| MSC_two_6792asdad | | | | | 96.52 1 | 97.78 54 | 90.86 1 | | 96.85 66 | | | | | 99.61 4 | 96.03 14 | 99.06 9 | 99.07 5 |
|
| No_MVS | | | | | 96.52 1 | 97.78 54 | 90.86 1 | | 96.85 66 | | | | | 99.61 4 | 96.03 14 | 99.06 9 | 99.07 5 |
|
| OPU-MVS | | | | | 96.21 3 | 98.00 42 | 90.85 3 | 97.13 14 | | | | 97.08 52 | 92.59 2 | 98.94 81 | 92.25 72 | 98.99 14 | 98.84 14 |
|
| HPM-MVS++ |  | | 95.14 10 | 94.91 16 | 95.83 4 | 98.25 29 | 89.65 4 | 95.92 76 | 96.96 55 | 91.75 9 | 94.02 53 | 96.83 64 | 88.12 24 | 99.55 16 | 93.41 48 | 98.94 16 | 98.28 54 |
|
| MM | | | 95.10 11 | 94.91 16 | 95.68 5 | 96.09 106 | 88.34 9 | 96.68 33 | 94.37 243 | 95.08 1 | 94.68 40 | 97.72 26 | 82.94 88 | 99.64 1 | 97.85 1 | 98.76 29 | 99.06 7 |
|
| SMA-MVS |  | | 95.20 8 | 95.07 11 | 95.59 6 | 98.14 35 | 88.48 8 | 96.26 46 | 97.28 31 | 85.90 160 | 97.67 3 | 98.10 8 | 88.41 20 | 99.56 12 | 94.66 32 | 99.19 1 | 98.71 20 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| 3Dnovator+ | | 87.14 4 | 92.42 83 | 91.37 92 | 95.55 7 | 95.63 129 | 88.73 6 | 97.07 18 | 96.77 77 | 90.84 16 | 84.02 274 | 96.62 77 | 75.95 171 | 99.34 37 | 87.77 138 | 97.68 83 | 98.59 24 |
|
| CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 8 | 98.11 36 | 88.51 7 | 95.29 109 | 96.96 55 | 92.09 6 | 95.32 32 | 97.08 52 | 89.49 15 | 99.33 40 | 95.10 28 | 98.85 20 | 98.66 21 |
|
| MVS_0304 | | | 94.18 39 | 93.80 49 | 95.34 9 | 94.91 163 | 87.62 14 | 95.97 72 | 93.01 282 | 92.58 3 | 94.22 45 | 97.20 46 | 80.56 118 | 99.59 8 | 97.04 8 | 98.68 37 | 98.81 17 |
|
| ACMMP_NAP | | | 94.74 19 | 94.56 22 | 95.28 10 | 98.02 41 | 87.70 11 | 95.68 89 | 97.34 23 | 88.28 98 | 95.30 33 | 97.67 28 | 85.90 50 | 99.54 20 | 93.91 40 | 98.95 15 | 98.60 23 |
|
| DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 11 | 98.36 25 | 87.28 18 | 95.56 99 | 97.51 5 | 89.13 69 | 97.14 9 | 97.91 21 | 91.64 7 | 99.62 2 | 94.61 33 | 99.17 2 | 98.86 11 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SF-MVS | | | 94.97 12 | 94.90 18 | 95.20 12 | 97.84 50 | 87.76 10 | 96.65 34 | 97.48 10 | 87.76 118 | 95.71 27 | 97.70 27 | 88.28 23 | 99.35 36 | 93.89 41 | 98.78 26 | 98.48 30 |
|
| MCST-MVS | | | 94.45 24 | 94.20 38 | 95.19 13 | 98.46 19 | 87.50 16 | 95.00 128 | 97.12 44 | 87.13 129 | 92.51 90 | 96.30 86 | 89.24 17 | 99.34 37 | 93.46 45 | 98.62 46 | 98.73 18 |
|
| NCCC | | | 94.81 17 | 94.69 21 | 95.17 14 | 97.83 51 | 87.46 17 | 95.66 92 | 96.93 59 | 92.34 4 | 93.94 54 | 96.58 79 | 87.74 27 | 99.44 29 | 92.83 56 | 98.40 54 | 98.62 22 |
|
| DPM-MVS | | | 92.58 80 | 91.74 89 | 95.08 15 | 96.19 99 | 89.31 5 | 92.66 256 | 96.56 96 | 83.44 220 | 91.68 113 | 95.04 140 | 86.60 42 | 98.99 73 | 85.60 168 | 97.92 75 | 96.93 134 |
|
| ZNCC-MVS | | | 94.47 23 | 94.28 32 | 95.03 16 | 98.52 15 | 86.96 20 | 96.85 28 | 97.32 27 | 88.24 99 | 93.15 69 | 97.04 55 | 86.17 47 | 99.62 2 | 92.40 66 | 98.81 23 | 98.52 26 |
|
| test_0728_SECOND | | | | | 95.01 17 | 98.79 2 | 86.43 39 | 97.09 16 | 97.49 6 | | | | | 99.61 4 | 95.62 21 | 99.08 7 | 98.99 9 |
|
| MTAPA | | | 94.42 28 | 94.22 35 | 95.00 18 | 98.42 21 | 86.95 21 | 94.36 175 | 96.97 53 | 91.07 13 | 93.14 70 | 97.56 29 | 84.30 73 | 99.56 12 | 93.43 46 | 98.75 30 | 98.47 33 |
|
| MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 19 | 98.49 17 | 86.52 36 | 96.91 25 | 97.47 11 | 91.73 10 | 96.10 20 | 96.69 69 | 89.90 12 | 99.30 43 | 94.70 31 | 98.04 71 | 99.13 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| region2R | | | 94.43 26 | 94.27 34 | 94.92 20 | 98.65 8 | 86.67 30 | 96.92 24 | 97.23 34 | 88.60 89 | 93.58 61 | 97.27 40 | 85.22 58 | 99.54 20 | 92.21 73 | 98.74 31 | 98.56 25 |
|
| APDe-MVS |  | | 95.46 5 | 95.64 5 | 94.91 21 | 98.26 28 | 86.29 46 | 97.46 6 | 97.40 20 | 89.03 74 | 96.20 19 | 98.10 8 | 89.39 16 | 99.34 37 | 95.88 16 | 99.03 11 | 99.10 4 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMPR | | | 94.43 26 | 94.28 32 | 94.91 21 | 98.63 9 | 86.69 28 | 96.94 20 | 97.32 27 | 88.63 86 | 93.53 64 | 97.26 42 | 85.04 62 | 99.54 20 | 92.35 69 | 98.78 26 | 98.50 27 |
|
| GST-MVS | | | 94.21 34 | 93.97 46 | 94.90 23 | 98.41 22 | 86.82 24 | 96.54 36 | 97.19 35 | 88.24 99 | 93.26 66 | 96.83 64 | 85.48 55 | 99.59 8 | 91.43 97 | 98.40 54 | 98.30 49 |
|
| HFP-MVS | | | 94.52 22 | 94.40 26 | 94.86 24 | 98.61 10 | 86.81 25 | 96.94 20 | 97.34 23 | 88.63 86 | 93.65 59 | 97.21 44 | 86.10 48 | 99.49 26 | 92.35 69 | 98.77 28 | 98.30 49 |
|
| sasdasda | | | 93.27 66 | 92.75 74 | 94.85 25 | 95.70 125 | 87.66 12 | 96.33 39 | 96.41 104 | 90.00 37 | 94.09 49 | 94.60 160 | 82.33 97 | 98.62 109 | 92.40 66 | 92.86 181 | 98.27 56 |
|
| MP-MVS-pluss | | | 94.21 34 | 94.00 45 | 94.85 25 | 98.17 33 | 86.65 31 | 94.82 140 | 97.17 40 | 86.26 152 | 92.83 78 | 97.87 23 | 85.57 54 | 99.56 12 | 94.37 36 | 98.92 17 | 98.34 42 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| canonicalmvs | | | 93.27 66 | 92.75 74 | 94.85 25 | 95.70 125 | 87.66 12 | 96.33 39 | 96.41 104 | 90.00 37 | 94.09 49 | 94.60 160 | 82.33 97 | 98.62 109 | 92.40 66 | 92.86 181 | 98.27 56 |
|
| XVS | | | 94.45 24 | 94.32 28 | 94.85 25 | 98.54 13 | 86.60 34 | 96.93 22 | 97.19 35 | 90.66 24 | 92.85 76 | 97.16 50 | 85.02 63 | 99.49 26 | 91.99 83 | 98.56 50 | 98.47 33 |
|
| X-MVStestdata | | | 88.31 180 | 86.13 227 | 94.85 25 | 98.54 13 | 86.60 34 | 96.93 22 | 97.19 35 | 90.66 24 | 92.85 76 | 23.41 418 | 85.02 63 | 99.49 26 | 91.99 83 | 98.56 50 | 98.47 33 |
|
| SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 25 | 96.99 75 | 86.33 42 | 97.33 7 | 97.30 29 | 91.38 12 | 95.39 31 | 97.46 32 | 88.98 19 | 99.40 30 | 94.12 37 | 98.89 18 | 98.82 16 |
| Skip Steuart: Steuart Systems R&D Blog. |
| DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 31 | 97.78 54 | 86.00 50 | 98.29 1 | 97.49 6 | 90.75 19 | 97.62 5 | 98.06 14 | 92.59 2 | 99.61 4 | 95.64 19 | 99.02 12 | 98.86 11 |
|
| alignmvs | | | 93.08 72 | 92.50 80 | 94.81 32 | 95.62 130 | 87.61 15 | 95.99 70 | 96.07 136 | 89.77 50 | 94.12 48 | 94.87 146 | 80.56 118 | 98.66 104 | 92.42 65 | 93.10 177 | 98.15 67 |
|
| SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 33 | 98.77 5 | 85.99 52 | 97.13 14 | 97.44 15 | 90.31 28 | 97.71 1 | 98.07 12 | 92.31 4 | 99.58 10 | 95.66 17 | 99.13 3 | 98.84 14 |
|
| DeepC-MVS_fast | | 89.43 2 | 94.04 41 | 93.79 50 | 94.80 33 | 97.48 64 | 86.78 26 | 95.65 94 | 96.89 63 | 89.40 59 | 92.81 79 | 96.97 57 | 85.37 57 | 99.24 46 | 90.87 106 | 98.69 35 | 98.38 41 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MP-MVS |  | | 94.25 31 | 94.07 42 | 94.77 35 | 98.47 18 | 86.31 44 | 96.71 31 | 96.98 52 | 89.04 72 | 91.98 100 | 97.19 47 | 85.43 56 | 99.56 12 | 92.06 82 | 98.79 24 | 98.44 37 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| APD-MVS |  | | 94.24 32 | 94.07 42 | 94.75 36 | 98.06 39 | 86.90 23 | 95.88 77 | 96.94 58 | 85.68 166 | 95.05 38 | 97.18 48 | 87.31 35 | 99.07 56 | 91.90 89 | 98.61 48 | 98.28 54 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| CP-MVS | | | 94.34 29 | 94.21 37 | 94.74 37 | 98.39 23 | 86.64 32 | 97.60 4 | 97.24 32 | 88.53 91 | 92.73 84 | 97.23 43 | 85.20 59 | 99.32 41 | 92.15 76 | 98.83 22 | 98.25 61 |
|
| PGM-MVS | | | 93.96 46 | 93.72 54 | 94.68 38 | 98.43 20 | 86.22 47 | 95.30 107 | 97.78 1 | 87.45 125 | 93.26 66 | 97.33 38 | 84.62 70 | 99.51 24 | 90.75 108 | 98.57 49 | 98.32 48 |
|
| DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 39 | 98.78 3 | 85.93 55 | 97.09 16 | 96.73 82 | 90.27 31 | 97.04 11 | 98.05 16 | 91.47 8 | 99.55 16 | 95.62 21 | 99.08 7 | 98.45 36 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| mPP-MVS | | | 93.99 44 | 93.78 51 | 94.63 40 | 98.50 16 | 85.90 60 | 96.87 26 | 96.91 61 | 88.70 84 | 91.83 109 | 97.17 49 | 83.96 77 | 99.55 16 | 91.44 96 | 98.64 45 | 98.43 38 |
|
| PHI-MVS | | | 93.89 47 | 93.65 58 | 94.62 41 | 96.84 78 | 86.43 39 | 96.69 32 | 97.49 6 | 85.15 179 | 93.56 63 | 96.28 87 | 85.60 53 | 99.31 42 | 92.45 63 | 98.79 24 | 98.12 70 |
|
| TSAR-MVS + MP. | | | 94.85 14 | 94.94 14 | 94.58 42 | 98.25 29 | 86.33 42 | 96.11 59 | 96.62 91 | 88.14 104 | 96.10 20 | 96.96 58 | 89.09 18 | 98.94 81 | 94.48 34 | 98.68 37 | 98.48 30 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CANet | | | 93.54 55 | 93.20 66 | 94.55 43 | 95.65 128 | 85.73 65 | 94.94 131 | 96.69 87 | 91.89 8 | 90.69 125 | 95.88 105 | 81.99 109 | 99.54 20 | 93.14 52 | 97.95 74 | 98.39 39 |
|
| train_agg | | | 93.44 59 | 93.08 67 | 94.52 44 | 97.53 61 | 86.49 37 | 94.07 192 | 96.78 75 | 81.86 261 | 92.77 81 | 96.20 90 | 87.63 29 | 99.12 54 | 92.14 77 | 98.69 35 | 97.94 80 |
|
| CDPH-MVS | | | 92.83 76 | 92.30 82 | 94.44 45 | 97.79 52 | 86.11 49 | 94.06 194 | 96.66 88 | 80.09 292 | 92.77 81 | 96.63 76 | 86.62 40 | 99.04 60 | 87.40 143 | 98.66 41 | 98.17 66 |
|
| 3Dnovator | | 86.66 5 | 91.73 92 | 90.82 104 | 94.44 45 | 94.59 179 | 86.37 41 | 97.18 12 | 97.02 50 | 89.20 66 | 84.31 269 | 96.66 72 | 73.74 207 | 99.17 50 | 86.74 153 | 97.96 73 | 97.79 91 |
|
| SR-MVS | | | 94.23 33 | 94.17 40 | 94.43 47 | 98.21 32 | 85.78 63 | 96.40 38 | 96.90 62 | 88.20 102 | 94.33 44 | 97.40 35 | 84.75 69 | 99.03 61 | 93.35 49 | 97.99 72 | 98.48 30 |
|
| HPM-MVS |  | | 94.02 42 | 93.88 47 | 94.43 47 | 98.39 23 | 85.78 63 | 97.25 10 | 97.07 48 | 86.90 137 | 92.62 87 | 96.80 68 | 84.85 68 | 99.17 50 | 92.43 64 | 98.65 44 | 98.33 44 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| TSAR-MVS + GP. | | | 93.66 53 | 93.41 61 | 94.41 49 | 96.59 85 | 86.78 26 | 94.40 167 | 93.93 259 | 89.77 50 | 94.21 46 | 95.59 118 | 87.35 34 | 98.61 111 | 92.72 59 | 96.15 114 | 97.83 89 |
|
| reproduce-ours | | | 94.82 15 | 94.97 12 | 94.38 50 | 97.91 47 | 85.46 68 | 95.86 78 | 97.15 41 | 89.82 43 | 95.23 35 | 98.10 8 | 87.09 37 | 99.37 33 | 95.30 25 | 98.25 60 | 98.30 49 |
|
| our_new_method | | | 94.82 15 | 94.97 12 | 94.38 50 | 97.91 47 | 85.46 68 | 95.86 78 | 97.15 41 | 89.82 43 | 95.23 35 | 98.10 8 | 87.09 37 | 99.37 33 | 95.30 25 | 98.25 60 | 98.30 49 |
|
| test12 | | | | | 94.34 52 | 97.13 73 | 86.15 48 | | 96.29 112 | | 91.04 122 | | 85.08 61 | 99.01 66 | | 98.13 66 | 97.86 86 |
|
| ACMMP |  | | 93.24 68 | 92.88 72 | 94.30 53 | 98.09 38 | 85.33 72 | 96.86 27 | 97.45 14 | 88.33 95 | 90.15 135 | 97.03 56 | 81.44 112 | 99.51 24 | 90.85 107 | 95.74 118 | 98.04 75 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| reproduce_model | | | 94.76 18 | 94.92 15 | 94.29 54 | 97.92 43 | 85.18 74 | 95.95 75 | 97.19 35 | 89.67 53 | 95.27 34 | 98.16 3 | 86.53 43 | 99.36 35 | 95.42 24 | 98.15 64 | 98.33 44 |
|
| DeepC-MVS | | 88.79 3 | 93.31 65 | 92.99 70 | 94.26 55 | 96.07 108 | 85.83 61 | 94.89 134 | 96.99 51 | 89.02 75 | 89.56 140 | 97.37 37 | 82.51 94 | 99.38 31 | 92.20 74 | 98.30 57 | 97.57 103 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MGCFI-Net | | | 93.03 73 | 92.63 77 | 94.23 56 | 95.62 130 | 85.92 57 | 96.08 60 | 96.33 110 | 89.86 41 | 93.89 56 | 94.66 157 | 82.11 104 | 98.50 117 | 92.33 71 | 92.82 184 | 98.27 56 |
|
