This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15397.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+87.14 492.42 7691.37 8495.55 795.63 12288.73 697.07 1896.77 7490.84 1684.02 26196.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030494.60 1894.38 2595.23 1195.41 13087.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
DPM-MVS92.58 7391.74 8195.08 1596.19 9589.31 592.66 24896.56 9383.44 21091.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R94.43 2494.27 3294.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3094.82 13697.17 3986.26 14592.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
XVS94.45 2294.32 2694.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
X-MVStestdata88.31 17486.13 22094.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 39985.02 5999.49 2691.99 7498.56 4898.47 33
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
alignmvs93.08 6692.50 7394.81 3195.62 12387.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 2994.07 3994.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3994.75 3598.06 3986.90 2295.88 7496.94 5585.68 15995.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS94.34 2794.21 3494.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
PGM-MVS93.96 4293.72 5094.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
mPP-MVS93.99 4193.78 4794.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
PHI-MVS93.89 4393.65 5494.62 4096.84 7586.43 3896.69 3297.49 685.15 17393.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
TSAR-MVS + MP.94.85 1494.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CANet93.54 5193.20 6194.55 4295.65 12185.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
train_agg93.44 5593.08 6294.52 4397.53 5886.49 3694.07 18696.78 7281.86 24992.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
CDPH-MVS92.83 6992.30 7594.44 4497.79 4986.11 4894.06 18896.66 8580.09 27892.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
3Dnovator86.66 591.73 8590.82 9694.44 4494.59 17186.37 4097.18 1297.02 4789.20 6084.31 25796.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
SR-MVS94.23 3194.17 3794.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
HPM-MVScopyleft94.02 3993.88 4494.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.93.66 4993.41 5694.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
ACMMPcopyleft93.24 6292.88 6794.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS88.79 393.31 6092.99 6594.26 5196.07 10385.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPNet91.79 8291.02 9294.10 5290.10 33285.25 6996.03 6692.05 29792.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n94.60 1894.81 1693.98 5394.62 17084.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
DELS-MVS93.43 5893.25 5993.97 5495.42 12985.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon91.95 8091.28 8693.96 5598.33 2785.92 5694.66 14796.66 8582.69 23090.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
HPM-MVS_fast93.40 5993.22 6093.94 5698.36 2584.83 7497.15 1396.80 7185.77 15692.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5792.46 25084.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
SD-MVS94.96 1395.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 24894.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5493.31 5793.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
SR-MVS-dyc-post93.82 4493.82 4593.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
APD-MVS_3200maxsize93.78 4593.77 4893.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6395.28 13485.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
CSCG93.23 6393.05 6393.76 6498.04 4084.07 9696.22 4997.37 2184.15 19290.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
test_fmvsmconf0.01_n93.19 6493.02 6493.71 6589.25 34484.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
UA-Net92.83 6992.54 7293.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6795.29 13384.98 7195.61 9296.28 10886.31 14396.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
QAPM89.51 13488.15 16093.59 6894.92 15484.58 7996.82 2996.70 8378.43 30383.41 27696.19 9073.18 20699.30 4077.11 27896.54 10196.89 127
test_fmvsm_n_192094.71 1795.11 1093.50 6995.79 11584.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
casdiffmvs_mvgpermissive92.96 6892.83 6893.35 7094.59 17183.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set93.01 6792.92 6693.29 7195.01 14783.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
Vis-MVSNetpermissive91.75 8491.23 8793.29 7195.32 13283.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test94.02 3994.29 2993.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
VNet92.24 7891.91 7993.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
VDD-MVS90.74 10189.92 11393.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31898.64 10090.95 9592.62 17697.93 76
CS-MVS94.12 3794.44 2293.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
nrg03091.08 9790.39 9993.17 7693.07 23286.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 29294.96 199
EI-MVSNet-UG-set92.74 7192.62 7193.12 7894.86 15883.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
test_fmvsmvis_n_192093.44 5593.55 5593.10 7993.67 21684.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 145
新几何193.10 7997.30 6684.35 9295.56 16871.09 36991.26 11396.24 8582.87 8598.86 8479.19 25898.10 6296.07 158
OMC-MVS91.23 9390.62 9893.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 130
OpenMVScopyleft83.78 1188.74 16387.29 18093.08 8192.70 24585.39 6796.57 3696.43 9778.74 29880.85 30696.07 9469.64 24999.01 6378.01 26996.65 10094.83 206
MAR-MVS90.30 11189.37 12493.07 8396.61 8184.48 8595.68 8595.67 16082.36 23587.85 15992.85 21676.63 15798.80 9080.01 24696.68 9995.91 164
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
lupinMVS90.92 9890.21 10293.03 8493.86 20683.88 10192.81 24593.86 25479.84 28091.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
Effi-MVS+91.59 8891.11 8993.01 8594.35 18883.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8695.02 14683.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
MVS_111021_LR92.47 7592.29 7692.98 8795.99 10984.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 132
fmvsm_s_conf0.1_n_a93.19 6493.26 5892.97 8892.49 24883.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
ETV-MVS92.74 7192.66 7092.97 8895.20 14084.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 141
LFMVS90.08 11689.13 13092.95 9096.71 7782.32 15596.08 6189.91 34786.79 13292.15 9096.81 6362.60 31698.34 12987.18 14093.90 15098.19 58
