This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1299.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1299.06 999.07 5
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4792.59 298.94 7892.25 6198.99 1498.84 14
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4496.83 5988.12 2499.55 1693.41 4098.94 1698.28 50
MM95.68 588.34 996.68 3394.37 23295.08 194.68 3497.72 2282.94 8199.64 197.85 198.76 2899.06 7
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15197.67 398.10 788.41 2099.56 1294.66 2499.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+87.14 492.42 7391.37 8195.55 795.63 12188.73 697.07 1896.77 7490.84 1684.02 25696.62 7275.95 16199.34 3487.77 12897.68 7898.59 24
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10396.96 5292.09 695.32 2997.08 4789.49 1599.33 3795.10 2298.85 1998.66 20
ACMMP_NAP94.74 1594.56 1895.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3097.67 2485.90 4599.54 2093.91 3298.95 1598.60 23
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9397.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2599.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030494.60 1794.38 2295.23 1195.41 12987.49 1596.53 3892.75 27593.82 293.07 6397.84 2183.66 7299.59 897.61 298.76 2898.61 22
SF-MVS94.97 1194.90 1495.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2597.70 2388.28 2399.35 3393.89 3398.78 2598.48 30
MCST-MVS94.45 2194.20 3295.19 1398.46 1987.50 1495.00 12397.12 4187.13 12392.51 8196.30 8189.24 1799.34 3493.46 3798.62 4498.73 17
NCCC94.81 1494.69 1795.17 1497.83 4887.46 1695.66 8796.93 5692.34 493.94 4596.58 7487.74 2799.44 2992.83 4898.40 5298.62 21
DPM-MVS92.58 7091.74 7895.08 1596.19 9589.31 592.66 24696.56 9383.44 20791.68 10495.04 13286.60 3898.99 7085.60 15897.92 7096.93 122
ZNCC-MVS94.47 2094.28 2795.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 5997.04 5086.17 4299.62 292.40 5798.81 2298.52 26
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 1999.08 798.99 9
MTAPA94.42 2594.22 3095.00 1898.42 2186.95 2094.36 16896.97 5091.07 1393.14 6097.56 2584.30 6599.56 1293.43 3898.75 3098.47 33
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 1896.69 6489.90 1299.30 4094.70 2398.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R94.43 2394.27 2994.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5197.27 3685.22 5299.54 2092.21 6298.74 3198.56 25
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1798.10 789.39 1699.34 3495.88 1499.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR94.43 2394.28 2794.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5497.26 3885.04 5699.54 2092.35 5998.78 2598.50 27
GST-MVS94.21 3093.97 4094.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5696.83 5985.48 4999.59 891.43 8598.40 5298.30 47
HFP-MVS94.52 1994.40 2194.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 4997.21 4086.10 4399.49 2692.35 5998.77 2798.30 47
MP-MVS-pluss94.21 3094.00 3994.85 2598.17 3386.65 3094.82 13497.17 3986.26 14392.83 6997.87 2085.57 4899.56 1294.37 2898.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs93.27 5892.75 6694.85 2595.70 11987.66 1296.33 4296.41 9890.00 3794.09 4294.60 15282.33 9098.62 10192.40 5792.86 17198.27 52
XVS94.45 2194.32 2394.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6797.16 4585.02 5799.49 2691.99 7298.56 4898.47 33
X-MVStestdata88.31 17186.13 21794.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6723.41 39485.02 5799.49 2691.99 7298.56 4898.47 33
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 2897.46 2888.98 1999.40 3094.12 2998.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1799.02 1298.86 11
alignmvs93.08 6392.50 7094.81 3195.62 12287.61 1395.99 6996.07 12689.77 4594.12 4194.87 13780.56 10998.66 9692.42 5693.10 16798.15 61
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1599.13 398.84 14
DeepC-MVS_fast89.43 294.04 3593.79 4394.80 3297.48 6186.78 2595.65 8996.89 6089.40 5392.81 7096.97 5285.37 5199.24 4390.87 9598.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 2794.07 3694.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9197.19 4285.43 5099.56 1292.06 7198.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 2894.07 3694.75 3598.06 3986.90 2295.88 7496.94 5585.68 15795.05 3297.18 4387.31 3399.07 5391.90 7898.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS94.34 2694.21 3194.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7597.23 3985.20 5399.32 3892.15 6598.83 2198.25 55
PGM-MVS93.96 3993.72 4794.68 3798.43 2086.22 4695.30 10197.78 187.45 11893.26 5697.33 3484.62 6399.51 2490.75 9798.57 4798.32 46
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 1999.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
mPP-MVS93.99 3893.78 4494.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10097.17 4483.96 6999.55 1691.44 8498.64 4398.43 38
PHI-MVS93.89 4093.65 5194.62 4096.84 7586.43 3896.69 3297.49 685.15 17193.56 5396.28 8285.60 4799.31 3992.45 5498.79 2398.12 64
TSAR-MVS + MP.94.85 1394.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 1896.96 5389.09 1898.94 7894.48 2698.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CANet93.54 4893.20 5894.55 4295.65 12085.73 6394.94 12696.69 8491.89 890.69 11695.88 10081.99 10099.54 2093.14 4497.95 6998.39 39
train_agg93.44 5293.08 5994.52 4397.53 5886.49 3694.07 18496.78 7281.86 24592.77 7296.20 8587.63 2999.12 5192.14 6698.69 3597.94 74
CDPH-MVS92.83 6692.30 7294.44 4497.79 4986.11 4894.06 18696.66 8580.09 27492.77 7296.63 7186.62 3699.04 5787.40 13498.66 4098.17 60
3Dnovator86.66 591.73 8290.82 9394.44 4494.59 16886.37 4097.18 1297.02 4789.20 6084.31 25296.66 6773.74 19799.17 4786.74 14497.96 6897.79 85
SR-MVS94.23 2994.17 3494.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 3897.40 3184.75 6299.03 5893.35 4197.99 6798.48 30
HPM-MVScopyleft94.02 3693.88 4194.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 7896.80 6384.85 6199.17 4792.43 5598.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.93.66 4693.41 5394.41 4896.59 8286.78 2594.40 16193.93 24889.77 4594.21 3995.59 11387.35 3298.61 10292.72 5196.15 10797.83 83
test1294.34 4997.13 7086.15 4796.29 10491.04 11385.08 5599.01 6398.13 6197.86 80
ACMMPcopyleft93.24 5992.88 6494.30 5098.09 3885.33 6796.86 2797.45 1488.33 8890.15 12597.03 5181.44 10399.51 2490.85 9695.74 11098.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS88.79 393.31 5792.99 6294.26 5196.07 10285.83 5994.89 12996.99 4889.02 6989.56 13097.37 3382.51 8799.38 3192.20 6398.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPNet91.79 7991.02 8994.10 5290.10 32685.25 6896.03 6692.05 29592.83 387.39 16995.78 10579.39 12499.01 6388.13 12497.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n94.60 1794.81 1593.98 5394.62 16784.96 7096.15 5597.35 2289.37 5496.03 2198.11 586.36 3999.01 6397.45 397.83 7397.96 73
DELS-MVS93.43 5593.25 5693.97 5495.42 12885.04 6993.06 23597.13 4090.74 2191.84 9895.09 13186.32 4099.21 4591.22 8698.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon91.95 7791.28 8393.96 5598.33 2785.92 5694.66 14596.66 8582.69 22690.03 12795.82 10382.30 9199.03 5884.57 17096.48 10296.91 124
HPM-MVS_fast93.40 5693.22 5793.94 5698.36 2584.83 7297.15 1396.80 7185.77 15492.47 8297.13 4682.38 8899.07 5390.51 10298.40 5297.92 77
