| MSC_two_6792asdad | | | | | 96.52 1 | 97.78 54 | 90.86 1 | | 96.85 67 | | | | | 99.61 4 | 96.03 17 | 99.06 9 | 99.07 5 |
|
| No_MVS | | | | | 96.52 1 | 97.78 54 | 90.86 1 | | 96.85 67 | | | | | 99.61 4 | 96.03 17 | 99.06 9 | 99.07 5 |
|
| OPU-MVS | | | | | 96.21 3 | 98.00 42 | 90.85 3 | 97.13 14 | | | | 97.08 55 | 92.59 2 | 98.94 83 | 92.25 76 | 98.99 14 | 98.84 14 |
|
| HPM-MVS++ |  | | 95.14 10 | 94.91 17 | 95.83 4 | 98.25 29 | 89.65 4 | 95.92 77 | 96.96 56 | 91.75 10 | 94.02 56 | 96.83 67 | 88.12 24 | 99.55 16 | 93.41 51 | 98.94 16 | 98.28 54 |
|
| MM | | | 95.10 11 | 94.91 17 | 95.68 5 | 96.09 106 | 88.34 9 | 96.68 33 | 94.37 247 | 95.08 1 | 94.68 43 | 97.72 29 | 82.94 89 | 99.64 1 | 97.85 2 | 98.76 29 | 99.06 7 |
|
| SMA-MVS |  | | 95.20 8 | 95.07 12 | 95.59 6 | 98.14 35 | 88.48 8 | 96.26 46 | 97.28 31 | 85.90 165 | 97.67 3 | 98.10 9 | 88.41 20 | 99.56 12 | 94.66 35 | 99.19 1 | 98.71 20 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| 3Dnovator+ | | 87.14 4 | 92.42 87 | 91.37 97 | 95.55 7 | 95.63 129 | 88.73 6 | 97.07 18 | 96.77 78 | 90.84 17 | 84.02 279 | 96.62 80 | 75.95 174 | 99.34 37 | 87.77 143 | 97.68 83 | 98.59 24 |
|
| CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 8 | 98.11 36 | 88.51 7 | 95.29 112 | 96.96 56 | 92.09 7 | 95.32 35 | 97.08 55 | 89.49 15 | 99.33 40 | 95.10 31 | 98.85 20 | 98.66 21 |
|
| MVS_0304 | | | 94.18 40 | 93.80 51 | 95.34 9 | 94.91 165 | 87.62 14 | 95.97 72 | 93.01 287 | 92.58 4 | 94.22 48 | 97.20 49 | 80.56 119 | 99.59 8 | 97.04 11 | 98.68 37 | 98.81 17 |
|
| ACMMP_NAP | | | 94.74 19 | 94.56 23 | 95.28 10 | 98.02 41 | 87.70 11 | 95.68 91 | 97.34 23 | 88.28 102 | 95.30 36 | 97.67 31 | 85.90 50 | 99.54 20 | 93.91 43 | 98.95 15 | 98.60 23 |
|
| DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 11 | 98.36 25 | 87.28 18 | 95.56 102 | 97.51 5 | 89.13 73 | 97.14 10 | 97.91 24 | 91.64 7 | 99.62 2 | 94.61 36 | 99.17 2 | 98.86 11 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SF-MVS | | | 94.97 12 | 94.90 19 | 95.20 12 | 97.84 50 | 87.76 10 | 96.65 34 | 97.48 10 | 87.76 123 | 95.71 30 | 97.70 30 | 88.28 23 | 99.35 36 | 93.89 44 | 98.78 26 | 98.48 30 |
|
| MCST-MVS | | | 94.45 25 | 94.20 39 | 95.19 13 | 98.46 19 | 87.50 16 | 95.00 133 | 97.12 45 | 87.13 134 | 92.51 95 | 96.30 89 | 89.24 17 | 99.34 37 | 93.46 48 | 98.62 46 | 98.73 18 |
|
| NCCC | | | 94.81 17 | 94.69 22 | 95.17 14 | 97.83 51 | 87.46 17 | 95.66 94 | 96.93 60 | 92.34 5 | 93.94 57 | 96.58 82 | 87.74 27 | 99.44 29 | 92.83 60 | 98.40 54 | 98.62 22 |
|
| DPM-MVS | | | 92.58 83 | 91.74 93 | 95.08 15 | 96.19 99 | 89.31 5 | 92.66 261 | 96.56 97 | 83.44 225 | 91.68 118 | 95.04 145 | 86.60 42 | 98.99 73 | 85.60 173 | 97.92 75 | 96.93 139 |
|
| ZNCC-MVS | | | 94.47 24 | 94.28 33 | 95.03 16 | 98.52 15 | 86.96 20 | 96.85 28 | 97.32 27 | 88.24 103 | 93.15 72 | 97.04 58 | 86.17 47 | 99.62 2 | 92.40 70 | 98.81 23 | 98.52 26 |
|
| test_0728_SECOND | | | | | 95.01 17 | 98.79 2 | 86.43 39 | 97.09 16 | 97.49 6 | | | | | 99.61 4 | 95.62 24 | 99.08 7 | 98.99 9 |
|
| MTAPA | | | 94.42 29 | 94.22 36 | 95.00 18 | 98.42 21 | 86.95 21 | 94.36 180 | 96.97 54 | 91.07 14 | 93.14 73 | 97.56 32 | 84.30 73 | 99.56 12 | 93.43 49 | 98.75 30 | 98.47 33 |
|
| MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 19 | 98.49 17 | 86.52 36 | 96.91 25 | 97.47 11 | 91.73 11 | 96.10 23 | 96.69 72 | 89.90 12 | 99.30 43 | 94.70 34 | 98.04 71 | 99.13 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| region2R | | | 94.43 27 | 94.27 35 | 94.92 20 | 98.65 8 | 86.67 30 | 96.92 24 | 97.23 34 | 88.60 93 | 93.58 64 | 97.27 43 | 85.22 58 | 99.54 20 | 92.21 77 | 98.74 31 | 98.56 25 |
|
| APDe-MVS |  | | 95.46 5 | 95.64 5 | 94.91 21 | 98.26 28 | 86.29 46 | 97.46 6 | 97.40 20 | 89.03 78 | 96.20 22 | 98.10 9 | 89.39 16 | 99.34 37 | 95.88 19 | 99.03 11 | 99.10 4 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMPR | | | 94.43 27 | 94.28 33 | 94.91 21 | 98.63 9 | 86.69 28 | 96.94 20 | 97.32 27 | 88.63 90 | 93.53 67 | 97.26 45 | 85.04 62 | 99.54 20 | 92.35 73 | 98.78 26 | 98.50 27 |
|
| GST-MVS | | | 94.21 35 | 93.97 47 | 94.90 23 | 98.41 22 | 86.82 24 | 96.54 36 | 97.19 35 | 88.24 103 | 93.26 69 | 96.83 67 | 85.48 55 | 99.59 8 | 91.43 101 | 98.40 54 | 98.30 49 |
|
| HFP-MVS | | | 94.52 22 | 94.40 27 | 94.86 24 | 98.61 10 | 86.81 25 | 96.94 20 | 97.34 23 | 88.63 90 | 93.65 62 | 97.21 47 | 86.10 48 | 99.49 26 | 92.35 73 | 98.77 28 | 98.30 49 |
|
| sasdasda | | | 93.27 68 | 92.75 77 | 94.85 25 | 95.70 125 | 87.66 12 | 96.33 39 | 96.41 107 | 90.00 41 | 94.09 52 | 94.60 165 | 82.33 98 | 98.62 114 | 92.40 70 | 92.86 186 | 98.27 56 |
|
| MP-MVS-pluss | | | 94.21 35 | 94.00 46 | 94.85 25 | 98.17 33 | 86.65 31 | 94.82 145 | 97.17 40 | 86.26 157 | 92.83 82 | 97.87 26 | 85.57 54 | 99.56 12 | 94.37 39 | 98.92 17 | 98.34 42 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| canonicalmvs | | | 93.27 68 | 92.75 77 | 94.85 25 | 95.70 125 | 87.66 12 | 96.33 39 | 96.41 107 | 90.00 41 | 94.09 52 | 94.60 165 | 82.33 98 | 98.62 114 | 92.40 70 | 92.86 186 | 98.27 56 |
|
| XVS | | | 94.45 25 | 94.32 29 | 94.85 25 | 98.54 13 | 86.60 34 | 96.93 22 | 97.19 35 | 90.66 25 | 92.85 80 | 97.16 53 | 85.02 63 | 99.49 26 | 91.99 87 | 98.56 50 | 98.47 33 |
|
| X-MVStestdata | | | 88.31 185 | 86.13 232 | 94.85 25 | 98.54 13 | 86.60 34 | 96.93 22 | 97.19 35 | 90.66 25 | 92.85 80 | 23.41 423 | 85.02 63 | 99.49 26 | 91.99 87 | 98.56 50 | 98.47 33 |
|
| SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 25 | 96.99 75 | 86.33 42 | 97.33 7 | 97.30 29 | 91.38 13 | 95.39 34 | 97.46 35 | 88.98 19 | 99.40 30 | 94.12 40 | 98.89 18 | 98.82 16 |
| Skip Steuart: Steuart Systems R&D Blog. |
| DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 31 | 97.78 54 | 86.00 50 | 98.29 1 | 97.49 6 | 90.75 20 | 97.62 5 | 98.06 15 | 92.59 2 | 99.61 4 | 95.64 22 | 99.02 12 | 98.86 11 |
|
| alignmvs | | | 93.08 75 | 92.50 83 | 94.81 32 | 95.62 130 | 87.61 15 | 95.99 70 | 96.07 139 | 89.77 54 | 94.12 51 | 94.87 151 | 80.56 119 | 98.66 107 | 92.42 69 | 93.10 182 | 98.15 67 |
|
| SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 33 | 98.77 5 | 85.99 52 | 97.13 14 | 97.44 15 | 90.31 31 | 97.71 1 | 98.07 13 | 92.31 4 | 99.58 10 | 95.66 20 | 99.13 3 | 98.84 14 |
|
| DeepC-MVS_fast | | 89.43 2 | 94.04 42 | 93.79 52 | 94.80 33 | 97.48 64 | 86.78 26 | 95.65 96 | 96.89 64 | 89.40 63 | 92.81 83 | 96.97 60 | 85.37 57 | 99.24 46 | 90.87 110 | 98.69 35 | 98.38 41 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MP-MVS |  | | 94.25 32 | 94.07 43 | 94.77 35 | 98.47 18 | 86.31 44 | 96.71 31 | 96.98 53 | 89.04 76 | 91.98 105 | 97.19 50 | 85.43 56 | 99.56 12 | 92.06 86 | 98.79 24 | 98.44 37 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| APD-MVS |  | | 94.24 33 | 94.07 43 | 94.75 36 | 98.06 39 | 86.90 23 | 95.88 79 | 96.94 59 | 85.68 171 | 95.05 41 | 97.18 51 | 87.31 35 | 99.07 56 | 91.90 93 | 98.61 48 | 98.28 54 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| CP-MVS | | | 94.34 30 | 94.21 38 | 94.74 37 | 98.39 23 | 86.64 32 | 97.60 4 | 97.24 32 | 88.53 95 | 92.73 88 | 97.23 46 | 85.20 59 | 99.32 41 | 92.15 80 | 98.83 22 | 98.25 61 |
|
| PGM-MVS | | | 93.96 47 | 93.72 56 | 94.68 38 | 98.43 20 | 86.22 47 | 95.30 110 | 97.78 1 | 87.45 130 | 93.26 69 | 97.33 41 | 84.62 70 | 99.51 24 | 90.75 112 | 98.57 49 | 98.32 48 |
|
| DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 39 | 98.78 3 | 85.93 55 | 97.09 16 | 96.73 83 | 90.27 35 | 97.04 13 | 98.05 17 | 91.47 8 | 99.55 16 | 95.62 24 | 99.08 7 | 98.45 36 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| mPP-MVS | | | 93.99 45 | 93.78 53 | 94.63 40 | 98.50 16 | 85.90 60 | 96.87 26 | 96.91 62 | 88.70 88 | 91.83 114 | 97.17 52 | 83.96 77 | 99.55 16 | 91.44 100 | 98.64 45 | 98.43 38 |
|
| PHI-MVS | | | 93.89 48 | 93.65 60 | 94.62 41 | 96.84 78 | 86.43 39 | 96.69 32 | 97.49 6 | 85.15 184 | 93.56 66 | 96.28 90 | 85.60 53 | 99.31 42 | 92.45 67 | 98.79 24 | 98.12 71 |
|
| TSAR-MVS + MP. | | | 94.85 14 | 94.94 15 | 94.58 42 | 98.25 29 | 86.33 42 | 96.11 59 | 96.62 92 | 88.14 108 | 96.10 23 | 96.96 61 | 89.09 18 | 98.94 83 | 94.48 37 | 98.68 37 | 98.48 30 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CANet | | | 93.54 56 | 93.20 69 | 94.55 43 | 95.65 128 | 85.73 65 | 94.94 136 | 96.69 88 | 91.89 9 | 90.69 130 | 95.88 110 | 81.99 110 | 99.54 20 | 93.14 55 | 97.95 74 | 98.39 39 |
|
| train_agg | | | 93.44 61 | 93.08 70 | 94.52 44 | 97.53 61 | 86.49 37 | 94.07 197 | 96.78 76 | 81.86 266 | 92.77 85 | 96.20 93 | 87.63 29 | 99.12 54 | 92.14 81 | 98.69 35 | 97.94 81 |
|
| CDPH-MVS | | | 92.83 79 | 92.30 85 | 94.44 45 | 97.79 52 | 86.11 49 | 94.06 199 | 96.66 89 | 80.09 297 | 92.77 85 | 96.63 79 | 86.62 40 | 99.04 60 | 87.40 148 | 98.66 41 | 98.17 66 |
|
| 3Dnovator | | 86.66 5 | 91.73 97 | 90.82 109 | 94.44 45 | 94.59 182 | 86.37 41 | 97.18 12 | 97.02 51 | 89.20 70 | 84.31 274 | 96.66 75 | 73.74 211 | 99.17 50 | 86.74 158 | 97.96 73 | 97.79 93 |
|
| SR-MVS | | | 94.23 34 | 94.17 41 | 94.43 47 | 98.21 32 | 85.78 63 | 96.40 38 | 96.90 63 | 88.20 106 | 94.33 47 | 97.40 38 | 84.75 69 | 99.03 61 | 93.35 52 | 97.99 72 | 98.48 30 |
|
| HPM-MVS |  | | 94.02 43 | 93.88 48 | 94.43 47 | 98.39 23 | 85.78 63 | 97.25 10 | 97.07 49 | 86.90 142 | 92.62 92 | 96.80 71 | 84.85 68 | 99.17 50 | 92.43 68 | 98.65 44 | 98.33 44 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| TSAR-MVS + GP. | | | 93.66 54 | 93.41 64 | 94.41 49 | 96.59 85 | 86.78 26 | 94.40 172 | 93.93 264 | 89.77 54 | 94.21 49 | 95.59 123 | 87.35 34 | 98.61 116 | 92.72 63 | 96.15 118 | 97.83 91 |
|
| reproduce-ours | | | 94.82 15 | 94.97 13 | 94.38 50 | 97.91 47 | 85.46 68 | 95.86 80 | 97.15 42 | 89.82 47 | 95.23 38 | 98.10 9 | 87.09 37 | 99.37 33 | 95.30 28 | 98.25 60 | 98.30 49 |
|
| our_new_method | | | 94.82 15 | 94.97 13 | 94.38 50 | 97.91 47 | 85.46 68 | 95.86 80 | 97.15 42 | 89.82 47 | 95.23 38 | 98.10 9 | 87.09 37 | 99.37 33 | 95.30 28 | 98.25 60 | 98.30 49 |
|
| test12 | | | | | 94.34 52 | 97.13 73 | 86.15 48 | | 96.29 115 | | 91.04 127 | | 85.08 61 | 99.01 66 | | 98.13 66 | 97.86 88 |
|
| ACMMP |  | | 93.24 70 | 92.88 75 | 94.30 53 | 98.09 38 | 85.33 72 | 96.86 27 | 97.45 14 | 88.33 99 | 90.15 140 | 97.03 59 | 81.44 113 | 99.51 24 | 90.85 111 | 95.74 123 | 98.04 76 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| reproduce_model | | | 94.76 18 | 94.92 16 | 94.29 54 | 97.92 43 | 85.18 74 | 95.95 75 | 97.19 35 | 89.67 57 | 95.27 37 | 98.16 3 | 86.53 43 | 99.36 35 | 95.42 27 | 98.15 64 | 98.33 44 |
|
| DeepC-MVS | | 88.79 3 | 93.31 67 | 92.99 73 | 94.26 55 | 96.07 108 | 85.83 61 | 94.89 139 | 96.99 52 | 89.02 79 | 89.56 145 | 97.37 40 | 82.51 95 | 99.38 31 | 92.20 78 | 98.30 57 | 97.57 106 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MGCFI-Net | | | 93.03 76 | 92.63 80 | 94.23 56 | 95.62 130 | 85.92 57 | 96.08 60 | 96.33 113 | 89.86 45 | 93.89 59 | 94.66 162 | 82.11 105 | 98.50 122 | 92.33 75 | 92.82 189 | 98.27 56 |
|
| EPNet | | | 91.79 94 | 91.02 105 | 94.10 57 | 90.10 350 | 85.25 73 | 96.03 67 | 92.05 313 | 92.83 3 | 87.39 187 | 95.78 115 | 79.39 135 | 99.01 66 | 88.13 139 | 97.48 86 | 98.05 75 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_fmvsmconf_n | | | 94.60 21 | 94.81 20 | 93.98 58 | 94.62 180 | 84.96 77 | 96.15 54 | 97.35 22 | 89.37 64 | 96.03 26 | 98.11 7 | 86.36 44 | 99.01 66 | 97.45 5 | 97.83 78 | 97.96 80 |