| EPNet | | | 91.79 89 | 91.02 100 | 94.10 57 | 90.10 345 | 85.25 73 | 96.03 67 | 92.05 308 | 92.83 2 | 87.39 182 | 95.78 110 | 79.39 134 | 99.01 66 | 88.13 134 | 97.48 85 | 98.05 74 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_fmvsmconf_n | | | 94.60 21 | 94.81 19 | 93.98 58 | 94.62 178 | 84.96 77 | 96.15 54 | 97.35 22 | 89.37 60 | 96.03 23 | 98.11 6 | 86.36 44 | 99.01 66 | 97.45 2 | 97.83 78 | 97.96 79 |
|
| DELS-MVS | | | 93.43 63 | 93.25 64 | 93.97 59 | 95.42 137 | 85.04 75 | 93.06 244 | 97.13 43 | 90.74 21 | 91.84 107 | 95.09 139 | 86.32 45 | 99.21 48 | 91.22 98 | 98.45 52 | 97.65 98 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| DP-MVS Recon | | | 91.95 87 | 91.28 94 | 93.96 60 | 98.33 27 | 85.92 57 | 94.66 151 | 96.66 88 | 82.69 240 | 90.03 137 | 95.82 108 | 82.30 99 | 99.03 61 | 84.57 180 | 96.48 109 | 96.91 136 |
|
| HPM-MVS_fast | | | 93.40 64 | 93.22 65 | 93.94 61 | 98.36 25 | 84.83 79 | 97.15 13 | 96.80 74 | 85.77 163 | 92.47 91 | 97.13 51 | 82.38 95 | 99.07 56 | 90.51 111 | 98.40 54 | 97.92 83 |
|
| test_fmvsmconf0.1_n | | | 94.20 36 | 94.31 30 | 93.88 62 | 92.46 264 | 84.80 80 | 96.18 51 | 96.82 71 | 89.29 63 | 95.68 28 | 98.11 6 | 85.10 60 | 98.99 73 | 97.38 3 | 97.75 82 | 97.86 86 |
|
| SD-MVS | | | 94.96 13 | 95.33 8 | 93.88 62 | 97.25 72 | 86.69 28 | 96.19 49 | 97.11 46 | 90.42 27 | 96.95 13 | 97.27 40 | 89.53 14 | 96.91 259 | 94.38 35 | 98.85 20 | 98.03 76 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| MVS_111021_HR | | | 93.45 58 | 93.31 62 | 93.84 64 | 96.99 75 | 84.84 78 | 93.24 237 | 97.24 32 | 88.76 81 | 91.60 114 | 95.85 106 | 86.07 49 | 98.66 104 | 91.91 87 | 98.16 63 | 98.03 76 |
|
| SR-MVS-dyc-post | | | 93.82 48 | 93.82 48 | 93.82 65 | 97.92 43 | 84.57 85 | 96.28 43 | 96.76 78 | 87.46 123 | 93.75 57 | 97.43 33 | 84.24 74 | 99.01 66 | 92.73 57 | 97.80 79 | 97.88 84 |
|
| test_prior | | | | | 93.82 65 | 97.29 70 | 84.49 89 | | 96.88 64 | | | | | 98.87 85 | | | 98.11 71 |
|
| APD-MVS_3200maxsize | | | 93.78 49 | 93.77 52 | 93.80 67 | 97.92 43 | 84.19 99 | 96.30 41 | 96.87 65 | 86.96 133 | 93.92 55 | 97.47 31 | 83.88 78 | 98.96 80 | 92.71 60 | 97.87 76 | 98.26 60 |
|
| fmvsm_l_conf0.5_n | | | 94.29 30 | 94.46 24 | 93.79 68 | 95.28 141 | 85.43 70 | 95.68 89 | 96.43 102 | 86.56 144 | 96.84 14 | 97.81 25 | 87.56 32 | 98.77 96 | 97.14 5 | 96.82 101 | 97.16 122 |
|
| CSCG | | | 93.23 69 | 93.05 68 | 93.76 69 | 98.04 40 | 84.07 101 | 96.22 48 | 97.37 21 | 84.15 202 | 90.05 136 | 95.66 115 | 87.77 26 | 99.15 53 | 89.91 115 | 98.27 58 | 98.07 72 |
|
| test_fmvsmconf0.01_n | | | 93.19 70 | 93.02 69 | 93.71 70 | 89.25 358 | 84.42 96 | 96.06 64 | 96.29 112 | 89.06 70 | 94.68 40 | 98.13 4 | 79.22 136 | 98.98 77 | 97.22 4 | 97.24 89 | 97.74 93 |
|
| UA-Net | | | 92.83 76 | 92.54 79 | 93.68 71 | 96.10 105 | 84.71 82 | 95.66 92 | 96.39 106 | 91.92 7 | 93.22 68 | 96.49 82 | 83.16 84 | 98.87 85 | 84.47 182 | 95.47 125 | 97.45 108 |
|
| fmvsm_l_conf0.5_n_a | | | 94.20 36 | 94.40 26 | 93.60 72 | 95.29 140 | 84.98 76 | 95.61 96 | 96.28 115 | 86.31 150 | 96.75 16 | 97.86 24 | 87.40 33 | 98.74 99 | 97.07 7 | 97.02 94 | 97.07 124 |
|
| QAPM | | | 89.51 143 | 88.15 167 | 93.59 73 | 94.92 161 | 84.58 84 | 96.82 29 | 96.70 86 | 78.43 318 | 83.41 289 | 96.19 93 | 73.18 214 | 99.30 43 | 77.11 290 | 96.54 106 | 96.89 137 |
|
| test_fmvsm_n_1920 | | | 94.71 20 | 95.11 10 | 93.50 74 | 95.79 120 | 84.62 83 | 96.15 54 | 97.64 2 | 89.85 42 | 97.19 8 | 97.89 22 | 86.28 46 | 98.71 102 | 97.11 6 | 98.08 70 | 97.17 118 |
|
| casdiffmvs_mvg |  | | 92.96 75 | 92.83 73 | 93.35 75 | 94.59 179 | 83.40 121 | 95.00 128 | 96.34 109 | 90.30 30 | 92.05 98 | 96.05 98 | 83.43 80 | 98.15 151 | 92.07 79 | 95.67 119 | 98.49 29 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EI-MVSNet-Vis-set | | | 93.01 74 | 92.92 71 | 93.29 76 | 95.01 154 | 83.51 118 | 94.48 159 | 95.77 160 | 90.87 15 | 92.52 89 | 96.67 71 | 84.50 71 | 99.00 71 | 91.99 83 | 94.44 152 | 97.36 109 |
|
| Vis-MVSNet |  | | 91.75 91 | 91.23 95 | 93.29 76 | 95.32 139 | 83.78 108 | 96.14 56 | 95.98 143 | 89.89 39 | 90.45 127 | 96.58 79 | 75.09 183 | 98.31 142 | 84.75 178 | 96.90 97 | 97.78 92 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| balanced_conf03 | | | 93.98 45 | 94.22 35 | 93.26 78 | 96.13 101 | 83.29 124 | 96.27 45 | 96.52 97 | 89.82 43 | 95.56 30 | 95.51 120 | 84.50 71 | 98.79 94 | 94.83 30 | 98.86 19 | 97.72 94 |
|
| SPE-MVS-test | | | 94.02 42 | 94.29 31 | 93.24 79 | 96.69 81 | 83.24 125 | 97.49 5 | 96.92 60 | 92.14 5 | 92.90 74 | 95.77 111 | 85.02 63 | 98.33 139 | 93.03 53 | 98.62 46 | 98.13 68 |
|
| VNet | | | 92.24 85 | 91.91 86 | 93.24 79 | 96.59 85 | 83.43 119 | 94.84 139 | 96.44 101 | 89.19 67 | 94.08 52 | 95.90 104 | 77.85 155 | 98.17 149 | 88.90 125 | 93.38 171 | 98.13 68 |
|
| VDD-MVS | | | 90.74 110 | 89.92 122 | 93.20 81 | 96.27 97 | 83.02 138 | 95.73 86 | 93.86 263 | 88.42 94 | 92.53 88 | 96.84 63 | 62.09 324 | 98.64 106 | 90.95 104 | 92.62 186 | 97.93 82 |
|
| CS-MVS | | | 94.12 40 | 94.44 25 | 93.17 82 | 96.55 88 | 83.08 135 | 97.63 3 | 96.95 57 | 91.71 11 | 93.50 65 | 96.21 89 | 85.61 52 | 98.24 144 | 93.64 43 | 98.17 62 | 98.19 64 |
|
| nrg030 | | | 91.08 104 | 90.39 108 | 93.17 82 | 93.07 247 | 86.91 22 | 96.41 37 | 96.26 117 | 88.30 97 | 88.37 161 | 94.85 149 | 82.19 103 | 97.64 192 | 91.09 99 | 82.95 303 | 94.96 215 |
|
| MVSMamba_PlusPlus | | | 93.44 59 | 93.54 60 | 93.14 84 | 96.58 87 | 83.05 136 | 96.06 64 | 96.50 99 | 84.42 199 | 94.09 49 | 95.56 119 | 85.01 66 | 98.69 103 | 94.96 29 | 98.66 41 | 97.67 97 |
|
| EI-MVSNet-UG-set | | | 92.74 78 | 92.62 78 | 93.12 85 | 94.86 166 | 83.20 127 | 94.40 167 | 95.74 163 | 90.71 23 | 92.05 98 | 96.60 78 | 84.00 76 | 98.99 73 | 91.55 94 | 93.63 162 | 97.17 118 |
|
| test_fmvsmvis_n_1920 | | | 93.44 59 | 93.55 59 | 93.10 86 | 93.67 229 | 84.26 98 | 95.83 82 | 96.14 127 | 89.00 76 | 92.43 92 | 97.50 30 | 83.37 83 | 98.72 100 | 96.61 12 | 97.44 86 | 96.32 157 |
|
| æ–°å‡ ä½•1 | | | | | 93.10 86 | 97.30 69 | 84.35 97 | | 95.56 177 | 71.09 384 | 91.26 120 | 96.24 88 | 82.87 90 | 98.86 87 | 79.19 269 | 98.10 67 | 96.07 172 |
|
| OMC-MVS | | | 91.23 100 | 90.62 107 | 93.08 88 | 96.27 97 | 84.07 101 | 93.52 220 | 95.93 147 | 86.95 134 | 89.51 141 | 96.13 96 | 78.50 146 | 98.35 136 | 85.84 166 | 92.90 180 | 96.83 141 |
|
| OpenMVS |  | 83.78 11 | 88.74 169 | 87.29 186 | 93.08 88 | 92.70 259 | 85.39 71 | 96.57 35 | 96.43 102 | 78.74 313 | 80.85 321 | 96.07 97 | 69.64 257 | 99.01 66 | 78.01 281 | 96.65 105 | 94.83 222 |
|
| MAR-MVS | | | 90.30 121 | 89.37 133 | 93.07 90 | 96.61 84 | 84.48 90 | 95.68 89 | 95.67 169 | 82.36 245 | 87.85 170 | 92.85 221 | 76.63 165 | 98.80 93 | 80.01 257 | 96.68 104 | 95.91 178 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| lupinMVS | | | 90.92 105 | 90.21 111 | 93.03 91 | 93.86 219 | 83.88 106 | 92.81 253 | 93.86 263 | 79.84 295 | 91.76 110 | 94.29 170 | 77.92 152 | 98.04 167 | 90.48 112 | 97.11 90 | 97.17 118 |
|
| Effi-MVS+ | | | 91.59 95 | 91.11 97 | 93.01 92 | 94.35 197 | 83.39 122 | 94.60 153 | 95.10 207 | 87.10 130 | 90.57 126 | 93.10 216 | 81.43 113 | 98.07 165 | 89.29 121 | 94.48 150 | 97.59 102 |
|
| fmvsm_s_conf0.5_n_a | | | 93.57 54 | 93.76 53 | 93.00 93 | 95.02 153 | 83.67 111 | 96.19 49 | 96.10 133 | 87.27 127 | 95.98 24 | 98.05 16 | 83.07 87 | 98.45 127 | 96.68 11 | 95.51 122 | 96.88 138 |
|
| MVS_111021_LR | | | 92.47 82 | 92.29 83 | 92.98 94 | 95.99 114 | 84.43 94 | 93.08 242 | 96.09 134 | 88.20 102 | 91.12 121 | 95.72 114 | 81.33 114 | 97.76 182 | 91.74 91 | 97.37 88 | 96.75 143 |
|
| fmvsm_s_conf0.1_n_a | | | 93.19 70 | 93.26 63 | 92.97 95 | 92.49 262 | 83.62 114 | 96.02 68 | 95.72 166 | 86.78 139 | 96.04 22 | 98.19 1 | 82.30 99 | 98.43 131 | 96.38 13 | 95.42 128 | 96.86 139 |
|
| ETV-MVS | | | 92.74 78 | 92.66 76 | 92.97 95 | 95.20 147 | 84.04 103 | 95.07 124 | 96.51 98 | 90.73 22 | 92.96 73 | 91.19 280 | 84.06 75 | 98.34 137 | 91.72 92 | 96.54 106 | 96.54 153 |
|
| LFMVS | | | 90.08 126 | 89.13 139 | 92.95 97 | 96.71 80 | 82.32 161 | 96.08 60 | 89.91 361 | 86.79 138 | 92.15 97 | 96.81 66 | 62.60 322 | 98.34 137 | 87.18 147 | 93.90 158 | 98.19 64 |
|
| UGNet | | | 89.95 131 | 88.95 143 | 92.95 97 | 94.51 185 | 83.31 123 | 95.70 88 | 95.23 200 | 89.37 60 | 87.58 176 | 93.94 185 | 64.00 313 | 98.78 95 | 83.92 189 | 96.31 111 | 96.74 144 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| jason | | | 90.80 108 | 90.10 115 | 92.90 99 | 93.04 250 | 83.53 117 | 93.08 242 | 94.15 252 | 80.22 289 | 91.41 117 | 94.91 143 | 76.87 159 | 97.93 176 | 90.28 113 | 96.90 97 | 97.24 114 |
| jason: jason. |
| DP-MVS | | | 87.25 220 | 85.36 256 | 92.90 99 | 97.65 58 | 83.24 125 | 94.81 141 | 92.00 310 | 74.99 352 | 81.92 310 | 95.00 141 | 72.66 219 | 99.05 58 | 66.92 365 | 92.33 191 | 96.40 155 |
|
| fmvsm_s_conf0.5_n | | | 93.76 50 | 94.06 44 | 92.86 101 | 95.62 130 | 83.17 128 | 96.14 56 | 96.12 131 | 88.13 105 | 95.82 26 | 98.04 19 | 83.43 80 | 98.48 119 | 96.97 9 | 96.23 112 | 96.92 135 |
|
| fmvsm_s_conf0.1_n | | | 93.46 57 | 93.66 57 | 92.85 102 | 93.75 225 | 83.13 130 | 96.02 68 | 95.74 163 | 87.68 120 | 95.89 25 | 98.17 2 | 82.78 91 | 98.46 123 | 96.71 10 | 96.17 113 | 96.98 131 |
|
| CANet_DTU | | | 90.26 123 | 89.41 132 | 92.81 103 | 93.46 236 | 83.01 139 | 93.48 221 | 94.47 239 | 89.43 58 | 87.76 174 | 94.23 175 | 70.54 246 | 99.03 61 | 84.97 173 | 96.39 110 | 96.38 156 |
|
| MVSFormer | | | 91.68 94 | 91.30 93 | 92.80 104 | 93.86 219 | 83.88 106 | 95.96 73 | 95.90 151 | 84.66 195 | 91.76 110 | 94.91 143 | 77.92 152 | 97.30 226 | 89.64 117 | 97.11 90 | 97.24 114 |
|
| PVSNet_Blended_VisFu | | | 91.38 97 | 90.91 102 | 92.80 104 | 96.39 94 | 83.17 128 | 94.87 136 | 96.66 88 | 83.29 225 | 89.27 147 | 94.46 165 | 80.29 121 | 99.17 50 | 87.57 141 | 95.37 129 | 96.05 175 |
|
| VDDNet | | | 89.56 142 | 88.49 158 | 92.76 106 | 95.07 152 | 82.09 163 | 96.30 41 | 93.19 277 | 81.05 283 | 91.88 105 | 96.86 62 | 61.16 340 | 98.33 139 | 88.43 131 | 92.49 190 | 97.84 88 |
|
| h-mvs33 | | | 90.80 108 | 90.15 114 | 92.75 107 | 96.01 110 | 82.66 152 | 95.43 101 | 95.53 181 | 89.80 46 | 93.08 71 | 95.64 116 | 75.77 172 | 99.00 71 | 92.07 79 | 78.05 360 | 96.60 148 |
|
| casdiffmvs |  | | 92.51 81 | 92.43 81 | 92.74 108 | 94.41 192 | 81.98 166 | 94.54 157 | 96.23 121 | 89.57 55 | 91.96 102 | 96.17 94 | 82.58 93 | 98.01 169 | 90.95 104 | 95.45 127 | 98.23 62 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_yl | | | 90.69 112 | 90.02 120 | 92.71 109 | 95.72 123 | 82.41 159 | 94.11 187 | 95.12 205 | 85.63 167 | 91.49 115 | 94.70 153 | 74.75 187 | 98.42 132 | 86.13 161 | 92.53 188 | 97.31 110 |
|
| DCV-MVSNet | | | 90.69 112 | 90.02 120 | 92.71 109 | 95.72 123 | 82.41 159 | 94.11 187 | 95.12 205 | 85.63 167 | 91.49 115 | 94.70 153 | 74.75 187 | 98.42 132 | 86.13 161 | 92.53 188 | 97.31 110 |
|
| PCF-MVS | | 84.11 10 | 87.74 195 | 86.08 231 | 92.70 111 | 94.02 210 | 84.43 94 | 89.27 340 | 95.87 154 | 73.62 366 | 84.43 261 | 94.33 167 | 78.48 147 | 98.86 87 | 70.27 339 | 94.45 151 | 94.81 223 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| baseline | | | 92.39 84 | 92.29 83 | 92.69 112 | 94.46 188 | 81.77 170 | 94.14 184 | 96.27 116 | 89.22 65 | 91.88 105 | 96.00 99 | 82.35 96 | 97.99 171 | 91.05 100 | 95.27 133 | 98.30 49 |
|