UGNet89.95 12288.95 13492.95 9094.51 17783.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30598.78 9183.92 18196.31 10696.74 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason90.80 9990.10 10692.90 9293.04 23483.53 11293.08 23594.15 24380.22 27591.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
DP-MVS87.25 21585.36 24792.90 9297.65 5583.24 11994.81 13792.00 29974.99 33781.92 29595.00 13572.66 21299.05 5566.92 35092.33 18096.40 143
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9495.62 12383.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9593.75 21283.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
CANet_DTU90.26 11389.41 12392.81 9693.46 22283.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 144
MVSFormer91.68 8791.30 8592.80 9793.86 20683.88 10195.96 7195.90 14284.66 18691.76 10394.91 13777.92 14497.30 21889.64 10997.11 8597.24 104
PVSNet_Blended_VisFu91.38 9090.91 9492.80 9796.39 9083.17 12294.87 13396.66 8583.29 21589.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 161
VDDNet89.56 13388.49 15192.76 9995.07 14582.09 15796.30 4393.19 26781.05 27091.88 9896.86 5961.16 33098.33 13188.43 12392.49 17997.84 82
h-mvs3390.80 9990.15 10592.75 10096.01 10582.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 34796.60 136
casdiffmvspermissive92.51 7492.43 7492.74 10194.41 18381.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
DCV-MVSNet90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
PCF-MVS84.11 1087.74 18986.08 22492.70 10494.02 19784.43 8989.27 32595.87 14573.62 35184.43 24994.33 16178.48 13998.86 8470.27 32494.45 14394.81 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline92.39 7792.29 7692.69 10594.46 18081.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
MSLP-MVS++93.72 4894.08 3892.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 131
EC-MVSNet93.44 5593.71 5192.63 10795.21 13982.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
ab-mvs89.41 14088.35 15392.60 10895.15 14382.65 14792.20 26595.60 16783.97 19688.55 14793.70 19374.16 19198.21 14082.46 20389.37 21796.94 123
LS3D87.89 18486.32 21492.59 10996.07 10382.92 13695.23 10994.92 20975.66 32982.89 28395.98 9872.48 21599.21 4568.43 33895.23 12895.64 177
Anonymous2024052988.09 18086.59 20492.58 11096.53 8681.92 16295.99 6995.84 14774.11 34689.06 14195.21 12761.44 32498.81 8983.67 18687.47 25297.01 119
CPTT-MVS91.99 7991.80 8092.55 11198.24 3181.98 16096.76 3096.49 9581.89 24890.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
114514_t89.51 13488.50 14992.54 11298.11 3681.99 15995.16 11696.36 10270.19 37285.81 20395.25 12476.70 15598.63 10282.07 21096.86 9597.00 120
PAPM_NR91.22 9490.78 9792.52 11397.60 5681.46 17494.37 16996.24 11386.39 14287.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
IS-MVSNet91.43 8991.09 9192.46 11595.87 11481.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
API-MVS90.66 10590.07 10792.45 11696.36 9184.57 8096.06 6495.22 19382.39 23389.13 13894.27 16780.32 11298.46 11580.16 24596.71 9894.33 232
xiu_mvs_v1_base_debu90.64 10690.05 10892.40 11793.97 20384.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 237
xiu_mvs_v1_base90.64 10690.05 10892.40 11793.97 20384.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 237
xiu_mvs_v1_base_debi90.64 10690.05 10892.40 11793.97 20384.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 237
AdaColmapbinary89.89 12589.07 13192.37 12097.41 6283.03 13094.42 16295.92 13982.81 22786.34 19594.65 15273.89 19599.02 6180.69 23695.51 11695.05 194
CNLPA89.07 15287.98 16492.34 12196.87 7484.78 7694.08 18593.24 26581.41 26184.46 24795.13 13275.57 17196.62 25977.21 27693.84 15295.61 180
ET-MVSNet_ETH3D87.51 20385.91 23292.32 12293.70 21583.93 9992.33 26090.94 32884.16 19172.09 36892.52 22869.90 24495.85 30389.20 11488.36 23897.17 108
Anonymous20240521187.68 19086.13 22092.31 12396.66 7980.74 19594.87 13391.49 31580.47 27489.46 13595.44 11754.72 35898.23 13782.19 20889.89 20797.97 72
CHOSEN 1792x268888.84 15987.69 17092.30 12496.14 9681.42 17690.01 31395.86 14674.52 34287.41 16893.94 18075.46 17298.36 12680.36 24195.53 11597.12 113
HY-MVS83.01 1289.03 15487.94 16692.29 12594.86 15882.77 13892.08 27094.49 22881.52 26086.93 17892.79 22278.32 14198.23 13779.93 24790.55 19695.88 166
CDS-MVSNet89.45 13788.51 14892.29 12593.62 21783.61 11193.01 23894.68 22581.95 24487.82 16193.24 20578.69 13496.99 24380.34 24293.23 16796.28 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR90.02 11889.27 12992.29 12595.78 11680.95 18992.68 24796.22 11581.91 24686.66 18893.75 19282.23 9598.44 12179.40 25794.79 13297.48 97
PLCcopyleft84.53 789.06 15388.03 16392.15 12897.27 6882.69 14594.29 17195.44 18079.71 28284.01 26294.18 16976.68 15698.75 9377.28 27593.41 16295.02 195
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPP-MVSNet91.70 8691.56 8392.13 12995.88 11280.50 20197.33 795.25 19086.15 14989.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
patch_mono-293.74 4794.32 2692.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29390.45 12095.92 10082.65 8798.84 8880.68 23798.26 5796.14 152
UniMVSNet (Re)89.80 12789.07 13192.01 13093.60 21884.52 8394.78 13997.47 1189.26 5886.44 19392.32 23482.10 9897.39 21484.81 16980.84 32594.12 241
MG-MVS91.77 8391.70 8292.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
EIA-MVS91.95 8091.94 7891.98 13495.16 14180.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
PVSNet_Blended90.73 10290.32 10191.98 13496.12 9781.25 17992.55 25296.83 6682.04 24289.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 168
PS-MVSNAJ91.18 9590.92 9391.96 13695.26 13782.60 14992.09 26995.70 15886.27 14491.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 235
TAMVS89.21 14688.29 15791.96 13693.71 21382.62 14893.30 22594.19 24182.22 23787.78 16293.94 18078.83 13196.95 24577.70 27192.98 17196.32 145
SDMVSNet90.19 11489.61 11791.93 13896.00 10683.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23688.90 11789.85 20995.63 178
FA-MVS(test-final)89.66 12988.91 13691.93 13894.57 17480.27 20591.36 28494.74 22284.87 17989.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
MVS_Test91.31 9291.11 8991.93 13894.37 18480.14 21093.46 21795.80 14986.46 14091.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
NR-MVSNet88.58 16987.47 17691.93 13893.04 23484.16 9594.77 14096.25 11289.05 6580.04 31993.29 20379.02 13097.05 24081.71 22180.05 33594.59 214
