This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15597.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+87.14 492.42 7691.37 8495.55 795.63 12288.73 697.07 1896.77 7490.84 1684.02 26596.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030494.60 1894.38 2595.23 1195.41 13087.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
DPM-MVS92.58 7391.74 8195.08 1596.19 9589.31 592.66 24896.56 9383.44 21391.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R94.43 2494.27 3294.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3094.82 13697.17 3986.26 14692.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
XVS94.45 2294.32 2694.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
X-MVStestdata88.31 17486.13 22194.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 40385.02 5999.49 2691.99 7498.56 4898.47 33
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
alignmvs93.08 6692.50 7394.81 3195.62 12387.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 2994.07 3994.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3994.75 3598.06 3986.90 2295.88 7496.94 5585.68 16195.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS94.34 2794.21 3494.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
PGM-MVS93.96 4293.72 5094.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
mPP-MVS93.99 4193.78 4794.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
PHI-MVS93.89 4393.65 5494.62 4096.84 7586.43 3896.69 3297.49 685.15 17593.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
TSAR-MVS + MP.94.85 1494.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CANet93.54 5193.20 6194.55 4295.65 12185.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
train_agg93.44 5593.08 6294.52 4397.53 5886.49 3694.07 18696.78 7281.86 25292.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
CDPH-MVS92.83 6992.30 7594.44 4497.79 4986.11 4894.06 18896.66 8580.09 28192.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
3Dnovator86.66 591.73 8590.82 9694.44 4494.59 17186.37 4097.18 1297.02 4789.20 6084.31 26196.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
SR-MVS94.23 3194.17 3794.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
HPM-MVScopyleft94.02 3993.88 4494.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.93.66 4993.41 5694.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
ACMMPcopyleft93.24 6292.88 6794.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS88.79 393.31 6092.99 6594.26 5196.07 10385.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPNet91.79 8291.02 9294.10 5290.10 33685.25 6996.03 6692.05 29892.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n94.60 1894.81 1693.98 5394.62 17084.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
DELS-MVS93.43 5893.25 5993.97 5495.42 12985.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon91.95 8091.28 8693.96 5598.33 2785.92 5694.66 14796.66 8582.69 23390.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
HPM-MVS_fast93.40 5993.22 6093.94 5698.36 2584.83 7497.15 1396.80 7185.77 15892.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5792.46 25484.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
SD-MVS94.96 1395.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25194.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5493.31 5793.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
SR-MVS-dyc-post93.82 4493.82 4593.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
APD-MVS_3200maxsize93.78 4593.77 4893.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6395.28 13485.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
CSCG93.23 6393.05 6393.76 6498.04 4084.07 9696.22 4997.37 2184.15 19590.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
test_fmvsmconf0.01_n93.19 6493.02 6493.71 6589.25 34884.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
UA-Net92.83 6992.54 7293.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6795.29 13384.98 7195.61 9296.28 10886.31 14496.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
QAPM89.51 13488.15 16093.59 6894.92 15484.58 7996.82 2996.70 8378.43 30783.41 28096.19 9073.18 20699.30 4077.11 28196.54 10196.89 127
test_fmvsm_n_192094.71 1795.11 1093.50 6995.79 11584.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
casdiffmvs_mvgpermissive92.96 6892.83 6893.35 7094.59 17183.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set93.01 6792.92 6693.29 7195.01 14783.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
Vis-MVSNetpermissive91.75 8491.23 8793.29 7195.32 13283.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test94.02 3994.29 2993.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
VNet92.24 7891.91 7993.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
VDD-MVS90.74 10189.92 11393.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31898.64 10090.95 9592.62 17697.93 76
CS-MVS94.12 3794.44 2293.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
nrg03091.08 9790.39 9993.17 7693.07 23586.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 29694.96 203
EI-MVSNet-UG-set92.74 7192.62 7193.12 7894.86 15883.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
test_fmvsmvis_n_192093.44 5593.55 5593.10 7993.67 21984.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 147
新几何193.10 7997.30 6684.35 9295.56 16871.09 37391.26 11396.24 8582.87 8598.86 8479.19 26198.10 6296.07 161
OMC-MVS91.23 9390.62 9893.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 131
OpenMVScopyleft83.78 1188.74 16387.29 18093.08 8192.70 24985.39 6796.57 3696.43 9778.74 30280.85 31096.07 9469.64 24999.01 6378.01 27296.65 10094.83 210
MAR-MVS90.30 11189.37 12493.07 8396.61 8184.48 8595.68 8595.67 16082.36 23887.85 15992.85 21676.63 15798.80 9080.01 24996.68 9995.91 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
lupinMVS90.92 9890.21 10293.03 8493.86 20983.88 10192.81 24593.86 25479.84 28491.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
Effi-MVS+91.59 8891.11 8993.01 8594.35 18983.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8695.02 14683.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
MVS_111021_LR92.47 7592.29 7692.98 8795.99 10984.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 133
fmvsm_s_conf0.1_n_a93.19 6493.26 5892.97 8892.49 25283.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
ETV-MVS92.74 7192.66 7092.97 8895.20 14084.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 143
LFMVS90.08 11689.13 13092.95 9096.71 7782.32 15596.08 6189.91 35086.79 13292.15 9096.81 6362.60 31698.34 12987.18 14093.90 15098.19 58
