This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15597.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+87.14 492.42 7691.37 8495.55 795.63 12288.73 697.07 1896.77 7490.84 1684.02 26596.62 7475.95 16399.34 3487.77 13197.68 7998.59 24
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8497.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9497.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030494.60 1894.38 2595.23 1195.41 13087.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1495.00 12497.12 4187.13 12292.51 8396.30 8389.24 1799.34 3493.46 3998.62 4598.73 17
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1695.66 8796.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5398.62 21
DPM-MVS92.58 7391.74 8195.08 1596.19 9589.31 592.66 24896.56 9383.44 21391.68 10795.04 13486.60 4098.99 7085.60 16097.92 7196.93 126
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2094.36 16996.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6799.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R94.43 2494.27 3294.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5398.30 47
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3094.82 13597.17 3986.26 14592.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17498.27 52
XVS94.45 2294.32 2694.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4998.47 33
X-MVStestdata88.31 17586.13 22194.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 40385.02 5999.49 2691.99 7498.56 4998.47 33
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
alignmvs93.08 6692.50 7394.81 3195.62 12387.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 17098.15 61
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3297.48 6186.78 2595.65 8996.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3698.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 2994.07 3994.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9497.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3994.75 3598.06 3986.90 2295.88 7496.94 5585.68 16195.05 3497.18 4587.31 3599.07 5391.90 8098.61 4798.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS94.34 2794.21 3494.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
PGM-MVS93.96 4293.72 5094.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4898.32 46
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
mPP-MVS93.99 4193.78 4794.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10397.17 4683.96 7199.55 1691.44 8698.64 4498.43 38
PHI-MVS93.89 4393.65 5494.62 4096.84 7586.43 3896.69 3297.49 685.15 17593.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
TSAR-MVS + MP.94.85 1494.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3898.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CANet93.54 5193.20 6194.55 4295.65 12185.73 6394.94 12796.69 8491.89 890.69 11995.88 10281.99 10299.54 2093.14 4697.95 7098.39 39
train_agg93.44 5593.08 6294.52 4397.53 5886.49 3694.07 18596.78 7281.86 25292.77 7496.20 8787.63 2999.12 5192.14 6898.69 3697.94 74
CDPH-MVS92.83 6992.30 7594.44 4497.79 4986.11 4894.06 18796.66 8580.09 28192.77 7496.63 7386.62 3899.04 5787.40 13698.66 4198.17 60
3Dnovator86.66 591.73 8590.82 9694.44 4494.59 17286.37 4097.18 1297.02 4789.20 6084.31 26196.66 6973.74 19999.17 4786.74 14697.96 6997.79 85
SR-MVS94.23 3194.17 3794.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6898.48 30
HPM-MVScopyleft94.02 3993.88 4494.43 4698.39 2385.78 6197.25 1097.07 4586.90 13092.62 8096.80 6584.85 6399.17 4792.43 5798.65 4398.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.93.66 4993.41 5694.41 4896.59 8286.78 2594.40 16293.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 11097.83 83
test1294.34 4997.13 7086.15 4796.29 10591.04 11685.08 5799.01 6398.13 6297.86 80
ACMMPcopyleft93.24 6292.88 6794.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12897.03 5381.44 10599.51 2490.85 9895.74 11398.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS88.79 393.31 6092.99 6594.26 5196.07 10385.83 5994.89 13096.99 4889.02 6989.56 13397.37 3582.51 8999.38 3192.20 6598.30 5697.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPNet91.79 8291.02 9294.10 5290.10 33685.25 6996.03 6692.05 29892.83 387.39 17395.78 10779.39 12699.01 6388.13 12797.48 8198.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n94.60 1894.81 1693.98 5394.62 17184.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7497.96 73
DELS-MVS93.43 5893.25 5993.97 5495.42 12985.04 7093.06 23697.13 4090.74 2191.84 10195.09 13386.32 4299.21 4591.22 8898.45 5197.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon91.95 8091.28 8693.96 5598.33 2785.92 5694.66 14696.66 8582.69 23390.03 13095.82 10582.30 9399.03 5884.57 17296.48 10596.91 128
HPM-MVS_fast93.40 5993.22 6093.94 5698.36 2584.83 7497.15 1396.80 7185.77 15892.47 8597.13 4882.38 9099.07 5390.51 10398.40 5397.92 77
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5792.46 25584.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7897.86 80
SD-MVS94.96 1395.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25294.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5493.31 5793.84 5996.99 7284.84 7393.24 22997.24 3288.76 7591.60 10895.85 10386.07 4698.66 9891.91 7898.16 6098.03 70
SR-MVS-dyc-post93.82 4493.82 4593.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7597.88 78
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
APD-MVS_3200maxsize93.78 4593.77 4893.80 6297.92 4384.19 9496.30 4396.87 6286.96 12693.92 4897.47 2983.88 7298.96 7792.71 5497.87 7298.26 54
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6395.28 13485.43 6695.68 8496.43 9786.56 13796.84 1497.81 2387.56 3298.77 9297.14 696.82 9797.16 112
CSCG93.23 6393.05 6393.76 6498.04 4084.07 9696.22 4997.37 2184.15 19590.05 12995.66 11287.77 2699.15 5089.91 10898.27 5798.07 66
test_fmvsmconf0.01_n93.19 6493.02 6493.71 6589.25 34884.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8597.74 87
UA-Net92.83 6992.54 7293.68 6696.10 10084.71 7795.66 8796.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 12097.45 99
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6795.29 13384.98 7195.61 9196.28 10886.31 14396.75 1697.86 2187.40 3398.74 9597.07 897.02 9097.07 114
QAPM89.51 13588.15 16093.59 6894.92 15584.58 7996.82 2996.70 8378.43 30783.41 28096.19 9073.18 20699.30 4077.11 28196.54 10296.89 129
test_fmvsm_n_192094.71 1795.11 1093.50 6995.79 11584.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6697.17 108
casdiffmvs_mvgpermissive92.96 6892.83 6893.35 7094.59 17283.40 11695.00 12496.34 10390.30 3092.05 9296.05 9583.43 7598.15 14592.07 7095.67 11498.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set93.01 6792.92 6693.29 7195.01 14883.51 11394.48 15495.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14597.36 100
Vis-MVSNetpermissive91.75 8491.23 8793.29 7195.32 13283.78 10396.14 5795.98 13489.89 3890.45 12196.58 7675.09 17598.31 13684.75 17096.90 9397.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test94.02 3994.29 2993.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13393.03 4798.62 4598.13 62
VNet92.24 7891.91 7993.24 7396.59 8283.43 11494.84 13496.44 9689.19 6194.08 4595.90 10177.85 14798.17 14388.90 11893.38 16498.13 62
VDD-MVS90.74 10189.92 11393.20 7596.27 9383.02 13195.73 8193.86 25488.42 8792.53 8196.84 6062.09 31698.64 10090.95 9592.62 17797.93 76
CS-MVS94.12 3794.44 2293.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13893.64 3798.17 5998.19 58
nrg03091.08 9790.39 9993.17 7693.07 23686.91 2196.41 3996.26 11088.30 9088.37 15394.85 14282.19 9797.64 18791.09 8982.95 29694.96 205
EI-MVSNet-UG-set92.74 7192.62 7193.12 7894.86 15983.20 12194.40 16295.74 15490.71 2392.05 9296.60 7584.00 7098.99 7091.55 8493.63 15597.17 108
test_fmvsmvis_n_192093.44 5593.55 5593.10 7993.67 22084.26 9395.83 7796.14 12089.00 7092.43 8697.50 2883.37 7898.72 9696.61 1297.44 8296.32 149
新几何193.10 7997.30 6684.35 9295.56 16871.09 37391.26 11496.24 8582.87 8598.86 8479.19 26198.10 6396.07 163
OMC-MVS91.23 9390.62 9893.08 8196.27 9384.07 9693.52 21395.93 13886.95 12789.51 13496.13 9378.50 13898.35 13085.84 15892.90 17396.83 133
OpenMVScopyleft83.78 1188.74 16487.29 18193.08 8192.70 25085.39 6796.57 3696.43 9778.74 30280.85 31096.07 9469.64 24999.01 6378.01 27296.65 10194.83 212
MAR-MVS90.30 11189.37 12493.07 8396.61 8184.48 8595.68 8495.67 16082.36 23887.85 16192.85 21676.63 15798.80 9080.01 24996.68 10095.91 169
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
lupinMVS90.92 9890.21 10293.03 8493.86 21083.88 10192.81 24593.86 25479.84 28491.76 10494.29 16477.92 14498.04 16190.48 10697.11 8697.17 108
Effi-MVS+91.59 8891.11 8993.01 8594.35 19083.39 11794.60 14895.10 19887.10 12390.57 12093.10 21181.43 10698.07 15989.29 11494.48 14397.59 93
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8695.02 14783.67 10696.19 5096.10 12587.27 12095.98 2498.05 1383.07 8298.45 12096.68 1195.51 11796.88 130
MVS_111021_LR92.47 7592.29 7692.98 8795.99 10984.43 8993.08 23496.09 12688.20 9691.12 11595.72 11181.33 10797.76 17691.74 8197.37 8496.75 135
fmvsm_s_conf0.1_n_a93.19 6493.26 5892.97 8892.49 25383.62 10996.02 6795.72 15786.78 13296.04 2298.19 182.30 9398.43 12596.38 1395.42 12396.86 131
ETV-MVS92.74 7192.66 7092.97 8895.20 14084.04 9895.07 12096.51 9490.73 2292.96 6691.19 27384.06 6998.34 13191.72 8296.54 10296.54 145
LFMVS90.08 11689.13 13092.95 9096.71 7782.32 15496.08 6189.91 35186.79 13192.15 9196.81 6362.60 31498.34 13187.18 14093.90 15198.19 58
UGNet89.95 12288.95 13592.95 9094.51 17883.31 11895.70 8395.23 19189.37 5487.58 16793.94 18064.00 30498.78 9183.92 18196.31 10796.74 136
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason90.80 9990.10 10692.90 9293.04 23983.53 11293.08 23494.15 24380.22 27891.41 11194.91 13776.87 15197.93 17090.28 10796.90 9397.24 104
jason: jason.