|
| DELS-MVS | | | 93.43 65 | 93.25 67 | 93.97 59 | 95.42 138 | 85.04 75 | 93.06 249 | 97.13 44 | 90.74 22 | 91.84 112 | 95.09 144 | 86.32 45 | 99.21 48 | 91.22 102 | 98.45 52 | 97.65 101 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| DP-MVS Recon | | | 91.95 92 | 91.28 99 | 93.96 60 | 98.33 27 | 85.92 57 | 94.66 156 | 96.66 89 | 82.69 245 | 90.03 142 | 95.82 113 | 82.30 100 | 99.03 61 | 84.57 185 | 96.48 112 | 96.91 141 |
|
| HPM-MVS_fast | | | 93.40 66 | 93.22 68 | 93.94 61 | 98.36 25 | 84.83 79 | 97.15 13 | 96.80 75 | 85.77 168 | 92.47 96 | 97.13 54 | 82.38 96 | 99.07 56 | 90.51 115 | 98.40 54 | 97.92 84 |
|
| test_fmvsmconf0.1_n | | | 94.20 37 | 94.31 31 | 93.88 62 | 92.46 269 | 84.80 80 | 96.18 51 | 96.82 72 | 89.29 67 | 95.68 31 | 98.11 7 | 85.10 60 | 98.99 73 | 97.38 6 | 97.75 82 | 97.86 88 |
|
| SD-MVS | | | 94.96 13 | 95.33 8 | 93.88 62 | 97.25 72 | 86.69 28 | 96.19 49 | 97.11 47 | 90.42 28 | 96.95 15 | 97.27 43 | 89.53 14 | 96.91 264 | 94.38 38 | 98.85 20 | 98.03 77 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| MVS_111021_HR | | | 93.45 60 | 93.31 65 | 93.84 64 | 96.99 75 | 84.84 78 | 93.24 242 | 97.24 32 | 88.76 85 | 91.60 119 | 95.85 111 | 86.07 49 | 98.66 107 | 91.91 91 | 98.16 63 | 98.03 77 |
|
| SR-MVS-dyc-post | | | 93.82 49 | 93.82 50 | 93.82 65 | 97.92 43 | 84.57 86 | 96.28 43 | 96.76 79 | 87.46 128 | 93.75 60 | 97.43 36 | 84.24 74 | 99.01 66 | 92.73 61 | 97.80 79 | 97.88 86 |
|
| test_prior | | | | | 93.82 65 | 97.29 70 | 84.49 90 | | 96.88 65 | | | | | 98.87 87 | | | 98.11 72 |
|
| APD-MVS_3200maxsize | | | 93.78 50 | 93.77 54 | 93.80 67 | 97.92 43 | 84.19 101 | 96.30 41 | 96.87 66 | 86.96 138 | 93.92 58 | 97.47 34 | 83.88 78 | 98.96 80 | 92.71 64 | 97.87 76 | 98.26 60 |
|
| fmvsm_l_conf0.5_n | | | 94.29 31 | 94.46 25 | 93.79 68 | 95.28 143 | 85.43 70 | 95.68 91 | 96.43 105 | 86.56 149 | 96.84 16 | 97.81 28 | 87.56 32 | 98.77 99 | 97.14 8 | 96.82 103 | 97.16 125 |
|
| CSCG | | | 93.23 71 | 93.05 71 | 93.76 69 | 98.04 40 | 84.07 103 | 96.22 48 | 97.37 21 | 84.15 207 | 90.05 141 | 95.66 120 | 87.77 26 | 99.15 53 | 89.91 120 | 98.27 58 | 98.07 73 |
|
| GDP-MVS | | | 92.04 90 | 91.46 96 | 93.75 70 | 94.55 187 | 84.69 83 | 95.60 101 | 96.56 97 | 87.83 120 | 93.07 76 | 95.89 109 | 73.44 215 | 98.65 109 | 90.22 118 | 96.03 120 | 97.91 85 |
|
| BP-MVS1 | | | 92.48 85 | 92.07 88 | 93.72 71 | 94.50 190 | 84.39 98 | 95.90 78 | 94.30 250 | 90.39 29 | 92.67 90 | 95.94 106 | 74.46 195 | 98.65 109 | 93.14 55 | 97.35 90 | 98.13 68 |
|
| test_fmvsmconf0.01_n | | | 93.19 72 | 93.02 72 | 93.71 72 | 89.25 363 | 84.42 97 | 96.06 64 | 96.29 115 | 89.06 74 | 94.68 43 | 98.13 4 | 79.22 137 | 98.98 77 | 97.22 7 | 97.24 91 | 97.74 96 |
|
| UA-Net | | | 92.83 79 | 92.54 82 | 93.68 73 | 96.10 105 | 84.71 82 | 95.66 94 | 96.39 109 | 91.92 8 | 93.22 71 | 96.49 85 | 83.16 85 | 98.87 87 | 84.47 187 | 95.47 130 | 97.45 111 |
|
| fmvsm_l_conf0.5_n_a | | | 94.20 37 | 94.40 27 | 93.60 74 | 95.29 142 | 84.98 76 | 95.61 98 | 96.28 118 | 86.31 155 | 96.75 18 | 97.86 27 | 87.40 33 | 98.74 102 | 97.07 10 | 97.02 96 | 97.07 127 |
|
| QAPM | | | 89.51 148 | 88.15 172 | 93.59 75 | 94.92 163 | 84.58 85 | 96.82 29 | 96.70 87 | 78.43 323 | 83.41 294 | 96.19 96 | 73.18 219 | 99.30 43 | 77.11 295 | 96.54 109 | 96.89 142 |
|
| test_fmvsm_n_1920 | | | 94.71 20 | 95.11 11 | 93.50 76 | 95.79 120 | 84.62 84 | 96.15 54 | 97.64 2 | 89.85 46 | 97.19 9 | 97.89 25 | 86.28 46 | 98.71 105 | 97.11 9 | 98.08 70 | 97.17 121 |
|
| casdiffmvs_mvg |  | | 92.96 78 | 92.83 76 | 93.35 77 | 94.59 182 | 83.40 123 | 95.00 133 | 96.34 112 | 90.30 33 | 92.05 103 | 96.05 101 | 83.43 81 | 98.15 156 | 92.07 83 | 95.67 124 | 98.49 29 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EI-MVSNet-Vis-set | | | 93.01 77 | 92.92 74 | 93.29 78 | 95.01 156 | 83.51 120 | 94.48 164 | 95.77 164 | 90.87 16 | 92.52 94 | 96.67 74 | 84.50 71 | 99.00 71 | 91.99 87 | 94.44 157 | 97.36 112 |
|
| Vis-MVSNet |  | | 91.75 96 | 91.23 100 | 93.29 78 | 95.32 141 | 83.78 110 | 96.14 56 | 95.98 146 | 89.89 43 | 90.45 132 | 96.58 82 | 75.09 186 | 98.31 147 | 84.75 183 | 96.90 99 | 97.78 94 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| balanced_conf03 | | | 93.98 46 | 94.22 36 | 93.26 80 | 96.13 101 | 83.29 126 | 96.27 45 | 96.52 100 | 89.82 47 | 95.56 33 | 95.51 125 | 84.50 71 | 98.79 97 | 94.83 33 | 98.86 19 | 97.72 97 |
|
| SPE-MVS-test | | | 94.02 43 | 94.29 32 | 93.24 81 | 96.69 81 | 83.24 127 | 97.49 5 | 96.92 61 | 92.14 6 | 92.90 78 | 95.77 116 | 85.02 63 | 98.33 144 | 93.03 57 | 98.62 46 | 98.13 68 |
|
| VNet | | | 92.24 89 | 91.91 90 | 93.24 81 | 96.59 85 | 83.43 121 | 94.84 144 | 96.44 104 | 89.19 71 | 94.08 55 | 95.90 108 | 77.85 156 | 98.17 154 | 88.90 130 | 93.38 176 | 98.13 68 |
|
| VDD-MVS | | | 90.74 115 | 89.92 127 | 93.20 83 | 96.27 97 | 83.02 140 | 95.73 88 | 93.86 268 | 88.42 98 | 92.53 93 | 96.84 66 | 62.09 329 | 98.64 111 | 90.95 108 | 92.62 191 | 97.93 83 |
|
| CS-MVS | | | 94.12 41 | 94.44 26 | 93.17 84 | 96.55 88 | 83.08 137 | 97.63 3 | 96.95 58 | 91.71 12 | 93.50 68 | 96.21 92 | 85.61 52 | 98.24 149 | 93.64 46 | 98.17 62 | 98.19 64 |
|
| nrg030 | | | 91.08 109 | 90.39 113 | 93.17 84 | 93.07 252 | 86.91 22 | 96.41 37 | 96.26 120 | 88.30 101 | 88.37 166 | 94.85 154 | 82.19 104 | 97.64 197 | 91.09 103 | 82.95 308 | 94.96 220 |
|
| MVSMamba_PlusPlus | | | 93.44 61 | 93.54 62 | 93.14 86 | 96.58 87 | 83.05 138 | 96.06 64 | 96.50 102 | 84.42 204 | 94.09 52 | 95.56 124 | 85.01 66 | 98.69 106 | 94.96 32 | 98.66 41 | 97.67 100 |
|
| EI-MVSNet-UG-set | | | 92.74 81 | 92.62 81 | 93.12 87 | 94.86 168 | 83.20 129 | 94.40 172 | 95.74 167 | 90.71 24 | 92.05 103 | 96.60 81 | 84.00 76 | 98.99 73 | 91.55 98 | 93.63 167 | 97.17 121 |
|
| test_fmvsmvis_n_1920 | | | 93.44 61 | 93.55 61 | 93.10 88 | 93.67 234 | 84.26 100 | 95.83 84 | 96.14 130 | 89.00 80 | 92.43 97 | 97.50 33 | 83.37 84 | 98.72 103 | 96.61 15 | 97.44 87 | 96.32 162 |
|
| æ–°å‡ ä½•1 | | | | | 93.10 88 | 97.30 69 | 84.35 99 | | 95.56 181 | 71.09 389 | 91.26 125 | 96.24 91 | 82.87 91 | 98.86 89 | 79.19 274 | 98.10 67 | 96.07 177 |
|
| OMC-MVS | | | 91.23 105 | 90.62 112 | 93.08 90 | 96.27 97 | 84.07 103 | 93.52 225 | 95.93 150 | 86.95 139 | 89.51 146 | 96.13 99 | 78.50 147 | 98.35 141 | 85.84 171 | 92.90 185 | 96.83 146 |
|
| OpenMVS |  | 83.78 11 | 88.74 174 | 87.29 191 | 93.08 90 | 92.70 264 | 85.39 71 | 96.57 35 | 96.43 105 | 78.74 318 | 80.85 326 | 96.07 100 | 69.64 262 | 99.01 66 | 78.01 286 | 96.65 107 | 94.83 227 |
|
| MAR-MVS | | | 90.30 126 | 89.37 138 | 93.07 92 | 96.61 84 | 84.48 91 | 95.68 91 | 95.67 173 | 82.36 250 | 87.85 175 | 92.85 226 | 76.63 167 | 98.80 95 | 80.01 262 | 96.68 106 | 95.91 183 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| lupinMVS | | | 90.92 110 | 90.21 116 | 93.03 93 | 93.86 224 | 83.88 108 | 92.81 258 | 93.86 268 | 79.84 300 | 91.76 115 | 94.29 175 | 77.92 153 | 98.04 172 | 90.48 116 | 97.11 92 | 97.17 121 |
|
| Effi-MVS+ | | | 91.59 100 | 91.11 102 | 93.01 94 | 94.35 202 | 83.39 124 | 94.60 158 | 95.10 211 | 87.10 135 | 90.57 131 | 93.10 221 | 81.43 114 | 98.07 170 | 89.29 126 | 94.48 155 | 97.59 105 |
|
| fmvsm_s_conf0.5_n_a | | | 93.57 55 | 93.76 55 | 93.00 95 | 95.02 155 | 83.67 113 | 96.19 49 | 96.10 136 | 87.27 132 | 95.98 27 | 98.05 17 | 83.07 88 | 98.45 132 | 96.68 14 | 95.51 127 | 96.88 143 |
|
| MVS_111021_LR | | | 92.47 86 | 92.29 86 | 92.98 96 | 95.99 114 | 84.43 95 | 93.08 247 | 96.09 137 | 88.20 106 | 91.12 126 | 95.72 119 | 81.33 115 | 97.76 187 | 91.74 95 | 97.37 89 | 96.75 148 |
|
| fmvsm_s_conf0.1_n_a | | | 93.19 72 | 93.26 66 | 92.97 97 | 92.49 267 | 83.62 116 | 96.02 68 | 95.72 170 | 86.78 144 | 96.04 25 | 98.19 1 | 82.30 100 | 98.43 136 | 96.38 16 | 95.42 133 | 96.86 144 |
|
| ETV-MVS | | | 92.74 81 | 92.66 79 | 92.97 97 | 95.20 149 | 84.04 105 | 95.07 129 | 96.51 101 | 90.73 23 | 92.96 77 | 91.19 285 | 84.06 75 | 98.34 142 | 91.72 96 | 96.54 109 | 96.54 158 |
|
| LFMVS | | | 90.08 131 | 89.13 144 | 92.95 99 | 96.71 80 | 82.32 163 | 96.08 60 | 89.91 366 | 86.79 143 | 92.15 102 | 96.81 69 | 62.60 327 | 98.34 142 | 87.18 152 | 93.90 163 | 98.19 64 |
|
| UGNet | | | 89.95 136 | 88.95 148 | 92.95 99 | 94.51 189 | 83.31 125 | 95.70 90 | 95.23 204 | 89.37 64 | 87.58 181 | 93.94 190 | 64.00 318 | 98.78 98 | 83.92 194 | 96.31 114 | 96.74 149 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| jason | | | 90.80 113 | 90.10 120 | 92.90 101 | 93.04 255 | 83.53 119 | 93.08 247 | 94.15 257 | 80.22 294 | 91.41 122 | 94.91 148 | 76.87 161 | 97.93 181 | 90.28 117 | 96.90 99 | 97.24 117 |
| jason: jason. |
| DP-MVS | | | 87.25 225 | 85.36 261 | 92.90 101 | 97.65 58 | 83.24 127 | 94.81 146 | 92.00 315 | 74.99 357 | 81.92 315 | 95.00 146 | 72.66 224 | 99.05 58 | 66.92 370 | 92.33 196 | 96.40 160 |
|
| fmvsm_s_conf0.5_n | | | 93.76 51 | 94.06 45 | 92.86 103 | 95.62 130 | 83.17 130 | 96.14 56 | 96.12 134 | 88.13 109 | 95.82 29 | 98.04 20 | 83.43 81 | 98.48 124 | 96.97 12 | 96.23 115 | 96.92 140 |
|
| fmvsm_s_conf0.1_n | | | 93.46 59 | 93.66 59 | 92.85 104 | 93.75 230 | 83.13 132 | 96.02 68 | 95.74 167 | 87.68 125 | 95.89 28 | 98.17 2 | 82.78 92 | 98.46 128 | 96.71 13 | 96.17 117 | 96.98 136 |
|
| CANet_DTU | | | 90.26 128 | 89.41 137 | 92.81 105 | 93.46 241 | 83.01 141 | 93.48 226 | 94.47 243 | 89.43 62 | 87.76 179 | 94.23 180 | 70.54 251 | 99.03 61 | 84.97 178 | 96.39 113 | 96.38 161 |
|
| MVSFormer | | | 91.68 99 | 91.30 98 | 92.80 106 | 93.86 224 | 83.88 108 | 95.96 73 | 95.90 154 | 84.66 200 | 91.76 115 | 94.91 148 | 77.92 153 | 97.30 231 | 89.64 122 | 97.11 92 | 97.24 117 |
|
| PVSNet_Blended_VisFu | | | 91.38 102 | 90.91 107 | 92.80 106 | 96.39 94 | 83.17 130 | 94.87 141 | 96.66 89 | 83.29 230 | 89.27 152 | 94.46 170 | 80.29 122 | 99.17 50 | 87.57 146 | 95.37 134 | 96.05 180 |
|
| VDDNet | | | 89.56 147 | 88.49 163 | 92.76 108 | 95.07 154 | 82.09 165 | 96.30 41 | 93.19 282 | 81.05 288 | 91.88 110 | 96.86 65 | 61.16 345 | 98.33 144 | 88.43 136 | 92.49 195 | 97.84 90 |
|
| h-mvs33 | | | 90.80 113 | 90.15 119 | 92.75 109 | 96.01 110 | 82.66 154 | 95.43 104 | 95.53 185 | 89.80 50 | 93.08 74 | 95.64 121 | 75.77 175 | 99.00 71 | 92.07 83 | 78.05 365 | 96.60 153 |
|
| casdiffmvs |  | | 92.51 84 | 92.43 84 | 92.74 110 | 94.41 197 | 81.98 168 | 94.54 162 | 96.23 124 | 89.57 59 | 91.96 107 | 96.17 97 | 82.58 94 | 98.01 174 | 90.95 108 | 95.45 132 | 98.23 62 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_yl | | | 90.69 117 | 90.02 125 | 92.71 111 | 95.72 123 | 82.41 161 | 94.11 192 | 95.12 209 | 85.63 172 | 91.49 120 | 94.70 158 | 74.75 190 | 98.42 137 | 86.13 166 | 92.53 193 | 97.31 113 |
|
| DCV-MVSNet | | | 90.69 117 | 90.02 125 | 92.71 111 | 95.72 123 | 82.41 161 | 94.11 192 | 95.12 209 | 85.63 172 | 91.49 120 | 94.70 158 | 74.75 190 | 98.42 137 | 86.13 166 | 92.53 193 | 97.31 113 |
|
| PCF-MVS | | 84.11 10 | 87.74 200 | 86.08 236 | 92.70 113 | 94.02 215 | 84.43 95 | 89.27 345 | 95.87 158 | 73.62 371 | 84.43 266 | 94.33 172 | 78.48 148 | 98.86 89 | 70.27 344 | 94.45 156 | 94.81 228 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| baseline | | | 92.39 88 | 92.29 86 | 92.69 114 | 94.46 193 | 81.77 172 | 94.14 189 | 96.27 119 | 89.22 69 | 91.88 110 | 96.00 102 | 82.35 97 | 97.99 176 | 91.05 104 | 95.27 138 | 98.30 49 |
