This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 5292.59 298.94 8192.25 7298.99 1498.84 14
HPM-MVS++copyleft95.14 1094.91 1695.83 498.25 2989.65 495.92 7696.96 5591.75 994.02 5396.83 6488.12 2499.55 1693.41 4898.94 1698.28 54
MM95.10 1194.91 1695.68 596.09 10688.34 996.68 3394.37 24395.08 194.68 4097.72 2682.94 8899.64 197.85 198.76 2999.06 7
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4697.28 3185.90 16097.67 398.10 888.41 2099.56 1294.66 3299.19 198.71 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+87.14 492.42 8391.37 9295.55 795.63 12988.73 697.07 1896.77 7790.84 1684.02 27496.62 7775.95 17199.34 3787.77 13897.68 8398.59 24
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10996.96 5592.09 695.32 3297.08 5289.49 1599.33 4095.10 2898.85 2098.66 21
MVS_030494.18 3993.80 4995.34 994.91 16387.62 1495.97 7293.01 28292.58 394.22 4597.20 4680.56 11899.59 897.04 898.68 3798.81 17
ACMMP_NAP94.74 1994.56 2295.28 1098.02 4187.70 1195.68 8997.34 2388.28 9895.30 3397.67 2885.90 5099.54 2093.91 4098.95 1598.60 23
DPE-MVScopyleft95.57 495.67 495.25 1198.36 2587.28 1895.56 9997.51 589.13 6997.14 997.91 2191.64 799.62 294.61 3399.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS94.97 1294.90 1895.20 1297.84 5087.76 1096.65 3497.48 1087.76 11895.71 2797.70 2788.28 2399.35 3693.89 4198.78 2698.48 30
MCST-MVS94.45 2494.20 3895.19 1398.46 1987.50 1695.00 12897.12 4487.13 12992.51 9096.30 8689.24 1799.34 3793.46 4598.62 4698.73 18
NCCC94.81 1794.69 2195.17 1497.83 5187.46 1795.66 9296.93 5992.34 493.94 5496.58 7987.74 2799.44 2992.83 5698.40 5498.62 22
DPM-MVS92.58 8091.74 8995.08 1596.19 9989.31 592.66 25696.56 9683.44 22091.68 11395.04 14086.60 4298.99 7385.60 16897.92 7596.93 134
ZNCC-MVS94.47 2394.28 3295.03 1698.52 1586.96 2096.85 2897.32 2788.24 9993.15 6997.04 5586.17 4799.62 292.40 6698.81 2398.52 26
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
MTAPA94.42 2894.22 3595.00 1898.42 2186.95 2194.36 17596.97 5391.07 1393.14 7097.56 2984.30 7399.56 1293.43 4698.75 3098.47 33
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6989.90 1299.30 4394.70 3198.04 7199.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R94.43 2694.27 3494.92 2098.65 886.67 3096.92 2497.23 3488.60 8993.58 6197.27 4085.22 5899.54 2092.21 7398.74 3198.56 25
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 7496.20 1998.10 889.39 1699.34 3795.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR94.43 2694.28 3294.91 2198.63 986.69 2896.94 2097.32 2788.63 8693.53 6497.26 4285.04 6299.54 2092.35 6998.78 2698.50 27
GST-MVS94.21 3493.97 4694.90 2398.41 2286.82 2496.54 3697.19 3588.24 9993.26 6696.83 6485.48 5599.59 891.43 9798.40 5498.30 49
HFP-MVS94.52 2294.40 2694.86 2498.61 1086.81 2596.94 2097.34 2388.63 8693.65 5997.21 4486.10 4899.49 2692.35 6998.77 2898.30 49
sasdasda93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10490.00 3794.09 4994.60 16082.33 9798.62 10992.40 6692.86 18198.27 56
MP-MVS-pluss94.21 3494.00 4594.85 2598.17 3386.65 3194.82 14097.17 4086.26 15292.83 7897.87 2385.57 5499.56 1294.37 3698.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10490.00 3794.09 4994.60 16082.33 9798.62 10992.40 6692.86 18198.27 56
XVS94.45 2494.32 2894.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7697.16 5085.02 6399.49 2691.99 8398.56 5098.47 33
X-MVStestdata88.31 18086.13 22794.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7623.41 41885.02 6399.49 2691.99 8398.56 5098.47 33
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7586.33 4297.33 797.30 2991.38 1295.39 3197.46 3288.98 1999.40 3094.12 3798.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.98 196.36 194.82 3197.78 5486.00 5098.29 197.49 690.75 1997.62 598.06 1492.59 299.61 495.64 1999.02 1298.86 11
alignmvs93.08 7292.50 8094.81 3295.62 13087.61 1595.99 7096.07 13689.77 5094.12 4894.87 14680.56 11898.66 10492.42 6593.10 17798.15 67
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 1292.31 499.58 1095.66 1799.13 398.84 14
DeepC-MVS_fast89.43 294.04 4193.79 5094.80 3397.48 6486.78 2695.65 9496.89 6389.40 5992.81 7996.97 5785.37 5799.24 4690.87 10698.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 3194.07 4294.77 3598.47 1886.31 4496.71 3196.98 5289.04 7291.98 10097.19 4785.43 5699.56 1292.06 8298.79 2498.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3294.07 4294.75 3698.06 3986.90 2395.88 7796.94 5885.68 16695.05 3897.18 4887.31 3599.07 5691.90 8998.61 4898.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS94.34 2994.21 3794.74 3798.39 2386.64 3297.60 497.24 3288.53 9192.73 8497.23 4385.20 5999.32 4192.15 7698.83 2298.25 61
PGM-MVS93.96 4693.72 5494.68 3898.43 2086.22 4795.30 10797.78 187.45 12593.26 6697.33 3884.62 7099.51 2490.75 10898.57 4998.32 48
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 8290.27 3197.04 1198.05 1691.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
mPP-MVS93.99 4493.78 5194.63 4098.50 1685.90 6096.87 2696.91 6188.70 8491.83 10997.17 4983.96 7799.55 1691.44 9698.64 4598.43 38
PHI-MVS93.89 4793.65 5894.62 4196.84 7886.43 3996.69 3297.49 685.15 17993.56 6396.28 8785.60 5399.31 4292.45 6398.79 2498.12 70
TSAR-MVS + MP.94.85 1494.94 1494.58 4298.25 2986.33 4296.11 5996.62 9188.14 10496.10 2096.96 5889.09 1898.94 8194.48 3498.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CANet93.54 5593.20 6694.55 4395.65 12885.73 6594.94 13196.69 8791.89 890.69 12595.88 10581.99 10999.54 2093.14 5297.95 7498.39 39
train_agg93.44 5993.08 6794.52 4497.53 6186.49 3794.07 19296.78 7581.86 26192.77 8196.20 9087.63 2999.12 5492.14 7798.69 3597.94 80
CDPH-MVS92.83 7692.30 8294.44 4597.79 5286.11 4994.06 19496.66 8880.09 29292.77 8196.63 7686.62 4099.04 6087.40 14398.66 4198.17 66
3Dnovator86.66 591.73 9290.82 10494.44 4594.59 17986.37 4197.18 1297.02 5089.20 6684.31 26996.66 7273.74 20799.17 5086.74 15397.96 7397.79 91
SR-MVS94.23 3394.17 4094.43 4798.21 3285.78 6396.40 3896.90 6288.20 10294.33 4497.40 3584.75 6999.03 6193.35 4997.99 7298.48 30
HPM-MVScopyleft94.02 4293.88 4794.43 4798.39 2385.78 6397.25 1097.07 4886.90 13792.62 8796.80 6884.85 6899.17 5092.43 6498.65 4498.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.93.66 5393.41 6194.41 4996.59 8586.78 2694.40 16793.93 25989.77 5094.21 4695.59 11887.35 3498.61 11192.72 5996.15 11497.83 89
reproduce-ours94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7897.15 4189.82 4395.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
our_new_method94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7897.15 4189.82 4395.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
test1294.34 5297.13 7386.15 4896.29 11291.04 12285.08 6199.01 6698.13 6697.86 86
ACMMPcopyleft93.24 6892.88 7294.30 5398.09 3885.33 7296.86 2797.45 1488.33 9590.15 13597.03 5681.44 11299.51 2490.85 10795.74 11898.04 75
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
reproduce_model94.76 1894.92 1594.29 5497.92 4385.18 7495.95 7597.19 3589.67 5395.27 3498.16 386.53 4399.36 3595.42 2498.15 6498.33 44
DeepC-MVS88.79 393.31 6592.99 7094.26 5596.07 10885.83 6194.89 13496.99 5189.02 7589.56 14097.37 3782.51 9499.38 3192.20 7498.30 5797.57 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net93.03 7392.63 7794.23 5695.62 13085.92 5796.08 6096.33 11089.86 4193.89 5694.66 15782.11 10498.50 11792.33 7192.82 18498.27 56
EPNet91.79 8991.02 10094.10 5790.10 34585.25 7396.03 6792.05 30892.83 287.39 18295.78 11079.39 13499.01 6688.13 13497.48 8598.05 74
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n94.60 2194.81 1993.98 5894.62 17884.96 7796.15 5497.35 2289.37 6096.03 2398.11 686.36 4499.01 6697.45 297.83 7897.96 79
DELS-MVS93.43 6393.25 6493.97 5995.42 13785.04 7593.06 24497.13 4390.74 2191.84 10795.09 13986.32 4599.21 4891.22 9898.45 5297.65 98