test_fmvsmconf0.1_n94.20 3294.31 2593.88 5792.46 24584.80 7396.18 5296.82 6889.29 5795.68 2698.11 585.10 5498.99 7097.38 497.75 7797.86 80
SD-MVS94.96 1295.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3689.53 1496.91 24694.38 2798.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5193.31 5493.84 5996.99 7284.84 7193.24 22897.24 3288.76 7591.60 10595.85 10186.07 4498.66 9691.91 7698.16 5998.03 70
SR-MVS-dyc-post93.82 4193.82 4293.82 6097.92 4384.57 7896.28 4596.76 7587.46 11693.75 4797.43 2984.24 6699.01 6392.73 4997.80 7497.88 78
test_prior93.82 6097.29 6784.49 8296.88 6198.87 8298.11 65
APD-MVS_3200maxsize93.78 4293.77 4593.80 6297.92 4384.19 9296.30 4396.87 6286.96 12793.92 4697.47 2783.88 7098.96 7792.71 5297.87 7198.26 54
CSCG93.23 6093.05 6093.76 6398.04 4084.07 9496.22 4997.37 2184.15 18990.05 12695.66 11087.77 2699.15 5089.91 10598.27 5698.07 66
test_fmvsmconf0.01_n93.19 6193.02 6193.71 6489.25 33884.42 8996.06 6496.29 10489.06 6494.68 3498.13 379.22 12698.98 7497.22 597.24 8497.74 87
UA-Net92.83 6692.54 6993.68 6596.10 10084.71 7595.66 8796.39 9991.92 793.22 5896.49 7783.16 7798.87 8284.47 17295.47 11797.45 99
QAPM89.51 13188.15 15793.59 6694.92 15184.58 7796.82 2996.70 8378.43 29883.41 27196.19 8873.18 20499.30 4077.11 27696.54 9996.89 125
test_fmvsm_n_192094.71 1695.11 1093.50 6795.79 11484.62 7696.15 5597.64 289.85 4097.19 897.89 1986.28 4198.71 9597.11 698.08 6597.17 108
casdiffmvs_mvgpermissive92.96 6592.83 6593.35 6894.59 16883.40 11495.00 12396.34 10290.30 3092.05 8996.05 9383.43 7398.15 14192.07 6895.67 11198.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set93.01 6492.92 6393.29 6995.01 14483.51 11194.48 15395.77 14990.87 1592.52 8096.67 6684.50 6499.00 6891.99 7294.44 14297.36 100
Vis-MVSNetpermissive91.75 8191.23 8493.29 6995.32 13183.78 10196.14 5795.98 13289.89 3890.45 11896.58 7475.09 17398.31 13284.75 16896.90 9197.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test94.02 3694.29 2693.24 7196.69 7883.24 11797.49 596.92 5792.14 592.90 6595.77 10685.02 5798.33 12993.03 4598.62 4498.13 62
VNet92.24 7591.91 7693.24 7196.59 8283.43 11294.84 13396.44 9689.19 6194.08 4395.90 9977.85 14598.17 13988.90 11593.38 16198.13 62
VDD-MVS90.74 9889.92 11093.20 7396.27 9383.02 12995.73 8293.86 25288.42 8792.53 7996.84 5862.09 31598.64 9890.95 9392.62 17497.93 76
CS-MVS94.12 3494.44 2093.17 7496.55 8483.08 12797.63 396.95 5491.71 1193.50 5596.21 8485.61 4698.24 13493.64 3598.17 5898.19 58
nrg03091.08 9490.39 9693.17 7493.07 22786.91 2196.41 3996.26 10888.30 9088.37 14994.85 14082.19 9597.64 18391.09 8782.95 28794.96 195
EI-MVSNet-UG-set92.74 6892.62 6893.12 7694.86 15583.20 11994.40 16195.74 15290.71 2392.05 8996.60 7384.00 6898.99 7091.55 8293.63 15297.17 108
test_fmvsmvis_n_192093.44 5293.55 5293.10 7793.67 21184.26 9195.83 7796.14 11889.00 7092.43 8397.50 2683.37 7698.72 9496.61 1097.44 8196.32 142
新几何193.10 7797.30 6684.35 9095.56 16671.09 36491.26 11196.24 8382.87 8398.86 8479.19 25698.10 6296.07 155
OMC-MVS91.23 9090.62 9593.08 7996.27 9384.07 9493.52 21295.93 13686.95 12889.51 13196.13 9178.50 13698.35 12685.84 15692.90 17096.83 128
OpenMVScopyleft83.78 1188.74 16087.29 17793.08 7992.70 24085.39 6696.57 3696.43 9778.74 29380.85 30196.07 9269.64 24799.01 6378.01 26796.65 9894.83 202
MAR-MVS90.30 10889.37 12193.07 8196.61 8184.48 8395.68 8595.67 15882.36 23187.85 15792.85 21476.63 15598.80 9080.01 24496.68 9795.91 160
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
lupinMVS90.92 9590.21 9993.03 8293.86 20183.88 9992.81 24393.86 25279.84 27691.76 10194.29 16277.92 14298.04 15790.48 10397.11 8597.17 108
Effi-MVS+91.59 8591.11 8693.01 8394.35 18483.39 11594.60 14795.10 19687.10 12490.57 11793.10 20981.43 10498.07 15589.29 11194.48 14097.59 93
fmvsm_s_conf0.5_n_a93.57 4793.76 4693.00 8495.02 14383.67 10496.19 5096.10 12387.27 12195.98 2298.05 1383.07 8098.45 11796.68 995.51 11496.88 126
MVS_111021_LR92.47 7292.29 7392.98 8595.99 10884.43 8793.08 23396.09 12488.20 9691.12 11295.72 10981.33 10597.76 17291.74 7997.37 8396.75 130
fmvsm_s_conf0.1_n_a93.19 6193.26 5592.97 8692.49 24383.62 10796.02 6795.72 15586.78 13396.04 2098.19 182.30 9198.43 12196.38 1195.42 12096.86 127
ETV-MVS92.74 6892.66 6792.97 8695.20 13784.04 9695.07 11996.51 9490.73 2292.96 6491.19 27184.06 6798.34 12791.72 8096.54 9996.54 138
LFMVS90.08 11389.13 12792.95 8896.71 7782.32 15396.08 6189.91 34586.79 13292.15 8896.81 6162.60 31398.34 12787.18 13893.90 14898.19 58
UGNet89.95 11988.95 13192.95 8894.51 17483.31 11695.70 8495.23 18989.37 5487.58 16393.94 17864.00 30298.78 9183.92 17996.31 10496.74 131
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason90.80 9690.10 10392.90 9093.04 22983.53 11093.08 23394.15 24180.22 27191.41 10894.91 13576.87 14997.93 16690.28 10496.90 9197.24 104
jason: jason.
DP-MVS87.25 21285.36 24492.90 9097.65 5583.24 11794.81 13592.00 29774.99 33281.92 29095.00 13372.66 21099.05 5566.92 34692.33 17896.40 140
fmvsm_s_conf0.5_n93.76 4394.06 3892.86 9295.62 12283.17 12096.14 5796.12 12188.13 9995.82 2498.04 1683.43 7398.48 10996.97 796.23 10596.92 123
fmvsm_s_conf0.1_n93.46 5093.66 5092.85 9393.75 20783.13 12296.02 6795.74 15287.68 11395.89 2398.17 282.78 8498.46 11396.71 896.17 10696.98 119
CANet_DTU90.26 11089.41 12092.81 9493.46 21783.01 13093.48 21394.47 22789.43 5287.76 16194.23 16670.54 23799.03 5884.97 16396.39 10396.38 141
MVSFormer91.68 8491.30 8292.80 9593.86 20183.88 9995.96 7195.90 14084.66 18391.76 10194.91 13577.92 14297.30 21689.64 10797.11 8597.24 104
PVSNet_Blended_VisFu91.38 8790.91 9192.80 9596.39 9083.17 12094.87 13196.66 8583.29 21189.27 13594.46 15680.29 11199.17 4787.57 13295.37 12196.05 157
VDDNet89.56 13088.49 14892.76 9795.07 14282.09 15596.30 4393.19 26581.05 26691.88 9696.86 5761.16 32798.33 12988.43 12192.49 17797.84 82
h-mvs3390.80 9690.15 10292.75 9896.01 10482.66 14495.43 9595.53 17089.80 4193.08 6195.64 11175.77 16299.00 6892.07 6878.05 34296.60 134
casdiffmvspermissive92.51 7192.43 7192.74 9994.41 18081.98 15894.54 15196.23 11289.57 4991.96 9396.17 8982.58 8698.01 15990.95 9395.45 11998.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl90.69 10090.02 10892.71 10095.72 11782.41 15194.11 17995.12 19485.63 15991.49 10694.70 14674.75 17798.42 12286.13 15192.53 17597.31 101
DCV-MVSNet90.69 10090.02 10892.71 10095.72 11782.41 15194.11 17995.12 19485.63 15991.49 10694.70 14674.75 17798.42 12286.13 15192.53 17597.31 101
PCF-MVS84.11 1087.74 18686.08 22192.70 10294.02 19284.43 8789.27 32095.87 14373.62 34684.43 24494.33 15978.48 13798.86 8470.27 32194.45 14194.81 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline92.39 7492.29 7392.69 10394.46 17781.77 16394.14 17796.27 10789.22 5991.88 9696.00 9482.35 8997.99 16191.05 8895.27 12598.30 47
MSLP-MVS++93.72 4594.08 3592.65 10497.31 6583.43 11295.79 7997.33 2590.03 3693.58 5196.96 5384.87 6097.76 17292.19 6498.66 4096.76 129
EC-MVSNet93.44 5293.71 4892.63 10595.21 13682.43 14897.27 996.71 8290.57 2692.88 6695.80 10483.16 7798.16 14093.68 3498.14 6097.31 101
ab-mvs89.41 13788.35 15092.60 10695.15 14082.65 14592.20 26395.60 16583.97 19388.55 14593.70 19174.16 18998.21 13882.46 20189.37 21296.94 121
LS3D87.89 18186.32 21192.59 10796.07 10282.92 13495.23 10794.92 20775.66 32482.89 27895.98 9672.48 21399.21 4568.43 33595.23 12695.64 173