|
| MSLP-MVS++ | | | 93.72 53 | 94.08 42 | 92.65 115 | 97.31 68 | 83.43 121 | 95.79 86 | 97.33 25 | 90.03 40 | 93.58 64 | 96.96 61 | 84.87 67 | 97.76 187 | 92.19 79 | 98.66 41 | 96.76 147 |
|
| EC-MVSNet | | | 93.44 61 | 93.71 57 | 92.63 116 | 95.21 148 | 82.43 158 | 97.27 9 | 96.71 86 | 90.57 27 | 92.88 79 | 95.80 114 | 83.16 85 | 98.16 155 | 93.68 45 | 98.14 65 | 97.31 113 |
|
| ab-mvs | | | 89.41 153 | 88.35 165 | 92.60 117 | 95.15 153 | 82.65 155 | 92.20 278 | 95.60 180 | 83.97 211 | 88.55 162 | 93.70 203 | 74.16 203 | 98.21 153 | 82.46 216 | 89.37 237 | 96.94 138 |
|
| LS3D | | | 87.89 195 | 86.32 225 | 92.59 118 | 96.07 108 | 82.92 144 | 95.23 117 | 94.92 223 | 75.66 349 | 82.89 301 | 95.98 104 | 72.48 227 | 99.21 48 | 68.43 358 | 95.23 139 | 95.64 196 |
|
| Anonymous20240529 | | | 88.09 191 | 86.59 214 | 92.58 119 | 96.53 90 | 81.92 170 | 95.99 70 | 95.84 160 | 74.11 366 | 89.06 156 | 95.21 138 | 61.44 337 | 98.81 94 | 83.67 199 | 87.47 268 | 97.01 134 |
|
| fmvsm_s_conf0.5_n_3 | | | 94.49 23 | 95.13 10 | 92.56 120 | 95.49 136 | 81.10 194 | 95.93 76 | 97.16 41 | 92.96 2 | 97.39 7 | 98.13 4 | 83.63 80 | 98.80 95 | 97.89 1 | 97.61 85 | 97.78 94 |
|
| CPTT-MVS | | | 91.99 91 | 91.80 91 | 92.55 121 | 98.24 31 | 81.98 168 | 96.76 30 | 96.49 103 | 81.89 265 | 90.24 135 | 96.44 87 | 78.59 145 | 98.61 116 | 89.68 121 | 97.85 77 | 97.06 128 |
|
| 114514_t | | | 89.51 148 | 88.50 161 | 92.54 122 | 98.11 36 | 81.99 167 | 95.16 125 | 96.36 111 | 70.19 393 | 85.81 220 | 95.25 135 | 76.70 165 | 98.63 113 | 82.07 226 | 96.86 102 | 97.00 135 |
|
| PAPM_NR | | | 91.22 106 | 90.78 110 | 92.52 123 | 97.60 59 | 81.46 181 | 94.37 178 | 96.24 123 | 86.39 154 | 87.41 184 | 94.80 156 | 82.06 108 | 98.48 124 | 82.80 211 | 95.37 134 | 97.61 103 |
|
| DeepPCF-MVS | | 89.96 1 | 94.20 37 | 94.77 21 | 92.49 124 | 96.52 91 | 80.00 228 | 94.00 205 | 97.08 48 | 90.05 39 | 95.65 32 | 97.29 42 | 89.66 13 | 98.97 78 | 93.95 42 | 98.71 32 | 98.50 27 |
|
| IS-MVSNet | | | 91.43 101 | 91.09 104 | 92.46 125 | 95.87 119 | 81.38 184 | 96.95 19 | 93.69 274 | 89.72 56 | 89.50 148 | 95.98 104 | 78.57 146 | 97.77 186 | 83.02 205 | 96.50 111 | 98.22 63 |
|
| API-MVS | | | 90.66 119 | 90.07 121 | 92.45 126 | 96.36 95 | 84.57 86 | 96.06 64 | 95.22 206 | 82.39 248 | 89.13 153 | 94.27 178 | 80.32 121 | 98.46 128 | 80.16 261 | 96.71 105 | 94.33 251 |
|
| xiu_mvs_v1_base_debu | | | 90.64 120 | 90.05 122 | 92.40 127 | 93.97 221 | 84.46 92 | 93.32 233 | 95.46 188 | 85.17 181 | 92.25 98 | 94.03 182 | 70.59 247 | 98.57 119 | 90.97 105 | 94.67 147 | 94.18 254 |
|
| xiu_mvs_v1_base | | | 90.64 120 | 90.05 122 | 92.40 127 | 93.97 221 | 84.46 92 | 93.32 233 | 95.46 188 | 85.17 181 | 92.25 98 | 94.03 182 | 70.59 247 | 98.57 119 | 90.97 105 | 94.67 147 | 94.18 254 |
|
| xiu_mvs_v1_base_debi | | | 90.64 120 | 90.05 122 | 92.40 127 | 93.97 221 | 84.46 92 | 93.32 233 | 95.46 188 | 85.17 181 | 92.25 98 | 94.03 182 | 70.59 247 | 98.57 119 | 90.97 105 | 94.67 147 | 94.18 254 |
|
| fmvsm_s_conf0.5_n_2 | | | 93.47 58 | 93.83 49 | 92.39 130 | 95.36 139 | 81.19 190 | 95.20 122 | 96.56 97 | 90.37 30 | 97.13 11 | 98.03 21 | 77.47 157 | 98.96 80 | 97.79 3 | 96.58 108 | 97.03 131 |
|
| fmvsm_s_conf0.1_n_2 | | | 93.16 74 | 93.42 63 | 92.37 131 | 94.62 180 | 81.13 192 | 95.23 117 | 95.89 156 | 90.30 33 | 96.74 19 | 98.02 22 | 76.14 169 | 98.95 82 | 97.64 4 | 96.21 116 | 97.03 131 |
|
| AdaColmap |  | | 89.89 139 | 89.07 145 | 92.37 131 | 97.41 65 | 83.03 139 | 94.42 171 | 95.92 151 | 82.81 242 | 86.34 210 | 94.65 163 | 73.89 207 | 99.02 64 | 80.69 252 | 95.51 127 | 95.05 215 |
|
| CNLPA | | | 89.07 164 | 87.98 175 | 92.34 133 | 96.87 77 | 84.78 81 | 94.08 196 | 93.24 280 | 81.41 279 | 84.46 264 | 95.13 143 | 75.57 182 | 96.62 275 | 77.21 293 | 93.84 165 | 95.61 199 |
|
| ET-MVSNet_ETH3D | | | 87.51 213 | 85.91 244 | 92.32 134 | 93.70 233 | 83.93 106 | 92.33 273 | 90.94 346 | 84.16 206 | 72.09 389 | 92.52 238 | 69.90 257 | 95.85 321 | 89.20 127 | 88.36 255 | 97.17 121 |
|
| Anonymous202405211 | | | 87.68 201 | 86.13 232 | 92.31 135 | 96.66 82 | 80.74 205 | 94.87 141 | 91.49 332 | 80.47 293 | 89.46 149 | 95.44 127 | 54.72 378 | 98.23 150 | 82.19 222 | 89.89 227 | 97.97 79 |
|
| CHOSEN 1792x2688 | | | 88.84 170 | 87.69 181 | 92.30 136 | 96.14 100 | 81.42 183 | 90.01 332 | 95.86 159 | 74.52 362 | 87.41 184 | 93.94 190 | 75.46 183 | 98.36 139 | 80.36 257 | 95.53 126 | 97.12 126 |
|
| HY-MVS | | 83.01 12 | 89.03 166 | 87.94 177 | 92.29 137 | 94.86 168 | 82.77 146 | 92.08 283 | 94.49 242 | 81.52 278 | 86.93 191 | 92.79 232 | 78.32 150 | 98.23 150 | 79.93 263 | 90.55 216 | 95.88 185 |
|
| CDS-MVSNet | | | 89.45 151 | 88.51 160 | 92.29 137 | 93.62 236 | 83.61 118 | 93.01 250 | 94.68 239 | 81.95 260 | 87.82 177 | 93.24 215 | 78.69 143 | 96.99 258 | 80.34 258 | 93.23 180 | 96.28 165 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| PAPR | | | 90.02 133 | 89.27 143 | 92.29 137 | 95.78 121 | 80.95 199 | 92.68 260 | 96.22 125 | 81.91 262 | 86.66 201 | 93.75 202 | 82.23 102 | 98.44 134 | 79.40 273 | 94.79 145 | 97.48 109 |
|
| mvsmamba | | | 90.33 125 | 89.69 130 | 92.25 140 | 95.17 150 | 81.64 174 | 95.27 115 | 93.36 279 | 84.88 191 | 89.51 146 | 94.27 178 | 69.29 271 | 97.42 217 | 89.34 125 | 96.12 119 | 97.68 99 |
|
| PLC |  | 84.53 7 | 89.06 165 | 88.03 174 | 92.15 141 | 97.27 71 | 82.69 153 | 94.29 181 | 95.44 193 | 79.71 302 | 84.01 280 | 94.18 181 | 76.68 166 | 98.75 100 | 77.28 292 | 93.41 175 | 95.02 216 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| EPP-MVSNet | | | 91.70 98 | 91.56 95 | 92.13 142 | 95.88 117 | 80.50 211 | 97.33 7 | 95.25 203 | 86.15 160 | 89.76 144 | 95.60 122 | 83.42 83 | 98.32 146 | 87.37 150 | 93.25 179 | 97.56 107 |
|
| patch_mono-2 | | | 93.74 52 | 94.32 29 | 92.01 143 | 97.54 60 | 78.37 265 | 93.40 230 | 97.19 35 | 88.02 111 | 94.99 42 | 97.21 47 | 88.35 21 | 98.44 134 | 94.07 41 | 98.09 68 | 99.23 1 |
|
| 原ACMM1 | | | | | 92.01 143 | 97.34 67 | 81.05 195 | | 96.81 74 | 78.89 313 | 90.45 132 | 95.92 107 | 82.65 93 | 98.84 93 | 80.68 253 | 98.26 59 | 96.14 171 |
|
| UniMVSNet (Re) | | | 89.80 141 | 89.07 145 | 92.01 143 | 93.60 237 | 84.52 89 | 94.78 148 | 97.47 11 | 89.26 68 | 86.44 207 | 92.32 244 | 82.10 106 | 97.39 228 | 84.81 182 | 80.84 342 | 94.12 258 |
|
| MG-MVS | | | 91.77 95 | 91.70 94 | 92.00 146 | 97.08 74 | 80.03 226 | 93.60 223 | 95.18 207 | 87.85 119 | 90.89 128 | 96.47 86 | 82.06 108 | 98.36 139 | 85.07 177 | 97.04 95 | 97.62 102 |
|
| EIA-MVS | | | 91.95 92 | 91.94 89 | 91.98 147 | 95.16 151 | 80.01 227 | 95.36 105 | 96.73 83 | 88.44 96 | 89.34 150 | 92.16 249 | 83.82 79 | 98.45 132 | 89.35 124 | 97.06 94 | 97.48 109 |
|
| PVSNet_Blended | | | 90.73 116 | 90.32 115 | 91.98 147 | 96.12 102 | 81.25 186 | 92.55 265 | 96.83 70 | 82.04 258 | 89.10 154 | 92.56 237 | 81.04 117 | 98.85 91 | 86.72 160 | 95.91 121 | 95.84 187 |
|
| PS-MVSNAJ | | | 91.18 107 | 90.92 106 | 91.96 149 | 95.26 146 | 82.60 157 | 92.09 282 | 95.70 171 | 86.27 156 | 91.84 112 | 92.46 239 | 79.70 130 | 98.99 73 | 89.08 128 | 95.86 122 | 94.29 252 |
|
| TAMVS | | | 89.21 159 | 88.29 169 | 91.96 149 | 93.71 231 | 82.62 156 | 93.30 237 | 94.19 255 | 82.22 253 | 87.78 178 | 93.94 190 | 78.83 140 | 96.95 261 | 77.70 288 | 92.98 184 | 96.32 162 |
|
| SDMVSNet | | | 90.19 129 | 89.61 132 | 91.93 151 | 96.00 111 | 83.09 136 | 92.89 255 | 95.98 146 | 88.73 86 | 86.85 197 | 95.20 139 | 72.09 231 | 97.08 250 | 88.90 130 | 89.85 229 | 95.63 197 |
|
| FA-MVS(test-final) | | | 89.66 143 | 88.91 150 | 91.93 151 | 94.57 185 | 80.27 215 | 91.36 298 | 94.74 236 | 84.87 192 | 89.82 143 | 92.61 236 | 74.72 193 | 98.47 127 | 83.97 193 | 93.53 170 | 97.04 130 |
|
| MVS_Test | | | 91.31 104 | 91.11 102 | 91.93 151 | 94.37 198 | 80.14 219 | 93.46 228 | 95.80 162 | 86.46 152 | 91.35 124 | 93.77 200 | 82.21 103 | 98.09 167 | 87.57 146 | 94.95 142 | 97.55 108 |
|
| NR-MVSNet | | | 88.58 180 | 87.47 187 | 91.93 151 | 93.04 255 | 84.16 102 | 94.77 149 | 96.25 122 | 89.05 75 | 80.04 339 | 93.29 213 | 79.02 139 | 97.05 255 | 81.71 237 | 80.05 352 | 94.59 235 |
|
| HyFIR lowres test | | | 88.09 191 | 86.81 203 | 91.93 151 | 96.00 111 | 80.63 207 | 90.01 332 | 95.79 163 | 73.42 373 | 87.68 180 | 92.10 255 | 73.86 208 | 97.96 178 | 80.75 251 | 91.70 200 | 97.19 120 |
|
| GeoE | | | 90.05 132 | 89.43 136 | 91.90 156 | 95.16 151 | 80.37 214 | 95.80 85 | 94.65 240 | 83.90 212 | 87.55 183 | 94.75 157 | 78.18 151 | 97.62 199 | 81.28 241 | 93.63 167 | 97.71 98 |
|
| thisisatest0530 | | | 88.67 175 | 87.61 183 | 91.86 157 | 94.87 167 | 80.07 222 | 94.63 157 | 89.90 367 | 84.00 210 | 88.46 164 | 93.78 199 | 66.88 295 | 98.46 128 | 83.30 201 | 92.65 190 | 97.06 128 |
|
| xiu_mvs_v2_base | | | 91.13 108 | 90.89 108 | 91.86 157 | 94.97 159 | 82.42 159 | 92.24 276 | 95.64 178 | 86.11 164 | 91.74 117 | 93.14 219 | 79.67 133 | 98.89 86 | 89.06 129 | 95.46 131 | 94.28 253 |
|
| DU-MVS | | | 89.34 158 | 88.50 161 | 91.85 159 | 93.04 255 | 83.72 111 | 94.47 167 | 96.59 94 | 89.50 60 | 86.46 204 | 93.29 213 | 77.25 159 | 97.23 240 | 84.92 179 | 81.02 338 | 94.59 235 |
|
| OPM-MVS | | | 90.12 130 | 89.56 133 | 91.82 160 | 93.14 248 | 83.90 107 | 94.16 188 | 95.74 167 | 88.96 81 | 87.86 174 | 95.43 129 | 72.48 227 | 97.91 182 | 88.10 141 | 90.18 222 | 93.65 288 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| HQP_MVS | | | 90.60 123 | 90.19 117 | 91.82 160 | 94.70 176 | 82.73 150 | 95.85 82 | 96.22 125 | 90.81 18 | 86.91 193 | 94.86 152 | 74.23 199 | 98.12 157 | 88.15 137 | 89.99 223 | 94.63 232 |
|
| UniMVSNet_NR-MVSNet | | | 89.92 138 | 89.29 141 | 91.81 162 | 93.39 243 | 83.72 111 | 94.43 170 | 97.12 45 | 89.80 50 | 86.46 204 | 93.32 210 | 83.16 85 | 97.23 240 | 84.92 179 | 81.02 338 | 94.49 245 |
|
| diffmvs |  | | 91.37 103 | 91.23 100 | 91.77 163 | 93.09 251 | 80.27 215 | 92.36 270 | 95.52 186 | 87.03 137 | 91.40 123 | 94.93 147 | 80.08 124 | 97.44 215 | 92.13 82 | 94.56 152 | 97.61 103 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 1112_ss | | | 88.42 181 | 87.33 190 | 91.72 164 | 94.92 163 | 80.98 197 | 92.97 252 | 94.54 241 | 78.16 329 | 83.82 283 | 93.88 195 | 78.78 142 | 97.91 182 | 79.45 269 | 89.41 236 | 96.26 166 |
|
| Fast-Effi-MVS+ | | | 89.41 153 | 88.64 156 | 91.71 165 | 94.74 172 | 80.81 203 | 93.54 224 | 95.10 211 | 83.11 234 | 86.82 199 | 90.67 306 | 79.74 129 | 97.75 190 | 80.51 256 | 93.55 169 | 96.57 156 |
|
| WTY-MVS | | | 89.60 145 | 88.92 149 | 91.67 166 | 95.47 137 | 81.15 191 | 92.38 269 | 94.78 234 | 83.11 234 | 89.06 156 | 94.32 173 | 78.67 144 | 96.61 278 | 81.57 238 | 90.89 213 | 97.24 117 |
|
| TAPA-MVS | | 84.62 6 | 88.16 189 | 87.01 199 | 91.62 167 | 96.64 83 | 80.65 206 | 94.39 174 | 96.21 128 | 76.38 342 | 86.19 214 | 95.44 127 | 79.75 128 | 98.08 169 | 62.75 387 | 95.29 136 | 96.13 172 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| VPA-MVSNet | | | 89.62 144 | 88.96 147 | 91.60 168 | 93.86 224 | 82.89 145 | 95.46 103 | 97.33 25 | 87.91 114 | 88.43 165 | 93.31 211 | 74.17 202 | 97.40 225 | 87.32 151 | 82.86 313 | 94.52 240 |
|
| FE-MVS | | | 87.40 218 | 86.02 238 | 91.57 169 | 94.56 186 | 79.69 236 | 90.27 319 | 93.72 273 | 80.57 291 | 88.80 159 | 91.62 274 | 65.32 310 | 98.59 118 | 74.97 317 | 94.33 159 | 96.44 159 |