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon91.95 8791.28 9493.96 6098.33 2785.92 5794.66 15196.66 8882.69 24090.03 13795.82 10882.30 9999.03 6184.57 18096.48 10996.91 136
HPM-MVS_fast93.40 6493.22 6593.94 6198.36 2584.83 7997.15 1396.80 7485.77 16392.47 9197.13 5182.38 9599.07 5690.51 11198.40 5497.92 83
test_fmvsmconf0.1_n94.20 3694.31 3093.88 6292.46 26484.80 8096.18 5196.82 7189.29 6395.68 2898.11 685.10 6098.99 7397.38 397.75 8297.86 86
SD-MVS94.96 1395.33 893.88 6297.25 7286.69 2896.19 4997.11 4690.42 2796.95 1397.27 4089.53 1496.91 25994.38 3598.85 2098.03 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5893.31 6293.84 6496.99 7584.84 7893.24 23797.24 3288.76 8191.60 11495.85 10686.07 4998.66 10491.91 8798.16 6398.03 76
SR-MVS-dyc-post93.82 4893.82 4893.82 6597.92 4384.57 8596.28 4396.76 7887.46 12393.75 5797.43 3384.24 7499.01 6692.73 5797.80 7997.88 84
test_prior93.82 6597.29 7084.49 8996.88 6498.87 8598.11 71
APD-MVS_3200maxsize93.78 4993.77 5293.80 6797.92 4384.19 9996.30 4196.87 6586.96 13393.92 5597.47 3183.88 7898.96 8092.71 6097.87 7698.26 60
fmvsm_l_conf0.5_n94.29 3094.46 2493.79 6895.28 14185.43 7095.68 8996.43 10286.56 14496.84 1497.81 2587.56 3298.77 9697.14 596.82 10197.16 122
CSCG93.23 6993.05 6893.76 6998.04 4084.07 10196.22 4897.37 2184.15 20290.05 13695.66 11587.77 2699.15 5389.91 11598.27 5898.07 72
test_fmvsmconf0.01_n93.19 7093.02 6993.71 7089.25 35884.42 9696.06 6496.29 11289.06 7094.68 4098.13 479.22 13698.98 7797.22 497.24 8997.74 93
UA-Net92.83 7692.54 7993.68 7196.10 10584.71 8295.66 9296.39 10691.92 793.22 6896.49 8283.16 8498.87 8584.47 18295.47 12597.45 108
fmvsm_l_conf0.5_n_a94.20 3694.40 2693.60 7295.29 14084.98 7695.61 9696.28 11586.31 15096.75 1697.86 2487.40 3398.74 9997.07 797.02 9497.07 124
QAPM89.51 14388.15 16793.59 7394.92 16184.58 8496.82 2996.70 8678.43 31883.41 28996.19 9373.18 21499.30 4377.11 29096.54 10696.89 137
test_fmvsm_n_192094.71 2095.11 1093.50 7495.79 12084.62 8396.15 5497.64 289.85 4297.19 897.89 2286.28 4698.71 10297.11 698.08 7097.17 118
casdiffmvs_mvgpermissive92.96 7592.83 7393.35 7594.59 17983.40 12195.00 12896.34 10990.30 3092.05 9896.05 9883.43 8098.15 15192.07 7995.67 11998.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set93.01 7492.92 7193.29 7695.01 15483.51 11894.48 15995.77 16090.87 1592.52 8996.67 7184.50 7199.00 7191.99 8394.44 15297.36 109
Vis-MVSNetpermissive91.75 9191.23 9593.29 7695.32 13983.78 10896.14 5695.98 14389.89 3990.45 12796.58 7975.09 18398.31 14284.75 17896.90 9797.78 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
balanced_conf0393.98 4594.22 3593.26 7896.13 10183.29 12496.27 4596.52 9789.82 4395.56 3095.51 12084.50 7198.79 9494.83 3098.86 1997.72 94
SPE-MVS-test94.02 4294.29 3193.24 7996.69 8183.24 12597.49 596.92 6092.14 592.90 7495.77 11185.02 6398.33 13993.03 5398.62 4698.13 68
VNet92.24 8591.91 8693.24 7996.59 8583.43 11994.84 13996.44 10189.19 6794.08 5295.90 10477.85 15598.17 14988.90 12593.38 17198.13 68
VDD-MVS90.74 11089.92 12293.20 8196.27 9783.02 13895.73 8693.86 26388.42 9492.53 8896.84 6362.09 32498.64 10690.95 10492.62 18697.93 82
CS-MVS94.12 4094.44 2593.17 8296.55 8883.08 13597.63 396.95 5791.71 1193.50 6596.21 8985.61 5298.24 14493.64 4398.17 6298.19 64
nrg03091.08 10490.39 10893.17 8293.07 24786.91 2296.41 3796.26 11788.30 9788.37 16194.85 14982.19 10397.64 19291.09 9982.95 30394.96 215
MVSMamba_PlusPlus93.44 5993.54 6093.14 8496.58 8783.05 13696.06 6496.50 9984.42 19994.09 4995.56 11985.01 6698.69 10394.96 2998.66 4197.67 97
EI-MVSNet-UG-set92.74 7892.62 7893.12 8594.86 16683.20 12794.40 16795.74 16390.71 2392.05 9896.60 7884.00 7698.99 7391.55 9493.63 16297.17 118
test_fmvsmvis_n_192093.44 5993.55 5993.10 8693.67 22984.26 9895.83 8296.14 12789.00 7692.43 9297.50 3083.37 8398.72 10096.61 1297.44 8696.32 157
新几何193.10 8697.30 6984.35 9795.56 17771.09 38491.26 12096.24 8882.87 9098.86 8779.19 26998.10 6796.07 172
OMC-MVS91.23 10090.62 10793.08 8896.27 9784.07 10193.52 22095.93 14786.95 13489.51 14196.13 9678.50 14698.35 13685.84 16692.90 18096.83 141
OpenMVScopyleft83.78 1188.74 16987.29 18693.08 8892.70 25985.39 7196.57 3596.43 10278.74 31380.85 32196.07 9769.64 25799.01 6678.01 28196.65 10594.83 222
MAR-MVS90.30 12189.37 13393.07 9096.61 8484.48 9095.68 8995.67 16982.36 24587.85 17092.85 22176.63 16598.80 9380.01 25796.68 10495.91 178
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
lupinMVS90.92 10590.21 11193.03 9193.86 21983.88 10692.81 25393.86 26379.84 29591.76 11094.29 17077.92 15298.04 16790.48 11297.11 9097.17 118
Effi-MVS+91.59 9591.11 9793.01 9294.35 19783.39 12294.60 15395.10 20787.10 13090.57 12693.10 21681.43 11398.07 16589.29 12194.48 15097.59 102
fmvsm_s_conf0.5_n_a93.57 5493.76 5393.00 9395.02 15383.67 11196.19 4996.10 13387.27 12795.98 2498.05 1683.07 8798.45 12796.68 1195.51 12296.88 138
MVS_111021_LR92.47 8292.29 8392.98 9495.99 11484.43 9493.08 24296.09 13488.20 10291.12 12195.72 11481.33 11497.76 18291.74 9197.37 8896.75 143
fmvsm_s_conf0.1_n_a93.19 7093.26 6392.97 9592.49 26283.62 11496.02 6895.72 16686.78 13996.04 2298.19 182.30 9998.43 13196.38 1395.42 12896.86 139
ETV-MVS92.74 7892.66 7692.97 9595.20 14784.04 10395.07 12496.51 9890.73 2292.96 7391.19 28084.06 7598.34 13791.72 9296.54 10696.54 153
LFMVS90.08 12689.13 13992.95 9796.71 8082.32 16196.08 6089.91 36186.79 13892.15 9796.81 6662.60 32298.34 13787.18 14793.90 15898.19 64
UGNet89.95 13188.95 14392.95 9794.51 18583.31 12395.70 8895.23 20089.37 6087.58 17693.94 18564.00 31398.78 9583.92 18996.31 11196.74 144
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason90.80 10890.10 11592.90 9993.04 25083.53 11793.08 24294.15 25280.22 28991.41 11794.91 14376.87 15997.93 17690.28 11396.90 9797.24 114
jason: jason.
DP-MVS87.25 22085.36 25692.90 9997.65 5883.24 12594.81 14192.00 31074.99 35281.92 31095.00 14172.66 21999.05 5866.92 36592.33 19196.40 155
fmvsm_s_conf0.5_n93.76 5094.06 4492.86 10195.62 13083.17 12896.14 5696.12 13188.13 10595.82 2698.04 1983.43 8098.48 11996.97 996.23 11296.92 135
fmvsm_s_conf0.1_n93.46 5793.66 5792.85 10293.75 22583.13 13096.02 6895.74 16387.68 12095.89 2598.17 282.78 9198.46 12396.71 1096.17 11396.98 131
CANet_DTU90.26 12389.41 13292.81 10393.46 23683.01 13993.48 22194.47 23989.43 5887.76 17494.23 17570.54 24699.03 6184.97 17396.39 11096.38 156
MVSFormer91.68 9491.30 9392.80 10493.86 21983.88 10695.96 7395.90 15184.66 19591.76 11094.91 14377.92 15297.30 22689.64 11797.11 9097.24 114
PVSNet_Blended_VisFu91.38 9790.91 10292.80 10496.39 9483.17 12894.87 13696.66 8883.29 22589.27 14794.46 16580.29 12199.17 5087.57 14195.37 12996.05 175
VDDNet89.56 14288.49 15892.76 10695.07 15282.09 16396.30 4193.19 27781.05 28391.88 10596.86 6261.16 34098.33 13988.43 13192.49 19097.84 88
h-mvs3390.80 10890.15 11492.75 10796.01 11082.66 15295.43 10195.53 18189.80 4693.08 7195.64 11675.77 17299.00 7192.07 7978.05 36096.60 148
casdiffmvspermissive92.51 8192.43 8192.74 10894.41 19281.98 16694.54 15796.23 12189.57 5591.96 10296.17 9482.58 9398.01 16990.95 10495.45 12798.23 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl90.69 11290.02 12092.71 10995.72 12382.41 15994.11 18795.12 20585.63 16791.49 11594.70 15374.75 18798.42 13286.13 16192.53 18897.31 110
DCV-MVSNet90.69 11290.02 12092.71 10995.72 12382.41 15994.11 18795.12 20585.63 16791.49 11594.70 15374.75 18798.42 13286.13 16192.53 18897.31 110
PCF-MVS84.11 1087.74 19586.08 23192.70 11194.02 21084.43 9489.27 34095.87 15473.62 36684.43 26194.33 16778.48 14798.86 8770.27 33994.45 15194.81 223
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline92.39 8492.29 8392.69 11294.46 18881.77 17094.14 18496.27 11689.22 6591.88 10596.00 9982.35 9697.99 17191.05 10095.27 13398.30 49