DP-MVS87.25 21585.36 24992.90 9297.65 5583.24 11994.81 13692.00 30074.99 34181.92 29995.00 13572.66 21299.05 5566.92 35492.33 18296.40 147
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9495.62 12383.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11296.97 996.23 10896.92 127
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9593.75 21683.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11696.71 1096.17 10996.98 123
CANet_DTU90.26 11389.41 12392.81 9693.46 22683.01 13293.48 21494.47 22989.43 5287.76 16594.23 16870.54 23999.03 5884.97 16596.39 10696.38 148
MVSFormer91.68 8791.30 8592.80 9793.86 21083.88 10195.96 7195.90 14284.66 18991.76 10494.91 13777.92 14497.30 22289.64 11097.11 8697.24 104
PVSNet_Blended_VisFu91.38 9090.91 9492.80 9796.39 9083.17 12294.87 13296.66 8583.29 21889.27 13894.46 15880.29 11399.17 4787.57 13495.37 12496.05 166
VDDNet89.56 13488.49 15192.76 9995.07 14682.09 15696.30 4393.19 26781.05 27391.88 9996.86 5961.16 32998.33 13388.43 12492.49 18197.84 82
h-mvs3390.80 9990.15 10592.75 10096.01 10582.66 14595.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 35196.60 140
casdiffmvspermissive92.51 7492.43 7492.74 10194.41 18581.98 15994.54 15296.23 11489.57 4991.96 9696.17 9182.58 8898.01 16390.95 9595.45 12298.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl90.69 10390.02 11192.71 10295.72 11882.41 15294.11 18095.12 19685.63 16291.49 10994.70 14874.75 17998.42 12686.13 15392.53 17997.31 101
DCV-MVSNet90.69 10390.02 11192.71 10295.72 11882.41 15294.11 18095.12 19685.63 16291.49 10994.70 14874.75 17998.42 12686.13 15392.53 17997.31 101
PCF-MVS84.11 1087.74 19086.08 22592.70 10494.02 20184.43 8989.27 32995.87 14573.62 35584.43 25394.33 16178.48 13998.86 8470.27 32894.45 14494.81 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline92.39 7792.29 7692.69 10594.46 18181.77 16494.14 17896.27 10989.22 5991.88 9996.00 9682.35 9197.99 16591.05 9095.27 12898.30 47
MSLP-MVS++93.72 4894.08 3892.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17692.19 6698.66 4196.76 134
EC-MVSNet93.44 5593.71 5192.63 10795.21 13982.43 14997.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14493.68 3698.14 6197.31 101
ab-mvs89.41 14088.35 15392.60 10895.15 14382.65 14692.20 26595.60 16783.97 19988.55 14993.70 19374.16 19198.21 14282.46 20389.37 22396.94 125
LS3D87.89 18586.32 21492.59 10996.07 10382.92 13595.23 10994.92 20975.66 33382.89 28795.98 9872.48 21599.21 4568.43 34295.23 12995.64 182
Anonymous2024052988.09 18186.59 20492.58 11096.53 8681.92 16195.99 6995.84 14774.11 35089.06 14395.21 12761.44 32298.81 8983.67 18687.47 25697.01 119
CPTT-MVS91.99 7991.80 8092.55 11198.24 3181.98 15996.76 3096.49 9581.89 25190.24 12496.44 8178.59 13698.61 10489.68 10997.85 7397.06 115
114514_t89.51 13588.50 14992.54 11298.11 3681.99 15895.16 11696.36 10270.19 37685.81 20795.25 12476.70 15598.63 10282.07 21396.86 9697.00 120
PAPM_NR91.22 9490.78 9792.52 11397.60 5681.46 17494.37 16896.24 11386.39 14287.41 17094.80 14582.06 10098.48 11282.80 19895.37 12497.61 91
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11496.52 8780.00 21994.00 19397.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3398.50 27
IS-MVSNet91.43 8991.09 9192.46 11595.87 11481.38 17796.95 1993.69 26089.72 4789.50 13595.98 9878.57 13797.77 17583.02 19296.50 10498.22 57
API-MVS90.66 10590.07 10792.45 11696.36 9184.57 8096.06 6495.22 19382.39 23689.13 13994.27 16780.32 11298.46 11680.16 24896.71 9994.33 238
iter_conf05_1189.88 12689.04 13392.41 11795.12 14481.63 16792.87 24392.45 28486.21 14892.48 8493.95 17959.05 34298.60 10690.50 10498.72 3296.99 121
xiu_mvs_v1_base_debu90.64 10690.05 10892.40 11893.97 20784.46 8693.32 22095.46 17585.17 17292.25 8794.03 17170.59 23598.57 10890.97 9294.67 13594.18 242
xiu_mvs_v1_base90.64 10690.05 10892.40 11893.97 20784.46 8693.32 22095.46 17585.17 17292.25 8794.03 17170.59 23598.57 10890.97 9294.67 13594.18 242
xiu_mvs_v1_base_debi90.64 10690.05 10892.40 11893.97 20784.46 8693.32 22095.46 17585.17 17292.25 8794.03 17170.59 23598.57 10890.97 9294.67 13594.18 242
AdaColmapbinary89.89 12589.07 13192.37 12197.41 6283.03 13094.42 16195.92 13982.81 23086.34 19894.65 15273.89 19599.02 6180.69 23995.51 11795.05 200
CNLPA89.07 15287.98 16492.34 12296.87 7484.78 7694.08 18493.24 26581.41 26484.46 25195.13 13275.57 17196.62 26277.21 27993.84 15395.61 185
ET-MVSNet_ETH3D87.51 20385.91 23392.32 12393.70 21983.93 9992.33 26090.94 33184.16 19472.09 37292.52 22869.90 24495.85 30689.20 11588.36 24397.17 108
Anonymous20240521187.68 19186.13 22192.31 12496.66 7980.74 19694.87 13291.49 31680.47 27789.46 13695.44 11754.72 36298.23 13982.19 20989.89 21297.97 72
CHOSEN 1792x268888.84 16087.69 17192.30 12596.14 9681.42 17690.01 31795.86 14674.52 34687.41 17093.94 18075.46 17298.36 12880.36 24495.53 11697.12 113
HY-MVS83.01 1289.03 15487.94 16692.29 12694.86 15982.77 13792.08 27094.49 22881.52 26386.93 17992.79 22278.32 14198.23 13979.93 25090.55 20195.88 171
CDS-MVSNet89.45 13888.51 14892.29 12693.62 22183.61 11193.01 23794.68 22581.95 24787.82 16393.24 20578.69 13496.99 24780.34 24593.23 16896.28 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR90.02 11889.27 12992.29 12695.78 11680.95 19092.68 24796.22 11581.91 24986.66 18993.75 19282.23 9598.44 12279.40 26094.79 13397.48 97
bld_raw_dy_0_6488.86 15887.75 17092.21 12995.12 14481.19 18395.56 9491.29 32185.30 17189.10 14094.38 15959.04 34398.44 12290.50 10489.43 22196.99 121
PLCcopyleft84.53 789.06 15388.03 16392.15 13097.27 6882.69 14494.29 17095.44 18079.71 28684.01 26694.18 16976.68 15698.75 9377.28 27893.41 16395.02 201
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPP-MVSNet91.70 8691.56 8392.13 13195.88 11280.50 20297.33 795.25 19086.15 15089.76 13295.60 11483.42 7798.32 13587.37 13893.25 16797.56 95
patch_mono-293.74 4794.32 2692.01 13297.54 5778.37 25793.40 21797.19 3588.02 10194.99 3597.21 4288.35 2198.44 12294.07 3298.09 6499.23 1
原ACMM192.01 13297.34 6481.05 18696.81 7078.89 29790.45 12195.92 10082.65 8798.84 8880.68 24098.26 5896.14 157
UniMVSNet (Re)89.80 12889.07 13192.01 13293.60 22284.52 8394.78 13897.47 1189.26 5886.44 19592.32 23482.10 9897.39 21884.81 16980.84 32994.12 246
MG-MVS91.77 8391.70 8292.00 13597.08 7180.03 21793.60 21195.18 19487.85 10990.89 11796.47 8082.06 10098.36 12885.07 16497.04 8997.62 90
EIA-MVS91.95 8091.94 7891.98 13695.16 14180.01 21895.36 9896.73 7988.44 8589.34 13792.16 23983.82 7398.45 12089.35 11297.06 8897.48 97
PVSNet_Blended90.73 10290.32 10191.98 13696.12 9781.25 17992.55 25296.83 6682.04 24589.10 14092.56 22781.04 10998.85 8686.72 14895.91 11195.84 173
PS-MVSNAJ91.18 9590.92 9391.96 13895.26 13782.60 14892.09 26995.70 15886.27 14491.84 10192.46 22979.70 12198.99 7089.08 11695.86 11294.29 240