HyFIR lowres test88.09 18086.81 19291.93 13896.00 10680.63 19790.01 31395.79 15073.42 35387.68 16492.10 24573.86 19697.96 16580.75 23591.70 18397.19 107
GeoE90.05 11789.43 12291.90 14395.16 14180.37 20495.80 7894.65 22683.90 19787.55 16794.75 14778.18 14297.62 18781.28 22593.63 15497.71 88
thisisatest053088.67 16487.61 17291.86 14494.87 15780.07 21394.63 14889.90 34884.00 19588.46 14993.78 18966.88 28298.46 11583.30 18892.65 17597.06 115
xiu_mvs_v2_base91.13 9690.89 9591.86 14494.97 15082.42 15192.24 26395.64 16586.11 15291.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 236
DU-MVS89.34 14588.50 14991.85 14693.04 23483.72 10494.47 15896.59 9089.50 5086.46 19093.29 20377.25 14997.23 22784.92 16681.02 32194.59 214
OPM-MVS90.12 11589.56 11891.82 14793.14 22983.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 20293.65 271
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 10990.19 10391.82 14794.70 16682.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20394.63 211
UniMVSNet_NR-MVSNet89.92 12489.29 12791.81 14993.39 22483.72 10494.43 16197.12 4189.80 4186.46 19093.32 20083.16 7997.23 22784.92 16681.02 32194.49 226
diffmvspermissive91.37 9191.23 8791.77 15093.09 23180.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20292.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.42 17087.33 17991.72 15194.92 15480.98 18792.97 24094.54 22778.16 30983.82 26593.88 18578.78 13397.91 16979.45 25389.41 21696.26 149
Fast-Effi-MVS+89.41 14088.64 14391.71 15294.74 16280.81 19393.54 21395.10 19883.11 21986.82 18690.67 29179.74 12097.75 17780.51 24093.55 15696.57 139
WTY-MVS89.60 13188.92 13591.67 15395.47 12881.15 18392.38 25694.78 22083.11 21989.06 14194.32 16278.67 13596.61 26281.57 22290.89 19597.24 104
TAPA-MVS84.62 688.16 17887.01 18891.62 15496.64 8080.65 19694.39 16596.21 11876.38 32286.19 19895.44 11779.75 11998.08 15662.75 36695.29 12596.13 153
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
iter_conf_final89.42 13988.69 14291.60 15595.12 14482.93 13595.75 8192.14 29487.32 12087.12 17594.07 17067.09 27897.55 19190.61 10189.01 22594.32 233
VPA-MVSNet89.62 13088.96 13391.60 15593.86 20682.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21187.32 13982.86 29794.52 219
FE-MVS87.40 20886.02 22691.57 15794.56 17579.69 22790.27 30293.72 25980.57 27388.80 14491.62 26265.32 29798.59 10674.97 29994.33 14696.44 142
XVG-OURS89.40 14288.70 14191.52 15894.06 19581.46 17491.27 28696.07 12886.14 15088.89 14395.77 10868.73 26697.26 22487.39 13789.96 20595.83 169
hse-mvs289.88 12689.34 12591.51 15994.83 16081.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35495.74 173
TranMVSNet+NR-MVSNet88.84 15987.95 16591.49 16092.68 24683.01 13294.92 13096.31 10489.88 3985.53 21393.85 18776.63 15796.96 24481.91 21479.87 33894.50 224
AUN-MVS87.78 18886.54 20691.48 16194.82 16181.05 18593.91 20193.93 25083.00 22286.93 17893.53 19569.50 25197.67 17986.14 15177.12 35395.73 175
XVG-OURS-SEG-HR89.95 12289.45 12091.47 16294.00 20181.21 18291.87 27396.06 13085.78 15588.55 14795.73 11074.67 18397.27 22288.71 12089.64 21495.91 164
MVS87.44 20686.10 22391.44 16392.61 24783.62 10992.63 24995.66 16267.26 37681.47 29892.15 24077.95 14398.22 13979.71 24995.48 11892.47 311
F-COLMAP87.95 18386.80 19391.40 16496.35 9280.88 19194.73 14295.45 17879.65 28382.04 29394.61 15371.13 22698.50 11076.24 28791.05 19394.80 208
dcpmvs_293.49 5294.19 3691.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
thisisatest051587.33 21185.99 22791.37 16693.49 22079.55 22990.63 29889.56 35480.17 27687.56 16690.86 28467.07 27998.28 13581.50 22393.02 17096.29 147
HQP-MVS89.80 12789.28 12891.34 16794.17 19181.56 16894.39 16596.04 13188.81 7285.43 22393.97 17973.83 19797.96 16587.11 14389.77 21294.50 224
mvsmamba89.96 12189.50 11991.33 16892.90 24181.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 23094.51 221
FMVSNet387.40 20886.11 22291.30 16993.79 21183.64 10894.20 17794.81 21883.89 19884.37 25091.87 25468.45 26996.56 26778.23 26685.36 27093.70 270
FMVSNet287.19 22185.82 23491.30 16994.01 19883.67 10694.79 13894.94 20483.57 20583.88 26492.05 24966.59 28796.51 27077.56 27385.01 27393.73 267
RPMNet83.95 28681.53 29691.21 17190.58 32379.34 23685.24 36796.76 7571.44 36785.55 21082.97 37470.87 23198.91 8061.01 37089.36 21895.40 184
IB-MVS80.51 1585.24 26783.26 28191.19 17292.13 25979.86 22391.75 27691.29 32083.28 21680.66 30988.49 33061.28 32598.46 11580.99 23179.46 34195.25 189
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS89.47 13688.90 13791.18 17394.22 19082.07 15892.13 26796.09 12687.90 10585.37 22992.45 23074.38 18597.56 19087.15 14190.43 19893.93 250
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf0588.85 15888.08 16291.17 17494.27 18981.64 16795.18 11392.15 29386.23 14787.28 17294.07 17063.89 30997.55 19190.63 10089.00 22694.32 233
LPG-MVS_test89.45 13788.90 13791.12 17594.47 17881.49 17295.30 10396.14 12086.73 13585.45 22095.16 13069.89 24598.10 14687.70 13289.23 22193.77 264
LGP-MVS_train91.12 17594.47 17881.49 17296.14 12086.73 13585.45 22095.16 13069.89 24598.10 14687.70 13289.23 22193.77 264
ACMM84.12 989.14 14788.48 15291.12 17594.65 16981.22 18195.31 10196.12 12385.31 16985.92 20294.34 16070.19 24398.06 15885.65 15988.86 22894.08 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tttt051788.61 16687.78 16991.11 17894.96 15177.81 27295.35 9989.69 35185.09 17588.05 15694.59 15566.93 28098.48 11183.27 18992.13 18297.03 118
GBi-Net87.26 21385.98 22891.08 17994.01 19883.10 12595.14 11794.94 20483.57 20584.37 25091.64 25866.59 28796.34 28378.23 26685.36 27093.79 259
test187.26 21385.98 22891.08 17994.01 19883.10 12595.14 11794.94 20483.57 20584.37 25091.64 25866.59 28796.34 28378.23 26685.36 27093.79 259
FMVSNet185.85 25484.11 26891.08 17992.81 24383.10 12595.14 11794.94 20481.64 25682.68 28591.64 25859.01 34296.34 28375.37 29383.78 28293.79 259
Test_1112_low_res87.65 19286.51 20791.08 17994.94 15379.28 24091.77 27594.30 23776.04 32783.51 27492.37 23277.86 14697.73 17878.69 26189.13 22396.22 150
PS-MVSNAJss89.97 12089.62 11691.02 18391.90 26880.85 19295.26 10895.98 13486.26 14586.21 19794.29 16479.70 12197.65 18288.87 11988.10 24094.57 216
BH-RMVSNet88.37 17287.48 17591.02 18395.28 13479.45 23292.89 24293.07 26985.45 16686.91 18094.84 14470.35 24097.76 17473.97 30594.59 13895.85 167
UniMVSNet_ETH3D87.53 20286.37 21191.00 18592.44 25178.96 24594.74 14195.61 16684.07 19485.36 23094.52 15759.78 33897.34 21682.93 19387.88 24596.71 134
FIs90.51 11090.35 10090.99 18693.99 20280.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22685.18 16388.31 23994.76 209
