This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15497.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+87.14 492.42 7691.37 8495.55 795.63 12288.73 697.07 1896.77 7490.84 1684.02 26396.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030494.60 1894.38 2595.23 1195.41 13087.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
DPM-MVS92.58 7391.74 8195.08 1596.19 9589.31 592.66 24896.56 9383.44 21191.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R94.43 2494.27 3294.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3094.82 13697.17 3986.26 14592.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
XVS94.45 2294.32 2694.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
X-MVStestdata88.31 17486.13 22094.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 40185.02 5999.49 2691.99 7498.56 4898.47 33
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
alignmvs93.08 6692.50 7394.81 3195.62 12387.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 2994.07 3994.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3994.75 3598.06 3986.90 2295.88 7496.94 5585.68 16095.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS94.34 2794.21 3494.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
PGM-MVS93.96 4293.72 5094.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
mPP-MVS93.99 4193.78 4794.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
PHI-MVS93.89 4393.65 5494.62 4096.84 7586.43 3896.69 3297.49 685.15 17493.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
TSAR-MVS + MP.94.85 1494.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CANet93.54 5193.20 6194.55 4295.65 12185.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
train_agg93.44 5593.08 6294.52 4397.53 5886.49 3694.07 18696.78 7281.86 25092.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
CDPH-MVS92.83 6992.30 7594.44 4497.79 4986.11 4894.06 18896.66 8580.09 27992.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
3Dnovator86.66 591.73 8590.82 9694.44 4494.59 17186.37 4097.18 1297.02 4789.20 6084.31 25996.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
SR-MVS94.23 3194.17 3794.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
HPM-MVScopyleft94.02 3993.88 4494.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.93.66 4993.41 5694.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
ACMMPcopyleft93.24 6292.88 6794.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS88.79 393.31 6092.99 6594.26 5196.07 10385.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPNet91.79 8291.02 9294.10 5290.10 33485.25 6996.03 6692.05 29792.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n94.60 1894.81 1693.98 5394.62 17084.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
DELS-MVS93.43 5893.25 5993.97 5495.42 12985.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon91.95 8091.28 8693.96 5598.33 2785.92 5694.66 14796.66 8582.69 23190.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
HPM-MVS_fast93.40 5993.22 6093.94 5698.36 2584.83 7497.15 1396.80 7185.77 15792.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5792.46 25284.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
SD-MVS94.96 1395.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 24994.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5493.31 5793.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
SR-MVS-dyc-post93.82 4493.82 4593.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
APD-MVS_3200maxsize93.78 4593.77 4893.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6395.28 13485.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
CSCG93.23 6393.05 6393.76 6498.04 4084.07 9696.22 4997.37 2184.15 19390.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
test_fmvsmconf0.01_n93.19 6493.02 6493.71 6589.25 34684.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
UA-Net92.83 6992.54 7293.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6795.29 13384.98 7195.61 9296.28 10886.31 14396.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