TAMVS89.21 14688.29 15791.96 13893.71 21782.62 14793.30 22494.19 24182.22 24087.78 16493.94 18078.83 13196.95 24977.70 27492.98 17296.32 149
SDMVSNet90.19 11489.61 11791.93 14096.00 10683.09 12892.89 24195.98 13488.73 7686.85 18595.20 12872.09 21997.08 24088.90 11889.85 21495.63 183
FA-MVS(test-final)89.66 13088.91 13791.93 14094.57 17580.27 20691.36 28594.74 22284.87 18189.82 13192.61 22674.72 18298.47 11583.97 18093.53 15897.04 117
MVS_Test91.31 9291.11 8991.93 14094.37 18680.14 21093.46 21695.80 14986.46 14091.35 11393.77 19082.21 9698.09 15687.57 13494.95 13197.55 96
NR-MVSNet88.58 17087.47 17791.93 14093.04 23984.16 9594.77 13996.25 11289.05 6580.04 32393.29 20379.02 13097.05 24481.71 22480.05 33994.59 220
HyFIR lowres test88.09 18186.81 19391.93 14096.00 10680.63 19890.01 31795.79 15073.42 35787.68 16692.10 24573.86 19697.96 16780.75 23891.70 18597.19 107
GeoE90.05 11789.43 12291.90 14595.16 14180.37 20595.80 7894.65 22683.90 20087.55 16994.75 14778.18 14297.62 18981.28 22893.63 15597.71 88
thisisatest053088.67 16587.61 17391.86 14694.87 15880.07 21394.63 14789.90 35284.00 19888.46 15193.78 18966.88 28198.46 11683.30 18892.65 17697.06 115
xiu_mvs_v2_base91.13 9690.89 9591.86 14694.97 15182.42 15092.24 26395.64 16586.11 15491.74 10693.14 20979.67 12498.89 8189.06 11795.46 12194.28 241
DU-MVS89.34 14588.50 14991.85 14893.04 23983.72 10494.47 15796.59 9089.50 5086.46 19293.29 20377.25 14997.23 23184.92 16681.02 32594.59 220
OPM-MVS90.12 11589.56 11891.82 14993.14 23383.90 10094.16 17795.74 15488.96 7187.86 16095.43 11972.48 21597.91 17188.10 12990.18 20793.65 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 10990.19 10391.82 14994.70 16782.73 14195.85 7596.22 11590.81 1786.91 18194.86 14074.23 18798.12 14688.15 12589.99 20894.63 217
UniMVSNet_NR-MVSNet89.92 12489.29 12791.81 15193.39 22883.72 10494.43 16097.12 4189.80 4186.46 19293.32 20083.16 7997.23 23184.92 16681.02 32594.49 232
diffmvspermissive91.37 9191.23 8791.77 15293.09 23580.27 20692.36 25795.52 17387.03 12591.40 11294.93 13680.08 11597.44 20692.13 6994.56 14097.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.42 17187.33 18091.72 15394.92 15580.98 18892.97 23994.54 22778.16 31383.82 26993.88 18578.78 13397.91 17179.45 25689.41 22296.26 153
Fast-Effi-MVS+89.41 14088.64 14391.71 15494.74 16380.81 19493.54 21295.10 19883.11 22286.82 18790.67 29279.74 12097.75 17980.51 24393.55 15796.57 143
WTY-MVS89.60 13288.92 13691.67 15595.47 12881.15 18492.38 25694.78 22083.11 22289.06 14394.32 16278.67 13596.61 26581.57 22590.89 19897.24 104
TAPA-MVS84.62 688.16 17987.01 18991.62 15696.64 8080.65 19794.39 16496.21 11876.38 32686.19 20295.44 11779.75 11998.08 15862.75 37095.29 12696.13 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VPA-MVSNet89.62 13188.96 13491.60 15793.86 21082.89 13695.46 9697.33 2587.91 10488.43 15293.31 20174.17 19097.40 21587.32 13982.86 30194.52 225
FE-MVS87.40 20886.02 22791.57 15894.56 17679.69 22790.27 30693.72 25980.57 27688.80 14691.62 26265.32 29698.59 10774.97 30294.33 14796.44 146
XVG-OURS89.40 14288.70 14291.52 15994.06 19981.46 17491.27 28996.07 12886.14 15188.89 14595.77 10868.73 26697.26 22887.39 13789.96 21095.83 174
hse-mvs289.88 12689.34 12591.51 16094.83 16181.12 18593.94 19693.91 25389.80 4193.08 6393.60 19475.77 16497.66 18392.07 7077.07 35895.74 178
TranMVSNet+NR-MVSNet88.84 16087.95 16591.49 16192.68 25183.01 13294.92 12996.31 10489.88 3985.53 21693.85 18776.63 15796.96 24881.91 21779.87 34294.50 230
AUN-MVS87.78 18986.54 20691.48 16294.82 16281.05 18693.91 20093.93 25083.00 22586.93 17993.53 19569.50 25197.67 18186.14 15177.12 35795.73 180
XVG-OURS-SEG-HR89.95 12289.45 12091.47 16394.00 20581.21 18291.87 27396.06 13085.78 15788.55 14995.73 11074.67 18397.27 22688.71 12189.64 21995.91 169
MVS87.44 20686.10 22491.44 16492.61 25283.62 10992.63 24995.66 16267.26 38081.47 30292.15 24077.95 14398.22 14179.71 25295.48 11992.47 315
F-COLMAP87.95 18486.80 19491.40 16596.35 9280.88 19294.73 14195.45 17879.65 28782.04 29794.61 15371.13 22698.50 11176.24 29091.05 19694.80 214
dcpmvs_293.49 5294.19 3691.38 16697.69 5476.78 28994.25 17296.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6498.73 17
thisisatest051587.33 21185.99 22891.37 16793.49 22479.55 22990.63 30289.56 35880.17 27987.56 16890.86 28467.07 27898.28 13781.50 22693.02 17196.29 151
HQP-MVS89.80 12889.28 12891.34 16894.17 19581.56 16894.39 16496.04 13188.81 7285.43 22693.97 17873.83 19797.96 16787.11 14389.77 21794.50 230
mvsmamba89.96 12189.50 11991.33 16992.90 24681.82 16296.68 3392.37 28689.03 6787.00 17794.85 14273.05 20797.65 18491.03 9188.63 23594.51 227
FMVSNet387.40 20886.11 22391.30 17093.79 21583.64 10894.20 17694.81 21883.89 20184.37 25491.87 25468.45 26996.56 27078.23 26985.36 27493.70 274
FMVSNet287.19 22185.82 23591.30 17094.01 20283.67 10694.79 13794.94 20483.57 20883.88 26892.05 24966.59 28696.51 27377.56 27685.01 27793.73 272
RPMNet83.95 28981.53 30091.21 17290.58 32779.34 23685.24 37196.76 7571.44 37185.55 21482.97 37870.87 23198.91 8061.01 37489.36 22495.40 189
IB-MVS80.51 1585.24 27083.26 28491.19 17392.13 26479.86 22391.75 27691.29 32183.28 21980.66 31388.49 33461.28 32398.46 11680.99 23479.46 34595.25 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS89.47 13788.90 13891.18 17494.22 19482.07 15792.13 26796.09 12687.90 10585.37 23292.45 23074.38 18597.56 19287.15 14190.43 20393.93 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf0588.85 15988.08 16291.17 17594.27 19281.64 16695.18 11392.15 29586.23 14787.28 17494.07 17063.89 30797.55 19390.63 10089.00 23194.32 239
LPG-MVS_test89.45 13888.90 13891.12 17694.47 17981.49 17295.30 10396.14 12086.73 13485.45 22395.16 13069.89 24598.10 14887.70 13289.23 22793.77 269
LGP-MVS_train91.12 17694.47 17981.49 17296.14 12086.73 13485.45 22395.16 13069.89 24598.10 14887.70 13289.23 22793.77 269
ACMM84.12 989.14 14788.48 15291.12 17694.65 17081.22 18195.31 10196.12 12385.31 17085.92 20694.34 16070.19 24398.06 16085.65 15988.86 23394.08 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tttt051788.61 16787.78 16991.11 17994.96 15277.81 27295.35 9989.69 35585.09 17788.05 15894.59 15566.93 27998.48 11283.27 18992.13 18497.03 118
GBi-Net87.26 21385.98 22991.08 18094.01 20283.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28696.34 28678.23 26985.36 27493.79 264
test187.26 21385.98 22991.08 18094.01 20283.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28696.34 28678.23 26985.36 27493.79 264
FMVSNet185.85 25784.11 27191.08 18092.81 24883.10 12595.14 11794.94 20481.64 25982.68 28991.64 25859.01 34496.34 28675.37 29683.78 28693.79 264