UGNet89.95 12288.95 13492.95 9094.51 17783.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30598.78 9183.92 18196.31 10696.74 134
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason90.80 9990.10 10692.90 9293.04 23883.53 11293.08 23594.15 24380.22 27891.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
DP-MVS87.25 21585.36 24992.90 9297.65 5583.24 11994.81 13792.00 30074.99 34181.92 29995.00 13572.66 21299.05 5566.92 35492.33 18196.40 145
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9495.62 12383.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9593.75 21583.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
CANet_DTU90.26 11389.41 12392.81 9693.46 22583.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 146
MVSFormer91.68 8791.30 8592.80 9793.86 20983.88 10195.96 7195.90 14284.66 18991.76 10394.91 13777.92 14497.30 22189.64 10997.11 8597.24 104
PVSNet_Blended_VisFu91.38 9090.91 9492.80 9796.39 9083.17 12294.87 13396.66 8583.29 21889.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 164
VDDNet89.56 13388.49 15192.76 9995.07 14582.09 15796.30 4393.19 26781.05 27391.88 9896.86 5961.16 33198.33 13188.43 12392.49 18097.84 82
h-mvs3390.80 9990.15 10592.75 10096.01 10582.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 35196.60 138
casdiffmvspermissive92.51 7492.43 7492.74 10194.41 18481.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16391.49 10894.70 14874.75 17998.42 12486.13 15392.53 17897.31 101
DCV-MVSNet90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16391.49 10894.70 14874.75 17998.42 12486.13 15392.53 17897.31 101
PCF-MVS84.11 1087.74 18986.08 22592.70 10494.02 20084.43 8989.27 32995.87 14573.62 35584.43 25394.33 16178.48 13998.86 8470.27 32894.45 14394.81 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline92.39 7792.29 7692.69 10594.46 18081.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
MSLP-MVS++93.72 4894.08 3892.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 132
EC-MVSNet93.44 5593.71 5192.63 10795.21 13982.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
ab-mvs89.41 14088.35 15392.60 10895.15 14382.65 14792.20 26595.60 16783.97 19988.55 14793.70 19374.16 19198.21 14082.46 20389.37 22196.94 123
LS3D87.89 18486.32 21492.59 10996.07 10382.92 13695.23 10994.92 20975.66 33382.89 28795.98 9872.48 21599.21 4568.43 34295.23 12895.64 180
Anonymous2024052988.09 18086.59 20492.58 11096.53 8681.92 16295.99 6995.84 14774.11 35089.06 14195.21 12761.44 32498.81 8983.67 18687.47 25697.01 119
CPTT-MVS91.99 7991.80 8092.55 11198.24 3181.98 16096.76 3096.49 9581.89 25190.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
114514_t89.51 13488.50 14992.54 11298.11 3681.99 15995.16 11696.36 10270.19 37685.81 20695.25 12476.70 15598.63 10282.07 21396.86 9597.00 120
PAPM_NR91.22 9490.78 9792.52 11397.60 5681.46 17494.37 16996.24 11386.39 14387.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
IS-MVSNet91.43 8991.09 9192.46 11595.87 11481.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
API-MVS90.66 10590.07 10792.45 11696.36 9184.57 8096.06 6495.22 19382.39 23689.13 13894.27 16780.32 11298.46 11580.16 24896.71 9894.33 236
xiu_mvs_v1_base_debu90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
xiu_mvs_v1_base90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
xiu_mvs_v1_base_debi90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
AdaColmapbinary89.89 12589.07 13192.37 12097.41 6283.03 13094.42 16295.92 13982.81 23086.34 19794.65 15273.89 19599.02 6180.69 23995.51 11695.05 198
CNLPA89.07 15287.98 16492.34 12196.87 7484.78 7694.08 18593.24 26581.41 26484.46 25195.13 13275.57 17196.62 26277.21 27993.84 15295.61 183
ET-MVSNet_ETH3D87.51 20385.91 23392.32 12293.70 21883.93 9992.33 26090.94 33084.16 19472.09 37292.52 22869.90 24495.85 30689.20 11488.36 24297.17 108
Anonymous20240521187.68 19086.13 22192.31 12396.66 7980.74 19594.87 13391.49 31680.47 27789.46 13595.44 11754.72 36298.23 13782.19 20989.89 21197.97 72
CHOSEN 1792x268888.84 15987.69 17092.30 12496.14 9681.42 17690.01 31795.86 14674.52 34687.41 16893.94 18075.46 17298.36 12680.36 24495.53 11597.12 113
HY-MVS83.01 1289.03 15487.94 16692.29 12594.86 15882.77 13892.08 27094.49 22881.52 26386.93 17892.79 22278.32 14198.23 13779.93 25090.55 20095.88 169
CDS-MVSNet89.45 13788.51 14892.29 12593.62 22083.61 11193.01 23894.68 22581.95 24787.82 16193.24 20578.69 13496.99 24680.34 24593.23 16796.28 150
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR90.02 11889.27 12992.29 12595.78 11680.95 18992.68 24796.22 11581.91 24986.66 18893.75 19282.23 9598.44 12179.40 26094.79 13297.48 97
PLCcopyleft84.53 789.06 15388.03 16392.15 12897.27 6882.69 14594.29 17195.44 18079.71 28684.01 26694.18 16976.68 15698.75 9377.28 27893.41 16295.02 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPP-MVSNet91.70 8691.56 8392.13 12995.88 11280.50 20197.33 795.25 19086.15 15089.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
patch_mono-293.74 4794.32 2692.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29790.45 12095.92 10082.65 8798.84 8880.68 24098.26 5796.14 155
UniMVSNet (Re)89.80 12789.07 13192.01 13093.60 22184.52 8394.78 13997.47 1189.26 5886.44 19492.32 23482.10 9897.39 21784.81 16980.84 32994.12 245
MG-MVS91.77 8391.70 8292.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
EIA-MVS91.95 8091.94 7891.98 13495.16 14180.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
PVSNet_Blended90.73 10290.32 10191.98 13496.12 9781.25 17992.55 25296.83 6682.04 24589.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 171
PS-MVSNAJ91.18 9590.92 9391.96 13695.26 13782.60 14992.09 26995.70 15886.27 14591.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 239
TAMVS89.21 14688.29 15791.96 13693.71 21682.62 14893.30 22594.19 24182.22 24087.78 16293.94 18078.83 13196.95 24877.70 27492.98 17196.32 147
SDMVSNet90.19 11489.61 11791.93 13896.00 10683.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23988.90 11789.85 21395.63 181
FA-MVS(test-final)89.66 12988.91 13691.93 13894.57 17480.27 20591.36 28594.74 22284.87 18189.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
MVS_Test91.31 9291.11 8991.93 13894.37 18580.14 21093.46 21795.80 14986.46 14191.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
NR-MVSNet88.58 16987.47 17691.93 13893.04 23884.16 9594.77 14096.25 11289.05 6580.04 32393.29 20379.02 13097.05 24381.71 22480.05 33994.59 218
HyFIR lowres test88.09 18086.81 19291.93 13896.00 10680.63 19790.01 31795.79 15073.42 35787.68 16492.10 24573.86 19697.96 16580.75 23891.70 18497.19 107