MSLP-MVS++93.72 5294.08 4192.65 11397.31 6883.43 11995.79 8497.33 2590.03 3693.58 6196.96 5884.87 6797.76 18292.19 7598.66 4196.76 142
EC-MVSNet93.44 5993.71 5592.63 11495.21 14682.43 15697.27 996.71 8590.57 2692.88 7595.80 10983.16 8498.16 15093.68 4298.14 6597.31 110
ab-mvs89.41 14888.35 16092.60 11595.15 15182.65 15392.20 27395.60 17683.97 20688.55 15793.70 19874.16 19998.21 14882.46 21189.37 23296.94 133
LS3D87.89 19086.32 22092.59 11696.07 10882.92 14295.23 11494.92 21975.66 34482.89 29695.98 10172.48 22299.21 4868.43 35395.23 13495.64 191
Anonymous2024052988.09 18686.59 20992.58 11796.53 9081.92 16895.99 7095.84 15674.11 36189.06 15195.21 13361.44 33298.81 9283.67 19487.47 26397.01 129
CPTT-MVS91.99 8691.80 8792.55 11898.24 3181.98 16696.76 3096.49 10081.89 26090.24 13096.44 8478.59 14498.61 11189.68 11697.85 7797.06 125
114514_t89.51 14388.50 15692.54 11998.11 3681.99 16595.16 12096.36 10870.19 38885.81 21595.25 13076.70 16398.63 10882.07 22196.86 10097.00 130
PAPM_NR91.22 10190.78 10592.52 12097.60 5981.46 17994.37 17396.24 12086.39 14987.41 17994.80 15182.06 10798.48 11982.80 20695.37 12997.61 100
DeepPCF-MVS89.96 194.20 3694.77 2092.49 12196.52 9180.00 22394.00 20097.08 4790.05 3595.65 2997.29 3989.66 1398.97 7893.95 3998.71 3298.50 27
IS-MVSNet91.43 9691.09 9992.46 12295.87 11981.38 18296.95 1993.69 26989.72 5289.50 14395.98 10178.57 14597.77 18183.02 20096.50 10898.22 63
API-MVS90.66 11490.07 11692.45 12396.36 9584.57 8596.06 6495.22 20282.39 24389.13 14894.27 17380.32 12098.46 12380.16 25696.71 10394.33 246
xiu_mvs_v1_base_debu90.64 11590.05 11792.40 12493.97 21684.46 9193.32 22895.46 18485.17 17692.25 9394.03 17770.59 24298.57 11490.97 10194.67 14294.18 249
xiu_mvs_v1_base90.64 11590.05 11792.40 12493.97 21684.46 9193.32 22895.46 18485.17 17692.25 9394.03 17770.59 24298.57 11490.97 10194.67 14294.18 249
xiu_mvs_v1_base_debi90.64 11590.05 11792.40 12493.97 21684.46 9193.32 22895.46 18485.17 17692.25 9394.03 17770.59 24298.57 11490.97 10194.67 14294.18 249
AdaColmapbinary89.89 13489.07 14092.37 12797.41 6583.03 13794.42 16695.92 14882.81 23786.34 20594.65 15873.89 20399.02 6480.69 24795.51 12295.05 210
CNLPA89.07 15987.98 17092.34 12896.87 7784.78 8194.08 19193.24 27581.41 27484.46 25995.13 13875.57 17996.62 27077.21 28893.84 16095.61 194
ET-MVSNet_ETH3D87.51 20885.91 23992.32 12993.70 22883.93 10492.33 26890.94 34184.16 20172.09 38492.52 23369.90 25295.85 31689.20 12288.36 25097.17 118
Anonymous20240521187.68 19686.13 22792.31 13096.66 8280.74 20094.87 13691.49 32780.47 28889.46 14495.44 12254.72 37398.23 14582.19 21789.89 22297.97 78
CHOSEN 1792x268888.84 16587.69 17692.30 13196.14 10081.42 18190.01 32795.86 15574.52 35787.41 17993.94 18575.46 18098.36 13480.36 25295.53 12197.12 123
HY-MVS83.01 1289.03 16187.94 17292.29 13294.86 16682.77 14492.08 27894.49 23881.52 27386.93 18692.79 22778.32 14998.23 14579.93 25890.55 21195.88 180
CDS-MVSNet89.45 14688.51 15592.29 13293.62 23183.61 11693.01 24594.68 23581.95 25587.82 17293.24 21078.69 14296.99 25380.34 25393.23 17596.28 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR90.02 12889.27 13892.29 13295.78 12180.95 19492.68 25596.22 12281.91 25786.66 19693.75 19782.23 10198.44 12979.40 26894.79 14097.48 106
mvsmamba90.33 12089.69 12592.25 13595.17 14881.64 17295.27 11293.36 27484.88 18689.51 14194.27 17369.29 26697.42 21289.34 12096.12 11597.68 96
PLCcopyleft84.53 789.06 16088.03 16992.15 13697.27 7182.69 15194.29 17695.44 18979.71 29784.01 27594.18 17676.68 16498.75 9777.28 28793.41 17095.02 211
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPP-MVSNet91.70 9391.56 9192.13 13795.88 11780.50 20697.33 795.25 19986.15 15589.76 13995.60 11783.42 8298.32 14187.37 14593.25 17497.56 104
patch_mono-293.74 5194.32 2892.01 13897.54 6078.37 26093.40 22597.19 3588.02 10794.99 3997.21 4488.35 2198.44 12994.07 3898.09 6899.23 1
原ACMM192.01 13897.34 6781.05 19096.81 7378.89 30890.45 12795.92 10382.65 9298.84 9180.68 24898.26 5996.14 166
UniMVSNet (Re)89.80 13689.07 14092.01 13893.60 23284.52 8894.78 14397.47 1189.26 6486.44 20292.32 23982.10 10597.39 22384.81 17780.84 33794.12 253
MG-MVS91.77 9091.70 9092.00 14197.08 7480.03 22193.60 21895.18 20387.85 11590.89 12396.47 8382.06 10798.36 13485.07 17297.04 9397.62 99
EIA-MVS91.95 8791.94 8591.98 14295.16 14980.01 22295.36 10296.73 8288.44 9289.34 14592.16 24483.82 7998.45 12789.35 11997.06 9297.48 106
PVSNet_Blended90.73 11190.32 11091.98 14296.12 10281.25 18492.55 26096.83 6982.04 25389.10 14992.56 23281.04 11698.85 8986.72 15595.91 11695.84 182
PS-MVSNAJ91.18 10290.92 10191.96 14495.26 14482.60 15592.09 27795.70 16786.27 15191.84 10792.46 23479.70 12998.99 7389.08 12395.86 11794.29 247
TAMVS89.21 15488.29 16491.96 14493.71 22682.62 15493.30 23294.19 25082.22 24887.78 17393.94 18578.83 13996.95 25677.70 28392.98 17996.32 157
SDMVSNet90.19 12489.61 12791.93 14696.00 11183.09 13492.89 25095.98 14388.73 8286.85 19295.20 13472.09 22697.08 24588.90 12589.85 22495.63 192
FA-MVS(test-final)89.66 13888.91 14591.93 14694.57 18280.27 21091.36 29394.74 23284.87 18789.82 13892.61 23174.72 19098.47 12283.97 18893.53 16597.04 127
MVS_Test91.31 9991.11 9791.93 14694.37 19380.14 21493.46 22395.80 15886.46 14791.35 11993.77 19582.21 10298.09 16287.57 14194.95 13797.55 105
NR-MVSNet88.58 17587.47 18291.93 14693.04 25084.16 10094.77 14496.25 11989.05 7180.04 33493.29 20879.02 13897.05 25081.71 23280.05 34794.59 230
HyFIR lowres test88.09 18686.81 19891.93 14696.00 11180.63 20290.01 32795.79 15973.42 36887.68 17592.10 25073.86 20497.96 17380.75 24691.70 19597.19 117
GeoE90.05 12789.43 13191.90 15195.16 14980.37 20995.80 8394.65 23683.90 20787.55 17894.75 15278.18 15097.62 19481.28 23693.63 16297.71 95
thisisatest053088.67 17087.61 17891.86 15294.87 16580.07 21794.63 15289.90 36284.00 20588.46 15993.78 19466.88 29098.46 12383.30 19692.65 18597.06 125
xiu_mvs_v2_base91.13 10390.89 10391.86 15294.97 15782.42 15792.24 27195.64 17486.11 15991.74 11293.14 21479.67 13298.89 8489.06 12495.46 12694.28 248
DU-MVS89.34 15388.50 15691.85 15493.04 25083.72 10994.47 16296.59 9389.50 5686.46 19993.29 20877.25 15797.23 23584.92 17481.02 33394.59 230
OPM-MVS90.12 12589.56 12891.82 15593.14 24383.90 10594.16 18395.74 16388.96 7787.86 16995.43 12472.48 22297.91 17788.10 13690.18 21793.65 283
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 11890.19 11291.82 15594.70 17482.73 14895.85 8096.22 12290.81 1786.91 18894.86 14774.23 19598.12 15288.15 13289.99 21894.63 227
UniMVSNet_NR-MVSNet89.92 13389.29 13691.81 15793.39 23883.72 10994.43 16597.12 4489.80 4686.46 19993.32 20583.16 8497.23 23584.92 17481.02 33394.49 240
diffmvspermissive91.37 9891.23 9591.77 15893.09 24680.27 21092.36 26595.52 18287.03 13291.40 11894.93 14280.08 12397.44 21092.13 7894.56 14797.61 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.42 17687.33 18591.72 15994.92 16180.98 19292.97 24794.54 23778.16 32483.82 27893.88 19078.78 14197.91 17779.45 26489.41 23196.26 161
Fast-Effi-MVS+89.41 14888.64 15191.71 16094.74 17080.81 19893.54 21995.10 20783.11 22986.82 19490.67 30179.74 12897.75 18580.51 25193.55 16496.57 151
WTY-MVS89.60 14088.92 14491.67 16195.47 13681.15 18892.38 26494.78 23083.11 22989.06 15194.32 16878.67 14396.61 27381.57 23390.89 20897.24 114
TAPA-MVS84.62 688.16 18487.01 19491.62 16296.64 8380.65 20194.39 16996.21 12576.38 33786.19 20995.44 12279.75 12798.08 16462.75 38295.29 13196.13 167
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VPA-MVSNet89.62 13988.96 14291.60 16393.86 21982.89 14395.46 10097.33 2587.91 11088.43 16093.31 20674.17 19897.40 22087.32 14682.86 30894.52 235
FE-MVS87.40 21386.02 23391.57 16494.56 18379.69 23190.27 31493.72 26880.57 28688.80 15491.62 26965.32 30598.59 11374.97 31294.33 15496.44 154
XVG-OURS89.40 15088.70 15091.52 16594.06 20881.46 17991.27 29796.07 13686.14 15688.89 15395.77 11168.73 27597.26 23287.39 14489.96 22095.83 183