Test_1112_low_res87.65 19386.51 20791.08 18094.94 15479.28 24091.77 27594.30 23776.04 33183.51 27892.37 23277.86 14697.73 18078.69 26489.13 22996.22 154
PS-MVSNAJss89.97 12089.62 11691.02 18491.90 27380.85 19395.26 10895.98 13486.26 14586.21 20194.29 16479.70 12197.65 18488.87 12088.10 24594.57 222
BH-RMVSNet88.37 17387.48 17691.02 18495.28 13479.45 23292.89 24193.07 26985.45 16786.91 18194.84 14470.35 24097.76 17673.97 30894.59 13995.85 172
UniMVSNet_ETH3D87.53 20286.37 21191.00 18692.44 25678.96 24594.74 14095.61 16684.07 19785.36 23394.52 15759.78 33797.34 22082.93 19387.88 25096.71 137
FIs90.51 11090.35 10090.99 18793.99 20680.98 18895.73 8197.54 489.15 6286.72 18894.68 15081.83 10497.24 23085.18 16388.31 24494.76 215
ACMP84.23 889.01 15688.35 15390.99 18794.73 16481.27 17895.07 12095.89 14486.48 13883.67 27394.30 16369.33 25497.99 16587.10 14588.55 23693.72 273
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 24185.13 25490.98 18996.52 8781.50 17096.14 5796.16 11973.78 35383.65 27492.15 24063.26 31197.37 21982.82 19781.74 31494.06 251
sss88.93 15788.26 15990.94 19094.05 20080.78 19591.71 27795.38 18481.55 26288.63 14893.91 18475.04 17695.47 32482.47 20291.61 18696.57 143
sd_testset88.59 16987.85 16890.83 19196.00 10680.42 20492.35 25894.71 22388.73 7686.85 18595.20 12867.31 27396.43 28079.64 25489.85 21495.63 183
PVSNet_BlendedMVS89.98 11989.70 11590.82 19296.12 9781.25 17993.92 19896.83 6683.49 21289.10 14092.26 23781.04 10998.85 8686.72 14887.86 25192.35 321
cascas86.43 24984.98 25790.80 19392.10 26680.92 19190.24 31095.91 14173.10 36083.57 27788.39 33565.15 29897.46 20284.90 16891.43 18894.03 253
ECVR-MVScopyleft89.09 15088.53 14790.77 19495.62 12375.89 30296.16 5384.22 38187.89 10790.20 12596.65 7063.19 31298.10 14885.90 15696.94 9198.33 43
GA-MVS86.61 23985.27 25290.66 19591.33 29678.71 24790.40 30593.81 25785.34 16985.12 23689.57 31761.25 32497.11 23980.99 23489.59 22096.15 156
thres600view787.65 19386.67 19990.59 19696.08 10278.72 24694.88 13191.58 31287.06 12488.08 15692.30 23568.91 26398.10 14870.05 33591.10 19194.96 205
thres40087.62 19886.64 20090.57 19795.99 10978.64 24894.58 14991.98 30286.94 12888.09 15491.77 25569.18 25998.10 14870.13 33291.10 19194.96 205
baseline188.10 18087.28 18290.57 19794.96 15280.07 21394.27 17191.29 32186.74 13387.41 17094.00 17676.77 15496.20 29180.77 23779.31 34795.44 187
FC-MVSNet-test90.27 11290.18 10490.53 19993.71 21779.85 22495.77 8097.59 389.31 5686.27 19994.67 15181.93 10397.01 24684.26 17688.09 24794.71 216
PAPM86.68 23885.39 24790.53 19993.05 23879.33 23989.79 32094.77 22178.82 29981.95 29893.24 20576.81 15297.30 22266.94 35293.16 16994.95 208
WR-MVS88.38 17287.67 17290.52 20193.30 23080.18 20893.26 22795.96 13788.57 8385.47 22292.81 22076.12 15996.91 25281.24 22982.29 30594.47 235
MVSTER88.84 16088.29 15790.51 20292.95 24480.44 20393.73 20595.01 20184.66 18987.15 17593.12 21072.79 21197.21 23387.86 13087.36 25993.87 259
RRT_MVS89.09 15088.62 14690.49 20392.85 24779.65 22896.41 3994.41 23288.22 9485.50 21994.77 14669.36 25397.31 22189.33 11386.73 26694.51 227
testdata90.49 20396.40 8977.89 26995.37 18672.51 36593.63 5296.69 6682.08 9997.65 18483.08 19097.39 8395.94 168
test111189.10 14888.64 14390.48 20595.53 12774.97 31196.08 6184.89 37988.13 9990.16 12796.65 7063.29 31098.10 14886.14 15196.90 9398.39 39
tt080586.92 22985.74 24190.48 20592.22 26079.98 22095.63 9094.88 21283.83 20384.74 24492.80 22157.61 34997.67 18185.48 16284.42 28193.79 264
jajsoiax88.24 17787.50 17590.48 20590.89 31680.14 21095.31 10195.65 16484.97 17984.24 26294.02 17465.31 29797.42 20888.56 12288.52 23893.89 256
PatchMatch-RL86.77 23685.54 24390.47 20895.88 11282.71 14390.54 30392.31 28979.82 28584.32 25991.57 26668.77 26596.39 28273.16 31393.48 16292.32 322
tfpn200view987.58 20086.64 20090.41 20995.99 10978.64 24894.58 14991.98 30286.94 12888.09 15491.77 25569.18 25998.10 14870.13 33291.10 19194.48 233
VPNet88.20 17887.47 17790.39 21093.56 22379.46 23194.04 18895.54 17188.67 7986.96 17894.58 15669.33 25497.15 23584.05 17980.53 33494.56 223
ACMH80.38 1785.36 26583.68 27890.39 21094.45 18280.63 19894.73 14194.85 21482.09 24277.24 34592.65 22460.01 33597.58 19072.25 31784.87 27892.96 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90087.63 19686.71 19790.38 21296.12 9778.55 25095.03 12391.58 31287.15 12188.06 15792.29 23668.91 26398.10 14870.13 33291.10 19194.48 233
mvs_tets88.06 18387.28 18290.38 21290.94 31279.88 22295.22 11095.66 16285.10 17684.21 26393.94 18063.53 30897.40 21588.50 12388.40 24293.87 259
131487.51 20386.57 20590.34 21492.42 25779.74 22692.63 24995.35 18878.35 30880.14 32091.62 26274.05 19297.15 23581.05 23093.53 15894.12 246
LTVRE_ROB82.13 1386.26 25184.90 26090.34 21494.44 18381.50 17092.31 26294.89 21083.03 22479.63 32992.67 22369.69 24897.79 17471.20 32186.26 26991.72 332
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_djsdf89.03 15488.64 14390.21 21690.74 32279.28 24095.96 7195.90 14284.66 18985.33 23492.94 21574.02 19397.30 22289.64 11088.53 23794.05 252
v2v48287.84 18687.06 18690.17 21790.99 30879.23 24394.00 19395.13 19584.87 18185.53 21692.07 24874.45 18497.45 20384.71 17181.75 31393.85 262
pmmvs485.43 26383.86 27690.16 21890.02 33982.97 13490.27 30692.67 28075.93 33280.73 31191.74 25771.05 22795.73 31478.85 26383.46 29391.78 331
V4287.68 19186.86 19190.15 21990.58 32780.14 21094.24 17495.28 18983.66 20685.67 21191.33 26874.73 18197.41 21384.43 17581.83 31192.89 304
MSDG84.86 27683.09 28790.14 22093.80 21380.05 21589.18 33293.09 26878.89 29778.19 33891.91 25265.86 29597.27 22668.47 34188.45 24093.11 296
anonymousdsp87.84 18687.09 18590.12 22189.13 34980.54 20194.67 14595.55 16982.05 24383.82 26992.12 24271.47 22497.15 23587.15 14187.80 25492.67 309
thres20087.21 21986.24 21890.12 22195.36 13178.53 25193.26 22792.10 29686.42 14188.00 15991.11 27969.24 25898.00 16469.58 33691.04 19793.83 263
CR-MVSNet85.35 26683.76 27790.12 22190.58 32779.34 23685.24 37191.96 30478.27 31085.55 21487.87 34571.03 22895.61 31673.96 30989.36 22495.40 189
v114487.61 19986.79 19590.06 22491.01 30779.34 23693.95 19595.42 18383.36 21785.66 21291.31 27174.98 17797.42 20883.37 18782.06 30793.42 284
XXY-MVS87.65 19386.85 19290.03 22592.14 26380.60 20093.76 20495.23 19182.94 22784.60 24694.02 17474.27 18695.49 32381.04 23183.68 28994.01 254
Vis-MVSNet (Re-imp)89.59 13389.44 12190.03 22595.74 11775.85 30395.61 9190.80 33587.66 11587.83 16295.40 12076.79 15396.46 27878.37 26596.73 9897.80 84
test250687.21 21986.28 21690.02 22795.62 12373.64 32596.25 4871.38 40387.89 10790.45 12196.65 7055.29 36098.09 15686.03 15596.94 9198.33 43
BH-untuned88.60 16888.13 16190.01 22895.24 13878.50 25393.29 22594.15 24384.75 18684.46 25193.40 19775.76 16697.40 21577.59 27594.52 14294.12 246