| MSLP-MVS++ | | | 93.72 52 | 94.08 41 | 92.65 113 | 97.31 68 | 83.43 119 | 95.79 84 | 97.33 25 | 90.03 36 | 93.58 61 | 96.96 58 | 84.87 67 | 97.76 182 | 92.19 75 | 98.66 41 | 96.76 142 |
|
| EC-MVSNet | | | 93.44 59 | 93.71 55 | 92.63 114 | 95.21 146 | 82.43 156 | 97.27 9 | 96.71 85 | 90.57 26 | 92.88 75 | 95.80 109 | 83.16 84 | 98.16 150 | 93.68 42 | 98.14 65 | 97.31 110 |
|
| ab-mvs | | | 89.41 148 | 88.35 160 | 92.60 115 | 95.15 151 | 82.65 153 | 92.20 273 | 95.60 176 | 83.97 206 | 88.55 157 | 93.70 198 | 74.16 199 | 98.21 148 | 82.46 211 | 89.37 232 | 96.94 133 |
|
| LS3D | | | 87.89 190 | 86.32 220 | 92.59 116 | 96.07 108 | 82.92 142 | 95.23 114 | 94.92 219 | 75.66 344 | 82.89 296 | 95.98 101 | 72.48 222 | 99.21 48 | 68.43 353 | 95.23 134 | 95.64 191 |
|
| Anonymous20240529 | | | 88.09 186 | 86.59 209 | 92.58 117 | 96.53 90 | 81.92 168 | 95.99 70 | 95.84 156 | 74.11 361 | 89.06 151 | 95.21 133 | 61.44 332 | 98.81 92 | 83.67 194 | 87.47 263 | 97.01 129 |
|
| CPTT-MVS | | | 91.99 86 | 91.80 87 | 92.55 118 | 98.24 31 | 81.98 166 | 96.76 30 | 96.49 100 | 81.89 260 | 90.24 130 | 96.44 84 | 78.59 144 | 98.61 111 | 89.68 116 | 97.85 77 | 97.06 125 |
|
| 114514_t | | | 89.51 143 | 88.50 156 | 92.54 119 | 98.11 36 | 81.99 165 | 95.16 120 | 96.36 108 | 70.19 388 | 85.81 215 | 95.25 130 | 76.70 163 | 98.63 108 | 82.07 221 | 96.86 100 | 97.00 130 |
|
| PAPM_NR | | | 91.22 101 | 90.78 105 | 92.52 120 | 97.60 59 | 81.46 179 | 94.37 173 | 96.24 120 | 86.39 149 | 87.41 179 | 94.80 151 | 82.06 107 | 98.48 119 | 82.80 206 | 95.37 129 | 97.61 100 |
|
| DeepPCF-MVS | | 89.96 1 | 94.20 36 | 94.77 20 | 92.49 121 | 96.52 91 | 80.00 223 | 94.00 200 | 97.08 47 | 90.05 35 | 95.65 29 | 97.29 39 | 89.66 13 | 98.97 78 | 93.95 39 | 98.71 32 | 98.50 27 |
|
| IS-MVSNet | | | 91.43 96 | 91.09 99 | 92.46 122 | 95.87 119 | 81.38 182 | 96.95 19 | 93.69 269 | 89.72 52 | 89.50 143 | 95.98 101 | 78.57 145 | 97.77 181 | 83.02 200 | 96.50 108 | 98.22 63 |
|
| API-MVS | | | 90.66 114 | 90.07 116 | 92.45 123 | 96.36 95 | 84.57 85 | 96.06 64 | 95.22 202 | 82.39 243 | 89.13 148 | 94.27 173 | 80.32 120 | 98.46 123 | 80.16 256 | 96.71 103 | 94.33 246 |
|
| xiu_mvs_v1_base_debu | | | 90.64 115 | 90.05 117 | 92.40 124 | 93.97 216 | 84.46 91 | 93.32 228 | 95.46 184 | 85.17 176 | 92.25 93 | 94.03 177 | 70.59 242 | 98.57 114 | 90.97 101 | 94.67 142 | 94.18 249 |
|
| xiu_mvs_v1_base | | | 90.64 115 | 90.05 117 | 92.40 124 | 93.97 216 | 84.46 91 | 93.32 228 | 95.46 184 | 85.17 176 | 92.25 93 | 94.03 177 | 70.59 242 | 98.57 114 | 90.97 101 | 94.67 142 | 94.18 249 |
|
| xiu_mvs_v1_base_debi | | | 90.64 115 | 90.05 117 | 92.40 124 | 93.97 216 | 84.46 91 | 93.32 228 | 95.46 184 | 85.17 176 | 92.25 93 | 94.03 177 | 70.59 242 | 98.57 114 | 90.97 101 | 94.67 142 | 94.18 249 |
|
| AdaColmap |  | | 89.89 134 | 89.07 140 | 92.37 127 | 97.41 65 | 83.03 137 | 94.42 166 | 95.92 148 | 82.81 237 | 86.34 205 | 94.65 158 | 73.89 203 | 99.02 64 | 80.69 247 | 95.51 122 | 95.05 210 |
|
| CNLPA | | | 89.07 159 | 87.98 170 | 92.34 128 | 96.87 77 | 84.78 81 | 94.08 191 | 93.24 275 | 81.41 274 | 84.46 259 | 95.13 138 | 75.57 179 | 96.62 270 | 77.21 288 | 93.84 160 | 95.61 194 |
|
| ET-MVSNet_ETH3D | | | 87.51 208 | 85.91 239 | 92.32 129 | 93.70 228 | 83.93 104 | 92.33 268 | 90.94 341 | 84.16 201 | 72.09 384 | 92.52 233 | 69.90 252 | 95.85 316 | 89.20 122 | 88.36 250 | 97.17 118 |
|
| Anonymous202405211 | | | 87.68 196 | 86.13 227 | 92.31 130 | 96.66 82 | 80.74 200 | 94.87 136 | 91.49 327 | 80.47 288 | 89.46 144 | 95.44 122 | 54.72 373 | 98.23 145 | 82.19 217 | 89.89 222 | 97.97 78 |
|
| CHOSEN 1792x2688 | | | 88.84 165 | 87.69 176 | 92.30 131 | 96.14 100 | 81.42 181 | 90.01 327 | 95.86 155 | 74.52 357 | 87.41 179 | 93.94 185 | 75.46 180 | 98.36 134 | 80.36 252 | 95.53 121 | 97.12 123 |
|
| HY-MVS | | 83.01 12 | 89.03 161 | 87.94 172 | 92.29 132 | 94.86 166 | 82.77 144 | 92.08 278 | 94.49 238 | 81.52 273 | 86.93 186 | 92.79 227 | 78.32 149 | 98.23 145 | 79.93 258 | 90.55 211 | 95.88 180 |
|
| CDS-MVSNet | | | 89.45 146 | 88.51 155 | 92.29 132 | 93.62 231 | 83.61 116 | 93.01 245 | 94.68 235 | 81.95 255 | 87.82 172 | 93.24 210 | 78.69 142 | 96.99 253 | 80.34 253 | 93.23 175 | 96.28 160 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| PAPR | | | 90.02 128 | 89.27 138 | 92.29 132 | 95.78 121 | 80.95 194 | 92.68 255 | 96.22 122 | 81.91 257 | 86.66 196 | 93.75 197 | 82.23 101 | 98.44 129 | 79.40 268 | 94.79 140 | 97.48 106 |
|
| mvsmamba | | | 90.33 120 | 89.69 125 | 92.25 135 | 95.17 148 | 81.64 172 | 95.27 112 | 93.36 274 | 84.88 186 | 89.51 141 | 94.27 173 | 69.29 266 | 97.42 212 | 89.34 120 | 96.12 115 | 97.68 96 |
|
| PLC |  | 84.53 7 | 89.06 160 | 88.03 169 | 92.15 136 | 97.27 71 | 82.69 151 | 94.29 176 | 95.44 189 | 79.71 297 | 84.01 275 | 94.18 176 | 76.68 164 | 98.75 97 | 77.28 287 | 93.41 170 | 95.02 211 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| EPP-MVSNet | | | 91.70 93 | 91.56 91 | 92.13 137 | 95.88 117 | 80.50 206 | 97.33 7 | 95.25 199 | 86.15 155 | 89.76 139 | 95.60 117 | 83.42 82 | 98.32 141 | 87.37 145 | 93.25 174 | 97.56 104 |
|
| patch_mono-2 | | | 93.74 51 | 94.32 28 | 92.01 138 | 97.54 60 | 78.37 260 | 93.40 225 | 97.19 35 | 88.02 107 | 94.99 39 | 97.21 44 | 88.35 21 | 98.44 129 | 94.07 38 | 98.09 68 | 99.23 1 |
|
| 原ACMM1 | | | | | 92.01 138 | 97.34 67 | 81.05 190 | | 96.81 73 | 78.89 308 | 90.45 127 | 95.92 103 | 82.65 92 | 98.84 91 | 80.68 248 | 98.26 59 | 96.14 166 |
|
| UniMVSNet (Re) | | | 89.80 136 | 89.07 140 | 92.01 138 | 93.60 232 | 84.52 88 | 94.78 143 | 97.47 11 | 89.26 64 | 86.44 202 | 92.32 239 | 82.10 105 | 97.39 223 | 84.81 177 | 80.84 337 | 94.12 253 |
|
| MG-MVS | | | 91.77 90 | 91.70 90 | 92.00 141 | 97.08 74 | 80.03 221 | 93.60 218 | 95.18 203 | 87.85 115 | 90.89 123 | 96.47 83 | 82.06 107 | 98.36 134 | 85.07 172 | 97.04 93 | 97.62 99 |
|
| EIA-MVS | | | 91.95 87 | 91.94 85 | 91.98 142 | 95.16 149 | 80.01 222 | 95.36 102 | 96.73 82 | 88.44 92 | 89.34 145 | 92.16 244 | 83.82 79 | 98.45 127 | 89.35 119 | 97.06 92 | 97.48 106 |
|
| PVSNet_Blended | | | 90.73 111 | 90.32 110 | 91.98 142 | 96.12 102 | 81.25 184 | 92.55 260 | 96.83 69 | 82.04 253 | 89.10 149 | 92.56 232 | 81.04 116 | 98.85 89 | 86.72 155 | 95.91 116 | 95.84 182 |
|
| PS-MVSNAJ | | | 91.18 102 | 90.92 101 | 91.96 144 | 95.26 144 | 82.60 155 | 92.09 277 | 95.70 167 | 86.27 151 | 91.84 107 | 92.46 234 | 79.70 129 | 98.99 73 | 89.08 123 | 95.86 117 | 94.29 247 |
|
| TAMVS | | | 89.21 154 | 88.29 164 | 91.96 144 | 93.71 226 | 82.62 154 | 93.30 232 | 94.19 250 | 82.22 248 | 87.78 173 | 93.94 185 | 78.83 139 | 96.95 256 | 77.70 283 | 92.98 179 | 96.32 157 |
|
| SDMVSNet | | | 90.19 124 | 89.61 127 | 91.93 146 | 96.00 111 | 83.09 134 | 92.89 250 | 95.98 143 | 88.73 82 | 86.85 192 | 95.20 134 | 72.09 226 | 97.08 245 | 88.90 125 | 89.85 224 | 95.63 192 |
|
| FA-MVS(test-final) | | | 89.66 138 | 88.91 145 | 91.93 146 | 94.57 182 | 80.27 210 | 91.36 293 | 94.74 232 | 84.87 187 | 89.82 138 | 92.61 231 | 74.72 190 | 98.47 122 | 83.97 188 | 93.53 165 | 97.04 127 |
|
| MVS_Test | | | 91.31 99 | 91.11 97 | 91.93 146 | 94.37 193 | 80.14 214 | 93.46 223 | 95.80 158 | 86.46 147 | 91.35 119 | 93.77 195 | 82.21 102 | 98.09 162 | 87.57 141 | 94.95 137 | 97.55 105 |
|
| NR-MVSNet | | | 88.58 175 | 87.47 182 | 91.93 146 | 93.04 250 | 84.16 100 | 94.77 144 | 96.25 119 | 89.05 71 | 80.04 334 | 93.29 208 | 79.02 138 | 97.05 250 | 81.71 232 | 80.05 347 | 94.59 230 |
|
| HyFIR lowres test | | | 88.09 186 | 86.81 198 | 91.93 146 | 96.00 111 | 80.63 202 | 90.01 327 | 95.79 159 | 73.42 368 | 87.68 175 | 92.10 250 | 73.86 204 | 97.96 173 | 80.75 246 | 91.70 195 | 97.19 117 |
|
| GeoE | | | 90.05 127 | 89.43 131 | 91.90 151 | 95.16 149 | 80.37 209 | 95.80 83 | 94.65 236 | 83.90 207 | 87.55 178 | 94.75 152 | 78.18 150 | 97.62 194 | 81.28 236 | 93.63 162 | 97.71 95 |
|
| thisisatest0530 | | | 88.67 170 | 87.61 178 | 91.86 152 | 94.87 165 | 80.07 217 | 94.63 152 | 89.90 362 | 84.00 205 | 88.46 159 | 93.78 194 | 66.88 290 | 98.46 123 | 83.30 196 | 92.65 185 | 97.06 125 |
|
| xiu_mvs_v2_base | | | 91.13 103 | 90.89 103 | 91.86 152 | 94.97 157 | 82.42 157 | 92.24 271 | 95.64 174 | 86.11 159 | 91.74 112 | 93.14 214 | 79.67 132 | 98.89 84 | 89.06 124 | 95.46 126 | 94.28 248 |
|
| DU-MVS | | | 89.34 153 | 88.50 156 | 91.85 154 | 93.04 250 | 83.72 109 | 94.47 162 | 96.59 93 | 89.50 56 | 86.46 199 | 93.29 208 | 77.25 157 | 97.23 235 | 84.92 174 | 81.02 333 | 94.59 230 |
|
| OPM-MVS | | | 90.12 125 | 89.56 128 | 91.82 155 | 93.14 243 | 83.90 105 | 94.16 183 | 95.74 163 | 88.96 77 | 87.86 169 | 95.43 124 | 72.48 222 | 97.91 177 | 88.10 136 | 90.18 217 | 93.65 283 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| HQP_MVS | | | 90.60 118 | 90.19 112 | 91.82 155 | 94.70 174 | 82.73 148 | 95.85 80 | 96.22 122 | 90.81 17 | 86.91 188 | 94.86 147 | 74.23 195 | 98.12 152 | 88.15 132 | 89.99 218 | 94.63 227 |
|
| UniMVSNet_NR-MVSNet | | | 89.92 133 | 89.29 136 | 91.81 157 | 93.39 238 | 83.72 109 | 94.43 165 | 97.12 44 | 89.80 46 | 86.46 199 | 93.32 205 | 83.16 84 | 97.23 235 | 84.92 174 | 81.02 333 | 94.49 240 |
|
| diffmvs |  | | 91.37 98 | 91.23 95 | 91.77 158 | 93.09 246 | 80.27 210 | 92.36 265 | 95.52 182 | 87.03 132 | 91.40 118 | 94.93 142 | 80.08 123 | 97.44 210 | 92.13 78 | 94.56 147 | 97.61 100 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 1112_ss | | | 88.42 176 | 87.33 185 | 91.72 159 | 94.92 161 | 80.98 192 | 92.97 247 | 94.54 237 | 78.16 324 | 83.82 278 | 93.88 190 | 78.78 141 | 97.91 177 | 79.45 264 | 89.41 231 | 96.26 161 |
|
| Fast-Effi-MVS+ | | | 89.41 148 | 88.64 151 | 91.71 160 | 94.74 170 | 80.81 198 | 93.54 219 | 95.10 207 | 83.11 229 | 86.82 194 | 90.67 301 | 79.74 128 | 97.75 185 | 80.51 251 | 93.55 164 | 96.57 151 |
|
| WTY-MVS | | | 89.60 140 | 88.92 144 | 91.67 161 | 95.47 136 | 81.15 188 | 92.38 264 | 94.78 230 | 83.11 229 | 89.06 151 | 94.32 168 | 78.67 143 | 96.61 273 | 81.57 233 | 90.89 208 | 97.24 114 |
|
| TAPA-MVS | | 84.62 6 | 88.16 184 | 87.01 194 | 91.62 162 | 96.64 83 | 80.65 201 | 94.39 169 | 96.21 125 | 76.38 337 | 86.19 209 | 95.44 122 | 79.75 127 | 98.08 164 | 62.75 382 | 95.29 131 | 96.13 167 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| VPA-MVSNet | | | 89.62 139 | 88.96 142 | 91.60 163 | 93.86 219 | 82.89 143 | 95.46 100 | 97.33 25 | 87.91 110 | 88.43 160 | 93.31 206 | 74.17 198 | 97.40 220 | 87.32 146 | 82.86 308 | 94.52 235 |
|
| FE-MVS | | | 87.40 213 | 86.02 233 | 91.57 164 | 94.56 183 | 79.69 231 | 90.27 314 | 93.72 268 | 80.57 286 | 88.80 154 | 91.62 269 | 65.32 305 | 98.59 113 | 74.97 312 | 94.33 154 | 96.44 154 |
|
| XVG-OURS | | | 89.40 150 | 88.70 150 | 91.52 165 | 94.06 208 | 81.46 179 | 91.27 297 | 96.07 136 | 86.14 156 | 88.89 153 | 95.77 111 | 68.73 275 | 97.26 232 | 87.39 144 | 89.96 220 | 95.83 183 |
|
| hse-mvs2 | | | 89.88 135 | 89.34 134 | 91.51 166 | 94.83 168 | 81.12 189 | 93.94 203 | 93.91 262 | 89.80 46 | 93.08 71 | 93.60 199 | 75.77 172 | 97.66 189 | 92.07 79 | 77.07 367 | 95.74 187 |
|
| TranMVSNet+NR-MVSNet | | | 88.84 165 | 87.95 171 | 91.49 167 | 92.68 260 | 83.01 139 | 94.92 133 | 96.31 111 | 89.88 40 | 85.53 224 | 93.85 192 | 76.63 165 | 96.96 255 | 81.91 225 | 79.87 350 | 94.50 238 |