QAPM89.51 13488.15 16093.59 6894.92 15484.58 7996.82 2996.70 8378.43 30583.41 27896.19 9073.18 20699.30 4077.11 27996.54 10196.89 127
test_fmvsm_n_192094.71 1795.11 1093.50 6995.79 11584.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
casdiffmvs_mvgpermissive92.96 6892.83 6893.35 7094.59 17183.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set93.01 6792.92 6693.29 7195.01 14783.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
Vis-MVSNetpermissive91.75 8491.23 8793.29 7195.32 13283.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test94.02 3994.29 2993.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
VNet92.24 7891.91 7993.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
VDD-MVS90.74 10189.92 11393.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31898.64 10090.95 9592.62 17697.93 76
CS-MVS94.12 3794.44 2293.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
nrg03091.08 9790.39 9993.17 7693.07 23386.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 29494.96 201
EI-MVSNet-UG-set92.74 7192.62 7193.12 7894.86 15883.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
test_fmvsmvis_n_192093.44 5593.55 5593.10 7993.67 21784.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 146
新几何193.10 7997.30 6684.35 9295.56 16871.09 37191.26 11396.24 8582.87 8598.86 8479.19 25998.10 6296.07 159
OMC-MVS91.23 9390.62 9893.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 130
OpenMVScopyleft83.78 1188.74 16387.29 18093.08 8192.70 24785.39 6796.57 3696.43 9778.74 30080.85 30896.07 9469.64 24999.01 6378.01 27096.65 10094.83 208
MAR-MVS90.30 11189.37 12493.07 8396.61 8184.48 8595.68 8595.67 16082.36 23687.85 15992.85 21676.63 15798.80 9080.01 24796.68 9995.91 165
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
lupinMVS90.92 9890.21 10293.03 8493.86 20783.88 10192.81 24593.86 25479.84 28291.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
Effi-MVS+91.59 8891.11 8993.01 8594.35 18883.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8695.02 14683.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
MVS_111021_LR92.47 7592.29 7692.98 8795.99 10984.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 132
fmvsm_s_conf0.1_n_a93.19 6493.26 5892.97 8892.49 25083.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
ETV-MVS92.74 7192.66 7092.97 8895.20 14084.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 142
LFMVS90.08 11689.13 13092.95 9096.71 7782.32 15596.08 6189.91 34886.79 13292.15 9096.81 6362.60 31698.34 12987.18 14093.90 15098.19 58
UGNet89.95 12288.95 13492.95 9094.51 17783.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30598.78 9183.92 18196.31 10696.74 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason90.80 9990.10 10692.90 9293.04 23683.53 11293.08 23594.15 24380.22 27691.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
DP-MVS87.25 21585.36 24892.90 9297.65 5583.24 11994.81 13792.00 29974.99 33981.92 29795.00 13572.66 21299.05 5566.92 35292.33 18196.40 144
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9495.62 12383.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9593.75 21383.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
CANet_DTU90.26 11389.41 12392.81 9693.46 22383.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 145
MVSFormer91.68 8791.30 8592.80 9793.86 20783.88 10195.96 7195.90 14284.66 18791.76 10394.91 13777.92 14497.30 21989.64 10997.11 8597.24 104
PVSNet_Blended_VisFu91.38 9090.91 9492.80 9796.39 9083.17 12294.87 13396.66 8583.29 21689.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 162
VDDNet89.56 13388.49 15192.76 9995.07 14582.09 15796.30 4393.19 26781.05 27191.88 9896.86 5961.16 33098.33 13188.43 12392.49 18097.84 82
h-mvs3390.80 9990.15 10592.75 10096.01 10582.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 34996.60 137
casdiffmvspermissive92.51 7492.43 7492.74 10194.41 18381.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16291.49 10894.70 14874.75 17998.42 12486.13 15392.53 17897.31 101
