This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6698.99 1498.84 14
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7496.96 5291.75 994.02 4796.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 24095.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15897.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+87.14 492.42 8091.37 9095.55 795.63 12388.73 697.07 1896.77 7490.84 1684.02 26896.62 7475.95 17099.34 3487.77 13497.68 8298.59 24
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8597.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9597.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030494.60 1894.38 2595.23 1195.41 13387.49 1696.53 3892.75 28393.82 293.07 6997.84 2283.66 7499.59 897.61 298.76 2898.61 22
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11295.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12397.12 4187.13 12392.51 8896.30 8389.24 1799.34 3493.46 3998.62 4798.73 17
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8896.93 5692.34 493.94 4896.58 7687.74 2799.44 2992.83 5098.40 5698.62 21
DPM-MVS92.58 7791.74 8795.08 1596.19 9589.31 592.66 25196.56 9383.44 21691.68 11295.04 13486.60 4098.99 7085.60 16397.92 7496.93 129
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6497.04 5286.17 4499.62 292.40 5998.81 2298.52 26
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17196.97 5091.07 1393.14 6597.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 7099.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5597.27 3885.22 5499.54 2092.21 6798.74 3198.56 25
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5897.26 4085.04 5899.54 2092.35 6298.78 2598.50 27
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6196.83 6185.48 5199.59 891.43 9298.40 5698.30 47
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5397.21 4286.10 4599.49 2692.35 6298.77 2798.30 47
sasdasda93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4196.41 10190.00 3794.09 4494.60 15882.33 9298.62 10392.40 5992.86 17798.27 52
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13497.17 3986.26 14992.83 7697.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4196.41 10190.00 3794.09 4494.60 15882.33 9298.62 10392.40 5992.86 17798.27 52
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7497.16 4785.02 5999.49 2691.99 7798.56 5298.47 33
X-MVStestdata88.31 17886.13 22494.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7423.41 40885.02 5999.49 2691.99 7798.56 5298.47 33
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
alignmvs93.08 6792.50 7794.81 3295.62 12487.61 1495.99 7096.07 13489.77 4794.12 4394.87 14280.56 11898.66 9892.42 5893.10 17398.15 63
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9096.89 6089.40 5592.81 7796.97 5485.37 5399.24 4390.87 10298.69 3798.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9897.19 4485.43 5299.56 1292.06 7698.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7596.94 5585.68 16495.05 3497.18 4587.31 3599.07 5391.90 8598.61 4998.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 8297.23 4185.20 5599.32 3892.15 7098.83 2198.25 57
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10397.78 187.45 11993.26 6197.33 3684.62 6599.51 2490.75 10598.57 5198.32 46
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10897.17 4683.96 7199.55 1691.44 9198.64 4698.43 38
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17793.56 5796.28 8485.60 4999.31 3992.45 5698.79 2398.12 66
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6096.62 8888.14 9996.10 2096.96 5589.09 1898.94 7894.48 2898.68 3998.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CANet93.54 5193.20 6194.55 4395.65 12285.73 6594.94 12696.69 8491.89 890.69 12495.88 10281.99 10699.54 2093.14 4697.95 7398.39 39
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18796.78 7281.86 25592.77 7996.20 8787.63 2999.12 5192.14 7198.69 3797.94 76
CDPH-MVS92.83 7192.30 8094.44 4597.79 4986.11 4994.06 18996.66 8580.09 28492.77 7996.63 7386.62 3899.04 5787.40 13998.66 4298.17 62
3Dnovator86.66 591.73 9190.82 10294.44 4594.59 17686.37 4197.18 1297.02 4789.20 6284.31 26496.66 6973.74 20699.17 4786.74 14997.96 7297.79 87
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4096.90 5988.20 9794.33 4097.40 3384.75 6499.03 5893.35 4397.99 7198.48 30
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13192.62 8596.80 6584.85 6399.17 4792.43 5798.65 4598.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16493.93 25689.77 4794.21 4195.59 11587.35 3498.61 10592.72 5396.15 11397.83 85
test1294.34 5097.13 7086.15 4896.29 11091.04 12185.08 5799.01 6398.13 6597.86 82
ACMMPcopyleft93.24 6392.88 6794.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13397.03 5381.44 11299.51 2490.85 10395.74 11698.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10385.83 6194.89 12996.99 4889.02 7189.56 13897.37 3582.51 8999.38 3192.20 6898.30 5997.57 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net93.03 6892.63 7394.23 5395.62 12485.92 5796.08 6196.33 10889.86 4193.89 5094.66 15582.11 10098.50 11592.33 6592.82 18098.27 52
EPNet91.79 8891.02 9894.10 5490.10 33985.25 7196.03 6792.05 30292.83 387.39 17895.78 10779.39 13399.01 6388.13 13097.48 8498.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17584.96 7496.15 5597.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7797.96 75
DELS-MVS93.43 5893.25 5993.97 5695.42 13285.04 7293.06 23997.13 4090.74 2191.84 10695.09 13386.32 4299.21 4591.22 9398.45 5497.65 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon91.95 8691.28 9293.96 5798.33 2785.92 5794.66 14796.66 8582.69 23690.03 13595.82 10582.30 9599.03 5884.57 17596.48 10896.91 131
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 16192.47 8997.13 4882.38 9099.07 5390.51 10898.40 5697.92 79
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25884.80 7796.18 5296.82 6889.29 5995.68 2898.11 585.10 5698.99 7097.38 497.75 8197.86 82
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25594.38 2998.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23297.24 3288.76 7791.60 11395.85 10386.07 4698.66 9891.91 8398.16 6398.03 72
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5197.43 3184.24 6899.01 6392.73 5197.80 7897.88 80
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4396.87 6286.96 12793.92 4997.47 2983.88 7298.96 7792.71 5497.87 7598.26 56
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 13785.43 6895.68 8596.43 9986.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 10097.16 116
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 4997.37 2184.15 19890.05 13495.66 11287.77 2699.15 5089.91 11298.27 6098.07 68
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35184.42 9396.06 6596.29 11089.06 6694.68 3698.13 379.22 13598.98 7497.22 597.24 8897.74 89
UA-Net92.83 7192.54 7693.68 6896.10 10084.71 7995.66 8896.39 10491.92 793.22 6396.49 7983.16 7998.87 8284.47 17795.47 12397.45 103
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13684.98 7395.61 9296.28 11386.31 14596.75 1697.86 2187.40 3398.74 9597.07 897.02 9397.07 119
QAPM89.51 14188.15 16593.59 7094.92 15984.58 8196.82 2996.70 8378.43 31083.41 28396.19 9073.18 21399.30 4077.11 28496.54 10596.89 132
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11584.62 8096.15 5597.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6997.17 112
casdiffmvs_mvgpermissive92.96 7092.83 6893.35 7294.59 17683.40 11895.00 12396.34 10790.30 3092.05 9696.05 9583.43 7598.15 14992.07 7395.67 11798.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set93.01 6992.92 6693.29 7395.01 15283.51 11594.48 15695.77 15790.87 1592.52 8796.67 6884.50 6699.00 6891.99 7794.44 14897.36 104
Vis-MVSNetpermissive91.75 9091.23 9393.29 7395.32 13583.78 10596.14 5795.98 14089.89 3990.45 12696.58 7675.09 18298.31 14084.75 17396.90 9697.78 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 7295.77 10885.02 5998.33 13793.03 4798.62 4798.13 64
VNet92.24 8391.91 8493.24 7596.59 8283.43 11694.84 13396.44 9889.19 6394.08 4695.90 10177.85 15498.17 14788.90 12193.38 16798.13 64
VDD-MVS90.74 10789.92 12093.20 7796.27 9383.02 13495.73 8293.86 26088.42 8992.53 8696.84 6062.09 32198.64 10090.95 10092.62 18297.93 78
CS-MVS94.12 3794.44 2293.17 7896.55 8483.08 13197.63 396.95 5491.71 1193.50 5996.21 8685.61 4898.24 14293.64 3798.17 6298.19 60
nrg03091.08 10390.39 10693.17 7893.07 24086.91 2296.41 3996.26 11588.30 9288.37 15894.85 14582.19 9997.64 19191.09 9482.95 29994.96 209
EI-MVSNet-UG-set92.74 7492.62 7493.12 8094.86 16383.20 12394.40 16495.74 16090.71 2392.05 9696.60 7584.00 7098.99 7091.55 8993.63 15897.17 112
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22384.26 9595.83 7896.14 12589.00 7292.43 9097.50 2883.37 7898.72 9696.61 1297.44 8596.32 152
新几何193.10 8197.30 6684.35 9495.56 17471.09 37691.26 11996.24 8582.87 8598.86 8479.19 26498.10 6696.07 167
mamv492.71 7692.58 7593.09 8395.16 14483.05 13294.67 14596.50 9586.30 14693.09 6694.88 14082.03 10598.57 10891.94 8298.66 4297.63 93
OMC-MVS91.23 9990.62 10493.08 8496.27 9384.07 9893.52 21595.93 14486.95 12889.51 13996.13 9378.50 14598.35 13485.84 16192.90 17696.83 136
OpenMVScopyleft83.78 1188.74 16787.29 18493.08 8492.70 25385.39 6996.57 3696.43 9978.74 30580.85 31396.07 9469.64 25699.01 6378.01 27596.65 10494.83 216
MAR-MVS90.30 11889.37 13193.07 8696.61 8184.48 8795.68 8595.67 16682.36 24187.85 16692.85 21976.63 16498.80 9080.01 25296.68 10395.91 173
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
lupinMVS90.92 10490.21 10993.03 8793.86 21383.88 10392.81 24793.86 26079.84 28791.76 10994.29 16877.92 15198.04 16590.48 10997.11 8997.17 112
MVSMamba_pp92.75 7392.66 7193.02 8895.09 14882.85 14094.72 14296.46 9786.35 14493.33 6094.96 13681.98 10798.55 11392.35 6298.70 3597.67 91
Effi-MVS+91.59 9491.11 9593.01 8994.35 19483.39 11994.60 15095.10 20487.10 12490.57 12593.10 21481.43 11398.07 16389.29 11794.48 14697.59 97
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 9095.02 15083.67 10896.19 5096.10 13187.27 12195.98 2498.05 1383.07 8298.45 12596.68 1195.51 12096.88 133
MVS_111021_LR92.47 7992.29 8192.98 9195.99 10984.43 9193.08 23796.09 13288.20 9791.12 12095.72 11181.33 11497.76 18091.74 8697.37 8796.75 138
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9292.49 25683.62 11196.02 6895.72 16386.78 13396.04 2298.19 182.30 9598.43 12996.38 1395.42 12696.86 134
ETV-MVS92.74 7492.66 7192.97 9295.20 14384.04 10095.07 11996.51 9490.73 2292.96 7191.19 27684.06 6998.34 13591.72 8796.54 10596.54 148
LFMVS90.08 12389.13 13792.95 9496.71 7782.32 15996.08 6189.91 35486.79 13292.15 9596.81 6362.60 31998.34 13587.18 14393.90 15498.19 60
UGNet89.95 12988.95 14192.95 9494.51 18283.31 12095.70 8495.23 19789.37 5687.58 17293.94 18364.00 31098.78 9183.92 18496.31 11096.74 139
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason90.80 10590.10 11392.90 9693.04 24383.53 11493.08 23794.15 24980.22 28191.41 11694.91 13876.87 15897.93 17490.28 11196.90 9697.24 108
jason: jason.