|
| XVG-OURS | | | 89.40 155 | 88.70 155 | 91.52 170 | 94.06 213 | 81.46 181 | 91.27 302 | 96.07 139 | 86.14 161 | 88.89 158 | 95.77 116 | 68.73 280 | 97.26 237 | 87.39 149 | 89.96 225 | 95.83 188 |
|
| hse-mvs2 | | | 89.88 140 | 89.34 139 | 91.51 171 | 94.83 170 | 81.12 193 | 93.94 208 | 93.91 267 | 89.80 50 | 93.08 74 | 93.60 204 | 75.77 175 | 97.66 194 | 92.07 83 | 77.07 372 | 95.74 192 |
|
| TranMVSNet+NR-MVSNet | | | 88.84 170 | 87.95 176 | 91.49 172 | 92.68 265 | 83.01 141 | 94.92 138 | 96.31 114 | 89.88 44 | 85.53 229 | 93.85 197 | 76.63 167 | 96.96 260 | 81.91 230 | 79.87 355 | 94.50 243 |
|
| AUN-MVS | | | 87.78 199 | 86.54 217 | 91.48 173 | 94.82 171 | 81.05 195 | 93.91 212 | 93.93 264 | 83.00 237 | 86.93 191 | 93.53 205 | 69.50 265 | 97.67 192 | 86.14 164 | 77.12 371 | 95.73 194 |
|
| XVG-OURS-SEG-HR | | | 89.95 136 | 89.45 134 | 91.47 174 | 94.00 219 | 81.21 189 | 91.87 286 | 96.06 141 | 85.78 167 | 88.55 162 | 95.73 118 | 74.67 194 | 97.27 235 | 88.71 133 | 89.64 234 | 95.91 183 |
|
| MVS | | | 87.44 216 | 86.10 235 | 91.44 175 | 92.61 266 | 83.62 116 | 92.63 262 | 95.66 175 | 67.26 398 | 81.47 318 | 92.15 250 | 77.95 152 | 98.22 152 | 79.71 265 | 95.48 129 | 92.47 329 |
|
| F-COLMAP | | | 87.95 194 | 86.80 204 | 91.40 176 | 96.35 96 | 80.88 201 | 94.73 151 | 95.45 191 | 79.65 303 | 82.04 313 | 94.61 164 | 71.13 238 | 98.50 122 | 76.24 305 | 91.05 211 | 94.80 229 |
|
| dcpmvs_2 | | | 93.49 57 | 94.19 40 | 91.38 177 | 97.69 57 | 76.78 298 | 94.25 183 | 96.29 115 | 88.33 99 | 94.46 45 | 96.88 64 | 88.07 25 | 98.64 111 | 93.62 47 | 98.09 68 | 98.73 18 |
|
| thisisatest0515 | | | 87.33 221 | 85.99 239 | 91.37 178 | 93.49 239 | 79.55 237 | 90.63 315 | 89.56 374 | 80.17 295 | 87.56 182 | 90.86 296 | 67.07 292 | 98.28 148 | 81.50 239 | 93.02 183 | 96.29 164 |
|
| HQP-MVS | | | 89.80 141 | 89.28 142 | 91.34 179 | 94.17 208 | 81.56 175 | 94.39 174 | 96.04 142 | 88.81 82 | 85.43 238 | 93.97 189 | 73.83 209 | 97.96 178 | 87.11 155 | 89.77 232 | 94.50 243 |
|
| RRT-MVS | | | 90.85 112 | 90.70 111 | 91.30 180 | 94.25 204 | 76.83 297 | 94.85 143 | 96.13 133 | 89.04 76 | 90.23 136 | 94.88 150 | 70.15 256 | 98.72 103 | 91.86 94 | 94.88 143 | 98.34 42 |
|
| FMVSNet3 | | | 87.40 218 | 86.11 234 | 91.30 180 | 93.79 229 | 83.64 115 | 94.20 187 | 94.81 232 | 83.89 213 | 84.37 267 | 91.87 265 | 68.45 283 | 96.56 283 | 78.23 283 | 85.36 285 | 93.70 287 |
|
| FMVSNet2 | | | 87.19 231 | 85.82 247 | 91.30 180 | 94.01 216 | 83.67 113 | 94.79 147 | 94.94 218 | 83.57 220 | 83.88 282 | 92.05 259 | 66.59 300 | 96.51 287 | 77.56 290 | 85.01 288 | 93.73 285 |
|
| RPMNet | | | 83.95 304 | 81.53 315 | 91.21 183 | 90.58 341 | 79.34 244 | 85.24 389 | 96.76 79 | 71.44 387 | 85.55 227 | 82.97 396 | 70.87 243 | 98.91 85 | 61.01 391 | 89.36 238 | 95.40 203 |
|
| IB-MVS | | 80.51 15 | 85.24 283 | 83.26 299 | 91.19 184 | 92.13 278 | 79.86 232 | 91.75 289 | 91.29 337 | 83.28 231 | 80.66 329 | 88.49 351 | 61.28 339 | 98.46 128 | 80.99 247 | 79.46 359 | 95.25 209 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CLD-MVS | | | 89.47 150 | 88.90 151 | 91.18 185 | 94.22 206 | 82.07 166 | 92.13 280 | 96.09 137 | 87.90 115 | 85.37 244 | 92.45 240 | 74.38 197 | 97.56 202 | 87.15 153 | 90.43 218 | 93.93 267 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| LPG-MVS_test | | | 89.45 151 | 88.90 151 | 91.12 186 | 94.47 191 | 81.49 179 | 95.30 110 | 96.14 130 | 86.73 146 | 85.45 235 | 95.16 141 | 69.89 258 | 98.10 159 | 87.70 144 | 89.23 241 | 93.77 282 |
|
| LGP-MVS_train | | | | | 91.12 186 | 94.47 191 | 81.49 179 | | 96.14 130 | 86.73 146 | 85.45 235 | 95.16 141 | 69.89 258 | 98.10 159 | 87.70 144 | 89.23 241 | 93.77 282 |
|
| ACMM | | 84.12 9 | 89.14 160 | 88.48 164 | 91.12 186 | 94.65 179 | 81.22 188 | 95.31 108 | 96.12 134 | 85.31 180 | 85.92 218 | 94.34 171 | 70.19 255 | 98.06 171 | 85.65 172 | 88.86 246 | 94.08 262 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tttt0517 | | | 88.61 177 | 87.78 180 | 91.11 189 | 94.96 160 | 77.81 280 | 95.35 106 | 89.69 370 | 85.09 186 | 88.05 172 | 94.59 167 | 66.93 293 | 98.48 124 | 83.27 202 | 92.13 198 | 97.03 131 |
|
| GBi-Net | | | 87.26 223 | 85.98 240 | 91.08 190 | 94.01 216 | 83.10 133 | 95.14 126 | 94.94 218 | 83.57 220 | 84.37 267 | 91.64 270 | 66.59 300 | 96.34 300 | 78.23 283 | 85.36 285 | 93.79 277 |
|
| test1 | | | 87.26 223 | 85.98 240 | 91.08 190 | 94.01 216 | 83.10 133 | 95.14 126 | 94.94 218 | 83.57 220 | 84.37 267 | 91.64 270 | 66.59 300 | 96.34 300 | 78.23 283 | 85.36 285 | 93.79 277 |
|
| FMVSNet1 | | | 85.85 269 | 84.11 286 | 91.08 190 | 92.81 262 | 83.10 133 | 95.14 126 | 94.94 218 | 81.64 273 | 82.68 303 | 91.64 270 | 59.01 358 | 96.34 300 | 75.37 311 | 83.78 298 | 93.79 277 |
|
| Test_1112_low_res | | | 87.65 203 | 86.51 218 | 91.08 190 | 94.94 162 | 79.28 248 | 91.77 288 | 94.30 250 | 76.04 347 | 83.51 292 | 92.37 242 | 77.86 155 | 97.73 191 | 78.69 278 | 89.13 243 | 96.22 167 |
|
| PS-MVSNAJss | | | 89.97 135 | 89.62 131 | 91.02 194 | 91.90 287 | 80.85 202 | 95.26 116 | 95.98 146 | 86.26 157 | 86.21 213 | 94.29 175 | 79.70 130 | 97.65 195 | 88.87 132 | 88.10 257 | 94.57 237 |
|
| BH-RMVSNet | | | 88.37 183 | 87.48 186 | 91.02 194 | 95.28 143 | 79.45 240 | 92.89 255 | 93.07 285 | 85.45 177 | 86.91 193 | 94.84 155 | 70.35 252 | 97.76 187 | 73.97 323 | 94.59 151 | 95.85 186 |
|
| UniMVSNet_ETH3D | | | 87.53 212 | 86.37 222 | 91.00 196 | 92.44 270 | 78.96 253 | 94.74 150 | 95.61 179 | 84.07 209 | 85.36 245 | 94.52 169 | 59.78 353 | 97.34 230 | 82.93 206 | 87.88 262 | 96.71 150 |
|
| FIs | | | 90.51 124 | 90.35 114 | 90.99 197 | 93.99 220 | 80.98 197 | 95.73 88 | 97.54 4 | 89.15 72 | 86.72 200 | 94.68 160 | 81.83 112 | 97.24 239 | 85.18 176 | 88.31 256 | 94.76 230 |
|
| ACMP | | 84.23 8 | 89.01 168 | 88.35 165 | 90.99 197 | 94.73 173 | 81.27 185 | 95.07 129 | 95.89 156 | 86.48 150 | 83.67 287 | 94.30 174 | 69.33 267 | 97.99 176 | 87.10 157 | 88.55 248 | 93.72 286 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| Anonymous20231211 | | | 86.59 252 | 85.13 266 | 90.98 199 | 96.52 91 | 81.50 177 | 96.14 56 | 96.16 129 | 73.78 369 | 83.65 288 | 92.15 250 | 63.26 324 | 97.37 229 | 82.82 210 | 81.74 327 | 94.06 263 |
|
| sss | | | 88.93 169 | 88.26 171 | 90.94 200 | 94.05 214 | 80.78 204 | 91.71 290 | 95.38 197 | 81.55 277 | 88.63 161 | 93.91 194 | 75.04 187 | 95.47 339 | 82.47 215 | 91.61 201 | 96.57 156 |
|
| sd_testset | | | 88.59 179 | 87.85 179 | 90.83 201 | 96.00 111 | 80.42 213 | 92.35 271 | 94.71 237 | 88.73 86 | 86.85 197 | 95.20 139 | 67.31 287 | 96.43 294 | 79.64 267 | 89.85 229 | 95.63 197 |
|
| PVSNet_BlendedMVS | | | 89.98 134 | 89.70 129 | 90.82 202 | 96.12 102 | 81.25 186 | 93.92 210 | 96.83 70 | 83.49 224 | 89.10 154 | 92.26 247 | 81.04 117 | 98.85 91 | 86.72 160 | 87.86 263 | 92.35 335 |
|
| cascas | | | 86.43 260 | 84.98 269 | 90.80 203 | 92.10 280 | 80.92 200 | 90.24 323 | 95.91 153 | 73.10 376 | 83.57 291 | 88.39 352 | 65.15 312 | 97.46 211 | 84.90 181 | 91.43 203 | 94.03 265 |
|
| ECVR-MVS |  | | 89.09 163 | 88.53 159 | 90.77 204 | 95.62 130 | 75.89 311 | 96.16 52 | 84.22 399 | 87.89 117 | 90.20 137 | 96.65 76 | 63.19 325 | 98.10 159 | 85.90 169 | 96.94 97 | 98.33 44 |
|
| GA-MVS | | | 86.61 250 | 85.27 264 | 90.66 205 | 91.33 310 | 78.71 255 | 90.40 318 | 93.81 271 | 85.34 179 | 85.12 248 | 89.57 333 | 61.25 340 | 97.11 249 | 80.99 247 | 89.59 235 | 96.15 170 |
|
| thres600view7 | | | 87.65 203 | 86.67 209 | 90.59 206 | 96.08 107 | 78.72 254 | 94.88 140 | 91.58 328 | 87.06 136 | 88.08 170 | 92.30 245 | 68.91 277 | 98.10 159 | 70.05 351 | 91.10 206 | 94.96 220 |
|
| thres400 | | | 87.62 208 | 86.64 210 | 90.57 207 | 95.99 114 | 78.64 256 | 94.58 159 | 91.98 317 | 86.94 140 | 88.09 168 | 91.77 266 | 69.18 273 | 98.10 159 | 70.13 348 | 91.10 206 | 94.96 220 |
|
| baseline1 | | | 88.10 190 | 87.28 192 | 90.57 207 | 94.96 160 | 80.07 222 | 94.27 182 | 91.29 337 | 86.74 145 | 87.41 184 | 94.00 187 | 76.77 164 | 96.20 305 | 80.77 250 | 79.31 361 | 95.44 201 |
|
| FC-MVSNet-test | | | 90.27 127 | 90.18 118 | 90.53 209 | 93.71 231 | 79.85 233 | 95.77 87 | 97.59 3 | 89.31 66 | 86.27 211 | 94.67 161 | 81.93 111 | 97.01 257 | 84.26 189 | 88.09 259 | 94.71 231 |
|
| PAPM | | | 86.68 249 | 85.39 259 | 90.53 209 | 93.05 254 | 79.33 247 | 89.79 335 | 94.77 235 | 78.82 315 | 81.95 314 | 93.24 215 | 76.81 162 | 97.30 231 | 66.94 368 | 93.16 181 | 94.95 223 |
|
| WR-MVS | | | 88.38 182 | 87.67 182 | 90.52 211 | 93.30 245 | 80.18 217 | 93.26 240 | 95.96 149 | 88.57 94 | 85.47 234 | 92.81 230 | 76.12 170 | 96.91 264 | 81.24 242 | 82.29 318 | 94.47 248 |
|
| MVSTER | | | 88.84 170 | 88.29 169 | 90.51 212 | 92.95 260 | 80.44 212 | 93.73 217 | 95.01 215 | 84.66 200 | 87.15 188 | 93.12 220 | 72.79 223 | 97.21 242 | 87.86 142 | 87.36 271 | 93.87 272 |
|
| testdata | | | | | 90.49 213 | 96.40 93 | 77.89 277 | | 95.37 199 | 72.51 381 | 93.63 63 | 96.69 72 | 82.08 107 | 97.65 195 | 83.08 203 | 97.39 88 | 95.94 182 |
|
| test1111 | | | 89.10 161 | 88.64 156 | 90.48 214 | 95.53 135 | 74.97 321 | 96.08 60 | 84.89 397 | 88.13 109 | 90.16 139 | 96.65 76 | 63.29 323 | 98.10 159 | 86.14 164 | 96.90 99 | 98.39 39 |
|
| tt0805 | | | 86.92 239 | 85.74 253 | 90.48 214 | 92.22 274 | 79.98 229 | 95.63 97 | 94.88 226 | 83.83 215 | 84.74 257 | 92.80 231 | 57.61 364 | 97.67 192 | 85.48 175 | 84.42 292 | 93.79 277 |
|
| jajsoiax | | | 88.24 187 | 87.50 185 | 90.48 214 | 90.89 330 | 80.14 219 | 95.31 108 | 95.65 177 | 84.97 189 | 84.24 275 | 94.02 185 | 65.31 311 | 97.42 217 | 88.56 134 | 88.52 250 | 93.89 268 |
|
| PatchMatch-RL | | | 86.77 247 | 85.54 255 | 90.47 217 | 95.88 117 | 82.71 152 | 90.54 316 | 92.31 305 | 79.82 301 | 84.32 272 | 91.57 278 | 68.77 279 | 96.39 296 | 73.16 329 | 93.48 174 | 92.32 336 |
|
| tfpn200view9 | | | 87.58 210 | 86.64 210 | 90.41 218 | 95.99 114 | 78.64 256 | 94.58 159 | 91.98 317 | 86.94 140 | 88.09 168 | 91.77 266 | 69.18 273 | 98.10 159 | 70.13 348 | 91.10 206 | 94.48 246 |
|
| VPNet | | | 88.20 188 | 87.47 187 | 90.39 219 | 93.56 238 | 79.46 239 | 94.04 200 | 95.54 184 | 88.67 89 | 86.96 190 | 94.58 168 | 69.33 267 | 97.15 244 | 84.05 192 | 80.53 347 | 94.56 238 |
|
| ACMH | | 80.38 17 | 85.36 278 | 83.68 293 | 90.39 219 | 94.45 194 | 80.63 207 | 94.73 151 | 94.85 228 | 82.09 255 | 77.24 361 | 92.65 234 | 60.01 351 | 97.58 200 | 72.25 333 | 84.87 289 | 92.96 315 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| thres100view900 | | | 87.63 206 | 86.71 207 | 90.38 221 | 96.12 102 | 78.55 258 | 95.03 132 | 91.58 328 | 87.15 133 | 88.06 171 | 92.29 246 | 68.91 277 | 98.10 159 | 70.13 348 | 91.10 206 | 94.48 246 |
|
| mvs_tets | | | 88.06 193 | 87.28 192 | 90.38 221 | 90.94 326 | 79.88 231 | 95.22 119 | 95.66 175 | 85.10 185 | 84.21 276 | 93.94 190 | 63.53 321 | 97.40 225 | 88.50 135 | 88.40 254 | 93.87 272 |
|
| 1314 | | | 87.51 213 | 86.57 215 | 90.34 223 | 92.42 271 | 79.74 235 | 92.63 262 | 95.35 201 | 78.35 324 | 80.14 336 | 91.62 274 | 74.05 204 | 97.15 244 | 81.05 243 | 93.53 170 | 94.12 258 |
|