ACMP84.23 889.01 15688.35 15390.99 18694.73 16381.27 17895.07 12195.89 14486.48 13983.67 26994.30 16369.33 25497.99 16387.10 14588.55 23193.72 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 23985.13 25190.98 18896.52 8781.50 17096.14 5796.16 11973.78 34983.65 27092.15 24063.26 31397.37 21582.82 19781.74 31094.06 246
sss88.93 15788.26 15990.94 18994.05 19680.78 19491.71 27795.38 18481.55 25988.63 14693.91 18475.04 17695.47 32082.47 20291.61 18496.57 139
sd_testset88.59 16887.85 16890.83 19096.00 10680.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27396.43 27779.64 25189.85 20995.63 178
PVSNet_BlendedMVS89.98 11989.70 11590.82 19196.12 9781.25 17993.92 19996.83 6683.49 20989.10 13992.26 23781.04 10998.85 8686.72 14887.86 24692.35 317
cascas86.43 24684.98 25490.80 19292.10 26180.92 19090.24 30695.91 14173.10 35683.57 27388.39 33165.15 29997.46 19984.90 16891.43 18694.03 248
ECVR-MVScopyleft89.09 15088.53 14790.77 19395.62 12375.89 30296.16 5384.22 37787.89 10790.20 12496.65 7063.19 31498.10 14685.90 15696.94 9098.33 43
GA-MVS86.61 23785.27 24990.66 19491.33 29278.71 24790.40 30193.81 25785.34 16885.12 23389.57 31361.25 32697.11 23580.99 23189.59 21596.15 151
thres600view787.65 19286.67 19990.59 19596.08 10278.72 24694.88 13291.58 31187.06 12588.08 15492.30 23568.91 26398.10 14670.05 33191.10 18994.96 199
thres40087.62 19786.64 20090.57 19695.99 10978.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32891.10 18994.96 199
baseline188.10 17987.28 18190.57 19694.96 15180.07 21394.27 17291.29 32086.74 13487.41 16894.00 17776.77 15496.20 28880.77 23479.31 34395.44 182
FC-MVSNet-test90.27 11290.18 10490.53 19893.71 21379.85 22495.77 8097.59 389.31 5686.27 19694.67 15181.93 10397.01 24284.26 17688.09 24294.71 210
PAPM86.68 23685.39 24590.53 19893.05 23379.33 23989.79 31694.77 22178.82 29581.95 29493.24 20576.81 15297.30 21866.94 34893.16 16894.95 202
WR-MVS88.38 17187.67 17190.52 20093.30 22680.18 20893.26 22895.96 13788.57 8385.47 21992.81 22076.12 15996.91 24881.24 22682.29 30194.47 229
MVSTER88.84 15988.29 15790.51 20192.95 23980.44 20293.73 20695.01 20184.66 18687.15 17393.12 21072.79 21197.21 22987.86 12987.36 25593.87 254
RRT_MVS89.09 15088.62 14690.49 20292.85 24279.65 22896.41 3994.41 23288.22 9485.50 21694.77 14669.36 25397.31 21789.33 11286.73 26294.51 221
testdata90.49 20296.40 8977.89 26995.37 18672.51 36193.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 163
test111189.10 14888.64 14390.48 20495.53 12774.97 30996.08 6184.89 37588.13 9990.16 12696.65 7063.29 31298.10 14686.14 15196.90 9298.39 39
tt080586.92 22885.74 24090.48 20492.22 25579.98 22095.63 9194.88 21283.83 20084.74 24092.80 22157.61 34697.67 17985.48 16284.42 27793.79 259
jajsoiax88.24 17687.50 17490.48 20490.89 31280.14 21095.31 10195.65 16484.97 17784.24 25894.02 17565.31 29897.42 20488.56 12188.52 23393.89 251
PatchMatch-RL86.77 23585.54 24190.47 20795.88 11282.71 14490.54 29992.31 28879.82 28184.32 25591.57 26668.77 26596.39 27973.16 31093.48 16192.32 318
tfpn200view987.58 20086.64 20090.41 20895.99 10978.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32891.10 18994.48 227
VPNet88.20 17787.47 17690.39 20993.56 21979.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23184.05 17980.53 33094.56 217
ACMH80.38 1785.36 26283.68 27590.39 20994.45 18180.63 19794.73 14294.85 21482.09 23977.24 34192.65 22460.01 33697.58 18872.25 31484.87 27492.96 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90087.63 19586.71 19790.38 21196.12 9778.55 25095.03 12491.58 31187.15 12288.06 15592.29 23668.91 26398.10 14670.13 32891.10 18994.48 227
mvs_tets88.06 18287.28 18190.38 21190.94 30879.88 22295.22 11095.66 16285.10 17484.21 25993.94 18063.53 31097.40 21188.50 12288.40 23793.87 254
131487.51 20386.57 20590.34 21392.42 25279.74 22692.63 24995.35 18878.35 30480.14 31691.62 26274.05 19297.15 23181.05 22793.53 15794.12 241
LTVRE_ROB82.13 1386.26 24884.90 25790.34 21394.44 18281.50 17092.31 26294.89 21083.03 22179.63 32592.67 22369.69 24897.79 17271.20 31886.26 26591.72 328
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
bld_raw_dy_0_6487.60 19986.73 19590.21 21591.72 27580.26 20795.09 12088.61 35785.68 15985.55 21094.38 15963.93 30896.66 25687.73 13187.84 24793.72 268
test_djsdf89.03 15488.64 14390.21 21590.74 31879.28 24095.96 7195.90 14284.66 18685.33 23192.94 21574.02 19397.30 21889.64 10988.53 23294.05 247
v2v48287.84 18587.06 18590.17 21790.99 30479.23 24394.00 19495.13 19584.87 17985.53 21392.07 24874.45 18497.45 20084.71 17181.75 30993.85 257
pmmvs485.43 26083.86 27390.16 21890.02 33582.97 13490.27 30292.67 28075.93 32880.73 30791.74 25771.05 22795.73 31078.85 26083.46 28991.78 327
V4287.68 19086.86 19090.15 21990.58 32380.14 21094.24 17595.28 18983.66 20385.67 20791.33 26874.73 18197.41 20984.43 17581.83 30792.89 300
MSDG84.86 27383.09 28490.14 22093.80 20980.05 21589.18 32893.09 26878.89 29378.19 33491.91 25265.86 29697.27 22268.47 33788.45 23593.11 292
anonymousdsp87.84 18587.09 18490.12 22189.13 34580.54 20094.67 14695.55 16982.05 24083.82 26592.12 24271.47 22497.15 23187.15 14187.80 25092.67 305
thres20087.21 21986.24 21890.12 22195.36 13178.53 25193.26 22892.10 29586.42 14188.00 15791.11 27969.24 25898.00 16269.58 33291.04 19493.83 258
CR-MVSNet85.35 26383.76 27490.12 22190.58 32379.34 23685.24 36791.96 30378.27 30685.55 21087.87 34171.03 22895.61 31273.96 30689.36 21895.40 184
v114487.61 19886.79 19490.06 22491.01 30379.34 23693.95 19695.42 18383.36 21485.66 20891.31 27174.98 17797.42 20483.37 18782.06 30393.42 280
XXY-MVS87.65 19286.85 19190.03 22592.14 25880.60 19993.76 20595.23 19182.94 22484.60 24294.02 17574.27 18695.49 31981.04 22883.68 28594.01 249
Vis-MVSNet (Re-imp)89.59 13289.44 12190.03 22595.74 11775.85 30395.61 9290.80 33287.66 11587.83 16095.40 12076.79 15396.46 27578.37 26296.73 9797.80 84
test250687.21 21986.28 21690.02 22795.62 12373.64 32296.25 4871.38 39987.89 10790.45 12096.65 7055.29 35698.09 15486.03 15596.94 9098.33 43
BH-untuned88.60 16788.13 16190.01 22895.24 13878.50 25393.29 22694.15 24384.75 18384.46 24793.40 19775.76 16697.40 21177.59 27294.52 14194.12 241
v119287.25 21586.33 21390.00 22990.76 31779.04 24493.80 20395.48 17482.57 23185.48 21891.18 27573.38 20597.42 20482.30 20682.06 30393.53 274
v7n86.81 23085.76 23889.95 23090.72 31979.25 24295.07 12195.92 13984.45 18982.29 28890.86 28472.60 21497.53 19479.42 25680.52 33193.08 294
v887.50 20586.71 19789.89 23191.37 28979.40 23394.50 15495.38 18484.81 18283.60 27291.33 26876.05 16097.42 20482.84 19680.51 33292.84 302