Anonymous2024052988.09 17786.59 20192.58 10896.53 8681.92 16095.99 6995.84 14574.11 34189.06 13995.21 12561.44 32198.81 8983.67 18487.47 24797.01 117
CPTT-MVS91.99 7691.80 7792.55 10998.24 3181.98 15896.76 3096.49 9581.89 24490.24 12196.44 7978.59 13498.61 10289.68 10697.85 7297.06 113
114514_t89.51 13188.50 14692.54 11098.11 3681.99 15795.16 11496.36 10170.19 36785.81 20095.25 12276.70 15398.63 10082.07 20896.86 9497.00 118
PAPM_NR91.22 9190.78 9492.52 11197.60 5681.46 17294.37 16796.24 11186.39 14187.41 16694.80 14382.06 9898.48 10982.80 19695.37 12197.61 91
DeepPCF-MVS89.96 194.20 3294.77 1692.49 11296.52 8780.00 21794.00 19297.08 4490.05 3595.65 2797.29 3589.66 1398.97 7593.95 3198.71 3298.50 27
IS-MVSNet91.43 8691.09 8892.46 11395.87 11381.38 17596.95 1993.69 25889.72 4789.50 13295.98 9678.57 13597.77 17183.02 19096.50 10198.22 57
API-MVS90.66 10290.07 10492.45 11496.36 9184.57 7896.06 6495.22 19182.39 22989.13 13694.27 16580.32 11098.46 11380.16 24396.71 9694.33 228
xiu_mvs_v1_base_debu90.64 10390.05 10592.40 11593.97 19884.46 8493.32 21995.46 17385.17 16892.25 8494.03 17070.59 23398.57 10590.97 9094.67 13294.18 233
xiu_mvs_v1_base90.64 10390.05 10592.40 11593.97 19884.46 8493.32 21995.46 17385.17 16892.25 8494.03 17070.59 23398.57 10590.97 9094.67 13294.18 233
xiu_mvs_v1_base_debi90.64 10390.05 10592.40 11593.97 19884.46 8493.32 21995.46 17385.17 16892.25 8494.03 17070.59 23398.57 10590.97 9094.67 13294.18 233
AdaColmapbinary89.89 12289.07 12892.37 11897.41 6283.03 12894.42 16095.92 13782.81 22386.34 19394.65 15073.89 19399.02 6180.69 23495.51 11495.05 190
CNLPA89.07 14987.98 16192.34 11996.87 7484.78 7494.08 18393.24 26381.41 25784.46 24295.13 13075.57 16996.62 25777.21 27493.84 15095.61 176
ET-MVSNet_ETH3D87.51 20085.91 22992.32 12093.70 21083.93 9792.33 25890.94 32684.16 18872.09 36392.52 22669.90 24295.85 30089.20 11288.36 23397.17 108
Anonymous20240521187.68 18786.13 21792.31 12196.66 7980.74 19394.87 13191.49 31380.47 27089.46 13395.44 11554.72 35498.23 13582.19 20689.89 20297.97 72
CHOSEN 1792x268888.84 15687.69 16792.30 12296.14 9681.42 17490.01 30895.86 14474.52 33787.41 16693.94 17875.46 17098.36 12480.36 23995.53 11397.12 112
HY-MVS83.01 1289.03 15187.94 16392.29 12394.86 15582.77 13692.08 26894.49 22681.52 25686.93 17692.79 22078.32 13998.23 13579.93 24590.55 19295.88 162
CDS-MVSNet89.45 13488.51 14592.29 12393.62 21283.61 10993.01 23694.68 22381.95 24087.82 15993.24 20378.69 13296.99 24180.34 24093.23 16596.28 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR90.02 11589.27 12692.29 12395.78 11580.95 18792.68 24596.22 11381.91 24286.66 18693.75 19082.23 9398.44 11979.40 25594.79 13097.48 97
PLCcopyleft84.53 789.06 15088.03 16092.15 12697.27 6882.69 14394.29 16995.44 17879.71 27884.01 25794.18 16776.68 15498.75 9277.28 27393.41 16095.02 191
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPP-MVSNet91.70 8391.56 8092.13 12795.88 11180.50 19997.33 795.25 18886.15 14789.76 12995.60 11283.42 7598.32 13187.37 13693.25 16497.56 95
patch_mono-293.74 4494.32 2392.01 12897.54 5778.37 25593.40 21697.19 3588.02 10194.99 3397.21 4088.35 2198.44 11994.07 3098.09 6399.23 1
原ACMM192.01 12897.34 6481.05 18396.81 7078.89 28890.45 11895.92 9882.65 8598.84 8880.68 23598.26 5796.14 149
UniMVSNet (Re)89.80 12489.07 12892.01 12893.60 21384.52 8194.78 13797.47 1189.26 5886.44 19192.32 23282.10 9697.39 21284.81 16780.84 32094.12 237
MG-MVS91.77 8091.70 7992.00 13197.08 7180.03 21593.60 21095.18 19287.85 10990.89 11496.47 7882.06 9898.36 12485.07 16297.04 8897.62 90
EIA-MVS91.95 7791.94 7591.98 13295.16 13880.01 21695.36 9696.73 7988.44 8589.34 13492.16 23783.82 7198.45 11789.35 10997.06 8797.48 97
PVSNet_Blended90.73 9990.32 9891.98 13296.12 9781.25 17792.55 25096.83 6682.04 23889.10 13792.56 22581.04 10798.85 8686.72 14695.91 10895.84 164
PS-MVSNAJ91.18 9290.92 9091.96 13495.26 13482.60 14792.09 26795.70 15686.27 14291.84 9892.46 22779.70 11998.99 7089.08 11395.86 10994.29 231
TAMVS89.21 14388.29 15491.96 13493.71 20882.62 14693.30 22394.19 23982.22 23387.78 16093.94 17878.83 12996.95 24377.70 26992.98 16996.32 142
SDMVSNet90.19 11189.61 11491.93 13696.00 10583.09 12692.89 24095.98 13288.73 7686.85 18295.20 12672.09 21797.08 23488.90 11589.85 20495.63 174
FA-MVS(test-final)89.66 12688.91 13391.93 13694.57 17180.27 20391.36 28194.74 22084.87 17689.82 12892.61 22474.72 18098.47 11283.97 17893.53 15597.04 115
MVS_Test91.31 8991.11 8691.93 13694.37 18180.14 20893.46 21595.80 14786.46 13991.35 11093.77 18882.21 9498.09 15287.57 13294.95 12897.55 96
NR-MVSNet88.58 16687.47 17391.93 13693.04 22984.16 9394.77 13896.25 11089.05 6580.04 31493.29 20179.02 12897.05 23881.71 21980.05 33094.59 210
HyFIR lowres test88.09 17786.81 18991.93 13696.00 10580.63 19590.01 30895.79 14873.42 34887.68 16292.10 24373.86 19497.96 16380.75 23391.70 18197.19 107
GeoE90.05 11489.43 11991.90 14195.16 13880.37 20295.80 7894.65 22483.90 19487.55 16594.75 14578.18 14097.62 18581.28 22393.63 15297.71 88
thisisatest053088.67 16187.61 16991.86 14294.87 15480.07 21194.63 14689.90 34684.00 19288.46 14793.78 18766.88 27998.46 11383.30 18692.65 17397.06 113
xiu_mvs_v2_base91.13 9390.89 9291.86 14294.97 14782.42 14992.24 26195.64 16386.11 15091.74 10393.14 20779.67 12298.89 8189.06 11495.46 11894.28 232
DU-MVS89.34 14288.50 14691.85 14493.04 22983.72 10294.47 15696.59 9089.50 5086.46 18893.29 20177.25 14797.23 22584.92 16481.02 31694.59 210
OPM-MVS90.12 11289.56 11591.82 14593.14 22483.90 9894.16 17695.74 15288.96 7187.86 15695.43 11772.48 21397.91 16788.10 12690.18 19793.65 267
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 10690.19 10091.82 14594.70 16382.73 14095.85 7596.22 11390.81 1786.91 17894.86 13874.23 18598.12 14288.15 12289.99 19894.63 207
UniMVSNet_NR-MVSNet89.92 12189.29 12491.81 14793.39 21983.72 10294.43 15997.12 4189.80 4186.46 18893.32 19883.16 7797.23 22584.92 16481.02 31694.49 222
diffmvspermissive91.37 8891.23 8491.77 14893.09 22680.27 20392.36 25595.52 17187.03 12691.40 10994.93 13480.08 11397.44 20092.13 6794.56 13797.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.42 16787.33 17691.72 14994.92 15180.98 18592.97 23894.54 22578.16 30483.82 26093.88 18378.78 13197.91 16779.45 25189.41 21196.26 146
Fast-Effi-MVS+89.41 13788.64 14091.71 15094.74 15980.81 19193.54 21195.10 19683.11 21586.82 18490.67 28979.74 11897.75 17580.51 23893.55 15496.57 136
WTY-MVS89.60 12888.92 13291.67 15195.47 12781.15 18192.38 25494.78 21883.11 21589.06 13994.32 16078.67 13396.61 26081.57 22090.89 19197.24 104
TAPA-MVS84.62 688.16 17587.01 18591.62 15296.64 8080.65 19494.39 16396.21 11676.38 31786.19 19695.44 11579.75 11798.08 15462.75 36195.29 12396.13 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
iter_conf_final89.42 13688.69 13991.60 15395.12 14182.93 13395.75 8192.14 29287.32 12087.12 17394.07 16867.09 27597.55 18990.61 9989.01 22094.32 229
VPA-MVSNet89.62 12788.96 13091.60 15393.86 20182.89 13595.46 9497.33 2587.91 10488.43 14893.31 19974.17 18897.40 20987.32 13782.86 29294.52 215
FE-MVS87.40 20586.02 22391.57 15594.56 17279.69 22590.27 29793.72 25780.57 26988.80 14291.62 26065.32 29498.59 10474.97 29794.33 14496.44 139
XVG-OURS89.40 13988.70 13891.52 15694.06 19081.46 17291.27 28396.07 12686.14 14888.89 14195.77 10668.73 26397.26 22287.39 13589.96 20095.83 165
hse-mvs289.88 12389.34 12291.51 15794.83 15781.12 18293.94 19593.91 25189.80 4193.08 6193.60 19275.77 16297.66 17992.07 6877.07 34995.74 169