DP-MVS87.25 21885.36 25292.90 9697.65 5583.24 12194.81 13592.00 30474.99 34481.92 30295.00 13572.66 21999.05 5566.92 35792.33 18796.40 150
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9895.62 12483.17 12496.14 5796.12 12988.13 10095.82 2698.04 1683.43 7598.48 11796.97 996.23 11196.92 130
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9993.75 21983.13 12696.02 6895.74 16087.68 11495.89 2598.17 282.78 8698.46 12196.71 1096.17 11296.98 126
CANet_DTU90.26 12089.41 13092.81 10093.46 22983.01 13593.48 21694.47 23689.43 5487.76 17094.23 17270.54 24699.03 5884.97 16896.39 10996.38 151
MVSFormer91.68 9391.30 9192.80 10193.86 21383.88 10395.96 7295.90 14884.66 19291.76 10994.91 13877.92 15197.30 22589.64 11497.11 8997.24 108
PVSNet_Blended_VisFu91.38 9690.91 10092.80 10196.39 9083.17 12494.87 13196.66 8583.29 22189.27 14394.46 16380.29 12099.17 4787.57 13795.37 12796.05 170
VDDNet89.56 14088.49 15692.76 10395.07 14982.09 16196.30 4393.19 27381.05 27691.88 10496.86 5961.16 33498.33 13788.43 12792.49 18697.84 84
h-mvs3390.80 10590.15 11292.75 10496.01 10582.66 14995.43 9795.53 17889.80 4393.08 6795.64 11375.77 17199.00 6892.07 7378.05 35496.60 143
casdiffmvspermissive92.51 7892.43 7992.74 10594.41 18981.98 16494.54 15496.23 11989.57 5191.96 10196.17 9182.58 8898.01 16790.95 10095.45 12598.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl90.69 10990.02 11892.71 10695.72 11882.41 15794.11 18295.12 20285.63 16591.49 11494.70 15174.75 18698.42 13086.13 15692.53 18497.31 105
DCV-MVSNet90.69 10990.02 11892.71 10695.72 11882.41 15794.11 18295.12 20285.63 16591.49 11494.70 15174.75 18698.42 13086.13 15692.53 18497.31 105
PCF-MVS84.11 1087.74 19386.08 22892.70 10894.02 20484.43 9189.27 33295.87 15173.62 35884.43 25694.33 16578.48 14698.86 8470.27 33194.45 14794.81 217
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline92.39 8192.29 8192.69 10994.46 18581.77 16994.14 18096.27 11489.22 6191.88 10496.00 9682.35 9197.99 16991.05 9595.27 13198.30 47
MSLP-MVS++93.72 4894.08 3892.65 11097.31 6583.43 11695.79 8097.33 2590.03 3693.58 5596.96 5584.87 6297.76 18092.19 6998.66 4296.76 137
EC-MVSNet93.44 5593.71 5192.63 11195.21 14282.43 15497.27 996.71 8290.57 2692.88 7395.80 10683.16 7998.16 14893.68 3698.14 6497.31 105
ab-mvs89.41 14688.35 15892.60 11295.15 14782.65 15092.20 26895.60 17383.97 20288.55 15393.70 19674.16 19898.21 14682.46 20689.37 22896.94 128
LS3D87.89 18886.32 21792.59 11396.07 10382.92 13895.23 10994.92 21675.66 33682.89 29095.98 9872.48 22299.21 4568.43 34595.23 13295.64 186
Anonymous2024052988.09 18486.59 20792.58 11496.53 8681.92 16695.99 7095.84 15374.11 35389.06 14795.21 12761.44 32798.81 8983.67 18987.47 26097.01 124
CPTT-MVS91.99 8591.80 8692.55 11598.24 3181.98 16496.76 3096.49 9681.89 25490.24 12996.44 8178.59 14398.61 10589.68 11397.85 7697.06 120
114514_t89.51 14188.50 15492.54 11698.11 3681.99 16395.16 11596.36 10670.19 37985.81 21195.25 12476.70 16298.63 10282.07 21696.86 9997.00 125
PAPM_NR91.22 10090.78 10392.52 11797.60 5681.46 17794.37 17096.24 11886.39 14387.41 17594.80 14882.06 10398.48 11782.80 20195.37 12797.61 95
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11896.52 8780.00 22294.00 19597.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3398.50 27
iter_conf05_1192.00 8491.85 8592.47 11995.02 15082.63 15192.81 24796.13 12884.85 18591.97 9994.10 17482.31 9498.51 11490.81 10498.61 4996.26 156
IS-MVSNet91.43 9591.09 9792.46 12095.87 11481.38 18096.95 1993.69 26689.72 4989.50 14095.98 9878.57 14497.77 17983.02 19596.50 10798.22 59
API-MVS90.66 11190.07 11492.45 12196.36 9184.57 8296.06 6595.22 19982.39 23989.13 14494.27 17180.32 11998.46 12180.16 25196.71 10294.33 242
xiu_mvs_v1_base_debu90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22395.46 18185.17 17492.25 9194.03 17570.59 24298.57 10890.97 9794.67 13894.18 245
xiu_mvs_v1_base90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22395.46 18185.17 17492.25 9194.03 17570.59 24298.57 10890.97 9794.67 13894.18 245
xiu_mvs_v1_base_debi90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22395.46 18185.17 17492.25 9194.03 17570.59 24298.57 10890.97 9794.67 13894.18 245
AdaColmapbinary89.89 13289.07 13892.37 12597.41 6283.03 13394.42 16395.92 14582.81 23386.34 20294.65 15673.89 20299.02 6180.69 24295.51 12095.05 204
CNLPA89.07 15787.98 16892.34 12696.87 7484.78 7894.08 18693.24 27181.41 26784.46 25495.13 13275.57 17896.62 26577.21 28293.84 15695.61 189
ET-MVSNet_ETH3D87.51 20685.91 23692.32 12793.70 22283.93 10192.33 26390.94 33484.16 19772.09 37592.52 23169.90 25195.85 30989.20 11888.36 24797.17 112
Anonymous20240521187.68 19486.13 22492.31 12896.66 7980.74 19894.87 13191.49 32080.47 28089.46 14195.44 11754.72 36598.23 14382.19 21289.89 21797.97 74
CHOSEN 1792x268888.84 16387.69 17492.30 12996.14 9681.42 17990.01 32095.86 15274.52 34987.41 17593.94 18375.46 17998.36 13280.36 24795.53 11997.12 118
HY-MVS83.01 1289.03 15987.94 17092.29 13094.86 16382.77 14192.08 27394.49 23581.52 26686.93 18392.79 22578.32 14898.23 14379.93 25390.55 20695.88 175
CDS-MVSNet89.45 14488.51 15392.29 13093.62 22483.61 11393.01 24094.68 23281.95 25087.82 16893.24 20878.69 14196.99 25080.34 24893.23 17196.28 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR90.02 12589.27 13692.29 13095.78 11680.95 19292.68 25096.22 12081.91 25286.66 19393.75 19582.23 9798.44 12779.40 26394.79 13697.48 101
PLCcopyleft84.53 789.06 15888.03 16792.15 13397.27 6882.69 14894.29 17295.44 18679.71 28984.01 26994.18 17376.68 16398.75 9377.28 28193.41 16695.02 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPP-MVSNet91.70 9291.56 8992.13 13495.88 11280.50 20497.33 795.25 19686.15 15389.76 13795.60 11483.42 7798.32 13987.37 14193.25 17097.56 99
patch_mono-293.74 4794.32 2692.01 13597.54 5778.37 26093.40 22097.19 3588.02 10294.99 3597.21 4288.35 2198.44 12794.07 3298.09 6799.23 1
原ACMM192.01 13597.34 6481.05 18896.81 7078.89 30090.45 12695.92 10082.65 8798.84 8880.68 24398.26 6196.14 161
UniMVSNet (Re)89.80 13489.07 13892.01 13593.60 22584.52 8594.78 13797.47 1189.26 6086.44 19992.32 23782.10 10197.39 22284.81 17280.84 33294.12 249
MG-MVS91.77 8991.70 8892.00 13897.08 7180.03 22093.60 21395.18 20087.85 11090.89 12296.47 8082.06 10398.36 13285.07 16797.04 9297.62 94
EIA-MVS91.95 8691.94 8391.98 13995.16 14480.01 22195.36 9896.73 7988.44 8789.34 14292.16 24283.82 7398.45 12589.35 11697.06 9197.48 101
PVSNet_Blended90.73 10890.32 10891.98 13996.12 9781.25 18292.55 25596.83 6682.04 24889.10 14592.56 23081.04 11698.85 8686.72 15195.91 11495.84 177
PS-MVSNAJ91.18 10190.92 9991.96 14195.26 14082.60 15392.09 27295.70 16486.27 14891.84 10692.46 23279.70 12898.99 7089.08 11995.86 11594.29 243
TAMVS89.21 15288.29 16291.96 14193.71 22082.62 15293.30 22794.19 24782.22 24387.78 16993.94 18378.83 13896.95 25277.70 27792.98 17596.32 152