v1087.25 21586.38 21089.85 23291.19 29579.50 23094.48 15595.45 17883.79 20183.62 27191.19 27375.13 17497.42 20481.94 21380.60 32792.63 307
baseline286.50 24385.39 24589.84 23391.12 30076.70 29191.88 27288.58 35882.35 23679.95 32090.95 28373.42 20397.63 18680.27 24489.95 20695.19 190
pm-mvs186.61 23785.54 24189.82 23491.44 28480.18 20895.28 10794.85 21483.84 19981.66 29692.62 22572.45 21796.48 27279.67 25078.06 34692.82 303
TR-MVS86.78 23285.76 23889.82 23494.37 18478.41 25592.47 25392.83 27481.11 26986.36 19492.40 23168.73 26697.48 19773.75 30889.85 20993.57 273
ACMH+81.04 1485.05 27083.46 27889.82 23494.66 16879.37 23494.44 16094.12 24682.19 23878.04 33692.82 21958.23 34497.54 19373.77 30782.90 29692.54 308
EI-MVSNet89.10 14888.86 13989.80 23791.84 27078.30 25993.70 20995.01 20185.73 15787.15 17395.28 12279.87 11897.21 22983.81 18387.36 25593.88 253
v14419287.19 22186.35 21289.74 23890.64 32178.24 26193.92 19995.43 18181.93 24585.51 21591.05 28174.21 18997.45 20082.86 19581.56 31193.53 274
COLMAP_ROBcopyleft80.39 1683.96 28582.04 29389.74 23895.28 13479.75 22594.25 17392.28 28975.17 33578.02 33793.77 19058.60 34397.84 17165.06 35885.92 26691.63 330
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SCA86.32 24785.18 25089.73 24092.15 25776.60 29291.12 29091.69 30883.53 20885.50 21688.81 32466.79 28396.48 27276.65 28190.35 20096.12 154
IterMVS-LS88.36 17387.91 16789.70 24193.80 20978.29 26093.73 20695.08 20085.73 15784.75 23991.90 25379.88 11796.92 24783.83 18282.51 29893.89 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192086.97 22786.06 22589.69 24290.53 32678.11 26493.80 20395.43 18181.90 24785.33 23191.05 28172.66 21297.41 20982.05 21181.80 30893.53 274
Fast-Effi-MVS+-dtu87.44 20686.72 19689.63 24392.04 26277.68 27894.03 19093.94 24985.81 15482.42 28791.32 27070.33 24197.06 23980.33 24390.23 20194.14 240
v124086.78 23285.85 23389.56 24490.45 32777.79 27493.61 21195.37 18681.65 25585.43 22391.15 27771.50 22397.43 20381.47 22482.05 30593.47 278
Effi-MVS+-dtu88.65 16588.35 15389.54 24593.33 22576.39 29694.47 15894.36 23587.70 11285.43 22389.56 31473.45 20297.26 22485.57 16191.28 18894.97 196
AllTest83.42 29181.39 29789.52 24695.01 14777.79 27493.12 23290.89 33077.41 31376.12 34993.34 19854.08 36197.51 19568.31 33984.27 27993.26 283
TestCases89.52 24695.01 14777.79 27490.89 33077.41 31376.12 34993.34 19854.08 36197.51 19568.31 33984.27 27993.26 283
mvs_anonymous89.37 14489.32 12689.51 24893.47 22174.22 31791.65 28094.83 21682.91 22585.45 22093.79 18881.23 10896.36 28286.47 15094.09 14797.94 74
XVG-ACMP-BASELINE86.00 25084.84 25989.45 24991.20 29478.00 26591.70 27895.55 16985.05 17682.97 28292.25 23854.49 35997.48 19782.93 19387.45 25492.89 300
testing22284.84 27483.32 27989.43 25094.15 19475.94 30191.09 29189.41 35584.90 17885.78 20489.44 31552.70 36696.28 28670.80 32391.57 18596.07 158
MVP-Stereo85.97 25184.86 25889.32 25190.92 31082.19 15692.11 26894.19 24178.76 29778.77 33391.63 26168.38 27096.56 26775.01 29893.95 14989.20 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchmatchNetpermissive85.85 25484.70 26189.29 25291.76 27475.54 30688.49 33791.30 31981.63 25785.05 23488.70 32871.71 22096.24 28774.61 30289.05 22496.08 157
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14887.04 22586.32 21489.21 25390.94 30877.26 28393.71 20894.43 23084.84 18184.36 25390.80 28876.04 16197.05 24082.12 20979.60 34093.31 282
tfpnnormal84.72 27683.23 28289.20 25492.79 24480.05 21594.48 15595.81 14882.38 23481.08 30491.21 27269.01 26296.95 24561.69 36880.59 32890.58 353
cl2286.78 23285.98 22889.18 25592.34 25377.62 27990.84 29594.13 24581.33 26383.97 26390.15 30173.96 19496.60 26484.19 17782.94 29393.33 281
BH-w/o87.57 20187.05 18689.12 25694.90 15677.90 26892.41 25493.51 26282.89 22683.70 26891.34 26775.75 16797.07 23875.49 29193.49 15992.39 315
WR-MVS_H87.80 18787.37 17889.10 25793.23 22778.12 26395.61 9297.30 2987.90 10583.72 26792.01 25079.65 12596.01 29676.36 28480.54 32993.16 290
miper_enhance_ethall86.90 22986.18 21989.06 25891.66 28077.58 28090.22 30894.82 21779.16 28984.48 24689.10 31979.19 12996.66 25684.06 17882.94 29392.94 298
c3_l87.14 22386.50 20889.04 25992.20 25677.26 28391.22 28994.70 22482.01 24384.34 25490.43 29578.81 13296.61 26283.70 18581.09 31893.25 285
miper_ehance_all_eth87.22 21886.62 20389.02 26092.13 25977.40 28290.91 29494.81 21881.28 26484.32 25590.08 30379.26 12796.62 25983.81 18382.94 29393.04 295
gg-mvs-nofinetune81.77 30379.37 31888.99 26190.85 31477.73 27786.29 35979.63 38874.88 34083.19 28169.05 38960.34 33396.11 29275.46 29294.64 13793.11 292
ETVMVS84.43 27982.92 28788.97 26294.37 18474.67 31191.23 28888.35 36083.37 21386.06 20189.04 32055.38 35495.67 31167.12 34691.34 18796.58 138
pmmvs683.42 29181.60 29588.87 26388.01 35977.87 27094.96 12794.24 24074.67 34178.80 33291.09 28060.17 33596.49 27177.06 28075.40 36092.23 320
test_cas_vis1_n_192088.83 16288.85 14088.78 26491.15 29976.72 29093.85 20294.93 20883.23 21892.81 7296.00 9661.17 32994.45 33091.67 8394.84 13195.17 191
MIMVSNet82.59 29780.53 30288.76 26591.51 28278.32 25886.57 35890.13 34179.32 28580.70 30888.69 32952.98 36593.07 35566.03 35388.86 22894.90 203
cl____86.52 24285.78 23588.75 26692.03 26376.46 29490.74 29694.30 23781.83 25183.34 27890.78 28975.74 16996.57 26581.74 21981.54 31293.22 287
DIV-MVS_self_test86.53 24185.78 23588.75 26692.02 26476.45 29590.74 29694.30 23781.83 25183.34 27890.82 28775.75 16796.57 26581.73 22081.52 31393.24 286
CP-MVSNet87.63 19587.26 18388.74 26893.12 23076.59 29395.29 10596.58 9188.43 8683.49 27592.98 21475.28 17395.83 30478.97 25981.15 31793.79 259
eth_miper_zixun_eth86.50 24385.77 23788.68 26991.94 26575.81 30490.47 30094.89 21082.05 24084.05 26090.46 29475.96 16296.77 25282.76 19979.36 34293.46 279
CHOSEN 280x42085.15 26883.99 27188.65 27092.47 24978.40 25679.68 38792.76 27674.90 33981.41 30089.59 31269.85 24795.51 31679.92 24895.29 12592.03 323
PS-CasMVS87.32 21286.88 18988.63 27192.99 23776.33 29895.33 10096.61 8988.22 9483.30 28093.07 21273.03 20995.79 30778.36 26381.00 32393.75 266
TransMVSNet (Re)84.43 27983.06 28588.54 27291.72 27578.44 25495.18 11392.82 27582.73 22979.67 32492.12 24273.49 20195.96 29871.10 32268.73 37691.21 340
EG-PatchMatch MVS82.37 29980.34 30588.46 27390.27 32979.35 23592.80 24694.33 23677.14 31773.26 36590.18 30047.47 37796.72 25370.25 32587.32 25789.30 361
PEN-MVS86.80 23186.27 21788.40 27492.32 25475.71 30595.18 11396.38 10187.97 10282.82 28493.15 20873.39 20495.92 29976.15 28879.03 34593.59 272