|
| AUN-MVS | | | 87.78 194 | 86.54 212 | 91.48 168 | 94.82 169 | 81.05 190 | 93.91 207 | 93.93 259 | 83.00 232 | 86.93 186 | 93.53 200 | 69.50 260 | 97.67 187 | 86.14 159 | 77.12 366 | 95.73 189 |
|
| XVG-OURS-SEG-HR | | | 89.95 131 | 89.45 129 | 91.47 169 | 94.00 214 | 81.21 187 | 91.87 281 | 96.06 138 | 85.78 162 | 88.55 157 | 95.73 113 | 74.67 191 | 97.27 230 | 88.71 128 | 89.64 229 | 95.91 178 |
|
| MVS | | | 87.44 211 | 86.10 230 | 91.44 170 | 92.61 261 | 83.62 114 | 92.63 257 | 95.66 171 | 67.26 393 | 81.47 313 | 92.15 245 | 77.95 151 | 98.22 147 | 79.71 260 | 95.48 124 | 92.47 324 |
|
| F-COLMAP | | | 87.95 189 | 86.80 199 | 91.40 171 | 96.35 96 | 80.88 196 | 94.73 146 | 95.45 187 | 79.65 298 | 82.04 308 | 94.61 159 | 71.13 233 | 98.50 117 | 76.24 300 | 91.05 206 | 94.80 224 |
|
| dcpmvs_2 | | | 93.49 56 | 94.19 39 | 91.38 172 | 97.69 57 | 76.78 293 | 94.25 178 | 96.29 112 | 88.33 95 | 94.46 42 | 96.88 61 | 88.07 25 | 98.64 106 | 93.62 44 | 98.09 68 | 98.73 18 |
|
| thisisatest0515 | | | 87.33 216 | 85.99 234 | 91.37 173 | 93.49 234 | 79.55 232 | 90.63 310 | 89.56 369 | 80.17 290 | 87.56 177 | 90.86 291 | 67.07 287 | 98.28 143 | 81.50 234 | 93.02 178 | 96.29 159 |
|
| HQP-MVS | | | 89.80 136 | 89.28 137 | 91.34 174 | 94.17 203 | 81.56 173 | 94.39 169 | 96.04 139 | 88.81 78 | 85.43 233 | 93.97 184 | 73.83 205 | 97.96 173 | 87.11 150 | 89.77 227 | 94.50 238 |
|
| RRT-MVS | | | 90.85 107 | 90.70 106 | 91.30 175 | 94.25 199 | 76.83 292 | 94.85 138 | 96.13 130 | 89.04 72 | 90.23 131 | 94.88 145 | 70.15 251 | 98.72 100 | 91.86 90 | 94.88 138 | 98.34 42 |
|
| FMVSNet3 | | | 87.40 213 | 86.11 229 | 91.30 175 | 93.79 224 | 83.64 113 | 94.20 182 | 94.81 228 | 83.89 208 | 84.37 262 | 91.87 260 | 68.45 278 | 96.56 278 | 78.23 278 | 85.36 280 | 93.70 282 |
|
| FMVSNet2 | | | 87.19 226 | 85.82 242 | 91.30 175 | 94.01 211 | 83.67 111 | 94.79 142 | 94.94 214 | 83.57 215 | 83.88 277 | 92.05 254 | 66.59 295 | 96.51 282 | 77.56 285 | 85.01 283 | 93.73 280 |
|
| RPMNet | | | 83.95 299 | 81.53 310 | 91.21 178 | 90.58 336 | 79.34 239 | 85.24 384 | 96.76 78 | 71.44 382 | 85.55 222 | 82.97 391 | 70.87 238 | 98.91 83 | 61.01 386 | 89.36 233 | 95.40 198 |
|
| IB-MVS | | 80.51 15 | 85.24 278 | 83.26 294 | 91.19 179 | 92.13 273 | 79.86 227 | 91.75 284 | 91.29 332 | 83.28 226 | 80.66 324 | 88.49 346 | 61.28 334 | 98.46 123 | 80.99 242 | 79.46 354 | 95.25 204 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CLD-MVS | | | 89.47 145 | 88.90 146 | 91.18 180 | 94.22 201 | 82.07 164 | 92.13 275 | 96.09 134 | 87.90 111 | 85.37 239 | 92.45 235 | 74.38 193 | 97.56 197 | 87.15 148 | 90.43 213 | 93.93 262 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| LPG-MVS_test | | | 89.45 146 | 88.90 146 | 91.12 181 | 94.47 186 | 81.49 177 | 95.30 107 | 96.14 127 | 86.73 141 | 85.45 230 | 95.16 136 | 69.89 253 | 98.10 154 | 87.70 139 | 89.23 236 | 93.77 277 |
|
| LGP-MVS_train | | | | | 91.12 181 | 94.47 186 | 81.49 177 | | 96.14 127 | 86.73 141 | 85.45 230 | 95.16 136 | 69.89 253 | 98.10 154 | 87.70 139 | 89.23 236 | 93.77 277 |
|
| ACMM | | 84.12 9 | 89.14 155 | 88.48 159 | 91.12 181 | 94.65 177 | 81.22 186 | 95.31 105 | 96.12 131 | 85.31 175 | 85.92 213 | 94.34 166 | 70.19 250 | 98.06 166 | 85.65 167 | 88.86 241 | 94.08 257 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tttt0517 | | | 88.61 172 | 87.78 175 | 91.11 184 | 94.96 158 | 77.81 275 | 95.35 103 | 89.69 365 | 85.09 181 | 88.05 167 | 94.59 162 | 66.93 288 | 98.48 119 | 83.27 197 | 92.13 193 | 97.03 128 |
|
| GBi-Net | | | 87.26 218 | 85.98 235 | 91.08 185 | 94.01 211 | 83.10 131 | 95.14 121 | 94.94 214 | 83.57 215 | 84.37 262 | 91.64 265 | 66.59 295 | 96.34 295 | 78.23 278 | 85.36 280 | 93.79 272 |
|
| test1 | | | 87.26 218 | 85.98 235 | 91.08 185 | 94.01 211 | 83.10 131 | 95.14 121 | 94.94 214 | 83.57 215 | 84.37 262 | 91.64 265 | 66.59 295 | 96.34 295 | 78.23 278 | 85.36 280 | 93.79 272 |
|
| FMVSNet1 | | | 85.85 264 | 84.11 281 | 91.08 185 | 92.81 257 | 83.10 131 | 95.14 121 | 94.94 214 | 81.64 268 | 82.68 298 | 91.64 265 | 59.01 353 | 96.34 295 | 75.37 306 | 83.78 293 | 93.79 272 |
|
| Test_1112_low_res | | | 87.65 198 | 86.51 213 | 91.08 185 | 94.94 160 | 79.28 243 | 91.77 283 | 94.30 246 | 76.04 342 | 83.51 287 | 92.37 237 | 77.86 154 | 97.73 186 | 78.69 273 | 89.13 238 | 96.22 162 |
|
| PS-MVSNAJss | | | 89.97 130 | 89.62 126 | 91.02 189 | 91.90 282 | 80.85 197 | 95.26 113 | 95.98 143 | 86.26 152 | 86.21 208 | 94.29 170 | 79.70 129 | 97.65 190 | 88.87 127 | 88.10 252 | 94.57 232 |
|
| BH-RMVSNet | | | 88.37 178 | 87.48 181 | 91.02 189 | 95.28 141 | 79.45 235 | 92.89 250 | 93.07 280 | 85.45 172 | 86.91 188 | 94.84 150 | 70.35 247 | 97.76 182 | 73.97 318 | 94.59 146 | 95.85 181 |
|
| UniMVSNet_ETH3D | | | 87.53 207 | 86.37 217 | 91.00 191 | 92.44 265 | 78.96 248 | 94.74 145 | 95.61 175 | 84.07 204 | 85.36 240 | 94.52 164 | 59.78 348 | 97.34 225 | 82.93 201 | 87.88 257 | 96.71 145 |
|
| FIs | | | 90.51 119 | 90.35 109 | 90.99 192 | 93.99 215 | 80.98 192 | 95.73 86 | 97.54 4 | 89.15 68 | 86.72 195 | 94.68 155 | 81.83 111 | 97.24 234 | 85.18 171 | 88.31 251 | 94.76 225 |
|
| ACMP | | 84.23 8 | 89.01 163 | 88.35 160 | 90.99 192 | 94.73 171 | 81.27 183 | 95.07 124 | 95.89 153 | 86.48 145 | 83.67 282 | 94.30 169 | 69.33 262 | 97.99 171 | 87.10 152 | 88.55 243 | 93.72 281 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| Anonymous20231211 | | | 86.59 247 | 85.13 261 | 90.98 194 | 96.52 91 | 81.50 175 | 96.14 56 | 96.16 126 | 73.78 364 | 83.65 283 | 92.15 245 | 63.26 319 | 97.37 224 | 82.82 205 | 81.74 322 | 94.06 258 |
|
| sss | | | 88.93 164 | 88.26 166 | 90.94 195 | 94.05 209 | 80.78 199 | 91.71 285 | 95.38 193 | 81.55 272 | 88.63 156 | 93.91 189 | 75.04 184 | 95.47 334 | 82.47 210 | 91.61 196 | 96.57 151 |
|
| sd_testset | | | 88.59 174 | 87.85 174 | 90.83 196 | 96.00 111 | 80.42 208 | 92.35 266 | 94.71 233 | 88.73 82 | 86.85 192 | 95.20 134 | 67.31 282 | 96.43 289 | 79.64 262 | 89.85 224 | 95.63 192 |
|
| PVSNet_BlendedMVS | | | 89.98 129 | 89.70 124 | 90.82 197 | 96.12 102 | 81.25 184 | 93.92 205 | 96.83 69 | 83.49 219 | 89.10 149 | 92.26 242 | 81.04 116 | 98.85 89 | 86.72 155 | 87.86 258 | 92.35 330 |
|
| cascas | | | 86.43 255 | 84.98 264 | 90.80 198 | 92.10 275 | 80.92 195 | 90.24 318 | 95.91 150 | 73.10 371 | 83.57 286 | 88.39 347 | 65.15 307 | 97.46 206 | 84.90 176 | 91.43 198 | 94.03 260 |
|
| ECVR-MVS |  | | 89.09 158 | 88.53 154 | 90.77 199 | 95.62 130 | 75.89 306 | 96.16 52 | 84.22 394 | 87.89 113 | 90.20 132 | 96.65 73 | 63.19 320 | 98.10 154 | 85.90 164 | 96.94 95 | 98.33 44 |
|
| GA-MVS | | | 86.61 245 | 85.27 259 | 90.66 200 | 91.33 305 | 78.71 250 | 90.40 313 | 93.81 266 | 85.34 174 | 85.12 243 | 89.57 328 | 61.25 335 | 97.11 244 | 80.99 242 | 89.59 230 | 96.15 165 |
|
| thres600view7 | | | 87.65 198 | 86.67 204 | 90.59 201 | 96.08 107 | 78.72 249 | 94.88 135 | 91.58 323 | 87.06 131 | 88.08 165 | 92.30 240 | 68.91 272 | 98.10 154 | 70.05 346 | 91.10 201 | 94.96 215 |
|
| thres400 | | | 87.62 203 | 86.64 205 | 90.57 202 | 95.99 114 | 78.64 251 | 94.58 154 | 91.98 312 | 86.94 135 | 88.09 163 | 91.77 261 | 69.18 268 | 98.10 154 | 70.13 343 | 91.10 201 | 94.96 215 |
|
| baseline1 | | | 88.10 185 | 87.28 187 | 90.57 202 | 94.96 158 | 80.07 217 | 94.27 177 | 91.29 332 | 86.74 140 | 87.41 179 | 94.00 182 | 76.77 162 | 96.20 300 | 80.77 245 | 79.31 356 | 95.44 196 |
|
| FC-MVSNet-test | | | 90.27 122 | 90.18 113 | 90.53 204 | 93.71 226 | 79.85 228 | 95.77 85 | 97.59 3 | 89.31 62 | 86.27 206 | 94.67 156 | 81.93 110 | 97.01 252 | 84.26 184 | 88.09 254 | 94.71 226 |
|
| PAPM | | | 86.68 244 | 85.39 254 | 90.53 204 | 93.05 249 | 79.33 242 | 89.79 330 | 94.77 231 | 78.82 310 | 81.95 309 | 93.24 210 | 76.81 160 | 97.30 226 | 66.94 363 | 93.16 176 | 94.95 218 |
|
| WR-MVS | | | 88.38 177 | 87.67 177 | 90.52 206 | 93.30 240 | 80.18 212 | 93.26 235 | 95.96 146 | 88.57 90 | 85.47 229 | 92.81 225 | 76.12 167 | 96.91 259 | 81.24 237 | 82.29 313 | 94.47 243 |
|
| MVSTER | | | 88.84 165 | 88.29 164 | 90.51 207 | 92.95 255 | 80.44 207 | 93.73 212 | 95.01 211 | 84.66 195 | 87.15 183 | 93.12 215 | 72.79 218 | 97.21 237 | 87.86 137 | 87.36 266 | 93.87 267 |
|
| testdata | | | | | 90.49 208 | 96.40 93 | 77.89 272 | | 95.37 195 | 72.51 376 | 93.63 60 | 96.69 69 | 82.08 106 | 97.65 190 | 83.08 198 | 97.39 87 | 95.94 177 |
|
| test1111 | | | 89.10 156 | 88.64 151 | 90.48 209 | 95.53 135 | 74.97 316 | 96.08 60 | 84.89 392 | 88.13 105 | 90.16 134 | 96.65 73 | 63.29 318 | 98.10 154 | 86.14 159 | 96.90 97 | 98.39 39 |
|
| tt0805 | | | 86.92 234 | 85.74 248 | 90.48 209 | 92.22 269 | 79.98 224 | 95.63 95 | 94.88 222 | 83.83 210 | 84.74 252 | 92.80 226 | 57.61 359 | 97.67 187 | 85.48 170 | 84.42 287 | 93.79 272 |
|
| jajsoiax | | | 88.24 182 | 87.50 180 | 90.48 209 | 90.89 325 | 80.14 214 | 95.31 105 | 95.65 173 | 84.97 184 | 84.24 270 | 94.02 180 | 65.31 306 | 97.42 212 | 88.56 129 | 88.52 245 | 93.89 263 |
|
| PatchMatch-RL | | | 86.77 242 | 85.54 250 | 90.47 212 | 95.88 117 | 82.71 150 | 90.54 311 | 92.31 300 | 79.82 296 | 84.32 267 | 91.57 273 | 68.77 274 | 96.39 291 | 73.16 324 | 93.48 169 | 92.32 331 |
|
| tfpn200view9 | | | 87.58 205 | 86.64 205 | 90.41 213 | 95.99 114 | 78.64 251 | 94.58 154 | 91.98 312 | 86.94 135 | 88.09 163 | 91.77 261 | 69.18 268 | 98.10 154 | 70.13 343 | 91.10 201 | 94.48 241 |
|
| VPNet | | | 88.20 183 | 87.47 182 | 90.39 214 | 93.56 233 | 79.46 234 | 94.04 195 | 95.54 180 | 88.67 85 | 86.96 185 | 94.58 163 | 69.33 262 | 97.15 239 | 84.05 187 | 80.53 342 | 94.56 233 |
|
| ACMH | | 80.38 17 | 85.36 273 | 83.68 288 | 90.39 214 | 94.45 189 | 80.63 202 | 94.73 146 | 94.85 224 | 82.09 250 | 77.24 356 | 92.65 229 | 60.01 346 | 97.58 195 | 72.25 328 | 84.87 284 | 92.96 310 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| thres100view900 | | | 87.63 201 | 86.71 202 | 90.38 216 | 96.12 102 | 78.55 253 | 95.03 127 | 91.58 323 | 87.15 128 | 88.06 166 | 92.29 241 | 68.91 272 | 98.10 154 | 70.13 343 | 91.10 201 | 94.48 241 |
|
| mvs_tets | | | 88.06 188 | 87.28 187 | 90.38 216 | 90.94 321 | 79.88 226 | 95.22 115 | 95.66 171 | 85.10 180 | 84.21 271 | 93.94 185 | 63.53 316 | 97.40 220 | 88.50 130 | 88.40 249 | 93.87 267 |
|
| 1314 | | | 87.51 208 | 86.57 210 | 90.34 218 | 92.42 266 | 79.74 230 | 92.63 257 | 95.35 197 | 78.35 319 | 80.14 331 | 91.62 269 | 74.05 200 | 97.15 239 | 81.05 238 | 93.53 165 | 94.12 253 |
|
| LTVRE_ROB | | 82.13 13 | 86.26 258 | 84.90 267 | 90.34 218 | 94.44 190 | 81.50 175 | 92.31 270 | 94.89 220 | 83.03 231 | 79.63 340 | 92.67 228 | 69.69 256 | 97.79 180 | 71.20 332 | 86.26 275 | 91.72 341 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test_djsdf | | | 89.03 161 | 88.64 151 | 90.21 220 | 90.74 331 | 79.28 243 | 95.96 73 | 95.90 151 | 84.66 195 | 85.33 241 | 92.94 220 | 74.02 201 | 97.30 226 | 89.64 117 | 88.53 244 | 94.05 259 |
|
| v2v482 | | | 87.84 191 | 87.06 191 | 90.17 221 | 90.99 317 | 79.23 246 | 94.00 200 | 95.13 204 | 84.87 187 | 85.53 224 | 92.07 253 | 74.45 192 | 97.45 207 | 84.71 179 | 81.75 321 | 93.85 270 |