GeoE90.05 11789.43 12291.90 14395.16 14180.37 20495.80 7894.65 22683.90 20087.55 16794.75 14778.18 14297.62 18781.28 22893.63 15497.71 88
thisisatest053088.67 16487.61 17291.86 14494.87 15780.07 21394.63 14889.90 35184.00 19888.46 14993.78 18966.88 28298.46 11583.30 18892.65 17597.06 115
xiu_mvs_v2_base91.13 9690.89 9591.86 14494.97 15082.42 15192.24 26395.64 16586.11 15491.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 240
DU-MVS89.34 14588.50 14991.85 14693.04 23883.72 10494.47 15896.59 9089.50 5086.46 19193.29 20377.25 14997.23 23084.92 16681.02 32594.59 218
OPM-MVS90.12 11589.56 11891.82 14793.14 23283.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 20693.65 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 10990.19 10391.82 14794.70 16682.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20794.63 215
UniMVSNet_NR-MVSNet89.92 12489.29 12791.81 14993.39 22783.72 10494.43 16197.12 4189.80 4186.46 19193.32 20083.16 7997.23 23084.92 16681.02 32594.49 230
diffmvspermissive91.37 9191.23 8791.77 15093.09 23480.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20592.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.42 17087.33 17991.72 15194.92 15480.98 18792.97 24094.54 22778.16 31383.82 26993.88 18578.78 13397.91 16979.45 25689.41 22096.26 151
Fast-Effi-MVS+89.41 14088.64 14391.71 15294.74 16280.81 19393.54 21395.10 19883.11 22286.82 18690.67 29279.74 12097.75 17780.51 24393.55 15696.57 141
WTY-MVS89.60 13188.92 13591.67 15395.47 12881.15 18392.38 25694.78 22083.11 22289.06 14194.32 16278.67 13596.61 26581.57 22590.89 19797.24 104
TAPA-MVS84.62 688.16 17887.01 18891.62 15496.64 8080.65 19694.39 16596.21 11876.38 32686.19 20195.44 11779.75 11998.08 15662.75 37095.29 12596.13 156
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
iter_conf_final89.42 13988.69 14291.60 15595.12 14482.93 13595.75 8192.14 29587.32 12087.12 17594.07 17067.09 27897.55 19190.61 10189.01 22994.32 237
VPA-MVSNet89.62 13088.96 13391.60 15593.86 20982.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21487.32 13982.86 30194.52 223
FE-MVS87.40 20886.02 22791.57 15794.56 17579.69 22790.27 30693.72 25980.57 27688.80 14491.62 26265.32 29798.59 10674.97 30294.33 14696.44 144
XVG-OURS89.40 14288.70 14191.52 15894.06 19881.46 17491.27 28996.07 12886.14 15188.89 14395.77 10868.73 26697.26 22787.39 13789.96 20995.83 172
hse-mvs289.88 12689.34 12591.51 15994.83 16081.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35895.74 176
TranMVSNet+NR-MVSNet88.84 15987.95 16591.49 16092.68 25083.01 13294.92 13096.31 10489.88 3985.53 21693.85 18776.63 15796.96 24781.91 21779.87 34294.50 228
AUN-MVS87.78 18886.54 20691.48 16194.82 16181.05 18593.91 20193.93 25083.00 22586.93 17893.53 19569.50 25197.67 17986.14 15177.12 35795.73 178
XVG-OURS-SEG-HR89.95 12289.45 12091.47 16294.00 20481.21 18291.87 27396.06 13085.78 15788.55 14795.73 11074.67 18397.27 22588.71 12089.64 21895.91 167
MVS87.44 20686.10 22491.44 16392.61 25183.62 10992.63 24995.66 16267.26 38081.47 30292.15 24077.95 14398.22 13979.71 25295.48 11892.47 315
F-COLMAP87.95 18386.80 19391.40 16496.35 9280.88 19194.73 14295.45 17879.65 28782.04 29794.61 15371.13 22698.50 11076.24 29091.05 19594.80 212
dcpmvs_293.49 5294.19 3691.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
thisisatest051587.33 21185.99 22891.37 16693.49 22379.55 22990.63 30289.56 35780.17 27987.56 16690.86 28467.07 27998.28 13581.50 22693.02 17096.29 149
HQP-MVS89.80 12789.28 12891.34 16794.17 19481.56 16894.39 16596.04 13188.81 7285.43 22693.97 17973.83 19797.96 16587.11 14389.77 21694.50 228
mvsmamba89.96 12189.50 11991.33 16892.90 24581.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 23494.51 225
FMVSNet387.40 20886.11 22391.30 16993.79 21483.64 10894.20 17794.81 21883.89 20184.37 25491.87 25468.45 26996.56 27078.23 26985.36 27493.70 274
FMVSNet287.19 22185.82 23591.30 16994.01 20183.67 10694.79 13894.94 20483.57 20883.88 26892.05 24966.59 28796.51 27377.56 27685.01 27793.73 271
RPMNet83.95 28981.53 30091.21 17190.58 32779.34 23685.24 37196.76 7571.44 37185.55 21382.97 37870.87 23198.91 8061.01 37489.36 22295.40 187
IB-MVS80.51 1585.24 27083.26 28491.19 17292.13 26379.86 22391.75 27691.29 32183.28 21980.66 31388.49 33461.28 32598.46 11580.99 23479.46 34595.25 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS89.47 13688.90 13791.18 17394.22 19382.07 15892.13 26796.09 12687.90 10585.37 23292.45 23074.38 18597.56 19087.15 14190.43 20293.93 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf0588.85 15888.08 16291.17 17494.27 19181.64 16795.18 11392.15 29486.23 14887.28 17294.07 17063.89 30997.55 19190.63 10089.00 23094.32 237
LPG-MVS_test89.45 13788.90 13791.12 17594.47 17881.49 17295.30 10396.14 12086.73 13585.45 22395.16 13069.89 24598.10 14687.70 13289.23 22593.77 268
LGP-MVS_train91.12 17594.47 17881.49 17296.14 12086.73 13585.45 22395.16 13069.89 24598.10 14687.70 13289.23 22593.77 268
ACMM84.12 989.14 14788.48 15291.12 17594.65 16981.22 18195.31 10196.12 12385.31 17185.92 20594.34 16070.19 24398.06 15885.65 15988.86 23294.08 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tttt051788.61 16687.78 16991.11 17894.96 15177.81 27295.35 9989.69 35485.09 17788.05 15694.59 15566.93 28098.48 11183.27 18992.13 18397.03 118
GBi-Net87.26 21385.98 22991.08 17994.01 20183.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28796.34 28678.23 26985.36 27493.79 263
test187.26 21385.98 22991.08 17994.01 20183.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28796.34 28678.23 26985.36 27493.79 263
FMVSNet185.85 25784.11 27191.08 17992.81 24783.10 12595.14 11794.94 20481.64 25982.68 28991.64 25859.01 34496.34 28675.37 29683.78 28693.79 263
Test_1112_low_res87.65 19286.51 20791.08 17994.94 15379.28 24091.77 27594.30 23776.04 33183.51 27892.37 23277.86 14697.73 17878.69 26489.13 22796.22 152
PS-MVSNAJss89.97 12089.62 11691.02 18391.90 27280.85 19295.26 10895.98 13486.26 14686.21 20094.29 16479.70 12197.65 18288.87 11988.10 24494.57 220
BH-RMVSNet88.37 17287.48 17591.02 18395.28 13479.45 23292.89 24293.07 26985.45 16886.91 18094.84 14470.35 24097.76 17473.97 30894.59 13895.85 170
UniMVSNet_ETH3D87.53 20286.37 21191.00 18592.44 25578.96 24594.74 14195.61 16684.07 19785.36 23394.52 15759.78 33997.34 21982.93 19387.88 24996.71 135
FIs90.51 11090.35 10090.99 18693.99 20580.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22985.18 16388.31 24394.76 213