TranMVSNet+NR-MVSNet88.84 15687.95 16291.49 15892.68 24183.01 13094.92 12896.31 10389.88 3985.53 20993.85 18576.63 15596.96 24281.91 21279.87 33394.50 220
AUN-MVS87.78 18586.54 20391.48 15994.82 15881.05 18393.91 19993.93 24883.00 21886.93 17693.53 19369.50 24997.67 17786.14 14977.12 34895.73 171
XVG-OURS-SEG-HR89.95 11989.45 11791.47 16094.00 19681.21 18091.87 27096.06 12885.78 15388.55 14595.73 10874.67 18197.27 22088.71 11889.64 20995.91 160
MVS87.44 20386.10 22091.44 16192.61 24283.62 10792.63 24795.66 16067.26 37181.47 29392.15 23877.95 14198.22 13779.71 24795.48 11692.47 307
F-COLMAP87.95 18086.80 19091.40 16296.35 9280.88 18994.73 14095.45 17679.65 27982.04 28894.61 15171.13 22498.50 10876.24 28591.05 18994.80 204
dcpmvs_293.49 4994.19 3391.38 16397.69 5476.78 28794.25 17196.29 10488.33 8894.46 3696.88 5688.07 2598.64 9893.62 3698.09 6398.73 17
thisisatest051587.33 20885.99 22491.37 16493.49 21579.55 22790.63 29389.56 35280.17 27287.56 16490.86 28267.07 27698.28 13381.50 22193.02 16896.29 144
HQP-MVS89.80 12489.28 12591.34 16594.17 18781.56 16694.39 16396.04 12988.81 7285.43 21993.97 17773.83 19597.96 16387.11 14189.77 20794.50 220
mvsmamba89.96 11889.50 11691.33 16692.90 23681.82 16196.68 3392.37 28389.03 6787.00 17494.85 14073.05 20597.65 18091.03 8988.63 22594.51 217
FMVSNet387.40 20586.11 21991.30 16793.79 20683.64 10694.20 17594.81 21683.89 19584.37 24591.87 25268.45 26696.56 26578.23 26485.36 26593.70 266
FMVSNet287.19 21885.82 23191.30 16794.01 19383.67 10494.79 13694.94 20283.57 20283.88 25992.05 24766.59 28496.51 26877.56 27185.01 26893.73 263
RPMNet83.95 28181.53 29091.21 16990.58 31779.34 23485.24 36296.76 7571.44 36285.55 20682.97 36970.87 22998.91 8061.01 36589.36 21395.40 180
IB-MVS80.51 1585.24 26483.26 27691.19 17092.13 25479.86 22191.75 27391.29 31883.28 21280.66 30488.49 32561.28 32298.46 11380.99 22979.46 33695.25 185
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS89.47 13388.90 13491.18 17194.22 18682.07 15692.13 26596.09 12487.90 10585.37 22592.45 22874.38 18397.56 18887.15 13990.43 19393.93 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf0588.85 15588.08 15991.17 17294.27 18581.64 16595.18 11192.15 29186.23 14587.28 17094.07 16863.89 30697.55 18990.63 9889.00 22194.32 229
LPG-MVS_test89.45 13488.90 13491.12 17394.47 17581.49 17095.30 10196.14 11886.73 13585.45 21695.16 12869.89 24398.10 14487.70 13089.23 21693.77 260
LGP-MVS_train91.12 17394.47 17581.49 17096.14 11886.73 13585.45 21695.16 12869.89 24398.10 14487.70 13089.23 21693.77 260
ACMM84.12 989.14 14488.48 14991.12 17394.65 16681.22 17995.31 9996.12 12185.31 16785.92 19994.34 15870.19 24198.06 15685.65 15788.86 22394.08 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tttt051788.61 16387.78 16691.11 17694.96 14877.81 27095.35 9789.69 34985.09 17388.05 15494.59 15366.93 27798.48 10983.27 18792.13 18097.03 116
GBi-Net87.26 21085.98 22591.08 17794.01 19383.10 12395.14 11594.94 20283.57 20284.37 24591.64 25666.59 28496.34 28178.23 26485.36 26593.79 255
test187.26 21085.98 22591.08 17794.01 19383.10 12395.14 11594.94 20283.57 20284.37 24591.64 25666.59 28496.34 28178.23 26485.36 26593.79 255
FMVSNet185.85 25184.11 26591.08 17792.81 23883.10 12395.14 11594.94 20281.64 25282.68 28091.64 25659.01 33996.34 28175.37 29183.78 27793.79 255
Test_1112_low_res87.65 18986.51 20491.08 17794.94 15079.28 23891.77 27294.30 23576.04 32283.51 26992.37 23077.86 14497.73 17678.69 25989.13 21896.22 147
PS-MVSNAJss89.97 11789.62 11391.02 18191.90 26380.85 19095.26 10695.98 13286.26 14386.21 19594.29 16279.70 11997.65 18088.87 11788.10 23594.57 212
BH-RMVSNet88.37 16987.48 17291.02 18195.28 13279.45 23092.89 24093.07 26785.45 16486.91 17894.84 14270.35 23897.76 17273.97 30394.59 13695.85 163
UniMVSNet_ETH3D87.53 19986.37 20891.00 18392.44 24678.96 24394.74 13995.61 16484.07 19185.36 22694.52 15559.78 33597.34 21482.93 19187.88 24096.71 132
FIs90.51 10790.35 9790.99 18493.99 19780.98 18595.73 8297.54 489.15 6286.72 18594.68 14881.83 10297.24 22485.18 16188.31 23494.76 205
ACMP84.23 889.01 15388.35 15090.99 18494.73 16081.27 17695.07 11995.89 14286.48 13883.67 26494.30 16169.33 25297.99 16187.10 14388.55 22693.72 264
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 23685.13 24890.98 18696.52 8781.50 16896.14 5796.16 11773.78 34483.65 26592.15 23863.26 31097.37 21382.82 19581.74 30594.06 242
sss88.93 15488.26 15690.94 18794.05 19180.78 19291.71 27495.38 18281.55 25588.63 14493.91 18275.04 17495.47 31682.47 20091.61 18296.57 136
sd_testset88.59 16587.85 16590.83 18896.00 10580.42 20192.35 25694.71 22188.73 7686.85 18295.20 12667.31 27096.43 27579.64 24989.85 20495.63 174
PVSNet_BlendedMVS89.98 11689.70 11290.82 18996.12 9781.25 17793.92 19796.83 6683.49 20689.10 13792.26 23581.04 10798.85 8686.72 14687.86 24192.35 313
cascas86.43 24384.98 25190.80 19092.10 25680.92 18890.24 30195.91 13973.10 35183.57 26888.39 32665.15 29697.46 19784.90 16691.43 18394.03 244
ECVR-MVScopyleft89.09 14788.53 14490.77 19195.62 12275.89 29996.16 5384.22 37287.89 10790.20 12296.65 6863.19 31198.10 14485.90 15496.94 8998.33 43
GA-MVS86.61 23485.27 24690.66 19291.33 28678.71 24590.40 29693.81 25585.34 16685.12 22989.57 31061.25 32397.11 23380.99 22989.59 21096.15 148
thres600view787.65 18986.67 19690.59 19396.08 10178.72 24494.88 13091.58 30987.06 12588.08 15292.30 23368.91 26098.10 14470.05 32891.10 18594.96 195
thres40087.62 19486.64 19790.57 19495.99 10878.64 24694.58 14891.98 29986.94 12988.09 15091.77 25369.18 25798.10 14470.13 32591.10 18594.96 195
baseline188.10 17687.28 17890.57 19494.96 14880.07 21194.27 17091.29 31886.74 13487.41 16694.00 17576.77 15296.20 28580.77 23279.31 33895.44 178
FC-MVSNet-test90.27 10990.18 10190.53 19693.71 20879.85 22295.77 8097.59 389.31 5686.27 19494.67 14981.93 10197.01 24084.26 17488.09 23794.71 206
PAPM86.68 23385.39 24290.53 19693.05 22879.33 23789.79 31194.77 21978.82 29081.95 28993.24 20376.81 15097.30 21666.94 34493.16 16694.95 198
WR-MVS88.38 16887.67 16890.52 19893.30 22180.18 20693.26 22695.96 13588.57 8385.47 21592.81 21876.12 15796.91 24681.24 22482.29 29694.47 225
MVSTER88.84 15688.29 15490.51 19992.95 23480.44 20093.73 20495.01 19984.66 18387.15 17193.12 20872.79 20997.21 22787.86 12787.36 25093.87 250
RRT_MVS89.09 14788.62 14390.49 20092.85 23779.65 22696.41 3994.41 23088.22 9485.50 21294.77 14469.36 25197.31 21589.33 11086.73 25794.51 217
testdata90.49 20096.40 8977.89 26795.37 18472.51 35693.63 5096.69 6482.08 9797.65 18083.08 18897.39 8295.94 159
test111189.10 14588.64 14090.48 20295.53 12674.97 30696.08 6184.89 37088.13 9990.16 12496.65 6863.29 30998.10 14486.14 14996.90 9198.39 39
tt080586.92 22585.74 23790.48 20292.22 25079.98 21895.63 9094.88 21083.83 19784.74 23592.80 21957.61 34397.67 17785.48 16084.42 27293.79 255
jajsoiax88.24 17387.50 17190.48 20290.89 30680.14 20895.31 9995.65 16284.97 17584.24 25394.02 17365.31 29597.42 20288.56 11988.52 22893.89 247
PatchMatch-RL86.77 23285.54 23890.47 20595.88 11182.71 14290.54 29492.31 28679.82 27784.32 25091.57 26468.77 26296.39 27773.16 30893.48 15992.32 314
tfpn200view987.58 19786.64 19790.41 20695.99 10878.64 24694.58 14891.98 29986.94 12988.09 15091.77 25369.18 25798.10 14470.13 32591.10 18594.48 223