hse-mvs289.88 13589.34 13491.51 16694.83 16881.12 18993.94 20393.91 26289.80 4693.08 7193.60 19975.77 17297.66 18992.07 7977.07 36795.74 187
TranMVSNet+NR-MVSNet88.84 16587.95 17191.49 16792.68 26083.01 13994.92 13396.31 11189.88 4085.53 22493.85 19276.63 16596.96 25581.91 22579.87 35094.50 238
AUN-MVS87.78 19486.54 21291.48 16894.82 16981.05 19093.91 20793.93 25983.00 23286.93 18693.53 20069.50 26097.67 18786.14 15977.12 36695.73 189
XVG-OURS-SEG-HR89.95 13189.45 12991.47 16994.00 21481.21 18791.87 28196.06 13885.78 16288.55 15795.73 11374.67 19197.27 23088.71 12889.64 22995.91 178
MVS87.44 21186.10 23091.44 17092.61 26183.62 11492.63 25795.66 17167.26 39381.47 31392.15 24577.95 15198.22 14779.71 26095.48 12492.47 324
F-COLMAP87.95 18986.80 19991.40 17196.35 9680.88 19694.73 14695.45 18779.65 29882.04 30894.61 15971.13 23398.50 11776.24 30091.05 20694.80 224
dcpmvs_293.49 5694.19 3991.38 17297.69 5776.78 29394.25 17896.29 11288.33 9594.46 4296.88 6188.07 2598.64 10693.62 4498.09 6898.73 18
thisisatest051587.33 21685.99 23491.37 17393.49 23479.55 23290.63 31089.56 36980.17 29087.56 17790.86 29167.07 28798.28 14381.50 23493.02 17896.29 159
HQP-MVS89.80 13689.28 13791.34 17494.17 20381.56 17394.39 16996.04 13988.81 7885.43 23393.97 18473.83 20597.96 17387.11 15089.77 22794.50 238
RRT-MVS90.85 10790.70 10691.30 17594.25 19976.83 29294.85 13896.13 13089.04 7290.23 13194.88 14570.15 25198.72 10091.86 9094.88 13898.34 42
FMVSNet387.40 21386.11 22991.30 17593.79 22483.64 11394.20 18294.81 22883.89 20884.37 26291.87 26068.45 27896.56 27878.23 27885.36 28093.70 282
FMVSNet287.19 22685.82 24291.30 17594.01 21183.67 11194.79 14294.94 21483.57 21583.88 27792.05 25466.59 29596.51 28277.56 28585.01 28393.73 280
RPMNet83.95 29981.53 31091.21 17890.58 33679.34 23985.24 38496.76 7871.44 38285.55 22282.97 39170.87 23898.91 8361.01 38689.36 23395.40 198
IB-MVS80.51 1585.24 27883.26 29491.19 17992.13 27379.86 22791.75 28491.29 33283.28 22680.66 32488.49 34661.28 33498.46 12380.99 24279.46 35495.25 204
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS89.47 14588.90 14691.18 18094.22 20182.07 16492.13 27596.09 13487.90 11185.37 23992.45 23574.38 19397.56 19787.15 14890.43 21393.93 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 14688.90 14691.12 18194.47 18681.49 17795.30 10796.14 12786.73 14185.45 23095.16 13669.89 25398.10 15487.70 13989.23 23693.77 277
LGP-MVS_train91.12 18194.47 18681.49 17796.14 12786.73 14185.45 23095.16 13669.89 25398.10 15487.70 13989.23 23693.77 277
ACMM84.12 989.14 15588.48 15991.12 18194.65 17781.22 18695.31 10596.12 13185.31 17585.92 21394.34 16670.19 25098.06 16685.65 16788.86 24194.08 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tttt051788.61 17287.78 17591.11 18494.96 15877.81 27595.35 10389.69 36585.09 18188.05 16794.59 16266.93 28898.48 11983.27 19792.13 19397.03 128
GBi-Net87.26 21885.98 23591.08 18594.01 21183.10 13195.14 12194.94 21483.57 21584.37 26291.64 26566.59 29596.34 29578.23 27885.36 28093.79 272
test187.26 21885.98 23591.08 18594.01 21183.10 13195.14 12194.94 21483.57 21584.37 26291.64 26566.59 29596.34 29578.23 27885.36 28093.79 272
FMVSNet185.85 26484.11 28191.08 18592.81 25783.10 13195.14 12194.94 21481.64 26882.68 29891.64 26559.01 35396.34 29575.37 30683.78 29393.79 272
Test_1112_low_res87.65 19886.51 21391.08 18594.94 16079.28 24391.77 28394.30 24676.04 34283.51 28792.37 23777.86 15497.73 18678.69 27389.13 23896.22 162
PS-MVSNAJss89.97 13089.62 12691.02 18991.90 28280.85 19795.26 11395.98 14386.26 15286.21 20894.29 17079.70 12997.65 19088.87 12788.10 25294.57 232
BH-RMVSNet88.37 17887.48 18191.02 18995.28 14179.45 23592.89 25093.07 28085.45 17286.91 18894.84 15070.35 24797.76 18273.97 31894.59 14695.85 181
UniMVSNet_ETH3D87.53 20786.37 21791.00 19192.44 26578.96 24894.74 14595.61 17584.07 20485.36 24094.52 16459.78 34897.34 22582.93 20187.88 25796.71 145
FIs90.51 11990.35 10990.99 19293.99 21580.98 19295.73 8697.54 489.15 6886.72 19594.68 15581.83 11197.24 23485.18 17188.31 25194.76 225
ACMP84.23 889.01 16388.35 16090.99 19294.73 17181.27 18395.07 12495.89 15386.48 14583.67 28294.30 16969.33 26297.99 17187.10 15288.55 24393.72 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 24785.13 26190.98 19496.52 9181.50 17596.14 5696.16 12673.78 36483.65 28392.15 24563.26 31997.37 22482.82 20581.74 32294.06 258
sss88.93 16488.26 16690.94 19594.05 20980.78 19991.71 28595.38 19381.55 27288.63 15693.91 18975.04 18495.47 33482.47 21091.61 19696.57 151
sd_testset88.59 17487.85 17490.83 19696.00 11180.42 20892.35 26694.71 23388.73 8286.85 19295.20 13467.31 28296.43 28979.64 26289.85 22495.63 192
PVSNet_BlendedMVS89.98 12989.70 12490.82 19796.12 10281.25 18493.92 20596.83 6983.49 21989.10 14992.26 24281.04 11698.85 8986.72 15587.86 25892.35 330
cascas86.43 25584.98 26490.80 19892.10 27580.92 19590.24 31895.91 15073.10 37183.57 28688.39 34765.15 30797.46 20684.90 17691.43 19894.03 260
ECVR-MVScopyleft89.09 15888.53 15490.77 19995.62 13075.89 30696.16 5284.22 39487.89 11390.20 13296.65 7363.19 32098.10 15485.90 16496.94 9598.33 44
GA-MVS86.61 24585.27 25990.66 20091.33 30578.71 25090.40 31393.81 26685.34 17485.12 24389.57 32861.25 33597.11 24480.99 24289.59 23096.15 165
thres600view787.65 19886.67 20490.59 20196.08 10778.72 24994.88 13591.58 32387.06 13188.08 16592.30 24068.91 27298.10 15470.05 34691.10 20194.96 215
thres40087.62 20386.64 20590.57 20295.99 11478.64 25194.58 15491.98 31286.94 13588.09 16391.77 26169.18 26898.10 15470.13 34391.10 20194.96 215
baseline188.10 18587.28 18790.57 20294.96 15880.07 21794.27 17791.29 33286.74 14087.41 17994.00 18276.77 16296.20 30080.77 24579.31 35695.44 196
FC-MVSNet-test90.27 12290.18 11390.53 20493.71 22679.85 22895.77 8597.59 389.31 6286.27 20694.67 15681.93 11097.01 25284.26 18488.09 25494.71 226
PAPM86.68 24485.39 25490.53 20493.05 24979.33 24289.79 33094.77 23178.82 31081.95 30993.24 21076.81 16097.30 22666.94 36393.16 17694.95 218
WR-MVS88.38 17787.67 17790.52 20693.30 24080.18 21293.26 23595.96 14688.57 9085.47 22992.81 22576.12 16796.91 25981.24 23782.29 31394.47 243
MVSTER88.84 16588.29 16490.51 20792.95 25580.44 20793.73 21295.01 21184.66 19587.15 18393.12 21572.79 21897.21 23787.86 13787.36 26693.87 267
testdata90.49 20896.40 9377.89 27295.37 19572.51 37693.63 6096.69 6982.08 10697.65 19083.08 19897.39 8795.94 177
test111189.10 15688.64 15190.48 20995.53 13574.97 31696.08 6084.89 39288.13 10590.16 13496.65 7363.29 31898.10 15486.14 15996.90 9798.39 39
tt080586.92 23485.74 24890.48 20992.22 26979.98 22495.63 9594.88 22283.83 21084.74 25292.80 22657.61 35997.67 18785.48 17084.42 28793.79 272
jajsoiax88.24 18287.50 18090.48 20990.89 32580.14 21495.31 10595.65 17384.97 18484.24 27094.02 18065.31 30697.42 21288.56 12988.52 24593.89 263
PatchMatch-RL86.77 24285.54 25090.47 21295.88 11782.71 15090.54 31192.31 30079.82 29684.32 26791.57 27368.77 27496.39 29173.16 32493.48 16992.32 331
tfpn200view987.58 20586.64 20590.41 21395.99 11478.64 25194.58 15491.98 31286.94 13588.09 16391.77 26169.18 26898.10 15470.13 34391.10 20194.48 241
VPNet88.20 18387.47 18290.39 21493.56 23379.46 23494.04 19595.54 18088.67 8586.96 18594.58 16369.33 26297.15 23984.05 18780.53 34294.56 233
ACMH80.38 1785.36 27383.68 28890.39 21494.45 18980.63 20294.73 14694.85 22482.09 25077.24 35692.65 22960.01 34697.58 19572.25 32884.87 28492.96 310
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90087.63 20186.71 20290.38 21696.12 10278.55 25395.03 12791.58 32387.15 12888.06 16692.29 24168.91 27298.10 15470.13 34391.10 20194.48 241
mvs_tets88.06 18887.28 18790.38 21690.94 32179.88 22695.22 11595.66 17185.10 18084.21 27193.94 18563.53 31697.40 22088.50 13088.40 24993.87 267
