This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad96.52 197.78 5490.86 196.85 6799.61 496.03 1799.06 999.07 5
No_MVS96.52 197.78 5490.86 196.85 6799.61 496.03 1799.06 999.07 5
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 5592.59 298.94 8392.25 7698.99 1498.84 14
HPM-MVS++copyleft95.14 1094.91 1795.83 498.25 2989.65 495.92 7796.96 5691.75 1094.02 5696.83 6788.12 2499.55 1693.41 5198.94 1698.28 54
MM95.10 1194.91 1795.68 596.09 10688.34 996.68 3394.37 24795.08 194.68 4397.72 2982.94 8999.64 197.85 298.76 2999.06 7
SMA-MVScopyleft95.20 895.07 1295.59 698.14 3588.48 896.26 4697.28 3185.90 16597.67 398.10 988.41 2099.56 1294.66 3599.19 198.71 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+87.14 492.42 8791.37 9795.55 795.63 12988.73 697.07 1896.77 7890.84 1784.02 27996.62 8075.95 17499.34 3787.77 14397.68 8398.59 24
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 11296.96 5692.09 795.32 3597.08 5589.49 1599.33 4095.10 3198.85 2098.66 21
MVS_030494.18 4093.80 5195.34 994.91 16587.62 1495.97 7293.01 28792.58 494.22 4897.20 4980.56 11999.59 897.04 1198.68 3798.81 17
ACMMP_NAP94.74 1994.56 2395.28 1098.02 4187.70 1195.68 9197.34 2388.28 10295.30 3697.67 3185.90 5099.54 2093.91 4398.95 1598.60 23
DPE-MVScopyleft95.57 495.67 495.25 1198.36 2587.28 1895.56 10297.51 589.13 7397.14 1097.91 2491.64 799.62 294.61 3699.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS94.97 1294.90 1995.20 1297.84 5087.76 1096.65 3497.48 1087.76 12395.71 3097.70 3088.28 2399.35 3693.89 4498.78 2698.48 30
MCST-MVS94.45 2594.20 3995.19 1398.46 1987.50 1695.00 13397.12 4587.13 13492.51 9596.30 8989.24 1799.34 3793.46 4898.62 4698.73 18
NCCC94.81 1794.69 2295.17 1497.83 5187.46 1795.66 9496.93 6092.34 593.94 5796.58 8287.74 2799.44 2992.83 6098.40 5498.62 22
DPM-MVS92.58 8391.74 9395.08 1596.19 9989.31 592.66 26196.56 9783.44 22591.68 11895.04 14586.60 4298.99 7385.60 17397.92 7596.93 139
ZNCC-MVS94.47 2494.28 3395.03 1698.52 1586.96 2096.85 2897.32 2788.24 10393.15 7297.04 5886.17 4799.62 292.40 7098.81 2398.52 26
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2499.08 798.99 9
MTAPA94.42 2994.22 3695.00 1898.42 2186.95 2194.36 18096.97 5491.07 1493.14 7397.56 3284.30 7399.56 1293.43 4998.75 3098.47 33
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1196.10 2396.69 7289.90 1299.30 4394.70 3498.04 7199.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R94.43 2794.27 3594.92 2098.65 886.67 3096.92 2497.23 3488.60 9393.58 6497.27 4385.22 5899.54 2092.21 7798.74 3198.56 25
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 7896.20 2298.10 989.39 1699.34 3795.88 1999.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR94.43 2794.28 3394.91 2198.63 986.69 2896.94 2097.32 2788.63 9093.53 6797.26 4585.04 6299.54 2092.35 7398.78 2698.50 27
GST-MVS94.21 3593.97 4794.90 2398.41 2286.82 2496.54 3697.19 3588.24 10393.26 6996.83 6785.48 5599.59 891.43 10198.40 5498.30 49
HFP-MVS94.52 2294.40 2794.86 2498.61 1086.81 2596.94 2097.34 2388.63 9093.65 6297.21 4786.10 4899.49 2692.35 7398.77 2898.30 49
sasdasda93.27 6892.75 7794.85 2595.70 12587.66 1296.33 3996.41 10790.00 4194.09 5294.60 16582.33 9898.62 11492.40 7092.86 18698.27 56
MP-MVS-pluss94.21 3594.00 4694.85 2598.17 3386.65 3194.82 14597.17 4086.26 15792.83 8297.87 2685.57 5499.56 1294.37 3998.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs93.27 6892.75 7794.85 2595.70 12587.66 1296.33 3996.41 10790.00 4194.09 5294.60 16582.33 9898.62 11492.40 7092.86 18698.27 56
XVS94.45 2594.32 2994.85 2598.54 1386.60 3496.93 2297.19 3590.66 2592.85 8097.16 5385.02 6399.49 2691.99 8798.56 5098.47 33
X-MVStestdata88.31 18586.13 23294.85 2598.54 1386.60 3496.93 2297.19 3590.66 2592.85 8023.41 42385.02 6399.49 2691.99 8798.56 5098.47 33
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7586.33 4297.33 797.30 2991.38 1395.39 3497.46 3588.98 1999.40 3094.12 4098.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.98 196.36 194.82 3197.78 5486.00 5098.29 197.49 690.75 2097.62 598.06 1592.59 299.61 495.64 2299.02 1298.86 11
alignmvs93.08 7592.50 8394.81 3295.62 13087.61 1595.99 7096.07 13989.77 5494.12 5194.87 15180.56 11998.66 10792.42 6993.10 18298.15 67
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 3197.71 198.07 1392.31 499.58 1095.66 2099.13 398.84 14
DeepC-MVS_fast89.43 294.04 4293.79 5294.80 3397.48 6486.78 2695.65 9696.89 6489.40 6392.81 8396.97 6085.37 5799.24 4690.87 11098.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 3294.07 4394.77 3598.47 1886.31 4496.71 3196.98 5389.04 7691.98 10597.19 5085.43 5699.56 1292.06 8698.79 2498.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3394.07 4394.75 3698.06 3986.90 2395.88 7996.94 5985.68 17195.05 4197.18 5187.31 3599.07 5691.90 9398.61 4898.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS94.34 3094.21 3894.74 3798.39 2386.64 3297.60 497.24 3288.53 9592.73 8897.23 4685.20 5999.32 4192.15 8098.83 2298.25 61
PGM-MVS93.96 4793.72 5694.68 3898.43 2086.22 4795.30 11097.78 187.45 13093.26 6997.33 4184.62 7099.51 2490.75 11298.57 4998.32 48
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 8390.27 3597.04 1398.05 1791.47 899.55 1695.62 2499.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
mPP-MVS93.99 4593.78 5394.63 4098.50 1685.90 6096.87 2696.91 6288.70 8891.83 11497.17 5283.96 7799.55 1691.44 10098.64 4598.43 38
PHI-MVS93.89 4893.65 6094.62 4196.84 7886.43 3996.69 3297.49 685.15 18493.56 6696.28 9085.60 5399.31 4292.45 6798.79 2498.12 71
TSAR-MVS + MP.94.85 1494.94 1594.58 4298.25 2986.33 4296.11 5996.62 9288.14 10896.10 2396.96 6189.09 1898.94 8394.48 3798.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CANet93.54 5693.20 6994.55 4395.65 12885.73 6594.94 13696.69 8891.89 990.69 13095.88 11081.99 11099.54 2093.14 5597.95 7498.39 39
train_agg93.44 6193.08 7094.52 4497.53 6186.49 3794.07 19796.78 7681.86 26692.77 8596.20 9387.63 2999.12 5492.14 8198.69 3597.94 81
CDPH-MVS92.83 7992.30 8594.44 4597.79 5286.11 4994.06 19996.66 8980.09 29792.77 8596.63 7986.62 4099.04 6087.40 14898.66 4198.17 66
3Dnovator86.66 591.73 9790.82 10994.44 4594.59 18286.37 4197.18 1297.02 5189.20 7084.31 27496.66 7573.74 21199.17 5086.74 15897.96 7397.79 93
SR-MVS94.23 3494.17 4194.43 4798.21 3285.78 6396.40 3896.90 6388.20 10694.33 4797.40 3884.75 6999.03 6193.35 5297.99 7298.48 30
HPM-MVScopyleft94.02 4393.88 4894.43 4798.39 2385.78 6397.25 1097.07 4986.90 14292.62 9296.80 7184.85 6899.17 5092.43 6898.65 4498.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.93.66 5493.41 6494.41 4996.59 8586.78 2694.40 17293.93 26489.77 5494.21 4995.59 12387.35 3498.61 11692.72 6396.15 11897.83 91
reproduce-ours94.82 1594.97 1394.38 5097.91 4785.46 6895.86 8097.15 4289.82 4795.23 3898.10 987.09 3799.37 3395.30 2898.25 6098.30 49
our_new_method94.82 1594.97 1394.38 5097.91 4785.46 6895.86 8097.15 4289.82 4795.23 3898.10 987.09 3799.37 3395.30 2898.25 6098.30 49
test1294.34 5297.13 7386.15 4896.29 11591.04 12785.08 6199.01 6698.13 6697.86 88