|
| pmmvs4 | | | 85.43 271 | 83.86 286 | 90.16 222 | 90.02 348 | 82.97 141 | 90.27 314 | 92.67 292 | 75.93 343 | 80.73 322 | 91.74 263 | 71.05 234 | 95.73 324 | 78.85 272 | 83.46 300 | 91.78 340 |
|
| V42 | | | 87.68 196 | 86.86 196 | 90.15 223 | 90.58 336 | 80.14 214 | 94.24 180 | 95.28 198 | 83.66 213 | 85.67 219 | 91.33 275 | 74.73 189 | 97.41 218 | 84.43 183 | 81.83 319 | 92.89 313 |
|
| MSDG | | | 84.86 286 | 83.09 297 | 90.14 224 | 93.80 222 | 80.05 219 | 89.18 343 | 93.09 279 | 78.89 308 | 78.19 349 | 91.91 258 | 65.86 304 | 97.27 230 | 68.47 352 | 88.45 247 | 93.11 305 |
|
| anonymousdsp | | | 87.84 191 | 87.09 190 | 90.12 225 | 89.13 359 | 80.54 205 | 94.67 150 | 95.55 178 | 82.05 251 | 83.82 278 | 92.12 247 | 71.47 231 | 97.15 239 | 87.15 148 | 87.80 261 | 92.67 318 |
|
| thres200 | | | 87.21 224 | 86.24 224 | 90.12 225 | 95.36 138 | 78.53 254 | 93.26 235 | 92.10 306 | 86.42 148 | 88.00 168 | 91.11 286 | 69.24 267 | 98.00 170 | 69.58 347 | 91.04 207 | 93.83 271 |
|
| CR-MVSNet | | | 85.35 274 | 83.76 287 | 90.12 225 | 90.58 336 | 79.34 239 | 85.24 384 | 91.96 314 | 78.27 321 | 85.55 222 | 87.87 357 | 71.03 235 | 95.61 326 | 73.96 319 | 89.36 233 | 95.40 198 |
|
| v1144 | | | 87.61 204 | 86.79 200 | 90.06 228 | 91.01 316 | 79.34 239 | 93.95 202 | 95.42 192 | 83.36 224 | 85.66 220 | 91.31 278 | 74.98 185 | 97.42 212 | 83.37 195 | 82.06 315 | 93.42 292 |
|
| XXY-MVS | | | 87.65 198 | 86.85 197 | 90.03 229 | 92.14 272 | 80.60 204 | 93.76 211 | 95.23 200 | 82.94 234 | 84.60 254 | 94.02 180 | 74.27 194 | 95.49 333 | 81.04 239 | 83.68 296 | 94.01 261 |
|
| Vis-MVSNet (Re-imp) | | | 89.59 141 | 89.44 130 | 90.03 229 | 95.74 122 | 75.85 307 | 95.61 96 | 90.80 345 | 87.66 122 | 87.83 171 | 95.40 125 | 76.79 161 | 96.46 287 | 78.37 274 | 96.73 102 | 97.80 90 |
|
| test2506 | | | 87.21 224 | 86.28 222 | 90.02 231 | 95.62 130 | 73.64 332 | 96.25 47 | 71.38 416 | 87.89 113 | 90.45 127 | 96.65 73 | 55.29 370 | 98.09 162 | 86.03 163 | 96.94 95 | 98.33 44 |
|
| BH-untuned | | | 88.60 173 | 88.13 168 | 90.01 232 | 95.24 145 | 78.50 256 | 93.29 233 | 94.15 252 | 84.75 192 | 84.46 259 | 93.40 202 | 75.76 174 | 97.40 220 | 77.59 284 | 94.52 149 | 94.12 253 |
|
| v1192 | | | 87.25 220 | 86.33 219 | 90.00 233 | 90.76 330 | 79.04 247 | 93.80 209 | 95.48 183 | 82.57 241 | 85.48 228 | 91.18 282 | 73.38 213 | 97.42 212 | 82.30 214 | 82.06 315 | 93.53 286 |
|
| v7n | | | 86.81 237 | 85.76 246 | 89.95 234 | 90.72 332 | 79.25 245 | 95.07 124 | 95.92 148 | 84.45 198 | 82.29 302 | 90.86 291 | 72.60 221 | 97.53 199 | 79.42 267 | 80.52 343 | 93.08 307 |
|
| testing91 | | | 87.11 229 | 86.18 225 | 89.92 235 | 94.43 191 | 75.38 315 | 91.53 290 | 92.27 302 | 86.48 145 | 86.50 197 | 90.24 309 | 61.19 338 | 97.53 199 | 82.10 219 | 90.88 209 | 96.84 140 |
|
| v8 | | | 87.50 210 | 86.71 202 | 89.89 236 | 91.37 302 | 79.40 236 | 94.50 158 | 95.38 193 | 84.81 190 | 83.60 285 | 91.33 275 | 76.05 168 | 97.42 212 | 82.84 204 | 80.51 344 | 92.84 315 |
|
| v10 | | | 87.25 220 | 86.38 216 | 89.85 237 | 91.19 308 | 79.50 233 | 94.48 159 | 95.45 187 | 83.79 211 | 83.62 284 | 91.19 280 | 75.13 182 | 97.42 212 | 81.94 224 | 80.60 339 | 92.63 320 |
|
| baseline2 | | | 86.50 251 | 85.39 254 | 89.84 238 | 91.12 313 | 76.70 295 | 91.88 280 | 88.58 372 | 82.35 246 | 79.95 335 | 90.95 290 | 73.42 211 | 97.63 193 | 80.27 255 | 89.95 221 | 95.19 205 |
|
| pm-mvs1 | | | 86.61 245 | 85.54 250 | 89.82 239 | 91.44 297 | 80.18 212 | 95.28 111 | 94.85 224 | 83.84 209 | 81.66 311 | 92.62 230 | 72.45 224 | 96.48 284 | 79.67 261 | 78.06 359 | 92.82 316 |
|
| TR-MVS | | | 86.78 239 | 85.76 246 | 89.82 239 | 94.37 193 | 78.41 258 | 92.47 261 | 92.83 286 | 81.11 282 | 86.36 203 | 92.40 236 | 68.73 275 | 97.48 203 | 73.75 322 | 89.85 224 | 93.57 285 |
|
| ACMH+ | | 81.04 14 | 85.05 281 | 83.46 291 | 89.82 239 | 94.66 176 | 79.37 237 | 94.44 164 | 94.12 255 | 82.19 249 | 78.04 351 | 92.82 224 | 58.23 356 | 97.54 198 | 73.77 321 | 82.90 307 | 92.54 321 |
|
| EI-MVSNet | | | 89.10 156 | 88.86 148 | 89.80 242 | 91.84 284 | 78.30 262 | 93.70 215 | 95.01 211 | 85.73 164 | 87.15 183 | 95.28 128 | 79.87 126 | 97.21 237 | 83.81 191 | 87.36 266 | 93.88 266 |
|
| v144192 | | | 87.19 226 | 86.35 218 | 89.74 243 | 90.64 334 | 78.24 264 | 93.92 205 | 95.43 190 | 81.93 256 | 85.51 226 | 91.05 288 | 74.21 197 | 97.45 207 | 82.86 203 | 81.56 323 | 93.53 286 |
|
| COLMAP_ROB |  | 80.39 16 | 83.96 298 | 82.04 307 | 89.74 243 | 95.28 141 | 79.75 229 | 94.25 178 | 92.28 301 | 75.17 350 | 78.02 352 | 93.77 195 | 58.60 355 | 97.84 179 | 65.06 374 | 85.92 276 | 91.63 343 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| SCA | | | 86.32 257 | 85.18 260 | 89.73 245 | 92.15 271 | 76.60 296 | 91.12 301 | 91.69 319 | 83.53 218 | 85.50 227 | 88.81 340 | 66.79 291 | 96.48 284 | 76.65 293 | 90.35 215 | 96.12 168 |
|
| IterMVS-LS | | | 88.36 179 | 87.91 173 | 89.70 246 | 93.80 222 | 78.29 263 | 93.73 212 | 95.08 209 | 85.73 164 | 84.75 251 | 91.90 259 | 79.88 125 | 96.92 258 | 83.83 190 | 82.51 309 | 93.89 263 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| testing11 | | | 86.44 254 | 85.35 257 | 89.69 247 | 94.29 198 | 75.40 314 | 91.30 295 | 90.53 348 | 84.76 191 | 85.06 245 | 90.13 315 | 58.95 354 | 97.45 207 | 82.08 220 | 91.09 205 | 96.21 164 |
|
| testing99 | | | 86.72 243 | 85.73 249 | 89.69 247 | 94.23 200 | 74.91 318 | 91.35 294 | 90.97 340 | 86.14 156 | 86.36 203 | 90.22 310 | 59.41 350 | 97.48 203 | 82.24 216 | 90.66 210 | 96.69 146 |
|
| v1921920 | | | 86.97 233 | 86.06 232 | 89.69 247 | 90.53 339 | 78.11 267 | 93.80 209 | 95.43 190 | 81.90 258 | 85.33 241 | 91.05 288 | 72.66 219 | 97.41 218 | 82.05 222 | 81.80 320 | 93.53 286 |
|
| Fast-Effi-MVS+-dtu | | | 87.44 211 | 86.72 201 | 89.63 250 | 92.04 276 | 77.68 281 | 94.03 196 | 93.94 258 | 85.81 161 | 82.42 301 | 91.32 277 | 70.33 248 | 97.06 248 | 80.33 254 | 90.23 216 | 94.14 252 |
|
| v1240 | | | 86.78 239 | 85.85 241 | 89.56 251 | 90.45 340 | 77.79 277 | 93.61 217 | 95.37 195 | 81.65 267 | 85.43 233 | 91.15 284 | 71.50 230 | 97.43 211 | 81.47 235 | 82.05 317 | 93.47 290 |
|
| Effi-MVS+-dtu | | | 88.65 171 | 88.35 160 | 89.54 252 | 93.33 239 | 76.39 300 | 94.47 162 | 94.36 244 | 87.70 119 | 85.43 233 | 89.56 329 | 73.45 210 | 97.26 232 | 85.57 169 | 91.28 200 | 94.97 212 |
|
| AllTest | | | 83.42 305 | 81.39 311 | 89.52 253 | 95.01 154 | 77.79 277 | 93.12 239 | 90.89 343 | 77.41 328 | 76.12 364 | 93.34 203 | 54.08 376 | 97.51 201 | 68.31 354 | 84.27 289 | 93.26 295 |
|
| TestCases | | | | | 89.52 253 | 95.01 154 | 77.79 277 | | 90.89 343 | 77.41 328 | 76.12 364 | 93.34 203 | 54.08 376 | 97.51 201 | 68.31 354 | 84.27 289 | 93.26 295 |
|
| mvs_anonymous | | | 89.37 152 | 89.32 135 | 89.51 255 | 93.47 235 | 74.22 325 | 91.65 288 | 94.83 226 | 82.91 235 | 85.45 230 | 93.79 193 | 81.23 115 | 96.36 294 | 86.47 157 | 94.09 155 | 97.94 80 |
|
| XVG-ACMP-BASELINE | | | 86.00 260 | 84.84 269 | 89.45 256 | 91.20 307 | 78.00 268 | 91.70 286 | 95.55 178 | 85.05 182 | 82.97 295 | 92.25 243 | 54.49 374 | 97.48 203 | 82.93 201 | 87.45 265 | 92.89 313 |
|
| testing222 | | | 84.84 287 | 83.32 292 | 89.43 257 | 94.15 206 | 75.94 305 | 91.09 302 | 89.41 370 | 84.90 185 | 85.78 216 | 89.44 330 | 52.70 381 | 96.28 298 | 70.80 338 | 91.57 197 | 96.07 172 |
|
| MVP-Stereo | | | 85.97 261 | 84.86 268 | 89.32 258 | 90.92 323 | 82.19 162 | 92.11 276 | 94.19 250 | 78.76 312 | 78.77 348 | 91.63 268 | 68.38 279 | 96.56 278 | 75.01 311 | 93.95 157 | 89.20 379 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| PatchmatchNet |  | | 85.85 264 | 84.70 271 | 89.29 259 | 91.76 288 | 75.54 311 | 88.49 352 | 91.30 331 | 81.63 269 | 85.05 246 | 88.70 344 | 71.71 227 | 96.24 299 | 74.61 315 | 89.05 239 | 96.08 171 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v148 | | | 87.04 231 | 86.32 220 | 89.21 260 | 90.94 321 | 77.26 286 | 93.71 214 | 94.43 240 | 84.84 189 | 84.36 265 | 90.80 295 | 76.04 169 | 97.05 250 | 82.12 218 | 79.60 353 | 93.31 294 |
|
| tfpnnormal | | | 84.72 289 | 83.23 295 | 89.20 261 | 92.79 258 | 80.05 219 | 94.48 159 | 95.81 157 | 82.38 244 | 81.08 319 | 91.21 279 | 69.01 271 | 96.95 256 | 61.69 384 | 80.59 340 | 90.58 366 |
|
| cl22 | | | 86.78 239 | 85.98 235 | 89.18 262 | 92.34 267 | 77.62 282 | 90.84 307 | 94.13 254 | 81.33 276 | 83.97 276 | 90.15 314 | 73.96 202 | 96.60 275 | 84.19 185 | 82.94 304 | 93.33 293 |
|
| BH-w/o | | | 87.57 206 | 87.05 192 | 89.12 263 | 94.90 164 | 77.90 271 | 92.41 262 | 93.51 271 | 82.89 236 | 83.70 281 | 91.34 274 | 75.75 175 | 97.07 247 | 75.49 304 | 93.49 167 | 92.39 328 |
|
| WR-MVS_H | | | 87.80 193 | 87.37 184 | 89.10 264 | 93.23 241 | 78.12 266 | 95.61 96 | 97.30 29 | 87.90 111 | 83.72 280 | 92.01 255 | 79.65 133 | 96.01 308 | 76.36 297 | 80.54 341 | 93.16 303 |
|
| miper_enhance_ethall | | | 86.90 235 | 86.18 225 | 89.06 265 | 91.66 293 | 77.58 283 | 90.22 320 | 94.82 227 | 79.16 304 | 84.48 258 | 89.10 334 | 79.19 137 | 96.66 268 | 84.06 186 | 82.94 304 | 92.94 311 |
|
| c3_l | | | 87.14 228 | 86.50 214 | 89.04 266 | 92.20 270 | 77.26 286 | 91.22 300 | 94.70 234 | 82.01 254 | 84.34 266 | 90.43 306 | 78.81 140 | 96.61 273 | 83.70 193 | 81.09 330 | 93.25 297 |
|
| miper_ehance_all_eth | | | 87.22 223 | 86.62 208 | 89.02 267 | 92.13 273 | 77.40 285 | 90.91 306 | 94.81 228 | 81.28 277 | 84.32 267 | 90.08 317 | 79.26 135 | 96.62 270 | 83.81 191 | 82.94 304 | 93.04 308 |
|
| gg-mvs-nofinetune | | | 81.77 317 | 79.37 332 | 88.99 268 | 90.85 327 | 77.73 280 | 86.29 376 | 79.63 405 | 74.88 355 | 83.19 294 | 69.05 407 | 60.34 343 | 96.11 304 | 75.46 305 | 94.64 145 | 93.11 305 |
|
| ETVMVS | | | 84.43 292 | 82.92 301 | 88.97 269 | 94.37 193 | 74.67 319 | 91.23 299 | 88.35 374 | 83.37 223 | 86.06 212 | 89.04 335 | 55.38 368 | 95.67 325 | 67.12 361 | 91.34 199 | 96.58 150 |
|
| pmmvs6 | | | 83.42 305 | 81.60 309 | 88.87 270 | 88.01 373 | 77.87 273 | 94.96 130 | 94.24 249 | 74.67 356 | 78.80 347 | 91.09 287 | 60.17 345 | 96.49 283 | 77.06 292 | 75.40 373 | 92.23 333 |
|
| test_cas_vis1_n_1920 | | | 88.83 168 | 88.85 149 | 88.78 271 | 91.15 312 | 76.72 294 | 93.85 208 | 94.93 218 | 83.23 228 | 92.81 79 | 96.00 99 | 61.17 339 | 94.45 345 | 91.67 93 | 94.84 139 | 95.17 206 |
|
| MIMVSNet | | | 82.59 311 | 80.53 316 | 88.76 272 | 91.51 295 | 78.32 261 | 86.57 375 | 90.13 355 | 79.32 300 | 80.70 323 | 88.69 345 | 52.98 380 | 93.07 370 | 66.03 369 | 88.86 241 | 94.90 219 |
|
| cl____ | | | 86.52 250 | 85.78 243 | 88.75 273 | 92.03 277 | 76.46 298 | 90.74 308 | 94.30 246 | 81.83 263 | 83.34 291 | 90.78 296 | 75.74 177 | 96.57 276 | 81.74 230 | 81.54 324 | 93.22 299 |
|
| DIV-MVS_self_test | | | 86.53 249 | 85.78 243 | 88.75 273 | 92.02 278 | 76.45 299 | 90.74 308 | 94.30 246 | 81.83 263 | 83.34 291 | 90.82 294 | 75.75 175 | 96.57 276 | 81.73 231 | 81.52 325 | 93.24 298 |
|
| CP-MVSNet | | | 87.63 201 | 87.26 189 | 88.74 275 | 93.12 244 | 76.59 297 | 95.29 109 | 96.58 94 | 88.43 93 | 83.49 288 | 92.98 219 | 75.28 181 | 95.83 317 | 78.97 270 | 81.15 329 | 93.79 272 |
|