| LTVRE_ROB | | 82.13 13 | 86.26 263 | 84.90 272 | 90.34 223 | 94.44 195 | 81.50 177 | 92.31 275 | 94.89 224 | 83.03 236 | 79.63 345 | 92.67 233 | 69.69 261 | 97.79 185 | 71.20 337 | 86.26 280 | 91.72 346 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test_djsdf | | | 89.03 166 | 88.64 156 | 90.21 225 | 90.74 336 | 79.28 248 | 95.96 73 | 95.90 154 | 84.66 200 | 85.33 246 | 92.94 225 | 74.02 205 | 97.30 231 | 89.64 122 | 88.53 249 | 94.05 264 |
|
| v2v482 | | | 87.84 196 | 87.06 196 | 90.17 226 | 90.99 322 | 79.23 251 | 94.00 205 | 95.13 208 | 84.87 192 | 85.53 229 | 92.07 258 | 74.45 196 | 97.45 212 | 84.71 184 | 81.75 326 | 93.85 275 |
|
| pmmvs4 | | | 85.43 276 | 83.86 291 | 90.16 227 | 90.02 353 | 82.97 143 | 90.27 319 | 92.67 297 | 75.93 348 | 80.73 327 | 91.74 268 | 71.05 239 | 95.73 329 | 78.85 277 | 83.46 305 | 91.78 345 |
|
| V42 | | | 87.68 201 | 86.86 201 | 90.15 228 | 90.58 341 | 80.14 219 | 94.24 185 | 95.28 202 | 83.66 218 | 85.67 224 | 91.33 280 | 74.73 192 | 97.41 223 | 84.43 188 | 81.83 324 | 92.89 318 |
|
| MSDG | | | 84.86 291 | 83.09 302 | 90.14 229 | 93.80 227 | 80.05 224 | 89.18 348 | 93.09 284 | 78.89 313 | 78.19 354 | 91.91 263 | 65.86 309 | 97.27 235 | 68.47 357 | 88.45 252 | 93.11 310 |
|
| anonymousdsp | | | 87.84 196 | 87.09 195 | 90.12 230 | 89.13 364 | 80.54 210 | 94.67 155 | 95.55 182 | 82.05 256 | 83.82 283 | 92.12 252 | 71.47 236 | 97.15 244 | 87.15 153 | 87.80 266 | 92.67 323 |
|
| thres200 | | | 87.21 229 | 86.24 229 | 90.12 230 | 95.36 139 | 78.53 259 | 93.26 240 | 92.10 311 | 86.42 153 | 88.00 173 | 91.11 291 | 69.24 272 | 98.00 175 | 69.58 352 | 91.04 212 | 93.83 276 |
|
| CR-MVSNet | | | 85.35 279 | 83.76 292 | 90.12 230 | 90.58 341 | 79.34 244 | 85.24 389 | 91.96 319 | 78.27 326 | 85.55 227 | 87.87 362 | 71.03 240 | 95.61 331 | 73.96 324 | 89.36 238 | 95.40 203 |
|
| v1144 | | | 87.61 209 | 86.79 205 | 90.06 233 | 91.01 321 | 79.34 244 | 93.95 207 | 95.42 196 | 83.36 229 | 85.66 225 | 91.31 283 | 74.98 188 | 97.42 217 | 83.37 200 | 82.06 320 | 93.42 297 |
|
| XXY-MVS | | | 87.65 203 | 86.85 202 | 90.03 234 | 92.14 277 | 80.60 209 | 93.76 216 | 95.23 204 | 82.94 239 | 84.60 259 | 94.02 185 | 74.27 198 | 95.49 338 | 81.04 244 | 83.68 301 | 94.01 266 |
|
| Vis-MVSNet (Re-imp) | | | 89.59 146 | 89.44 135 | 90.03 234 | 95.74 122 | 75.85 312 | 95.61 98 | 90.80 350 | 87.66 127 | 87.83 176 | 95.40 130 | 76.79 163 | 96.46 292 | 78.37 279 | 96.73 104 | 97.80 92 |
|
| test2506 | | | 87.21 229 | 86.28 227 | 90.02 236 | 95.62 130 | 73.64 337 | 96.25 47 | 71.38 421 | 87.89 117 | 90.45 132 | 96.65 76 | 55.29 375 | 98.09 167 | 86.03 168 | 96.94 97 | 98.33 44 |
|
| BH-untuned | | | 88.60 178 | 88.13 173 | 90.01 237 | 95.24 147 | 78.50 261 | 93.29 238 | 94.15 257 | 84.75 197 | 84.46 264 | 93.40 207 | 75.76 177 | 97.40 225 | 77.59 289 | 94.52 154 | 94.12 258 |
|
| v1192 | | | 87.25 225 | 86.33 224 | 90.00 238 | 90.76 335 | 79.04 252 | 93.80 214 | 95.48 187 | 82.57 246 | 85.48 233 | 91.18 287 | 73.38 218 | 97.42 217 | 82.30 219 | 82.06 320 | 93.53 291 |
|
| v7n | | | 86.81 242 | 85.76 251 | 89.95 239 | 90.72 337 | 79.25 250 | 95.07 129 | 95.92 151 | 84.45 203 | 82.29 307 | 90.86 296 | 72.60 226 | 97.53 204 | 79.42 272 | 80.52 348 | 93.08 312 |
|
| testing91 | | | 87.11 234 | 86.18 230 | 89.92 240 | 94.43 196 | 75.38 320 | 91.53 295 | 92.27 307 | 86.48 150 | 86.50 202 | 90.24 314 | 61.19 343 | 97.53 204 | 82.10 224 | 90.88 214 | 96.84 145 |
|
| v8 | | | 87.50 215 | 86.71 207 | 89.89 241 | 91.37 307 | 79.40 241 | 94.50 163 | 95.38 197 | 84.81 195 | 83.60 290 | 91.33 280 | 76.05 171 | 97.42 217 | 82.84 209 | 80.51 349 | 92.84 320 |
|
| v10 | | | 87.25 225 | 86.38 221 | 89.85 242 | 91.19 313 | 79.50 238 | 94.48 164 | 95.45 191 | 83.79 216 | 83.62 289 | 91.19 285 | 75.13 185 | 97.42 217 | 81.94 229 | 80.60 344 | 92.63 325 |
|
| baseline2 | | | 86.50 256 | 85.39 259 | 89.84 243 | 91.12 318 | 76.70 300 | 91.88 285 | 88.58 377 | 82.35 251 | 79.95 340 | 90.95 295 | 73.42 216 | 97.63 198 | 80.27 260 | 89.95 226 | 95.19 210 |
|
| pm-mvs1 | | | 86.61 250 | 85.54 255 | 89.82 244 | 91.44 302 | 80.18 217 | 95.28 114 | 94.85 228 | 83.84 214 | 81.66 316 | 92.62 235 | 72.45 229 | 96.48 289 | 79.67 266 | 78.06 364 | 92.82 321 |
|
| TR-MVS | | | 86.78 244 | 85.76 251 | 89.82 244 | 94.37 198 | 78.41 263 | 92.47 266 | 92.83 291 | 81.11 287 | 86.36 208 | 92.40 241 | 68.73 280 | 97.48 208 | 73.75 327 | 89.85 229 | 93.57 290 |
|
| ACMH+ | | 81.04 14 | 85.05 286 | 83.46 296 | 89.82 244 | 94.66 178 | 79.37 242 | 94.44 169 | 94.12 260 | 82.19 254 | 78.04 356 | 92.82 229 | 58.23 361 | 97.54 203 | 73.77 326 | 82.90 312 | 92.54 326 |
|
| EI-MVSNet | | | 89.10 161 | 88.86 153 | 89.80 247 | 91.84 289 | 78.30 267 | 93.70 220 | 95.01 215 | 85.73 169 | 87.15 188 | 95.28 133 | 79.87 127 | 97.21 242 | 83.81 196 | 87.36 271 | 93.88 271 |
|
| v144192 | | | 87.19 231 | 86.35 223 | 89.74 248 | 90.64 339 | 78.24 269 | 93.92 210 | 95.43 194 | 81.93 261 | 85.51 231 | 91.05 293 | 74.21 201 | 97.45 212 | 82.86 208 | 81.56 328 | 93.53 291 |
|
| COLMAP_ROB |  | 80.39 16 | 83.96 303 | 82.04 312 | 89.74 248 | 95.28 143 | 79.75 234 | 94.25 183 | 92.28 306 | 75.17 355 | 78.02 357 | 93.77 200 | 58.60 360 | 97.84 184 | 65.06 379 | 85.92 281 | 91.63 348 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| SCA | | | 86.32 262 | 85.18 265 | 89.73 250 | 92.15 276 | 76.60 301 | 91.12 306 | 91.69 324 | 83.53 223 | 85.50 232 | 88.81 345 | 66.79 296 | 96.48 289 | 76.65 298 | 90.35 220 | 96.12 173 |
|
| IterMVS-LS | | | 88.36 184 | 87.91 178 | 89.70 251 | 93.80 227 | 78.29 268 | 93.73 217 | 95.08 213 | 85.73 169 | 84.75 256 | 91.90 264 | 79.88 126 | 96.92 263 | 83.83 195 | 82.51 314 | 93.89 268 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| testing11 | | | 86.44 259 | 85.35 262 | 89.69 252 | 94.29 203 | 75.40 319 | 91.30 300 | 90.53 353 | 84.76 196 | 85.06 250 | 90.13 320 | 58.95 359 | 97.45 212 | 82.08 225 | 91.09 210 | 96.21 169 |
|
| testing99 | | | 86.72 248 | 85.73 254 | 89.69 252 | 94.23 205 | 74.91 323 | 91.35 299 | 90.97 345 | 86.14 161 | 86.36 208 | 90.22 315 | 59.41 355 | 97.48 208 | 82.24 221 | 90.66 215 | 96.69 151 |
|
| v1921920 | | | 86.97 238 | 86.06 237 | 89.69 252 | 90.53 344 | 78.11 272 | 93.80 214 | 95.43 194 | 81.90 263 | 85.33 246 | 91.05 293 | 72.66 224 | 97.41 223 | 82.05 227 | 81.80 325 | 93.53 291 |
|
| Fast-Effi-MVS+-dtu | | | 87.44 216 | 86.72 206 | 89.63 255 | 92.04 281 | 77.68 286 | 94.03 201 | 93.94 263 | 85.81 166 | 82.42 306 | 91.32 282 | 70.33 253 | 97.06 253 | 80.33 259 | 90.23 221 | 94.14 257 |
|
| v1240 | | | 86.78 244 | 85.85 246 | 89.56 256 | 90.45 345 | 77.79 282 | 93.61 222 | 95.37 199 | 81.65 272 | 85.43 238 | 91.15 289 | 71.50 235 | 97.43 216 | 81.47 240 | 82.05 322 | 93.47 295 |
|
| Effi-MVS+-dtu | | | 88.65 176 | 88.35 165 | 89.54 257 | 93.33 244 | 76.39 305 | 94.47 167 | 94.36 248 | 87.70 124 | 85.43 238 | 89.56 334 | 73.45 214 | 97.26 237 | 85.57 174 | 91.28 205 | 94.97 217 |
|
| AllTest | | | 83.42 310 | 81.39 316 | 89.52 258 | 95.01 156 | 77.79 282 | 93.12 244 | 90.89 348 | 77.41 333 | 76.12 369 | 93.34 208 | 54.08 381 | 97.51 206 | 68.31 359 | 84.27 294 | 93.26 300 |
|
| TestCases | | | | | 89.52 258 | 95.01 156 | 77.79 282 | | 90.89 348 | 77.41 333 | 76.12 369 | 93.34 208 | 54.08 381 | 97.51 206 | 68.31 359 | 84.27 294 | 93.26 300 |
|
| mvs_anonymous | | | 89.37 157 | 89.32 140 | 89.51 260 | 93.47 240 | 74.22 330 | 91.65 293 | 94.83 230 | 82.91 240 | 85.45 235 | 93.79 198 | 81.23 116 | 96.36 299 | 86.47 162 | 94.09 160 | 97.94 81 |
|
| XVG-ACMP-BASELINE | | | 86.00 265 | 84.84 274 | 89.45 261 | 91.20 312 | 78.00 273 | 91.70 291 | 95.55 182 | 85.05 187 | 82.97 300 | 92.25 248 | 54.49 379 | 97.48 208 | 82.93 206 | 87.45 270 | 92.89 318 |
|
| testing222 | | | 84.84 292 | 83.32 297 | 89.43 262 | 94.15 211 | 75.94 310 | 91.09 307 | 89.41 375 | 84.90 190 | 85.78 221 | 89.44 335 | 52.70 386 | 96.28 303 | 70.80 343 | 91.57 202 | 96.07 177 |
|
| MVP-Stereo | | | 85.97 266 | 84.86 273 | 89.32 263 | 90.92 328 | 82.19 164 | 92.11 281 | 94.19 255 | 78.76 317 | 78.77 353 | 91.63 273 | 68.38 284 | 96.56 283 | 75.01 316 | 93.95 162 | 89.20 384 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| PatchmatchNet |  | | 85.85 269 | 84.70 276 | 89.29 264 | 91.76 293 | 75.54 316 | 88.49 357 | 91.30 336 | 81.63 274 | 85.05 251 | 88.70 349 | 71.71 232 | 96.24 304 | 74.61 320 | 89.05 244 | 96.08 176 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v148 | | | 87.04 236 | 86.32 225 | 89.21 265 | 90.94 326 | 77.26 291 | 93.71 219 | 94.43 244 | 84.84 194 | 84.36 270 | 90.80 300 | 76.04 172 | 97.05 255 | 82.12 223 | 79.60 358 | 93.31 299 |
|
| tfpnnormal | | | 84.72 294 | 83.23 300 | 89.20 266 | 92.79 263 | 80.05 224 | 94.48 164 | 95.81 161 | 82.38 249 | 81.08 324 | 91.21 284 | 69.01 276 | 96.95 261 | 61.69 389 | 80.59 345 | 90.58 371 |
|
| cl22 | | | 86.78 244 | 85.98 240 | 89.18 267 | 92.34 272 | 77.62 287 | 90.84 312 | 94.13 259 | 81.33 281 | 83.97 281 | 90.15 319 | 73.96 206 | 96.60 280 | 84.19 190 | 82.94 309 | 93.33 298 |
|
| BH-w/o | | | 87.57 211 | 87.05 197 | 89.12 268 | 94.90 166 | 77.90 276 | 92.41 267 | 93.51 276 | 82.89 241 | 83.70 286 | 91.34 279 | 75.75 178 | 97.07 252 | 75.49 309 | 93.49 172 | 92.39 333 |
|
| WR-MVS_H | | | 87.80 198 | 87.37 189 | 89.10 269 | 93.23 246 | 78.12 271 | 95.61 98 | 97.30 29 | 87.90 115 | 83.72 285 | 92.01 260 | 79.65 134 | 96.01 313 | 76.36 302 | 80.54 346 | 93.16 308 |
|
| miper_enhance_ethall | | | 86.90 240 | 86.18 230 | 89.06 270 | 91.66 298 | 77.58 288 | 90.22 325 | 94.82 231 | 79.16 309 | 84.48 263 | 89.10 339 | 79.19 138 | 96.66 273 | 84.06 191 | 82.94 309 | 92.94 316 |
|
| c3_l | | | 87.14 233 | 86.50 219 | 89.04 271 | 92.20 275 | 77.26 291 | 91.22 305 | 94.70 238 | 82.01 259 | 84.34 271 | 90.43 311 | 78.81 141 | 96.61 278 | 83.70 198 | 81.09 335 | 93.25 302 |
|
| miper_ehance_all_eth | | | 87.22 228 | 86.62 213 | 89.02 272 | 92.13 278 | 77.40 290 | 90.91 311 | 94.81 232 | 81.28 282 | 84.32 272 | 90.08 322 | 79.26 136 | 96.62 275 | 83.81 196 | 82.94 309 | 93.04 313 |
|
| gg-mvs-nofinetune | | | 81.77 322 | 79.37 337 | 88.99 273 | 90.85 332 | 77.73 285 | 86.29 381 | 79.63 410 | 74.88 360 | 83.19 299 | 69.05 412 | 60.34 348 | 96.11 309 | 75.46 310 | 94.64 150 | 93.11 310 |
|
| ETVMVS | | | 84.43 297 | 82.92 306 | 88.97 274 | 94.37 198 | 74.67 324 | 91.23 304 | 88.35 379 | 83.37 228 | 86.06 217 | 89.04 340 | 55.38 373 | 95.67 330 | 67.12 366 | 91.34 204 | 96.58 155 |
|
| pmmvs6 | | | 83.42 310 | 81.60 314 | 88.87 275 | 88.01 378 | 77.87 278 | 94.96 135 | 94.24 254 | 74.67 361 | 78.80 352 | 91.09 292 | 60.17 350 | 96.49 288 | 77.06 297 | 75.40 378 | 92.23 338 |
|
| test_cas_vis1_n_1920 | | | 88.83 173 | 88.85 154 | 88.78 276 | 91.15 317 | 76.72 299 | 93.85 213 | 94.93 222 | 83.23 233 | 92.81 83 | 96.00 102 | 61.17 344 | 94.45 350 | 91.67 97 | 94.84 144 | 95.17 211 |
|
| MIMVSNet | | | 82.59 316 | 80.53 321 | 88.76 277 | 91.51 300 | 78.32 266 | 86.57 380 | 90.13 360 | 79.32 305 | 80.70 328 | 88.69 350 | 52.98 385 | 93.07 375 | 66.03 374 | 88.86 246 | 94.90 224 |
|
| cl____ | | | 86.52 255 | 85.78 248 | 88.75 278 | 92.03 282 | 76.46 303 | 90.74 313 | 94.30 250 | 81.83 268 | 83.34 296 | 90.78 301 | 75.74 180 | 96.57 281 | 81.74 235 | 81.54 329 | 93.22 304 |
|
| DIV-MVS_self_test | | | 86.53 254 | 85.78 248 | 88.75 278 | 92.02 283 | 76.45 304 | 90.74 313 | 94.30 250 | 81.83 268 | 83.34 296 | 90.82 299 | 75.75 178 | 96.57 281 | 81.73 236 | 81.52 330 | 93.24 303 |