ACMMPcopyleft93.24 7092.88 7594.30 5398.09 3885.33 7296.86 2797.45 1488.33 9990.15 14097.03 5981.44 11399.51 2490.85 11195.74 12398.04 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
reproduce_model94.76 1894.92 1694.29 5497.92 4385.18 7495.95 7597.19 3589.67 5795.27 3798.16 386.53 4399.36 3595.42 2798.15 6498.33 44
DeepC-MVS88.79 393.31 6792.99 7394.26 5596.07 10885.83 6194.89 13996.99 5289.02 7989.56 14597.37 4082.51 9599.38 3192.20 7898.30 5797.57 106
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net93.03 7692.63 8094.23 5695.62 13085.92 5796.08 6096.33 11389.86 4593.89 5994.66 16282.11 10598.50 12292.33 7592.82 18998.27 56
EPNet91.79 9491.02 10594.10 5790.10 35085.25 7396.03 6792.05 31392.83 387.39 18795.78 11579.39 13599.01 6688.13 13997.48 8698.05 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n94.60 2194.81 2093.98 5894.62 18084.96 7796.15 5497.35 2289.37 6496.03 2698.11 786.36 4499.01 6697.45 597.83 7897.96 80
DELS-MVS93.43 6593.25 6793.97 5995.42 13885.04 7593.06 24997.13 4490.74 2291.84 11295.09 14486.32 4599.21 4891.22 10298.45 5297.65 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon91.95 9291.28 9993.96 6098.33 2785.92 5794.66 15696.66 8982.69 24590.03 14295.82 11382.30 10099.03 6184.57 18596.48 11296.91 141
HPM-MVS_fast93.40 6693.22 6893.94 6198.36 2584.83 7997.15 1396.80 7585.77 16892.47 9697.13 5482.38 9699.07 5690.51 11598.40 5497.92 84
test_fmvsmconf0.1_n94.20 3794.31 3193.88 6292.46 26984.80 8096.18 5196.82 7289.29 6795.68 3198.11 785.10 6098.99 7397.38 697.75 8297.86 88
SD-MVS94.96 1395.33 893.88 6297.25 7286.69 2896.19 4997.11 4790.42 2896.95 1597.27 4389.53 1496.91 26494.38 3898.85 2098.03 77
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 6093.31 6593.84 6496.99 7584.84 7893.24 24297.24 3288.76 8591.60 11995.85 11186.07 4998.66 10791.91 9198.16 6398.03 77
SR-MVS-dyc-post93.82 4993.82 5093.82 6597.92 4384.57 8696.28 4396.76 7987.46 12893.75 6097.43 3684.24 7499.01 6692.73 6197.80 7997.88 86
test_prior93.82 6597.29 7084.49 9096.88 6598.87 8798.11 72
APD-MVS_3200maxsize93.78 5093.77 5493.80 6797.92 4384.19 10196.30 4196.87 6686.96 13893.92 5897.47 3483.88 7898.96 8092.71 6497.87 7698.26 60
fmvsm_l_conf0.5_n94.29 3194.46 2593.79 6895.28 14385.43 7095.68 9196.43 10586.56 14996.84 1697.81 2887.56 3298.77 9997.14 896.82 10397.16 125
CSCG93.23 7193.05 7193.76 6998.04 4084.07 10396.22 4897.37 2184.15 20790.05 14195.66 12087.77 2699.15 5389.91 12098.27 5898.07 73
GDP-MVS92.04 9091.46 9693.75 7094.55 18784.69 8395.60 10196.56 9787.83 12093.07 7695.89 10973.44 21598.65 10990.22 11896.03 12097.91 85
BP-MVS192.48 8592.07 8893.72 7194.50 19084.39 9895.90 7894.30 25090.39 2992.67 9095.94 10674.46 19598.65 10993.14 5597.35 9098.13 68
test_fmvsmconf0.01_n93.19 7293.02 7293.71 7289.25 36384.42 9796.06 6496.29 11589.06 7494.68 4398.13 479.22 13798.98 7797.22 797.24 9197.74 96
UA-Net92.83 7992.54 8293.68 7396.10 10584.71 8295.66 9496.39 10991.92 893.22 7196.49 8583.16 8598.87 8784.47 18795.47 13097.45 111
fmvsm_l_conf0.5_n_a94.20 3794.40 2793.60 7495.29 14284.98 7695.61 9896.28 11886.31 15596.75 1897.86 2787.40 3398.74 10297.07 1097.02 9697.07 127
QAPM89.51 14888.15 17293.59 7594.92 16384.58 8596.82 2996.70 8778.43 32383.41 29496.19 9673.18 21999.30 4377.11 29596.54 10996.89 142
test_fmvsm_n_192094.71 2095.11 1193.50 7695.79 12084.62 8496.15 5497.64 289.85 4697.19 997.89 2586.28 4698.71 10597.11 998.08 7097.17 121
casdiffmvs_mvgpermissive92.96 7892.83 7693.35 7794.59 18283.40 12395.00 13396.34 11290.30 3392.05 10396.05 10183.43 8198.15 15692.07 8395.67 12498.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set93.01 7792.92 7493.29 7895.01 15683.51 12094.48 16495.77 16490.87 1692.52 9496.67 7484.50 7199.00 7191.99 8794.44 15797.36 112
Vis-MVSNetpermissive91.75 9691.23 10093.29 7895.32 14183.78 11096.14 5695.98 14689.89 4390.45 13296.58 8275.09 18698.31 14784.75 18396.90 9997.78 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
balanced_conf0393.98 4694.22 3693.26 8096.13 10183.29 12696.27 4596.52 10089.82 4795.56 3395.51 12584.50 7198.79 9794.83 3398.86 1997.72 97
SPE-MVS-test94.02 4394.29 3293.24 8196.69 8183.24 12797.49 596.92 6192.14 692.90 7895.77 11685.02 6398.33 14493.03 5798.62 4698.13 68
VNet92.24 8991.91 9093.24 8196.59 8583.43 12194.84 14496.44 10489.19 7194.08 5595.90 10877.85 15698.17 15488.90 13093.38 17698.13 68
VDD-MVS90.74 11589.92 12793.20 8396.27 9783.02 14095.73 8893.86 26888.42 9892.53 9396.84 6662.09 32998.64 11190.95 10892.62 19197.93 83
CS-MVS94.12 4194.44 2693.17 8496.55 8883.08 13797.63 396.95 5891.71 1293.50 6896.21 9285.61 5298.24 14993.64 4698.17 6298.19 64
nrg03091.08 10990.39 11393.17 8493.07 25286.91 2296.41 3796.26 12088.30 10188.37 16694.85 15482.19 10497.64 19791.09 10382.95 30894.96 220
MVSMamba_PlusPlus93.44 6193.54 6293.14 8696.58 8783.05 13896.06 6496.50 10284.42 20494.09 5295.56 12485.01 6698.69 10694.96 3298.66 4197.67 100
EI-MVSNet-UG-set92.74 8192.62 8193.12 8794.86 16883.20 12994.40 17295.74 16790.71 2492.05 10396.60 8184.00 7698.99 7391.55 9893.63 16797.17 121
test_fmvsmvis_n_192093.44 6193.55 6193.10 8893.67 23484.26 10095.83 8496.14 13089.00 8092.43 9797.50 3383.37 8498.72 10396.61 1597.44 8796.32 162
新几何193.10 8897.30 6984.35 9995.56 18171.09 38991.26 12596.24 9182.87 9198.86 8979.19 27498.10 6796.07 177
OMC-MVS91.23 10590.62 11293.08 9096.27 9784.07 10393.52 22595.93 15086.95 13989.51 14696.13 9978.50 14798.35 14185.84 17192.90 18596.83 146
OpenMVScopyleft83.78 1188.74 17487.29 19193.08 9092.70 26485.39 7196.57 3596.43 10578.74 31880.85 32696.07 10069.64 26299.01 6678.01 28696.65 10794.83 227
MAR-MVS90.30 12689.37 13893.07 9296.61 8484.48 9195.68 9195.67 17382.36 25087.85 17592.85 22676.63 16798.80 9580.01 26296.68 10695.91 183
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
lupinMVS90.92 11090.21 11693.03 9393.86 22483.88 10892.81 25893.86 26879.84 30091.76 11594.29 17577.92 15398.04 17290.48 11697.11 9297.17 121
Effi-MVS+91.59 10091.11 10293.01 9494.35 20283.39 12494.60 15895.10 21187.10 13590.57 13193.10 22181.43 11498.07 17089.29 12694.48 15597.59 105
fmvsm_s_conf0.5_n_a93.57 5593.76 5593.00 9595.02 15583.67 11396.19 4996.10 13687.27 13295.98 2798.05 1783.07 8898.45 13296.68 1495.51 12796.88 143
MVS_111021_LR92.47 8692.29 8692.98 9695.99 11484.43 9593.08 24796.09 13788.20 10691.12 12695.72 11981.33 11597.76 18791.74 9597.37 8996.75 148
fmvsm_s_conf0.1_n_a93.19 7293.26 6692.97 9792.49 26783.62 11696.02 6895.72 17086.78 14496.04 2598.19 182.30 10098.43 13696.38 1695.42 13396.86 144
ETV-MVS92.74 8192.66 7992.97 9795.20 14984.04 10595.07 12996.51 10190.73 2392.96 7791.19 28584.06 7598.34 14291.72 9696.54 10996.54 158
LFMVS90.08 13189.13 14492.95 9996.71 8082.32 16396.08 6089.91 36686.79 14392.15 10296.81 6962.60 32798.34 14287.18 15293.90 16398.19 64
UGNet89.95 13688.95 14892.95 9994.51 18983.31 12595.70 9095.23 20489.37 6487.58 18193.94 19064.00 31898.78 9883.92 19496.31 11496.74 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason90.80 11390.10 12092.90 10193.04 25583.53 11993.08 24794.15 25780.22 29491.41 12294.91 14876.87 16197.93 18190.28 11796.90 9997.24 117
jason: jason.