Baseline_NR-MVSNet87.07 22486.63 20288.40 27491.44 28477.87 27094.23 17692.57 28284.12 19385.74 20692.08 24677.25 14996.04 29382.29 20779.94 33691.30 338
D2MVS85.90 25285.09 25288.35 27690.79 31577.42 28191.83 27495.70 15880.77 27280.08 31890.02 30466.74 28596.37 28081.88 21587.97 24491.26 339
pmmvs584.21 28182.84 29088.34 27788.95 34776.94 28792.41 25491.91 30575.63 33080.28 31391.18 27564.59 30295.57 31377.09 27983.47 28892.53 309
LCM-MVSNet-Re88.30 17588.32 15688.27 27894.71 16572.41 33993.15 23190.98 32787.77 11079.25 32891.96 25178.35 14095.75 30883.04 19195.62 11496.65 135
CostFormer85.77 25684.94 25688.26 27991.16 29872.58 33789.47 32391.04 32676.26 32586.45 19289.97 30670.74 23396.86 25182.35 20587.07 26095.34 187
ITE_SJBPF88.24 28091.88 26977.05 28692.92 27185.54 16480.13 31793.30 20257.29 34796.20 28872.46 31384.71 27591.49 334
PVSNet78.82 1885.55 25884.65 26288.23 28194.72 16471.93 34087.12 35492.75 27778.80 29684.95 23690.53 29364.43 30396.71 25574.74 30093.86 15196.06 160
IterMVS-SCA-FT85.45 25984.53 26588.18 28291.71 27776.87 28890.19 30992.65 28185.40 16781.44 29990.54 29266.79 28395.00 32881.04 22881.05 31992.66 306
EPNet_dtu86.49 24585.94 23188.14 28390.24 33072.82 32994.11 18192.20 29186.66 13779.42 32792.36 23373.52 20095.81 30671.26 31793.66 15395.80 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry82.71 29580.93 30188.06 28490.05 33476.37 29784.74 37291.96 30372.28 36481.32 30287.87 34171.03 22895.50 31868.97 33480.15 33492.32 318
test_vis1_n_192089.39 14389.84 11488.04 28592.97 23872.64 33494.71 14496.03 13386.18 14891.94 9796.56 7861.63 32195.74 30993.42 4195.11 12995.74 173
DTE-MVSNet86.11 24985.48 24387.98 28691.65 28174.92 31094.93 12995.75 15387.36 11982.26 28993.04 21372.85 21095.82 30574.04 30477.46 35193.20 288
PMMVS85.71 25784.96 25587.95 28788.90 34877.09 28588.68 33590.06 34372.32 36386.47 18990.76 29072.15 21894.40 33281.78 21893.49 15992.36 316
GG-mvs-BLEND87.94 28889.73 34177.91 26787.80 34478.23 39280.58 31083.86 36759.88 33795.33 32271.20 31892.22 18190.60 352
pmmvs-eth3d80.97 31678.72 32887.74 28984.99 37779.97 22190.11 31191.65 30975.36 33273.51 36386.03 35759.45 33993.96 34275.17 29572.21 36589.29 362
MS-PatchMatch85.05 27084.16 26787.73 29091.42 28778.51 25291.25 28793.53 26177.50 31280.15 31591.58 26461.99 31995.51 31675.69 29094.35 14589.16 364
test_040281.30 31379.17 32387.67 29193.19 22878.17 26292.98 23991.71 30675.25 33476.02 35190.31 29759.23 34096.37 28050.22 38583.63 28688.47 370
IterMVS84.88 27283.98 27287.60 29291.44 28476.03 30090.18 31092.41 28483.24 21781.06 30590.42 29666.60 28694.28 33679.46 25280.98 32492.48 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test81.37 31179.30 31987.58 29390.92 31074.16 31980.99 38387.68 36570.52 37176.63 34688.81 32471.21 22592.76 35760.01 37486.93 26195.83 169
EPMVS83.90 28882.70 29187.51 29490.23 33172.67 33288.62 33681.96 38381.37 26285.01 23588.34 33266.31 29094.45 33075.30 29487.12 25895.43 183
ADS-MVSNet281.66 30679.71 31587.50 29591.35 29074.19 31883.33 37788.48 35972.90 35882.24 29085.77 36064.98 30093.20 35364.57 36083.74 28395.12 192
OurMVSNet-221017-085.35 26384.64 26387.49 29690.77 31672.59 33694.01 19294.40 23384.72 18479.62 32693.17 20761.91 32096.72 25381.99 21281.16 31593.16 290
tpm284.08 28382.94 28687.48 29791.39 28871.27 34789.23 32790.37 33671.95 36584.64 24189.33 31667.30 27496.55 26975.17 29587.09 25994.63 211
RPSCF85.07 26984.27 26687.48 29792.91 24070.62 35691.69 27992.46 28376.20 32682.67 28695.22 12563.94 30697.29 22177.51 27485.80 26794.53 218
miper_lstm_enhance85.27 26684.59 26487.31 29991.28 29374.63 31287.69 34894.09 24781.20 26881.36 30189.85 30974.97 17894.30 33581.03 23079.84 33993.01 296
FMVSNet581.52 30979.60 31687.27 30091.17 29677.95 26691.49 28292.26 29076.87 31876.16 34887.91 34051.67 36792.34 36067.74 34381.16 31591.52 333
USDC82.76 29481.26 29987.26 30191.17 29674.55 31389.27 32593.39 26478.26 30775.30 35492.08 24654.43 36096.63 25871.64 31585.79 26890.61 350
test-LLR85.87 25385.41 24487.25 30290.95 30671.67 34589.55 31989.88 34983.41 21184.54 24487.95 33867.25 27595.11 32581.82 21693.37 16494.97 196
test-mter84.54 27883.64 27687.25 30290.95 30671.67 34589.55 31989.88 34979.17 28884.54 24487.95 33855.56 35295.11 32581.82 21693.37 16494.97 196
JIA-IIPM81.04 31478.98 32687.25 30288.64 34973.48 32481.75 38289.61 35373.19 35582.05 29273.71 38666.07 29595.87 30271.18 32084.60 27692.41 314
TDRefinement79.81 32677.34 33187.22 30579.24 38975.48 30793.12 23292.03 29876.45 32175.01 35591.58 26449.19 37396.44 27670.22 32769.18 37389.75 357
tpmvs83.35 29382.07 29287.20 30691.07 30271.00 35388.31 34091.70 30778.91 29180.49 31287.18 35069.30 25797.08 23668.12 34283.56 28793.51 277
ppachtmachnet_test81.84 30280.07 31087.15 30788.46 35374.43 31689.04 33192.16 29275.33 33377.75 33888.99 32166.20 29295.37 32165.12 35777.60 34991.65 329
dmvs_re84.20 28283.22 28387.14 30891.83 27277.81 27290.04 31290.19 33984.70 18581.49 29789.17 31864.37 30491.13 37171.58 31685.65 26992.46 312
tpm cat181.96 30080.27 30687.01 30991.09 30171.02 35287.38 35291.53 31466.25 37780.17 31486.35 35668.22 27196.15 29169.16 33382.29 30193.86 256
test_fmvs1_n87.03 22687.04 18786.97 31089.74 34071.86 34194.55 15294.43 23078.47 30191.95 9695.50 11651.16 36993.81 34393.02 4894.56 13995.26 188
OpenMVS_ROBcopyleft74.94 1979.51 32977.03 33686.93 31187.00 36576.23 29992.33 26090.74 33368.93 37474.52 35988.23 33549.58 37296.62 25957.64 37884.29 27887.94 373
SixPastTwentyTwo83.91 28782.90 28886.92 31290.99 30470.67 35593.48 21591.99 30085.54 16477.62 34092.11 24460.59 33296.87 25076.05 28977.75 34893.20 288
ADS-MVSNet81.56 30879.78 31286.90 31391.35 29071.82 34283.33 37789.16 35672.90 35882.24 29085.77 36064.98 30093.76 34464.57 36083.74 28395.12 192
PatchT82.68 29681.27 29886.89 31490.09 33370.94 35484.06 37490.15 34074.91 33885.63 20983.57 36969.37 25294.87 32965.19 35588.50 23494.84 205
tpm84.73 27584.02 27086.87 31590.33 32868.90 36389.06 33089.94 34680.85 27185.75 20589.86 30868.54 26895.97 29777.76 27084.05 28195.75 172
Patchmatch-RL test81.67 30579.96 31186.81 31685.42 37571.23 34882.17 38187.50 36678.47 30177.19 34282.50 37670.81 23293.48 34882.66 20072.89 36495.71 176
test_vis1_n86.56 24086.49 20986.78 31788.51 35072.69 33194.68 14593.78 25879.55 28490.70 11795.31 12148.75 37493.28 35193.15 4593.99 14894.38 231
test_fmvs187.34 21087.56 17386.68 31890.59 32271.80 34394.01 19294.04 24878.30 30591.97 9495.22 12556.28 35093.71 34592.89 4994.71 13394.52 219