|
| CP-MVSNet | | | 87.63 206 | 87.26 194 | 88.74 280 | 93.12 249 | 76.59 302 | 95.29 112 | 96.58 95 | 88.43 97 | 83.49 293 | 92.98 224 | 75.28 184 | 95.83 322 | 78.97 275 | 81.15 334 | 93.79 277 |
|
| eth_miper_zixun_eth | | | 86.50 256 | 85.77 250 | 88.68 281 | 91.94 284 | 75.81 313 | 90.47 317 | 94.89 224 | 82.05 256 | 84.05 278 | 90.46 310 | 75.96 173 | 96.77 268 | 82.76 212 | 79.36 360 | 93.46 296 |
|
| CHOSEN 280x420 | | | 85.15 284 | 83.99 289 | 88.65 282 | 92.47 268 | 78.40 264 | 79.68 411 | 92.76 294 | 74.90 359 | 81.41 320 | 89.59 332 | 69.85 260 | 95.51 335 | 79.92 264 | 95.29 136 | 92.03 341 |
|
| PS-CasMVS | | | 87.32 222 | 86.88 200 | 88.63 283 | 92.99 258 | 76.33 307 | 95.33 107 | 96.61 93 | 88.22 105 | 83.30 298 | 93.07 222 | 73.03 221 | 95.79 326 | 78.36 280 | 81.00 340 | 93.75 284 |
|
| TransMVSNet (Re) | | | 84.43 297 | 83.06 304 | 88.54 284 | 91.72 294 | 78.44 262 | 95.18 123 | 92.82 293 | 82.73 244 | 79.67 344 | 92.12 252 | 73.49 213 | 95.96 315 | 71.10 341 | 68.73 394 | 91.21 358 |
|
| EG-PatchMatch MVS | | | 82.37 318 | 80.34 324 | 88.46 285 | 90.27 347 | 79.35 243 | 92.80 259 | 94.33 249 | 77.14 337 | 73.26 386 | 90.18 318 | 47.47 397 | 96.72 269 | 70.25 345 | 87.32 273 | 89.30 381 |
|
| PEN-MVS | | | 86.80 243 | 86.27 228 | 88.40 286 | 92.32 273 | 75.71 315 | 95.18 123 | 96.38 110 | 87.97 112 | 82.82 302 | 93.15 218 | 73.39 217 | 95.92 317 | 76.15 306 | 79.03 363 | 93.59 289 |
|
| Baseline_NR-MVSNet | | | 87.07 235 | 86.63 212 | 88.40 286 | 91.44 302 | 77.87 278 | 94.23 186 | 92.57 299 | 84.12 208 | 85.74 223 | 92.08 256 | 77.25 159 | 96.04 310 | 82.29 220 | 79.94 353 | 91.30 356 |
|
| UBG | | | 85.51 274 | 84.57 280 | 88.35 288 | 94.21 207 | 71.78 361 | 90.07 330 | 89.66 372 | 82.28 252 | 85.91 219 | 89.01 341 | 61.30 338 | 97.06 253 | 76.58 301 | 92.06 199 | 96.22 167 |
|
| D2MVS | | | 85.90 267 | 85.09 267 | 88.35 288 | 90.79 333 | 77.42 289 | 91.83 287 | 95.70 171 | 80.77 290 | 80.08 338 | 90.02 323 | 66.74 298 | 96.37 297 | 81.88 231 | 87.97 261 | 91.26 357 |
|
| pmmvs5 | | | 84.21 299 | 82.84 309 | 88.34 290 | 88.95 366 | 76.94 295 | 92.41 267 | 91.91 321 | 75.63 350 | 80.28 333 | 91.18 287 | 64.59 315 | 95.57 332 | 77.09 296 | 83.47 304 | 92.53 327 |
|
| mamv4 | | | 90.92 110 | 91.78 92 | 88.33 291 | 95.67 127 | 70.75 374 | 92.92 254 | 96.02 145 | 81.90 263 | 88.11 167 | 95.34 131 | 85.88 51 | 96.97 259 | 95.22 30 | 95.01 141 | 97.26 116 |
|
| LCM-MVSNet-Re | | | 88.30 186 | 88.32 168 | 88.27 292 | 94.71 175 | 72.41 356 | 93.15 243 | 90.98 344 | 87.77 122 | 79.25 348 | 91.96 261 | 78.35 149 | 95.75 327 | 83.04 204 | 95.62 125 | 96.65 152 |
|
| CostFormer | | | 85.77 271 | 84.94 271 | 88.26 293 | 91.16 316 | 72.58 354 | 89.47 343 | 91.04 343 | 76.26 345 | 86.45 206 | 89.97 325 | 70.74 245 | 96.86 267 | 82.35 218 | 87.07 276 | 95.34 207 |
|
| ITE_SJBPF | | | | | 88.24 294 | 91.88 288 | 77.05 294 | | 92.92 288 | 85.54 175 | 80.13 337 | 93.30 212 | 57.29 365 | 96.20 305 | 72.46 332 | 84.71 290 | 91.49 352 |
|
| PVSNet | | 78.82 18 | 85.55 273 | 84.65 277 | 88.23 295 | 94.72 174 | 71.93 357 | 87.12 376 | 92.75 295 | 78.80 316 | 84.95 253 | 90.53 308 | 64.43 316 | 96.71 271 | 74.74 318 | 93.86 164 | 96.06 179 |
|
| IterMVS-SCA-FT | | | 85.45 275 | 84.53 281 | 88.18 296 | 91.71 295 | 76.87 296 | 90.19 327 | 92.65 298 | 85.40 178 | 81.44 319 | 90.54 307 | 66.79 296 | 95.00 347 | 81.04 244 | 81.05 336 | 92.66 324 |
|
| EPNet_dtu | | | 86.49 258 | 85.94 243 | 88.14 297 | 90.24 348 | 72.82 346 | 94.11 192 | 92.20 309 | 86.66 148 | 79.42 347 | 92.36 243 | 73.52 212 | 95.81 324 | 71.26 336 | 93.66 166 | 95.80 190 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Patchmtry | | | 82.71 314 | 80.93 320 | 88.06 298 | 90.05 352 | 76.37 306 | 84.74 394 | 91.96 319 | 72.28 384 | 81.32 322 | 87.87 362 | 71.03 240 | 95.50 337 | 68.97 354 | 80.15 351 | 92.32 336 |
|
| test_vis1_n_1920 | | | 89.39 156 | 89.84 128 | 88.04 299 | 92.97 259 | 72.64 351 | 94.71 153 | 96.03 144 | 86.18 159 | 91.94 109 | 96.56 84 | 61.63 333 | 95.74 328 | 93.42 50 | 95.11 140 | 95.74 192 |
|
| DTE-MVSNet | | | 86.11 264 | 85.48 257 | 87.98 300 | 91.65 299 | 74.92 322 | 94.93 137 | 95.75 166 | 87.36 131 | 82.26 308 | 93.04 223 | 72.85 222 | 95.82 323 | 74.04 322 | 77.46 369 | 93.20 306 |
|
| PMMVS | | | 85.71 272 | 84.96 270 | 87.95 301 | 88.90 367 | 77.09 293 | 88.68 355 | 90.06 362 | 72.32 383 | 86.47 203 | 90.76 302 | 72.15 230 | 94.40 352 | 81.78 234 | 93.49 172 | 92.36 334 |
|
| GG-mvs-BLEND | | | | | 87.94 302 | 89.73 359 | 77.91 275 | 87.80 365 | 78.23 414 | | 80.58 330 | 83.86 389 | 59.88 352 | 95.33 341 | 71.20 337 | 92.22 197 | 90.60 370 |
|
| MonoMVSNet | | | 86.89 241 | 86.55 216 | 87.92 303 | 89.46 362 | 73.75 334 | 94.12 190 | 93.10 283 | 87.82 121 | 85.10 249 | 90.76 302 | 69.59 263 | 94.94 348 | 86.47 162 | 82.50 315 | 95.07 214 |
|
| reproduce_monomvs | | | 86.37 261 | 85.87 245 | 87.87 304 | 93.66 235 | 73.71 335 | 93.44 229 | 95.02 214 | 88.61 92 | 82.64 305 | 91.94 262 | 57.88 363 | 96.68 272 | 89.96 119 | 79.71 357 | 93.22 304 |
|
| pmmvs-eth3d | | | 80.97 336 | 78.72 348 | 87.74 305 | 84.99 396 | 79.97 230 | 90.11 329 | 91.65 326 | 75.36 352 | 73.51 384 | 86.03 379 | 59.45 354 | 93.96 362 | 75.17 313 | 72.21 383 | 89.29 383 |
|
| MS-PatchMatch | | | 85.05 286 | 84.16 284 | 87.73 306 | 91.42 305 | 78.51 260 | 91.25 303 | 93.53 275 | 77.50 332 | 80.15 335 | 91.58 276 | 61.99 330 | 95.51 335 | 75.69 308 | 94.35 158 | 89.16 385 |
|
| mmtdpeth | | | 85.04 288 | 84.15 285 | 87.72 307 | 93.11 250 | 75.74 314 | 94.37 178 | 92.83 291 | 84.98 188 | 89.31 151 | 86.41 376 | 61.61 335 | 97.14 247 | 92.63 66 | 62.11 404 | 90.29 372 |
|
| test_0402 | | | 81.30 332 | 79.17 342 | 87.67 308 | 93.19 247 | 78.17 270 | 92.98 251 | 91.71 322 | 75.25 354 | 76.02 371 | 90.31 313 | 59.23 356 | 96.37 297 | 50.22 407 | 83.63 302 | 88.47 392 |
|
| IterMVS | | | 84.88 290 | 83.98 290 | 87.60 309 | 91.44 302 | 76.03 309 | 90.18 328 | 92.41 301 | 83.24 232 | 81.06 325 | 90.42 312 | 66.60 299 | 94.28 356 | 79.46 268 | 80.98 341 | 92.48 328 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Patchmatch-test | | | 81.37 330 | 79.30 338 | 87.58 310 | 90.92 328 | 74.16 332 | 80.99 406 | 87.68 384 | 70.52 391 | 76.63 366 | 88.81 345 | 71.21 237 | 92.76 377 | 60.01 395 | 86.93 277 | 95.83 188 |
|
| EPMVS | | | 83.90 306 | 82.70 310 | 87.51 311 | 90.23 349 | 72.67 349 | 88.62 356 | 81.96 405 | 81.37 280 | 85.01 252 | 88.34 353 | 66.31 303 | 94.45 350 | 75.30 312 | 87.12 274 | 95.43 202 |
|
| ADS-MVSNet2 | | | 81.66 325 | 79.71 334 | 87.50 312 | 91.35 308 | 74.19 331 | 83.33 399 | 88.48 378 | 72.90 378 | 82.24 309 | 85.77 382 | 64.98 313 | 93.20 373 | 64.57 381 | 83.74 299 | 95.12 212 |
|
| OurMVSNet-221017-0 | | | 85.35 279 | 84.64 278 | 87.49 313 | 90.77 334 | 72.59 353 | 94.01 203 | 94.40 246 | 84.72 198 | 79.62 346 | 93.17 217 | 61.91 331 | 96.72 269 | 81.99 228 | 81.16 332 | 93.16 308 |
|
| tpm2 | | | 84.08 301 | 82.94 305 | 87.48 314 | 91.39 306 | 71.27 366 | 89.23 347 | 90.37 355 | 71.95 385 | 84.64 258 | 89.33 336 | 67.30 288 | 96.55 285 | 75.17 313 | 87.09 275 | 94.63 232 |
|
| RPSCF | | | 85.07 285 | 84.27 282 | 87.48 314 | 92.91 261 | 70.62 376 | 91.69 292 | 92.46 300 | 76.20 346 | 82.67 304 | 95.22 136 | 63.94 319 | 97.29 234 | 77.51 291 | 85.80 282 | 94.53 239 |
|
| WBMVS | | | 84.97 289 | 84.18 283 | 87.34 316 | 94.14 212 | 71.62 365 | 90.20 326 | 92.35 302 | 81.61 275 | 84.06 277 | 90.76 302 | 61.82 332 | 96.52 286 | 78.93 276 | 83.81 297 | 93.89 268 |
|
| miper_lstm_enhance | | | 85.27 282 | 84.59 279 | 87.31 317 | 91.28 311 | 74.63 325 | 87.69 370 | 94.09 261 | 81.20 286 | 81.36 321 | 89.85 328 | 74.97 189 | 94.30 355 | 81.03 246 | 79.84 356 | 93.01 314 |
|
| FMVSNet5 | | | 81.52 328 | 79.60 335 | 87.27 318 | 91.17 314 | 77.95 274 | 91.49 296 | 92.26 308 | 76.87 338 | 76.16 368 | 87.91 361 | 51.67 387 | 92.34 380 | 67.74 363 | 81.16 332 | 91.52 351 |
|
| USDC | | | 82.76 313 | 81.26 318 | 87.26 319 | 91.17 314 | 74.55 326 | 89.27 345 | 93.39 278 | 78.26 327 | 75.30 375 | 92.08 256 | 54.43 380 | 96.63 274 | 71.64 334 | 85.79 283 | 90.61 368 |
|
| test-LLR | | | 85.87 268 | 85.41 258 | 87.25 320 | 90.95 324 | 71.67 363 | 89.55 339 | 89.88 368 | 83.41 226 | 84.54 261 | 87.95 359 | 67.25 289 | 95.11 344 | 81.82 232 | 93.37 177 | 94.97 217 |
|
| test-mter | | | 84.54 296 | 83.64 294 | 87.25 320 | 90.95 324 | 71.67 363 | 89.55 339 | 89.88 368 | 79.17 308 | 84.54 261 | 87.95 359 | 55.56 371 | 95.11 344 | 81.82 232 | 93.37 177 | 94.97 217 |
|
| JIA-IIPM | | | 81.04 333 | 78.98 346 | 87.25 320 | 88.64 368 | 73.48 339 | 81.75 405 | 89.61 373 | 73.19 375 | 82.05 312 | 73.71 408 | 66.07 308 | 95.87 320 | 71.18 339 | 84.60 291 | 92.41 332 |
|
| TDRefinement | | | 79.81 346 | 77.34 351 | 87.22 323 | 79.24 411 | 75.48 317 | 93.12 244 | 92.03 314 | 76.45 341 | 75.01 376 | 91.58 276 | 49.19 393 | 96.44 293 | 70.22 347 | 69.18 391 | 89.75 377 |
|
| tpmvs | | | 83.35 312 | 82.07 311 | 87.20 324 | 91.07 320 | 71.00 372 | 88.31 360 | 91.70 323 | 78.91 311 | 80.49 332 | 87.18 371 | 69.30 270 | 97.08 250 | 68.12 362 | 83.56 303 | 93.51 294 |
|
| ppachtmachnet_test | | | 81.84 321 | 80.07 329 | 87.15 325 | 88.46 372 | 74.43 329 | 89.04 351 | 92.16 310 | 75.33 353 | 77.75 358 | 88.99 342 | 66.20 305 | 95.37 340 | 65.12 378 | 77.60 367 | 91.65 347 |
|
| dmvs_re | | | 84.20 300 | 83.22 301 | 87.14 326 | 91.83 291 | 77.81 280 | 90.04 331 | 90.19 358 | 84.70 199 | 81.49 317 | 89.17 338 | 64.37 317 | 91.13 391 | 71.58 335 | 85.65 284 | 92.46 330 |
|
| tpm cat1 | | | 81.96 319 | 80.27 325 | 87.01 327 | 91.09 319 | 71.02 371 | 87.38 374 | 91.53 331 | 66.25 399 | 80.17 334 | 86.35 378 | 68.22 285 | 96.15 308 | 69.16 353 | 82.29 318 | 93.86 274 |
|
| test_fmvs1_n | | | 87.03 237 | 87.04 198 | 86.97 328 | 89.74 358 | 71.86 358 | 94.55 161 | 94.43 244 | 78.47 321 | 91.95 108 | 95.50 126 | 51.16 389 | 93.81 363 | 93.02 58 | 94.56 152 | 95.26 208 |
|
| OpenMVS_ROB |  | 74.94 19 | 79.51 349 | 77.03 356 | 86.93 329 | 87.00 384 | 76.23 308 | 92.33 273 | 90.74 351 | 68.93 395 | 74.52 380 | 88.23 356 | 49.58 392 | 96.62 275 | 57.64 400 | 84.29 293 | 87.94 395 |
|
| SixPastTwentyTwo | | | 83.91 305 | 82.90 307 | 86.92 330 | 90.99 322 | 70.67 375 | 93.48 226 | 91.99 316 | 85.54 175 | 77.62 360 | 92.11 254 | 60.59 347 | 96.87 266 | 76.05 307 | 77.75 366 | 93.20 306 |
|
| ADS-MVSNet | | | 81.56 327 | 79.78 331 | 86.90 331 | 91.35 308 | 71.82 359 | 83.33 399 | 89.16 376 | 72.90 378 | 82.24 309 | 85.77 382 | 64.98 313 | 93.76 364 | 64.57 381 | 83.74 299 | 95.12 212 |
|
| PatchT | | | 82.68 315 | 81.27 317 | 86.89 332 | 90.09 351 | 70.94 373 | 84.06 396 | 90.15 359 | 74.91 358 | 85.63 226 | 83.57 391 | 69.37 266 | 94.87 349 | 65.19 376 | 88.50 251 | 94.84 226 |
|
| tpm | | | 84.73 293 | 84.02 288 | 86.87 333 | 90.33 346 | 68.90 383 | 89.06 350 | 89.94 365 | 80.85 289 | 85.75 222 | 89.86 327 | 68.54 282 | 95.97 314 | 77.76 287 | 84.05 296 | 95.75 191 |
|
| Patchmatch-RL test | | | 81.67 324 | 79.96 330 | 86.81 334 | 85.42 394 | 71.23 367 | 82.17 404 | 87.50 385 | 78.47 321 | 77.19 362 | 82.50 398 | 70.81 244 | 93.48 368 | 82.66 213 | 72.89 382 | 95.71 195 |