DCV-MVSNet90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16291.49 10894.70 14874.75 17998.42 12486.13 15392.53 17897.31 101
PCF-MVS84.11 1087.74 18986.08 22492.70 10494.02 19884.43 8989.27 32795.87 14573.62 35384.43 25194.33 16178.48 13998.86 8470.27 32694.45 14394.81 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline92.39 7792.29 7692.69 10594.46 18081.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
MSLP-MVS++93.72 4894.08 3892.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 131
EC-MVSNet93.44 5593.71 5192.63 10795.21 13982.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
ab-mvs89.41 14088.35 15392.60 10895.15 14382.65 14792.20 26595.60 16783.97 19788.55 14793.70 19374.16 19198.21 14082.46 20389.37 21996.94 123
LS3D87.89 18486.32 21492.59 10996.07 10382.92 13695.23 10994.92 20975.66 33182.89 28595.98 9872.48 21599.21 4568.43 34095.23 12895.64 178
Anonymous2024052988.09 18086.59 20492.58 11096.53 8681.92 16295.99 6995.84 14774.11 34889.06 14195.21 12761.44 32498.81 8983.67 18687.47 25497.01 119
CPTT-MVS91.99 7991.80 8092.55 11198.24 3181.98 16096.76 3096.49 9581.89 24990.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
114514_t89.51 13488.50 14992.54 11298.11 3681.99 15995.16 11696.36 10270.19 37485.81 20595.25 12476.70 15598.63 10282.07 21196.86 9597.00 120
PAPM_NR91.22 9490.78 9792.52 11397.60 5681.46 17494.37 16996.24 11386.39 14287.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
IS-MVSNet91.43 8991.09 9192.46 11595.87 11481.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
API-MVS90.66 10590.07 10792.45 11696.36 9184.57 8096.06 6495.22 19382.39 23489.13 13894.27 16780.32 11298.46 11580.16 24696.71 9894.33 234
xiu_mvs_v1_base_debu90.64 10690.05 10892.40 11793.97 20484.46 8693.32 22195.46 17585.17 17192.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 239
xiu_mvs_v1_base90.64 10690.05 10892.40 11793.97 20484.46 8693.32 22195.46 17585.17 17192.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 239
xiu_mvs_v1_base_debi90.64 10690.05 10892.40 11793.97 20484.46 8693.32 22195.46 17585.17 17192.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 239
AdaColmapbinary89.89 12589.07 13192.37 12097.41 6283.03 13094.42 16295.92 13982.81 22886.34 19694.65 15273.89 19599.02 6180.69 23795.51 11695.05 196
CNLPA89.07 15287.98 16492.34 12196.87 7484.78 7694.08 18593.24 26581.41 26284.46 24995.13 13275.57 17196.62 26077.21 27793.84 15295.61 181
ET-MVSNet_ETH3D87.51 20385.91 23292.32 12293.70 21683.93 9992.33 26090.94 32984.16 19272.09 37092.52 22869.90 24495.85 30489.20 11488.36 24097.17 108
Anonymous20240521187.68 19086.13 22092.31 12396.66 7980.74 19594.87 13391.49 31580.47 27589.46 13595.44 11754.72 36098.23 13782.19 20989.89 20997.97 72
CHOSEN 1792x268888.84 15987.69 17092.30 12496.14 9681.42 17690.01 31595.86 14674.52 34487.41 16893.94 18075.46 17298.36 12680.36 24295.53 11597.12 113
HY-MVS83.01 1289.03 15487.94 16692.29 12594.86 15882.77 13892.08 27094.49 22881.52 26186.93 17892.79 22278.32 14198.23 13779.93 24890.55 19895.88 167
CDS-MVSNet89.45 13788.51 14892.29 12593.62 21883.61 11193.01 23894.68 22581.95 24587.82 16193.24 20578.69 13496.99 24480.34 24393.23 16796.28 149
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR90.02 11889.27 12992.29 12595.78 11680.95 18992.68 24796.22 11581.91 24786.66 18893.75 19282.23 9598.44 12179.40 25894.79 13297.48 97
PLCcopyleft84.53 789.06 15388.03 16392.15 12897.27 6882.69 14594.29 17195.44 18079.71 28484.01 26494.18 16976.68 15698.75 9377.28 27693.41 16295.02 197
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPP-MVSNet91.70 8691.56 8392.13 12995.88 11280.50 20197.33 795.25 19086.15 14989.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
patch_mono-293.74 4794.32 2692.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29590.45 12095.92 10082.65 8798.84 8880.68 23898.26 5796.14 153
UniMVSNet (Re)89.80 12789.07 13192.01 13093.60 21984.52 8394.78 13997.47 1189.26 5886.44 19392.32 23482.10 9897.39 21584.81 16980.84 32794.12 243
MG-MVS91.77 8391.70 8292.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