VPNet88.20 17487.47 17390.39 20793.56 21479.46 22994.04 18795.54 16988.67 7986.96 17594.58 15469.33 25297.15 22984.05 17780.53 32594.56 213
ACMH80.38 1785.36 25983.68 27290.39 20794.45 17880.63 19594.73 14094.85 21282.09 23577.24 33692.65 22260.01 33397.58 18672.25 31284.87 26992.96 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90087.63 19286.71 19490.38 20996.12 9778.55 24895.03 12291.58 30987.15 12288.06 15392.29 23468.91 26098.10 14470.13 32591.10 18594.48 223
mvs_tets88.06 17987.28 17890.38 20990.94 30279.88 22095.22 10895.66 16085.10 17284.21 25493.94 17863.53 30797.40 20988.50 12088.40 23293.87 250
131487.51 20086.57 20290.34 21192.42 24779.74 22492.63 24795.35 18678.35 29980.14 31191.62 26074.05 19097.15 22981.05 22593.53 15594.12 237
LTVRE_ROB82.13 1386.26 24584.90 25490.34 21194.44 17981.50 16892.31 26094.89 20883.03 21779.63 32092.67 22169.69 24697.79 17071.20 31686.26 26091.72 324
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
bld_raw_dy_0_6487.60 19686.73 19290.21 21391.72 27080.26 20595.09 11888.61 35485.68 15785.55 20694.38 15763.93 30596.66 25487.73 12987.84 24293.72 264
test_djsdf89.03 15188.64 14090.21 21390.74 31279.28 23895.96 7195.90 14084.66 18385.33 22792.94 21374.02 19197.30 21689.64 10788.53 22794.05 243
v2v48287.84 18287.06 18290.17 21590.99 29879.23 24194.00 19295.13 19384.87 17685.53 20992.07 24674.45 18297.45 19884.71 16981.75 30493.85 253
pmmvs485.43 25783.86 27090.16 21690.02 32982.97 13290.27 29792.67 27875.93 32380.73 30291.74 25571.05 22595.73 30778.85 25883.46 28491.78 323
V4287.68 18786.86 18790.15 21790.58 31780.14 20894.24 17395.28 18783.66 20085.67 20391.33 26674.73 17997.41 20784.43 17381.83 30292.89 296
MSDG84.86 27083.09 27990.14 21893.80 20480.05 21389.18 32393.09 26678.89 28878.19 32991.91 25065.86 29397.27 22068.47 33488.45 23093.11 288
anonymousdsp87.84 18287.09 18190.12 21989.13 33980.54 19894.67 14495.55 16782.05 23683.82 26092.12 24071.47 22297.15 22987.15 13987.80 24592.67 301
thres20087.21 21686.24 21590.12 21995.36 13078.53 24993.26 22692.10 29386.42 14088.00 15591.11 27769.24 25698.00 16069.58 32991.04 19093.83 254
CR-MVSNet85.35 26083.76 27190.12 21990.58 31779.34 23485.24 36291.96 30178.27 30185.55 20687.87 33671.03 22695.61 30873.96 30489.36 21395.40 180
v114487.61 19586.79 19190.06 22291.01 29779.34 23493.95 19495.42 18183.36 21085.66 20491.31 26974.98 17597.42 20283.37 18582.06 29893.42 276
XXY-MVS87.65 18986.85 18890.03 22392.14 25380.60 19793.76 20395.23 18982.94 22084.60 23794.02 17374.27 18495.49 31581.04 22683.68 28094.01 245
Vis-MVSNet (Re-imp)89.59 12989.44 11890.03 22395.74 11675.85 30095.61 9190.80 33087.66 11587.83 15895.40 11876.79 15196.46 27378.37 26096.73 9597.80 84
test250687.21 21686.28 21390.02 22595.62 12273.64 31896.25 4871.38 39487.89 10790.45 11896.65 6855.29 35298.09 15286.03 15396.94 8998.33 43
BH-untuned88.60 16488.13 15890.01 22695.24 13578.50 25193.29 22494.15 24184.75 18084.46 24293.40 19575.76 16497.40 20977.59 27094.52 13994.12 237
v119287.25 21286.33 21090.00 22790.76 31179.04 24293.80 20195.48 17282.57 22785.48 21491.18 27373.38 20397.42 20282.30 20482.06 29893.53 270
v7n86.81 22785.76 23589.95 22890.72 31379.25 24095.07 11995.92 13784.45 18682.29 28390.86 28272.60 21297.53 19279.42 25480.52 32693.08 290
v887.50 20286.71 19489.89 22991.37 28379.40 23194.50 15295.38 18284.81 17983.60 26791.33 26676.05 15897.42 20282.84 19480.51 32792.84 298
v1087.25 21286.38 20789.85 23091.19 28979.50 22894.48 15395.45 17683.79 19883.62 26691.19 27175.13 17297.42 20281.94 21180.60 32292.63 303
baseline286.50 24085.39 24289.84 23191.12 29476.70 28991.88 26988.58 35582.35 23279.95 31590.95 28173.42 20197.63 18480.27 24289.95 20195.19 186
pm-mvs186.61 23485.54 23889.82 23291.44 27880.18 20695.28 10594.85 21283.84 19681.66 29192.62 22372.45 21596.48 27079.67 24878.06 34192.82 299
TR-MVS86.78 22985.76 23589.82 23294.37 18178.41 25392.47 25192.83 27281.11 26586.36 19292.40 22968.73 26397.48 19573.75 30689.85 20493.57 269
ACMH+81.04 1485.05 26783.46 27589.82 23294.66 16579.37 23294.44 15894.12 24482.19 23478.04 33192.82 21758.23 34197.54 19173.77 30582.90 29192.54 304
EI-MVSNet89.10 14588.86 13689.80 23591.84 26578.30 25793.70 20795.01 19985.73 15587.15 17195.28 12079.87 11697.21 22783.81 18187.36 25093.88 249
v14419287.19 21886.35 20989.74 23690.64 31578.24 25993.92 19795.43 17981.93 24185.51 21191.05 27974.21 18797.45 19882.86 19381.56 30693.53 270
COLMAP_ROBcopyleft80.39 1683.96 28082.04 28789.74 23695.28 13279.75 22394.25 17192.28 28775.17 33078.02 33293.77 18858.60 34097.84 16965.06 35485.92 26191.63 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SCA86.32 24485.18 24789.73 23892.15 25276.60 29091.12 28691.69 30683.53 20585.50 21288.81 31966.79 28096.48 27076.65 27990.35 19596.12 151
IterMVS-LS88.36 17087.91 16489.70 23993.80 20478.29 25893.73 20495.08 19885.73 15584.75 23491.90 25179.88 11596.92 24583.83 18082.51 29393.89 247
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192086.97 22486.06 22289.69 24090.53 32078.11 26293.80 20195.43 17981.90 24385.33 22791.05 27972.66 21097.41 20782.05 20981.80 30393.53 270
Fast-Effi-MVS+-dtu87.44 20386.72 19389.63 24192.04 25777.68 27694.03 18893.94 24785.81 15282.42 28291.32 26870.33 23997.06 23780.33 24190.23 19694.14 236
v124086.78 22985.85 23089.56 24290.45 32177.79 27293.61 20995.37 18481.65 25185.43 21991.15 27571.50 22197.43 20181.47 22282.05 30093.47 274
Effi-MVS+-dtu88.65 16288.35 15089.54 24393.33 22076.39 29494.47 15694.36 23387.70 11285.43 21989.56 31173.45 20097.26 22285.57 15991.28 18494.97 192
AllTest83.42 28581.39 29189.52 24495.01 14477.79 27293.12 23090.89 32877.41 30876.12 34493.34 19654.08 35797.51 19368.31 33684.27 27493.26 279
TestCases89.52 24495.01 14477.79 27290.89 32877.41 30876.12 34493.34 19654.08 35797.51 19368.31 33684.27 27493.26 279
mvs_anonymous89.37 14189.32 12389.51 24693.47 21674.22 31391.65 27794.83 21482.91 22185.45 21693.79 18681.23 10696.36 28086.47 14894.09 14597.94 74
XVG-ACMP-BASELINE86.00 24784.84 25689.45 24791.20 28878.00 26391.70 27595.55 16785.05 17482.97 27792.25 23654.49 35597.48 19582.93 19187.45 24992.89 296
MVP-Stereo85.97 24884.86 25589.32 24890.92 30482.19 15492.11 26694.19 23978.76 29278.77 32891.63 25968.38 26796.56 26575.01 29693.95 14789.20 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchmatchNetpermissive85.85 25184.70 25889.29 24991.76 26975.54 30388.49 33291.30 31781.63 25385.05 23088.70 32371.71 21896.24 28474.61 30089.05 21996.08 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14887.04 22286.32 21189.21 25090.94 30277.26 28193.71 20694.43 22884.84 17884.36 24890.80 28676.04 15997.05 23882.12 20779.60 33593.31 278
tfpnnormal84.72 27283.23 27789.20 25192.79 23980.05 21394.48 15395.81 14682.38 23081.08 29991.21 27069.01 25996.95 24361.69 36380.59 32390.58 348
cl2286.78 22985.98 22589.18 25292.34 24877.62 27790.84 29094.13 24381.33 25983.97 25890.15 29873.96 19296.60 26284.19 17582.94 28893.33 277
BH-w/o87.57 19887.05 18389.12 25394.90 15377.90 26692.41 25293.51 26082.89 22283.70 26391.34 26575.75 16597.07 23675.49 28993.49 15792.39 311
WR-MVS_H87.80 18487.37 17589.10 25493.23 22278.12 26195.61 9197.30 2987.90 10583.72 26292.01 24879.65 12396.01 29376.36 28280.54 32493.16 286
miper_enhance_ethall86.90 22686.18 21689.06 25591.66 27577.58 27890.22 30394.82 21579.16 28584.48 24189.10 31579.19 12796.66 25484.06 17682.94 28892.94 294