SDMVSNet90.19 12189.61 12491.93 14396.00 10683.09 13092.89 24495.98 14088.73 7886.85 18995.20 12872.09 22697.08 24388.90 12189.85 21995.63 187
FA-MVS(test-final)89.66 13688.91 14391.93 14394.57 17980.27 20891.36 28894.74 22984.87 18389.82 13692.61 22974.72 18998.47 12083.97 18393.53 16197.04 122
MVS_Test91.31 9891.11 9591.93 14394.37 19080.14 21293.46 21895.80 15586.46 14191.35 11893.77 19382.21 9898.09 16087.57 13794.95 13497.55 100
NR-MVSNet88.58 17387.47 18091.93 14393.04 24384.16 9794.77 13896.25 11789.05 6780.04 32693.29 20679.02 13797.05 24781.71 22780.05 34294.59 224
HyFIR lowres test88.09 18486.81 19691.93 14396.00 10680.63 20090.01 32095.79 15673.42 36087.68 17192.10 24873.86 20397.96 17180.75 24191.70 19097.19 111
GeoE90.05 12489.43 12991.90 14895.16 14480.37 20795.80 7994.65 23383.90 20387.55 17494.75 15078.18 14997.62 19381.28 23193.63 15897.71 90
thisisatest053088.67 16887.61 17691.86 14994.87 16280.07 21594.63 14889.90 35584.00 20188.46 15693.78 19266.88 28798.46 12183.30 19192.65 18197.06 120
xiu_mvs_v2_base91.13 10290.89 10191.86 14994.97 15582.42 15592.24 26695.64 17186.11 15791.74 11193.14 21279.67 13198.89 8189.06 12095.46 12494.28 244
DU-MVS89.34 15188.50 15491.85 15193.04 24383.72 10694.47 15996.59 9089.50 5286.46 19693.29 20677.25 15697.23 23484.92 16981.02 32894.59 224
OPM-MVS90.12 12289.56 12591.82 15293.14 23683.90 10294.16 17995.74 16088.96 7387.86 16595.43 11972.48 22297.91 17588.10 13290.18 21293.65 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 11590.19 11091.82 15294.70 17182.73 14595.85 7696.22 12090.81 1786.91 18594.86 14374.23 19498.12 15088.15 12889.99 21394.63 221
UniMVSNet_NR-MVSNet89.92 13189.29 13491.81 15493.39 23183.72 10694.43 16297.12 4189.80 4386.46 19693.32 20383.16 7997.23 23484.92 16981.02 32894.49 235
bld_raw_dy_0_6492.29 8292.45 7891.80 15595.49 13079.68 23193.44 21996.40 10386.21 15193.01 7094.88 14081.93 10898.57 10891.99 7798.73 3297.16 116
diffmvspermissive91.37 9791.23 9391.77 15693.09 23880.27 20892.36 26095.52 17987.03 12691.40 11794.93 13780.08 12297.44 21092.13 7294.56 14397.61 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.42 17487.33 18391.72 15794.92 15980.98 19092.97 24294.54 23478.16 31683.82 27293.88 18878.78 14097.91 17579.45 25989.41 22796.26 156
Fast-Effi-MVS+89.41 14688.64 14991.71 15894.74 16780.81 19693.54 21495.10 20483.11 22586.82 19190.67 29579.74 12797.75 18380.51 24693.55 16096.57 146
WTY-MVS89.60 13888.92 14291.67 15995.47 13181.15 18692.38 25994.78 22783.11 22589.06 14794.32 16678.67 14296.61 26881.57 22890.89 20397.24 108
TAPA-MVS84.62 688.16 18287.01 19291.62 16096.64 8080.65 19994.39 16696.21 12376.38 32986.19 20695.44 11779.75 12698.08 16262.75 37395.29 12996.13 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VPA-MVSNet89.62 13788.96 14091.60 16193.86 21382.89 13995.46 9697.33 2587.91 10588.43 15793.31 20474.17 19797.40 21987.32 14282.86 30494.52 229
FE-MVS87.40 21186.02 23091.57 16294.56 18079.69 23090.27 30993.72 26580.57 27988.80 15091.62 26565.32 30298.59 10774.97 30594.33 15096.44 149
XVG-OURS89.40 14888.70 14891.52 16394.06 20281.46 17791.27 29296.07 13486.14 15488.89 14995.77 10868.73 27297.26 23187.39 14089.96 21595.83 178
hse-mvs289.88 13389.34 13291.51 16494.83 16581.12 18793.94 19893.91 25989.80 4393.08 6793.60 19775.77 17197.66 18792.07 7377.07 36195.74 182
TranMVSNet+NR-MVSNet88.84 16387.95 16991.49 16592.68 25483.01 13594.92 12896.31 10989.88 4085.53 22093.85 19076.63 16496.96 25181.91 22079.87 34594.50 233
AUN-MVS87.78 19286.54 20991.48 16694.82 16681.05 18893.91 20293.93 25683.00 22886.93 18393.53 19869.50 25897.67 18586.14 15477.12 36095.73 184
XVG-OURS-SEG-HR89.95 12989.45 12791.47 16794.00 20881.21 18591.87 27696.06 13685.78 16088.55 15395.73 11074.67 19097.27 22988.71 12489.64 22495.91 173
MVS87.44 20986.10 22791.44 16892.61 25583.62 11192.63 25295.66 16867.26 38481.47 30592.15 24377.95 15098.22 14579.71 25595.48 12292.47 318
F-COLMAP87.95 18786.80 19791.40 16996.35 9280.88 19494.73 14095.45 18479.65 29082.04 30094.61 15771.13 23398.50 11576.24 29391.05 20194.80 218
dcpmvs_293.49 5294.19 3691.38 17097.69 5476.78 29294.25 17496.29 11088.33 9094.46 3896.88 5888.07 2598.64 10093.62 3898.09 6798.73 17
thisisatest051587.33 21485.99 23191.37 17193.49 22779.55 23290.63 30589.56 36180.17 28287.56 17390.86 28767.07 28498.28 14181.50 22993.02 17496.29 154
HQP-MVS89.80 13489.28 13591.34 17294.17 19881.56 17194.39 16696.04 13788.81 7485.43 22993.97 18273.83 20497.96 17187.11 14689.77 22294.50 233
mvsmamba89.96 12889.50 12691.33 17392.90 25081.82 16796.68 3392.37 29189.03 6987.00 18194.85 14573.05 21497.65 18891.03 9688.63 23994.51 231
FMVSNet387.40 21186.11 22691.30 17493.79 21883.64 11094.20 17894.81 22583.89 20484.37 25791.87 25768.45 27596.56 27378.23 27285.36 27793.70 277
FMVSNet287.19 22485.82 23891.30 17494.01 20583.67 10894.79 13694.94 21183.57 21183.88 27192.05 25266.59 29296.51 27677.56 27985.01 28093.73 275
RPMNet83.95 29281.53 30391.21 17690.58 33079.34 23985.24 37496.76 7571.44 37485.55 21882.97 38170.87 23898.91 8061.01 37789.36 22995.40 193
IB-MVS80.51 1585.24 27383.26 28791.19 17792.13 26779.86 22691.75 27991.29 32583.28 22280.66 31688.49 33761.28 32898.46 12180.99 23779.46 34895.25 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS89.47 14388.90 14491.18 17894.22 19782.07 16292.13 27096.09 13287.90 10685.37 23592.45 23374.38 19297.56 19787.15 14490.43 20893.93 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 14488.90 14491.12 17994.47 18381.49 17595.30 10396.14 12586.73 13585.45 22695.16 13069.89 25298.10 15287.70 13589.23 23293.77 272
LGP-MVS_train91.12 17994.47 18381.49 17596.14 12586.73 13585.45 22695.16 13069.89 25298.10 15287.70 13589.23 23293.77 272
ACMM84.12 989.14 15388.48 15791.12 17994.65 17481.22 18495.31 10196.12 12985.31 17385.92 21094.34 16470.19 25098.06 16485.65 16288.86 23794.08 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tttt051788.61 17087.78 17391.11 18294.96 15677.81 27595.35 9989.69 35885.09 17988.05 16394.59 16066.93 28598.48 11783.27 19292.13 18997.03 123
GBi-Net87.26 21685.98 23291.08 18394.01 20583.10 12795.14 11694.94 21183.57 21184.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
test187.26 21685.98 23291.08 18394.01 20583.10 12795.14 11694.94 21183.57 21184.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
FMVSNet185.85 26084.11 27491.08 18392.81 25183.10 12795.14 11694.94 21181.64 26282.68 29291.64 26159.01 34796.34 28975.37 29983.78 28993.79 267
Test_1112_low_res87.65 19686.51 21091.08 18394.94 15879.28 24391.77 27894.30 24376.04 33483.51 28192.37 23577.86 15397.73 18478.69 26789.13 23496.22 158
PS-MVSNAJss89.97 12789.62 12391.02 18791.90 27680.85 19595.26 10895.98 14086.26 14986.21 20594.29 16879.70 12897.65 18888.87 12388.10 24994.57 226