ACMP84.23 889.01 15688.35 15390.99 18694.73 16381.27 17895.07 12195.89 14486.48 13983.67 27394.30 16369.33 25497.99 16387.10 14588.55 23593.72 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 24185.13 25490.98 18896.52 8781.50 17096.14 5796.16 11973.78 35383.65 27492.15 24063.26 31397.37 21882.82 19781.74 31494.06 250
sss88.93 15788.26 15990.94 18994.05 19980.78 19491.71 27795.38 18481.55 26288.63 14693.91 18475.04 17695.47 32482.47 20291.61 18596.57 141
sd_testset88.59 16887.85 16890.83 19096.00 10680.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27396.43 28079.64 25489.85 21395.63 181
PVSNet_BlendedMVS89.98 11989.70 11590.82 19196.12 9781.25 17993.92 19996.83 6683.49 21289.10 13992.26 23781.04 10998.85 8686.72 14887.86 25092.35 321
cascas86.43 24984.98 25790.80 19292.10 26580.92 19090.24 31095.91 14173.10 36083.57 27788.39 33565.15 29997.46 20184.90 16891.43 18794.03 252
ECVR-MVScopyleft89.09 15088.53 14790.77 19395.62 12375.89 30296.16 5384.22 38187.89 10790.20 12496.65 7063.19 31498.10 14685.90 15696.94 9098.33 43
GA-MVS86.61 23985.27 25290.66 19491.33 29678.71 24790.40 30593.81 25785.34 17085.12 23689.57 31761.25 32697.11 23880.99 23489.59 21996.15 154
thres600view787.65 19286.67 19990.59 19596.08 10278.72 24694.88 13291.58 31287.06 12588.08 15492.30 23568.91 26398.10 14670.05 33591.10 19094.96 203
thres40087.62 19786.64 20090.57 19695.99 10978.64 24894.58 15091.98 30286.94 12988.09 15291.77 25569.18 25998.10 14670.13 33291.10 19094.96 203
baseline188.10 17987.28 18190.57 19694.96 15180.07 21394.27 17291.29 32186.74 13487.41 16894.00 17776.77 15496.20 29180.77 23779.31 34795.44 185
FC-MVSNet-test90.27 11290.18 10490.53 19893.71 21679.85 22495.77 8097.59 389.31 5686.27 19894.67 15181.93 10397.01 24584.26 17688.09 24694.71 214
PAPM86.68 23885.39 24790.53 19893.05 23779.33 23989.79 32094.77 22178.82 29981.95 29893.24 20576.81 15297.30 22166.94 35293.16 16894.95 206
WR-MVS88.38 17187.67 17190.52 20093.30 22980.18 20893.26 22895.96 13788.57 8385.47 22292.81 22076.12 15996.91 25181.24 22982.29 30594.47 233
MVSTER88.84 15988.29 15790.51 20192.95 24380.44 20293.73 20695.01 20184.66 18987.15 17393.12 21072.79 21197.21 23287.86 12987.36 25993.87 258
RRT_MVS89.09 15088.62 14690.49 20292.85 24679.65 22896.41 3994.41 23288.22 9485.50 21994.77 14669.36 25397.31 22089.33 11286.73 26694.51 225
testdata90.49 20296.40 8977.89 26995.37 18672.51 36593.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 166
test111189.10 14888.64 14390.48 20495.53 12774.97 31196.08 6184.89 37988.13 9990.16 12696.65 7063.29 31298.10 14686.14 15196.90 9298.39 39
tt080586.92 22985.74 24190.48 20492.22 25979.98 22095.63 9194.88 21283.83 20384.74 24492.80 22157.61 34997.67 17985.48 16284.42 28193.79 263
jajsoiax88.24 17687.50 17490.48 20490.89 31680.14 21095.31 10195.65 16484.97 17984.24 26294.02 17565.31 29897.42 20788.56 12188.52 23793.89 255
PatchMatch-RL86.77 23685.54 24390.47 20795.88 11282.71 14490.54 30392.31 28879.82 28584.32 25991.57 26668.77 26596.39 28273.16 31393.48 16192.32 322
tfpn200view987.58 20086.64 20090.41 20895.99 10978.64 24894.58 15091.98 30286.94 12988.09 15291.77 25569.18 25998.10 14670.13 33291.10 19094.48 231
VPNet88.20 17787.47 17690.39 20993.56 22279.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23484.05 17980.53 33494.56 221
ACMH80.38 1785.36 26583.68 27890.39 20994.45 18180.63 19794.73 14294.85 21482.09 24277.24 34592.65 22460.01 33797.58 18872.25 31784.87 27892.96 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90087.63 19586.71 19790.38 21196.12 9778.55 25095.03 12491.58 31287.15 12288.06 15592.29 23668.91 26398.10 14670.13 33291.10 19094.48 231
mvs_tets88.06 18287.28 18190.38 21190.94 31279.88 22295.22 11095.66 16285.10 17684.21 26393.94 18063.53 31097.40 21488.50 12288.40 24193.87 258
131487.51 20386.57 20590.34 21392.42 25679.74 22692.63 24995.35 18878.35 30880.14 32091.62 26274.05 19297.15 23481.05 23093.53 15794.12 245
LTVRE_ROB82.13 1386.26 25184.90 26090.34 21394.44 18281.50 17092.31 26294.89 21083.03 22479.63 32992.67 22369.69 24897.79 17271.20 32186.26 26991.72 332
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
bld_raw_dy_0_6487.60 19986.73 19590.21 21591.72 27980.26 20795.09 12088.61 36085.68 16185.55 21394.38 15963.93 30896.66 25987.73 13187.84 25193.72 272
test_djsdf89.03 15488.64 14390.21 21590.74 32279.28 24095.96 7195.90 14284.66 18985.33 23492.94 21574.02 19397.30 22189.64 10988.53 23694.05 251
v2v48287.84 18587.06 18590.17 21790.99 30879.23 24394.00 19495.13 19584.87 18185.53 21692.07 24874.45 18497.45 20284.71 17181.75 31393.85 261
pmmvs485.43 26383.86 27690.16 21890.02 33982.97 13490.27 30692.67 28075.93 33280.73 31191.74 25771.05 22795.73 31478.85 26383.46 29391.78 331
V4287.68 19086.86 19090.15 21990.58 32780.14 21094.24 17595.28 18983.66 20685.67 21091.33 26874.73 18197.41 21284.43 17581.83 31192.89 304
MSDG84.86 27683.09 28790.14 22093.80 21280.05 21589.18 33293.09 26878.89 29778.19 33891.91 25265.86 29697.27 22568.47 34188.45 23993.11 296
anonymousdsp87.84 18587.09 18490.12 22189.13 34980.54 20094.67 14695.55 16982.05 24383.82 26992.12 24271.47 22497.15 23487.15 14187.80 25492.67 309
thres20087.21 21986.24 21890.12 22195.36 13178.53 25193.26 22892.10 29686.42 14288.00 15791.11 27969.24 25898.00 16269.58 33691.04 19693.83 262
CR-MVSNet85.35 26683.76 27790.12 22190.58 32779.34 23685.24 37191.96 30478.27 31085.55 21387.87 34571.03 22895.61 31673.96 30989.36 22295.40 187
v114487.61 19886.79 19490.06 22491.01 30779.34 23693.95 19695.42 18383.36 21785.66 21191.31 27174.98 17797.42 20783.37 18782.06 30793.42 284
XXY-MVS87.65 19286.85 19190.03 22592.14 26280.60 19993.76 20595.23 19182.94 22784.60 24694.02 17574.27 18695.49 32381.04 23183.68 28994.01 253
Vis-MVSNet (Re-imp)89.59 13289.44 12190.03 22595.74 11775.85 30395.61 9290.80 33487.66 11587.83 16095.40 12076.79 15396.46 27878.37 26596.73 9797.80 84
test250687.21 21986.28 21690.02 22795.62 12373.64 32596.25 4871.38 40387.89 10790.45 12096.65 7055.29 36098.09 15486.03 15596.94 9098.33 43
BH-untuned88.60 16788.13 16190.01 22895.24 13878.50 25393.29 22694.15 24384.75 18684.46 25193.40 19775.76 16697.40 21477.59 27594.52 14194.12 245
v119287.25 21586.33 21390.00 22990.76 32179.04 24493.80 20395.48 17482.57 23485.48 22191.18 27573.38 20597.42 20782.30 20682.06 30793.53 278
v7n86.81 23185.76 23989.95 23090.72 32379.25 24295.07 12195.92 13984.45 19282.29 29290.86 28472.60 21497.53 19479.42 25980.52 33593.08 298
testing9187.11 22486.18 21989.92 23194.43 18375.38 31091.53 28292.27 29086.48 13986.50 18990.24 29961.19 32997.53 19482.10 21190.88 19896.84 130
v887.50 20586.71 19789.89 23291.37 29379.40 23394.50 15495.38 18484.81 18483.60 27691.33 26876.05 16097.42 20782.84 19680.51 33692.84 306