MDA-MVSNet-bldmvs78.85 33376.31 33886.46 31989.76 33973.88 32088.79 33390.42 33579.16 28959.18 38588.33 33360.20 33494.04 33862.00 36768.96 37491.48 335
tpmrst85.35 26384.99 25386.43 32090.88 31367.88 36788.71 33491.43 31780.13 27786.08 20088.80 32673.05 20796.02 29582.48 20183.40 29195.40 184
TESTMET0.1,183.74 29082.85 28986.42 32189.96 33671.21 34989.55 31987.88 36277.41 31383.37 27787.31 34656.71 34893.65 34780.62 23892.85 17494.40 230
our_test_381.93 30180.46 30486.33 32288.46 35373.48 32488.46 33891.11 32276.46 32076.69 34588.25 33466.89 28194.36 33368.75 33579.08 34491.14 342
lessismore_v086.04 32388.46 35368.78 36480.59 38673.01 36690.11 30255.39 35396.43 27775.06 29765.06 38092.90 299
TinyColmap79.76 32777.69 33085.97 32491.71 27773.12 32689.55 31990.36 33775.03 33672.03 36990.19 29946.22 37996.19 29063.11 36481.03 32088.59 369
KD-MVS_2432*160078.50 33476.02 34185.93 32586.22 36874.47 31484.80 37092.33 28679.29 28676.98 34385.92 35853.81 36393.97 34067.39 34457.42 38889.36 359
miper_refine_blended78.50 33476.02 34185.93 32586.22 36874.47 31484.80 37092.33 28679.29 28676.98 34385.92 35853.81 36393.97 34067.39 34457.42 38889.36 359
K. test v381.59 30780.15 30985.91 32789.89 33869.42 36292.57 25187.71 36485.56 16373.44 36489.71 31155.58 35195.52 31577.17 27769.76 37092.78 304
mvsany_test185.42 26185.30 24885.77 32887.95 36175.41 30887.61 35180.97 38576.82 31988.68 14595.83 10477.44 14890.82 37385.90 15686.51 26391.08 346
MIMVSNet179.38 33077.28 33285.69 32986.35 36773.67 32191.61 28192.75 27778.11 31072.64 36788.12 33648.16 37591.97 36560.32 37177.49 35091.43 336
UnsupCasMVSNet_eth80.07 32378.27 32985.46 33085.24 37672.63 33588.45 33994.87 21382.99 22371.64 37188.07 33756.34 34991.75 36673.48 30963.36 38392.01 324
CL-MVSNet_self_test81.74 30480.53 30285.36 33185.96 37072.45 33890.25 30493.07 26981.24 26679.85 32387.29 34770.93 23092.52 35866.95 34769.23 37291.11 344
MDA-MVSNet_test_wron79.21 33277.19 33485.29 33288.22 35772.77 33085.87 36190.06 34374.34 34362.62 38387.56 34466.14 29391.99 36466.90 35173.01 36291.10 345
YYNet179.22 33177.20 33385.28 33388.20 35872.66 33385.87 36190.05 34574.33 34462.70 38187.61 34366.09 29492.03 36266.94 34872.97 36391.15 341
WB-MVSnew83.77 28983.28 28085.26 33491.48 28371.03 35191.89 27187.98 36178.91 29184.78 23890.22 29869.11 26194.02 33964.70 35990.44 19790.71 348
dp81.47 31080.23 30785.17 33589.92 33765.49 37486.74 35690.10 34276.30 32481.10 30387.12 35162.81 31595.92 29968.13 34179.88 33794.09 244
UnsupCasMVSNet_bld76.23 34273.27 34685.09 33683.79 37972.92 32785.65 36493.47 26371.52 36668.84 37779.08 38149.77 37193.21 35266.81 35260.52 38589.13 366
Anonymous2023120681.03 31579.77 31484.82 33787.85 36270.26 35891.42 28392.08 29673.67 35077.75 33889.25 31762.43 31793.08 35461.50 36982.00 30691.12 343
test0.0.03 182.41 29881.69 29484.59 33888.23 35672.89 32890.24 30687.83 36383.41 21179.86 32289.78 31067.25 27588.99 38165.18 35683.42 29091.90 326
CMPMVSbinary59.16 2180.52 31879.20 32284.48 33983.98 37867.63 36989.95 31593.84 25664.79 38066.81 37991.14 27857.93 34595.17 32376.25 28688.10 24090.65 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet84.69 27784.79 26084.37 34091.84 27064.92 37693.70 20991.47 31666.19 37886.16 19995.28 12267.18 27793.33 35080.89 23390.42 19994.88 204
PVSNet_073.20 2077.22 33974.83 34584.37 34090.70 32071.10 35083.09 37989.67 35272.81 36073.93 36283.13 37160.79 33193.70 34668.54 33650.84 39288.30 371
LF4IMVS80.37 32179.07 32584.27 34286.64 36669.87 36189.39 32491.05 32576.38 32274.97 35690.00 30547.85 37694.25 33774.55 30380.82 32688.69 368
Anonymous2024052180.44 32079.21 32184.11 34385.75 37367.89 36692.86 24493.23 26675.61 33175.59 35387.47 34550.03 37094.33 33471.14 32181.21 31490.12 355
PM-MVS78.11 33676.12 34084.09 34483.54 38070.08 35988.97 33285.27 37479.93 27974.73 35886.43 35434.70 38893.48 34879.43 25572.06 36688.72 367
test_fmvs283.98 28484.03 26983.83 34587.16 36467.53 37093.93 19892.89 27277.62 31186.89 18393.53 19547.18 37892.02 36390.54 10286.51 26391.93 325
testgi80.94 31780.20 30883.18 34687.96 36066.29 37191.28 28590.70 33483.70 20278.12 33592.84 21751.37 36890.82 37363.34 36382.46 29992.43 313
KD-MVS_self_test80.20 32279.24 32083.07 34785.64 37465.29 37591.01 29393.93 25078.71 29976.32 34786.40 35559.20 34192.93 35672.59 31269.35 37191.00 347
testing380.46 31979.59 31783.06 34893.44 22364.64 37793.33 22085.47 37284.34 19079.93 32190.84 28644.35 38292.39 35957.06 38087.56 25192.16 322
ambc83.06 34879.99 38763.51 38177.47 38892.86 27374.34 36184.45 36628.74 38995.06 32773.06 31168.89 37590.61 350
test20.0379.95 32579.08 32482.55 35085.79 37267.74 36891.09 29191.08 32381.23 26774.48 36089.96 30761.63 32190.15 37560.08 37276.38 35689.76 356
test_vis1_rt77.96 33776.46 33782.48 35185.89 37171.74 34490.25 30478.89 38971.03 37071.30 37281.35 37842.49 38491.05 37284.55 17382.37 30084.65 376
EU-MVSNet81.32 31280.95 30082.42 35288.50 35263.67 38093.32 22191.33 31864.02 38180.57 31192.83 21861.21 32892.27 36176.34 28580.38 33391.32 337
myMVS_eth3d79.67 32878.79 32782.32 35391.92 26664.08 37889.75 31787.40 36781.72 25378.82 33087.20 34845.33 38091.29 36959.09 37687.84 24791.60 331
pmmvs371.81 34868.71 35181.11 35475.86 39070.42 35786.74 35683.66 37858.95 38568.64 37880.89 37936.93 38689.52 37863.10 36563.59 38283.39 377
Syy-MVS80.07 32379.78 31280.94 35591.92 26659.93 38689.75 31787.40 36781.72 25378.82 33087.20 34866.29 29191.29 36947.06 38787.84 24791.60 331
new-patchmatchnet76.41 34175.17 34480.13 35682.65 38359.61 38787.66 34991.08 32378.23 30869.85 37583.22 37054.76 35791.63 36864.14 36264.89 38189.16 364
mvsany_test374.95 34373.26 34780.02 35774.61 39163.16 38285.53 36578.42 39074.16 34574.89 35786.46 35336.02 38789.09 38082.39 20466.91 37787.82 374
test_fmvs377.67 33877.16 33579.22 35879.52 38861.14 38492.34 25991.64 31073.98 34778.86 32986.59 35227.38 39287.03 38388.12 12775.97 35889.50 358
DSMNet-mixed76.94 34076.29 33978.89 35983.10 38156.11 39587.78 34579.77 38760.65 38475.64 35288.71 32761.56 32388.34 38260.07 37389.29 22092.21 321
EGC-MVSNET61.97 35656.37 36078.77 36089.63 34273.50 32389.12 32982.79 3800.21 4041.24 40584.80 36439.48 38590.04 37644.13 38975.94 35972.79 388
new_pmnet72.15 34670.13 35078.20 36182.95 38265.68 37283.91 37582.40 38262.94 38364.47 38079.82 38042.85 38386.26 38757.41 37974.44 36182.65 381
MVS-HIRNet73.70 34572.20 34878.18 36291.81 27356.42 39482.94 38082.58 38155.24 38668.88 37666.48 39055.32 35595.13 32458.12 37788.42 23683.01 379