BH-RMVSNet88.37 17687.48 17991.02 18795.28 13779.45 23592.89 24493.07 27585.45 17086.91 18594.84 14770.35 24797.76 18073.97 31194.59 14295.85 176
UniMVSNet_ETH3D87.53 20586.37 21491.00 18992.44 25978.96 24894.74 13995.61 17284.07 20085.36 23694.52 16259.78 34297.34 22482.93 19687.88 25496.71 140
FIs90.51 11690.35 10790.99 19093.99 20980.98 19095.73 8297.54 489.15 6486.72 19294.68 15381.83 11197.24 23385.18 16688.31 24894.76 219
ACMP84.23 889.01 16188.35 15890.99 19094.73 16881.27 18195.07 11995.89 15086.48 13983.67 27694.30 16769.33 26097.99 16987.10 14888.55 24093.72 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 24485.13 25790.98 19296.52 8781.50 17396.14 5796.16 12473.78 35683.65 27792.15 24363.26 31697.37 22382.82 20081.74 31794.06 254
sss88.93 16288.26 16490.94 19394.05 20380.78 19791.71 28095.38 19081.55 26588.63 15293.91 18775.04 18395.47 32782.47 20591.61 19196.57 146
sd_testset88.59 17287.85 17290.83 19496.00 10680.42 20692.35 26194.71 23088.73 7886.85 18995.20 12867.31 27996.43 28379.64 25789.85 21995.63 187
PVSNet_BlendedMVS89.98 12689.70 12290.82 19596.12 9781.25 18293.92 20096.83 6683.49 21589.10 14592.26 24081.04 11698.85 8686.72 15187.86 25592.35 324
cascas86.43 25284.98 26090.80 19692.10 26980.92 19390.24 31395.91 14773.10 36383.57 28088.39 33865.15 30497.46 20684.90 17191.43 19394.03 256
ECVR-MVScopyleft89.09 15688.53 15290.77 19795.62 12475.89 30596.16 5384.22 38487.89 10890.20 13096.65 7063.19 31798.10 15285.90 15996.94 9498.33 43
iter_conf0590.51 11690.46 10590.67 19893.09 23880.06 21794.62 14994.98 21086.30 14688.54 15594.80 14881.89 11097.59 19490.45 11089.49 22694.36 241
GA-MVS86.61 24285.27 25590.66 19991.33 29978.71 25090.40 30893.81 26385.34 17285.12 23989.57 32061.25 32997.11 24280.99 23789.59 22596.15 160
thres600view787.65 19686.67 20290.59 20096.08 10278.72 24994.88 13091.58 31687.06 12588.08 16192.30 23868.91 26998.10 15270.05 33891.10 19694.96 209
thres40087.62 20186.64 20390.57 20195.99 10978.64 25194.58 15191.98 30686.94 12988.09 15991.77 25869.18 26598.10 15270.13 33591.10 19694.96 209
baseline188.10 18387.28 18590.57 20194.96 15680.07 21594.27 17391.29 32586.74 13487.41 17594.00 18076.77 16196.20 29480.77 24079.31 35095.44 191
FC-MVSNet-test90.27 11990.18 11190.53 20393.71 22079.85 22795.77 8197.59 389.31 5886.27 20394.67 15481.93 10897.01 24984.26 17988.09 25194.71 220
PAPM86.68 24185.39 25090.53 20393.05 24279.33 24289.79 32394.77 22878.82 30281.95 30193.24 20876.81 15997.30 22566.94 35593.16 17294.95 212
WR-MVS88.38 17587.67 17590.52 20593.30 23380.18 21093.26 23095.96 14388.57 8585.47 22592.81 22376.12 16696.91 25581.24 23282.29 30894.47 238
MVSTER88.84 16388.29 16290.51 20692.95 24880.44 20593.73 20795.01 20784.66 19287.15 17993.12 21372.79 21897.21 23687.86 13387.36 26393.87 262
testdata90.49 20796.40 8977.89 27295.37 19272.51 36893.63 5496.69 6682.08 10297.65 18883.08 19397.39 8695.94 172
test111189.10 15488.64 14990.48 20895.53 12974.97 31496.08 6184.89 38288.13 10090.16 13296.65 7063.29 31598.10 15286.14 15496.90 9698.39 39
tt080586.92 23285.74 24490.48 20892.22 26379.98 22395.63 9194.88 21983.83 20684.74 24792.80 22457.61 35297.67 18585.48 16584.42 28493.79 267
jajsoiax88.24 18087.50 17890.48 20890.89 31980.14 21295.31 10195.65 17084.97 18184.24 26594.02 17865.31 30397.42 21288.56 12588.52 24293.89 259
PatchMatch-RL86.77 23985.54 24690.47 21195.88 11282.71 14790.54 30692.31 29479.82 28884.32 26291.57 26968.77 27196.39 28573.16 31693.48 16592.32 325
tfpn200view987.58 20386.64 20390.41 21295.99 10978.64 25194.58 15191.98 30686.94 12988.09 15991.77 25869.18 26598.10 15270.13 33591.10 19694.48 236
VPNet88.20 18187.47 18090.39 21393.56 22679.46 23494.04 19095.54 17788.67 8186.96 18294.58 16169.33 26097.15 23884.05 18280.53 33794.56 227
ACMH80.38 1785.36 26883.68 28190.39 21394.45 18680.63 20094.73 14094.85 22182.09 24577.24 34892.65 22760.01 34097.58 19572.25 32084.87 28192.96 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90087.63 19986.71 20090.38 21596.12 9778.55 25395.03 12291.58 31687.15 12288.06 16292.29 23968.91 26998.10 15270.13 33591.10 19694.48 236
mvs_tets88.06 18687.28 18590.38 21590.94 31579.88 22595.22 11095.66 16885.10 17884.21 26693.94 18363.53 31397.40 21988.50 12688.40 24693.87 262
131487.51 20686.57 20890.34 21792.42 26079.74 22992.63 25295.35 19478.35 31180.14 32391.62 26574.05 19997.15 23881.05 23393.53 16194.12 249
LTVRE_ROB82.13 1386.26 25484.90 26390.34 21794.44 18781.50 17392.31 26594.89 21783.03 22779.63 33292.67 22669.69 25597.79 17871.20 32486.26 27291.72 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_djsdf89.03 15988.64 14990.21 21990.74 32579.28 24395.96 7295.90 14884.66 19285.33 23792.94 21874.02 20097.30 22589.64 11488.53 24194.05 255
v2v48287.84 18987.06 18990.17 22090.99 31179.23 24694.00 19595.13 20184.87 18385.53 22092.07 25174.45 19197.45 20784.71 17481.75 31693.85 265
pmmvs485.43 26683.86 27990.16 22190.02 34282.97 13790.27 30992.67 28675.93 33580.73 31491.74 26071.05 23495.73 31778.85 26683.46 29691.78 334
V4287.68 19486.86 19490.15 22290.58 33080.14 21294.24 17695.28 19583.66 20985.67 21591.33 27174.73 18897.41 21784.43 17881.83 31492.89 307
MSDG84.86 27983.09 29090.14 22393.80 21680.05 21889.18 33593.09 27478.89 30078.19 34191.91 25565.86 30197.27 22968.47 34488.45 24493.11 299
anonymousdsp87.84 18987.09 18890.12 22489.13 35280.54 20394.67 14595.55 17582.05 24683.82 27292.12 24571.47 23197.15 23887.15 14487.80 25892.67 312
thres20087.21 22286.24 22190.12 22495.36 13478.53 25493.26 23092.10 30086.42 14288.00 16491.11 28269.24 26498.00 16869.58 33991.04 20293.83 266
CR-MVSNet85.35 26983.76 28090.12 22490.58 33079.34 23985.24 37491.96 30878.27 31385.55 21887.87 34871.03 23595.61 31973.96 31289.36 22995.40 193
v114487.61 20286.79 19890.06 22791.01 31079.34 23993.95 19795.42 18983.36 22085.66 21691.31 27474.98 18497.42 21283.37 19082.06 31093.42 287
XXY-MVS87.65 19686.85 19590.03 22892.14 26680.60 20293.76 20695.23 19782.94 23084.60 24994.02 17874.27 19395.49 32681.04 23483.68 29294.01 257
Vis-MVSNet (Re-imp)89.59 13989.44 12890.03 22895.74 11775.85 30695.61 9290.80 33887.66 11687.83 16795.40 12076.79 16096.46 28178.37 26896.73 10197.80 86
test250687.21 22286.28 21990.02 23095.62 12473.64 32896.25 4871.38 40687.89 10890.45 12696.65 7055.29 36398.09 16086.03 15896.94 9498.33 43
BH-untuned88.60 17188.13 16690.01 23195.24 14178.50 25693.29 22894.15 24984.75 18984.46 25493.40 20075.76 17397.40 21977.59 27894.52 14594.12 249
v119287.25 21886.33 21690.00 23290.76 32479.04 24793.80 20495.48 18082.57 23785.48 22491.18 27873.38 21297.42 21282.30 20982.06 31093.53 281
v7n86.81 23485.76 24289.95 23390.72 32679.25 24595.07 11995.92 14584.45 19582.29 29590.86 28772.60 22197.53 19979.42 26280.52 33893.08 301
