220
MTGPAbinary96.97 48
MTMP96.16 4960.64 378
test9_res91.91 6598.71 3098.07 64
agg_prior290.54 8898.68 3598.27 50
test_prior485.96 5194.11 168
test_prior294.12 16787.67 10392.63 6696.39 6986.62 3691.50 7198.67 37
新几何293.11 220
旧先验196.79 7681.81 15095.67 14896.81 5086.69 3597.66 7496.97 113
原ACMM292.94 227
test22296.55 8481.70 15292.22 24895.01 18968.36 35090.20 11096.14 7980.26 10297.80 7096.05 146
segment_acmp87.16 34
testdata192.15 25087.94 93
plane_prior794.70 15782.74 127
plane_prior694.52 16682.75 12574.23 174
plane_prior494.86 124
plane_prior382.75 12590.26 3186.91 166
plane_prior295.85 6590.81 15
plane_prior194.59 161
plane_prior82.73 12895.21 9889.66 4589.88 191
n20.00 386
nn0.00 386
door-mid85.49 350
test1196.57 89
door85.33 351
HQP5-MVS81.56 154
HQP-NCC94.17 18094.39 15288.81 6585.43 205
ACMP_Plane94.17 18094.39 15288.81 6585.43 205
BP-MVS87.11 128
HQP3-MVS96.04 12289.77 193
HQP2-MVS73.83 184
NP-MVS94.37 17482.42 13793.98 162
MDTV_nov1_ep13_2view55.91 37387.62 32673.32 33084.59 22470.33 22774.65 28695.50 164
ACMMP++_ref87.47 231
ACMMP++88.01 225
Test By Simon80.02 104