v1087.25 21586.38 21089.85 23391.19 29979.50 23094.48 15595.45 17883.79 20483.62 27591.19 27375.13 17497.42 20781.94 21680.60 33192.63 311
baseline286.50 24585.39 24789.84 23491.12 30476.70 29191.88 27288.58 36182.35 23979.95 32490.95 28373.42 20397.63 18680.27 24789.95 21095.19 194
pm-mvs186.61 23985.54 24389.82 23591.44 28880.18 20895.28 10794.85 21483.84 20281.66 30092.62 22572.45 21796.48 27579.67 25378.06 35092.82 307
TR-MVS86.78 23385.76 23989.82 23594.37 18578.41 25592.47 25392.83 27481.11 27286.36 19592.40 23168.73 26697.48 19873.75 31189.85 21393.57 277
ACMH+81.04 1485.05 27383.46 28189.82 23594.66 16879.37 23494.44 16094.12 24682.19 24178.04 34092.82 21958.23 34797.54 19373.77 31082.90 30092.54 312
EI-MVSNet89.10 14888.86 13989.80 23891.84 27478.30 25993.70 20995.01 20185.73 15987.15 17395.28 12279.87 11897.21 23283.81 18387.36 25993.88 257
v14419287.19 22186.35 21289.74 23990.64 32578.24 26193.92 19995.43 18181.93 24885.51 21891.05 28174.21 18997.45 20282.86 19581.56 31593.53 278
COLMAP_ROBcopyleft80.39 1683.96 28882.04 29789.74 23995.28 13479.75 22594.25 17392.28 28975.17 33978.02 34193.77 19058.60 34697.84 17165.06 36285.92 27091.63 334
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SCA86.32 25085.18 25389.73 24192.15 26176.60 29291.12 29391.69 30983.53 21185.50 21988.81 32866.79 28396.48 27576.65 28490.35 20496.12 157
IterMVS-LS88.36 17387.91 16789.70 24293.80 21278.29 26093.73 20695.08 20085.73 15984.75 24391.90 25379.88 11796.92 25083.83 18282.51 30293.89 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing1186.44 24885.35 25089.69 24394.29 19075.40 30991.30 28790.53 33784.76 18585.06 23790.13 30558.95 34597.45 20282.08 21291.09 19496.21 153
testing9986.72 23785.73 24289.69 24394.23 19274.91 31391.35 28690.97 32986.14 15186.36 19590.22 30059.41 34197.48 19882.24 20890.66 19996.69 136
v192192086.97 22886.06 22689.69 24390.53 33078.11 26493.80 20395.43 18181.90 25085.33 23491.05 28172.66 21297.41 21282.05 21481.80 31293.53 278
Fast-Effi-MVS+-dtu87.44 20686.72 19689.63 24692.04 26677.68 27894.03 19093.94 24985.81 15682.42 29191.32 27070.33 24197.06 24280.33 24690.23 20594.14 244
v124086.78 23385.85 23489.56 24790.45 33177.79 27493.61 21195.37 18681.65 25885.43 22691.15 27771.50 22397.43 20681.47 22782.05 30993.47 282
Effi-MVS+-dtu88.65 16588.35 15389.54 24893.33 22876.39 29694.47 15894.36 23587.70 11285.43 22689.56 31873.45 20297.26 22785.57 16191.28 18994.97 200
AllTest83.42 29581.39 30189.52 24995.01 14777.79 27493.12 23290.89 33277.41 31776.12 35393.34 19854.08 36597.51 19668.31 34384.27 28393.26 287
TestCases89.52 24995.01 14777.79 27490.89 33277.41 31776.12 35393.34 19854.08 36597.51 19668.31 34384.27 28393.26 287
mvs_anonymous89.37 14489.32 12689.51 25193.47 22474.22 32091.65 28094.83 21682.91 22885.45 22393.79 18881.23 10896.36 28586.47 15094.09 14797.94 74
XVG-ACMP-BASELINE86.00 25384.84 26289.45 25291.20 29878.00 26591.70 27895.55 16985.05 17882.97 28692.25 23854.49 36397.48 19882.93 19387.45 25892.89 304
testing22284.84 27783.32 28289.43 25394.15 19775.94 30191.09 29489.41 35884.90 18085.78 20789.44 31952.70 37096.28 28970.80 32791.57 18696.07 161
MVP-Stereo85.97 25484.86 26189.32 25490.92 31482.19 15692.11 26894.19 24178.76 30178.77 33791.63 26168.38 27096.56 27075.01 30193.95 14989.20 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchmatchNetpermissive85.85 25784.70 26489.29 25591.76 27875.54 30688.49 34191.30 32081.63 26085.05 23888.70 33271.71 22096.24 29074.61 30589.05 22896.08 160
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14887.04 22686.32 21489.21 25690.94 31277.26 28393.71 20894.43 23084.84 18384.36 25790.80 28876.04 16197.05 24382.12 21079.60 34493.31 286
tfpnnormal84.72 27983.23 28589.20 25792.79 24880.05 21594.48 15595.81 14882.38 23781.08 30891.21 27269.01 26296.95 24861.69 37280.59 33290.58 357
cl2286.78 23385.98 22989.18 25892.34 25777.62 27990.84 29994.13 24581.33 26683.97 26790.15 30473.96 19496.60 26784.19 17782.94 29793.33 285
BH-w/o87.57 20187.05 18689.12 25994.90 15677.90 26892.41 25493.51 26282.89 22983.70 27291.34 26775.75 16797.07 24175.49 29493.49 15992.39 319
WR-MVS_H87.80 18787.37 17889.10 26093.23 23078.12 26395.61 9297.30 2987.90 10583.72 27192.01 25079.65 12596.01 29976.36 28780.54 33393.16 294
miper_enhance_ethall86.90 23086.18 21989.06 26191.66 28477.58 28090.22 31294.82 21779.16 29384.48 25089.10 32379.19 12996.66 25984.06 17882.94 29792.94 302
c3_l87.14 22386.50 20889.04 26292.20 26077.26 28391.22 29294.70 22482.01 24684.34 25890.43 29678.81 13296.61 26583.70 18581.09 32293.25 289
miper_ehance_all_eth87.22 21886.62 20389.02 26392.13 26377.40 28290.91 29894.81 21881.28 26784.32 25990.08 30779.26 12796.62 26283.81 18382.94 29793.04 299
gg-mvs-nofinetune81.77 30779.37 32288.99 26490.85 31877.73 27786.29 36379.63 39274.88 34483.19 28569.05 39360.34 33496.11 29575.46 29594.64 13793.11 296
ETVMVS84.43 28282.92 29188.97 26594.37 18574.67 31491.23 29188.35 36383.37 21686.06 20489.04 32455.38 35895.67 31567.12 35091.34 18896.58 140
pmmvs683.42 29581.60 29988.87 26688.01 36377.87 27094.96 12794.24 24074.67 34578.80 33691.09 28060.17 33696.49 27477.06 28375.40 36492.23 324
test_cas_vis1_n_192088.83 16288.85 14088.78 26791.15 30376.72 29093.85 20294.93 20883.23 22192.81 7296.00 9661.17 33094.45 33491.67 8394.84 13195.17 195
MIMVSNet82.59 30180.53 30688.76 26891.51 28678.32 25886.57 36290.13 34479.32 28980.70 31288.69 33352.98 36993.07 35966.03 35788.86 23294.90 207
cl____86.52 24485.78 23688.75 26992.03 26776.46 29490.74 30094.30 23781.83 25483.34 28290.78 28975.74 16996.57 26881.74 22281.54 31693.22 291
DIV-MVS_self_test86.53 24385.78 23688.75 26992.02 26876.45 29590.74 30094.30 23781.83 25483.34 28290.82 28775.75 16796.57 26881.73 22381.52 31793.24 290
CP-MVSNet87.63 19587.26 18388.74 27193.12 23376.59 29395.29 10596.58 9188.43 8683.49 27992.98 21475.28 17395.83 30778.97 26281.15 32193.79 263
eth_miper_zixun_eth86.50 24585.77 23888.68 27291.94 26975.81 30490.47 30494.89 21082.05 24384.05 26490.46 29575.96 16296.77 25582.76 19979.36 34693.46 283
CHOSEN 280x42085.15 27183.99 27488.65 27392.47 25378.40 25679.68 39192.76 27674.90 34381.41 30489.59 31669.85 24795.51 32079.92 25195.29 12592.03 327
PS-CasMVS87.32 21286.88 18988.63 27492.99 24176.33 29895.33 10096.61 8988.22 9483.30 28493.07 21273.03 20995.79 31178.36 26681.00 32793.75 270
TransMVSNet (Re)84.43 28283.06 28988.54 27591.72 27978.44 25495.18 11392.82 27582.73 23279.67 32892.12 24273.49 20195.96 30171.10 32568.73 38091.21 344