testing9187.11 22786.18 22289.92 23494.43 18875.38 31391.53 28592.27 29686.48 13986.50 19490.24 30261.19 33297.53 19982.10 21490.88 20496.84 135
v887.50 20886.71 20089.89 23591.37 29679.40 23694.50 15595.38 19084.81 18783.60 27991.33 27176.05 16797.42 21282.84 19980.51 33992.84 309
v1087.25 21886.38 21389.85 23691.19 30279.50 23394.48 15695.45 18483.79 20783.62 27891.19 27675.13 18197.42 21281.94 21980.60 33492.63 314
baseline286.50 24885.39 25089.84 23791.12 30776.70 29491.88 27588.58 36482.35 24279.95 32790.95 28673.42 21097.63 19280.27 25089.95 21695.19 200
pm-mvs186.61 24285.54 24689.82 23891.44 29180.18 21095.28 10794.85 22183.84 20581.66 30392.62 22872.45 22496.48 27879.67 25678.06 35392.82 310
TR-MVS86.78 23685.76 24289.82 23894.37 19078.41 25892.47 25692.83 28081.11 27586.36 20092.40 23468.73 27297.48 20373.75 31489.85 21993.57 280
ACMH+81.04 1485.05 27683.46 28489.82 23894.66 17379.37 23794.44 16194.12 25282.19 24478.04 34392.82 22258.23 35097.54 19873.77 31382.90 30392.54 315
EI-MVSNet89.10 15488.86 14689.80 24191.84 27878.30 26293.70 21095.01 20785.73 16287.15 17995.28 12279.87 12597.21 23683.81 18687.36 26393.88 261
v14419287.19 22486.35 21589.74 24290.64 32878.24 26493.92 20095.43 18781.93 25185.51 22291.05 28474.21 19697.45 20782.86 19881.56 31893.53 281
COLMAP_ROBcopyleft80.39 1683.96 29182.04 30089.74 24295.28 13779.75 22894.25 17492.28 29575.17 34278.02 34493.77 19358.60 34997.84 17765.06 36585.92 27391.63 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SCA86.32 25385.18 25689.73 24492.15 26576.60 29591.12 29691.69 31383.53 21485.50 22388.81 33166.79 28896.48 27876.65 28790.35 21096.12 163
IterMVS-LS88.36 17787.91 17189.70 24593.80 21678.29 26393.73 20795.08 20685.73 16284.75 24691.90 25679.88 12496.92 25483.83 18582.51 30593.89 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing1186.44 25185.35 25389.69 24694.29 19575.40 31291.30 29090.53 34184.76 18885.06 24090.13 30858.95 34897.45 20782.08 21591.09 20096.21 159
testing9986.72 24085.73 24589.69 24694.23 19674.91 31691.35 28990.97 33386.14 15486.36 20090.22 30359.41 34497.48 20382.24 21190.66 20596.69 141
v192192086.97 23186.06 22989.69 24690.53 33378.11 26793.80 20495.43 18781.90 25385.33 23791.05 28472.66 21997.41 21782.05 21781.80 31593.53 281
Fast-Effi-MVS+-dtu87.44 20986.72 19989.63 24992.04 27077.68 28194.03 19193.94 25585.81 15982.42 29491.32 27370.33 24897.06 24680.33 24990.23 21194.14 248
v124086.78 23685.85 23789.56 25090.45 33477.79 27793.61 21295.37 19281.65 26185.43 22991.15 28071.50 23097.43 21181.47 23082.05 31293.47 285
Effi-MVS+-dtu88.65 16988.35 15889.54 25193.33 23276.39 29994.47 15994.36 24187.70 11385.43 22989.56 32173.45 20997.26 23185.57 16491.28 19594.97 206
AllTest83.42 29881.39 30489.52 25295.01 15277.79 27793.12 23490.89 33677.41 32076.12 35693.34 20154.08 36897.51 20168.31 34684.27 28693.26 290
TestCases89.52 25295.01 15277.79 27790.89 33677.41 32076.12 35693.34 20154.08 36897.51 20168.31 34684.27 28693.26 290
mvs_anonymous89.37 15089.32 13389.51 25493.47 22874.22 32391.65 28394.83 22382.91 23185.45 22693.79 19181.23 11596.36 28886.47 15394.09 15197.94 76
XVG-ACMP-BASELINE86.00 25684.84 26589.45 25591.20 30178.00 26891.70 28195.55 17585.05 18082.97 28992.25 24154.49 36697.48 20382.93 19687.45 26292.89 307
testing22284.84 28083.32 28589.43 25694.15 20175.94 30491.09 29789.41 36284.90 18285.78 21289.44 32252.70 37396.28 29270.80 33091.57 19296.07 167
MVP-Stereo85.97 25784.86 26489.32 25790.92 31782.19 16092.11 27194.19 24778.76 30478.77 34091.63 26468.38 27696.56 27375.01 30493.95 15389.20 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchmatchNetpermissive85.85 26084.70 26789.29 25891.76 28275.54 30988.49 34491.30 32481.63 26385.05 24188.70 33571.71 22796.24 29374.61 30889.05 23596.08 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14887.04 22986.32 21789.21 25990.94 31577.26 28693.71 20994.43 23784.84 18684.36 26090.80 29176.04 16897.05 24782.12 21379.60 34793.31 289
tfpnnormal84.72 28283.23 28889.20 26092.79 25280.05 21894.48 15695.81 15482.38 24081.08 31191.21 27569.01 26896.95 25261.69 37580.59 33590.58 360
cl2286.78 23685.98 23289.18 26192.34 26177.62 28290.84 30294.13 25181.33 26983.97 27090.15 30773.96 20196.60 27084.19 18082.94 30093.33 288
BH-w/o87.57 20487.05 19089.12 26294.90 16177.90 27192.41 25793.51 26882.89 23283.70 27591.34 27075.75 17497.07 24575.49 29793.49 16392.39 322
WR-MVS_H87.80 19187.37 18289.10 26393.23 23478.12 26695.61 9297.30 2987.90 10683.72 27492.01 25379.65 13296.01 30276.36 29080.54 33693.16 297
miper_enhance_ethall86.90 23386.18 22289.06 26491.66 28777.58 28390.22 31594.82 22479.16 29684.48 25389.10 32679.19 13696.66 26384.06 18182.94 30092.94 305
c3_l87.14 22686.50 21189.04 26592.20 26477.26 28691.22 29594.70 23182.01 24984.34 26190.43 29978.81 13996.61 26883.70 18881.09 32593.25 292
miper_ehance_all_eth87.22 22186.62 20689.02 26692.13 26777.40 28590.91 30194.81 22581.28 27084.32 26290.08 31079.26 13496.62 26583.81 18682.94 30093.04 302
gg-mvs-nofinetune81.77 31079.37 32588.99 26790.85 32177.73 28086.29 36679.63 39574.88 34783.19 28869.05 39760.34 33796.11 29875.46 29894.64 14193.11 299
ETVMVS84.43 28582.92 29488.97 26894.37 19074.67 31791.23 29488.35 36683.37 21986.06 20989.04 32755.38 36195.67 31867.12 35391.34 19496.58 145
pmmvs683.42 29881.60 30288.87 26988.01 36677.87 27394.96 12594.24 24674.67 34878.80 33991.09 28360.17 33996.49 27777.06 28675.40 36792.23 327
test_cas_vis1_n_192088.83 16688.85 14788.78 27091.15 30676.72 29393.85 20394.93 21583.23 22492.81 7796.00 9661.17 33394.45 33791.67 8894.84 13595.17 201
MIMVSNet82.59 30480.53 30988.76 27191.51 28978.32 26186.57 36590.13 34879.32 29280.70 31588.69 33652.98 37293.07 36266.03 36088.86 23794.90 213
cl____86.52 24785.78 23988.75 27292.03 27176.46 29790.74 30394.30 24381.83 25783.34 28590.78 29275.74 17696.57 27181.74 22581.54 31993.22 294
DIV-MVS_self_test86.53 24685.78 23988.75 27292.02 27276.45 29890.74 30394.30 24381.83 25783.34 28590.82 29075.75 17496.57 27181.73 22681.52 32093.24 293
CP-MVSNet87.63 19987.26 18788.74 27493.12 23776.59 29695.29 10596.58 9188.43 8883.49 28292.98 21775.28 18095.83 31078.97 26581.15 32493.79 267
eth_miper_zixun_eth86.50 24885.77 24188.68 27591.94 27375.81 30790.47 30794.89 21782.05 24684.05 26790.46 29875.96 16996.77 25982.76 20279.36 34993.46 286
CHOSEN 280x42085.15 27483.99 27788.65 27692.47 25778.40 25979.68 39692.76 28274.90 34681.41 30789.59 31969.85 25495.51 32379.92 25495.29 12992.03 330
PS-CasMVS87.32 21586.88 19388.63 27792.99 24676.33 30195.33 10096.61 8988.22 9683.30 28793.07 21573.03 21695.79 31478.36 26981.00 33093.75 274
TransMVSNet (Re)84.43 28583.06 29288.54 27891.72 28378.44 25795.18 11392.82 28182.73 23579.67 33192.12 24573.49 20895.96 30471.10 32868.73 38391.21 347