131487.51 20886.57 21090.34 21892.42 26679.74 23092.63 25795.35 19778.35 31980.14 33191.62 26974.05 20097.15 23981.05 23893.53 16594.12 253
LTVRE_ROB82.13 1386.26 25884.90 26790.34 21894.44 19081.50 17592.31 27094.89 22083.03 23179.63 34092.67 22869.69 25697.79 18071.20 33286.26 27591.72 341
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_djsdf89.03 16188.64 15190.21 22090.74 33179.28 24395.96 7395.90 15184.66 19585.33 24192.94 22074.02 20197.30 22689.64 11788.53 24494.05 259
v2v48287.84 19187.06 19190.17 22190.99 31779.23 24694.00 20095.13 20484.87 18785.53 22492.07 25374.45 19297.45 20784.71 17981.75 32193.85 270
pmmvs485.43 27183.86 28690.16 22290.02 34882.97 14190.27 31492.67 29275.93 34380.73 32291.74 26371.05 23495.73 32478.85 27283.46 30091.78 340
V4287.68 19686.86 19690.15 22390.58 33680.14 21494.24 18095.28 19883.66 21385.67 21991.33 27574.73 18997.41 21884.43 18381.83 31992.89 313
MSDG84.86 28683.09 29790.14 22493.80 22280.05 21989.18 34393.09 27978.89 30878.19 34991.91 25865.86 30497.27 23068.47 35288.45 24793.11 305
anonymousdsp87.84 19187.09 19090.12 22589.13 35980.54 20594.67 15095.55 17882.05 25183.82 27892.12 24771.47 23197.15 23987.15 14887.80 26192.67 318
thres20087.21 22486.24 22490.12 22595.36 13878.53 25493.26 23592.10 30686.42 14888.00 16891.11 28669.24 26798.00 17069.58 34791.04 20793.83 271
CR-MVSNet85.35 27483.76 28790.12 22590.58 33679.34 23985.24 38491.96 31478.27 32185.55 22287.87 35771.03 23595.61 32673.96 31989.36 23395.40 198
v114487.61 20486.79 20090.06 22891.01 31679.34 23993.95 20295.42 19283.36 22485.66 22091.31 27874.98 18597.42 21283.37 19582.06 31593.42 292
XXY-MVS87.65 19886.85 19790.03 22992.14 27280.60 20493.76 21195.23 20082.94 23484.60 25494.02 18074.27 19495.49 33381.04 23983.68 29694.01 261
Vis-MVSNet (Re-imp)89.59 14189.44 13090.03 22995.74 12275.85 30795.61 9690.80 34587.66 12287.83 17195.40 12576.79 16196.46 28778.37 27496.73 10297.80 90
test250687.21 22486.28 22290.02 23195.62 13073.64 33296.25 4771.38 41687.89 11390.45 12796.65 7355.29 37098.09 16286.03 16396.94 9598.33 44
BH-untuned88.60 17388.13 16890.01 23295.24 14578.50 25693.29 23394.15 25284.75 19284.46 25993.40 20275.76 17497.40 22077.59 28494.52 14994.12 253
v119287.25 22086.33 21990.00 23390.76 33079.04 24793.80 20995.48 18382.57 24185.48 22891.18 28273.38 21397.42 21282.30 21482.06 31593.53 286
v7n86.81 23785.76 24689.95 23490.72 33279.25 24595.07 12495.92 14884.45 19882.29 30290.86 29172.60 22197.53 19979.42 26780.52 34393.08 307
testing9187.11 22986.18 22589.92 23594.43 19175.38 31591.53 29092.27 30286.48 14586.50 19790.24 30961.19 33897.53 19982.10 21990.88 20996.84 140
v887.50 21086.71 20289.89 23691.37 30279.40 23694.50 15895.38 19384.81 19083.60 28591.33 27576.05 16897.42 21282.84 20480.51 34492.84 315
v1087.25 22086.38 21689.85 23791.19 30879.50 23394.48 15995.45 18783.79 21183.62 28491.19 28075.13 18297.42 21281.94 22480.60 33992.63 320
baseline286.50 25185.39 25489.84 23891.12 31376.70 29591.88 28088.58 37282.35 24679.95 33590.95 29073.42 21197.63 19380.27 25589.95 22195.19 205
pm-mvs186.61 24585.54 25089.82 23991.44 29780.18 21295.28 11194.85 22483.84 20981.66 31192.62 23072.45 22496.48 28479.67 26178.06 35992.82 316
TR-MVS86.78 23985.76 24689.82 23994.37 19378.41 25892.47 26192.83 28681.11 28286.36 20392.40 23668.73 27597.48 20373.75 32289.85 22493.57 285
ACMH+81.04 1485.05 28183.46 29189.82 23994.66 17679.37 23794.44 16494.12 25582.19 24978.04 35192.82 22458.23 35697.54 19873.77 32182.90 30792.54 321
EI-MVSNet89.10 15688.86 14889.80 24291.84 28478.30 26293.70 21595.01 21185.73 16487.15 18395.28 12879.87 12697.21 23783.81 19187.36 26693.88 266
v14419287.19 22686.35 21889.74 24390.64 33478.24 26493.92 20595.43 19081.93 25685.51 22691.05 28874.21 19797.45 20782.86 20381.56 32393.53 286
COLMAP_ROBcopyleft80.39 1683.96 29882.04 30789.74 24395.28 14179.75 22994.25 17892.28 30175.17 35078.02 35293.77 19558.60 35597.84 17965.06 37485.92 27691.63 343
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SCA86.32 25785.18 26089.73 24592.15 27176.60 29691.12 30191.69 31983.53 21885.50 22788.81 34066.79 29196.48 28476.65 29390.35 21596.12 168
IterMVS-LS88.36 17987.91 17389.70 24693.80 22278.29 26393.73 21295.08 20985.73 16484.75 25191.90 25979.88 12596.92 25883.83 19082.51 30993.89 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing1186.44 25485.35 25789.69 24794.29 19875.40 31491.30 29590.53 34884.76 19185.06 24590.13 31558.95 35497.45 20782.08 22091.09 20596.21 164
testing9986.72 24385.73 24989.69 24794.23 20074.91 31891.35 29490.97 34086.14 15686.36 20390.22 31059.41 35097.48 20382.24 21690.66 21096.69 146
v192192086.97 23386.06 23289.69 24790.53 33978.11 26793.80 20995.43 19081.90 25885.33 24191.05 28872.66 21997.41 21882.05 22281.80 32093.53 286
Fast-Effi-MVS+-dtu87.44 21186.72 20189.63 25092.04 27677.68 28194.03 19693.94 25885.81 16182.42 30191.32 27770.33 24897.06 24880.33 25490.23 21694.14 252
v124086.78 23985.85 24189.56 25190.45 34077.79 27793.61 21795.37 19581.65 26785.43 23391.15 28471.50 23097.43 21181.47 23582.05 31793.47 290
Effi-MVS+-dtu88.65 17188.35 16089.54 25293.33 23976.39 30094.47 16294.36 24487.70 11985.43 23389.56 32973.45 21097.26 23285.57 16991.28 20094.97 212
AllTest83.42 30581.39 31189.52 25395.01 15477.79 27793.12 23990.89 34377.41 32876.12 36493.34 20354.08 37697.51 20168.31 35484.27 28993.26 295
TestCases89.52 25395.01 15477.79 27790.89 34377.41 32876.12 36493.34 20354.08 37697.51 20168.31 35484.27 28993.26 295
mvs_anonymous89.37 15289.32 13589.51 25593.47 23574.22 32591.65 28894.83 22682.91 23585.45 23093.79 19381.23 11596.36 29486.47 15794.09 15597.94 80
XVG-ACMP-BASELINE86.00 26084.84 26989.45 25691.20 30778.00 26891.70 28695.55 17885.05 18282.97 29592.25 24354.49 37497.48 20382.93 20187.45 26592.89 313
testing22284.84 28783.32 29289.43 25794.15 20675.94 30591.09 30289.41 37084.90 18585.78 21689.44 33052.70 38196.28 29870.80 33891.57 19796.07 172
MVP-Stereo85.97 26184.86 26889.32 25890.92 32382.19 16292.11 27694.19 25078.76 31278.77 34891.63 26868.38 27996.56 27875.01 31193.95 15789.20 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchmatchNetpermissive85.85 26484.70 27189.29 25991.76 28875.54 31188.49 35291.30 33181.63 26985.05 24688.70 34471.71 22796.24 29974.61 31589.05 23996.08 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14887.04 23186.32 22089.21 26090.94 32177.26 28693.71 21494.43 24084.84 18984.36 26590.80 29576.04 16997.05 25082.12 21879.60 35393.31 294
tfpnnormal84.72 28983.23 29589.20 26192.79 25880.05 21994.48 15995.81 15782.38 24481.08 31991.21 27969.01 27196.95 25661.69 38480.59 34090.58 366
cl2286.78 23985.98 23589.18 26292.34 26777.62 28290.84 30794.13 25481.33 27683.97 27690.15 31473.96 20296.60 27584.19 18582.94 30493.33 293
BH-w/o87.57 20687.05 19289.12 26394.90 16477.90 27192.41 26293.51 27182.89 23683.70 28191.34 27475.75 17597.07 24775.49 30493.49 16792.39 328
WR-MVS_H87.80 19387.37 18489.10 26493.23 24178.12 26695.61 9697.30 2987.90 11183.72 28092.01 25579.65 13396.01 30876.36 29780.54 34193.16 303
miper_enhance_ethall86.90 23586.18 22589.06 26591.66 29377.58 28390.22 32094.82 22779.16 30484.48 25889.10 33479.19 13796.66 26884.06 18682.94 30492.94 311
c3_l87.14 22886.50 21489.04 26692.20 27077.26 28691.22 30094.70 23482.01 25484.34 26690.43 30678.81 14096.61 27383.70 19381.09 33093.25 297
miper_ehance_all_eth87.22 22386.62 20889.02 26792.13 27377.40 28590.91 30694.81 22881.28 27784.32 26790.08 31779.26 13596.62 27083.81 19182.94 30493.04 308
gg-mvs-nofinetune81.77 31779.37 33288.99 26890.85 32777.73 28086.29 37679.63 40574.88 35583.19 29469.05 40760.34 34396.11 30475.46 30594.64 14593.11 305
ETVMVS84.43 29282.92 30188.97 26994.37 19374.67 31991.23 29988.35 37483.37 22386.06 21289.04 33555.38 36895.67 32567.12 36191.34 19996.58 150