LCM-MVSNet66.00 35362.16 35877.51 36364.51 40158.29 38983.87 37690.90 32948.17 39054.69 38773.31 38716.83 40186.75 38465.47 35461.67 38487.48 375
APD_test169.04 34966.26 35577.36 36480.51 38662.79 38385.46 36683.51 37954.11 38859.14 38684.79 36523.40 39589.61 37755.22 38170.24 36979.68 385
test_f71.95 34770.87 34975.21 36574.21 39359.37 38885.07 36985.82 37065.25 37970.42 37483.13 37123.62 39382.93 39378.32 26471.94 36783.33 378
ANet_high58.88 36054.22 36472.86 36656.50 40456.67 39180.75 38486.00 36973.09 35737.39 39664.63 39322.17 39679.49 39643.51 39023.96 39882.43 382
test_vis3_rt65.12 35462.60 35672.69 36771.44 39460.71 38587.17 35365.55 40063.80 38253.22 38865.65 39214.54 40289.44 37976.65 28165.38 37967.91 391
FPMVS64.63 35562.55 35770.88 36870.80 39556.71 39084.42 37384.42 37651.78 38949.57 38981.61 37723.49 39481.48 39440.61 39476.25 35774.46 387
dmvs_testset74.57 34475.81 34370.86 36987.72 36340.47 40287.05 35577.90 39482.75 22871.15 37385.47 36267.98 27284.12 39145.26 38876.98 35588.00 372
N_pmnet68.89 35068.44 35270.23 37089.07 34628.79 40788.06 34119.50 40769.47 37371.86 37084.93 36361.24 32791.75 36654.70 38277.15 35290.15 354
testf159.54 35856.11 36169.85 37169.28 39656.61 39280.37 38576.55 39742.58 39345.68 39275.61 38211.26 40384.18 38943.20 39160.44 38668.75 389
APD_test259.54 35856.11 36169.85 37169.28 39656.61 39280.37 38576.55 39742.58 39345.68 39275.61 38211.26 40384.18 38943.20 39160.44 38668.75 389
WB-MVS67.92 35167.49 35369.21 37381.09 38441.17 40188.03 34278.00 39373.50 35262.63 38283.11 37363.94 30686.52 38525.66 39851.45 39179.94 384
PMMVS259.60 35756.40 35969.21 37368.83 39846.58 39973.02 39277.48 39555.07 38749.21 39072.95 38817.43 40080.04 39549.32 38644.33 39580.99 383
SSC-MVS67.06 35266.56 35468.56 37580.54 38540.06 40387.77 34677.37 39672.38 36261.75 38482.66 37563.37 31186.45 38624.48 39948.69 39479.16 386
Gipumacopyleft57.99 36154.91 36367.24 37688.51 35065.59 37352.21 39590.33 33843.58 39242.84 39551.18 39620.29 39885.07 38834.77 39570.45 36851.05 395
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 36248.46 36663.48 37745.72 40646.20 40073.41 39178.31 39141.03 39530.06 39865.68 3916.05 40583.43 39230.04 39665.86 37860.80 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 36438.59 37057.77 37856.52 40348.77 39855.38 39458.64 40429.33 39828.96 39952.65 3954.68 40664.62 40028.11 39733.07 39659.93 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 36348.47 36556.66 37952.26 40518.98 40941.51 39781.40 38410.10 39944.59 39475.01 38528.51 39068.16 39753.54 38349.31 39382.83 380
DeepMVS_CXcopyleft56.31 38074.23 39251.81 39756.67 40544.85 39148.54 39175.16 38427.87 39158.74 40140.92 39352.22 39058.39 394
E-PMN43.23 36542.29 36746.03 38165.58 40037.41 40473.51 39064.62 40133.99 39628.47 40047.87 39719.90 39967.91 39822.23 40024.45 39732.77 396
EMVS42.07 36641.12 36844.92 38263.45 40235.56 40673.65 38963.48 40233.05 39726.88 40145.45 39821.27 39767.14 39919.80 40123.02 39932.06 397
tmp_tt35.64 36739.24 36924.84 38314.87 40723.90 40862.71 39351.51 4066.58 40136.66 39762.08 39444.37 38130.34 40352.40 38422.00 40020.27 398
wuyk23d21.27 36920.48 37223.63 38468.59 39936.41 40549.57 3966.85 4089.37 4007.89 4024.46 4044.03 40731.37 40217.47 40216.07 4013.12 399
test1238.76 37111.22 3741.39 3850.85 4090.97 41085.76 3630.35 4100.54 4032.45 4048.14 4030.60 4080.48 4042.16 4040.17 4032.71 400
testmvs8.92 37011.52 3731.12 3861.06 4080.46 41186.02 3600.65 4090.62 4022.74 4039.52 4020.31 4090.45 4052.38 4030.39 4022.46 401
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
cdsmvs_eth3d_5k22.14 36829.52 3710.00 3870.00 4100.00 4120.00 39895.76 1520.00 4050.00 40694.29 16475.66 1700.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas6.64 3738.86 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40579.70 1210.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
ab-mvs-re7.82 37210.43 3750.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40693.88 1850.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS64.08 37859.14 375
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
PC_three_145282.47 23297.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 410
eth-test0.00 410
ZD-MVS98.15 3486.62 3297.07 4583.63 20494.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
RE-MVS-def93.68 5297.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
IU-MVS98.77 586.00 4996.84 6581.26 26597.26 795.50 2399.13 399.03 8
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 2097.79 4996.08 6197.44 1586.13 15195.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 154
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 154
sam_mvs70.60 234
MTGPAbinary96.97 50
test_post188.00 3439.81 40169.31 25695.53 31476.65 281
test_post10.29 40070.57 23895.91 301
patchmatchnet-post83.76 36871.53 22296.48 272
MTMP96.16 5360.64 403
gm-plane-assit89.60 34368.00 36577.28 31688.99 32197.57 18979.44 254
test9_res91.91 7898.71 3298.07 66
TEST997.53 5886.49 3694.07 18696.78 7281.61 25892.77 7496.20 8787.71 2899.12 51
test_897.49 6086.30 4494.02 19196.76 7581.86 24992.70 7896.20 8787.63 2999.02 61
agg_prior290.54 10298.68 3798.27 52
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
test_prior485.96 5394.11 181
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
旧先验293.36 21971.25 36894.37 3997.13 23486.74 146
新几何293.11 234
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
无先验93.28 22796.26 11073.95 34899.05 5580.56 23996.59 137
原ACMM292.94 241
test22296.55 8481.70 16692.22 26495.01 20168.36 37590.20 12496.14 9280.26 11497.80 7496.05 161
testdata298.75 9378.30 265
segment_acmp87.16 36
testdata192.15 26687.94 103
plane_prior794.70 16682.74 141
plane_prior694.52 17682.75 13974.23 187
plane_prior596.22 11598.12 14488.15 12489.99 20394.63 211
plane_prior494.86 140
plane_prior382.75 13990.26 3386.91 180
plane_prior295.85 7590.81 17
plane_prior194.59 171
plane_prior82.73 14295.21 11189.66 4889.88 208
n20.00 411
nn0.00 411
door-mid85.49 371
test1196.57 92
door85.33 373
HQP5-MVS81.56 168
HQP-NCC94.17 19194.39 16588.81 7285.43 223
ACMP_Plane94.17 19194.39 16588.81 7285.43 223
BP-MVS87.11 143
HQP4-MVS85.43 22397.96 16594.51 221
HQP3-MVS96.04 13189.77 212
HQP2-MVS73.83 197
NP-MVS94.37 18482.42 15193.98 178
MDTV_nov1_ep13_2view55.91 39687.62 35073.32 35484.59 24370.33 24174.65 30195.50 181
MDTV_nov1_ep1383.56 27791.69 27969.93 36087.75 34791.54 31378.60 30084.86 23788.90 32369.54 25096.03 29470.25 32588.93 227
ACMMP++_ref87.47 252
ACMMP++88.01 243
Test By Simon80.02 116