v119287.25 21586.33 21390.00 22990.76 32179.04 24493.80 20295.48 17482.57 23485.48 22191.18 27573.38 20597.42 20882.30 20682.06 30793.53 278
v7n86.81 23185.76 23989.95 23090.72 32379.25 24295.07 12095.92 13984.45 19282.29 29290.86 28472.60 21497.53 19579.42 25980.52 33593.08 298
testing9187.11 22486.18 21989.92 23194.43 18475.38 31091.53 28292.27 29186.48 13886.50 19090.24 29961.19 32797.53 19582.10 21190.88 19996.84 132
v887.50 20586.71 19789.89 23291.37 29379.40 23394.50 15395.38 18484.81 18483.60 27691.33 26876.05 16097.42 20882.84 19680.51 33692.84 306
v1087.25 21586.38 21089.85 23391.19 29979.50 23094.48 15495.45 17883.79 20483.62 27591.19 27375.13 17497.42 20881.94 21680.60 33192.63 311
baseline286.50 24585.39 24789.84 23491.12 30476.70 29191.88 27288.58 36182.35 23979.95 32490.95 28373.42 20397.63 18880.27 24789.95 21195.19 196
pm-mvs186.61 23985.54 24389.82 23591.44 28880.18 20895.28 10794.85 21483.84 20281.66 30092.62 22572.45 21796.48 27579.67 25378.06 35092.82 307
TR-MVS86.78 23385.76 23989.82 23594.37 18678.41 25592.47 25392.83 27481.11 27286.36 19692.40 23168.73 26697.48 19973.75 31189.85 21493.57 277
ACMH+81.04 1485.05 27383.46 28189.82 23594.66 16979.37 23494.44 15994.12 24682.19 24178.04 34092.82 21958.23 34797.54 19473.77 31082.90 30092.54 312
EI-MVSNet89.10 14888.86 14089.80 23891.84 27578.30 25993.70 20895.01 20185.73 15987.15 17595.28 12279.87 11897.21 23383.81 18387.36 25993.88 258
v14419287.19 22186.35 21289.74 23990.64 32578.24 26193.92 19895.43 18181.93 24885.51 21891.05 28174.21 18997.45 20382.86 19581.56 31593.53 278
COLMAP_ROBcopyleft80.39 1683.96 28882.04 29789.74 23995.28 13479.75 22594.25 17292.28 29075.17 33978.02 34193.77 19058.60 34697.84 17365.06 36285.92 27091.63 334
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SCA86.32 25085.18 25389.73 24192.15 26276.60 29291.12 29391.69 30983.53 21185.50 21988.81 32866.79 28296.48 27576.65 28490.35 20596.12 159
IterMVS-LS88.36 17487.91 16789.70 24293.80 21378.29 26093.73 20595.08 20085.73 15984.75 24391.90 25379.88 11796.92 25183.83 18282.51 30293.89 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing1186.44 24885.35 25089.69 24394.29 19175.40 30991.30 28790.53 33884.76 18585.06 23790.13 30558.95 34597.45 20382.08 21291.09 19596.21 155
testing9986.72 23785.73 24289.69 24394.23 19374.91 31391.35 28690.97 33086.14 15186.36 19690.22 30059.41 33997.48 19982.24 20890.66 20096.69 138
v192192086.97 22886.06 22689.69 24390.53 33078.11 26493.80 20295.43 18181.90 25085.33 23491.05 28172.66 21297.41 21382.05 21481.80 31293.53 278
Fast-Effi-MVS+-dtu87.44 20686.72 19689.63 24692.04 26777.68 27894.03 18993.94 24985.81 15682.42 29191.32 27070.33 24197.06 24380.33 24690.23 20694.14 245
v124086.78 23385.85 23489.56 24790.45 33177.79 27493.61 21095.37 18681.65 25885.43 22691.15 27771.50 22397.43 20781.47 22782.05 30993.47 282
Effi-MVS+-dtu88.65 16688.35 15389.54 24893.33 22976.39 29694.47 15794.36 23587.70 11285.43 22689.56 31873.45 20297.26 22885.57 16191.28 19094.97 202
AllTest83.42 29581.39 30189.52 24995.01 14877.79 27493.12 23190.89 33377.41 31776.12 35393.34 19854.08 36597.51 19768.31 34384.27 28393.26 287
TestCases89.52 24995.01 14877.79 27490.89 33377.41 31776.12 35393.34 19854.08 36597.51 19768.31 34384.27 28393.26 287
mvs_anonymous89.37 14489.32 12689.51 25193.47 22574.22 32091.65 28094.83 21682.91 22885.45 22393.79 18881.23 10896.36 28586.47 15094.09 14897.94 74
XVG-ACMP-BASELINE86.00 25384.84 26289.45 25291.20 29878.00 26591.70 27895.55 16985.05 17882.97 28692.25 23854.49 36397.48 19982.93 19387.45 25892.89 304
testing22284.84 27783.32 28289.43 25394.15 19875.94 30191.09 29489.41 35984.90 18085.78 20889.44 31952.70 37096.28 28970.80 32791.57 18796.07 163
MVP-Stereo85.97 25484.86 26189.32 25490.92 31482.19 15592.11 26894.19 24178.76 30178.77 33791.63 26168.38 27096.56 27075.01 30193.95 15089.20 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchmatchNetpermissive85.85 25784.70 26489.29 25591.76 27975.54 30688.49 34191.30 32081.63 26085.05 23888.70 33271.71 22096.24 29074.61 30589.05 23096.08 162
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14887.04 22686.32 21489.21 25690.94 31277.26 28393.71 20794.43 23084.84 18384.36 25790.80 28876.04 16197.05 24482.12 21079.60 34493.31 286
tfpnnormal84.72 27983.23 28589.20 25792.79 24980.05 21594.48 15495.81 14882.38 23781.08 30891.21 27269.01 26296.95 24961.69 37280.59 33290.58 357
cl2286.78 23385.98 22989.18 25892.34 25877.62 27990.84 29994.13 24581.33 26683.97 26790.15 30473.96 19496.60 26784.19 17782.94 29793.33 285
BH-w/o87.57 20187.05 18789.12 25994.90 15777.90 26892.41 25493.51 26282.89 22983.70 27291.34 26775.75 16797.07 24275.49 29493.49 16092.39 319
WR-MVS_H87.80 18887.37 17989.10 26093.23 23178.12 26395.61 9197.30 2987.90 10583.72 27192.01 25079.65 12596.01 29976.36 28780.54 33393.16 294
miper_enhance_ethall86.90 23086.18 21989.06 26191.66 28477.58 28090.22 31294.82 21779.16 29384.48 25089.10 32379.19 12996.66 26084.06 17882.94 29792.94 302
c3_l87.14 22386.50 20889.04 26292.20 26177.26 28391.22 29294.70 22482.01 24684.34 25890.43 29678.81 13296.61 26583.70 18581.09 32293.25 289
miper_ehance_all_eth87.22 21886.62 20389.02 26392.13 26477.40 28290.91 29894.81 21881.28 26784.32 25990.08 30779.26 12796.62 26283.81 18382.94 29793.04 299
gg-mvs-nofinetune81.77 30779.37 32288.99 26490.85 31877.73 27786.29 36379.63 39274.88 34483.19 28569.05 39360.34 33296.11 29575.46 29594.64 13893.11 296
ETVMVS84.43 28282.92 29188.97 26594.37 18674.67 31491.23 29188.35 36383.37 21686.06 20589.04 32455.38 35895.67 31567.12 35091.34 18996.58 142
pmmvs683.42 29581.60 29988.87 26688.01 36377.87 27094.96 12694.24 24074.67 34578.80 33691.09 28060.17 33496.49 27477.06 28375.40 36492.23 324
test_cas_vis1_n_192088.83 16388.85 14188.78 26791.15 30376.72 29093.85 20194.93 20883.23 22192.81 7296.00 9661.17 32894.45 33491.67 8394.84 13295.17 197
MIMVSNet82.59 30180.53 30688.76 26891.51 28678.32 25886.57 36290.13 34579.32 28980.70 31288.69 33352.98 36993.07 35966.03 35788.86 23394.90 209
cl____86.52 24485.78 23688.75 26992.03 26876.46 29490.74 30094.30 23781.83 25483.34 28290.78 28975.74 16996.57 26881.74 22281.54 31693.22 291
DIV-MVS_self_test86.53 24385.78 23688.75 26992.02 26976.45 29590.74 30094.30 23781.83 25483.34 28290.82 28775.75 16796.57 26881.73 22381.52 31793.24 290
CP-MVSNet87.63 19687.26 18488.74 27193.12 23476.59 29395.29 10596.58 9188.43 8683.49 27992.98 21475.28 17395.83 30778.97 26281.15 32193.79 264
eth_miper_zixun_eth86.50 24585.77 23888.68 27291.94 27075.81 30490.47 30494.89 21082.05 24384.05 26490.46 29575.96 16296.77 25682.76 19979.36 34693.46 283
CHOSEN 280x42085.15 27183.99 27488.65 27392.47 25478.40 25679.68 39192.76 27674.90 34381.41 30489.59 31669.85 24795.51 32079.92 25195.29 12692.03 327