pmmvs683.42 30581.60 30988.87 27088.01 37377.87 27394.96 13094.24 24974.67 35678.80 34791.09 28760.17 34596.49 28377.06 29275.40 37392.23 333
test_cas_vis1_n_192088.83 16888.85 14988.78 27191.15 31276.72 29493.85 20894.93 21883.23 22892.81 7996.00 9961.17 33994.45 34591.67 9394.84 13995.17 206
MIMVSNet82.59 31180.53 31688.76 27291.51 29578.32 26186.57 37590.13 35579.32 30080.70 32388.69 34552.98 38093.07 37066.03 36988.86 24194.90 219
cl____86.52 25085.78 24388.75 27392.03 27776.46 29890.74 30894.30 24681.83 26383.34 29190.78 29675.74 17796.57 27681.74 23081.54 32493.22 299
DIV-MVS_self_test86.53 24985.78 24388.75 27392.02 27876.45 29990.74 30894.30 24681.83 26383.34 29190.82 29475.75 17596.57 27681.73 23181.52 32593.24 298
CP-MVSNet87.63 20187.26 18988.74 27593.12 24476.59 29795.29 10996.58 9488.43 9383.49 28892.98 21975.28 18195.83 31778.97 27081.15 32993.79 272
eth_miper_zixun_eth86.50 25185.77 24588.68 27691.94 27975.81 30890.47 31294.89 22082.05 25184.05 27390.46 30575.96 17096.77 26382.76 20779.36 35593.46 291
CHOSEN 280x42085.15 27983.99 28488.65 27792.47 26378.40 25979.68 40692.76 28974.90 35481.41 31589.59 32769.85 25595.51 33079.92 25995.29 13192.03 336
PS-CasMVS87.32 21786.88 19588.63 27892.99 25376.33 30295.33 10496.61 9288.22 10183.30 29393.07 21773.03 21695.79 32178.36 27581.00 33593.75 279
TransMVSNet (Re)84.43 29283.06 29988.54 27991.72 28978.44 25795.18 11892.82 28882.73 23979.67 33992.12 24773.49 20995.96 31071.10 33668.73 38991.21 353
EG-PatchMatch MVS82.37 31380.34 31988.46 28090.27 34279.35 23892.80 25494.33 24577.14 33273.26 38190.18 31347.47 39296.72 26470.25 34087.32 26889.30 376
PEN-MVS86.80 23886.27 22388.40 28192.32 26875.71 31095.18 11896.38 10787.97 10882.82 29793.15 21373.39 21295.92 31276.15 30179.03 35893.59 284
Baseline_NR-MVSNet87.07 23086.63 20788.40 28191.44 29777.87 27394.23 18192.57 29484.12 20385.74 21892.08 25177.25 15796.04 30582.29 21579.94 34891.30 351
UBG85.51 26984.57 27588.35 28394.21 20271.78 35690.07 32589.66 36782.28 24785.91 21489.01 33661.30 33397.06 24876.58 29692.06 19496.22 162
D2MVS85.90 26285.09 26288.35 28390.79 32877.42 28491.83 28295.70 16780.77 28580.08 33390.02 31866.74 29396.37 29281.88 22687.97 25691.26 352
pmmvs584.21 29482.84 30488.34 28588.95 36176.94 29092.41 26291.91 31675.63 34580.28 32891.18 28264.59 31095.57 32777.09 29183.47 29992.53 322
mamv490.92 10591.78 8888.33 28695.67 12770.75 36992.92 24996.02 14281.90 25888.11 16295.34 12685.88 5196.97 25495.22 2795.01 13697.26 113
LCM-MVSNet-Re88.30 18188.32 16388.27 28794.71 17372.41 35193.15 23890.98 33987.77 11779.25 34391.96 25678.35 14895.75 32283.04 19995.62 12096.65 147
CostFormer85.77 26684.94 26688.26 28891.16 31172.58 34989.47 33891.04 33876.26 34086.45 20189.97 32070.74 24096.86 26282.35 21387.07 27195.34 202
ITE_SJBPF88.24 28991.88 28377.05 28992.92 28385.54 17080.13 33293.30 20757.29 36096.20 30072.46 32784.71 28591.49 347
PVSNet78.82 1885.55 26884.65 27288.23 29094.72 17271.93 35287.12 37192.75 29078.80 31184.95 24890.53 30364.43 31196.71 26674.74 31393.86 15996.06 174
IterMVS-SCA-FT85.45 27084.53 27688.18 29191.71 29076.87 29190.19 32292.65 29385.40 17381.44 31490.54 30266.79 29195.00 34281.04 23981.05 33192.66 319
EPNet_dtu86.49 25385.94 23888.14 29290.24 34372.82 34194.11 18792.20 30486.66 14379.42 34292.36 23873.52 20895.81 31971.26 33193.66 16195.80 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry82.71 30980.93 31588.06 29390.05 34776.37 30184.74 38991.96 31472.28 37981.32 31787.87 35771.03 23595.50 33268.97 34980.15 34692.32 331
test_vis1_n_192089.39 15189.84 12388.04 29492.97 25472.64 34694.71 14896.03 14186.18 15491.94 10496.56 8161.63 32895.74 32393.42 4795.11 13595.74 187
DTE-MVSNet86.11 25985.48 25287.98 29591.65 29474.92 31794.93 13295.75 16287.36 12682.26 30393.04 21872.85 21795.82 31874.04 31777.46 36493.20 301
PMMVS85.71 26784.96 26587.95 29688.90 36277.09 28888.68 35090.06 35772.32 37886.47 19890.76 29772.15 22594.40 34781.78 22993.49 16792.36 329
GG-mvs-BLEND87.94 29789.73 35477.91 27087.80 36078.23 40980.58 32583.86 38459.88 34795.33 33671.20 33292.22 19290.60 365
MonoMVSNet86.89 23686.55 21187.92 29889.46 35773.75 32994.12 18593.10 27887.82 11685.10 24490.76 29769.59 25894.94 34386.47 15782.50 31095.07 209
reproduce_monomvs86.37 25685.87 24087.87 29993.66 23073.71 33093.44 22495.02 21088.61 8882.64 30091.94 25757.88 35896.68 26789.96 11479.71 35293.22 299
pmmvs-eth3d80.97 33178.72 34387.74 30084.99 39179.97 22590.11 32491.65 32175.36 34773.51 37986.03 37459.45 34993.96 35775.17 30872.21 37889.29 378
MS-PatchMatch85.05 28184.16 27987.73 30191.42 30078.51 25591.25 29893.53 27077.50 32780.15 33091.58 27161.99 32595.51 33075.69 30394.35 15389.16 380
mmtdpeth85.04 28384.15 28087.72 30293.11 24575.74 30994.37 17392.83 28684.98 18389.31 14686.41 37161.61 33097.14 24292.63 6262.11 39990.29 367
test_040281.30 32779.17 33787.67 30393.19 24278.17 26592.98 24691.71 31775.25 34976.02 36690.31 30859.23 35196.37 29250.22 40283.63 29788.47 387
IterMVS84.88 28583.98 28587.60 30491.44 29776.03 30490.18 32392.41 29683.24 22781.06 32090.42 30766.60 29494.28 35179.46 26380.98 33692.48 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test81.37 32579.30 33387.58 30590.92 32374.16 32780.99 40187.68 37970.52 38676.63 36188.81 34071.21 23292.76 37260.01 39086.93 27295.83 183
EPMVS83.90 30182.70 30587.51 30690.23 34472.67 34488.62 35181.96 40081.37 27585.01 24788.34 34866.31 29894.45 34575.30 30787.12 26995.43 197
ADS-MVSNet281.66 32079.71 32987.50 30791.35 30374.19 32683.33 39488.48 37372.90 37382.24 30485.77 37764.98 30893.20 36864.57 37683.74 29495.12 207
OurMVSNet-221017-085.35 27484.64 27387.49 30890.77 32972.59 34894.01 19894.40 24284.72 19379.62 34193.17 21261.91 32696.72 26481.99 22381.16 32793.16 303
tpm284.08 29682.94 30087.48 30991.39 30171.27 36189.23 34290.37 35071.95 38084.64 25389.33 33167.30 28396.55 28075.17 30887.09 27094.63 227
RPSCF85.07 28084.27 27787.48 30992.91 25670.62 37191.69 28792.46 29576.20 34182.67 29995.22 13163.94 31497.29 22977.51 28685.80 27794.53 234
WBMVS84.97 28484.18 27887.34 31194.14 20771.62 36090.20 32192.35 29781.61 27084.06 27290.76 29761.82 32796.52 28178.93 27183.81 29293.89 263
miper_lstm_enhance85.27 27784.59 27487.31 31291.28 30674.63 32087.69 36594.09 25681.20 28181.36 31689.85 32374.97 18694.30 35081.03 24179.84 35193.01 309
FMVSNet581.52 32379.60 33087.27 31391.17 30977.95 26991.49 29192.26 30376.87 33376.16 36387.91 35651.67 38292.34 37567.74 35881.16 32791.52 346
USDC82.76 30881.26 31387.26 31491.17 30974.55 32189.27 34093.39 27378.26 32275.30 37092.08 25154.43 37596.63 26971.64 32985.79 27890.61 363
test-LLR85.87 26385.41 25387.25 31590.95 31971.67 35889.55 33489.88 36383.41 22184.54 25687.95 35467.25 28495.11 33981.82 22793.37 17294.97 212
test-mter84.54 29183.64 28987.25 31590.95 31971.67 35889.55 33489.88 36379.17 30384.54 25687.95 35455.56 36695.11 33981.82 22793.37 17294.97 212
JIA-IIPM81.04 32878.98 34187.25 31588.64 36373.48 33481.75 40089.61 36873.19 37082.05 30773.71 40366.07 30395.87 31571.18 33484.60 28692.41 327
TDRefinement79.81 34177.34 34687.22 31879.24 40675.48 31293.12 23992.03 30976.45 33675.01 37191.58 27149.19 38896.44 28870.22 34269.18 38689.75 372
tpmvs83.35 30782.07 30687.20 31991.07 31571.00 36788.31 35591.70 31878.91 30680.49 32787.18 36669.30 26597.08 24568.12 35783.56 29893.51 289
ppachtmachnet_test81.84 31680.07 32487.15 32088.46 36774.43 32489.04 34692.16 30575.33 34877.75 35388.99 33766.20 30095.37 33565.12 37377.60 36291.65 342
dmvs_re84.20 29583.22 29687.14 32191.83 28677.81 27590.04 32690.19 35384.70 19481.49 31289.17 33364.37 31291.13 38671.58 33085.65 27992.46 325
tpm cat181.96 31480.27 32087.01 32291.09 31471.02 36687.38 36991.53 32666.25 39480.17 32986.35 37368.22 28096.15 30369.16 34882.29 31393.86 269