EIA-MVS91.95 8091.94 7891.98 13495.16 14180.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
PVSNet_Blended90.73 10290.32 10191.98 13496.12 9781.25 17992.55 25296.83 6682.04 24389.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 169
PS-MVSNAJ91.18 9590.92 9391.96 13695.26 13782.60 14992.09 26995.70 15886.27 14491.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 237
TAMVS89.21 14688.29 15791.96 13693.71 21482.62 14893.30 22594.19 24182.22 23887.78 16293.94 18078.83 13196.95 24677.70 27292.98 17196.32 146
SDMVSNet90.19 11489.61 11791.93 13896.00 10683.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23788.90 11789.85 21195.63 179
FA-MVS(test-final)89.66 12988.91 13691.93 13894.57 17480.27 20591.36 28494.74 22284.87 18089.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
MVS_Test91.31 9291.11 8991.93 13894.37 18480.14 21093.46 21795.80 14986.46 14091.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
NR-MVSNet88.58 16987.47 17691.93 13893.04 23684.16 9594.77 14096.25 11289.05 6580.04 32193.29 20379.02 13097.05 24181.71 22280.05 33794.59 216
HyFIR lowres test88.09 18086.81 19291.93 13896.00 10680.63 19790.01 31595.79 15073.42 35587.68 16492.10 24573.86 19697.96 16580.75 23691.70 18497.19 107
GeoE90.05 11789.43 12291.90 14395.16 14180.37 20495.80 7894.65 22683.90 19887.55 16794.75 14778.18 14297.62 18781.28 22693.63 15497.71 88
thisisatest053088.67 16487.61 17291.86 14494.87 15780.07 21394.63 14889.90 34984.00 19688.46 14993.78 18966.88 28298.46 11583.30 18892.65 17597.06 115
xiu_mvs_v2_base91.13 9690.89 9591.86 14494.97 15082.42 15192.24 26395.64 16586.11 15391.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 238
DU-MVS89.34 14588.50 14991.85 14693.04 23683.72 10494.47 15896.59 9089.50 5086.46 19093.29 20377.25 14997.23 22884.92 16681.02 32394.59 216
OPM-MVS90.12 11589.56 11891.82 14793.14 23083.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 20493.65 273
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 10990.19 10391.82 14794.70 16682.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20594.63 213
UniMVSNet_NR-MVSNet89.92 12489.29 12791.81 14993.39 22583.72 10494.43 16197.12 4189.80 4186.46 19093.32 20083.16 7997.23 22884.92 16681.02 32394.49 228
diffmvspermissive91.37 9191.23 8791.77 15093.09 23280.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20392.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss88.42 17087.33 17991.72 15194.92 15480.98 18792.97 24094.54 22778.16 31183.82 26793.88 18578.78 13397.91 16979.45 25489.41 21896.26 150
Fast-Effi-MVS+89.41 14088.64 14391.71 15294.74 16280.81 19393.54 21395.10 19883.11 22086.82 18690.67 29279.74 12097.75 17780.51 24193.55 15696.57 140
WTY-MVS89.60 13188.92 13591.67 15395.47 12881.15 18392.38 25694.78 22083.11 22089.06 14194.32 16278.67 13596.61 26381.57 22390.89 19697.24 104
TAPA-MVS84.62 688.16 17887.01 18891.62 15496.64 8080.65 19694.39 16596.21 11876.38 32486.19 20095.44 11779.75 11998.08 15662.75 36895.29 12596.13 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
iter_conf_final89.42 13988.69 14291.60 15595.12 14482.93 13595.75 8192.14 29487.32 12087.12 17594.07 17067.09 27897.55 19190.61 10189.01 22794.32 235
VPA-MVSNet89.62 13088.96 13391.60 15593.86 20782.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21287.32 13982.86 29994.52 221
FE-MVS87.40 20886.02 22691.57 15794.56 17579.69 22790.27 30493.72 25980.57 27488.80 14491.62 26265.32 29798.59 10674.97 30094.33 14696.44 143
XVG-OURS89.40 14288.70 14191.52 15894.06 19681.46 17491.27 28796.07 12886.14 15088.89 14395.77 10868.73 26697.26 22587.39 13789.96 20795.83 170
hse-mvs289.88 12689.34 12591.51 15994.83 16081.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35695.74 174
TranMVSNet+NR-MVSNet88.84 15987.95 16591.49 16092.68 24883.01 13294.92 13096.31 10489.88 3985.53 21593.85 18776.63 15796.96 24581.91 21579.87 34094.50 226
AUN-MVS87.78 18886.54 20691.48 16194.82 16181.05 18593.91 20193.93 25083.00 22386.93 17893.53 19569.50 25197.67 17986.14 15177.12 35595.73 176