DP-MVS87.25 22585.36 26192.90 10197.65 5883.24 12794.81 14692.00 31574.99 35781.92 31595.00 14672.66 22499.05 5866.92 37092.33 19696.40 160
fmvsm_s_conf0.5_n93.76 5194.06 4592.86 10395.62 13083.17 13096.14 5696.12 13488.13 10995.82 2998.04 2083.43 8198.48 12496.97 1296.23 11596.92 140
fmvsm_s_conf0.1_n93.46 5993.66 5992.85 10493.75 23083.13 13296.02 6895.74 16787.68 12595.89 2898.17 282.78 9298.46 12896.71 1396.17 11796.98 136
CANet_DTU90.26 12889.41 13792.81 10593.46 24183.01 14193.48 22694.47 24389.43 6287.76 17994.23 18070.54 25199.03 6184.97 17896.39 11396.38 161
MVSFormer91.68 9991.30 9892.80 10693.86 22483.88 10895.96 7395.90 15484.66 20091.76 11594.91 14877.92 15397.30 23189.64 12297.11 9297.24 117
PVSNet_Blended_VisFu91.38 10290.91 10792.80 10696.39 9483.17 13094.87 14196.66 8983.29 23089.27 15294.46 17080.29 12299.17 5087.57 14695.37 13496.05 180
VDDNet89.56 14788.49 16392.76 10895.07 15482.09 16596.30 4193.19 28281.05 28891.88 11096.86 6561.16 34598.33 14488.43 13692.49 19597.84 90
h-mvs3390.80 11390.15 11992.75 10996.01 11082.66 15495.43 10495.53 18589.80 5093.08 7495.64 12175.77 17599.00 7192.07 8378.05 36596.60 153
casdiffmvspermissive92.51 8492.43 8492.74 11094.41 19781.98 16894.54 16296.23 12489.57 5991.96 10796.17 9782.58 9498.01 17490.95 10895.45 13298.23 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl90.69 11790.02 12592.71 11195.72 12382.41 16194.11 19295.12 20985.63 17291.49 12094.70 15874.75 19098.42 13786.13 16692.53 19397.31 113
DCV-MVSNet90.69 11790.02 12592.71 11195.72 12382.41 16194.11 19295.12 20985.63 17291.49 12094.70 15874.75 19098.42 13786.13 16692.53 19397.31 113
PCF-MVS84.11 1087.74 20086.08 23692.70 11394.02 21584.43 9589.27 34595.87 15873.62 37184.43 26694.33 17278.48 14898.86 8970.27 34494.45 15694.81 228
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline92.39 8892.29 8692.69 11494.46 19381.77 17294.14 18996.27 11989.22 6991.88 11096.00 10282.35 9797.99 17691.05 10495.27 13898.30 49
MSLP-MVS++93.72 5394.08 4292.65 11597.31 6883.43 12195.79 8697.33 2590.03 4093.58 6496.96 6184.87 6797.76 18792.19 7998.66 4196.76 147
EC-MVSNet93.44 6193.71 5792.63 11695.21 14882.43 15897.27 996.71 8690.57 2792.88 7995.80 11483.16 8598.16 15593.68 4598.14 6597.31 113
ab-mvs89.41 15388.35 16592.60 11795.15 15382.65 15592.20 27895.60 18083.97 21188.55 16293.70 20374.16 20398.21 15382.46 21689.37 23796.94 138
LS3D87.89 19586.32 22592.59 11896.07 10882.92 14495.23 11794.92 22375.66 34982.89 30195.98 10472.48 22799.21 4868.43 35895.23 13995.64 196
Anonymous2024052988.09 19186.59 21492.58 11996.53 9081.92 17095.99 7095.84 16074.11 36689.06 15695.21 13861.44 33798.81 9483.67 19987.47 26897.01 134
fmvsm_s_conf0.5_n_394.49 2395.13 1092.56 12095.49 13681.10 19495.93 7697.16 4192.96 297.39 798.13 483.63 8098.80 9597.89 197.61 8597.78 94
CPTT-MVS91.99 9191.80 9192.55 12198.24 3181.98 16896.76 3096.49 10381.89 26590.24 13596.44 8778.59 14598.61 11689.68 12197.85 7797.06 128
114514_t89.51 14888.50 16192.54 12298.11 3681.99 16795.16 12596.36 11170.19 39385.81 22095.25 13576.70 16598.63 11382.07 22696.86 10297.00 135
PAPM_NR91.22 10690.78 11092.52 12397.60 5981.46 18194.37 17896.24 12386.39 15487.41 18494.80 15682.06 10898.48 12482.80 21195.37 13497.61 103
DeepPCF-MVS89.96 194.20 3794.77 2192.49 12496.52 9180.00 22894.00 20597.08 4890.05 3995.65 3297.29 4289.66 1398.97 7893.95 4298.71 3298.50 27
IS-MVSNet91.43 10191.09 10492.46 12595.87 11981.38 18496.95 1993.69 27489.72 5689.50 14895.98 10478.57 14697.77 18683.02 20596.50 11198.22 63
API-MVS90.66 11990.07 12192.45 12696.36 9584.57 8696.06 6495.22 20682.39 24889.13 15394.27 17880.32 12198.46 12880.16 26196.71 10594.33 251
xiu_mvs_v1_base_debu90.64 12090.05 12292.40 12793.97 22184.46 9293.32 23395.46 18885.17 18192.25 9894.03 18270.59 24798.57 11990.97 10594.67 14794.18 254
xiu_mvs_v1_base90.64 12090.05 12292.40 12793.97 22184.46 9293.32 23395.46 18885.17 18192.25 9894.03 18270.59 24798.57 11990.97 10594.67 14794.18 254
xiu_mvs_v1_base_debi90.64 12090.05 12292.40 12793.97 22184.46 9293.32 23395.46 18885.17 18192.25 9894.03 18270.59 24798.57 11990.97 10594.67 14794.18 254
fmvsm_s_conf0.5_n_293.47 5893.83 4992.39 13095.36 13981.19 19095.20 12296.56 9790.37 3097.13 1198.03 2177.47 15798.96 8097.79 396.58 10897.03 131
fmvsm_s_conf0.1_n_293.16 7493.42 6392.37 13194.62 18081.13 19295.23 11795.89 15690.30 3396.74 1998.02 2276.14 16998.95 8297.64 496.21 11697.03 131
AdaColmapbinary89.89 13989.07 14592.37 13197.41 6583.03 13994.42 17195.92 15182.81 24286.34 21094.65 16373.89 20799.02 6480.69 25295.51 12795.05 215
CNLPA89.07 16487.98 17592.34 13396.87 7784.78 8194.08 19693.24 28081.41 27984.46 26495.13 14375.57 18296.62 27577.21 29393.84 16595.61 199
ET-MVSNet_ETH3D87.51 21385.91 24492.32 13493.70 23383.93 10692.33 27390.94 34684.16 20672.09 38992.52 23869.90 25795.85 32189.20 12788.36 25597.17 121
Anonymous20240521187.68 20186.13 23292.31 13596.66 8280.74 20594.87 14191.49 33280.47 29389.46 14995.44 12754.72 37898.23 15082.19 22289.89 22797.97 79
CHOSEN 1792x268888.84 17087.69 18192.30 13696.14 10081.42 18390.01 33295.86 15974.52 36287.41 18493.94 19075.46 18398.36 13980.36 25795.53 12697.12 126
HY-MVS83.01 1289.03 16687.94 17792.29 13794.86 16882.77 14692.08 28394.49 24281.52 27886.93 19192.79 23278.32 15098.23 15079.93 26390.55 21695.88 185
CDS-MVSNet89.45 15188.51 16092.29 13793.62 23683.61 11893.01 25094.68 23981.95 26087.82 17793.24 21578.69 14396.99 25880.34 25893.23 18096.28 165
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR90.02 13389.27 14392.29 13795.78 12180.95 19992.68 26096.22 12581.91 26286.66 20193.75 20282.23 10298.44 13479.40 27394.79 14597.48 109
mvsmamba90.33 12589.69 13092.25 14095.17 15081.64 17495.27 11593.36 27984.88 19189.51 14694.27 17869.29 27197.42 21789.34 12596.12 11997.68 99
PLCcopyleft84.53 789.06 16588.03 17492.15 14197.27 7182.69 15394.29 18195.44 19379.71 30284.01 28094.18 18176.68 16698.75 10077.28 29293.41 17595.02 216
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPP-MVSNet91.70 9891.56 9592.13 14295.88 11780.50 21197.33 795.25 20386.15 16089.76 14495.60 12283.42 8398.32 14687.37 15093.25 17997.56 107
patch_mono-293.74 5294.32 2992.01 14397.54 6078.37 26593.40 23097.19 3588.02 11194.99 4297.21 4788.35 2198.44 13494.07 4198.09 6899.23 1
原ACMM192.01 14397.34 6781.05 19596.81 7478.89 31390.45 13295.92 10782.65 9398.84 9380.68 25398.26 5996.14 171
UniMVSNet (Re)89.80 14189.07 14592.01 14393.60 23784.52 8994.78 14897.47 1189.26 6886.44 20792.32 24482.10 10697.39 22884.81 18280.84 34294.12 258
MG-MVS91.77 9591.70 9492.00 14697.08 7480.03 22693.60 22395.18 20787.85 11990.89 12896.47 8682.06 10898.36 13985.07 17797.04 9597.62 102
EIA-MVS91.95 9291.94 8991.98 14795.16 15180.01 22795.36 10596.73 8388.44 9689.34 15092.16 24983.82 7998.45 13289.35 12497.06 9497.48 109
PVSNet_Blended90.73 11690.32 11591.98 14796.12 10281.25 18692.55 26596.83 7082.04 25889.10 15492.56 23781.04 11798.85 9186.72 16095.91 12195.84 187
PS-MVSNAJ91.18 10790.92 10691.96 14995.26 14682.60 15792.09 28295.70 17186.27 15691.84 11292.46 23979.70 13098.99 7389.08 12895.86 12294.29 252
TAMVS89.21 15988.29 16991.96 14993.71 23182.62 15693.30 23794.19 25582.22 25387.78 17893.94 19078.83 14096.95 26177.70 28892.98 18496.32 162
SDMVSNet90.19 12989.61 13291.93 15196.00 11183.09 13692.89 25595.98 14688.73 8686.85 19795.20 13972.09 23197.08 25088.90 13089.85 22995.63 197
FA-MVS(test-final)89.66 14388.91 15091.93 15194.57 18580.27 21591.36 29894.74 23684.87 19289.82 14392.61 23674.72 19398.47 12783.97 19393.53 17097.04 130
MVS_Test91.31 10491.11 10291.93 15194.37 19880.14 21993.46 22895.80 16286.46 15291.35 12493.77 20082.21 10398.09 16787.57 14694.95 14297.55 108
NR-MVSNet88.58 18087.47 18791.93 15193.04 25584.16 10294.77 14996.25 12289.05 7580.04 33993.29 21379.02 13997.05 25581.71 23780.05 35294.59 235
HyFIR lowres test88.09 19186.81 20391.93 15196.00 11180.63 20790.01 33295.79 16373.42 37387.68 18092.10 25573.86 20897.96 17880.75 25191.70 20097.19 120
GeoE90.05 13289.43 13691.90 15695.16 15180.37 21495.80 8594.65 24083.90 21287.55 18394.75 15778.18 15197.62 19981.28 24193.63 16797.71 98
thisisatest053088.67 17587.61 18391.86 15794.87 16780.07 22294.63 15789.90 36784.00 21088.46 16493.78 19966.88 29598.46 12883.30 20192.65 19097.06 128