test_fmvs1_n87.03 23287.04 19386.97 32389.74 35371.86 35394.55 15694.43 24078.47 31691.95 10395.50 12151.16 38493.81 35893.02 5494.56 14795.26 203
OpenMVS_ROBcopyleft74.94 1979.51 34477.03 35186.93 32487.00 37976.23 30392.33 26890.74 34668.93 39074.52 37588.23 35149.58 38796.62 27057.64 39584.29 28887.94 390
SixPastTwentyTwo83.91 30082.90 30286.92 32590.99 31770.67 37093.48 22191.99 31185.54 17077.62 35592.11 24960.59 34296.87 26176.05 30277.75 36193.20 301
ADS-MVSNet81.56 32279.78 32686.90 32691.35 30371.82 35483.33 39489.16 37172.90 37382.24 30485.77 37764.98 30893.76 35964.57 37683.74 29495.12 207
PatchT82.68 31081.27 31286.89 32790.09 34670.94 36884.06 39190.15 35474.91 35385.63 22183.57 38669.37 26194.87 34465.19 37188.50 24694.84 221
tpm84.73 28884.02 28386.87 32890.33 34168.90 37889.06 34589.94 36080.85 28485.75 21789.86 32268.54 27795.97 30977.76 28284.05 29195.75 186
Patchmatch-RL test81.67 31979.96 32586.81 32985.42 38971.23 36282.17 39987.50 38078.47 31677.19 35782.50 39370.81 23993.48 36382.66 20872.89 37795.71 190
test_vis1_n86.56 24886.49 21586.78 33088.51 36472.69 34394.68 14993.78 26779.55 29990.70 12495.31 12748.75 38993.28 36693.15 5193.99 15694.38 245
test_fmvs187.34 21587.56 17986.68 33190.59 33571.80 35594.01 19894.04 25778.30 32091.97 10195.22 13156.28 36493.71 36092.89 5594.71 14194.52 235
MDA-MVSNet-bldmvs78.85 34876.31 35386.46 33289.76 35273.88 32888.79 34890.42 34979.16 30459.18 40388.33 34960.20 34494.04 35362.00 38368.96 38791.48 348
mvs5depth80.98 33079.15 33886.45 33384.57 39273.29 33687.79 36191.67 32080.52 28782.20 30689.72 32555.14 37195.93 31173.93 32066.83 39190.12 369
tpmrst85.35 27484.99 26386.43 33490.88 32667.88 38288.71 34991.43 32980.13 29186.08 21188.80 34273.05 21596.02 30782.48 20983.40 30295.40 198
TESTMET0.1,183.74 30382.85 30386.42 33589.96 34971.21 36389.55 33487.88 37677.41 32883.37 29087.31 36256.71 36293.65 36280.62 24992.85 18394.40 244
our_test_381.93 31580.46 31886.33 33688.46 36773.48 33488.46 35391.11 33476.46 33576.69 36088.25 35066.89 28994.36 34868.75 35079.08 35791.14 355
lessismore_v086.04 33788.46 36768.78 37980.59 40373.01 38290.11 31655.39 36796.43 28975.06 31065.06 39492.90 312
TinyColmap79.76 34277.69 34585.97 33891.71 29073.12 33789.55 33490.36 35175.03 35172.03 38590.19 31246.22 39696.19 30263.11 38081.03 33288.59 386
KD-MVS_2432*160078.50 34976.02 35685.93 33986.22 38274.47 32284.80 38792.33 29879.29 30176.98 35885.92 37553.81 37893.97 35567.39 35957.42 40489.36 374
miper_refine_blended78.50 34976.02 35685.93 33986.22 38274.47 32284.80 38792.33 29879.29 30176.98 35885.92 37553.81 37893.97 35567.39 35957.42 40489.36 374
K. test v381.59 32180.15 32385.91 34189.89 35169.42 37792.57 25987.71 37885.56 16973.44 38089.71 32655.58 36595.52 32977.17 28969.76 38392.78 317
mvsany_test185.42 27285.30 25885.77 34287.95 37575.41 31387.61 36880.97 40276.82 33488.68 15595.83 10777.44 15690.82 38885.90 16486.51 27391.08 359
MIMVSNet179.38 34577.28 34785.69 34386.35 38173.67 33191.61 28992.75 29078.11 32572.64 38388.12 35248.16 39091.97 38060.32 38777.49 36391.43 349
UWE-MVS83.69 30483.09 29785.48 34493.06 24865.27 39290.92 30586.14 38479.90 29486.26 20790.72 30057.17 36195.81 31971.03 33792.62 18695.35 201
UnsupCasMVSNet_eth80.07 33878.27 34485.46 34585.24 39072.63 34788.45 35494.87 22382.99 23371.64 38788.07 35356.34 36391.75 38173.48 32363.36 39792.01 337
CL-MVSNet_self_test81.74 31880.53 31685.36 34685.96 38472.45 35090.25 31693.07 28081.24 27979.85 33887.29 36370.93 23792.52 37366.95 36269.23 38591.11 357
MDA-MVSNet_test_wron79.21 34777.19 34985.29 34788.22 37172.77 34285.87 37890.06 35774.34 35862.62 40087.56 36066.14 30191.99 37966.90 36673.01 37591.10 358
YYNet179.22 34677.20 34885.28 34888.20 37272.66 34585.87 37890.05 35974.33 35962.70 39887.61 35966.09 30292.03 37766.94 36372.97 37691.15 354
WB-MVSnew83.77 30283.28 29385.26 34991.48 29671.03 36591.89 27987.98 37578.91 30684.78 25090.22 31069.11 27094.02 35464.70 37590.44 21290.71 361
dp81.47 32480.23 32185.17 35089.92 35065.49 39086.74 37390.10 35676.30 33981.10 31887.12 36762.81 32195.92 31268.13 35679.88 34994.09 256
UnsupCasMVSNet_bld76.23 35873.27 36285.09 35183.79 39472.92 33985.65 38193.47 27271.52 38168.84 39379.08 39849.77 38693.21 36766.81 36760.52 40189.13 382
Anonymous2023120681.03 32979.77 32884.82 35287.85 37670.26 37391.42 29292.08 30773.67 36577.75 35389.25 33262.43 32393.08 36961.50 38582.00 31891.12 356
test0.0.03 182.41 31281.69 30884.59 35388.23 37072.89 34090.24 31887.83 37783.41 22179.86 33789.78 32467.25 28488.99 39765.18 37283.42 30191.90 339
CMPMVSbinary59.16 2180.52 33379.20 33684.48 35483.98 39367.63 38589.95 32993.84 26564.79 39766.81 39591.14 28557.93 35795.17 33776.25 29988.10 25290.65 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet84.69 29084.79 27084.37 35591.84 28464.92 39393.70 21591.47 32866.19 39586.16 21095.28 12867.18 28693.33 36580.89 24490.42 21494.88 220
PVSNet_073.20 2077.22 35474.83 36084.37 35590.70 33371.10 36483.09 39689.67 36672.81 37573.93 37883.13 38860.79 34193.70 36168.54 35150.84 40988.30 388
LF4IMVS80.37 33679.07 34084.27 35786.64 38069.87 37689.39 33991.05 33776.38 33774.97 37290.00 31947.85 39194.25 35274.55 31680.82 33888.69 385
Anonymous2024052180.44 33579.21 33584.11 35885.75 38767.89 38192.86 25293.23 27675.61 34675.59 36987.47 36150.03 38594.33 34971.14 33581.21 32690.12 369
PM-MVS78.11 35176.12 35584.09 35983.54 39570.08 37488.97 34785.27 39179.93 29374.73 37486.43 37034.70 40793.48 36379.43 26672.06 37988.72 384
test_fmvs283.98 29784.03 28283.83 36087.16 37867.53 38693.93 20492.89 28477.62 32686.89 19193.53 20047.18 39392.02 37890.54 10986.51 27391.93 338
testgi80.94 33280.20 32283.18 36187.96 37466.29 38791.28 29690.70 34783.70 21278.12 35092.84 22251.37 38390.82 38863.34 37982.46 31192.43 326
KD-MVS_self_test80.20 33779.24 33483.07 36285.64 38865.29 39191.01 30493.93 25978.71 31476.32 36286.40 37259.20 35292.93 37172.59 32669.35 38491.00 360
testing380.46 33479.59 33183.06 36393.44 23764.64 39493.33 22785.47 38984.34 20079.93 33690.84 29344.35 39992.39 37457.06 39787.56 26292.16 335
ambc83.06 36379.99 40463.51 39877.47 40792.86 28574.34 37784.45 38328.74 40895.06 34173.06 32568.89 38890.61 363
test20.0379.95 34079.08 33982.55 36585.79 38667.74 38491.09 30291.08 33581.23 28074.48 37689.96 32161.63 32890.15 39060.08 38876.38 36989.76 371
MVStest172.91 36269.70 36782.54 36678.14 40773.05 33888.21 35686.21 38360.69 40164.70 39690.53 30346.44 39585.70 40458.78 39353.62 40688.87 383
test_vis1_rt77.96 35276.46 35282.48 36785.89 38571.74 35790.25 31678.89 40671.03 38571.30 38881.35 39542.49 40191.05 38784.55 18182.37 31284.65 393
EU-MVSNet81.32 32680.95 31482.42 36888.50 36663.67 39793.32 22891.33 33064.02 39880.57 32692.83 22361.21 33792.27 37676.34 29880.38 34591.32 350
myMVS_eth3d79.67 34378.79 34282.32 36991.92 28064.08 39589.75 33287.40 38181.72 26578.82 34587.20 36445.33 39791.29 38459.09 39287.84 25991.60 344
ttmdpeth76.55 35674.64 36182.29 37082.25 40067.81 38389.76 33185.69 38770.35 38775.76 36791.69 26446.88 39489.77 39266.16 36863.23 39889.30 376
pmmvs371.81 36568.71 36881.11 37175.86 40970.42 37286.74 37383.66 39558.95 40468.64 39480.89 39636.93 40589.52 39463.10 38163.59 39683.39 394
Syy-MVS80.07 33879.78 32680.94 37291.92 28059.93 40389.75 33287.40 38181.72 26578.82 34587.20 36466.29 29991.29 38447.06 40487.84 25991.60 344
new-patchmatchnet76.41 35775.17 35980.13 37382.65 39959.61 40487.66 36691.08 33578.23 32369.85 39183.22 38754.76 37291.63 38364.14 37864.89 39589.16 380
mvsany_test374.95 35973.26 36380.02 37474.61 41063.16 39985.53 38278.42 40774.16 36074.89 37386.46 36936.02 40689.09 39682.39 21266.91 39087.82 391
test_fmvs377.67 35377.16 35079.22 37579.52 40561.14 40192.34 26791.64 32273.98 36278.86 34486.59 36827.38 41187.03 39988.12 13575.97 37189.50 373