PS-CasMVS87.32 21286.88 19088.63 27492.99 24276.33 29895.33 10096.61 8988.22 9483.30 28493.07 21273.03 20995.79 31178.36 26681.00 32793.75 271
TransMVSNet (Re)84.43 28283.06 28988.54 27591.72 28078.44 25495.18 11392.82 27582.73 23279.67 32892.12 24273.49 20195.96 30171.10 32568.73 38091.21 344
EG-PatchMatch MVS82.37 30380.34 30988.46 27690.27 33379.35 23592.80 24694.33 23677.14 32173.26 36990.18 30347.47 38196.72 25770.25 32987.32 26189.30 365
PEN-MVS86.80 23286.27 21788.40 27792.32 25975.71 30595.18 11396.38 10187.97 10282.82 28893.15 20873.39 20495.92 30276.15 29179.03 34993.59 276
Baseline_NR-MVSNet87.07 22586.63 20288.40 27791.44 28877.87 27094.23 17592.57 28284.12 19685.74 21092.08 24677.25 14996.04 29682.29 20779.94 34091.30 342
D2MVS85.90 25585.09 25588.35 27990.79 31977.42 28191.83 27495.70 15880.77 27580.08 32290.02 30866.74 28496.37 28381.88 21887.97 24991.26 343
pmmvs584.21 28482.84 29488.34 28088.95 35176.94 28792.41 25491.91 30675.63 33480.28 31791.18 27564.59 30195.57 31777.09 28283.47 29292.53 313
LCM-MVSNet-Re88.30 17688.32 15688.27 28194.71 16672.41 34293.15 23090.98 32987.77 11079.25 33291.96 25178.35 14095.75 31283.04 19195.62 11596.65 139
CostFormer85.77 25984.94 25988.26 28291.16 30272.58 34089.47 32791.04 32876.26 32986.45 19489.97 31070.74 23396.86 25582.35 20587.07 26495.34 193
ITE_SJBPF88.24 28391.88 27477.05 28692.92 27185.54 16580.13 32193.30 20257.29 35096.20 29172.46 31684.71 27991.49 338
PVSNet78.82 1885.55 26184.65 26588.23 28494.72 16571.93 34387.12 35892.75 27778.80 30084.95 24090.53 29464.43 30296.71 25974.74 30393.86 15296.06 165
IterMVS-SCA-FT85.45 26284.53 26888.18 28591.71 28176.87 28890.19 31392.65 28185.40 16881.44 30390.54 29366.79 28295.00 33281.04 23181.05 32392.66 310
EPNet_dtu86.49 24785.94 23288.14 28690.24 33472.82 33294.11 18092.20 29386.66 13679.42 33192.36 23373.52 20095.81 30971.26 32093.66 15495.80 176
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry82.71 29980.93 30588.06 28790.05 33876.37 29784.74 37691.96 30472.28 36881.32 30687.87 34571.03 22895.50 32268.97 33880.15 33892.32 322
test_vis1_n_192089.39 14389.84 11488.04 28892.97 24372.64 33794.71 14396.03 13386.18 14991.94 9896.56 7861.63 31995.74 31393.42 4195.11 13095.74 178
DTE-MVSNet86.11 25285.48 24587.98 28991.65 28574.92 31294.93 12895.75 15387.36 11982.26 29393.04 21372.85 21095.82 30874.04 30777.46 35593.20 292
PMMVS85.71 26084.96 25887.95 29088.90 35277.09 28588.68 33990.06 34772.32 36786.47 19190.76 29072.15 21894.40 33681.78 22193.49 16092.36 320
GG-mvs-BLEND87.94 29189.73 34577.91 26787.80 34878.23 39680.58 31483.86 37159.88 33695.33 32671.20 32192.22 18390.60 356
pmmvs-eth3d80.97 32078.72 33287.74 29284.99 38179.97 22190.11 31591.65 31075.36 33673.51 36786.03 36159.45 33893.96 34675.17 29872.21 36989.29 366
MS-PatchMatch85.05 27384.16 27087.73 29391.42 29178.51 25291.25 29093.53 26177.50 31680.15 31991.58 26461.99 31795.51 32075.69 29394.35 14689.16 368
test_040281.30 31779.17 32787.67 29493.19 23278.17 26292.98 23891.71 30775.25 33876.02 35590.31 29859.23 34096.37 28350.22 38983.63 29088.47 374
IterMVS84.88 27583.98 27587.60 29591.44 28876.03 30090.18 31492.41 28583.24 22081.06 30990.42 29766.60 28594.28 34079.46 25580.98 32892.48 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test81.37 31579.30 32387.58 29690.92 31474.16 32280.99 38787.68 36870.52 37576.63 35088.81 32871.21 22592.76 36160.01 37886.93 26595.83 174
EPMVS83.90 29182.70 29587.51 29790.23 33572.67 33588.62 34081.96 38781.37 26585.01 23988.34 33666.31 28994.45 33475.30 29787.12 26295.43 188
ADS-MVSNet281.66 31079.71 31987.50 29891.35 29474.19 32183.33 38188.48 36272.90 36282.24 29485.77 36464.98 29993.20 35764.57 36483.74 28795.12 198
OurMVSNet-221017-085.35 26684.64 26687.49 29990.77 32072.59 33994.01 19194.40 23384.72 18779.62 33093.17 20761.91 31896.72 25781.99 21581.16 31993.16 294
tpm284.08 28682.94 29087.48 30091.39 29271.27 35089.23 33190.37 34071.95 36984.64 24589.33 32067.30 27496.55 27275.17 29887.09 26394.63 217
RPSCF85.07 27284.27 26987.48 30092.91 24570.62 35991.69 27992.46 28376.20 33082.67 29095.22 12563.94 30597.29 22577.51 27785.80 27194.53 224
miper_lstm_enhance85.27 26984.59 26787.31 30291.28 29774.63 31587.69 35294.09 24781.20 27181.36 30589.85 31374.97 17894.30 33981.03 23379.84 34393.01 300
FMVSNet581.52 31379.60 32087.27 30391.17 30077.95 26691.49 28392.26 29276.87 32276.16 35287.91 34451.67 37192.34 36467.74 34781.16 31991.52 337
USDC82.76 29881.26 30387.26 30491.17 30074.55 31689.27 32993.39 26478.26 31175.30 35892.08 24654.43 36496.63 26171.64 31885.79 27290.61 354
test-LLR85.87 25685.41 24687.25 30590.95 31071.67 34889.55 32389.88 35383.41 21484.54 24887.95 34267.25 27595.11 32981.82 21993.37 16594.97 202
test-mter84.54 28183.64 27987.25 30590.95 31071.67 34889.55 32389.88 35379.17 29284.54 24887.95 34255.56 35695.11 32981.82 21993.37 16594.97 202
JIA-IIPM81.04 31878.98 33087.25 30588.64 35373.48 32781.75 38689.61 35773.19 35982.05 29673.71 39066.07 29495.87 30571.18 32384.60 28092.41 318
TDRefinement79.81 33077.34 33587.22 30879.24 39375.48 30793.12 23192.03 29976.45 32575.01 35991.58 26449.19 37796.44 27970.22 33169.18 37789.75 361
tpmvs83.35 29782.07 29687.20 30991.07 30671.00 35688.31 34491.70 30878.91 29580.49 31687.18 35469.30 25797.08 24068.12 34683.56 29193.51 281
ppachtmachnet_test81.84 30680.07 31487.15 31088.46 35774.43 31989.04 33592.16 29475.33 33777.75 34288.99 32566.20 29195.37 32565.12 36177.60 35391.65 333
dmvs_re84.20 28583.22 28687.14 31191.83 27777.81 27290.04 31690.19 34384.70 18881.49 30189.17 32264.37 30391.13 37571.58 31985.65 27392.46 316
tpm cat181.96 30480.27 31087.01 31291.09 30571.02 35587.38 35691.53 31566.25 38180.17 31886.35 36068.22 27196.15 29469.16 33782.29 30593.86 261
test_fmvs1_n87.03 22787.04 18886.97 31389.74 34471.86 34494.55 15194.43 23078.47 30591.95 9795.50 11651.16 37393.81 34793.02 4894.56 14095.26 194
OpenMVS_ROBcopyleft74.94 1979.51 33377.03 34086.93 31487.00 36976.23 29992.33 26090.74 33668.93 37874.52 36388.23 33949.58 37696.62 26257.64 38284.29 28287.94 377
SixPastTwentyTwo83.91 29082.90 29286.92 31590.99 30870.67 35893.48 21491.99 30185.54 16577.62 34492.11 24460.59 33196.87 25476.05 29277.75 35293.20 292
ADS-MVSNet81.56 31279.78 31686.90 31691.35 29471.82 34583.33 38189.16 36072.90 36282.24 29485.77 36464.98 29993.76 34864.57 36483.74 28795.12 198
PatchT82.68 30081.27 30286.89 31790.09 33770.94 35784.06 37890.15 34474.91 34285.63 21383.57 37369.37 25294.87 33365.19 35988.50 23994.84 211
tpm84.73 27884.02 27386.87 31890.33 33268.90 36689.06 33489.94 35080.85 27485.75 20989.86 31268.54 26895.97 30077.76 27384.05 28595.75 177