|
| test_vis1_n | | | 86.56 253 | 86.49 220 | 86.78 335 | 88.51 369 | 72.69 348 | 94.68 154 | 93.78 272 | 79.55 304 | 90.70 129 | 95.31 132 | 48.75 394 | 93.28 371 | 93.15 54 | 93.99 161 | 94.38 250 |
|
| test_fmvs1 | | | 87.34 220 | 87.56 184 | 86.68 336 | 90.59 340 | 71.80 360 | 94.01 203 | 94.04 262 | 78.30 325 | 91.97 106 | 95.22 136 | 56.28 369 | 93.71 365 | 92.89 59 | 94.71 146 | 94.52 240 |
|
| MDA-MVSNet-bldmvs | | | 78.85 353 | 76.31 358 | 86.46 337 | 89.76 357 | 73.88 333 | 88.79 353 | 90.42 354 | 79.16 309 | 59.18 408 | 88.33 354 | 60.20 349 | 94.04 358 | 62.00 388 | 68.96 392 | 91.48 353 |
|
| mvs5depth | | | 80.98 335 | 79.15 343 | 86.45 338 | 84.57 397 | 73.29 341 | 87.79 366 | 91.67 325 | 80.52 292 | 82.20 311 | 89.72 330 | 55.14 376 | 95.93 316 | 73.93 325 | 66.83 396 | 90.12 374 |
|
| tpmrst | | | 85.35 279 | 84.99 268 | 86.43 339 | 90.88 331 | 67.88 387 | 88.71 354 | 91.43 334 | 80.13 296 | 86.08 216 | 88.80 347 | 73.05 220 | 96.02 312 | 82.48 214 | 83.40 307 | 95.40 203 |
|
| TESTMET0.1,1 | | | 83.74 308 | 82.85 308 | 86.42 340 | 89.96 354 | 71.21 368 | 89.55 339 | 87.88 381 | 77.41 333 | 83.37 295 | 87.31 367 | 56.71 367 | 93.65 367 | 80.62 254 | 92.85 188 | 94.40 249 |
|
| our_test_3 | | | 81.93 320 | 80.46 323 | 86.33 341 | 88.46 372 | 73.48 339 | 88.46 358 | 91.11 339 | 76.46 340 | 76.69 365 | 88.25 355 | 66.89 294 | 94.36 353 | 68.75 355 | 79.08 362 | 91.14 360 |
|
| lessismore_v0 | | | | | 86.04 342 | 88.46 372 | 68.78 384 | | 80.59 408 | | 73.01 387 | 90.11 321 | 55.39 372 | 96.43 294 | 75.06 315 | 65.06 399 | 92.90 317 |
|
| TinyColmap | | | 79.76 347 | 77.69 350 | 85.97 343 | 91.71 295 | 73.12 342 | 89.55 339 | 90.36 356 | 75.03 356 | 72.03 390 | 90.19 317 | 46.22 401 | 96.19 307 | 63.11 385 | 81.03 337 | 88.59 391 |
|
| KD-MVS_2432*1600 | | | 78.50 354 | 76.02 361 | 85.93 344 | 86.22 387 | 74.47 327 | 84.80 392 | 92.33 303 | 79.29 306 | 76.98 363 | 85.92 380 | 53.81 383 | 93.97 360 | 67.39 364 | 57.42 409 | 89.36 379 |
|
| miper_refine_blended | | | 78.50 354 | 76.02 361 | 85.93 344 | 86.22 387 | 74.47 327 | 84.80 392 | 92.33 303 | 79.29 306 | 76.98 363 | 85.92 380 | 53.81 383 | 93.97 360 | 67.39 364 | 57.42 409 | 89.36 379 |
|
| K. test v3 | | | 81.59 326 | 80.15 328 | 85.91 346 | 89.89 356 | 69.42 382 | 92.57 264 | 87.71 383 | 85.56 174 | 73.44 385 | 89.71 331 | 55.58 370 | 95.52 334 | 77.17 294 | 69.76 388 | 92.78 322 |
|
| mvsany_test1 | | | 85.42 277 | 85.30 263 | 85.77 347 | 87.95 380 | 75.41 318 | 87.61 373 | 80.97 407 | 76.82 339 | 88.68 160 | 95.83 112 | 77.44 158 | 90.82 393 | 85.90 169 | 86.51 278 | 91.08 364 |
|
| MIMVSNet1 | | | 79.38 350 | 77.28 352 | 85.69 348 | 86.35 386 | 73.67 336 | 91.61 294 | 92.75 295 | 78.11 330 | 72.64 388 | 88.12 357 | 48.16 395 | 91.97 385 | 60.32 392 | 77.49 368 | 91.43 354 |
|
| UWE-MVS | | | 83.69 309 | 83.09 302 | 85.48 349 | 93.06 253 | 65.27 397 | 90.92 310 | 86.14 389 | 79.90 299 | 86.26 212 | 90.72 305 | 57.17 366 | 95.81 324 | 71.03 342 | 92.62 191 | 95.35 206 |
|
| UnsupCasMVSNet_eth | | | 80.07 343 | 78.27 349 | 85.46 350 | 85.24 395 | 72.63 352 | 88.45 359 | 94.87 227 | 82.99 238 | 71.64 392 | 88.07 358 | 56.34 368 | 91.75 386 | 73.48 328 | 63.36 402 | 92.01 342 |
|
| CL-MVSNet_self_test | | | 81.74 323 | 80.53 321 | 85.36 351 | 85.96 389 | 72.45 355 | 90.25 321 | 93.07 285 | 81.24 284 | 79.85 343 | 87.29 368 | 70.93 242 | 92.52 378 | 66.95 367 | 69.23 390 | 91.11 362 |
|
| MDA-MVSNet_test_wron | | | 79.21 352 | 77.19 354 | 85.29 352 | 88.22 376 | 72.77 347 | 85.87 383 | 90.06 362 | 74.34 363 | 62.62 405 | 87.56 365 | 66.14 306 | 91.99 384 | 66.90 371 | 73.01 380 | 91.10 363 |
|
| YYNet1 | | | 79.22 351 | 77.20 353 | 85.28 353 | 88.20 377 | 72.66 350 | 85.87 383 | 90.05 364 | 74.33 364 | 62.70 403 | 87.61 364 | 66.09 307 | 92.03 382 | 66.94 368 | 72.97 381 | 91.15 359 |
|
| WB-MVSnew | | | 83.77 307 | 83.28 298 | 85.26 354 | 91.48 301 | 71.03 370 | 91.89 284 | 87.98 380 | 78.91 311 | 84.78 255 | 90.22 315 | 69.11 275 | 94.02 359 | 64.70 380 | 90.44 217 | 90.71 366 |
|
| dp | | | 81.47 329 | 80.23 326 | 85.17 355 | 89.92 355 | 65.49 395 | 86.74 378 | 90.10 361 | 76.30 344 | 81.10 323 | 87.12 372 | 62.81 326 | 95.92 317 | 68.13 361 | 79.88 354 | 94.09 261 |
|
| UnsupCasMVSNet_bld | | | 76.23 363 | 73.27 367 | 85.09 356 | 83.79 399 | 72.92 344 | 85.65 386 | 93.47 277 | 71.52 386 | 68.84 398 | 79.08 403 | 49.77 391 | 93.21 372 | 66.81 372 | 60.52 406 | 89.13 387 |
|
| Anonymous20231206 | | | 81.03 334 | 79.77 333 | 84.82 357 | 87.85 381 | 70.26 378 | 91.42 297 | 92.08 312 | 73.67 370 | 77.75 358 | 89.25 337 | 62.43 328 | 93.08 374 | 61.50 390 | 82.00 323 | 91.12 361 |
|
| test0.0.03 1 | | | 82.41 317 | 81.69 313 | 84.59 358 | 88.23 375 | 72.89 345 | 90.24 323 | 87.83 382 | 83.41 226 | 79.86 342 | 89.78 329 | 67.25 289 | 88.99 402 | 65.18 377 | 83.42 306 | 91.90 344 |
|
| CMPMVS |  | 59.16 21 | 80.52 338 | 79.20 341 | 84.48 359 | 83.98 398 | 67.63 390 | 89.95 334 | 93.84 270 | 64.79 402 | 66.81 400 | 91.14 290 | 57.93 362 | 95.17 342 | 76.25 304 | 88.10 257 | 90.65 367 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| CVMVSNet | | | 84.69 295 | 84.79 275 | 84.37 360 | 91.84 289 | 64.92 398 | 93.70 220 | 91.47 333 | 66.19 400 | 86.16 215 | 95.28 133 | 67.18 291 | 93.33 370 | 80.89 249 | 90.42 219 | 94.88 225 |
|
| PVSNet_0 | | 73.20 20 | 77.22 359 | 74.83 365 | 84.37 360 | 90.70 338 | 71.10 369 | 83.09 401 | 89.67 371 | 72.81 380 | 73.93 383 | 83.13 393 | 60.79 346 | 93.70 366 | 68.54 356 | 50.84 414 | 88.30 393 |
|
| LF4IMVS | | | 80.37 341 | 79.07 345 | 84.27 362 | 86.64 385 | 69.87 381 | 89.39 344 | 91.05 342 | 76.38 342 | 74.97 377 | 90.00 324 | 47.85 396 | 94.25 357 | 74.55 321 | 80.82 343 | 88.69 390 |
|
| Anonymous20240521 | | | 80.44 340 | 79.21 340 | 84.11 363 | 85.75 392 | 67.89 386 | 92.86 257 | 93.23 281 | 75.61 351 | 75.59 374 | 87.47 366 | 50.03 390 | 94.33 354 | 71.14 340 | 81.21 331 | 90.12 374 |
|
| PM-MVS | | | 78.11 356 | 76.12 360 | 84.09 364 | 83.54 400 | 70.08 379 | 88.97 352 | 85.27 396 | 79.93 298 | 74.73 379 | 86.43 375 | 34.70 412 | 93.48 368 | 79.43 271 | 72.06 384 | 88.72 389 |
|
| test_fmvs2 | | | 83.98 302 | 84.03 287 | 83.83 365 | 87.16 383 | 67.53 391 | 93.93 209 | 92.89 289 | 77.62 331 | 86.89 196 | 93.53 205 | 47.18 398 | 92.02 383 | 90.54 113 | 86.51 278 | 91.93 343 |
|
| testgi | | | 80.94 337 | 80.20 327 | 83.18 366 | 87.96 379 | 66.29 392 | 91.28 301 | 90.70 352 | 83.70 217 | 78.12 355 | 92.84 227 | 51.37 388 | 90.82 393 | 63.34 384 | 82.46 316 | 92.43 331 |
|
| KD-MVS_self_test | | | 80.20 342 | 79.24 339 | 83.07 367 | 85.64 393 | 65.29 396 | 91.01 309 | 93.93 264 | 78.71 319 | 76.32 367 | 86.40 377 | 59.20 357 | 92.93 376 | 72.59 331 | 69.35 389 | 91.00 365 |
|
| testing3 | | | 80.46 339 | 79.59 336 | 83.06 368 | 93.44 242 | 64.64 399 | 93.33 232 | 85.47 394 | 84.34 205 | 79.93 341 | 90.84 298 | 44.35 404 | 92.39 379 | 57.06 402 | 87.56 267 | 92.16 340 |
|
| ambc | | | | | 83.06 368 | 79.99 409 | 63.51 403 | 77.47 412 | 92.86 290 | | 74.34 382 | 84.45 388 | 28.74 413 | 95.06 346 | 73.06 330 | 68.89 393 | 90.61 368 |
|
| test20.03 | | | 79.95 345 | 79.08 344 | 82.55 370 | 85.79 391 | 67.74 389 | 91.09 307 | 91.08 340 | 81.23 285 | 74.48 381 | 89.96 326 | 61.63 333 | 90.15 395 | 60.08 393 | 76.38 374 | 89.76 376 |
|
| MVStest1 | | | 72.91 367 | 69.70 372 | 82.54 371 | 78.14 412 | 73.05 343 | 88.21 361 | 86.21 388 | 60.69 406 | 64.70 401 | 90.53 308 | 46.44 400 | 85.70 409 | 58.78 398 | 53.62 411 | 88.87 388 |
|
| test_vis1_rt | | | 77.96 357 | 76.46 357 | 82.48 372 | 85.89 390 | 71.74 362 | 90.25 321 | 78.89 411 | 71.03 390 | 71.30 393 | 81.35 400 | 42.49 406 | 91.05 392 | 84.55 186 | 82.37 317 | 84.65 398 |
|
| EU-MVSNet | | | 81.32 331 | 80.95 319 | 82.42 373 | 88.50 371 | 63.67 402 | 93.32 233 | 91.33 335 | 64.02 403 | 80.57 331 | 92.83 228 | 61.21 342 | 92.27 381 | 76.34 303 | 80.38 350 | 91.32 355 |
|
| myMVS_eth3d | | | 79.67 348 | 78.79 347 | 82.32 374 | 91.92 285 | 64.08 400 | 89.75 337 | 87.40 386 | 81.72 270 | 78.82 350 | 87.20 369 | 45.33 402 | 91.29 389 | 59.09 397 | 87.84 264 | 91.60 349 |
|
| ttmdpeth | | | 76.55 361 | 74.64 366 | 82.29 375 | 82.25 405 | 67.81 388 | 89.76 336 | 85.69 392 | 70.35 392 | 75.76 372 | 91.69 269 | 46.88 399 | 89.77 397 | 66.16 373 | 63.23 403 | 89.30 381 |
|
| pmmvs3 | | | 71.81 370 | 68.71 373 | 81.11 376 | 75.86 414 | 70.42 377 | 86.74 378 | 83.66 400 | 58.95 409 | 68.64 399 | 80.89 401 | 36.93 410 | 89.52 399 | 63.10 386 | 63.59 401 | 83.39 399 |
|
| Syy-MVS | | | 80.07 343 | 79.78 331 | 80.94 377 | 91.92 285 | 59.93 408 | 89.75 337 | 87.40 386 | 81.72 270 | 78.82 350 | 87.20 369 | 66.29 304 | 91.29 389 | 47.06 409 | 87.84 264 | 91.60 349 |
|
| new-patchmatchnet | | | 76.41 362 | 75.17 364 | 80.13 378 | 82.65 404 | 59.61 409 | 87.66 371 | 91.08 340 | 78.23 328 | 69.85 396 | 83.22 392 | 54.76 377 | 91.63 388 | 64.14 383 | 64.89 400 | 89.16 385 |
|
| mvsany_test3 | | | 74.95 364 | 73.26 368 | 80.02 379 | 74.61 415 | 63.16 404 | 85.53 387 | 78.42 412 | 74.16 365 | 74.89 378 | 86.46 374 | 36.02 411 | 89.09 401 | 82.39 217 | 66.91 395 | 87.82 396 |
|
| test_fmvs3 | | | 77.67 358 | 77.16 355 | 79.22 380 | 79.52 410 | 61.14 406 | 92.34 272 | 91.64 327 | 73.98 367 | 78.86 349 | 86.59 373 | 27.38 416 | 87.03 404 | 88.12 140 | 75.97 376 | 89.50 378 |
|
| DSMNet-mixed | | | 76.94 360 | 76.29 359 | 78.89 381 | 83.10 402 | 56.11 417 | 87.78 367 | 79.77 409 | 60.65 407 | 75.64 373 | 88.71 348 | 61.56 336 | 88.34 403 | 60.07 394 | 89.29 240 | 92.21 339 |
|
| EGC-MVSNET | | | 61.97 378 | 56.37 383 | 78.77 382 | 89.63 360 | 73.50 338 | 89.12 349 | 82.79 402 | 0.21 428 | 1.24 429 | 84.80 386 | 39.48 407 | 90.04 396 | 44.13 411 | 75.94 377 | 72.79 410 |
|
| new_pmnet | | | 72.15 368 | 70.13 371 | 78.20 383 | 82.95 403 | 65.68 393 | 83.91 397 | 82.40 404 | 62.94 405 | 64.47 402 | 79.82 402 | 42.85 405 | 86.26 408 | 57.41 401 | 74.44 379 | 82.65 403 |
|
| MVS-HIRNet | | | 73.70 366 | 72.20 369 | 78.18 384 | 91.81 292 | 56.42 416 | 82.94 402 | 82.58 403 | 55.24 410 | 68.88 397 | 66.48 413 | 55.32 374 | 95.13 343 | 58.12 399 | 88.42 253 | 83.01 401 |
|
| LCM-MVSNet | | | 66.00 375 | 62.16 380 | 77.51 385 | 64.51 425 | 58.29 411 | 83.87 398 | 90.90 347 | 48.17 414 | 54.69 411 | 73.31 409 | 16.83 425 | 86.75 405 | 65.47 375 | 61.67 405 | 87.48 397 |
|
| APD_test1 | | | 69.04 371 | 66.26 377 | 77.36 386 | 80.51 408 | 62.79 405 | 85.46 388 | 83.51 401 | 54.11 412 | 59.14 409 | 84.79 387 | 23.40 419 | 89.61 398 | 55.22 403 | 70.24 387 | 79.68 407 |
|
| test_f | | | 71.95 369 | 70.87 370 | 75.21 387 | 74.21 417 | 59.37 410 | 85.07 391 | 85.82 391 | 65.25 401 | 70.42 395 | 83.13 393 | 23.62 417 | 82.93 415 | 78.32 281 | 71.94 385 | 83.33 400 |
|
| ANet_high | | | 58.88 382 | 54.22 387 | 72.86 388 | 56.50 428 | 56.67 413 | 80.75 407 | 86.00 390 | 73.09 377 | 37.39 420 | 64.63 416 | 22.17 420 | 79.49 418 | 43.51 412 | 23.96 422 | 82.43 404 |
|
| test_vis3_rt | | | 65.12 376 | 62.60 378 | 72.69 389 | 71.44 418 | 60.71 407 | 87.17 375 | 65.55 422 | 63.80 404 | 53.22 412 | 65.65 415 | 14.54 426 | 89.44 400 | 76.65 298 | 65.38 398 | 67.91 413 |
|