DSMNet-mixed76.94 35576.29 35478.89 37683.10 39756.11 41287.78 36279.77 40460.65 40275.64 36888.71 34361.56 33188.34 39860.07 38989.29 23592.21 334
EGC-MVSNET61.97 37356.37 37878.77 37789.63 35573.50 33389.12 34482.79 3970.21 4231.24 42484.80 38139.48 40290.04 39144.13 40675.94 37272.79 405
new_pmnet72.15 36370.13 36678.20 37882.95 39865.68 38883.91 39282.40 39962.94 40064.47 39779.82 39742.85 40086.26 40357.41 39674.44 37482.65 398
MVS-HIRNet73.70 36172.20 36478.18 37991.81 28756.42 41182.94 39782.58 39855.24 40568.88 39266.48 40855.32 36995.13 33858.12 39488.42 24883.01 396
LCM-MVSNet66.00 37062.16 37577.51 38064.51 42058.29 40683.87 39390.90 34248.17 40954.69 40673.31 40416.83 42086.75 40065.47 37061.67 40087.48 392
APD_test169.04 36666.26 37277.36 38180.51 40362.79 40085.46 38383.51 39654.11 40759.14 40484.79 38223.40 41489.61 39355.22 39870.24 38279.68 402
test_f71.95 36470.87 36575.21 38274.21 41259.37 40585.07 38685.82 38665.25 39670.42 39083.13 38823.62 41282.93 41078.32 27671.94 38083.33 395
ANet_high58.88 37754.22 38272.86 38356.50 42356.67 40880.75 40286.00 38573.09 37237.39 41564.63 41122.17 41579.49 41343.51 40723.96 41782.43 399
test_vis3_rt65.12 37162.60 37372.69 38471.44 41360.71 40287.17 37065.55 41763.80 39953.22 40765.65 41014.54 42189.44 39576.65 29365.38 39367.91 408
FPMVS64.63 37262.55 37470.88 38570.80 41456.71 40784.42 39084.42 39351.78 40849.57 40881.61 39423.49 41381.48 41140.61 41176.25 37074.46 404
dmvs_testset74.57 36075.81 35870.86 38687.72 37740.47 42187.05 37277.90 41182.75 23871.15 38985.47 37967.98 28184.12 40845.26 40576.98 36888.00 389
N_pmnet68.89 36768.44 36970.23 38789.07 36028.79 42688.06 35719.50 42669.47 38971.86 38684.93 38061.24 33691.75 38154.70 39977.15 36590.15 368
testf159.54 37556.11 37969.85 38869.28 41556.61 40980.37 40376.55 41442.58 41245.68 41175.61 39911.26 42284.18 40643.20 40860.44 40268.75 406
APD_test259.54 37556.11 37969.85 38869.28 41556.61 40980.37 40376.55 41442.58 41245.68 41175.61 39911.26 42284.18 40643.20 40860.44 40268.75 406
WB-MVS67.92 36867.49 37069.21 39081.09 40141.17 42088.03 35878.00 41073.50 36762.63 39983.11 39063.94 31486.52 40125.66 41651.45 40879.94 401
PMMVS259.60 37456.40 37769.21 39068.83 41746.58 41673.02 41177.48 41255.07 40649.21 40972.95 40517.43 41980.04 41249.32 40344.33 41280.99 400
SSC-MVS67.06 36966.56 37168.56 39280.54 40240.06 42287.77 36377.37 41372.38 37761.75 40182.66 39263.37 31786.45 40224.48 41748.69 41179.16 403
Gipumacopyleft57.99 37954.91 38167.24 39388.51 36465.59 38952.21 41490.33 35243.58 41142.84 41451.18 41520.29 41785.07 40534.77 41270.45 38151.05 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 38148.46 38563.48 39445.72 42546.20 41773.41 41078.31 40841.03 41430.06 41765.68 4096.05 42483.43 40930.04 41465.86 39260.80 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai58.82 37858.24 37660.56 39583.13 39645.09 41982.32 39848.22 42567.61 39261.70 40269.15 40638.75 40376.05 41432.01 41341.31 41360.55 410
MVEpermissive39.65 2343.39 38338.59 38957.77 39656.52 42248.77 41555.38 41358.64 42129.33 41728.96 41852.65 4144.68 42564.62 41828.11 41533.07 41559.93 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 38248.47 38456.66 39752.26 42418.98 42841.51 41681.40 40110.10 41844.59 41375.01 40228.51 40968.16 41553.54 40049.31 41082.83 397
DeepMVS_CXcopyleft56.31 39874.23 41151.81 41456.67 42244.85 41048.54 41075.16 40127.87 41058.74 42040.92 41052.22 40758.39 412
kuosan53.51 38053.30 38354.13 39976.06 40845.36 41880.11 40548.36 42459.63 40354.84 40563.43 41237.41 40462.07 41920.73 41939.10 41454.96 413
E-PMN43.23 38442.29 38646.03 40065.58 41937.41 42373.51 40964.62 41833.99 41528.47 41947.87 41619.90 41867.91 41622.23 41824.45 41632.77 415
EMVS42.07 38541.12 38744.92 40163.45 42135.56 42573.65 40863.48 41933.05 41626.88 42045.45 41721.27 41667.14 41719.80 42023.02 41832.06 416
tmp_tt35.64 38639.24 38824.84 40214.87 42623.90 42762.71 41251.51 4236.58 42036.66 41662.08 41344.37 39830.34 42252.40 40122.00 41920.27 417
wuyk23d21.27 38820.48 39123.63 40368.59 41836.41 42449.57 4156.85 4279.37 4197.89 4214.46 4234.03 42631.37 42117.47 42116.07 4203.12 418
test1238.76 39011.22 3931.39 4040.85 4280.97 42985.76 3800.35 4290.54 4222.45 4238.14 4220.60 4270.48 4232.16 4230.17 4222.71 419
testmvs8.92 38911.52 3921.12 4051.06 4270.46 43086.02 3770.65 4280.62 4212.74 4229.52 4210.31 4280.45 4242.38 4220.39 4212.46 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k22.14 38729.52 3900.00 4060.00 4290.00 4310.00 41795.76 1610.00 4240.00 42594.29 17075.66 1780.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas6.64 3928.86 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42479.70 1290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re7.82 39110.43 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42593.88 1900.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS64.08 39559.14 391
FOURS198.86 185.54 6798.29 197.49 689.79 4996.29 18
PC_three_145282.47 24297.09 1097.07 5492.72 198.04 16792.70 6199.02 1298.86 11
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1491.45 11
eth-test20.00 429
eth-test0.00 429
ZD-MVS98.15 3486.62 3397.07 4883.63 21494.19 4796.91 6087.57 3199.26 4591.99 8398.44 53
RE-MVS-def93.68 5697.92 4384.57 8596.28 4396.76 7887.46 12393.75 5797.43 3382.94 8892.73 5797.80 7997.88 84
IU-MVS98.77 586.00 5096.84 6881.26 27897.26 795.50 2399.13 399.03 8
test_241102_TWO97.44 1590.31 2897.62 598.07 1291.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 2092.31 499.38 31
9.1494.47 2397.79 5296.08 6097.44 1586.13 15895.10 3797.40 3588.34 2299.22 4793.25 5098.70 34
save fliter97.85 4985.63 6695.21 11696.82 7189.44 57
test_0728_THIRD90.75 1997.04 1198.05 1692.09 699.55 1695.64 1999.13 399.13 2
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 491.47 8
GSMVS96.12 168
test_part298.55 1287.22 1996.40 17
sam_mvs171.70 22896.12 168
sam_mvs70.60 241
MTGPAbinary96.97 53
test_post188.00 3599.81 42069.31 26495.53 32876.65 293
test_post10.29 41970.57 24595.91 314
patchmatchnet-post83.76 38571.53 22996.48 284
MTMP96.16 5260.64 420
gm-plane-assit89.60 35668.00 38077.28 33188.99 33797.57 19679.44 265
test9_res91.91 8798.71 3298.07 72
TEST997.53 6186.49 3794.07 19296.78 7581.61 27092.77 8196.20 9087.71 2899.12 54
test_897.49 6386.30 4594.02 19796.76 7881.86 26192.70 8596.20 9087.63 2999.02 64
agg_prior290.54 10998.68 3798.27 56
agg_prior97.38 6685.92 5796.72 8492.16 9698.97 78
test_prior485.96 5494.11 187
test_prior294.12 18587.67 12192.63 8696.39 8586.62 4091.50 9598.67 40
旧先验293.36 22671.25 38394.37 4397.13 24386.74 153
新几何293.11 241
旧先验196.79 7981.81 16995.67 16996.81 6686.69 3997.66 8496.97 132
无先验93.28 23496.26 11773.95 36399.05 5880.56 25096.59 149
原ACMM292.94 248
test22296.55 8881.70 17192.22 27295.01 21168.36 39190.20 13296.14 9580.26 12297.80 7996.05 175
testdata298.75 9778.30 277
segment_acmp87.16 36
testdata192.15 27487.94 109
plane_prior794.70 17482.74 147
plane_prior694.52 18482.75 14574.23 195
plane_prior596.22 12298.12 15288.15 13289.99 21894.63 227
plane_prior494.86 147
plane_prior382.75 14590.26 3386.91 188
plane_prior295.85 8090.81 17
plane_prior194.59 179
plane_prior82.73 14895.21 11689.66 5489.88 223
n20.00 430
nn0.00 430
door-mid85.49 388
test1196.57 95
door85.33 390
HQP5-MVS81.56 173
HQP-NCC94.17 20394.39 16988.81 7885.43 233
ACMP_Plane94.17 20394.39 16988.81 7885.43 233
BP-MVS87.11 150
HQP4-MVS85.43 23397.96 17394.51 237
HQP3-MVS96.04 13989.77 227
HQP2-MVS73.83 205
NP-MVS94.37 19382.42 15793.98 183
MDTV_nov1_ep13_2view55.91 41387.62 36773.32 36984.59 25570.33 24874.65 31495.50 195
MDTV_nov1_ep1383.56 29091.69 29269.93 37587.75 36491.54 32578.60 31584.86 24988.90 33969.54 25996.03 30670.25 34088.93 240
ACMMP++_ref87.47 263
ACMMP++88.01 255
Test By Simon80.02 124