c3_l87.14 22086.50 20589.04 25692.20 25177.26 28191.22 28594.70 22282.01 23984.34 24990.43 29378.81 13096.61 26083.70 18381.09 31393.25 281
miper_ehance_all_eth87.22 21586.62 20089.02 25792.13 25477.40 28090.91 28994.81 21681.28 26084.32 25090.08 30079.26 12596.62 25783.81 18182.94 28893.04 291
gg-mvs-nofinetune81.77 29779.37 31288.99 25890.85 30877.73 27586.29 35479.63 38374.88 33583.19 27669.05 38460.34 33096.11 28975.46 29094.64 13593.11 288
pmmvs683.42 28581.60 28988.87 25988.01 35377.87 26894.96 12594.24 23874.67 33678.80 32791.09 27860.17 33296.49 26977.06 27875.40 35592.23 316
test_cas_vis1_n_192088.83 15988.85 13788.78 26091.15 29376.72 28893.85 20094.93 20683.23 21492.81 7096.00 9461.17 32694.45 32691.67 8194.84 12995.17 187
MIMVSNet82.59 29180.53 29688.76 26191.51 27778.32 25686.57 35390.13 33979.32 28180.70 30388.69 32452.98 36193.07 35066.03 34988.86 22394.90 199
cl____86.52 23985.78 23288.75 26292.03 25876.46 29290.74 29194.30 23581.83 24783.34 27390.78 28775.74 16796.57 26381.74 21781.54 30793.22 283
DIV-MVS_self_test86.53 23885.78 23288.75 26292.02 25976.45 29390.74 29194.30 23581.83 24783.34 27390.82 28575.75 16596.57 26381.73 21881.52 30893.24 282
CP-MVSNet87.63 19287.26 18088.74 26493.12 22576.59 29195.29 10396.58 9188.43 8683.49 27092.98 21275.28 17195.83 30178.97 25781.15 31293.79 255
eth_miper_zixun_eth86.50 24085.77 23488.68 26591.94 26075.81 30190.47 29594.89 20882.05 23684.05 25590.46 29275.96 16096.77 25082.76 19779.36 33793.46 275
CHOSEN 280x42085.15 26583.99 26888.65 26692.47 24478.40 25479.68 38292.76 27474.90 33481.41 29589.59 30969.85 24595.51 31279.92 24695.29 12392.03 319
PS-CasMVS87.32 20986.88 18688.63 26792.99 23276.33 29695.33 9896.61 8988.22 9483.30 27593.07 21073.03 20795.79 30478.36 26181.00 31893.75 262
TransMVSNet (Re)84.43 27583.06 28088.54 26891.72 27078.44 25295.18 11192.82 27382.73 22579.67 31992.12 24073.49 19995.96 29571.10 32068.73 37191.21 336
EG-PatchMatch MVS82.37 29380.34 29988.46 26990.27 32379.35 23392.80 24494.33 23477.14 31273.26 36090.18 29747.47 37296.72 25170.25 32287.32 25289.30 356
PEN-MVS86.80 22886.27 21488.40 27092.32 24975.71 30295.18 11196.38 10087.97 10282.82 27993.15 20673.39 20295.92 29676.15 28679.03 34093.59 268
Baseline_NR-MVSNet87.07 22186.63 19988.40 27091.44 27877.87 26894.23 17492.57 28084.12 19085.74 20292.08 24477.25 14796.04 29082.29 20579.94 33191.30 334
D2MVS85.90 24985.09 24988.35 27290.79 30977.42 27991.83 27195.70 15680.77 26880.08 31390.02 30166.74 28296.37 27881.88 21387.97 23991.26 335
pmmvs584.21 27682.84 28488.34 27388.95 34176.94 28592.41 25291.91 30375.63 32580.28 30891.18 27364.59 29995.57 30977.09 27783.47 28392.53 305
LCM-MVSNet-Re88.30 17288.32 15388.27 27494.71 16272.41 33593.15 22990.98 32587.77 11079.25 32391.96 24978.35 13895.75 30583.04 18995.62 11296.65 133
CostFormer85.77 25384.94 25388.26 27591.16 29272.58 33389.47 31891.04 32476.26 32086.45 19089.97 30370.74 23196.86 24982.35 20387.07 25595.34 183
ITE_SJBPF88.24 27691.88 26477.05 28492.92 26985.54 16280.13 31293.30 20057.29 34496.20 28572.46 31184.71 27091.49 330
PVSNet78.82 1885.55 25584.65 25988.23 27794.72 16171.93 33687.12 34992.75 27578.80 29184.95 23290.53 29164.43 30096.71 25374.74 29893.86 14996.06 156
IterMVS-SCA-FT85.45 25684.53 26288.18 27891.71 27276.87 28690.19 30492.65 27985.40 16581.44 29490.54 29066.79 28095.00 32481.04 22681.05 31492.66 302
EPNet_dtu86.49 24285.94 22888.14 27990.24 32472.82 32594.11 17992.20 28986.66 13779.42 32292.36 23173.52 19895.81 30371.26 31593.66 15195.80 167
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry82.71 28980.93 29588.06 28090.05 32876.37 29584.74 36791.96 30172.28 35981.32 29787.87 33671.03 22695.50 31468.97 33180.15 32992.32 314
test_vis1_n_192089.39 14089.84 11188.04 28192.97 23372.64 33094.71 14296.03 13186.18 14691.94 9596.56 7661.63 31895.74 30693.42 3995.11 12795.74 169
DTE-MVSNet86.11 24685.48 24087.98 28291.65 27674.92 30794.93 12795.75 15187.36 11982.26 28493.04 21172.85 20895.82 30274.04 30277.46 34693.20 284
PMMVS85.71 25484.96 25287.95 28388.90 34277.09 28388.68 33090.06 34172.32 35886.47 18790.76 28872.15 21694.40 32881.78 21693.49 15792.36 312
GG-mvs-BLEND87.94 28489.73 33577.91 26587.80 33978.23 38780.58 30583.86 36259.88 33495.33 31871.20 31692.22 17990.60 347
pmmvs-eth3d80.97 31078.72 32287.74 28584.99 37179.97 21990.11 30691.65 30775.36 32773.51 35886.03 35259.45 33693.96 33775.17 29372.21 36089.29 357
MS-PatchMatch85.05 26784.16 26487.73 28691.42 28178.51 25091.25 28493.53 25977.50 30780.15 31091.58 26261.99 31695.51 31275.69 28894.35 14389.16 359
test_040281.30 30779.17 31787.67 28793.19 22378.17 26092.98 23791.71 30475.25 32976.02 34690.31 29559.23 33796.37 27850.22 38083.63 28188.47 365
IterMVS84.88 26983.98 26987.60 28891.44 27876.03 29890.18 30592.41 28283.24 21381.06 30090.42 29466.60 28394.28 33279.46 25080.98 31992.48 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test81.37 30579.30 31387.58 28990.92 30474.16 31580.99 37887.68 36070.52 36676.63 34188.81 31971.21 22392.76 35260.01 36986.93 25695.83 165
EPMVS83.90 28382.70 28587.51 29090.23 32572.67 32888.62 33181.96 37881.37 25885.01 23188.34 32766.31 28794.45 32675.30 29287.12 25395.43 179
ADS-MVSNet281.66 30079.71 30987.50 29191.35 28474.19 31483.33 37288.48 35672.90 35382.24 28585.77 35564.98 29793.20 34864.57 35583.74 27895.12 188
OurMVSNet-221017-085.35 26084.64 26087.49 29290.77 31072.59 33294.01 19094.40 23184.72 18179.62 32193.17 20561.91 31796.72 25181.99 21081.16 31093.16 286
tpm284.08 27882.94 28187.48 29391.39 28271.27 34389.23 32290.37 33471.95 36084.64 23689.33 31267.30 27196.55 26775.17 29387.09 25494.63 207
RPSCF85.07 26684.27 26387.48 29392.91 23570.62 35191.69 27692.46 28176.20 32182.67 28195.22 12363.94 30397.29 21977.51 27285.80 26294.53 214
miper_lstm_enhance85.27 26384.59 26187.31 29591.28 28774.63 30887.69 34394.09 24581.20 26481.36 29689.85 30674.97 17694.30 33181.03 22879.84 33493.01 292
FMVSNet581.52 30379.60 31087.27 29691.17 29077.95 26491.49 27992.26 28876.87 31376.16 34387.91 33551.67 36292.34 35567.74 34081.16 31091.52 329
USDC82.76 28881.26 29387.26 29791.17 29074.55 30989.27 32093.39 26278.26 30275.30 34992.08 24454.43 35696.63 25671.64 31385.79 26390.61 345
test-LLR85.87 25085.41 24187.25 29890.95 30071.67 34189.55 31489.88 34783.41 20884.54 23987.95 33367.25 27295.11 32181.82 21493.37 16294.97 192
test-mter84.54 27483.64 27387.25 29890.95 30071.67 34189.55 31489.88 34779.17 28484.54 23987.95 33355.56 34995.11 32181.82 21493.37 16294.97 192
JIA-IIPM81.04 30878.98 32087.25 29888.64 34373.48 32081.75 37789.61 35173.19 35082.05 28773.71 38166.07 29295.87 29971.18 31884.60 27192.41 310
TDRefinement79.81 32077.34 32587.22 30179.24 38375.48 30493.12 23092.03 29676.45 31675.01 35091.58 26249.19 36896.44 27470.22 32469.18 36889.75 352
tpmvs83.35 28782.07 28687.20 30291.07 29671.00 34888.31 33591.70 30578.91 28780.49 30787.18 34569.30 25597.08 23468.12 33983.56 28293.51 273
ppachtmachnet_test81.84 29680.07 30487.15 30388.46 34774.43 31289.04 32692.16 29075.33 32877.75 33388.99 31666.20 28995.37 31765.12 35377.60 34491.65 325
dmvs_re84.20 27783.22 27887.14 30491.83 26777.81 27090.04 30790.19 33784.70 18281.49 29289.17 31464.37 30191.13 36671.58 31485.65 26492.46 308