xiu_mvs_v2_base91.13 10890.89 10891.86 15794.97 15982.42 15992.24 27695.64 17886.11 16491.74 11793.14 21979.67 13398.89 8689.06 12995.46 13194.28 253
DU-MVS89.34 15888.50 16191.85 15993.04 25583.72 11194.47 16796.59 9489.50 6086.46 20493.29 21377.25 15997.23 24084.92 17981.02 33894.59 235
OPM-MVS90.12 13089.56 13391.82 16093.14 24883.90 10794.16 18895.74 16788.96 8187.86 17495.43 12972.48 22797.91 18288.10 14190.18 22293.65 288
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 12390.19 11791.82 16094.70 17682.73 15095.85 8296.22 12590.81 1886.91 19394.86 15274.23 19998.12 15788.15 13789.99 22394.63 232
UniMVSNet_NR-MVSNet89.92 13889.29 14191.81 16293.39 24383.72 11194.43 17097.12 4589.80 5086.46 20493.32 21083.16 8597.23 24084.92 17981.02 33894.49 245
diffmvspermissive91.37 10391.23 10091.77 16393.09 25180.27 21592.36 27095.52 18687.03 13791.40 12394.93 14780.08 12497.44 21592.13 8294.56 15297.61 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.42 18187.33 19091.72 16494.92 16380.98 19792.97 25294.54 24178.16 32983.82 28393.88 19578.78 14297.91 18279.45 26989.41 23696.26 166
Fast-Effi-MVS+89.41 15388.64 15691.71 16594.74 17280.81 20393.54 22495.10 21183.11 23486.82 19990.67 30679.74 12997.75 19080.51 25693.55 16996.57 156
WTY-MVS89.60 14588.92 14991.67 16695.47 13781.15 19192.38 26994.78 23483.11 23489.06 15694.32 17378.67 14496.61 27881.57 23890.89 21397.24 117
TAPA-MVS84.62 688.16 18987.01 19991.62 16796.64 8380.65 20694.39 17496.21 12876.38 34286.19 21495.44 12779.75 12898.08 16962.75 38795.29 13696.13 172
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VPA-MVSNet89.62 14488.96 14791.60 16893.86 22482.89 14595.46 10397.33 2587.91 11488.43 16593.31 21174.17 20297.40 22587.32 15182.86 31394.52 240
FE-MVS87.40 21886.02 23891.57 16994.56 18679.69 23690.27 31993.72 27380.57 29188.80 15991.62 27465.32 31098.59 11874.97 31794.33 15996.44 159
XVG-OURS89.40 15588.70 15591.52 17094.06 21381.46 18191.27 30296.07 13986.14 16188.89 15895.77 11668.73 28097.26 23787.39 14989.96 22595.83 188
hse-mvs289.88 14089.34 13991.51 17194.83 17081.12 19393.94 20893.91 26789.80 5093.08 7493.60 20475.77 17597.66 19492.07 8377.07 37295.74 192
TranMVSNet+NR-MVSNet88.84 17087.95 17691.49 17292.68 26583.01 14194.92 13896.31 11489.88 4485.53 22993.85 19776.63 16796.96 26081.91 23079.87 35594.50 243
AUN-MVS87.78 19986.54 21791.48 17394.82 17181.05 19593.91 21293.93 26483.00 23786.93 19193.53 20569.50 26597.67 19286.14 16477.12 37195.73 194
XVG-OURS-SEG-HR89.95 13689.45 13491.47 17494.00 21981.21 18991.87 28696.06 14185.78 16788.55 16295.73 11874.67 19497.27 23588.71 13389.64 23495.91 183
MVS87.44 21686.10 23591.44 17592.61 26683.62 11692.63 26295.66 17567.26 39881.47 31892.15 25077.95 15298.22 15279.71 26595.48 12992.47 329
F-COLMAP87.95 19486.80 20491.40 17696.35 9680.88 20194.73 15195.45 19179.65 30382.04 31394.61 16471.13 23898.50 12276.24 30591.05 21194.80 229
dcpmvs_293.49 5794.19 4091.38 17797.69 5776.78 29894.25 18396.29 11588.33 9994.46 4596.88 6488.07 2598.64 11193.62 4798.09 6898.73 18
thisisatest051587.33 22185.99 23991.37 17893.49 23979.55 23790.63 31589.56 37480.17 29587.56 18290.86 29667.07 29298.28 14881.50 23993.02 18396.29 164
HQP-MVS89.80 14189.28 14291.34 17994.17 20881.56 17594.39 17496.04 14288.81 8285.43 23893.97 18973.83 20997.96 17887.11 15589.77 23294.50 243
RRT-MVS90.85 11290.70 11191.30 18094.25 20476.83 29794.85 14396.13 13389.04 7690.23 13694.88 15070.15 25698.72 10391.86 9494.88 14398.34 42
FMVSNet387.40 21886.11 23491.30 18093.79 22983.64 11594.20 18794.81 23283.89 21384.37 26791.87 26568.45 28396.56 28378.23 28385.36 28593.70 287
FMVSNet287.19 23185.82 24791.30 18094.01 21683.67 11394.79 14794.94 21883.57 22083.88 28292.05 25966.59 30096.51 28777.56 29085.01 28893.73 285
RPMNet83.95 30481.53 31591.21 18390.58 34179.34 24485.24 38996.76 7971.44 38785.55 22782.97 39670.87 24398.91 8561.01 39189.36 23895.40 203
IB-MVS80.51 1585.24 28383.26 29991.19 18492.13 27879.86 23291.75 28991.29 33783.28 23180.66 32988.49 35161.28 33998.46 12880.99 24779.46 35995.25 209
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS89.47 15088.90 15191.18 18594.22 20682.07 16692.13 28096.09 13787.90 11585.37 24492.45 24074.38 19797.56 20287.15 15390.43 21893.93 267
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 15188.90 15191.12 18694.47 19181.49 17995.30 11096.14 13086.73 14685.45 23595.16 14169.89 25898.10 15987.70 14489.23 24193.77 282
LGP-MVS_train91.12 18694.47 19181.49 17996.14 13086.73 14685.45 23595.16 14169.89 25898.10 15987.70 14489.23 24193.77 282
ACMM84.12 989.14 16088.48 16491.12 18694.65 17981.22 18895.31 10896.12 13485.31 18085.92 21894.34 17170.19 25598.06 17185.65 17288.86 24694.08 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tttt051788.61 17787.78 18091.11 18994.96 16077.81 28095.35 10689.69 37085.09 18688.05 17294.59 16766.93 29398.48 12483.27 20292.13 19897.03 131
GBi-Net87.26 22385.98 24091.08 19094.01 21683.10 13395.14 12694.94 21883.57 22084.37 26791.64 27066.59 30096.34 30078.23 28385.36 28593.79 277
test187.26 22385.98 24091.08 19094.01 21683.10 13395.14 12694.94 21883.57 22084.37 26791.64 27066.59 30096.34 30078.23 28385.36 28593.79 277
FMVSNet185.85 26984.11 28691.08 19092.81 26283.10 13395.14 12694.94 21881.64 27382.68 30391.64 27059.01 35896.34 30075.37 31183.78 29893.79 277
Test_1112_low_res87.65 20386.51 21891.08 19094.94 16279.28 24891.77 28894.30 25076.04 34783.51 29292.37 24277.86 15597.73 19178.69 27889.13 24396.22 167
PS-MVSNAJss89.97 13589.62 13191.02 19491.90 28780.85 20295.26 11695.98 14686.26 15786.21 21394.29 17579.70 13097.65 19588.87 13288.10 25794.57 237
BH-RMVSNet88.37 18387.48 18691.02 19495.28 14379.45 24092.89 25593.07 28585.45 17786.91 19394.84 15570.35 25297.76 18773.97 32394.59 15195.85 186
UniMVSNet_ETH3D87.53 21286.37 22291.00 19692.44 27078.96 25394.74 15095.61 17984.07 20985.36 24594.52 16959.78 35397.34 23082.93 20687.88 26296.71 150
FIs90.51 12490.35 11490.99 19793.99 22080.98 19795.73 8897.54 489.15 7286.72 20094.68 16081.83 11297.24 23985.18 17688.31 25694.76 230
ACMP84.23 889.01 16888.35 16590.99 19794.73 17381.27 18595.07 12995.89 15686.48 15083.67 28794.30 17469.33 26797.99 17687.10 15788.55 24893.72 286
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 25285.13 26690.98 19996.52 9181.50 17796.14 5696.16 12973.78 36983.65 28892.15 25063.26 32497.37 22982.82 21081.74 32794.06 263
sss88.93 16988.26 17190.94 20094.05 21480.78 20491.71 29095.38 19781.55 27788.63 16193.91 19475.04 18795.47 33982.47 21591.61 20196.57 156
sd_testset88.59 17987.85 17990.83 20196.00 11180.42 21392.35 27194.71 23788.73 8686.85 19795.20 13967.31 28796.43 29479.64 26789.85 22995.63 197
PVSNet_BlendedMVS89.98 13489.70 12990.82 20296.12 10281.25 18693.92 21096.83 7083.49 22489.10 15492.26 24781.04 11798.85 9186.72 16087.86 26392.35 335
cascas86.43 26084.98 26990.80 20392.10 28080.92 20090.24 32395.91 15373.10 37683.57 29188.39 35265.15 31297.46 21184.90 18191.43 20394.03 265
ECVR-MVScopyleft89.09 16388.53 15990.77 20495.62 13075.89 31196.16 5284.22 39987.89 11790.20 13796.65 7663.19 32598.10 15985.90 16996.94 9798.33 44
GA-MVS86.61 25085.27 26490.66 20591.33 31078.71 25590.40 31893.81 27185.34 17985.12 24889.57 33361.25 34097.11 24980.99 24789.59 23596.15 170
thres600view787.65 20386.67 20990.59 20696.08 10778.72 25494.88 14091.58 32887.06 13688.08 17092.30 24568.91 27798.10 15970.05 35191.10 20694.96 220
thres40087.62 20886.64 21090.57 20795.99 11478.64 25694.58 15991.98 31786.94 14088.09 16891.77 26669.18 27398.10 15970.13 34891.10 20694.96 220
baseline188.10 19087.28 19290.57 20794.96 16080.07 22294.27 18291.29 33786.74 14587.41 18494.00 18776.77 16496.20 30580.77 25079.31 36195.44 201
FC-MVSNet-test90.27 12790.18 11890.53 20993.71 23179.85 23395.77 8797.59 389.31 6686.27 21194.67 16181.93 11197.01 25784.26 18988.09 25994.71 231
PAPM86.68 24985.39 25990.53 20993.05 25479.33 24789.79 33594.77 23578.82 31581.95 31493.24 21576.81 16297.30 23166.94 36893.16 18194.95 223
WR-MVS88.38 18287.67 18290.52 21193.30 24580.18 21793.26 24095.96 14988.57 9485.47 23492.81 23076.12 17096.91 26481.24 24282.29 31894.47 248