| eth_miper_zixun_eth | | | 86.50 251 | 85.77 245 | 88.68 276 | 91.94 279 | 75.81 308 | 90.47 312 | 94.89 220 | 82.05 251 | 84.05 273 | 90.46 305 | 75.96 170 | 96.77 263 | 82.76 207 | 79.36 355 | 93.46 291 |
|
| CHOSEN 280x420 | | | 85.15 279 | 83.99 284 | 88.65 277 | 92.47 263 | 78.40 259 | 79.68 406 | 92.76 289 | 74.90 354 | 81.41 315 | 89.59 327 | 69.85 255 | 95.51 330 | 79.92 259 | 95.29 131 | 92.03 336 |
|
| PS-CasMVS | | | 87.32 217 | 86.88 195 | 88.63 278 | 92.99 253 | 76.33 302 | 95.33 104 | 96.61 92 | 88.22 101 | 83.30 293 | 93.07 217 | 73.03 216 | 95.79 321 | 78.36 275 | 81.00 335 | 93.75 279 |
|
| TransMVSNet (Re) | | | 84.43 292 | 83.06 299 | 88.54 279 | 91.72 289 | 78.44 257 | 95.18 118 | 92.82 288 | 82.73 239 | 79.67 339 | 92.12 247 | 73.49 209 | 95.96 310 | 71.10 336 | 68.73 389 | 91.21 353 |
|
| EG-PatchMatch MVS | | | 82.37 313 | 80.34 319 | 88.46 280 | 90.27 342 | 79.35 238 | 92.80 254 | 94.33 245 | 77.14 332 | 73.26 381 | 90.18 313 | 47.47 392 | 96.72 264 | 70.25 340 | 87.32 268 | 89.30 376 |
|
| PEN-MVS | | | 86.80 238 | 86.27 223 | 88.40 281 | 92.32 268 | 75.71 310 | 95.18 118 | 96.38 107 | 87.97 108 | 82.82 297 | 93.15 213 | 73.39 212 | 95.92 312 | 76.15 301 | 79.03 358 | 93.59 284 |
|
| Baseline_NR-MVSNet | | | 87.07 230 | 86.63 207 | 88.40 281 | 91.44 297 | 77.87 273 | 94.23 181 | 92.57 294 | 84.12 203 | 85.74 218 | 92.08 251 | 77.25 157 | 96.04 305 | 82.29 215 | 79.94 348 | 91.30 351 |
|
| UBG | | | 85.51 269 | 84.57 275 | 88.35 283 | 94.21 202 | 71.78 356 | 90.07 325 | 89.66 367 | 82.28 247 | 85.91 214 | 89.01 336 | 61.30 333 | 97.06 248 | 76.58 296 | 92.06 194 | 96.22 162 |
|
| D2MVS | | | 85.90 262 | 85.09 262 | 88.35 283 | 90.79 328 | 77.42 284 | 91.83 282 | 95.70 167 | 80.77 285 | 80.08 333 | 90.02 318 | 66.74 293 | 96.37 292 | 81.88 226 | 87.97 256 | 91.26 352 |
|
| pmmvs5 | | | 84.21 294 | 82.84 304 | 88.34 285 | 88.95 361 | 76.94 290 | 92.41 262 | 91.91 316 | 75.63 345 | 80.28 328 | 91.18 282 | 64.59 310 | 95.57 327 | 77.09 291 | 83.47 299 | 92.53 322 |
|
| mamv4 | | | 90.92 105 | 91.78 88 | 88.33 286 | 95.67 127 | 70.75 369 | 92.92 249 | 96.02 142 | 81.90 258 | 88.11 162 | 95.34 126 | 85.88 51 | 96.97 254 | 95.22 27 | 95.01 136 | 97.26 113 |
|
| LCM-MVSNet-Re | | | 88.30 181 | 88.32 163 | 88.27 287 | 94.71 173 | 72.41 351 | 93.15 238 | 90.98 339 | 87.77 117 | 79.25 343 | 91.96 256 | 78.35 148 | 95.75 322 | 83.04 199 | 95.62 120 | 96.65 147 |
|
| CostFormer | | | 85.77 266 | 84.94 266 | 88.26 288 | 91.16 311 | 72.58 349 | 89.47 338 | 91.04 338 | 76.26 340 | 86.45 201 | 89.97 320 | 70.74 240 | 96.86 262 | 82.35 213 | 87.07 271 | 95.34 202 |
|
| ITE_SJBPF | | | | | 88.24 289 | 91.88 283 | 77.05 289 | | 92.92 283 | 85.54 170 | 80.13 332 | 93.30 207 | 57.29 360 | 96.20 300 | 72.46 327 | 84.71 285 | 91.49 347 |
|
| PVSNet | | 78.82 18 | 85.55 268 | 84.65 272 | 88.23 290 | 94.72 172 | 71.93 352 | 87.12 371 | 92.75 290 | 78.80 311 | 84.95 248 | 90.53 303 | 64.43 311 | 96.71 266 | 74.74 313 | 93.86 159 | 96.06 174 |
|
| IterMVS-SCA-FT | | | 85.45 270 | 84.53 276 | 88.18 291 | 91.71 290 | 76.87 291 | 90.19 322 | 92.65 293 | 85.40 173 | 81.44 314 | 90.54 302 | 66.79 291 | 95.00 342 | 81.04 239 | 81.05 331 | 92.66 319 |
|
| EPNet_dtu | | | 86.49 253 | 85.94 238 | 88.14 292 | 90.24 343 | 72.82 341 | 94.11 187 | 92.20 304 | 86.66 143 | 79.42 342 | 92.36 238 | 73.52 208 | 95.81 319 | 71.26 331 | 93.66 161 | 95.80 185 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Patchmtry | | | 82.71 309 | 80.93 315 | 88.06 293 | 90.05 347 | 76.37 301 | 84.74 389 | 91.96 314 | 72.28 379 | 81.32 317 | 87.87 357 | 71.03 235 | 95.50 332 | 68.97 349 | 80.15 346 | 92.32 331 |
|
| test_vis1_n_1920 | | | 89.39 151 | 89.84 123 | 88.04 294 | 92.97 254 | 72.64 346 | 94.71 148 | 96.03 141 | 86.18 154 | 91.94 104 | 96.56 81 | 61.63 328 | 95.74 323 | 93.42 47 | 95.11 135 | 95.74 187 |
|
| DTE-MVSNet | | | 86.11 259 | 85.48 252 | 87.98 295 | 91.65 294 | 74.92 317 | 94.93 132 | 95.75 162 | 87.36 126 | 82.26 303 | 93.04 218 | 72.85 217 | 95.82 318 | 74.04 317 | 77.46 364 | 93.20 301 |
|
| PMMVS | | | 85.71 267 | 84.96 265 | 87.95 296 | 88.90 362 | 77.09 288 | 88.68 350 | 90.06 357 | 72.32 378 | 86.47 198 | 90.76 297 | 72.15 225 | 94.40 347 | 81.78 229 | 93.49 167 | 92.36 329 |
|
| GG-mvs-BLEND | | | | | 87.94 297 | 89.73 354 | 77.91 270 | 87.80 360 | 78.23 409 | | 80.58 325 | 83.86 384 | 59.88 347 | 95.33 336 | 71.20 332 | 92.22 192 | 90.60 365 |
|
| MonoMVSNet | | | 86.89 236 | 86.55 211 | 87.92 298 | 89.46 357 | 73.75 329 | 94.12 185 | 93.10 278 | 87.82 116 | 85.10 244 | 90.76 297 | 69.59 258 | 94.94 343 | 86.47 157 | 82.50 310 | 95.07 209 |
|
| reproduce_monomvs | | | 86.37 256 | 85.87 240 | 87.87 299 | 93.66 230 | 73.71 330 | 93.44 224 | 95.02 210 | 88.61 88 | 82.64 300 | 91.94 257 | 57.88 358 | 96.68 267 | 89.96 114 | 79.71 352 | 93.22 299 |
|
| pmmvs-eth3d | | | 80.97 331 | 78.72 343 | 87.74 300 | 84.99 391 | 79.97 225 | 90.11 324 | 91.65 321 | 75.36 347 | 73.51 379 | 86.03 374 | 59.45 349 | 93.96 357 | 75.17 308 | 72.21 378 | 89.29 378 |
|
| MS-PatchMatch | | | 85.05 281 | 84.16 279 | 87.73 301 | 91.42 300 | 78.51 255 | 91.25 298 | 93.53 270 | 77.50 327 | 80.15 330 | 91.58 271 | 61.99 325 | 95.51 330 | 75.69 303 | 94.35 153 | 89.16 380 |
|
| mmtdpeth | | | 85.04 283 | 84.15 280 | 87.72 302 | 93.11 245 | 75.74 309 | 94.37 173 | 92.83 286 | 84.98 183 | 89.31 146 | 86.41 371 | 61.61 330 | 97.14 242 | 92.63 62 | 62.11 399 | 90.29 367 |
|
| test_0402 | | | 81.30 327 | 79.17 337 | 87.67 303 | 93.19 242 | 78.17 265 | 92.98 246 | 91.71 317 | 75.25 349 | 76.02 366 | 90.31 308 | 59.23 351 | 96.37 292 | 50.22 402 | 83.63 297 | 88.47 387 |
|
| IterMVS | | | 84.88 285 | 83.98 285 | 87.60 304 | 91.44 297 | 76.03 304 | 90.18 323 | 92.41 296 | 83.24 227 | 81.06 320 | 90.42 307 | 66.60 294 | 94.28 351 | 79.46 263 | 80.98 336 | 92.48 323 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Patchmatch-test | | | 81.37 325 | 79.30 333 | 87.58 305 | 90.92 323 | 74.16 327 | 80.99 401 | 87.68 379 | 70.52 386 | 76.63 361 | 88.81 340 | 71.21 232 | 92.76 372 | 60.01 390 | 86.93 272 | 95.83 183 |
|
| EPMVS | | | 83.90 301 | 82.70 305 | 87.51 306 | 90.23 344 | 72.67 344 | 88.62 351 | 81.96 400 | 81.37 275 | 85.01 247 | 88.34 348 | 66.31 298 | 94.45 345 | 75.30 307 | 87.12 269 | 95.43 197 |
|
| ADS-MVSNet2 | | | 81.66 320 | 79.71 329 | 87.50 307 | 91.35 303 | 74.19 326 | 83.33 394 | 88.48 373 | 72.90 373 | 82.24 304 | 85.77 377 | 64.98 308 | 93.20 368 | 64.57 376 | 83.74 294 | 95.12 207 |
|
| OurMVSNet-221017-0 | | | 85.35 274 | 84.64 273 | 87.49 308 | 90.77 329 | 72.59 348 | 94.01 198 | 94.40 242 | 84.72 193 | 79.62 341 | 93.17 212 | 61.91 326 | 96.72 264 | 81.99 223 | 81.16 327 | 93.16 303 |
|
| tpm2 | | | 84.08 296 | 82.94 300 | 87.48 309 | 91.39 301 | 71.27 361 | 89.23 342 | 90.37 350 | 71.95 380 | 84.64 253 | 89.33 331 | 67.30 283 | 96.55 280 | 75.17 308 | 87.09 270 | 94.63 227 |
|
| RPSCF | | | 85.07 280 | 84.27 277 | 87.48 309 | 92.91 256 | 70.62 371 | 91.69 287 | 92.46 295 | 76.20 341 | 82.67 299 | 95.22 131 | 63.94 314 | 97.29 229 | 77.51 286 | 85.80 277 | 94.53 234 |
|
| WBMVS | | | 84.97 284 | 84.18 278 | 87.34 311 | 94.14 207 | 71.62 360 | 90.20 321 | 92.35 297 | 81.61 270 | 84.06 272 | 90.76 297 | 61.82 327 | 96.52 281 | 78.93 271 | 83.81 292 | 93.89 263 |
|
| miper_lstm_enhance | | | 85.27 277 | 84.59 274 | 87.31 312 | 91.28 306 | 74.63 320 | 87.69 365 | 94.09 256 | 81.20 281 | 81.36 316 | 89.85 323 | 74.97 186 | 94.30 350 | 81.03 241 | 79.84 351 | 93.01 309 |
|
| FMVSNet5 | | | 81.52 323 | 79.60 330 | 87.27 313 | 91.17 309 | 77.95 269 | 91.49 291 | 92.26 303 | 76.87 333 | 76.16 363 | 87.91 356 | 51.67 382 | 92.34 375 | 67.74 358 | 81.16 327 | 91.52 346 |
|
| USDC | | | 82.76 308 | 81.26 313 | 87.26 314 | 91.17 309 | 74.55 321 | 89.27 340 | 93.39 273 | 78.26 322 | 75.30 370 | 92.08 251 | 54.43 375 | 96.63 269 | 71.64 329 | 85.79 278 | 90.61 363 |
|
| test-LLR | | | 85.87 263 | 85.41 253 | 87.25 315 | 90.95 319 | 71.67 358 | 89.55 334 | 89.88 363 | 83.41 221 | 84.54 256 | 87.95 354 | 67.25 284 | 95.11 339 | 81.82 227 | 93.37 172 | 94.97 212 |
|
| test-mter | | | 84.54 291 | 83.64 289 | 87.25 315 | 90.95 319 | 71.67 358 | 89.55 334 | 89.88 363 | 79.17 303 | 84.54 256 | 87.95 354 | 55.56 366 | 95.11 339 | 81.82 227 | 93.37 172 | 94.97 212 |
|
| JIA-IIPM | | | 81.04 328 | 78.98 341 | 87.25 315 | 88.64 363 | 73.48 334 | 81.75 400 | 89.61 368 | 73.19 370 | 82.05 307 | 73.71 403 | 66.07 303 | 95.87 315 | 71.18 334 | 84.60 286 | 92.41 327 |
|
| TDRefinement | | | 79.81 341 | 77.34 346 | 87.22 318 | 79.24 406 | 75.48 312 | 93.12 239 | 92.03 309 | 76.45 336 | 75.01 371 | 91.58 271 | 49.19 388 | 96.44 288 | 70.22 342 | 69.18 386 | 89.75 372 |
|
| tpmvs | | | 83.35 307 | 82.07 306 | 87.20 319 | 91.07 315 | 71.00 367 | 88.31 355 | 91.70 318 | 78.91 306 | 80.49 327 | 87.18 366 | 69.30 265 | 97.08 245 | 68.12 357 | 83.56 298 | 93.51 289 |
|
| ppachtmachnet_test | | | 81.84 316 | 80.07 324 | 87.15 320 | 88.46 367 | 74.43 324 | 89.04 346 | 92.16 305 | 75.33 348 | 77.75 353 | 88.99 337 | 66.20 300 | 95.37 335 | 65.12 373 | 77.60 362 | 91.65 342 |
|
| dmvs_re | | | 84.20 295 | 83.22 296 | 87.14 321 | 91.83 286 | 77.81 275 | 90.04 326 | 90.19 353 | 84.70 194 | 81.49 312 | 89.17 333 | 64.37 312 | 91.13 386 | 71.58 330 | 85.65 279 | 92.46 325 |
|
| tpm cat1 | | | 81.96 314 | 80.27 320 | 87.01 322 | 91.09 314 | 71.02 366 | 87.38 369 | 91.53 326 | 66.25 394 | 80.17 329 | 86.35 373 | 68.22 280 | 96.15 303 | 69.16 348 | 82.29 313 | 93.86 269 |
|
| test_fmvs1_n | | | 87.03 232 | 87.04 193 | 86.97 323 | 89.74 353 | 71.86 353 | 94.55 156 | 94.43 240 | 78.47 316 | 91.95 103 | 95.50 121 | 51.16 384 | 93.81 358 | 93.02 54 | 94.56 147 | 95.26 203 |
|
| OpenMVS_ROB |  | 74.94 19 | 79.51 344 | 77.03 351 | 86.93 324 | 87.00 379 | 76.23 303 | 92.33 268 | 90.74 346 | 68.93 390 | 74.52 375 | 88.23 351 | 49.58 387 | 96.62 270 | 57.64 395 | 84.29 288 | 87.94 390 |
|
| SixPastTwentyTwo | | | 83.91 300 | 82.90 302 | 86.92 325 | 90.99 317 | 70.67 370 | 93.48 221 | 91.99 311 | 85.54 170 | 77.62 355 | 92.11 249 | 60.59 342 | 96.87 261 | 76.05 302 | 77.75 361 | 93.20 301 |
|
| ADS-MVSNet | | | 81.56 322 | 79.78 326 | 86.90 326 | 91.35 303 | 71.82 354 | 83.33 394 | 89.16 371 | 72.90 373 | 82.24 304 | 85.77 377 | 64.98 308 | 93.76 359 | 64.57 376 | 83.74 294 | 95.12 207 |
|
| PatchT | | | 82.68 310 | 81.27 312 | 86.89 327 | 90.09 346 | 70.94 368 | 84.06 391 | 90.15 354 | 74.91 353 | 85.63 221 | 83.57 386 | 69.37 261 | 94.87 344 | 65.19 371 | 88.50 246 | 94.84 221 |
|
| tpm | | | 84.73 288 | 84.02 283 | 86.87 328 | 90.33 341 | 68.90 378 | 89.06 345 | 89.94 360 | 80.85 284 | 85.75 217 | 89.86 322 | 68.54 277 | 95.97 309 | 77.76 282 | 84.05 291 | 95.75 186 |
|
| Patchmatch-RL test | | | 81.67 319 | 79.96 325 | 86.81 329 | 85.42 389 | 71.23 362 | 82.17 399 | 87.50 380 | 78.47 316 | 77.19 357 | 82.50 393 | 70.81 239 | 93.48 363 | 82.66 208 | 72.89 377 | 95.71 190 |
|
| test_vis1_n | | | 86.56 248 | 86.49 215 | 86.78 330 | 88.51 364 | 72.69 343 | 94.68 149 | 93.78 267 | 79.55 299 | 90.70 124 | 95.31 127 | 48.75 389 | 93.28 366 | 93.15 51 | 93.99 156 | 94.38 245 |