EG-PatchMatch MVS82.37 30380.34 30988.46 27690.27 33379.35 23592.80 24694.33 23677.14 32173.26 36990.18 30347.47 38196.72 25670.25 32987.32 26189.30 365
PEN-MVS86.80 23286.27 21788.40 27792.32 25875.71 30595.18 11396.38 10187.97 10282.82 28893.15 20873.39 20495.92 30276.15 29179.03 34993.59 276
Baseline_NR-MVSNet87.07 22586.63 20288.40 27791.44 28877.87 27094.23 17692.57 28284.12 19685.74 20992.08 24677.25 14996.04 29682.29 20779.94 34091.30 342
D2MVS85.90 25585.09 25588.35 27990.79 31977.42 28191.83 27495.70 15880.77 27580.08 32290.02 30866.74 28596.37 28381.88 21887.97 24891.26 343
pmmvs584.21 28482.84 29488.34 28088.95 35176.94 28792.41 25491.91 30675.63 33480.28 31791.18 27564.59 30295.57 31777.09 28283.47 29292.53 313
LCM-MVSNet-Re88.30 17588.32 15688.27 28194.71 16572.41 34293.15 23190.98 32887.77 11079.25 33291.96 25178.35 14095.75 31283.04 19195.62 11496.65 137
CostFormer85.77 25984.94 25988.26 28291.16 30272.58 34089.47 32791.04 32776.26 32986.45 19389.97 31070.74 23396.86 25482.35 20587.07 26495.34 191
ITE_SJBPF88.24 28391.88 27377.05 28692.92 27185.54 16680.13 32193.30 20257.29 35096.20 29172.46 31684.71 27991.49 338
PVSNet78.82 1885.55 26184.65 26588.23 28494.72 16471.93 34387.12 35892.75 27778.80 30084.95 24090.53 29464.43 30396.71 25874.74 30393.86 15196.06 163
IterMVS-SCA-FT85.45 26284.53 26888.18 28591.71 28176.87 28890.19 31392.65 28185.40 16981.44 30390.54 29366.79 28395.00 33281.04 23181.05 32392.66 310
EPNet_dtu86.49 24785.94 23288.14 28690.24 33472.82 33294.11 18192.20 29286.66 13779.42 33192.36 23373.52 20095.81 30971.26 32093.66 15395.80 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry82.71 29980.93 30588.06 28790.05 33876.37 29784.74 37691.96 30472.28 36881.32 30687.87 34571.03 22895.50 32268.97 33880.15 33892.32 322
test_vis1_n_192089.39 14389.84 11488.04 28892.97 24272.64 33794.71 14496.03 13386.18 14991.94 9796.56 7861.63 32195.74 31393.42 4195.11 12995.74 176
DTE-MVSNet86.11 25285.48 24587.98 28991.65 28574.92 31294.93 12995.75 15387.36 11982.26 29393.04 21372.85 21095.82 30874.04 30777.46 35593.20 292
PMMVS85.71 26084.96 25887.95 29088.90 35277.09 28588.68 33990.06 34672.32 36786.47 19090.76 29072.15 21894.40 33681.78 22193.49 15992.36 320
GG-mvs-BLEND87.94 29189.73 34577.91 26787.80 34878.23 39680.58 31483.86 37159.88 33895.33 32671.20 32192.22 18290.60 356
pmmvs-eth3d80.97 32078.72 33287.74 29284.99 38179.97 22190.11 31591.65 31075.36 33673.51 36786.03 36159.45 34093.96 34675.17 29872.21 36989.29 366
MS-PatchMatch85.05 27384.16 27087.73 29391.42 29178.51 25291.25 29093.53 26177.50 31680.15 31991.58 26461.99 31995.51 32075.69 29394.35 14589.16 368
test_040281.30 31779.17 32787.67 29493.19 23178.17 26292.98 23991.71 30775.25 33876.02 35590.31 29859.23 34296.37 28350.22 38983.63 29088.47 374
IterMVS84.88 27583.98 27587.60 29591.44 28876.03 30090.18 31492.41 28483.24 22081.06 30990.42 29766.60 28694.28 34079.46 25580.98 32892.48 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test81.37 31579.30 32387.58 29690.92 31474.16 32280.99 38787.68 36870.52 37576.63 35088.81 32871.21 22592.76 36160.01 37886.93 26595.83 172
EPMVS83.90 29182.70 29587.51 29790.23 33572.67 33588.62 34081.96 38781.37 26585.01 23988.34 33666.31 29094.45 33475.30 29787.12 26295.43 186
ADS-MVSNet281.66 31079.71 31987.50 29891.35 29474.19 32183.33 38188.48 36272.90 36282.24 29485.77 36464.98 30093.20 35764.57 36483.74 28795.12 196
OurMVSNet-221017-085.35 26684.64 26687.49 29990.77 32072.59 33994.01 19294.40 23384.72 18779.62 33093.17 20761.91 32096.72 25681.99 21581.16 31993.16 294
tpm284.08 28682.94 29087.48 30091.39 29271.27 35089.23 33190.37 33971.95 36984.64 24589.33 32067.30 27496.55 27275.17 29887.09 26394.63 215
RPSCF85.07 27284.27 26987.48 30092.91 24470.62 35991.69 27992.46 28376.20 33082.67 29095.22 12563.94 30697.29 22477.51 27785.80 27194.53 222
miper_lstm_enhance85.27 26984.59 26787.31 30291.28 29774.63 31587.69 35294.09 24781.20 27181.36 30589.85 31374.97 17894.30 33981.03 23379.84 34393.01 300
FMVSNet581.52 31379.60 32087.27 30391.17 30077.95 26691.49 28392.26 29176.87 32276.16 35287.91 34451.67 37192.34 36467.74 34781.16 31991.52 337
USDC82.76 29881.26 30387.26 30491.17 30074.55 31689.27 32993.39 26478.26 31175.30 35892.08 24654.43 36496.63 26171.64 31885.79 27290.61 354
test-LLR85.87 25685.41 24687.25 30590.95 31071.67 34889.55 32389.88 35283.41 21484.54 24887.95 34267.25 27595.11 32981.82 21993.37 16494.97 200
test-mter84.54 28183.64 27987.25 30590.95 31071.67 34889.55 32389.88 35279.17 29284.54 24887.95 34255.56 35695.11 32981.82 21993.37 16494.97 200
JIA-IIPM81.04 31878.98 33087.25 30588.64 35373.48 32781.75 38689.61 35673.19 35982.05 29673.71 39066.07 29595.87 30571.18 32384.60 28092.41 318
TDRefinement79.81 33077.34 33587.22 30879.24 39375.48 30793.12 23292.03 29976.45 32575.01 35991.58 26449.19 37796.44 27970.22 33169.18 37789.75 361
tpmvs83.35 29782.07 29687.20 30991.07 30671.00 35688.31 34491.70 30878.91 29580.49 31687.18 35469.30 25797.08 23968.12 34683.56 29193.51 281
ppachtmachnet_test81.84 30680.07 31487.15 31088.46 35774.43 31989.04 33592.16 29375.33 33777.75 34288.99 32566.20 29295.37 32565.12 36177.60 35391.65 333
dmvs_re84.20 28583.22 28687.14 31191.83 27677.81 27290.04 31690.19 34284.70 18881.49 30189.17 32264.37 30491.13 37571.58 31985.65 27392.46 316
tpm cat181.96 30480.27 31087.01 31291.09 30571.02 35587.38 35691.53 31566.25 38180.17 31886.35 36068.22 27196.15 29469.16 33782.29 30593.86 260
test_fmvs1_n87.03 22787.04 18786.97 31389.74 34471.86 34494.55 15294.43 23078.47 30591.95 9695.50 11651.16 37393.81 34793.02 4894.56 13995.26 192
OpenMVS_ROBcopyleft74.94 1979.51 33377.03 34086.93 31487.00 36976.23 29992.33 26090.74 33568.93 37874.52 36388.23 33949.58 37696.62 26257.64 38284.29 28287.94 377
SixPastTwentyTwo83.91 29082.90 29286.92 31590.99 30870.67 35893.48 21591.99 30185.54 16677.62 34492.11 24460.59 33396.87 25376.05 29277.75 35293.20 292
ADS-MVSNet81.56 31279.78 31686.90 31691.35 29471.82 34583.33 38189.16 35972.90 36282.24 29485.77 36464.98 30093.76 34864.57 36483.74 28795.12 196
PatchT82.68 30081.27 30286.89 31790.09 33770.94 35784.06 37890.15 34374.91 34285.63 21283.57 37369.37 25294.87 33365.19 35988.50 23894.84 209
tpm84.73 27884.02 27386.87 31890.33 33268.90 36689.06 33489.94 34980.85 27485.75 20889.86 31268.54 26895.97 30077.76 27384.05 28595.75 175
Patchmatch-RL test81.67 30979.96 31586.81 31985.42 37971.23 35182.17 38587.50 36978.47 30577.19 34682.50 38070.81 23293.48 35282.66 20072.89 36895.71 179
test_vis1_n86.56 24286.49 20986.78 32088.51 35472.69 33494.68 14593.78 25879.55 28890.70 11795.31 12148.75 37893.28 35593.15 4593.99 14894.38 235