XVG-OURS-SEG-HR89.95 12289.45 12091.47 16294.00 20281.21 18291.87 27396.06 13085.78 15688.55 14795.73 11074.67 18397.27 22388.71 12089.64 21695.91 165
MVS87.44 20686.10 22391.44 16392.61 24983.62 10992.63 24995.66 16267.26 37881.47 30092.15 24077.95 14398.22 13979.71 25095.48 11892.47 313
F-COLMAP87.95 18386.80 19391.40 16496.35 9280.88 19194.73 14295.45 17879.65 28582.04 29594.61 15371.13 22698.50 11076.24 28891.05 19494.80 210
dcpmvs_293.49 5294.19 3691.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
thisisatest051587.33 21185.99 22791.37 16693.49 22179.55 22990.63 30089.56 35580.17 27787.56 16690.86 28467.07 27998.28 13581.50 22493.02 17096.29 148
HQP-MVS89.80 12789.28 12891.34 16794.17 19281.56 16894.39 16596.04 13188.81 7285.43 22593.97 17973.83 19797.96 16587.11 14389.77 21494.50 226
mvsmamba89.96 12189.50 11991.33 16892.90 24381.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 23294.51 223
FMVSNet387.40 20886.11 22291.30 16993.79 21283.64 10894.20 17794.81 21883.89 19984.37 25291.87 25468.45 26996.56 26878.23 26785.36 27293.70 272
FMVSNet287.19 22185.82 23491.30 16994.01 19983.67 10694.79 13894.94 20483.57 20683.88 26692.05 24966.59 28796.51 27177.56 27485.01 27593.73 269
RPMNet83.95 28781.53 29891.21 17190.58 32579.34 23685.24 36996.76 7571.44 36985.55 21282.97 37670.87 23198.91 8061.01 37289.36 22095.40 185
IB-MVS80.51 1585.24 26883.26 28291.19 17292.13 26179.86 22391.75 27691.29 32083.28 21780.66 31188.49 33261.28 32598.46 11580.99 23279.46 34395.25 191
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS89.47 13688.90 13791.18 17394.22 19182.07 15892.13 26796.09 12687.90 10585.37 23192.45 23074.38 18597.56 19087.15 14190.43 20093.93 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf0588.85 15888.08 16291.17 17494.27 18981.64 16795.18 11392.15 29386.23 14787.28 17294.07 17063.89 30997.55 19190.63 10089.00 22894.32 235
LPG-MVS_test89.45 13788.90 13791.12 17594.47 17881.49 17295.30 10396.14 12086.73 13585.45 22295.16 13069.89 24598.10 14687.70 13289.23 22393.77 266
LGP-MVS_train91.12 17594.47 17881.49 17296.14 12086.73 13585.45 22295.16 13069.89 24598.10 14687.70 13289.23 22393.77 266
ACMM84.12 989.14 14788.48 15291.12 17594.65 16981.22 18195.31 10196.12 12385.31 17085.92 20494.34 16070.19 24398.06 15885.65 15988.86 23094.08 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tttt051788.61 16687.78 16991.11 17894.96 15177.81 27295.35 9989.69 35285.09 17688.05 15694.59 15566.93 28098.48 11183.27 18992.13 18397.03 118
GBi-Net87.26 21385.98 22891.08 17994.01 19983.10 12595.14 11794.94 20483.57 20684.37 25291.64 25866.59 28796.34 28478.23 26785.36 27293.79 261
test187.26 21385.98 22891.08 17994.01 19983.10 12595.14 11794.94 20483.57 20684.37 25291.64 25866.59 28796.34 28478.23 26785.36 27293.79 261
FMVSNet185.85 25584.11 26991.08 17992.81 24583.10 12595.14 11794.94 20481.64 25782.68 28791.64 25859.01 34396.34 28475.37 29483.78 28493.79 261
Test_1112_low_res87.65 19286.51 20791.08 17994.94 15379.28 24091.77 27594.30 23776.04 32983.51 27692.37 23277.86 14697.73 17878.69 26289.13 22596.22 151
PS-MVSNAJss89.97 12089.62 11691.02 18391.90 27080.85 19295.26 10895.98 13486.26 14586.21 19994.29 16479.70 12197.65 18288.87 11988.10 24294.57 218
BH-RMVSNet88.37 17287.48 17591.02 18395.28 13479.45 23292.89 24293.07 26985.45 16786.91 18094.84 14470.35 24097.76 17473.97 30694.59 13895.85 168
UniMVSNet_ETH3D87.53 20286.37 21191.00 18592.44 25378.96 24594.74 14195.61 16684.07 19585.36 23294.52 15759.78 33897.34 21782.93 19387.88 24796.71 134
FIs90.51 11090.35 10090.99 18693.99 20380.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22785.18 16388.31 24194.76 211
ACMP84.23 889.01 15688.35 15390.99 18694.73 16381.27 17895.07 12195.89 14486.48 13983.67 27194.30 16369.33 25497.99 16387.10 14588.55 23393.72 270
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 24085.13 25290.98 18896.52 8781.50 17096.14 5796.16 11973.78 35183.65 27292.15 24063.26 31397.37 21682.82 19781.74 31294.06 248