Patchmatch-RL test81.67 30979.96 31586.81 31985.42 37971.23 35182.17 38587.50 36978.47 30577.19 34682.50 38070.81 23293.48 35282.66 20072.89 36895.71 181
test_vis1_n86.56 24286.49 20986.78 32088.51 35472.69 33494.68 14493.78 25879.55 28890.70 11895.31 12148.75 37893.28 35593.15 4593.99 14994.38 237
test_fmvs187.34 21087.56 17486.68 32190.59 32671.80 34694.01 19194.04 24878.30 30991.97 9595.22 12556.28 35493.71 34992.89 4994.71 13494.52 225
MDA-MVSNet-bldmvs78.85 33776.31 34286.46 32289.76 34373.88 32388.79 33790.42 33979.16 29359.18 38988.33 33760.20 33394.04 34262.00 37168.96 37891.48 339
tpmrst85.35 26684.99 25686.43 32390.88 31767.88 37088.71 33891.43 31880.13 28086.08 20488.80 33073.05 20796.02 29882.48 20183.40 29595.40 189
TESTMET0.1,183.74 29382.85 29386.42 32489.96 34071.21 35289.55 32387.88 36577.41 31783.37 28187.31 35056.71 35293.65 35180.62 24192.85 17594.40 236
our_test_381.93 30580.46 30886.33 32588.46 35773.48 32788.46 34291.11 32476.46 32476.69 34988.25 33866.89 28094.36 33768.75 33979.08 34891.14 346
lessismore_v086.04 32688.46 35768.78 36780.59 39073.01 37090.11 30655.39 35796.43 28075.06 30065.06 38492.90 303
TinyColmap79.76 33177.69 33485.97 32791.71 28173.12 32989.55 32390.36 34175.03 34072.03 37390.19 30246.22 38396.19 29363.11 36881.03 32488.59 373
KD-MVS_2432*160078.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28779.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
miper_refine_blended78.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28779.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
K. test v381.59 31180.15 31385.91 33089.89 34269.42 36592.57 25187.71 36785.56 16473.44 36889.71 31555.58 35595.52 31977.17 28069.76 37492.78 308
mvsany_test185.42 26485.30 25185.77 33187.95 36575.41 30887.61 35580.97 38976.82 32388.68 14795.83 10477.44 14890.82 37785.90 15686.51 26791.08 350
MIMVSNet179.38 33477.28 33685.69 33286.35 37173.67 32491.61 28192.75 27778.11 31472.64 37188.12 34048.16 37991.97 36960.32 37577.49 35491.43 340
UWE-MVS83.69 29483.09 28785.48 33393.06 23765.27 37990.92 29786.14 37279.90 28386.26 20090.72 29157.17 35195.81 30971.03 32692.62 17795.35 192
UnsupCasMVSNet_eth80.07 32778.27 33385.46 33485.24 38072.63 33888.45 34394.87 21382.99 22671.64 37588.07 34156.34 35391.75 37073.48 31263.36 38792.01 328
CL-MVSNet_self_test81.74 30880.53 30685.36 33585.96 37472.45 34190.25 30893.07 26981.24 26979.85 32787.29 35170.93 23092.52 36266.95 35169.23 37691.11 348
MDA-MVSNet_test_wron79.21 33677.19 33885.29 33688.22 36172.77 33385.87 36590.06 34774.34 34762.62 38787.56 34866.14 29291.99 36866.90 35573.01 36691.10 349
YYNet179.22 33577.20 33785.28 33788.20 36272.66 33685.87 36590.05 34974.33 34862.70 38587.61 34766.09 29392.03 36666.94 35272.97 36791.15 345
WB-MVSnew83.77 29283.28 28385.26 33891.48 28771.03 35491.89 27187.98 36478.91 29584.78 24290.22 30069.11 26194.02 34364.70 36390.44 20290.71 352
dp81.47 31480.23 31185.17 33989.92 34165.49 37786.74 36090.10 34676.30 32881.10 30787.12 35562.81 31395.92 30268.13 34579.88 34194.09 249
UnsupCasMVSNet_bld76.23 34673.27 35085.09 34083.79 38372.92 33085.65 36893.47 26371.52 37068.84 38179.08 38549.77 37593.21 35666.81 35660.52 38989.13 370
Anonymous2023120681.03 31979.77 31884.82 34187.85 36670.26 36191.42 28492.08 29773.67 35477.75 34289.25 32162.43 31593.08 35861.50 37382.00 31091.12 347
test0.0.03 182.41 30281.69 29884.59 34288.23 36072.89 33190.24 31087.83 36683.41 21479.86 32689.78 31467.25 27588.99 38565.18 36083.42 29491.90 330
CMPMVSbinary59.16 2180.52 32279.20 32684.48 34383.98 38267.63 37289.95 31993.84 25664.79 38466.81 38391.14 27857.93 34895.17 32776.25 28988.10 24590.65 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet84.69 28084.79 26384.37 34491.84 27564.92 38093.70 20891.47 31766.19 38286.16 20395.28 12267.18 27793.33 35480.89 23690.42 20494.88 210
PVSNet_073.20 2077.22 34374.83 34984.37 34490.70 32471.10 35383.09 38389.67 35672.81 36473.93 36683.13 37560.79 33093.70 35068.54 34050.84 39688.30 375
LF4IMVS80.37 32579.07 32984.27 34686.64 37069.87 36489.39 32891.05 32776.38 32674.97 36090.00 30947.85 38094.25 34174.55 30680.82 33088.69 372
Anonymous2024052180.44 32479.21 32584.11 34785.75 37767.89 36992.86 24493.23 26675.61 33575.59 35787.47 34950.03 37494.33 33871.14 32481.21 31890.12 359
PM-MVS78.11 34076.12 34484.09 34883.54 38470.08 36288.97 33685.27 37879.93 28274.73 36286.43 35834.70 39293.48 35279.43 25872.06 37088.72 371
test_fmvs283.98 28784.03 27283.83 34987.16 36867.53 37393.93 19792.89 27277.62 31586.89 18493.53 19547.18 38292.02 36790.54 10186.51 26791.93 329
testgi80.94 32180.20 31283.18 35087.96 36466.29 37491.28 28890.70 33783.70 20578.12 33992.84 21751.37 37290.82 37763.34 36782.46 30392.43 317
KD-MVS_self_test80.20 32679.24 32483.07 35185.64 37865.29 37891.01 29693.93 25078.71 30376.32 35186.40 35959.20 34192.93 36072.59 31569.35 37591.00 351
testing380.46 32379.59 32183.06 35293.44 22764.64 38193.33 21985.47 37684.34 19379.93 32590.84 28644.35 38692.39 36357.06 38487.56 25592.16 326
ambc83.06 35279.99 39163.51 38577.47 39292.86 27374.34 36584.45 37028.74 39395.06 33173.06 31468.89 37990.61 354
test20.0379.95 32979.08 32882.55 35485.79 37667.74 37191.09 29491.08 32581.23 27074.48 36489.96 31161.63 31990.15 37960.08 37676.38 36089.76 360
test_vis1_rt77.96 34176.46 34182.48 35585.89 37571.74 34790.25 30878.89 39371.03 37471.30 37681.35 38242.49 38891.05 37684.55 17382.37 30484.65 380
EU-MVSNet81.32 31680.95 30482.42 35688.50 35663.67 38493.32 22091.33 31964.02 38580.57 31592.83 21861.21 32692.27 36576.34 28880.38 33791.32 341
myMVS_eth3d79.67 33278.79 33182.32 35791.92 27164.08 38289.75 32187.40 37081.72 25678.82 33487.20 35245.33 38491.29 37359.09 38087.84 25291.60 335
pmmvs371.81 35268.71 35581.11 35875.86 39470.42 36086.74 36083.66 38258.95 38968.64 38280.89 38336.93 39089.52 38263.10 36963.59 38683.39 381
Syy-MVS80.07 32779.78 31680.94 35991.92 27159.93 39089.75 32187.40 37081.72 25678.82 33487.20 35266.29 29091.29 37347.06 39187.84 25291.60 335
new-patchmatchnet76.41 34575.17 34880.13 36082.65 38759.61 39187.66 35391.08 32578.23 31269.85 37983.22 37454.76 36191.63 37264.14 36664.89 38589.16 368
mvsany_test374.95 34773.26 35180.02 36174.61 39563.16 38685.53 36978.42 39474.16 34974.89 36186.46 35736.02 39189.09 38482.39 20466.91 38187.82 378
test_fmvs377.67 34277.16 33979.22 36279.52 39261.14 38892.34 25991.64 31173.98 35178.86 33386.59 35627.38 39687.03 38788.12 12875.97 36289.50 362
DSMNet-mixed76.94 34476.29 34378.89 36383.10 38556.11 39987.78 34979.77 39160.65 38875.64 35688.71 33161.56 32188.34 38660.07 37789.29 22692.21 325
EGC-MVSNET61.97 36056.37 36478.77 36489.63 34673.50 32689.12 33382.79 3840.21 4081.24 40984.80 36839.48 38990.04 38044.13 39375.94 36372.79 392