test_fmvs187.34 21087.56 17386.68 32190.59 32671.80 34694.01 19294.04 24878.30 30991.97 9495.22 12556.28 35493.71 34992.89 4994.71 13394.52 223
MDA-MVSNet-bldmvs78.85 33776.31 34286.46 32289.76 34373.88 32388.79 33790.42 33879.16 29359.18 38988.33 33760.20 33594.04 34262.00 37168.96 37891.48 339
tpmrst85.35 26684.99 25686.43 32390.88 31767.88 37088.71 33891.43 31880.13 28086.08 20388.80 33073.05 20796.02 29882.48 20183.40 29595.40 187
TESTMET0.1,183.74 29382.85 29386.42 32489.96 34071.21 35289.55 32387.88 36577.41 31783.37 28187.31 35056.71 35293.65 35180.62 24192.85 17494.40 234
our_test_381.93 30580.46 30886.33 32588.46 35773.48 32788.46 34291.11 32376.46 32476.69 34988.25 33866.89 28194.36 33768.75 33979.08 34891.14 346
lessismore_v086.04 32688.46 35768.78 36780.59 39073.01 37090.11 30655.39 35796.43 28075.06 30065.06 38492.90 303
TinyColmap79.76 33177.69 33485.97 32791.71 28173.12 32989.55 32390.36 34075.03 34072.03 37390.19 30246.22 38396.19 29363.11 36881.03 32488.59 373
KD-MVS_2432*160078.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28679.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
miper_refine_blended78.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28679.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
K. test v381.59 31180.15 31385.91 33089.89 34269.42 36592.57 25187.71 36785.56 16573.44 36889.71 31555.58 35595.52 31977.17 28069.76 37492.78 308
mvsany_test185.42 26485.30 25185.77 33187.95 36575.41 30887.61 35580.97 38976.82 32388.68 14595.83 10477.44 14890.82 37785.90 15686.51 26791.08 350
MIMVSNet179.38 33477.28 33685.69 33286.35 37173.67 32491.61 28192.75 27778.11 31472.64 37188.12 34048.16 37991.97 36960.32 37577.49 35491.43 340
UWE-MVS83.69 29483.09 28785.48 33393.06 23665.27 37990.92 29786.14 37279.90 28386.26 19990.72 29157.17 35195.81 30971.03 32692.62 17695.35 190
UnsupCasMVSNet_eth80.07 32778.27 33385.46 33485.24 38072.63 33888.45 34394.87 21382.99 22671.64 37588.07 34156.34 35391.75 37073.48 31263.36 38792.01 328
CL-MVSNet_self_test81.74 30880.53 30685.36 33585.96 37472.45 34190.25 30893.07 26981.24 26979.85 32787.29 35170.93 23092.52 36266.95 35169.23 37691.11 348
MDA-MVSNet_test_wron79.21 33677.19 33885.29 33688.22 36172.77 33385.87 36590.06 34674.34 34762.62 38787.56 34866.14 29391.99 36866.90 35573.01 36691.10 349
YYNet179.22 33577.20 33785.28 33788.20 36272.66 33685.87 36590.05 34874.33 34862.70 38587.61 34766.09 29492.03 36666.94 35272.97 36791.15 345
WB-MVSnew83.77 29283.28 28385.26 33891.48 28771.03 35491.89 27187.98 36478.91 29584.78 24290.22 30069.11 26194.02 34364.70 36390.44 20190.71 352
dp81.47 31480.23 31185.17 33989.92 34165.49 37786.74 36090.10 34576.30 32881.10 30787.12 35562.81 31595.92 30268.13 34579.88 34194.09 248
UnsupCasMVSNet_bld76.23 34673.27 35085.09 34083.79 38372.92 33085.65 36893.47 26371.52 37068.84 38179.08 38549.77 37593.21 35666.81 35660.52 38989.13 370
Anonymous2023120681.03 31979.77 31884.82 34187.85 36670.26 36191.42 28492.08 29773.67 35477.75 34289.25 32162.43 31793.08 35861.50 37382.00 31091.12 347
test0.0.03 182.41 30281.69 29884.59 34288.23 36072.89 33190.24 31087.83 36683.41 21479.86 32689.78 31467.25 27588.99 38565.18 36083.42 29491.90 330
CMPMVSbinary59.16 2180.52 32279.20 32684.48 34383.98 38267.63 37289.95 31993.84 25664.79 38466.81 38391.14 27857.93 34895.17 32776.25 28988.10 24490.65 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet84.69 28084.79 26384.37 34491.84 27464.92 38093.70 20991.47 31766.19 38286.16 20295.28 12267.18 27793.33 35480.89 23690.42 20394.88 208
PVSNet_073.20 2077.22 34374.83 34984.37 34490.70 32471.10 35383.09 38389.67 35572.81 36473.93 36683.13 37560.79 33293.70 35068.54 34050.84 39688.30 375
LF4IMVS80.37 32579.07 32984.27 34686.64 37069.87 36489.39 32891.05 32676.38 32674.97 36090.00 30947.85 38094.25 34174.55 30680.82 33088.69 372
Anonymous2024052180.44 32479.21 32584.11 34785.75 37767.89 36992.86 24493.23 26675.61 33575.59 35787.47 34950.03 37494.33 33871.14 32481.21 31890.12 359
PM-MVS78.11 34076.12 34484.09 34883.54 38470.08 36288.97 33685.27 37879.93 28274.73 36286.43 35834.70 39293.48 35279.43 25872.06 37088.72 371
test_fmvs283.98 28784.03 27283.83 34987.16 36867.53 37393.93 19892.89 27277.62 31586.89 18393.53 19547.18 38292.02 36790.54 10286.51 26791.93 329
testgi80.94 32180.20 31283.18 35087.96 36466.29 37491.28 28890.70 33683.70 20578.12 33992.84 21751.37 37290.82 37763.34 36782.46 30392.43 317
KD-MVS_self_test80.20 32679.24 32483.07 35185.64 37865.29 37891.01 29693.93 25078.71 30376.32 35186.40 35959.20 34392.93 36072.59 31569.35 37591.00 351
testing380.46 32379.59 32183.06 35293.44 22664.64 38193.33 22085.47 37684.34 19379.93 32590.84 28644.35 38692.39 36357.06 38487.56 25592.16 326
ambc83.06 35279.99 39163.51 38577.47 39292.86 27374.34 36584.45 37028.74 39395.06 33173.06 31468.89 37990.61 354
test20.0379.95 32979.08 32882.55 35485.79 37667.74 37191.09 29491.08 32481.23 27074.48 36489.96 31161.63 32190.15 37960.08 37676.38 36089.76 360
test_vis1_rt77.96 34176.46 34182.48 35585.89 37571.74 34790.25 30878.89 39371.03 37471.30 37681.35 38242.49 38891.05 37684.55 17382.37 30484.65 380
EU-MVSNet81.32 31680.95 30482.42 35688.50 35663.67 38493.32 22191.33 31964.02 38580.57 31592.83 21861.21 32892.27 36576.34 28880.38 33791.32 341
myMVS_eth3d79.67 33278.79 33182.32 35791.92 27064.08 38289.75 32187.40 37081.72 25678.82 33487.20 35245.33 38491.29 37359.09 38087.84 25191.60 335
pmmvs371.81 35268.71 35581.11 35875.86 39470.42 36086.74 36083.66 38258.95 38968.64 38280.89 38336.93 39089.52 38263.10 36963.59 38683.39 381
Syy-MVS80.07 32779.78 31680.94 35991.92 27059.93 39089.75 32187.40 37081.72 25678.82 33487.20 35266.29 29191.29 37347.06 39187.84 25191.60 335
new-patchmatchnet76.41 34575.17 34880.13 36082.65 38759.61 39187.66 35391.08 32478.23 31269.85 37983.22 37454.76 36191.63 37264.14 36664.89 38589.16 368
mvsany_test374.95 34773.26 35180.02 36174.61 39563.16 38685.53 36978.42 39474.16 34974.89 36186.46 35736.02 39189.09 38482.39 20466.91 38187.82 378
test_fmvs377.67 34277.16 33979.22 36279.52 39261.14 38892.34 25991.64 31173.98 35178.86 33386.59 35627.38 39687.03 38788.12 12775.97 36289.50 362
DSMNet-mixed76.94 34476.29 34378.89 36383.10 38556.11 39987.78 34979.77 39160.65 38875.64 35688.71 33161.56 32388.34 38660.07 37789.29 22492.21 325
EGC-MVSNET61.97 36056.37 36478.77 36489.63 34673.50 32689.12 33382.79 3840.21 4081.24 40984.80 36839.48 38990.04 38044.13 39375.94 36372.79 392