MVSTER88.84 17088.29 16990.51 21292.95 26080.44 21293.73 21795.01 21584.66 20087.15 18893.12 22072.79 22397.21 24287.86 14287.36 27193.87 272
testdata90.49 21396.40 9377.89 27795.37 19972.51 38193.63 6396.69 7282.08 10797.65 19583.08 20397.39 8895.94 182
test111189.10 16188.64 15690.48 21495.53 13574.97 32196.08 6084.89 39788.13 10990.16 13996.65 7663.29 32398.10 15986.14 16496.90 9998.39 39
tt080586.92 23985.74 25390.48 21492.22 27479.98 22995.63 9794.88 22683.83 21584.74 25792.80 23157.61 36497.67 19285.48 17584.42 29293.79 277
jajsoiax88.24 18787.50 18590.48 21490.89 33080.14 21995.31 10895.65 17784.97 18984.24 27594.02 18565.31 31197.42 21788.56 13488.52 25093.89 268
PatchMatch-RL86.77 24785.54 25590.47 21795.88 11782.71 15290.54 31692.31 30579.82 30184.32 27291.57 27868.77 27996.39 29673.16 32993.48 17492.32 336
tfpn200view987.58 21086.64 21090.41 21895.99 11478.64 25694.58 15991.98 31786.94 14088.09 16891.77 26669.18 27398.10 15970.13 34891.10 20694.48 246
VPNet88.20 18887.47 18790.39 21993.56 23879.46 23994.04 20095.54 18488.67 8986.96 19094.58 16869.33 26797.15 24484.05 19280.53 34794.56 238
ACMH80.38 1785.36 27883.68 29390.39 21994.45 19480.63 20794.73 15194.85 22882.09 25577.24 36192.65 23460.01 35197.58 20072.25 33384.87 28992.96 315
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90087.63 20686.71 20790.38 22196.12 10278.55 25895.03 13291.58 32887.15 13388.06 17192.29 24668.91 27798.10 15970.13 34891.10 20694.48 246
mvs_tets88.06 19387.28 19290.38 22190.94 32679.88 23195.22 11995.66 17585.10 18584.21 27693.94 19063.53 32197.40 22588.50 13588.40 25493.87 272
131487.51 21386.57 21590.34 22392.42 27179.74 23592.63 26295.35 20178.35 32480.14 33691.62 27474.05 20497.15 24481.05 24393.53 17094.12 258
LTVRE_ROB82.13 1386.26 26384.90 27290.34 22394.44 19581.50 17792.31 27594.89 22483.03 23679.63 34592.67 23369.69 26197.79 18571.20 33786.26 28091.72 346
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_djsdf89.03 16688.64 15690.21 22590.74 33679.28 24895.96 7395.90 15484.66 20085.33 24692.94 22574.02 20597.30 23189.64 12288.53 24994.05 264
v2v48287.84 19687.06 19690.17 22690.99 32279.23 25194.00 20595.13 20884.87 19285.53 22992.07 25874.45 19697.45 21284.71 18481.75 32693.85 275
pmmvs485.43 27683.86 29190.16 22790.02 35382.97 14390.27 31992.67 29775.93 34880.73 32791.74 26871.05 23995.73 32978.85 27783.46 30591.78 345
V4287.68 20186.86 20190.15 22890.58 34180.14 21994.24 18595.28 20283.66 21885.67 22491.33 28074.73 19297.41 22384.43 18881.83 32492.89 318
MSDG84.86 29183.09 30290.14 22993.80 22780.05 22489.18 34893.09 28478.89 31378.19 35491.91 26365.86 30997.27 23568.47 35788.45 25293.11 310
anonymousdsp87.84 19687.09 19590.12 23089.13 36480.54 21094.67 15595.55 18282.05 25683.82 28392.12 25271.47 23697.15 24487.15 15387.80 26692.67 323
thres20087.21 22986.24 22990.12 23095.36 13978.53 25993.26 24092.10 31186.42 15388.00 17391.11 29169.24 27298.00 17569.58 35291.04 21293.83 276
CR-MVSNet85.35 27983.76 29290.12 23090.58 34179.34 24485.24 38991.96 31978.27 32685.55 22787.87 36271.03 24095.61 33173.96 32489.36 23895.40 203
v114487.61 20986.79 20590.06 23391.01 32179.34 24493.95 20795.42 19683.36 22985.66 22591.31 28374.98 18897.42 21783.37 20082.06 32093.42 297
XXY-MVS87.65 20386.85 20290.03 23492.14 27780.60 20993.76 21695.23 20482.94 23984.60 25994.02 18574.27 19895.49 33881.04 24483.68 30194.01 266
Vis-MVSNet (Re-imp)89.59 14689.44 13590.03 23495.74 12275.85 31295.61 9890.80 35087.66 12787.83 17695.40 13076.79 16396.46 29278.37 27996.73 10497.80 92
test250687.21 22986.28 22790.02 23695.62 13073.64 33796.25 4771.38 42187.89 11790.45 13296.65 7655.29 37598.09 16786.03 16896.94 9798.33 44
BH-untuned88.60 17888.13 17390.01 23795.24 14778.50 26193.29 23894.15 25784.75 19784.46 26493.40 20775.76 17797.40 22577.59 28994.52 15494.12 258
v119287.25 22586.33 22490.00 23890.76 33579.04 25293.80 21495.48 18782.57 24685.48 23391.18 28773.38 21897.42 21782.30 21982.06 32093.53 291
v7n86.81 24285.76 25189.95 23990.72 33779.25 25095.07 12995.92 15184.45 20382.29 30790.86 29672.60 22697.53 20479.42 27280.52 34893.08 312
testing9187.11 23486.18 23089.92 24094.43 19675.38 32091.53 29592.27 30786.48 15086.50 20290.24 31461.19 34397.53 20482.10 22490.88 21496.84 145
v887.50 21586.71 20789.89 24191.37 30779.40 24194.50 16395.38 19784.81 19583.60 29091.33 28076.05 17197.42 21782.84 20980.51 34992.84 320
v1087.25 22586.38 22189.85 24291.19 31379.50 23894.48 16495.45 19183.79 21683.62 28991.19 28575.13 18597.42 21781.94 22980.60 34492.63 325
baseline286.50 25685.39 25989.84 24391.12 31876.70 30091.88 28588.58 37782.35 25179.95 34090.95 29573.42 21697.63 19880.27 26089.95 22695.19 210
pm-mvs186.61 25085.54 25589.82 24491.44 30280.18 21795.28 11494.85 22883.84 21481.66 31692.62 23572.45 22996.48 28979.67 26678.06 36492.82 321
TR-MVS86.78 24485.76 25189.82 24494.37 19878.41 26392.47 26692.83 29181.11 28786.36 20892.40 24168.73 28097.48 20873.75 32789.85 22993.57 290
ACMH+81.04 1485.05 28683.46 29689.82 24494.66 17879.37 24294.44 16994.12 26082.19 25478.04 35692.82 22958.23 36197.54 20373.77 32682.90 31292.54 326
EI-MVSNet89.10 16188.86 15389.80 24791.84 28978.30 26793.70 22095.01 21585.73 16987.15 18895.28 13379.87 12797.21 24283.81 19687.36 27193.88 271
v14419287.19 23186.35 22389.74 24890.64 33978.24 26993.92 21095.43 19481.93 26185.51 23191.05 29374.21 20197.45 21282.86 20881.56 32893.53 291
COLMAP_ROBcopyleft80.39 1683.96 30382.04 31289.74 24895.28 14379.75 23494.25 18392.28 30675.17 35578.02 35793.77 20058.60 36097.84 18465.06 37985.92 28191.63 348
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SCA86.32 26285.18 26589.73 25092.15 27676.60 30191.12 30691.69 32483.53 22385.50 23288.81 34566.79 29696.48 28976.65 29890.35 22096.12 173
IterMVS-LS88.36 18487.91 17889.70 25193.80 22778.29 26893.73 21795.08 21385.73 16984.75 25691.90 26479.88 12696.92 26383.83 19582.51 31493.89 268
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing1186.44 25985.35 26289.69 25294.29 20375.40 31991.30 30090.53 35384.76 19685.06 25090.13 32058.95 35997.45 21282.08 22591.09 21096.21 169
testing9986.72 24885.73 25489.69 25294.23 20574.91 32391.35 29990.97 34586.14 16186.36 20890.22 31559.41 35597.48 20882.24 22190.66 21596.69 151
v192192086.97 23886.06 23789.69 25290.53 34478.11 27293.80 21495.43 19481.90 26385.33 24691.05 29372.66 22497.41 22382.05 22781.80 32593.53 291
Fast-Effi-MVS+-dtu87.44 21686.72 20689.63 25592.04 28177.68 28694.03 20193.94 26385.81 16682.42 30691.32 28270.33 25397.06 25380.33 25990.23 22194.14 257
v124086.78 24485.85 24689.56 25690.45 34577.79 28293.61 22295.37 19981.65 27285.43 23891.15 28971.50 23597.43 21681.47 24082.05 32293.47 295
Effi-MVS+-dtu88.65 17688.35 16589.54 25793.33 24476.39 30594.47 16794.36 24887.70 12485.43 23889.56 33473.45 21497.26 23785.57 17491.28 20594.97 217
AllTest83.42 31081.39 31689.52 25895.01 15677.79 28293.12 24490.89 34877.41 33376.12 36993.34 20854.08 38197.51 20668.31 35984.27 29493.26 300
TestCases89.52 25895.01 15677.79 28290.89 34877.41 33376.12 36993.34 20854.08 38197.51 20668.31 35984.27 29493.26 300
mvs_anonymous89.37 15789.32 14089.51 26093.47 24074.22 33091.65 29394.83 23082.91 24085.45 23593.79 19881.23 11696.36 29986.47 16294.09 16097.94 81
XVG-ACMP-BASELINE86.00 26584.84 27489.45 26191.20 31278.00 27391.70 29195.55 18285.05 18782.97 30092.25 24854.49 37997.48 20882.93 20687.45 27092.89 318
testing22284.84 29283.32 29789.43 26294.15 21175.94 31091.09 30789.41 37584.90 19085.78 22189.44 33552.70 38696.28 30370.80 34391.57 20296.07 177
MVP-Stereo85.97 26684.86 27389.32 26390.92 32882.19 16492.11 28194.19 25578.76 31778.77 35391.63 27368.38 28496.56 28375.01 31693.95 16289.20 384
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchmatchNetpermissive85.85 26984.70 27689.29 26491.76 29375.54 31688.49 35791.30 33681.63 27485.05 25188.70 34971.71 23296.24 30474.61 32089.05 24496.08 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14887.04 23686.32 22589.21 26590.94 32677.26 29193.71 21994.43 24484.84 19484.36 27090.80 30076.04 17297.05 25582.12 22379.60 35893.31 299
tfpnnormal84.72 29483.23 30089.20 26692.79 26380.05 22494.48 16495.81 16182.38 24981.08 32491.21 28469.01 27696.95 26161.69 38980.59 34590.58 371