EG-PatchMatch MVS82.37 30680.34 31288.46 27990.27 33679.35 23892.80 24994.33 24277.14 32473.26 37290.18 30647.47 38496.72 26070.25 33287.32 26589.30 368
PEN-MVS86.80 23586.27 22088.40 28092.32 26275.71 30895.18 11396.38 10587.97 10382.82 29193.15 21173.39 21195.92 30576.15 29479.03 35293.59 279
Baseline_NR-MVSNet87.07 22886.63 20588.40 28091.44 29177.87 27394.23 17792.57 28884.12 19985.74 21492.08 24977.25 15696.04 29982.29 21079.94 34391.30 345
D2MVS85.90 25885.09 25888.35 28290.79 32277.42 28491.83 27795.70 16480.77 27880.08 32590.02 31166.74 29096.37 28681.88 22187.97 25391.26 346
pmmvs584.21 28782.84 29788.34 28388.95 35476.94 29092.41 25791.91 31075.63 33780.28 32091.18 27864.59 30795.57 32077.09 28583.47 29592.53 316
LCM-MVSNet-Re88.30 17988.32 16188.27 28494.71 17072.41 34593.15 23390.98 33287.77 11179.25 33591.96 25478.35 14795.75 31583.04 19495.62 11896.65 142
CostFormer85.77 26284.94 26288.26 28591.16 30572.58 34389.47 33091.04 33176.26 33286.45 19889.97 31370.74 24096.86 25882.35 20887.07 26895.34 197
ITE_SJBPF88.24 28691.88 27777.05 28992.92 27785.54 16880.13 32493.30 20557.29 35396.20 29472.46 31984.71 28291.49 341
PVSNet78.82 1885.55 26484.65 26888.23 28794.72 16971.93 34687.12 36192.75 28378.80 30384.95 24390.53 29764.43 30896.71 26274.74 30693.86 15596.06 169
IterMVS-SCA-FT85.45 26584.53 27188.18 28891.71 28476.87 29190.19 31692.65 28785.40 17181.44 30690.54 29666.79 28895.00 33581.04 23481.05 32692.66 313
EPNet_dtu86.49 25085.94 23588.14 28990.24 33772.82 33594.11 18292.20 29886.66 13779.42 33492.36 23673.52 20795.81 31271.26 32393.66 15795.80 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry82.71 30280.93 30888.06 29090.05 34176.37 30084.74 37991.96 30872.28 37181.32 30987.87 34871.03 23595.50 32568.97 34180.15 34192.32 325
test_vis1_n_192089.39 14989.84 12188.04 29192.97 24772.64 34094.71 14396.03 13986.18 15291.94 10396.56 7861.63 32495.74 31693.42 4195.11 13395.74 182
DTE-MVSNet86.11 25585.48 24887.98 29291.65 28874.92 31594.93 12795.75 15987.36 12082.26 29693.04 21672.85 21795.82 31174.04 31077.46 35893.20 295
PMMVS85.71 26384.96 26187.95 29388.90 35577.09 28888.68 34290.06 35072.32 37086.47 19590.76 29372.15 22594.40 33981.78 22493.49 16392.36 323
GG-mvs-BLEND87.94 29489.73 34877.91 27087.80 35178.23 39980.58 31783.86 37459.88 34195.33 32971.20 32492.22 18890.60 359
pmmvs-eth3d80.97 32378.72 33587.74 29584.99 38479.97 22490.11 31891.65 31475.36 33973.51 37086.03 36459.45 34393.96 34975.17 30172.21 37289.29 369
MS-PatchMatch85.05 27684.16 27387.73 29691.42 29478.51 25591.25 29393.53 26777.50 31980.15 32291.58 26761.99 32295.51 32375.69 29694.35 14989.16 371
test_040281.30 32079.17 33087.67 29793.19 23578.17 26592.98 24191.71 31175.25 34176.02 35890.31 30159.23 34596.37 28650.22 39283.63 29388.47 377
IterMVS84.88 27883.98 27887.60 29891.44 29176.03 30390.18 31792.41 29083.24 22381.06 31290.42 30066.60 29194.28 34379.46 25880.98 33192.48 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test81.37 31879.30 32687.58 29990.92 31774.16 32580.99 39187.68 37170.52 37876.63 35388.81 33171.21 23292.76 36460.01 38186.93 26995.83 178
EPMVS83.90 29482.70 29887.51 30090.23 33872.67 33888.62 34381.96 39081.37 26885.01 24288.34 33966.31 29594.45 33775.30 30087.12 26695.43 192
ADS-MVSNet281.66 31379.71 32287.50 30191.35 29774.19 32483.33 38488.48 36572.90 36582.24 29785.77 36764.98 30593.20 36064.57 36783.74 29095.12 202
OurMVSNet-221017-085.35 26984.64 26987.49 30290.77 32372.59 34294.01 19394.40 23984.72 19079.62 33393.17 21061.91 32396.72 26081.99 21881.16 32293.16 297
tpm284.08 28982.94 29387.48 30391.39 29571.27 35389.23 33490.37 34371.95 37284.64 24889.33 32367.30 28096.55 27575.17 30187.09 26794.63 221
RPSCF85.07 27584.27 27287.48 30392.91 24970.62 36291.69 28292.46 28976.20 33382.67 29395.22 12563.94 31197.29 22877.51 28085.80 27494.53 228
miper_lstm_enhance85.27 27284.59 27087.31 30591.28 30074.63 31887.69 35594.09 25381.20 27481.36 30889.85 31674.97 18594.30 34281.03 23679.84 34693.01 303
FMVSNet581.52 31679.60 32387.27 30691.17 30377.95 26991.49 28692.26 29776.87 32576.16 35587.91 34751.67 37492.34 36767.74 35081.16 32291.52 340
USDC82.76 30181.26 30687.26 30791.17 30374.55 31989.27 33293.39 27078.26 31475.30 36192.08 24954.43 36796.63 26471.64 32185.79 27590.61 357
test-LLR85.87 25985.41 24987.25 30890.95 31371.67 35189.55 32689.88 35683.41 21784.54 25187.95 34567.25 28195.11 33281.82 22293.37 16894.97 206
test-mter84.54 28483.64 28287.25 30890.95 31371.67 35189.55 32689.88 35679.17 29584.54 25187.95 34555.56 35995.11 33281.82 22293.37 16894.97 206
JIA-IIPM81.04 32178.98 33387.25 30888.64 35673.48 33081.75 39089.61 36073.19 36282.05 29973.71 39366.07 30095.87 30871.18 32684.60 28392.41 321
TDRefinement79.81 33377.34 33887.22 31179.24 39775.48 31093.12 23492.03 30376.45 32875.01 36291.58 26749.19 38096.44 28270.22 33469.18 38089.75 364
tpmvs83.35 30082.07 29987.20 31291.07 30971.00 35988.31 34791.70 31278.91 29880.49 31987.18 35769.30 26397.08 24368.12 34983.56 29493.51 284
ppachtmachnet_test81.84 30980.07 31787.15 31388.46 36074.43 32289.04 33892.16 29975.33 34077.75 34588.99 32866.20 29795.37 32865.12 36477.60 35691.65 336
dmvs_re84.20 28883.22 28987.14 31491.83 28077.81 27590.04 31990.19 34684.70 19181.49 30489.17 32564.37 30991.13 37871.58 32285.65 27692.46 319
tpm cat181.96 30780.27 31387.01 31591.09 30871.02 35887.38 35991.53 31966.25 38580.17 32186.35 36368.22 27796.15 29769.16 34082.29 30893.86 264
test_fmvs1_n87.03 23087.04 19186.97 31689.74 34771.86 34794.55 15394.43 23778.47 30891.95 10295.50 11651.16 37693.81 35093.02 4894.56 14395.26 198
OpenMVS_ROBcopyleft74.94 1979.51 33677.03 34386.93 31787.00 37276.23 30292.33 26390.74 33968.93 38174.52 36688.23 34249.58 37996.62 26557.64 38584.29 28587.94 380
SixPastTwentyTwo83.91 29382.90 29586.92 31890.99 31170.67 36193.48 21691.99 30585.54 16877.62 34792.11 24760.59 33696.87 25776.05 29577.75 35593.20 295
ADS-MVSNet81.56 31579.78 31986.90 31991.35 29771.82 34883.33 38489.16 36372.90 36582.24 29785.77 36764.98 30593.76 35164.57 36783.74 29095.12 202
PatchT82.68 30381.27 30586.89 32090.09 34070.94 36084.06 38190.15 34774.91 34585.63 21783.57 37669.37 25994.87 33665.19 36288.50 24394.84 215
tpm84.73 28184.02 27686.87 32190.33 33568.90 36989.06 33789.94 35380.85 27785.75 21389.86 31568.54 27495.97 30377.76 27684.05 28895.75 181
Patchmatch-RL test81.67 31279.96 31886.81 32285.42 38271.23 35482.17 38987.50 37278.47 30877.19 34982.50 38370.81 23993.48 35582.66 20372.89 37195.71 185
test_vis1_n86.56 24586.49 21286.78 32388.51 35772.69 33794.68 14493.78 26479.55 29190.70 12395.31 12148.75 38193.28 35893.15 4593.99 15294.38 240