new_pmnet72.15 35070.13 35478.20 36582.95 38665.68 37583.91 37982.40 38662.94 38764.47 38479.82 38442.85 38786.26 39157.41 38374.44 36582.65 385
MVS-HIRNet73.70 34972.20 35278.18 36691.81 27756.42 39882.94 38482.58 38555.24 39068.88 38066.48 39455.32 35995.13 32858.12 38188.42 24083.01 383
LCM-MVSNet66.00 35762.16 36277.51 36764.51 40558.29 39383.87 38090.90 33148.17 39454.69 39173.31 39116.83 40586.75 38865.47 35861.67 38887.48 379
APD_test169.04 35366.26 35977.36 36880.51 39062.79 38785.46 37083.51 38354.11 39259.14 39084.79 36923.40 39989.61 38155.22 38570.24 37379.68 389
test_f71.95 35170.87 35375.21 36974.21 39759.37 39285.07 37385.82 37465.25 38370.42 37883.13 37523.62 39782.93 39778.32 26771.94 37183.33 382
ANet_high58.88 36454.22 36872.86 37056.50 40856.67 39580.75 38886.00 37373.09 36137.39 40064.63 39722.17 40079.49 40043.51 39423.96 40282.43 386
test_vis3_rt65.12 35862.60 36072.69 37171.44 39860.71 38987.17 35765.55 40463.80 38653.22 39265.65 39614.54 40689.44 38376.65 28465.38 38367.91 395
FPMVS64.63 35962.55 36170.88 37270.80 39956.71 39484.42 37784.42 38051.78 39349.57 39381.61 38123.49 39881.48 39840.61 39876.25 36174.46 391
dmvs_testset74.57 34875.81 34770.86 37387.72 36740.47 40687.05 35977.90 39882.75 23171.15 37785.47 36667.98 27284.12 39545.26 39276.98 35988.00 376
N_pmnet68.89 35468.44 35670.23 37489.07 35028.79 41188.06 34519.50 41169.47 37771.86 37484.93 36761.24 32791.75 37054.70 38677.15 35690.15 358
testf159.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
APD_test259.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
WB-MVS67.92 35567.49 35769.21 37781.09 38841.17 40588.03 34678.00 39773.50 35662.63 38683.11 37763.94 30686.52 38925.66 40251.45 39579.94 388
PMMVS259.60 36156.40 36369.21 37768.83 40246.58 40373.02 39677.48 39955.07 39149.21 39472.95 39217.43 40480.04 39949.32 39044.33 39980.99 387
SSC-MVS67.06 35666.56 35868.56 37980.54 38940.06 40787.77 35077.37 40072.38 36661.75 38882.66 37963.37 31186.45 39024.48 40348.69 39879.16 390
Gipumacopyleft57.99 36554.91 36767.24 38088.51 35465.59 37652.21 39990.33 34143.58 39642.84 39951.18 40020.29 40285.07 39234.77 39970.45 37251.05 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 36648.46 37063.48 38145.72 41046.20 40473.41 39578.31 39541.03 39930.06 40265.68 3956.05 40983.43 39630.04 40065.86 38260.80 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 36838.59 37457.77 38256.52 40748.77 40255.38 39858.64 40829.33 40228.96 40352.65 3994.68 41064.62 40428.11 40133.07 40059.93 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 36748.47 36956.66 38352.26 40918.98 41341.51 40181.40 38810.10 40344.59 39875.01 38928.51 39468.16 40153.54 38749.31 39782.83 384
DeepMVS_CXcopyleft56.31 38474.23 39651.81 40156.67 40944.85 39548.54 39575.16 38827.87 39558.74 40540.92 39752.22 39458.39 398
E-PMN43.23 36942.29 37146.03 38565.58 40437.41 40873.51 39464.62 40533.99 40028.47 40447.87 40119.90 40367.91 40222.23 40424.45 40132.77 400
EMVS42.07 37041.12 37244.92 38663.45 40635.56 41073.65 39363.48 40633.05 40126.88 40545.45 40221.27 40167.14 40319.80 40523.02 40332.06 401
tmp_tt35.64 37139.24 37324.84 38714.87 41123.90 41262.71 39751.51 4106.58 40536.66 40162.08 39844.37 38530.34 40752.40 38822.00 40420.27 402
wuyk23d21.27 37320.48 37623.63 38868.59 40336.41 40949.57 4006.85 4129.37 4047.89 4064.46 4084.03 41131.37 40617.47 40616.07 4053.12 403
test1238.76 37511.22 3781.39 3890.85 4130.97 41485.76 3670.35 4140.54 4072.45 4088.14 4070.60 4120.48 4082.16 4080.17 4072.71 404
testmvs8.92 37411.52 3771.12 3901.06 4120.46 41586.02 3640.65 4130.62 4062.74 4079.52 4060.31 4130.45 4092.38 4070.39 4062.46 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k22.14 37229.52 3750.00 3910.00 4140.00 4160.00 40295.76 1520.00 4090.00 41094.29 16475.66 1700.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.64 3778.86 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40979.70 1210.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.82 37610.43 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41093.88 1850.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS64.08 38259.14 379
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
PC_three_145282.47 23597.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 414
eth-test0.00 414
ZD-MVS98.15 3486.62 3297.07 4583.63 20794.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
RE-MVS-def93.68 5297.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
IU-MVS98.77 586.00 4996.84 6581.26 26897.26 795.50 2399.13 399.03 8
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 2097.79 4996.08 6197.44 1586.13 15395.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 157
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 157
sam_mvs70.60 234
MTGPAbinary96.97 50
test_post188.00 3479.81 40569.31 25695.53 31876.65 284
test_post10.29 40470.57 23895.91 304
patchmatchnet-post83.76 37271.53 22296.48 275
MTMP96.16 5360.64 407
gm-plane-assit89.60 34768.00 36877.28 32088.99 32597.57 18979.44 257
test9_res91.91 7898.71 3298.07 66
TEST997.53 5886.49 3694.07 18696.78 7281.61 26192.77 7496.20 8787.71 2899.12 51
test_897.49 6086.30 4494.02 19196.76 7581.86 25292.70 7896.20 8787.63 2999.02 61
agg_prior290.54 10298.68 3798.27 52
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
test_prior485.96 5394.11 181
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
旧先验293.36 21971.25 37294.37 3997.13 23786.74 146
新几何293.11 234
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
无先验93.28 22796.26 11073.95 35299.05 5580.56 24296.59 139
原ACMM292.94 241
test22296.55 8481.70 16692.22 26495.01 20168.36 37990.20 12496.14 9280.26 11497.80 7496.05 164
testdata298.75 9378.30 268
segment_acmp87.16 36
testdata192.15 26687.94 103
plane_prior794.70 16682.74 141
plane_prior694.52 17682.75 13974.23 187
plane_prior596.22 11598.12 14488.15 12489.99 20794.63 215
plane_prior494.86 140
plane_prior382.75 13990.26 3386.91 180
plane_prior295.85 7590.81 17
plane_prior194.59 171
plane_prior82.73 14295.21 11189.66 4889.88 212
n20.00 415
nn0.00 415
door-mid85.49 375
test1196.57 92
door85.33 377
HQP5-MVS81.56 168
HQP-NCC94.17 19494.39 16588.81 7285.43 226
ACMP_Plane94.17 19494.39 16588.81 7285.43 226
BP-MVS87.11 143
HQP4-MVS85.43 22697.96 16594.51 225
HQP3-MVS96.04 13189.77 216
HQP2-MVS73.83 197
NP-MVS94.37 18582.42 15193.98 178
MDTV_nov1_ep13_2view55.91 40087.62 35473.32 35884.59 24770.33 24174.65 30495.50 184
MDTV_nov1_ep1383.56 28091.69 28369.93 36387.75 35191.54 31478.60 30484.86 24188.90 32769.54 25096.03 29770.25 32988.93 231
ACMMP++_ref87.47 256
ACMMP++88.01 247
Test By Simon80.02 116