cl2286.78 24485.98 24089.18 26792.34 27277.62 28790.84 31294.13 25981.33 28183.97 28190.15 31973.96 20696.60 28084.19 19082.94 30993.33 298
BH-w/o87.57 21187.05 19789.12 26894.90 16677.90 27692.41 26793.51 27682.89 24183.70 28691.34 27975.75 17897.07 25275.49 30993.49 17292.39 333
WR-MVS_H87.80 19887.37 18989.10 26993.23 24678.12 27195.61 9897.30 2987.90 11583.72 28592.01 26079.65 13496.01 31376.36 30280.54 34693.16 308
miper_enhance_ethall86.90 24086.18 23089.06 27091.66 29877.58 28890.22 32594.82 23179.16 30984.48 26389.10 33979.19 13896.66 27384.06 19182.94 30992.94 316
c3_l87.14 23386.50 21989.04 27192.20 27577.26 29191.22 30594.70 23882.01 25984.34 27190.43 31178.81 14196.61 27883.70 19881.09 33593.25 302
miper_ehance_all_eth87.22 22886.62 21389.02 27292.13 27877.40 29090.91 31194.81 23281.28 28284.32 27290.08 32279.26 13696.62 27583.81 19682.94 30993.04 313
gg-mvs-nofinetune81.77 32279.37 33788.99 27390.85 33277.73 28586.29 38179.63 41074.88 36083.19 29969.05 41260.34 34896.11 30975.46 31094.64 15093.11 310
ETVMVS84.43 29782.92 30688.97 27494.37 19874.67 32491.23 30488.35 37983.37 22886.06 21789.04 34055.38 37395.67 33067.12 36691.34 20496.58 155
pmmvs683.42 31081.60 31488.87 27588.01 37877.87 27894.96 13594.24 25474.67 36178.80 35291.09 29260.17 35096.49 28877.06 29775.40 37892.23 338
test_cas_vis1_n_192088.83 17388.85 15488.78 27691.15 31776.72 29993.85 21394.93 22283.23 23392.81 8396.00 10261.17 34494.45 35091.67 9794.84 14495.17 211
MIMVSNet82.59 31680.53 32188.76 27791.51 30078.32 26686.57 38090.13 36079.32 30580.70 32888.69 35052.98 38593.07 37566.03 37488.86 24694.90 224
cl____86.52 25585.78 24888.75 27892.03 28276.46 30390.74 31394.30 25081.83 26883.34 29690.78 30175.74 18096.57 28181.74 23581.54 32993.22 304
DIV-MVS_self_test86.53 25485.78 24888.75 27892.02 28376.45 30490.74 31394.30 25081.83 26883.34 29690.82 29975.75 17896.57 28181.73 23681.52 33093.24 303
CP-MVSNet87.63 20687.26 19488.74 28093.12 24976.59 30295.29 11296.58 9588.43 9783.49 29392.98 22475.28 18495.83 32278.97 27581.15 33493.79 277
eth_miper_zixun_eth86.50 25685.77 25088.68 28191.94 28475.81 31390.47 31794.89 22482.05 25684.05 27890.46 31075.96 17396.77 26882.76 21279.36 36093.46 296
CHOSEN 280x42085.15 28483.99 28988.65 28292.47 26878.40 26479.68 41192.76 29474.90 35981.41 32089.59 33269.85 26095.51 33579.92 26495.29 13692.03 341
PS-CasMVS87.32 22286.88 20088.63 28392.99 25876.33 30795.33 10796.61 9388.22 10583.30 29893.07 22273.03 22195.79 32678.36 28081.00 34093.75 284
TransMVSNet (Re)84.43 29783.06 30488.54 28491.72 29478.44 26295.18 12392.82 29382.73 24479.67 34492.12 25273.49 21395.96 31571.10 34168.73 39491.21 358
EG-PatchMatch MVS82.37 31880.34 32488.46 28590.27 34779.35 24392.80 25994.33 24977.14 33773.26 38690.18 31847.47 39796.72 26970.25 34587.32 27389.30 381
PEN-MVS86.80 24386.27 22888.40 28692.32 27375.71 31595.18 12396.38 11087.97 11282.82 30293.15 21873.39 21795.92 31776.15 30679.03 36393.59 289
Baseline_NR-MVSNet87.07 23586.63 21288.40 28691.44 30277.87 27894.23 18692.57 29984.12 20885.74 22392.08 25677.25 15996.04 31082.29 22079.94 35391.30 356
UBG85.51 27484.57 28088.35 28894.21 20771.78 36190.07 33089.66 37282.28 25285.91 21989.01 34161.30 33897.06 25376.58 30192.06 19996.22 167
D2MVS85.90 26785.09 26788.35 28890.79 33377.42 28991.83 28795.70 17180.77 29080.08 33890.02 32366.74 29896.37 29781.88 23187.97 26191.26 357
pmmvs584.21 29982.84 30988.34 29088.95 36676.94 29592.41 26791.91 32175.63 35080.28 33391.18 28764.59 31595.57 33277.09 29683.47 30492.53 327
mamv490.92 11091.78 9288.33 29195.67 12770.75 37492.92 25496.02 14581.90 26388.11 16795.34 13185.88 5196.97 25995.22 3095.01 14197.26 116
LCM-MVSNet-Re88.30 18688.32 16888.27 29294.71 17572.41 35693.15 24390.98 34487.77 12279.25 34891.96 26178.35 14995.75 32783.04 20495.62 12596.65 152
CostFormer85.77 27184.94 27188.26 29391.16 31672.58 35489.47 34391.04 34376.26 34586.45 20689.97 32570.74 24596.86 26782.35 21887.07 27695.34 207
ITE_SJBPF88.24 29491.88 28877.05 29492.92 28885.54 17580.13 33793.30 21257.29 36596.20 30572.46 33284.71 29091.49 352
PVSNet78.82 1885.55 27384.65 27788.23 29594.72 17471.93 35787.12 37692.75 29578.80 31684.95 25390.53 30864.43 31696.71 27174.74 31893.86 16496.06 179
IterMVS-SCA-FT85.45 27584.53 28188.18 29691.71 29576.87 29690.19 32792.65 29885.40 17881.44 31990.54 30766.79 29695.00 34781.04 24481.05 33692.66 324
EPNet_dtu86.49 25885.94 24388.14 29790.24 34872.82 34694.11 19292.20 30986.66 14879.42 34792.36 24373.52 21295.81 32471.26 33693.66 16695.80 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry82.71 31480.93 32088.06 29890.05 35276.37 30684.74 39491.96 31972.28 38481.32 32287.87 36271.03 24095.50 33768.97 35480.15 35192.32 336
test_vis1_n_192089.39 15689.84 12888.04 29992.97 25972.64 35194.71 15396.03 14486.18 15991.94 10996.56 8461.63 33395.74 32893.42 5095.11 14095.74 192
DTE-MVSNet86.11 26485.48 25787.98 30091.65 29974.92 32294.93 13795.75 16687.36 13182.26 30893.04 22372.85 22295.82 32374.04 32277.46 36993.20 306
PMMVS85.71 27284.96 27087.95 30188.90 36777.09 29388.68 35590.06 36272.32 38386.47 20390.76 30272.15 23094.40 35281.78 23493.49 17292.36 334
GG-mvs-BLEND87.94 30289.73 35977.91 27587.80 36578.23 41480.58 33083.86 38959.88 35295.33 34171.20 33792.22 19790.60 370
MonoMVSNet86.89 24186.55 21687.92 30389.46 36273.75 33494.12 19093.10 28387.82 12185.10 24990.76 30269.59 26394.94 34886.47 16282.50 31595.07 214
reproduce_monomvs86.37 26185.87 24587.87 30493.66 23573.71 33593.44 22995.02 21488.61 9282.64 30591.94 26257.88 36396.68 27289.96 11979.71 35793.22 304
pmmvs-eth3d80.97 33678.72 34887.74 30584.99 39679.97 23090.11 32991.65 32675.36 35273.51 38486.03 37959.45 35493.96 36275.17 31372.21 38389.29 383
MS-PatchMatch85.05 28684.16 28487.73 30691.42 30578.51 26091.25 30393.53 27577.50 33280.15 33591.58 27661.99 33095.51 33575.69 30894.35 15889.16 385
mmtdpeth85.04 28884.15 28587.72 30793.11 25075.74 31494.37 17892.83 29184.98 18889.31 15186.41 37661.61 33597.14 24792.63 6662.11 40490.29 372
test_040281.30 33279.17 34287.67 30893.19 24778.17 27092.98 25191.71 32275.25 35476.02 37190.31 31359.23 35696.37 29750.22 40783.63 30288.47 392
IterMVS84.88 29083.98 29087.60 30991.44 30276.03 30990.18 32892.41 30183.24 23281.06 32590.42 31266.60 29994.28 35679.46 26880.98 34192.48 328
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test81.37 33079.30 33887.58 31090.92 32874.16 33280.99 40687.68 38470.52 39176.63 36688.81 34571.21 23792.76 37760.01 39586.93 27795.83 188
EPMVS83.90 30682.70 31087.51 31190.23 34972.67 34988.62 35681.96 40581.37 28085.01 25288.34 35366.31 30394.45 35075.30 31287.12 27495.43 202
ADS-MVSNet281.66 32579.71 33487.50 31291.35 30874.19 33183.33 39988.48 37872.90 37882.24 30985.77 38264.98 31393.20 37364.57 38183.74 29995.12 212
OurMVSNet-221017-085.35 27984.64 27887.49 31390.77 33472.59 35394.01 20394.40 24684.72 19879.62 34693.17 21761.91 33196.72 26981.99 22881.16 33293.16 308
tpm284.08 30182.94 30587.48 31491.39 30671.27 36689.23 34790.37 35571.95 38584.64 25889.33 33667.30 28896.55 28575.17 31387.09 27594.63 232
RPSCF85.07 28584.27 28287.48 31492.91 26170.62 37691.69 29292.46 30076.20 34682.67 30495.22 13663.94 31997.29 23477.51 29185.80 28294.53 239
WBMVS84.97 28984.18 28387.34 31694.14 21271.62 36590.20 32692.35 30281.61 27584.06 27790.76 30261.82 33296.52 28678.93 27683.81 29793.89 268
miper_lstm_enhance85.27 28284.59 27987.31 31791.28 31174.63 32587.69 37094.09 26181.20 28681.36 32189.85 32874.97 18994.30 35581.03 24679.84 35693.01 314
FMVSNet581.52 32879.60 33587.27 31891.17 31477.95 27491.49 29692.26 30876.87 33876.16 36887.91 36151.67 38792.34 38067.74 36381.16 33291.52 351
USDC82.76 31381.26 31887.26 31991.17 31474.55 32689.27 34593.39 27878.26 32775.30 37592.08 25654.43 38096.63 27471.64 33485.79 28390.61 368
test-LLR85.87 26885.41 25887.25 32090.95 32471.67 36389.55 33989.88 36883.41 22684.54 26187.95 35967.25 28995.11 34481.82 23293.37 17794.97 217
test-mter84.54 29683.64 29487.25 32090.95 32471.67 36389.55 33989.88 36879.17 30884.54 26187.95 35955.56 37195.11 34481.82 23293.37 17794.97 217
JIA-IIPM81.04 33378.98 34687.25 32088.64 36873.48 33981.75 40589.61 37373.19 37582.05 31273.71 40866.07 30895.87 32071.18 33984.60 29192.41 332