| FPMVS | | | 64.63 377 | 62.55 379 | 70.88 390 | 70.80 419 | 56.71 412 | 84.42 395 | 84.42 398 | 51.78 413 | 49.57 413 | 81.61 399 | 23.49 418 | 81.48 416 | 40.61 416 | 76.25 375 | 74.46 409 |
|
| dmvs_testset | | | 74.57 365 | 75.81 363 | 70.86 391 | 87.72 382 | 40.47 426 | 87.05 377 | 77.90 416 | 82.75 243 | 71.15 394 | 85.47 384 | 67.98 286 | 84.12 413 | 45.26 410 | 76.98 373 | 88.00 394 |
|
| N_pmnet | | | 68.89 372 | 68.44 374 | 70.23 392 | 89.07 365 | 28.79 431 | 88.06 362 | 19.50 431 | 69.47 394 | 71.86 391 | 84.93 385 | 61.24 341 | 91.75 386 | 54.70 404 | 77.15 370 | 90.15 373 |
|
| testf1 | | | 59.54 380 | 56.11 384 | 69.85 393 | 69.28 420 | 56.61 414 | 80.37 408 | 76.55 419 | 42.58 417 | 45.68 416 | 75.61 404 | 11.26 427 | 84.18 411 | 43.20 413 | 60.44 407 | 68.75 411 |
|
| APD_test2 | | | 59.54 380 | 56.11 384 | 69.85 393 | 69.28 420 | 56.61 414 | 80.37 408 | 76.55 419 | 42.58 417 | 45.68 416 | 75.61 404 | 11.26 427 | 84.18 411 | 43.20 413 | 60.44 407 | 68.75 411 |
|
| WB-MVS | | | 67.92 373 | 67.49 375 | 69.21 395 | 81.09 406 | 41.17 425 | 88.03 363 | 78.00 415 | 73.50 372 | 62.63 404 | 83.11 395 | 63.94 319 | 86.52 406 | 25.66 421 | 51.45 413 | 79.94 406 |
|
| PMMVS2 | | | 59.60 379 | 56.40 382 | 69.21 395 | 68.83 422 | 46.58 421 | 73.02 416 | 77.48 417 | 55.07 411 | 49.21 414 | 72.95 410 | 17.43 424 | 80.04 417 | 49.32 408 | 44.33 417 | 80.99 405 |
|
| SSC-MVS | | | 67.06 374 | 66.56 376 | 68.56 397 | 80.54 407 | 40.06 427 | 87.77 368 | 77.37 418 | 72.38 382 | 61.75 406 | 82.66 397 | 63.37 322 | 86.45 407 | 24.48 422 | 48.69 416 | 79.16 408 |
|
| Gipuma |  | | 57.99 384 | 54.91 386 | 67.24 398 | 88.51 369 | 65.59 394 | 52.21 419 | 90.33 357 | 43.58 416 | 42.84 419 | 51.18 420 | 20.29 422 | 85.07 410 | 34.77 417 | 70.45 386 | 51.05 419 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 47.18 22 | 52.22 386 | 48.46 390 | 63.48 399 | 45.72 430 | 46.20 422 | 73.41 415 | 78.31 413 | 41.03 419 | 30.06 422 | 65.68 414 | 6.05 429 | 83.43 414 | 30.04 419 | 65.86 397 | 60.80 414 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| dongtai | | | 58.82 383 | 58.24 381 | 60.56 400 | 83.13 401 | 45.09 424 | 82.32 403 | 48.22 430 | 67.61 397 | 61.70 407 | 69.15 411 | 38.75 408 | 76.05 419 | 32.01 418 | 41.31 418 | 60.55 415 |
|
| MVE |  | 39.65 23 | 43.39 388 | 38.59 394 | 57.77 401 | 56.52 427 | 48.77 420 | 55.38 418 | 58.64 426 | 29.33 422 | 28.96 423 | 52.65 419 | 4.68 430 | 64.62 423 | 28.11 420 | 33.07 420 | 59.93 416 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 50.52 387 | 48.47 389 | 56.66 402 | 52.26 429 | 18.98 433 | 41.51 421 | 81.40 406 | 10.10 423 | 44.59 418 | 75.01 407 | 28.51 414 | 68.16 420 | 53.54 405 | 49.31 415 | 82.83 402 |
|
| DeepMVS_CX |  | | | | 56.31 403 | 74.23 416 | 51.81 419 | | 56.67 427 | 44.85 415 | 48.54 415 | 75.16 406 | 27.87 415 | 58.74 425 | 40.92 415 | 52.22 412 | 58.39 417 |
|
| kuosan | | | 53.51 385 | 53.30 388 | 54.13 404 | 76.06 413 | 45.36 423 | 80.11 410 | 48.36 429 | 59.63 408 | 54.84 410 | 63.43 417 | 37.41 409 | 62.07 424 | 20.73 424 | 39.10 419 | 54.96 418 |
|
| E-PMN | | | 43.23 389 | 42.29 391 | 46.03 405 | 65.58 424 | 37.41 428 | 73.51 414 | 64.62 423 | 33.99 420 | 28.47 424 | 47.87 421 | 19.90 423 | 67.91 421 | 22.23 423 | 24.45 421 | 32.77 420 |
|
| EMVS | | | 42.07 390 | 41.12 392 | 44.92 406 | 63.45 426 | 35.56 430 | 73.65 413 | 63.48 424 | 33.05 421 | 26.88 425 | 45.45 422 | 21.27 421 | 67.14 422 | 19.80 425 | 23.02 423 | 32.06 421 |
|
| tmp_tt | | | 35.64 391 | 39.24 393 | 24.84 407 | 14.87 431 | 23.90 432 | 62.71 417 | 51.51 428 | 6.58 425 | 36.66 421 | 62.08 418 | 44.37 403 | 30.34 427 | 52.40 406 | 22.00 424 | 20.27 422 |
|
| wuyk23d | | | 21.27 393 | 20.48 396 | 23.63 408 | 68.59 423 | 36.41 429 | 49.57 420 | 6.85 432 | 9.37 424 | 7.89 426 | 4.46 428 | 4.03 431 | 31.37 426 | 17.47 426 | 16.07 425 | 3.12 423 |
|
| test123 | | | 8.76 395 | 11.22 398 | 1.39 409 | 0.85 433 | 0.97 434 | 85.76 385 | 0.35 434 | 0.54 427 | 2.45 428 | 8.14 427 | 0.60 432 | 0.48 428 | 2.16 428 | 0.17 427 | 2.71 424 |
|
| testmvs | | | 8.92 394 | 11.52 397 | 1.12 410 | 1.06 432 | 0.46 435 | 86.02 382 | 0.65 433 | 0.62 426 | 2.74 427 | 9.52 426 | 0.31 433 | 0.45 429 | 2.38 427 | 0.39 426 | 2.46 425 |
|
| mmdepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| monomultidepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| test_blank | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uanet_test | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| DCPMVS | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| cdsmvs_eth3d_5k | | | 22.14 392 | 29.52 395 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 95.76 165 | 0.00 429 | 0.00 430 | 94.29 175 | 75.66 181 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| pcd_1.5k_mvsjas | | | 6.64 397 | 8.86 400 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 79.70 130 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| sosnet-low-res | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| sosnet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uncertanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| Regformer | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| ab-mvs-re | | | 7.82 396 | 10.43 399 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 93.88 195 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| WAC-MVS | | | | | | | 64.08 400 | | | | | | | | 59.14 396 | | |
|
| FOURS1 | | | | | | 98.86 1 | 85.54 67 | 98.29 1 | 97.49 6 | 89.79 53 | 96.29 21 | | | | | | |
|
| PC_three_1452 | | | | | | | | | | 82.47 247 | 97.09 12 | 97.07 57 | 92.72 1 | 98.04 172 | 92.70 65 | 99.02 12 | 98.86 11 |
|
| test_one_0601 | | | | | | 98.58 11 | 85.83 61 | | 97.44 15 | 91.05 15 | 96.78 17 | 98.06 15 | 91.45 11 | | | | |
|
| eth-test2 | | | | | | 0.00 434 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 434 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 98.15 34 | 86.62 33 | | 97.07 49 | 83.63 219 | 94.19 50 | 96.91 63 | 87.57 31 | 99.26 45 | 91.99 87 | 98.44 53 | |
|
| RE-MVS-def | | | | 93.68 58 | | 97.92 43 | 84.57 86 | 96.28 43 | 96.76 79 | 87.46 128 | 93.75 60 | 97.43 36 | 82.94 89 | | 92.73 61 | 97.80 79 | 97.88 86 |
|
| IU-MVS | | | | | | 98.77 5 | 86.00 50 | | 96.84 69 | 81.26 283 | 97.26 8 | | | | 95.50 26 | 99.13 3 | 99.03 8 |
|
| test_241102_TWO | | | | | | | | | 97.44 15 | 90.31 31 | 97.62 5 | 98.07 13 | 91.46 10 | 99.58 10 | 95.66 20 | 99.12 6 | 98.98 10 |
|
| test_241102_ONE | | | | | | 98.77 5 | 85.99 52 | | 97.44 15 | 90.26 37 | 97.71 1 | 97.96 23 | 92.31 4 | 99.38 31 | | | |
|
| 9.14 | | | | 94.47 24 | | 97.79 52 | | 96.08 60 | 97.44 15 | 86.13 163 | 95.10 40 | 97.40 38 | 88.34 22 | 99.22 47 | 93.25 53 | 98.70 34 | |
|
| save fliter | | | | | | 97.85 49 | 85.63 66 | 95.21 120 | 96.82 72 | 89.44 61 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 90.75 20 | 97.04 13 | 98.05 17 | 92.09 6 | 99.55 16 | 95.64 22 | 99.13 3 | 99.13 2 |
|
| test0726 | | | | | | 98.78 3 | 85.93 55 | 97.19 11 | 97.47 11 | 90.27 35 | 97.64 4 | 98.13 4 | 91.47 8 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 96.12 173 |
|
| test_part2 | | | | | | 98.55 12 | 87.22 19 | | | | 96.40 20 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 71.70 233 | | | | 96.12 173 |
|
| sam_mvs | | | | | | | | | | | | | 70.60 246 | | | | |
|
| MTGPA |  | | | | | | | | 96.97 54 | | | | | | | | |
|
| test_post1 | | | | | | | | 88.00 364 | | | | 9.81 425 | 69.31 269 | 95.53 333 | 76.65 298 | | |
|
| test_post | | | | | | | | | | | | 10.29 424 | 70.57 250 | 95.91 319 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 83.76 390 | 71.53 234 | 96.48 289 | | | |
|
| MTMP | | | | | | | | 96.16 52 | 60.64 425 | | | | | | | | |
|
| gm-plane-assit | | | | | | 89.60 361 | 68.00 385 | | | 77.28 336 | | 88.99 342 | | 97.57 201 | 79.44 270 | | |
|
| test9_res | | | | | | | | | | | | | | | 91.91 91 | 98.71 32 | 98.07 73 |
|
| TEST9 | | | | | | 97.53 61 | 86.49 37 | 94.07 197 | 96.78 76 | 81.61 275 | 92.77 85 | 96.20 93 | 87.71 28 | 99.12 54 | | | |
|
| test_8 | | | | | | 97.49 63 | 86.30 45 | 94.02 202 | 96.76 79 | 81.86 266 | 92.70 89 | 96.20 93 | 87.63 29 | 99.02 64 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.54 113 | 98.68 37 | 98.27 56 |
|
| agg_prior | | | | | | 97.38 66 | 85.92 57 | | 96.72 85 | | 92.16 101 | | | 98.97 78 | | | |
|
| test_prior4 | | | | | | | 85.96 54 | 94.11 192 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 94.12 190 | | 87.67 126 | 92.63 91 | 96.39 88 | 86.62 40 | | 91.50 99 | 98.67 40 | |
|
| 旧先验2 | | | | | | | | 93.36 231 | | 71.25 388 | 94.37 46 | | | 97.13 248 | 86.74 158 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 93.11 246 | | | | | | | | | |
|
| 旧先验1 | | | | | | 96.79 79 | 81.81 171 | | 95.67 173 | | | 96.81 69 | 86.69 39 | | | 97.66 84 | 96.97 137 |
|
| æ— å…ˆéªŒ | | | | | | | | 93.28 239 | 96.26 120 | 73.95 368 | | | | 99.05 58 | 80.56 255 | | 96.59 154 |
|
| 原ACMM2 | | | | | | | | 92.94 253 | | | | | | | | | |
|
| test222 | | | | | | 96.55 88 | 81.70 173 | 92.22 277 | 95.01 215 | 68.36 396 | 90.20 137 | 96.14 98 | 80.26 123 | | | 97.80 79 | 96.05 180 |
|
| testdata2 | | | | | | | | | | | | | | 98.75 100 | 78.30 282 | | |
|
| segment_acmp | | | | | | | | | | | | | 87.16 36 | | | | |
|
| testdata1 | | | | | | | | 92.15 279 | | 87.94 113 | | | | | | | |
|
| plane_prior7 | | | | | | 94.70 176 | 82.74 149 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 94.52 188 | 82.75 147 | | | | | | 74.23 199 | | | | |
|
| plane_prior5 | | | | | | | | | 96.22 125 | | | | | 98.12 157 | 88.15 137 | 89.99 223 | 94.63 232 |
|
| plane_prior4 | | | | | | | | | | | | 94.86 152 | | | | | |
|
| plane_prior3 | | | | | | | 82.75 147 | | | 90.26 37 | 86.91 193 | | | | | | |
|
| plane_prior2 | | | | | | | | 95.85 82 | | 90.81 18 | | | | | | | |
|
| plane_prior1 | | | | | | 94.59 182 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 82.73 150 | 95.21 120 | | 89.66 58 | | | | | | 89.88 228 | |
|
| n2 | | | | | | | | | 0.00 435 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 435 | | | | | | | | |
|
| door-mid | | | | | | | | | 85.49 393 | | | | | | | | |
|
| test11 | | | | | | | | | 96.57 96 | | | | | | | | |
|
| door | | | | | | | | | 85.33 395 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 81.56 175 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 94.17 208 | | 94.39 174 | | 88.81 82 | 85.43 238 | | | | | | |
|
| ACMP_Plane | | | | | | 94.17 208 | | 94.39 174 | | 88.81 82 | 85.43 238 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.11 155 | | |
|
| HQP4-MVS | | | | | | | | | | | 85.43 238 | | | 97.96 178 | | | 94.51 242 |
|
| HQP3-MVS | | | | | | | | | 96.04 142 | | | | | | | 89.77 232 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.83 209 | | | | |
|
| NP-MVS | | | | | | 94.37 198 | 82.42 159 | | | | | 93.98 188 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 55.91 418 | 87.62 372 | | 73.32 374 | 84.59 260 | | 70.33 253 | | 74.65 319 | | 95.50 200 |
|
| MDTV_nov1_ep13 | | | | 83.56 295 | | 91.69 297 | 69.93 380 | 87.75 369 | 91.54 330 | 78.60 320 | 84.86 254 | 88.90 344 | 69.54 264 | 96.03 311 | 70.25 345 | 88.93 245 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 268 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.01 260 | |
|
| Test By Simon | | | | | | | | | | | | | 80.02 125 | | | | |
|