test_fmvs187.34 21387.56 17786.68 32490.59 32971.80 34994.01 19394.04 25478.30 31291.97 9995.22 12556.28 35793.71 35292.89 4994.71 13794.52 229
MDA-MVSNet-bldmvs78.85 34076.31 34586.46 32589.76 34673.88 32688.79 34090.42 34279.16 29659.18 39388.33 34060.20 33894.04 34562.00 37468.96 38191.48 342
tpmrst85.35 26984.99 25986.43 32690.88 32067.88 37388.71 34191.43 32280.13 28386.08 20888.80 33373.05 21496.02 30182.48 20483.40 29895.40 193
TESTMET0.1,183.74 29682.85 29686.42 32789.96 34371.21 35589.55 32687.88 36877.41 32083.37 28487.31 35356.71 35593.65 35480.62 24492.85 17994.40 239
our_test_381.93 30880.46 31186.33 32888.46 36073.48 33088.46 34591.11 32776.46 32776.69 35288.25 34166.89 28694.36 34068.75 34279.08 35191.14 349
lessismore_v086.04 32988.46 36068.78 37080.59 39373.01 37390.11 30955.39 36096.43 28375.06 30365.06 38792.90 306
TinyColmap79.76 33477.69 33785.97 33091.71 28473.12 33289.55 32690.36 34475.03 34372.03 37690.19 30546.22 38696.19 29663.11 37181.03 32788.59 376
KD-MVS_2432*160078.50 34176.02 34885.93 33186.22 37574.47 32084.80 37792.33 29279.29 29376.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
miper_refine_blended78.50 34176.02 34885.93 33186.22 37574.47 32084.80 37792.33 29279.29 29376.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
K. test v381.59 31480.15 31685.91 33389.89 34569.42 36892.57 25487.71 37085.56 16773.44 37189.71 31855.58 35895.52 32277.17 28369.76 37792.78 311
mvsany_test185.42 26785.30 25485.77 33487.95 36875.41 31187.61 35880.97 39276.82 32688.68 15195.83 10477.44 15590.82 38085.90 15986.51 27091.08 353
MIMVSNet179.38 33777.28 33985.69 33586.35 37473.67 32791.61 28492.75 28378.11 31772.64 37488.12 34348.16 38291.97 37260.32 37877.49 35791.43 343
UWE-MVS83.69 29783.09 29085.48 33693.06 24165.27 38290.92 30086.14 37579.90 28686.26 20490.72 29457.17 35495.81 31271.03 32992.62 18295.35 196
UnsupCasMVSNet_eth80.07 33078.27 33685.46 33785.24 38372.63 34188.45 34694.87 22082.99 22971.64 37888.07 34456.34 35691.75 37373.48 31563.36 39092.01 331
CL-MVSNet_self_test81.74 31180.53 30985.36 33885.96 37772.45 34490.25 31193.07 27581.24 27279.85 33087.29 35470.93 23792.52 36566.95 35469.23 37991.11 351
MDA-MVSNet_test_wron79.21 33977.19 34185.29 33988.22 36472.77 33685.87 36890.06 35074.34 35062.62 39087.56 35166.14 29891.99 37166.90 35873.01 36991.10 352
YYNet179.22 33877.20 34085.28 34088.20 36572.66 33985.87 36890.05 35274.33 35162.70 38887.61 35066.09 29992.03 36966.94 35572.97 37091.15 348
WB-MVSnew83.77 29583.28 28685.26 34191.48 29071.03 35791.89 27487.98 36778.91 29884.78 24590.22 30369.11 26794.02 34664.70 36690.44 20790.71 355
dp81.47 31780.23 31485.17 34289.92 34465.49 38086.74 36390.10 34976.30 33181.10 31087.12 35862.81 31895.92 30568.13 34879.88 34494.09 252
UnsupCasMVSNet_bld76.23 34973.27 35385.09 34383.79 38672.92 33385.65 37193.47 26971.52 37368.84 38479.08 38849.77 37893.21 35966.81 35960.52 39289.13 373
Anonymous2023120681.03 32279.77 32184.82 34487.85 36970.26 36491.42 28792.08 30173.67 35777.75 34589.25 32462.43 32093.08 36161.50 37682.00 31391.12 350
test0.0.03 182.41 30581.69 30184.59 34588.23 36372.89 33490.24 31387.83 36983.41 21779.86 32989.78 31767.25 28188.99 38865.18 36383.42 29791.90 333
CMPMVSbinary59.16 2180.52 32579.20 32984.48 34683.98 38567.63 37589.95 32293.84 26264.79 38866.81 38691.14 28157.93 35195.17 33076.25 29288.10 24990.65 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet84.69 28384.79 26684.37 34791.84 27864.92 38393.70 21091.47 32166.19 38686.16 20795.28 12267.18 28393.33 35780.89 23990.42 20994.88 214
PVSNet_073.20 2077.22 34674.83 35284.37 34790.70 32771.10 35683.09 38689.67 35972.81 36773.93 36983.13 37860.79 33593.70 35368.54 34350.84 39988.30 378
LF4IMVS80.37 32879.07 33284.27 34986.64 37369.87 36789.39 33191.05 33076.38 32974.97 36390.00 31247.85 38394.25 34474.55 30980.82 33388.69 375
Anonymous2024052180.44 32779.21 32884.11 35085.75 38067.89 37292.86 24693.23 27275.61 33875.59 36087.47 35250.03 37794.33 34171.14 32781.21 32190.12 362
PM-MVS78.11 34376.12 34784.09 35183.54 38770.08 36588.97 33985.27 38179.93 28574.73 36586.43 36134.70 39793.48 35579.43 26172.06 37388.72 374
test_fmvs283.98 29084.03 27583.83 35287.16 37167.53 37693.93 19992.89 27877.62 31886.89 18893.53 19847.18 38592.02 37090.54 10686.51 27091.93 332
testgi80.94 32480.20 31583.18 35387.96 36766.29 37791.28 29190.70 34083.70 20878.12 34292.84 22051.37 37590.82 38063.34 37082.46 30692.43 320
KD-MVS_self_test80.20 32979.24 32783.07 35485.64 38165.29 38191.01 29993.93 25678.71 30676.32 35486.40 36259.20 34692.93 36372.59 31869.35 37891.00 354
testing380.46 32679.59 32483.06 35593.44 23064.64 38493.33 22285.47 37984.34 19679.93 32890.84 28944.35 38992.39 36657.06 38787.56 25992.16 329
ambc83.06 35579.99 39563.51 38877.47 39792.86 27974.34 36884.45 37328.74 39895.06 33473.06 31768.89 38290.61 357
test20.0379.95 33279.08 33182.55 35785.79 37967.74 37491.09 29791.08 32881.23 27374.48 36789.96 31461.63 32490.15 38260.08 37976.38 36389.76 363
test_vis1_rt77.96 34476.46 34482.48 35885.89 37871.74 35090.25 31178.89 39671.03 37771.30 37981.35 38542.49 39191.05 37984.55 17682.37 30784.65 383
EU-MVSNet81.32 31980.95 30782.42 35988.50 35963.67 38793.32 22391.33 32364.02 38980.57 31892.83 22161.21 33192.27 36876.34 29180.38 34091.32 344
myMVS_eth3d79.67 33578.79 33482.32 36091.92 27464.08 38589.75 32487.40 37381.72 25978.82 33787.20 35545.33 38791.29 37659.09 38387.84 25691.60 338
pmmvs371.81 35568.71 35881.11 36175.86 39970.42 36386.74 36383.66 38558.95 39468.64 38580.89 38636.93 39589.52 38563.10 37263.59 38983.39 384
Syy-MVS80.07 33079.78 31980.94 36291.92 27459.93 39389.75 32487.40 37381.72 25978.82 33787.20 35566.29 29691.29 37647.06 39487.84 25691.60 338
new-patchmatchnet76.41 34875.17 35180.13 36382.65 39159.61 39487.66 35691.08 32878.23 31569.85 38283.22 37754.76 36491.63 37564.14 36964.89 38889.16 371
mvsany_test374.95 35073.26 35480.02 36474.61 40063.16 38985.53 37278.42 39774.16 35274.89 36486.46 36036.02 39689.09 38782.39 20766.91 38487.82 381
test_fmvs377.67 34577.16 34279.22 36579.52 39661.14 39192.34 26291.64 31573.98 35478.86 33686.59 35927.38 40187.03 39088.12 13175.97 36589.50 365
DSMNet-mixed76.94 34776.29 34678.89 36683.10 38956.11 40287.78 35279.77 39460.65 39275.64 35988.71 33461.56 32688.34 38960.07 38089.29 23192.21 328
EGC-MVSNET61.97 36356.37 36878.77 36789.63 34973.50 32989.12 33682.79 3870.21 4131.24 41484.80 37139.48 39290.04 38344.13 39675.94 36672.79 395
new_pmnet72.15 35370.13 35778.20 36882.95 39065.68 37883.91 38282.40 38962.94 39164.47 38779.82 38742.85 39086.26 39457.41 38674.44 36882.65 388
MVS-HIRNet73.70 35272.20 35578.18 36991.81 28156.42 40182.94 38782.58 38855.24 39568.88 38366.48 39855.32 36295.13 33158.12 38488.42 24583.01 386