TDRefinement79.81 34677.34 35187.22 32379.24 41175.48 31793.12 24492.03 31476.45 34175.01 37691.58 27649.19 39396.44 29370.22 34769.18 39189.75 377
tpmvs83.35 31282.07 31187.20 32491.07 32071.00 37288.31 36091.70 32378.91 31180.49 33287.18 37169.30 27097.08 25068.12 36283.56 30393.51 294
ppachtmachnet_test81.84 32180.07 32987.15 32588.46 37274.43 32989.04 35192.16 31075.33 35377.75 35888.99 34266.20 30595.37 34065.12 37877.60 36791.65 347
dmvs_re84.20 30083.22 30187.14 32691.83 29177.81 28090.04 33190.19 35884.70 19981.49 31789.17 33864.37 31791.13 39171.58 33585.65 28492.46 330
tpm cat181.96 31980.27 32587.01 32791.09 31971.02 37187.38 37491.53 33166.25 39980.17 33486.35 37868.22 28596.15 30869.16 35382.29 31893.86 274
test_fmvs1_n87.03 23787.04 19886.97 32889.74 35871.86 35894.55 16194.43 24478.47 32191.95 10895.50 12651.16 38993.81 36393.02 5894.56 15295.26 208
OpenMVS_ROBcopyleft74.94 1979.51 34977.03 35686.93 32987.00 38476.23 30892.33 27390.74 35168.93 39574.52 38088.23 35649.58 39296.62 27557.64 40084.29 29387.94 395
SixPastTwentyTwo83.91 30582.90 30786.92 33090.99 32270.67 37593.48 22691.99 31685.54 17577.62 36092.11 25460.59 34796.87 26676.05 30777.75 36693.20 306
ADS-MVSNet81.56 32779.78 33186.90 33191.35 30871.82 35983.33 39989.16 37672.90 37882.24 30985.77 38264.98 31393.76 36464.57 38183.74 29995.12 212
PatchT82.68 31581.27 31786.89 33290.09 35170.94 37384.06 39690.15 35974.91 35885.63 22683.57 39169.37 26694.87 34965.19 37688.50 25194.84 226
tpm84.73 29384.02 28886.87 33390.33 34668.90 38389.06 35089.94 36580.85 28985.75 22289.86 32768.54 28295.97 31477.76 28784.05 29695.75 191
Patchmatch-RL test81.67 32479.96 33086.81 33485.42 39471.23 36782.17 40487.50 38578.47 32177.19 36282.50 39870.81 24493.48 36882.66 21372.89 38295.71 195
test_vis1_n86.56 25386.49 22086.78 33588.51 36972.69 34894.68 15493.78 27279.55 30490.70 12995.31 13248.75 39493.28 37193.15 5493.99 16194.38 250
test_fmvs187.34 22087.56 18486.68 33690.59 34071.80 36094.01 20394.04 26278.30 32591.97 10695.22 13656.28 36993.71 36592.89 5994.71 14694.52 240
MDA-MVSNet-bldmvs78.85 35376.31 35886.46 33789.76 35773.88 33388.79 35390.42 35479.16 30959.18 40888.33 35460.20 34994.04 35862.00 38868.96 39291.48 353
mvs5depth80.98 33579.15 34386.45 33884.57 39773.29 34187.79 36691.67 32580.52 29282.20 31189.72 33055.14 37695.93 31673.93 32566.83 39690.12 374
tpmrst85.35 27984.99 26886.43 33990.88 33167.88 38788.71 35491.43 33480.13 29686.08 21688.80 34773.05 22096.02 31282.48 21483.40 30795.40 203
TESTMET0.1,183.74 30882.85 30886.42 34089.96 35471.21 36889.55 33987.88 38177.41 33383.37 29587.31 36756.71 36793.65 36780.62 25492.85 18894.40 249
our_test_381.93 32080.46 32386.33 34188.46 37273.48 33988.46 35891.11 33976.46 34076.69 36588.25 35566.89 29494.36 35368.75 35579.08 36291.14 360
lessismore_v086.04 34288.46 37268.78 38480.59 40873.01 38790.11 32155.39 37296.43 29475.06 31565.06 39992.90 317
TinyColmap79.76 34777.69 35085.97 34391.71 29573.12 34289.55 33990.36 35675.03 35672.03 39090.19 31746.22 40196.19 30763.11 38581.03 33788.59 391
KD-MVS_2432*160078.50 35476.02 36185.93 34486.22 38774.47 32784.80 39292.33 30379.29 30676.98 36385.92 38053.81 38393.97 36067.39 36457.42 40989.36 379
miper_refine_blended78.50 35476.02 36185.93 34486.22 38774.47 32784.80 39292.33 30379.29 30676.98 36385.92 38053.81 38393.97 36067.39 36457.42 40989.36 379
K. test v381.59 32680.15 32885.91 34689.89 35669.42 38292.57 26487.71 38385.56 17473.44 38589.71 33155.58 37095.52 33477.17 29469.76 38892.78 322
mvsany_test185.42 27785.30 26385.77 34787.95 38075.41 31887.61 37380.97 40776.82 33988.68 16095.83 11277.44 15890.82 39385.90 16986.51 27891.08 364
MIMVSNet179.38 35077.28 35285.69 34886.35 38673.67 33691.61 29492.75 29578.11 33072.64 38888.12 35748.16 39591.97 38560.32 39277.49 36891.43 354
UWE-MVS83.69 30983.09 30285.48 34993.06 25365.27 39790.92 31086.14 38979.90 29986.26 21290.72 30557.17 36695.81 32471.03 34292.62 19195.35 206
UnsupCasMVSNet_eth80.07 34378.27 34985.46 35085.24 39572.63 35288.45 35994.87 22782.99 23871.64 39288.07 35856.34 36891.75 38673.48 32863.36 40292.01 342
CL-MVSNet_self_test81.74 32380.53 32185.36 35185.96 38972.45 35590.25 32193.07 28581.24 28479.85 34387.29 36870.93 24292.52 37866.95 36769.23 39091.11 362
MDA-MVSNet_test_wron79.21 35277.19 35485.29 35288.22 37672.77 34785.87 38390.06 36274.34 36362.62 40587.56 36566.14 30691.99 38466.90 37173.01 38091.10 363
YYNet179.22 35177.20 35385.28 35388.20 37772.66 35085.87 38390.05 36474.33 36462.70 40387.61 36466.09 30792.03 38266.94 36872.97 38191.15 359
WB-MVSnew83.77 30783.28 29885.26 35491.48 30171.03 37091.89 28487.98 38078.91 31184.78 25590.22 31569.11 27594.02 35964.70 38090.44 21790.71 366
dp81.47 32980.23 32685.17 35589.92 35565.49 39586.74 37890.10 36176.30 34481.10 32387.12 37262.81 32695.92 31768.13 36179.88 35494.09 261
UnsupCasMVSNet_bld76.23 36373.27 36785.09 35683.79 39972.92 34485.65 38693.47 27771.52 38668.84 39879.08 40349.77 39193.21 37266.81 37260.52 40689.13 387
Anonymous2023120681.03 33479.77 33384.82 35787.85 38170.26 37891.42 29792.08 31273.67 37077.75 35889.25 33762.43 32893.08 37461.50 39082.00 32391.12 361
test0.0.03 182.41 31781.69 31384.59 35888.23 37572.89 34590.24 32387.83 38283.41 22679.86 34289.78 32967.25 28988.99 40265.18 37783.42 30691.90 344
CMPMVSbinary59.16 2180.52 33879.20 34184.48 35983.98 39867.63 39089.95 33493.84 27064.79 40266.81 40091.14 29057.93 36295.17 34276.25 30488.10 25790.65 367
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet84.69 29584.79 27584.37 36091.84 28964.92 39893.70 22091.47 33366.19 40086.16 21595.28 13367.18 29193.33 37080.89 24990.42 21994.88 225
PVSNet_073.20 2077.22 35974.83 36584.37 36090.70 33871.10 36983.09 40189.67 37172.81 38073.93 38383.13 39360.79 34693.70 36668.54 35650.84 41488.30 393
LF4IMVS80.37 34179.07 34584.27 36286.64 38569.87 38189.39 34491.05 34276.38 34274.97 37790.00 32447.85 39694.25 35774.55 32180.82 34388.69 390
Anonymous2024052180.44 34079.21 34084.11 36385.75 39267.89 38692.86 25793.23 28175.61 35175.59 37487.47 36650.03 39094.33 35471.14 34081.21 33190.12 374
PM-MVS78.11 35676.12 36084.09 36483.54 40070.08 37988.97 35285.27 39679.93 29874.73 37986.43 37534.70 41293.48 36879.43 27172.06 38488.72 389
test_fmvs283.98 30284.03 28783.83 36587.16 38367.53 39193.93 20992.89 28977.62 33186.89 19693.53 20547.18 39892.02 38390.54 11386.51 27891.93 343
testgi80.94 33780.20 32783.18 36687.96 37966.29 39291.28 30190.70 35283.70 21778.12 35592.84 22751.37 38890.82 39363.34 38482.46 31692.43 331
KD-MVS_self_test80.20 34279.24 33983.07 36785.64 39365.29 39691.01 30993.93 26478.71 31976.32 36786.40 37759.20 35792.93 37672.59 33169.35 38991.00 365
testing380.46 33979.59 33683.06 36893.44 24264.64 39993.33 23285.47 39484.34 20579.93 34190.84 29844.35 40492.39 37957.06 40287.56 26792.16 340
ambc83.06 36879.99 40963.51 40377.47 41292.86 29074.34 38284.45 38828.74 41395.06 34673.06 33068.89 39390.61 368
test20.0379.95 34579.08 34482.55 37085.79 39167.74 38991.09 30791.08 34081.23 28574.48 38189.96 32661.63 33390.15 39560.08 39376.38 37489.76 376
MVStest172.91 36769.70 37282.54 37178.14 41273.05 34388.21 36186.21 38860.69 40664.70 40190.53 30846.44 40085.70 40958.78 39853.62 41188.87 388
test_vis1_rt77.96 35776.46 35782.48 37285.89 39071.74 36290.25 32178.89 41171.03 39071.30 39381.35 40042.49 40691.05 39284.55 18682.37 31784.65 398
EU-MVSNet81.32 33180.95 31982.42 37388.50 37163.67 40293.32 23391.33 33564.02 40380.57 33192.83 22861.21 34292.27 38176.34 30380.38 35091.32 355
myMVS_eth3d79.67 34878.79 34782.32 37491.92 28564.08 40089.75 33787.40 38681.72 27078.82 35087.20 36945.33 40291.29 38959.09 39787.84 26491.60 349
ttmdpeth76.55 36174.64 36682.29 37582.25 40567.81 38889.76 33685.69 39270.35 39275.76 37291.69 26946.88 39989.77 39766.16 37363.23 40389.30 381
pmmvs371.81 37068.71 37381.11 37675.86 41470.42 37786.74 37883.66 40058.95 40968.64 39980.89 40136.93 41089.52 39963.10 38663.59 40183.39 399
Syy-MVS80.07 34379.78 33180.94 37791.92 28559.93 40889.75 33787.40 38681.72 27078.82 35087.20 36966.29 30491.29 38947.06 40987.84 26491.60 349
new-patchmatchnet76.41 36275.17 36480.13 37882.65 40459.61 40987.66 37191.08 34078.23 32869.85 39683.22 39254.76 37791.63 38864.14 38364.89 40089.16 385