|
| test_fmvs1 | | | 87.34 215 | 87.56 179 | 86.68 331 | 90.59 335 | 71.80 355 | 94.01 198 | 94.04 257 | 78.30 320 | 91.97 101 | 95.22 131 | 56.28 364 | 93.71 360 | 92.89 55 | 94.71 141 | 94.52 235 |
|
| MDA-MVSNet-bldmvs | | | 78.85 348 | 76.31 353 | 86.46 332 | 89.76 352 | 73.88 328 | 88.79 348 | 90.42 349 | 79.16 304 | 59.18 403 | 88.33 349 | 60.20 344 | 94.04 353 | 62.00 383 | 68.96 387 | 91.48 348 |
|
| mvs5depth | | | 80.98 330 | 79.15 338 | 86.45 333 | 84.57 392 | 73.29 336 | 87.79 361 | 91.67 320 | 80.52 287 | 82.20 306 | 89.72 325 | 55.14 371 | 95.93 311 | 73.93 320 | 66.83 391 | 90.12 369 |
|
| tpmrst | | | 85.35 274 | 84.99 263 | 86.43 334 | 90.88 326 | 67.88 382 | 88.71 349 | 91.43 329 | 80.13 291 | 86.08 211 | 88.80 342 | 73.05 215 | 96.02 307 | 82.48 209 | 83.40 302 | 95.40 198 |
|
| TESTMET0.1,1 | | | 83.74 303 | 82.85 303 | 86.42 335 | 89.96 349 | 71.21 363 | 89.55 334 | 87.88 376 | 77.41 328 | 83.37 290 | 87.31 362 | 56.71 362 | 93.65 362 | 80.62 249 | 92.85 183 | 94.40 244 |
|
| our_test_3 | | | 81.93 315 | 80.46 318 | 86.33 336 | 88.46 367 | 73.48 334 | 88.46 353 | 91.11 334 | 76.46 335 | 76.69 360 | 88.25 350 | 66.89 289 | 94.36 348 | 68.75 350 | 79.08 357 | 91.14 355 |
|
| lessismore_v0 | | | | | 86.04 337 | 88.46 367 | 68.78 379 | | 80.59 403 | | 73.01 382 | 90.11 316 | 55.39 367 | 96.43 289 | 75.06 310 | 65.06 394 | 92.90 312 |
|
| TinyColmap | | | 79.76 342 | 77.69 345 | 85.97 338 | 91.71 290 | 73.12 337 | 89.55 334 | 90.36 351 | 75.03 351 | 72.03 385 | 90.19 312 | 46.22 396 | 96.19 302 | 63.11 380 | 81.03 332 | 88.59 386 |
|
| KD-MVS_2432*1600 | | | 78.50 349 | 76.02 356 | 85.93 339 | 86.22 382 | 74.47 322 | 84.80 387 | 92.33 298 | 79.29 301 | 76.98 358 | 85.92 375 | 53.81 378 | 93.97 355 | 67.39 359 | 57.42 404 | 89.36 374 |
|
| miper_refine_blended | | | 78.50 349 | 76.02 356 | 85.93 339 | 86.22 382 | 74.47 322 | 84.80 387 | 92.33 298 | 79.29 301 | 76.98 358 | 85.92 375 | 53.81 378 | 93.97 355 | 67.39 359 | 57.42 404 | 89.36 374 |
|
| K. test v3 | | | 81.59 321 | 80.15 323 | 85.91 341 | 89.89 351 | 69.42 377 | 92.57 259 | 87.71 378 | 85.56 169 | 73.44 380 | 89.71 326 | 55.58 365 | 95.52 329 | 77.17 289 | 69.76 383 | 92.78 317 |
|
| mvsany_test1 | | | 85.42 272 | 85.30 258 | 85.77 342 | 87.95 375 | 75.41 313 | 87.61 368 | 80.97 402 | 76.82 334 | 88.68 155 | 95.83 107 | 77.44 156 | 90.82 388 | 85.90 164 | 86.51 273 | 91.08 359 |
|
| MIMVSNet1 | | | 79.38 345 | 77.28 347 | 85.69 343 | 86.35 381 | 73.67 331 | 91.61 289 | 92.75 290 | 78.11 325 | 72.64 383 | 88.12 352 | 48.16 390 | 91.97 380 | 60.32 387 | 77.49 363 | 91.43 349 |
|
| UWE-MVS | | | 83.69 304 | 83.09 297 | 85.48 344 | 93.06 248 | 65.27 392 | 90.92 305 | 86.14 384 | 79.90 294 | 86.26 207 | 90.72 300 | 57.17 361 | 95.81 319 | 71.03 337 | 92.62 186 | 95.35 201 |
|
| UnsupCasMVSNet_eth | | | 80.07 338 | 78.27 344 | 85.46 345 | 85.24 390 | 72.63 347 | 88.45 354 | 94.87 223 | 82.99 233 | 71.64 387 | 88.07 353 | 56.34 363 | 91.75 381 | 73.48 323 | 63.36 397 | 92.01 337 |
|
| CL-MVSNet_self_test | | | 81.74 318 | 80.53 316 | 85.36 346 | 85.96 384 | 72.45 350 | 90.25 316 | 93.07 280 | 81.24 279 | 79.85 338 | 87.29 363 | 70.93 237 | 92.52 373 | 66.95 362 | 69.23 385 | 91.11 357 |
|
| MDA-MVSNet_test_wron | | | 79.21 347 | 77.19 349 | 85.29 347 | 88.22 371 | 72.77 342 | 85.87 378 | 90.06 357 | 74.34 358 | 62.62 400 | 87.56 360 | 66.14 301 | 91.99 379 | 66.90 366 | 73.01 375 | 91.10 358 |
|
| YYNet1 | | | 79.22 346 | 77.20 348 | 85.28 348 | 88.20 372 | 72.66 345 | 85.87 378 | 90.05 359 | 74.33 359 | 62.70 398 | 87.61 359 | 66.09 302 | 92.03 377 | 66.94 363 | 72.97 376 | 91.15 354 |
|
| WB-MVSnew | | | 83.77 302 | 83.28 293 | 85.26 349 | 91.48 296 | 71.03 365 | 91.89 279 | 87.98 375 | 78.91 306 | 84.78 250 | 90.22 310 | 69.11 270 | 94.02 354 | 64.70 375 | 90.44 212 | 90.71 361 |
|
| dp | | | 81.47 324 | 80.23 321 | 85.17 350 | 89.92 350 | 65.49 390 | 86.74 373 | 90.10 356 | 76.30 339 | 81.10 318 | 87.12 367 | 62.81 321 | 95.92 312 | 68.13 356 | 79.88 349 | 94.09 256 |
|
| UnsupCasMVSNet_bld | | | 76.23 358 | 73.27 362 | 85.09 351 | 83.79 394 | 72.92 339 | 85.65 381 | 93.47 272 | 71.52 381 | 68.84 393 | 79.08 398 | 49.77 386 | 93.21 367 | 66.81 367 | 60.52 401 | 89.13 382 |
|
| Anonymous20231206 | | | 81.03 329 | 79.77 328 | 84.82 352 | 87.85 376 | 70.26 373 | 91.42 292 | 92.08 307 | 73.67 365 | 77.75 353 | 89.25 332 | 62.43 323 | 93.08 369 | 61.50 385 | 82.00 318 | 91.12 356 |
|
| test0.0.03 1 | | | 82.41 312 | 81.69 308 | 84.59 353 | 88.23 370 | 72.89 340 | 90.24 318 | 87.83 377 | 83.41 221 | 79.86 337 | 89.78 324 | 67.25 284 | 88.99 397 | 65.18 372 | 83.42 301 | 91.90 339 |
|
| CMPMVS |  | 59.16 21 | 80.52 333 | 79.20 336 | 84.48 354 | 83.98 393 | 67.63 385 | 89.95 329 | 93.84 265 | 64.79 397 | 66.81 395 | 91.14 285 | 57.93 357 | 95.17 337 | 76.25 299 | 88.10 252 | 90.65 362 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| CVMVSNet | | | 84.69 290 | 84.79 270 | 84.37 355 | 91.84 284 | 64.92 393 | 93.70 215 | 91.47 328 | 66.19 395 | 86.16 210 | 95.28 128 | 67.18 286 | 93.33 365 | 80.89 244 | 90.42 214 | 94.88 220 |
|
| PVSNet_0 | | 73.20 20 | 77.22 354 | 74.83 360 | 84.37 355 | 90.70 333 | 71.10 364 | 83.09 396 | 89.67 366 | 72.81 375 | 73.93 378 | 83.13 388 | 60.79 341 | 93.70 361 | 68.54 351 | 50.84 409 | 88.30 388 |
|
| LF4IMVS | | | 80.37 336 | 79.07 340 | 84.27 357 | 86.64 380 | 69.87 376 | 89.39 339 | 91.05 337 | 76.38 337 | 74.97 372 | 90.00 319 | 47.85 391 | 94.25 352 | 74.55 316 | 80.82 338 | 88.69 385 |
|
| Anonymous20240521 | | | 80.44 335 | 79.21 335 | 84.11 358 | 85.75 387 | 67.89 381 | 92.86 252 | 93.23 276 | 75.61 346 | 75.59 369 | 87.47 361 | 50.03 385 | 94.33 349 | 71.14 335 | 81.21 326 | 90.12 369 |
|
| PM-MVS | | | 78.11 351 | 76.12 355 | 84.09 359 | 83.54 395 | 70.08 374 | 88.97 347 | 85.27 391 | 79.93 293 | 74.73 374 | 86.43 370 | 34.70 407 | 93.48 363 | 79.43 266 | 72.06 379 | 88.72 384 |
|
| test_fmvs2 | | | 83.98 297 | 84.03 282 | 83.83 360 | 87.16 378 | 67.53 386 | 93.93 204 | 92.89 284 | 77.62 326 | 86.89 191 | 93.53 200 | 47.18 393 | 92.02 378 | 90.54 109 | 86.51 273 | 91.93 338 |
|
| testgi | | | 80.94 332 | 80.20 322 | 83.18 361 | 87.96 374 | 66.29 387 | 91.28 296 | 90.70 347 | 83.70 212 | 78.12 350 | 92.84 222 | 51.37 383 | 90.82 388 | 63.34 379 | 82.46 311 | 92.43 326 |
|
| KD-MVS_self_test | | | 80.20 337 | 79.24 334 | 83.07 362 | 85.64 388 | 65.29 391 | 91.01 304 | 93.93 259 | 78.71 314 | 76.32 362 | 86.40 372 | 59.20 352 | 92.93 371 | 72.59 326 | 69.35 384 | 91.00 360 |
|
| testing3 | | | 80.46 334 | 79.59 331 | 83.06 363 | 93.44 237 | 64.64 394 | 93.33 227 | 85.47 389 | 84.34 200 | 79.93 336 | 90.84 293 | 44.35 399 | 92.39 374 | 57.06 397 | 87.56 262 | 92.16 335 |
|
| ambc | | | | | 83.06 363 | 79.99 404 | 63.51 398 | 77.47 407 | 92.86 285 | | 74.34 377 | 84.45 383 | 28.74 408 | 95.06 341 | 73.06 325 | 68.89 388 | 90.61 363 |
|
| test20.03 | | | 79.95 340 | 79.08 339 | 82.55 365 | 85.79 386 | 67.74 384 | 91.09 302 | 91.08 335 | 81.23 280 | 74.48 376 | 89.96 321 | 61.63 328 | 90.15 390 | 60.08 388 | 76.38 369 | 89.76 371 |
|
| MVStest1 | | | 72.91 362 | 69.70 367 | 82.54 366 | 78.14 407 | 73.05 338 | 88.21 356 | 86.21 383 | 60.69 401 | 64.70 396 | 90.53 303 | 46.44 395 | 85.70 404 | 58.78 393 | 53.62 406 | 88.87 383 |
|
| test_vis1_rt | | | 77.96 352 | 76.46 352 | 82.48 367 | 85.89 385 | 71.74 357 | 90.25 316 | 78.89 406 | 71.03 385 | 71.30 388 | 81.35 395 | 42.49 401 | 91.05 387 | 84.55 181 | 82.37 312 | 84.65 393 |
|
| EU-MVSNet | | | 81.32 326 | 80.95 314 | 82.42 368 | 88.50 366 | 63.67 397 | 93.32 228 | 91.33 330 | 64.02 398 | 80.57 326 | 92.83 223 | 61.21 337 | 92.27 376 | 76.34 298 | 80.38 345 | 91.32 350 |
|
| myMVS_eth3d | | | 79.67 343 | 78.79 342 | 82.32 369 | 91.92 280 | 64.08 395 | 89.75 332 | 87.40 381 | 81.72 265 | 78.82 345 | 87.20 364 | 45.33 397 | 91.29 384 | 59.09 392 | 87.84 259 | 91.60 344 |
|
| ttmdpeth | | | 76.55 356 | 74.64 361 | 82.29 370 | 82.25 400 | 67.81 383 | 89.76 331 | 85.69 387 | 70.35 387 | 75.76 367 | 91.69 264 | 46.88 394 | 89.77 392 | 66.16 368 | 63.23 398 | 89.30 376 |
|
| pmmvs3 | | | 71.81 365 | 68.71 368 | 81.11 371 | 75.86 409 | 70.42 372 | 86.74 373 | 83.66 395 | 58.95 404 | 68.64 394 | 80.89 396 | 36.93 405 | 89.52 394 | 63.10 381 | 63.59 396 | 83.39 394 |
|
| Syy-MVS | | | 80.07 338 | 79.78 326 | 80.94 372 | 91.92 280 | 59.93 403 | 89.75 332 | 87.40 381 | 81.72 265 | 78.82 345 | 87.20 364 | 66.29 299 | 91.29 384 | 47.06 404 | 87.84 259 | 91.60 344 |
|
| new-patchmatchnet | | | 76.41 357 | 75.17 359 | 80.13 373 | 82.65 399 | 59.61 404 | 87.66 366 | 91.08 335 | 78.23 323 | 69.85 391 | 83.22 387 | 54.76 372 | 91.63 383 | 64.14 378 | 64.89 395 | 89.16 380 |
|
| mvsany_test3 | | | 74.95 359 | 73.26 363 | 80.02 374 | 74.61 410 | 63.16 399 | 85.53 382 | 78.42 407 | 74.16 360 | 74.89 373 | 86.46 369 | 36.02 406 | 89.09 396 | 82.39 212 | 66.91 390 | 87.82 391 |
|
| test_fmvs3 | | | 77.67 353 | 77.16 350 | 79.22 375 | 79.52 405 | 61.14 401 | 92.34 267 | 91.64 322 | 73.98 362 | 78.86 344 | 86.59 368 | 27.38 411 | 87.03 399 | 88.12 135 | 75.97 371 | 89.50 373 |
|
| DSMNet-mixed | | | 76.94 355 | 76.29 354 | 78.89 376 | 83.10 397 | 56.11 412 | 87.78 362 | 79.77 404 | 60.65 402 | 75.64 368 | 88.71 343 | 61.56 331 | 88.34 398 | 60.07 389 | 89.29 235 | 92.21 334 |
|
| EGC-MVSNET | | | 61.97 373 | 56.37 378 | 78.77 377 | 89.63 355 | 73.50 333 | 89.12 344 | 82.79 397 | 0.21 423 | 1.24 424 | 84.80 381 | 39.48 402 | 90.04 391 | 44.13 406 | 75.94 372 | 72.79 405 |
|
| new_pmnet | | | 72.15 363 | 70.13 366 | 78.20 378 | 82.95 398 | 65.68 388 | 83.91 392 | 82.40 399 | 62.94 400 | 64.47 397 | 79.82 397 | 42.85 400 | 86.26 403 | 57.41 396 | 74.44 374 | 82.65 398 |
|
| MVS-HIRNet | | | 73.70 361 | 72.20 364 | 78.18 379 | 91.81 287 | 56.42 411 | 82.94 397 | 82.58 398 | 55.24 405 | 68.88 392 | 66.48 408 | 55.32 369 | 95.13 338 | 58.12 394 | 88.42 248 | 83.01 396 |
|
| LCM-MVSNet | | | 66.00 370 | 62.16 375 | 77.51 380 | 64.51 420 | 58.29 406 | 83.87 393 | 90.90 342 | 48.17 409 | 54.69 406 | 73.31 404 | 16.83 420 | 86.75 400 | 65.47 370 | 61.67 400 | 87.48 392 |
|
| APD_test1 | | | 69.04 366 | 66.26 372 | 77.36 381 | 80.51 403 | 62.79 400 | 85.46 383 | 83.51 396 | 54.11 407 | 59.14 404 | 84.79 382 | 23.40 414 | 89.61 393 | 55.22 398 | 70.24 382 | 79.68 402 |
|
| test_f | | | 71.95 364 | 70.87 365 | 75.21 382 | 74.21 412 | 59.37 405 | 85.07 386 | 85.82 386 | 65.25 396 | 70.42 390 | 83.13 388 | 23.62 412 | 82.93 410 | 78.32 276 | 71.94 380 | 83.33 395 |
|
| ANet_high | | | 58.88 377 | 54.22 382 | 72.86 383 | 56.50 423 | 56.67 408 | 80.75 402 | 86.00 385 | 73.09 372 | 37.39 415 | 64.63 411 | 22.17 415 | 79.49 413 | 43.51 407 | 23.96 417 | 82.43 399 |
|
| test_vis3_rt | | | 65.12 371 | 62.60 373 | 72.69 384 | 71.44 413 | 60.71 402 | 87.17 370 | 65.55 417 | 63.80 399 | 53.22 407 | 65.65 410 | 14.54 421 | 89.44 395 | 76.65 293 | 65.38 393 | 67.91 408 |
|
| FPMVS | | | 64.63 372 | 62.55 374 | 70.88 385 | 70.80 414 | 56.71 407 | 84.42 390 | 84.42 393 | 51.78 408 | 49.57 408 | 81.61 394 | 23.49 413 | 81.48 411 | 40.61 411 | 76.25 370 | 74.46 404 |