LCM-MVSNet66.00 36062.16 36577.51 37064.51 41058.29 39683.87 38390.90 33548.17 39954.69 39673.31 39416.83 41086.75 39165.47 36161.67 39187.48 382
APD_test169.04 35666.26 36277.36 37180.51 39462.79 39085.46 37383.51 38654.11 39759.14 39484.79 37223.40 40489.61 38455.22 38870.24 37679.68 392
test_f71.95 35470.87 35675.21 37274.21 40259.37 39585.07 37685.82 37765.25 38770.42 38183.13 37823.62 40282.93 40078.32 27071.94 37483.33 385
ANet_high58.88 36754.22 37272.86 37356.50 41356.67 39880.75 39286.00 37673.09 36437.39 40564.63 40122.17 40579.49 40343.51 39723.96 40782.43 389
test_vis3_rt65.12 36162.60 36372.69 37471.44 40360.71 39287.17 36065.55 40763.80 39053.22 39765.65 40014.54 41189.44 38676.65 28765.38 38667.91 398
FPMVS64.63 36262.55 36470.88 37570.80 40456.71 39784.42 38084.42 38351.78 39849.57 39881.61 38423.49 40381.48 40140.61 40176.25 36474.46 394
dmvs_testset74.57 35175.81 35070.86 37687.72 37040.47 41187.05 36277.90 40182.75 23471.15 38085.47 36967.98 27884.12 39845.26 39576.98 36288.00 379
N_pmnet68.89 35768.44 35970.23 37789.07 35328.79 41688.06 34819.50 41669.47 38071.86 37784.93 37061.24 33091.75 37354.70 38977.15 35990.15 361
testf159.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
APD_test259.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
WB-MVS67.92 35867.49 36069.21 38081.09 39241.17 41088.03 34978.00 40073.50 35962.63 38983.11 38063.94 31186.52 39225.66 40651.45 39879.94 391
PMMVS259.60 36456.40 36769.21 38068.83 40746.58 40673.02 40177.48 40255.07 39649.21 39972.95 39517.43 40980.04 40249.32 39344.33 40280.99 390
SSC-MVS67.06 35966.56 36168.56 38280.54 39340.06 41287.77 35377.37 40372.38 36961.75 39182.66 38263.37 31486.45 39324.48 40748.69 40179.16 393
Gipumacopyleft57.99 36954.91 37167.24 38388.51 35765.59 37952.21 40490.33 34543.58 40142.84 40451.18 40520.29 40785.07 39534.77 40270.45 37551.05 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 37148.46 37563.48 38445.72 41546.20 40773.41 40078.31 39841.03 40430.06 40765.68 3996.05 41483.43 39930.04 40465.86 38560.80 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai58.82 36858.24 36660.56 38583.13 38845.09 40982.32 38848.22 41567.61 38361.70 39269.15 39638.75 39376.05 40432.01 40341.31 40360.55 400
MVEpermissive39.65 2343.39 37338.59 37957.77 38656.52 41248.77 40555.38 40358.64 41129.33 40728.96 40852.65 4044.68 41564.62 40828.11 40533.07 40559.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 37248.47 37456.66 38752.26 41418.98 41841.51 40681.40 39110.10 40844.59 40375.01 39228.51 39968.16 40553.54 39049.31 40082.83 387
DeepMVS_CXcopyleft56.31 38874.23 40151.81 40456.67 41244.85 40048.54 40075.16 39127.87 40058.74 41040.92 40052.22 39758.39 402
kuosan53.51 37053.30 37354.13 38976.06 39845.36 40880.11 39548.36 41459.63 39354.84 39563.43 40237.41 39462.07 40920.73 40939.10 40454.96 403
E-PMN43.23 37442.29 37646.03 39065.58 40937.41 41373.51 39964.62 40833.99 40528.47 40947.87 40619.90 40867.91 40622.23 40824.45 40632.77 405
EMVS42.07 37541.12 37744.92 39163.45 41135.56 41573.65 39863.48 40933.05 40626.88 41045.45 40721.27 40667.14 40719.80 41023.02 40832.06 406
tmp_tt35.64 37639.24 37824.84 39214.87 41623.90 41762.71 40251.51 4136.58 41036.66 40662.08 40344.37 38830.34 41252.40 39122.00 40920.27 407
wuyk23d21.27 37820.48 38123.63 39368.59 40836.41 41449.57 4056.85 4179.37 4097.89 4114.46 4134.03 41631.37 41117.47 41116.07 4103.12 408
test1238.76 38011.22 3831.39 3940.85 4180.97 41985.76 3700.35 4190.54 4122.45 4138.14 4120.60 4170.48 4132.16 4130.17 4122.71 409
testmvs8.92 37911.52 3821.12 3951.06 4170.46 42086.02 3670.65 4180.62 4112.74 4129.52 4110.31 4180.45 4142.38 4120.39 4112.46 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k22.14 37729.52 3800.00 3960.00 4190.00 4210.00 40795.76 1580.00 4140.00 41594.29 16875.66 1770.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.64 3828.86 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41479.70 1280.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.82 38110.43 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41593.88 1880.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS64.08 38559.14 382
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
PC_three_145282.47 23897.09 1097.07 5192.72 198.04 16592.70 5599.02 1298.86 11
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 419
eth-test0.00 419
ZD-MVS98.15 3486.62 3397.07 4583.63 21094.19 4296.91 5787.57 3199.26 4291.99 7798.44 55
RE-MVS-def93.68 5297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5197.43 3182.94 8392.73 5197.80 7897.88 80
IU-MVS98.77 586.00 5096.84 6581.26 27197.26 795.50 2399.13 399.03 8
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 2097.79 4996.08 6197.44 1586.13 15695.10 3397.40 3388.34 2299.22 4493.25 4498.70 35
save fliter97.85 4685.63 6695.21 11196.82 6889.44 53
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 163
test_part298.55 1287.22 1996.40 17
sam_mvs171.70 22896.12 163
sam_mvs70.60 241
MTGPAbinary96.97 50
test_post188.00 3509.81 41069.31 26295.53 32176.65 287
test_post10.29 40970.57 24595.91 307
patchmatchnet-post83.76 37571.53 22996.48 278
MTMP96.16 5360.64 410
gm-plane-assit89.60 35068.00 37177.28 32388.99 32897.57 19679.44 260
test9_res91.91 8398.71 3398.07 68
TEST997.53 5886.49 3794.07 18796.78 7281.61 26492.77 7996.20 8787.71 2899.12 51
test_897.49 6086.30 4594.02 19296.76 7581.86 25592.70 8396.20 8787.63 2999.02 61
agg_prior290.54 10698.68 3998.27 52
agg_prior97.38 6385.92 5796.72 8192.16 9498.97 75
test_prior485.96 5494.11 182
test_prior294.12 18187.67 11592.63 8496.39 8286.62 3891.50 9098.67 41
旧先验293.36 22171.25 37594.37 3997.13 24186.74 149
新几何293.11 236
旧先验196.79 7681.81 16895.67 16696.81 6386.69 3797.66 8396.97 127
无先验93.28 22996.26 11573.95 35599.05 5580.56 24596.59 144
原ACMM292.94 243
test22296.55 8481.70 17092.22 26795.01 20768.36 38290.20 13096.14 9280.26 12197.80 7896.05 170
testdata298.75 9378.30 271
segment_acmp87.16 36
testdata192.15 26987.94 104
plane_prior794.70 17182.74 144
plane_prior694.52 18182.75 14274.23 194
plane_prior596.22 12098.12 15088.15 12889.99 21394.63 221
plane_prior494.86 143
plane_prior382.75 14290.26 3386.91 185
plane_prior295.85 7690.81 17
plane_prior194.59 176
plane_prior82.73 14595.21 11189.66 5089.88 218
n20.00 420
nn0.00 420
door-mid85.49 378
test1196.57 92
door85.33 380
HQP5-MVS81.56 171
HQP-NCC94.17 19894.39 16688.81 7485.43 229
ACMP_Plane94.17 19894.39 16688.81 7485.43 229
BP-MVS87.11 146
HQP4-MVS85.43 22997.96 17194.51 231
HQP3-MVS96.04 13789.77 222
HQP2-MVS73.83 204
NP-MVS94.37 19082.42 15593.98 181
MDTV_nov1_ep13_2view55.91 40387.62 35773.32 36184.59 25070.33 24874.65 30795.50 190
MDTV_nov1_ep1383.56 28391.69 28669.93 36687.75 35491.54 31878.60 30784.86 24488.90 33069.54 25796.03 30070.25 33288.93 236
ACMMP++_ref87.47 260
ACMMP++88.01 252
Test By Simon80.02 123