mvsany_test374.95 36473.26 36880.02 37974.61 41563.16 40485.53 38778.42 41274.16 36574.89 37886.46 37436.02 41189.09 40182.39 21766.91 39587.82 396
test_fmvs377.67 35877.16 35579.22 38079.52 41061.14 40692.34 27291.64 32773.98 36778.86 34986.59 37327.38 41687.03 40488.12 14075.97 37689.50 378
DSMNet-mixed76.94 36076.29 35978.89 38183.10 40256.11 41787.78 36779.77 40960.65 40775.64 37388.71 34861.56 33688.34 40360.07 39489.29 24092.21 339
EGC-MVSNET61.97 37856.37 38378.77 38289.63 36073.50 33889.12 34982.79 4020.21 4281.24 42984.80 38639.48 40790.04 39644.13 41175.94 37772.79 410
new_pmnet72.15 36870.13 37178.20 38382.95 40365.68 39383.91 39782.40 40462.94 40564.47 40279.82 40242.85 40586.26 40857.41 40174.44 37982.65 403
MVS-HIRNet73.70 36672.20 36978.18 38491.81 29256.42 41682.94 40282.58 40355.24 41068.88 39766.48 41355.32 37495.13 34358.12 39988.42 25383.01 401
LCM-MVSNet66.00 37562.16 38077.51 38564.51 42558.29 41183.87 39890.90 34748.17 41454.69 41173.31 40916.83 42586.75 40565.47 37561.67 40587.48 397
APD_test169.04 37166.26 37777.36 38680.51 40862.79 40585.46 38883.51 40154.11 41259.14 40984.79 38723.40 41989.61 39855.22 40370.24 38779.68 407
test_f71.95 36970.87 37075.21 38774.21 41759.37 41085.07 39185.82 39165.25 40170.42 39583.13 39323.62 41782.93 41578.32 28171.94 38583.33 400
ANet_high58.88 38254.22 38772.86 38856.50 42856.67 41380.75 40786.00 39073.09 37737.39 42064.63 41622.17 42079.49 41843.51 41223.96 42282.43 404
test_vis3_rt65.12 37662.60 37872.69 38971.44 41860.71 40787.17 37565.55 42263.80 40453.22 41265.65 41514.54 42689.44 40076.65 29865.38 39867.91 413
FPMVS64.63 37762.55 37970.88 39070.80 41956.71 41284.42 39584.42 39851.78 41349.57 41381.61 39923.49 41881.48 41640.61 41676.25 37574.46 409
dmvs_testset74.57 36575.81 36370.86 39187.72 38240.47 42687.05 37777.90 41682.75 24371.15 39485.47 38467.98 28684.12 41345.26 41076.98 37388.00 394
N_pmnet68.89 37268.44 37470.23 39289.07 36528.79 43188.06 36219.50 43169.47 39471.86 39184.93 38561.24 34191.75 38654.70 40477.15 37090.15 373
testf159.54 38056.11 38469.85 39369.28 42056.61 41480.37 40876.55 41942.58 41745.68 41675.61 40411.26 42784.18 41143.20 41360.44 40768.75 411
APD_test259.54 38056.11 38469.85 39369.28 42056.61 41480.37 40876.55 41942.58 41745.68 41675.61 40411.26 42784.18 41143.20 41360.44 40768.75 411
WB-MVS67.92 37367.49 37569.21 39581.09 40641.17 42588.03 36378.00 41573.50 37262.63 40483.11 39563.94 31986.52 40625.66 42151.45 41379.94 406
PMMVS259.60 37956.40 38269.21 39568.83 42246.58 42173.02 41677.48 41755.07 41149.21 41472.95 41017.43 42480.04 41749.32 40844.33 41780.99 405
SSC-MVS67.06 37466.56 37668.56 39780.54 40740.06 42787.77 36877.37 41872.38 38261.75 40682.66 39763.37 32286.45 40724.48 42248.69 41679.16 408
Gipumacopyleft57.99 38454.91 38667.24 39888.51 36965.59 39452.21 41990.33 35743.58 41642.84 41951.18 42020.29 42285.07 41034.77 41770.45 38651.05 419
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 38648.46 39063.48 39945.72 43046.20 42273.41 41578.31 41341.03 41930.06 42265.68 4146.05 42983.43 41430.04 41965.86 39760.80 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai58.82 38358.24 38160.56 40083.13 40145.09 42482.32 40348.22 43067.61 39761.70 40769.15 41138.75 40876.05 41932.01 41841.31 41860.55 415
MVEpermissive39.65 2343.39 38838.59 39457.77 40156.52 42748.77 42055.38 41858.64 42629.33 42228.96 42352.65 4194.68 43064.62 42328.11 42033.07 42059.93 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 38748.47 38956.66 40252.26 42918.98 43341.51 42181.40 40610.10 42344.59 41875.01 40728.51 41468.16 42053.54 40549.31 41582.83 402
DeepMVS_CXcopyleft56.31 40374.23 41651.81 41956.67 42744.85 41548.54 41575.16 40627.87 41558.74 42540.92 41552.22 41258.39 417
kuosan53.51 38553.30 38854.13 40476.06 41345.36 42380.11 41048.36 42959.63 40854.84 41063.43 41737.41 40962.07 42420.73 42439.10 41954.96 418
E-PMN43.23 38942.29 39146.03 40565.58 42437.41 42873.51 41464.62 42333.99 42028.47 42447.87 42119.90 42367.91 42122.23 42324.45 42132.77 420
EMVS42.07 39041.12 39244.92 40663.45 42635.56 43073.65 41363.48 42433.05 42126.88 42545.45 42221.27 42167.14 42219.80 42523.02 42332.06 421
tmp_tt35.64 39139.24 39324.84 40714.87 43123.90 43262.71 41751.51 4286.58 42536.66 42162.08 41844.37 40330.34 42752.40 40622.00 42420.27 422
wuyk23d21.27 39320.48 39623.63 40868.59 42336.41 42949.57 4206.85 4329.37 4247.89 4264.46 4284.03 43131.37 42617.47 42616.07 4253.12 423
test1238.76 39511.22 3981.39 4090.85 4330.97 43485.76 3850.35 4340.54 4272.45 4288.14 4270.60 4320.48 4282.16 4280.17 4272.71 424
testmvs8.92 39411.52 3971.12 4101.06 4320.46 43586.02 3820.65 4330.62 4262.74 4279.52 4260.31 4330.45 4292.38 4270.39 4262.46 425
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
cdsmvs_eth3d_5k22.14 39229.52 3950.00 4110.00 4340.00 4360.00 42295.76 1650.00 4290.00 43094.29 17575.66 1810.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas6.64 3978.86 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42979.70 1300.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
ab-mvs-re7.82 39610.43 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43093.88 1950.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS64.08 40059.14 396
FOURS198.86 185.54 6798.29 197.49 689.79 5396.29 21
PC_three_145282.47 24797.09 1297.07 5792.72 198.04 17292.70 6599.02 1298.86 11
test_one_060198.58 1185.83 6197.44 1591.05 1596.78 1798.06 1591.45 11
eth-test20.00 434
eth-test0.00 434
ZD-MVS98.15 3486.62 3397.07 4983.63 21994.19 5096.91 6387.57 3199.26 4591.99 8798.44 53
RE-MVS-def93.68 5897.92 4384.57 8696.28 4396.76 7987.46 12893.75 6097.43 3682.94 8992.73 6197.80 7997.88 86
IU-MVS98.77 586.00 5096.84 6981.26 28397.26 895.50 2699.13 399.03 8
test_241102_TWO97.44 1590.31 3197.62 598.07 1391.46 1099.58 1095.66 2099.12 698.98 10
test_241102_ONE98.77 585.99 5297.44 1590.26 3797.71 197.96 2392.31 499.38 31
9.1494.47 2497.79 5296.08 6097.44 1586.13 16395.10 4097.40 3888.34 2299.22 4793.25 5398.70 34
save fliter97.85 4985.63 6695.21 12096.82 7289.44 61
test_0728_THIRD90.75 2097.04 1398.05 1792.09 699.55 1695.64 2299.13 399.13 2
test072698.78 385.93 5597.19 1197.47 1190.27 3597.64 498.13 491.47 8
GSMVS96.12 173
test_part298.55 1287.22 1996.40 20
sam_mvs171.70 23396.12 173
sam_mvs70.60 246
MTGPAbinary96.97 54
test_post188.00 3649.81 42569.31 26995.53 33376.65 298
test_post10.29 42470.57 25095.91 319
patchmatchnet-post83.76 39071.53 23496.48 289
MTMP96.16 5260.64 425
gm-plane-assit89.60 36168.00 38577.28 33688.99 34297.57 20179.44 270
test9_res91.91 9198.71 3298.07 73
TEST997.53 6186.49 3794.07 19796.78 7681.61 27592.77 8596.20 9387.71 2899.12 54
test_897.49 6386.30 4594.02 20296.76 7981.86 26692.70 8996.20 9387.63 2999.02 64
agg_prior290.54 11398.68 3798.27 56
agg_prior97.38 6685.92 5796.72 8592.16 10198.97 78
test_prior485.96 5494.11 192
test_prior294.12 19087.67 12692.63 9196.39 8886.62 4091.50 9998.67 40
旧先验293.36 23171.25 38894.37 4697.13 24886.74 158
新几何293.11 246
旧先验196.79 7981.81 17195.67 17396.81 6986.69 3997.66 8496.97 137
无先验93.28 23996.26 12073.95 36899.05 5880.56 25596.59 154
原ACMM292.94 253
test22296.55 8881.70 17392.22 27795.01 21568.36 39690.20 13796.14 9880.26 12397.80 7996.05 180
testdata298.75 10078.30 282
segment_acmp87.16 36
testdata192.15 27987.94 113
plane_prior794.70 17682.74 149
plane_prior694.52 18882.75 14774.23 199
plane_prior596.22 12598.12 15788.15 13789.99 22394.63 232
plane_prior494.86 152
plane_prior382.75 14790.26 3786.91 193
plane_prior295.85 8290.81 18
plane_prior194.59 182
plane_prior82.73 15095.21 12089.66 5889.88 228
n20.00 435
nn0.00 435
door-mid85.49 393
test1196.57 96
door85.33 395
HQP5-MVS81.56 175
HQP-NCC94.17 20894.39 17488.81 8285.43 238
ACMP_Plane94.17 20894.39 17488.81 8285.43 238
BP-MVS87.11 155
HQP4-MVS85.43 23897.96 17894.51 242
HQP3-MVS96.04 14289.77 232
HQP2-MVS73.83 209
NP-MVS94.37 19882.42 15993.98 188
MDTV_nov1_ep13_2view55.91 41887.62 37273.32 37484.59 26070.33 25374.65 31995.50 200
MDTV_nov1_ep1383.56 29591.69 29769.93 38087.75 36991.54 33078.60 32084.86 25488.90 34469.54 26496.03 31170.25 34588.93 245
ACMMP++_ref87.47 268
ACMMP++88.01 260
Test By Simon80.02 125