new_pmnet72.15 35070.13 35478.20 36582.95 38665.68 37583.91 37982.40 38662.94 38764.47 38479.82 38442.85 38786.26 39157.41 38374.44 36582.65 385
MVS-HIRNet73.70 34972.20 35278.18 36691.81 27856.42 39882.94 38482.58 38555.24 39068.88 38066.48 39455.32 35995.13 32858.12 38188.42 24183.01 383
LCM-MVSNet66.00 35762.16 36277.51 36764.51 40558.29 39383.87 38090.90 33248.17 39454.69 39173.31 39116.83 40586.75 38865.47 35861.67 38887.48 379
APD_test169.04 35366.26 35977.36 36880.51 39062.79 38785.46 37083.51 38354.11 39259.14 39084.79 36923.40 39989.61 38155.22 38570.24 37379.68 389
test_f71.95 35170.87 35375.21 36974.21 39759.37 39285.07 37385.82 37465.25 38370.42 37883.13 37523.62 39782.93 39778.32 26771.94 37183.33 382
ANet_high58.88 36454.22 36872.86 37056.50 40856.67 39580.75 38886.00 37373.09 36137.39 40064.63 39722.17 40079.49 40043.51 39423.96 40282.43 386
test_vis3_rt65.12 35862.60 36072.69 37171.44 39860.71 38987.17 35765.55 40463.80 38653.22 39265.65 39614.54 40689.44 38376.65 28465.38 38367.91 395
FPMVS64.63 35962.55 36170.88 37270.80 39956.71 39484.42 37784.42 38051.78 39349.57 39381.61 38123.49 39881.48 39840.61 39876.25 36174.46 391
dmvs_testset74.57 34875.81 34770.86 37387.72 36740.47 40687.05 35977.90 39882.75 23171.15 37785.47 36667.98 27284.12 39545.26 39276.98 35988.00 376
N_pmnet68.89 35468.44 35670.23 37489.07 35028.79 41188.06 34519.50 41169.47 37771.86 37484.93 36761.24 32591.75 37054.70 38677.15 35690.15 358
testf159.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
APD_test259.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
WB-MVS67.92 35567.49 35769.21 37781.09 38841.17 40588.03 34678.00 39773.50 35662.63 38683.11 37763.94 30586.52 38925.66 40251.45 39579.94 388
PMMVS259.60 36156.40 36369.21 37768.83 40246.58 40373.02 39677.48 39955.07 39149.21 39472.95 39217.43 40480.04 39949.32 39044.33 39980.99 387
SSC-MVS67.06 35666.56 35868.56 37980.54 38940.06 40787.77 35077.37 40072.38 36661.75 38882.66 37963.37 30986.45 39024.48 40348.69 39879.16 390
Gipumacopyleft57.99 36554.91 36767.24 38088.51 35465.59 37652.21 39990.33 34243.58 39642.84 39951.18 40020.29 40285.07 39234.77 39970.45 37251.05 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 36648.46 37063.48 38145.72 41046.20 40473.41 39578.31 39541.03 39930.06 40265.68 3956.05 40983.43 39630.04 40065.86 38260.80 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 36838.59 37457.77 38256.52 40748.77 40255.38 39858.64 40829.33 40228.96 40352.65 3994.68 41064.62 40428.11 40133.07 40059.93 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 36748.47 36956.66 38352.26 40918.98 41341.51 40181.40 38810.10 40344.59 39875.01 38928.51 39468.16 40153.54 38749.31 39782.83 384
DeepMVS_CXcopyleft56.31 38474.23 39651.81 40156.67 40944.85 39548.54 39575.16 38827.87 39558.74 40540.92 39752.22 39458.39 398
E-PMN43.23 36942.29 37146.03 38565.58 40437.41 40873.51 39464.62 40533.99 40028.47 40447.87 40119.90 40367.91 40222.23 40424.45 40132.77 400
EMVS42.07 37041.12 37244.92 38663.45 40635.56 41073.65 39363.48 40633.05 40126.88 40545.45 40221.27 40167.14 40319.80 40523.02 40332.06 401
tmp_tt35.64 37139.24 37324.84 38714.87 41123.90 41262.71 39751.51 4106.58 40536.66 40162.08 39844.37 38530.34 40752.40 38822.00 40420.27 402
wuyk23d21.27 37320.48 37623.63 38868.59 40336.41 40949.57 4006.85 4129.37 4047.89 4064.46 4084.03 41131.37 40617.47 40616.07 4053.12 403
test1238.76 37511.22 3781.39 3890.85 4130.97 41485.76 3670.35 4140.54 4072.45 4088.14 4070.60 4120.48 4082.16 4080.17 4072.71 404
testmvs8.92 37411.52 3771.12 3901.06 4120.46 41586.02 3640.65 4130.62 4062.74 4079.52 4060.31 4130.45 4092.38 4070.39 4062.46 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k22.14 37229.52 3750.00 3910.00 4140.00 4160.00 40295.76 1520.00 4090.00 41094.29 16475.66 1700.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.64 3778.86 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40979.70 1210.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.82 37610.43 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41093.88 1850.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS64.08 38259.14 379
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
PC_three_145282.47 23597.09 1097.07 5192.72 198.04 16192.70 5599.02 1298.86 11
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 414
eth-test0.00 414
ZD-MVS98.15 3486.62 3297.07 4583.63 20794.19 4296.91 5787.57 3199.26 4291.99 7498.44 52
RE-MVS-def93.68 5297.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7597.88 78
IU-MVS98.77 586.00 4996.84 6581.26 26897.26 795.50 2399.13 399.03 8
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 2097.79 4996.08 6197.44 1586.13 15395.10 3397.40 3388.34 2299.22 4493.25 4498.70 35
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 159
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 159
sam_mvs70.60 234
MTGPAbinary96.97 50
test_post188.00 3479.81 40569.31 25695.53 31876.65 284
test_post10.29 40470.57 23895.91 304
patchmatchnet-post83.76 37271.53 22296.48 275
MTMP96.16 5360.64 407
gm-plane-assit89.60 34768.00 36877.28 32088.99 32597.57 19179.44 257
test9_res91.91 7898.71 3398.07 66
TEST997.53 5886.49 3694.07 18596.78 7281.61 26192.77 7496.20 8787.71 2899.12 51
test_897.49 6086.30 4494.02 19096.76 7581.86 25292.70 7896.20 8787.63 2999.02 61
agg_prior290.54 10198.68 3898.27 52
agg_prior97.38 6385.92 5696.72 8192.16 9098.97 75
test_prior485.96 5394.11 180
test_prior294.12 17987.67 11492.63 7996.39 8286.62 3891.50 8598.67 40
旧先验293.36 21871.25 37294.37 3997.13 23886.74 146
新几何293.11 233
旧先验196.79 7681.81 16395.67 16096.81 6386.69 3797.66 8096.97 124
无先验93.28 22696.26 11073.95 35299.05 5580.56 24296.59 141
原ACMM292.94 240
test22296.55 8481.70 16592.22 26495.01 20168.36 37990.20 12596.14 9280.26 11497.80 7596.05 166
testdata298.75 9378.30 268
segment_acmp87.16 36
testdata192.15 26687.94 103
plane_prior794.70 16782.74 140
plane_prior694.52 17782.75 13874.23 187
plane_prior596.22 11598.12 14688.15 12589.99 20894.63 217
plane_prior494.86 140
plane_prior382.75 13890.26 3386.91 181
plane_prior295.85 7590.81 17
plane_prior194.59 172
plane_prior82.73 14195.21 11189.66 4889.88 213
n20.00 415
nn0.00 415
door-mid85.49 375
test1196.57 92
door85.33 377
HQP5-MVS81.56 168
HQP-NCC94.17 19594.39 16488.81 7285.43 226
ACMP_Plane94.17 19594.39 16488.81 7285.43 226
BP-MVS87.11 143
HQP4-MVS85.43 22697.96 16794.51 227
HQP3-MVS96.04 13189.77 217
HQP2-MVS73.83 197
NP-MVS94.37 18682.42 15093.98 177
MDTV_nov1_ep13_2view55.91 40087.62 35473.32 35884.59 24770.33 24174.65 30495.50 186
MDTV_nov1_ep1383.56 28091.69 28369.93 36387.75 35191.54 31478.60 30484.86 24188.90 32769.54 25096.03 29770.25 32988.93 232
ACMMP++_ref87.47 256
ACMMP++88.01 248
Test By Simon80.02 116