|
| dmvs_testset | | | 74.57 360 | 75.81 358 | 70.86 386 | 87.72 377 | 40.47 421 | 87.05 372 | 77.90 411 | 82.75 238 | 71.15 389 | 85.47 379 | 67.98 281 | 84.12 408 | 45.26 405 | 76.98 368 | 88.00 389 |
|
| N_pmnet | | | 68.89 367 | 68.44 369 | 70.23 387 | 89.07 360 | 28.79 426 | 88.06 357 | 19.50 426 | 69.47 389 | 71.86 386 | 84.93 380 | 61.24 336 | 91.75 381 | 54.70 399 | 77.15 365 | 90.15 368 |
|
| testf1 | | | 59.54 375 | 56.11 379 | 69.85 388 | 69.28 415 | 56.61 409 | 80.37 403 | 76.55 414 | 42.58 412 | 45.68 411 | 75.61 399 | 11.26 422 | 84.18 406 | 43.20 408 | 60.44 402 | 68.75 406 |
|
| APD_test2 | | | 59.54 375 | 56.11 379 | 69.85 388 | 69.28 415 | 56.61 409 | 80.37 403 | 76.55 414 | 42.58 412 | 45.68 411 | 75.61 399 | 11.26 422 | 84.18 406 | 43.20 408 | 60.44 402 | 68.75 406 |
|
| WB-MVS | | | 67.92 368 | 67.49 370 | 69.21 390 | 81.09 401 | 41.17 420 | 88.03 358 | 78.00 410 | 73.50 367 | 62.63 399 | 83.11 390 | 63.94 314 | 86.52 401 | 25.66 416 | 51.45 408 | 79.94 401 |
|
| PMMVS2 | | | 59.60 374 | 56.40 377 | 69.21 390 | 68.83 417 | 46.58 416 | 73.02 411 | 77.48 412 | 55.07 406 | 49.21 409 | 72.95 405 | 17.43 419 | 80.04 412 | 49.32 403 | 44.33 412 | 80.99 400 |
|
| SSC-MVS | | | 67.06 369 | 66.56 371 | 68.56 392 | 80.54 402 | 40.06 422 | 87.77 363 | 77.37 413 | 72.38 377 | 61.75 401 | 82.66 392 | 63.37 317 | 86.45 402 | 24.48 417 | 48.69 411 | 79.16 403 |
|
| Gipuma |  | | 57.99 379 | 54.91 381 | 67.24 393 | 88.51 364 | 65.59 389 | 52.21 414 | 90.33 352 | 43.58 411 | 42.84 414 | 51.18 415 | 20.29 417 | 85.07 405 | 34.77 412 | 70.45 381 | 51.05 414 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 47.18 22 | 52.22 381 | 48.46 385 | 63.48 394 | 45.72 425 | 46.20 417 | 73.41 410 | 78.31 408 | 41.03 414 | 30.06 417 | 65.68 409 | 6.05 424 | 83.43 409 | 30.04 414 | 65.86 392 | 60.80 409 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| dongtai | | | 58.82 378 | 58.24 376 | 60.56 395 | 83.13 396 | 45.09 419 | 82.32 398 | 48.22 425 | 67.61 392 | 61.70 402 | 69.15 406 | 38.75 403 | 76.05 414 | 32.01 413 | 41.31 413 | 60.55 410 |
|
| MVE |  | 39.65 23 | 43.39 383 | 38.59 389 | 57.77 396 | 56.52 422 | 48.77 415 | 55.38 413 | 58.64 421 | 29.33 417 | 28.96 418 | 52.65 414 | 4.68 425 | 64.62 418 | 28.11 415 | 33.07 415 | 59.93 411 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 50.52 382 | 48.47 384 | 56.66 397 | 52.26 424 | 18.98 428 | 41.51 416 | 81.40 401 | 10.10 418 | 44.59 413 | 75.01 402 | 28.51 409 | 68.16 415 | 53.54 400 | 49.31 410 | 82.83 397 |
|
| DeepMVS_CX |  | | | | 56.31 398 | 74.23 411 | 51.81 414 | | 56.67 422 | 44.85 410 | 48.54 410 | 75.16 401 | 27.87 410 | 58.74 420 | 40.92 410 | 52.22 407 | 58.39 412 |
|
| kuosan | | | 53.51 380 | 53.30 383 | 54.13 399 | 76.06 408 | 45.36 418 | 80.11 405 | 48.36 424 | 59.63 403 | 54.84 405 | 63.43 412 | 37.41 404 | 62.07 419 | 20.73 419 | 39.10 414 | 54.96 413 |
|
| E-PMN | | | 43.23 384 | 42.29 386 | 46.03 400 | 65.58 419 | 37.41 423 | 73.51 409 | 64.62 418 | 33.99 415 | 28.47 419 | 47.87 416 | 19.90 418 | 67.91 416 | 22.23 418 | 24.45 416 | 32.77 415 |
|
| EMVS | | | 42.07 385 | 41.12 387 | 44.92 401 | 63.45 421 | 35.56 425 | 73.65 408 | 63.48 419 | 33.05 416 | 26.88 420 | 45.45 417 | 21.27 416 | 67.14 417 | 19.80 420 | 23.02 418 | 32.06 416 |
|
| tmp_tt | | | 35.64 386 | 39.24 388 | 24.84 402 | 14.87 426 | 23.90 427 | 62.71 412 | 51.51 423 | 6.58 420 | 36.66 416 | 62.08 413 | 44.37 398 | 30.34 422 | 52.40 401 | 22.00 419 | 20.27 417 |
|
| wuyk23d | | | 21.27 388 | 20.48 391 | 23.63 403 | 68.59 418 | 36.41 424 | 49.57 415 | 6.85 427 | 9.37 419 | 7.89 421 | 4.46 423 | 4.03 426 | 31.37 421 | 17.47 421 | 16.07 420 | 3.12 418 |
|
| test123 | | | 8.76 390 | 11.22 393 | 1.39 404 | 0.85 428 | 0.97 429 | 85.76 380 | 0.35 429 | 0.54 422 | 2.45 423 | 8.14 422 | 0.60 427 | 0.48 423 | 2.16 423 | 0.17 422 | 2.71 419 |
|
| testmvs | | | 8.92 389 | 11.52 392 | 1.12 405 | 1.06 427 | 0.46 430 | 86.02 377 | 0.65 428 | 0.62 421 | 2.74 422 | 9.52 421 | 0.31 428 | 0.45 424 | 2.38 422 | 0.39 421 | 2.46 420 |
|
| mmdepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| monomultidepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| test_blank | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet_test | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| DCPMVS | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| cdsmvs_eth3d_5k | | | 22.14 387 | 29.52 390 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 95.76 161 | 0.00 424 | 0.00 425 | 94.29 170 | 75.66 178 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| pcd_1.5k_mvsjas | | | 6.64 392 | 8.86 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 79.70 129 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet-low-res | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uncertanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| Regformer | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| ab-mvs-re | | | 7.82 391 | 10.43 394 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 93.88 190 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| WAC-MVS | | | | | | | 64.08 395 | | | | | | | | 59.14 391 | | |
|
| FOURS1 | | | | | | 98.86 1 | 85.54 67 | 98.29 1 | 97.49 6 | 89.79 49 | 96.29 18 | | | | | | |
|
| PC_three_1452 | | | | | | | | | | 82.47 242 | 97.09 10 | 97.07 54 | 92.72 1 | 98.04 167 | 92.70 61 | 99.02 12 | 98.86 11 |
|
| test_one_0601 | | | | | | 98.58 11 | 85.83 61 | | 97.44 15 | 91.05 14 | 96.78 15 | 98.06 14 | 91.45 11 | | | | |
|
| eth-test2 | | | | | | 0.00 429 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 429 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 98.15 34 | 86.62 33 | | 97.07 48 | 83.63 214 | 94.19 47 | 96.91 60 | 87.57 31 | 99.26 45 | 91.99 83 | 98.44 53 | |
|
| RE-MVS-def | | | | 93.68 56 | | 97.92 43 | 84.57 85 | 96.28 43 | 96.76 78 | 87.46 123 | 93.75 57 | 97.43 33 | 82.94 88 | | 92.73 57 | 97.80 79 | 97.88 84 |
|
| IU-MVS | | | | | | 98.77 5 | 86.00 50 | | 96.84 68 | 81.26 278 | 97.26 7 | | | | 95.50 23 | 99.13 3 | 99.03 8 |
|
| test_241102_TWO | | | | | | | | | 97.44 15 | 90.31 28 | 97.62 5 | 98.07 12 | 91.46 10 | 99.58 10 | 95.66 17 | 99.12 6 | 98.98 10 |
|
| test_241102_ONE | | | | | | 98.77 5 | 85.99 52 | | 97.44 15 | 90.26 33 | 97.71 1 | 97.96 20 | 92.31 4 | 99.38 31 | | | |
|
| 9.14 | | | | 94.47 23 | | 97.79 52 | | 96.08 60 | 97.44 15 | 86.13 158 | 95.10 37 | 97.40 35 | 88.34 22 | 99.22 47 | 93.25 50 | 98.70 34 | |
|
| save fliter | | | | | | 97.85 49 | 85.63 66 | 95.21 116 | 96.82 71 | 89.44 57 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 11 | 98.05 16 | 92.09 6 | 99.55 16 | 95.64 19 | 99.13 3 | 99.13 2 |
|
| test0726 | | | | | | 98.78 3 | 85.93 55 | 97.19 11 | 97.47 11 | 90.27 31 | 97.64 4 | 98.13 4 | 91.47 8 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 96.12 168 |
|
| test_part2 | | | | | | 98.55 12 | 87.22 19 | | | | 96.40 17 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 71.70 228 | | | | 96.12 168 |
|
| sam_mvs | | | | | | | | | | | | | 70.60 241 | | | | |
|
| MTGPA |  | | | | | | | | 96.97 53 | | | | | | | | |
|
| test_post1 | | | | | | | | 88.00 359 | | | | 9.81 420 | 69.31 264 | 95.53 328 | 76.65 293 | | |
|
| test_post | | | | | | | | | | | | 10.29 419 | 70.57 245 | 95.91 314 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 83.76 385 | 71.53 229 | 96.48 284 | | | |
|
| MTMP | | | | | | | | 96.16 52 | 60.64 420 | | | | | | | | |
|
| gm-plane-assit | | | | | | 89.60 356 | 68.00 380 | | | 77.28 331 | | 88.99 337 | | 97.57 196 | 79.44 265 | | |
|
| test9_res | | | | | | | | | | | | | | | 91.91 87 | 98.71 32 | 98.07 72 |
|
| TEST9 | | | | | | 97.53 61 | 86.49 37 | 94.07 192 | 96.78 75 | 81.61 270 | 92.77 81 | 96.20 90 | 87.71 28 | 99.12 54 | | | |
|
| test_8 | | | | | | 97.49 63 | 86.30 45 | 94.02 197 | 96.76 78 | 81.86 261 | 92.70 85 | 96.20 90 | 87.63 29 | 99.02 64 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.54 109 | 98.68 37 | 98.27 56 |
|
| agg_prior | | | | | | 97.38 66 | 85.92 57 | | 96.72 84 | | 92.16 96 | | | 98.97 78 | | | |
|
| test_prior4 | | | | | | | 85.96 54 | 94.11 187 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 94.12 185 | | 87.67 121 | 92.63 86 | 96.39 85 | 86.62 40 | | 91.50 95 | 98.67 40 | |
|
| 旧先验2 | | | | | | | | 93.36 226 | | 71.25 383 | 94.37 43 | | | 97.13 243 | 86.74 153 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 93.11 241 | | | | | | | | | |
|
| 旧先验1 | | | | | | 96.79 79 | 81.81 169 | | 95.67 169 | | | 96.81 66 | 86.69 39 | | | 97.66 84 | 96.97 132 |
|
| æ— å…ˆéªŒ | | | | | | | | 93.28 234 | 96.26 117 | 73.95 363 | | | | 99.05 58 | 80.56 250 | | 96.59 149 |
|
| 原ACMM2 | | | | | | | | 92.94 248 | | | | | | | | | |
|
| test222 | | | | | | 96.55 88 | 81.70 171 | 92.22 272 | 95.01 211 | 68.36 391 | 90.20 132 | 96.14 95 | 80.26 122 | | | 97.80 79 | 96.05 175 |
|
| testdata2 | | | | | | | | | | | | | | 98.75 97 | 78.30 277 | | |
|
| segment_acmp | | | | | | | | | | | | | 87.16 36 | | | | |
|
| testdata1 | | | | | | | | 92.15 274 | | 87.94 109 | | | | | | | |
|
| plane_prior7 | | | | | | 94.70 174 | 82.74 147 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 94.52 184 | 82.75 145 | | | | | | 74.23 195 | | | | |
|
| plane_prior5 | | | | | | | | | 96.22 122 | | | | | 98.12 152 | 88.15 132 | 89.99 218 | 94.63 227 |
|
| plane_prior4 | | | | | | | | | | | | 94.86 147 | | | | | |
|
| plane_prior3 | | | | | | | 82.75 145 | | | 90.26 33 | 86.91 188 | | | | | | |
|
| plane_prior2 | | | | | | | | 95.85 80 | | 90.81 17 | | | | | | | |
|
| plane_prior1 | | | | | | 94.59 179 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 82.73 148 | 95.21 116 | | 89.66 54 | | | | | | 89.88 223 | |
|
| n2 | | | | | | | | | 0.00 430 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 430 | | | | | | | | |
|
| door-mid | | | | | | | | | 85.49 388 | | | | | | | | |
|
| test11 | | | | | | | | | 96.57 95 | | | | | | | | |
|
| door | | | | | | | | | 85.33 390 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 81.56 173 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 94.17 203 | | 94.39 169 | | 88.81 78 | 85.43 233 | | | | | | |
|
| ACMP_Plane | | | | | | 94.17 203 | | 94.39 169 | | 88.81 78 | 85.43 233 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.11 150 | | |
|
| HQP4-MVS | | | | | | | | | | | 85.43 233 | | | 97.96 173 | | | 94.51 237 |
|
| HQP3-MVS | | | | | | | | | 96.04 139 | | | | | | | 89.77 227 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.83 205 | | | | |
|
| NP-MVS | | | | | | 94.37 193 | 82.42 157 | | | | | 93.98 183 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 55.91 413 | 87.62 367 | | 73.32 369 | 84.59 255 | | 70.33 248 | | 74.65 314 | | 95.50 195 |
|
| MDTV_nov1_ep13 | | | | 83.56 290 | | 91.69 292 | 69.93 375 | 87.75 364 | 91.54 325 | 78.60 315 | 84.86 249 | 88.90 339 | 69.54 259 | 96.03 306 | 70.25 340 | 88.93 240 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 263 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.01 255 | |
|
| Test By Simon | | | | | | | | | | | | | 80.02 124 | | | | |
|