tpm cat181.96 29480.27 30087.01 30591.09 29571.02 34787.38 34791.53 31266.25 37280.17 30986.35 35168.22 26896.15 28869.16 33082.29 29693.86 252
test_fmvs1_n87.03 22387.04 18486.97 30689.74 33471.86 33794.55 15094.43 22878.47 29691.95 9495.50 11451.16 36493.81 33893.02 4694.56 13795.26 184
OpenMVS_ROBcopyleft74.94 1979.51 32377.03 33086.93 30787.00 35976.23 29792.33 25890.74 33168.93 36974.52 35488.23 33049.58 36796.62 25757.64 37384.29 27387.94 368
SixPastTwentyTwo83.91 28282.90 28286.92 30890.99 29870.67 35093.48 21391.99 29885.54 16277.62 33592.11 24260.59 32996.87 24876.05 28777.75 34393.20 284
ADS-MVSNet81.56 30279.78 30686.90 30991.35 28471.82 33883.33 37289.16 35372.90 35382.24 28585.77 35564.98 29793.76 33964.57 35583.74 27895.12 188
PatchT82.68 29081.27 29286.89 31090.09 32770.94 34984.06 36990.15 33874.91 33385.63 20583.57 36469.37 25094.87 32565.19 35188.50 22994.84 201
tpm84.73 27184.02 26786.87 31190.33 32268.90 35889.06 32589.94 34480.85 26785.75 20189.86 30568.54 26595.97 29477.76 26884.05 27695.75 168
Patchmatch-RL test81.67 29979.96 30586.81 31285.42 36971.23 34482.17 37687.50 36178.47 29677.19 33782.50 37170.81 23093.48 34382.66 19872.89 35995.71 172
test_vis1_n86.56 23786.49 20686.78 31388.51 34472.69 32794.68 14393.78 25679.55 28090.70 11595.31 11948.75 36993.28 34693.15 4393.99 14694.38 227
test_fmvs187.34 20787.56 17086.68 31490.59 31671.80 33994.01 19094.04 24678.30 30091.97 9295.22 12356.28 34793.71 34092.89 4794.71 13194.52 215
MDA-MVSNet-bldmvs78.85 32776.31 33286.46 31589.76 33373.88 31688.79 32890.42 33379.16 28559.18 38088.33 32860.20 33194.04 33462.00 36268.96 36991.48 331
tpmrst85.35 26084.99 25086.43 31690.88 30767.88 36288.71 32991.43 31580.13 27386.08 19888.80 32173.05 20596.02 29282.48 19983.40 28695.40 180
TESTMET0.1,183.74 28482.85 28386.42 31789.96 33071.21 34589.55 31487.88 35777.41 30883.37 27287.31 34156.71 34593.65 34280.62 23692.85 17294.40 226
our_test_381.93 29580.46 29886.33 31888.46 34773.48 32088.46 33391.11 32076.46 31576.69 34088.25 32966.89 27894.36 32968.75 33279.08 33991.14 338
lessismore_v086.04 31988.46 34768.78 35980.59 38173.01 36190.11 29955.39 35096.43 27575.06 29565.06 37592.90 295
TinyColmap79.76 32177.69 32485.97 32091.71 27273.12 32289.55 31490.36 33575.03 33172.03 36490.19 29646.22 37496.19 28763.11 35981.03 31588.59 364
KD-MVS_2432*160078.50 32876.02 33585.93 32186.22 36274.47 31084.80 36592.33 28479.29 28276.98 33885.92 35353.81 35993.97 33567.39 34157.42 38389.36 354
miper_refine_blended78.50 32876.02 33585.93 32186.22 36274.47 31084.80 36592.33 28479.29 28276.98 33885.92 35353.81 35993.97 33567.39 34157.42 38389.36 354
K. test v381.59 30180.15 30385.91 32389.89 33269.42 35792.57 24987.71 35985.56 16173.44 35989.71 30855.58 34895.52 31177.17 27569.76 36592.78 300
mvsany_test185.42 25885.30 24585.77 32487.95 35575.41 30587.61 34680.97 38076.82 31488.68 14395.83 10277.44 14690.82 36885.90 15486.51 25891.08 342
MIMVSNet179.38 32477.28 32685.69 32586.35 36173.67 31791.61 27892.75 27578.11 30572.64 36288.12 33148.16 37091.97 36060.32 36677.49 34591.43 332
UnsupCasMVSNet_eth80.07 31778.27 32385.46 32685.24 37072.63 33188.45 33494.87 21182.99 21971.64 36688.07 33256.34 34691.75 36173.48 30763.36 37892.01 320
CL-MVSNet_self_test81.74 29880.53 29685.36 32785.96 36472.45 33490.25 29993.07 26781.24 26279.85 31887.29 34270.93 22892.52 35366.95 34369.23 36791.11 340
MDA-MVSNet_test_wron79.21 32677.19 32885.29 32888.22 35172.77 32685.87 35690.06 34174.34 33862.62 37887.56 33966.14 29091.99 35966.90 34773.01 35791.10 341
YYNet179.22 32577.20 32785.28 32988.20 35272.66 32985.87 35690.05 34374.33 33962.70 37687.61 33866.09 29192.03 35766.94 34472.97 35891.15 337
dp81.47 30480.23 30185.17 33089.92 33165.49 36986.74 35190.10 34076.30 31981.10 29887.12 34662.81 31295.92 29668.13 33879.88 33294.09 240
UnsupCasMVSNet_bld76.23 33673.27 34085.09 33183.79 37372.92 32385.65 35993.47 26171.52 36168.84 37279.08 37649.77 36693.21 34766.81 34860.52 38089.13 361
Anonymous2023120681.03 30979.77 30884.82 33287.85 35670.26 35391.42 28092.08 29473.67 34577.75 33389.25 31362.43 31493.08 34961.50 36482.00 30191.12 339
test0.0.03 182.41 29281.69 28884.59 33388.23 35072.89 32490.24 30187.83 35883.41 20879.86 31789.78 30767.25 27288.99 37665.18 35283.42 28591.90 322
CMPMVSbinary59.16 2180.52 31279.20 31684.48 33483.98 37267.63 36489.95 31093.84 25464.79 37566.81 37491.14 27657.93 34295.17 31976.25 28488.10 23590.65 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet84.69 27384.79 25784.37 33591.84 26564.92 37193.70 20791.47 31466.19 37386.16 19795.28 12067.18 27493.33 34580.89 23190.42 19494.88 200
PVSNet_073.20 2077.22 33374.83 33984.37 33590.70 31471.10 34683.09 37489.67 35072.81 35573.93 35783.13 36660.79 32893.70 34168.54 33350.84 38788.30 366
LF4IMVS80.37 31579.07 31984.27 33786.64 36069.87 35689.39 31991.05 32376.38 31774.97 35190.00 30247.85 37194.25 33374.55 30180.82 32188.69 363
Anonymous2024052180.44 31479.21 31584.11 33885.75 36767.89 36192.86 24293.23 26475.61 32675.59 34887.47 34050.03 36594.33 33071.14 31981.21 30990.12 350
PM-MVS78.11 33076.12 33484.09 33983.54 37470.08 35488.97 32785.27 36979.93 27574.73 35386.43 34934.70 38393.48 34379.43 25372.06 36188.72 362
test_fmvs283.98 27984.03 26683.83 34087.16 35867.53 36593.93 19692.89 27077.62 30686.89 18193.53 19347.18 37392.02 35890.54 10086.51 25891.93 321
testgi80.94 31180.20 30283.18 34187.96 35466.29 36691.28 28290.70 33283.70 19978.12 33092.84 21551.37 36390.82 36863.34 35882.46 29492.43 309
KD-MVS_self_test80.20 31679.24 31483.07 34285.64 36865.29 37091.01 28893.93 24878.71 29476.32 34286.40 35059.20 33892.93 35172.59 31069.35 36691.00 343
testing380.46 31379.59 31183.06 34393.44 21864.64 37293.33 21885.47 36784.34 18779.93 31690.84 28444.35 37792.39 35457.06 37587.56 24692.16 318
ambc83.06 34379.99 38163.51 37677.47 38392.86 27174.34 35684.45 36128.74 38495.06 32373.06 30968.89 37090.61 345
test20.0379.95 31979.08 31882.55 34585.79 36667.74 36391.09 28791.08 32181.23 26374.48 35589.96 30461.63 31890.15 37060.08 36776.38 35189.76 351
test_vis1_rt77.96 33176.46 33182.48 34685.89 36571.74 34090.25 29978.89 38471.03 36571.30 36781.35 37342.49 37991.05 36784.55 17182.37 29584.65 371
EU-MVSNet81.32 30680.95 29482.42 34788.50 34663.67 37593.32 21991.33 31664.02 37680.57 30692.83 21661.21 32592.27 35676.34 28380.38 32891.32 333
myMVS_eth3d79.67 32278.79 32182.32 34891.92 26164.08 37389.75 31287.40 36281.72 24978.82 32587.20 34345.33 37591.29 36459.09 37187.84 24291.60 327
pmmvs371.81 34268.71 34581.11 34975.86 38470.42 35286.74 35183.66 37358.95 38068.64 37380.89 37436.93 38189.52 37363.10 36063.59 37783.39 372
Syy-MVS80.07 31779.78 30680.94 35091.92 26159.93 38189.75 31287.40 36281.72 24978.82 32587.20 34366.29 28891.29 36447.06 38287.84 24291.60 327
new-patchmatchnet76.41 33575.17 33880.13 35182.65 37759.61 38287.66 34491.08 32178.23 30369.85 37083.22 36554.76 35391.63 36364.14 35764.89 37689.16 359
mvsany_test374.95 33773.26 34180.02 35274.61 38563.16 37785.53 36078.42 38574.16 34074.89 35286.46 34836.02 38289.09 37582.39 20266.91 37287.82 369
test_fmvs377.67 33277.16 32979.22 35379.52 38261.14 37992.34 25791.64 30873.98 34278.86 32486.59 34727.38 38787.03 37888.12 12575.97 35389.50 353
DSMNet-mixed76.94 33476.29 33378.89 35483.10 37556.11 39087.78 34079.77 38260.65 37975.64 34788.71 32261.56 32088.34 37760.07 36889.29 21592.21 317
EGC-MVSNET61.97 35056.37 35478.77 35589.63 33673.50 31989.12 32482.79 3750.21 3991.24 40084.80 35939.48 38090.04 37144.13 38475.94 35472.79 383
new_pmnet72.15 34070.13 34478.20 35682.95 37665.68 36783.91 37082.40 37762.94 37864.47 37579.82 37542.85 37886.26 38257.41 37474.44 35682.65 376
MVS-HIRNet73.70 33972.20 34278.18 35791.81 26856.42 38982.94 37582.58 37655.24 38168.88 37166.48 38555.32 35195.13 32058.12 37288.42 23183.01 374
LCM-MVSNet66.00 34762.16 35277.51 35864.51 39558.29 38483.87 37190.90 32748.17 38554.69 38273.31 38216.83 39686.75 37965.47 35061.67 37987.48 370
APD_test169.04 34366.26 34977.36 35980.51 38062.79 37885.46 36183.51 37454.11 38359.14 38184.79 36023.40 39089.61 37255.22 37670.24 36479.68 380
test_f71.95 34170.87 34375.21 36074.21 38759.37 38385.07 36485.82 36565.25 37470.42 36983.13 36623.62 38882.93 38878.32 26271.94 36283.33 373
ANet_high58.88 35454.22 35872.86 36156.50 39856.67 38680.75 37986.00 36473.09 35237.39 39164.63 38822.17 39179.49 39143.51 38523.96 39382.43 377
test_vis3_rt65.12 34862.60 35072.69 36271.44 38860.71 38087.17 34865.55 39563.80 37753.22 38365.65 38714.54 39789.44 37476.65 27965.38 37467.91 386
FPMVS64.63 34962.55 35170.88 36370.80 38956.71 38584.42 36884.42 37151.78 38449.57 38481.61 37223.49 38981.48 38940.61 38976.25 35274.46 382
dmvs_testset74.57 33875.81 33770.86 36487.72 35740.47 39787.05 35077.90 38982.75 22471.15 36885.47 35767.98 26984.12 38645.26 38376.98 35088.00 367
N_pmnet68.89 34468.44 34670.23 36589.07 34028.79 40288.06 33619.50 40269.47 36871.86 36584.93 35861.24 32491.75 36154.70 37777.15 34790.15 349
testf159.54 35256.11 35569.85 36669.28 39056.61 38780.37 38076.55 39242.58 38845.68 38775.61 37711.26 39884.18 38443.20 38660.44 38168.75 384
APD_test259.54 35256.11 35569.85 36669.28 39056.61 38780.37 38076.55 39242.58 38845.68 38775.61 37711.26 39884.18 38443.20 38660.44 38168.75 384
WB-MVS67.92 34567.49 34769.21 36881.09 37841.17 39688.03 33778.00 38873.50 34762.63 37783.11 36863.94 30386.52 38025.66 39351.45 38679.94 379
PMMVS259.60 35156.40 35369.21 36868.83 39246.58 39473.02 38777.48 39055.07 38249.21 38572.95 38317.43 39580.04 39049.32 38144.33 39080.99 378
SSC-MVS67.06 34666.56 34868.56 37080.54 37940.06 39887.77 34177.37 39172.38 35761.75 37982.66 37063.37 30886.45 38124.48 39448.69 38979.16 381
Gipumacopyleft57.99 35554.91 35767.24 37188.51 34465.59 36852.21 39090.33 33643.58 38742.84 39051.18 39120.29 39385.07 38334.77 39070.45 36351.05 390
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 35648.46 36063.48 37245.72 40046.20 39573.41 38678.31 38641.03 39030.06 39365.68 3866.05 40083.43 38730.04 39165.86 37360.80 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 35838.59 36457.77 37356.52 39748.77 39355.38 38958.64 39929.33 39328.96 39452.65 3904.68 40164.62 39528.11 39233.07 39159.93 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 35748.47 35956.66 37452.26 39918.98 40441.51 39281.40 37910.10 39444.59 38975.01 38028.51 38568.16 39253.54 37849.31 38882.83 375
DeepMVS_CXcopyleft56.31 37574.23 38651.81 39256.67 40044.85 38648.54 38675.16 37927.87 38658.74 39640.92 38852.22 38558.39 389
E-PMN43.23 35942.29 36146.03 37665.58 39437.41 39973.51 38564.62 39633.99 39128.47 39547.87 39219.90 39467.91 39322.23 39524.45 39232.77 391
EMVS42.07 36041.12 36244.92 37763.45 39635.56 40173.65 38463.48 39733.05 39226.88 39645.45 39321.27 39267.14 39419.80 39623.02 39432.06 392
tmp_tt35.64 36139.24 36324.84 37814.87 40123.90 40362.71 38851.51 4016.58 39636.66 39262.08 38944.37 37630.34 39852.40 37922.00 39520.27 393
wuyk23d21.27 36320.48 36623.63 37968.59 39336.41 40049.57 3916.85 4039.37 3957.89 3974.46 3994.03 40231.37 39717.47 39716.07 3963.12 394
test1238.76 36511.22 3681.39 3800.85 4030.97 40585.76 3580.35 4050.54 3982.45 3998.14 3980.60 4030.48 3992.16 3990.17 3982.71 395
testmvs8.92 36411.52 3671.12 3811.06 4020.46 40686.02 3550.65 4040.62 3972.74 3989.52 3970.31 4040.45 4002.38 3980.39 3972.46 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k22.14 36229.52 3650.00 3820.00 4040.00 4070.00 39395.76 1500.00 4000.00 40194.29 16275.66 1680.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas6.64 3678.86 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40079.70 1190.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.82 36610.43 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40193.88 1830.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS64.08 37359.14 370
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 16
PC_three_145282.47 22897.09 1097.07 4992.72 198.04 15792.70 5399.02 1298.86 11
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1498.06 1191.45 11
eth-test20.00 404
eth-test0.00 404
ZD-MVS98.15 3486.62 3297.07 4583.63 20194.19 4096.91 5587.57 3199.26 4291.99 7298.44 51
RE-MVS-def93.68 4997.92 4384.57 7896.28 4596.76 7587.46 11693.75 4797.43 2982.94 8192.73 4997.80 7497.88 78
IU-MVS98.77 586.00 4996.84 6581.26 26197.26 795.50 2199.13 399.03 8
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1599.12 698.98 10
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 1997.79 4996.08 6197.44 1586.13 14995.10 3197.40 3188.34 2299.22 4493.25 4298.70 34
save fliter97.85 4685.63 6495.21 10996.82 6889.44 51
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1799.13 399.13 2
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 151
test_part298.55 1287.22 1896.40 15
sam_mvs171.70 21996.12 151
sam_mvs70.60 232
MTGPAbinary96.97 50
test_post188.00 3389.81 39669.31 25495.53 31076.65 279
test_post10.29 39570.57 23695.91 298
patchmatchnet-post83.76 36371.53 22096.48 270
MTMP96.16 5360.64 398
gm-plane-assit89.60 33768.00 36077.28 31188.99 31697.57 18779.44 252
test9_res91.91 7698.71 3298.07 66
TEST997.53 5886.49 3694.07 18496.78 7281.61 25492.77 7296.20 8587.71 2899.12 51
test_897.49 6086.30 4494.02 18996.76 7581.86 24592.70 7696.20 8587.63 2999.02 61
agg_prior290.54 10098.68 3798.27 52
agg_prior97.38 6385.92 5696.72 8192.16 8798.97 75
test_prior485.96 5394.11 179
test_prior294.12 17887.67 11492.63 7796.39 8086.62 3691.50 8398.67 39
旧先验293.36 21771.25 36394.37 3797.13 23286.74 144
新几何293.11 232
旧先验196.79 7681.81 16295.67 15896.81 6186.69 3597.66 7996.97 120
无先验93.28 22596.26 10873.95 34399.05 5580.56 23796.59 135
原ACMM292.94 239
test22296.55 8481.70 16492.22 26295.01 19968.36 37090.20 12296.14 9080.26 11297.80 7496.05 157
testdata298.75 9278.30 263
segment_acmp87.16 34
testdata192.15 26487.94 103
plane_prior794.70 16382.74 139
plane_prior694.52 17382.75 13774.23 185
plane_prior596.22 11398.12 14288.15 12289.99 19894.63 207
plane_prior494.86 138
plane_prior382.75 13790.26 3386.91 178
plane_prior295.85 7590.81 17
plane_prior194.59 168
plane_prior82.73 14095.21 10989.66 4889.88 203
n20.00 406
nn0.00 406
door-mid85.49 366
test1196.57 92
door85.33 368
HQP5-MVS81.56 166
HQP-NCC94.17 18794.39 16388.81 7285.43 219
ACMP_Plane94.17 18794.39 16388.81 7285.43 219
BP-MVS87.11 141
HQP4-MVS85.43 21997.96 16394.51 217
HQP3-MVS96.04 12989.77 207
HQP2-MVS73.83 195
NP-MVS94.37 18182.42 14993.98 176
MDTV_nov1_ep13_2view55.91 39187.62 34573.32 34984.59 23870.33 23974.65 29995.50 177
MDTV_nov1_ep1383.56 27491.69 27469.93 35587.75 34291.54 31178.60 29584.86 23388.90 31869.54 24896.03 29170.25 32288.93 222
ACMMP++_ref87.47 247
ACMMP++88.01 238
Test By Simon80.02 114