sss88.93 15788.26 15990.94 18994.05 19780.78 19491.71 27795.38 18481.55 26088.63 14693.91 18475.04 17695.47 32282.47 20291.61 18596.57 140
sd_testset88.59 16887.85 16890.83 19096.00 10680.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27396.43 27879.64 25289.85 21195.63 179
PVSNet_BlendedMVS89.98 11989.70 11590.82 19196.12 9781.25 17993.92 19996.83 6683.49 21089.10 13992.26 23781.04 10998.85 8686.72 14887.86 24892.35 319
cascas86.43 24784.98 25590.80 19292.10 26380.92 19090.24 30895.91 14173.10 35883.57 27588.39 33365.15 29997.46 20084.90 16891.43 18794.03 250
ECVR-MVScopyleft89.09 15088.53 14790.77 19395.62 12375.89 30296.16 5384.22 37987.89 10790.20 12496.65 7063.19 31498.10 14685.90 15696.94 9098.33 43
GA-MVS86.61 23885.27 25090.66 19491.33 29478.71 24790.40 30393.81 25785.34 16985.12 23589.57 31561.25 32697.11 23680.99 23289.59 21796.15 152
thres600view787.65 19286.67 19990.59 19596.08 10278.72 24694.88 13291.58 31187.06 12588.08 15492.30 23568.91 26398.10 14670.05 33391.10 19094.96 201
thres40087.62 19786.64 20090.57 19695.99 10978.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 33091.10 19094.96 201
baseline188.10 17987.28 18190.57 19694.96 15180.07 21394.27 17291.29 32086.74 13487.41 16894.00 17776.77 15496.20 28980.77 23579.31 34595.44 183
FC-MVSNet-test90.27 11290.18 10490.53 19893.71 21479.85 22495.77 8097.59 389.31 5686.27 19794.67 15181.93 10397.01 24384.26 17688.09 24494.71 212
PAPM86.68 23785.39 24690.53 19893.05 23579.33 23989.79 31894.77 22178.82 29781.95 29693.24 20576.81 15297.30 21966.94 35093.16 16894.95 204
WR-MVS88.38 17187.67 17190.52 20093.30 22780.18 20893.26 22895.96 13788.57 8385.47 22192.81 22076.12 15996.91 24981.24 22782.29 30394.47 231
MVSTER88.84 15988.29 15790.51 20192.95 24180.44 20293.73 20695.01 20184.66 18787.15 17393.12 21072.79 21197.21 23087.86 12987.36 25793.87 256
RRT_MVS89.09 15088.62 14690.49 20292.85 24479.65 22896.41 3994.41 23288.22 9485.50 21894.77 14669.36 25397.31 21889.33 11286.73 26494.51 223
testdata90.49 20296.40 8977.89 26995.37 18672.51 36393.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 164
test111189.10 14888.64 14390.48 20495.53 12774.97 30996.08 6184.89 37788.13 9990.16 12696.65 7063.29 31298.10 14686.14 15196.90 9298.39 39
tt080586.92 22885.74 24090.48 20492.22 25779.98 22095.63 9194.88 21283.83 20184.74 24292.80 22157.61 34797.67 17985.48 16284.42 27993.79 261
jajsoiax88.24 17687.50 17490.48 20490.89 31480.14 21095.31 10195.65 16484.97 17884.24 26094.02 17565.31 29897.42 20588.56 12188.52 23593.89 253
PatchMatch-RL86.77 23585.54 24290.47 20795.88 11282.71 14490.54 30192.31 28879.82 28384.32 25791.57 26668.77 26596.39 28073.16 31193.48 16192.32 320
tfpn200view987.58 20086.64 20090.41 20895.99 10978.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 33091.10 19094.48 229
VPNet88.20 17787.47 17690.39 20993.56 22079.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23284.05 17980.53 33294.56 219
ACMH80.38 1785.36 26383.68 27690.39 20994.45 18180.63 19794.73 14294.85 21482.09 24077.24 34392.65 22460.01 33697.58 18872.25 31584.87 27692.96 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90087.63 19586.71 19790.38 21196.12 9778.55 25095.03 12491.58 31187.15 12288.06 15592.29 23668.91 26398.10 14670.13 33091.10 19094.48 229
mvs_tets88.06 18287.28 18190.38 21190.94 31079.88 22295.22 11095.66 16285.10 17584.21 26193.94 18063.53 31097.40 21288.50 12288.40 23993.87 256
131487.51 20386.57 20590.34 21392.42 25479.74 22692.63 24995.35 18878.35 30680.14 31891.62 26274.05 19297.15 23281.05 22893.53 15794.12 243
LTVRE_ROB82.13 1386.26 24984.90 25890.34 21394.44 18281.50 17092.31 26294.89 21083.03 22279.63 32792.67 22369.69 24897.79 17271.20 31986.26 26791.72 330
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
bld_raw_dy_0_6487.60 19986.73 19590.21 21591.72 27780.26 20795.09 12088.61 35885.68 16085.55 21294.38 15963.93 30896.66 25787.73 13187.84 24993.72 270
test_djsdf89.03 15488.64 14390.21 21590.74 32079.28 24095.96 7195.90 14284.66 18785.33 23392.94 21574.02 19397.30 21989.64 10988.53 23494.05 249
v2v48287.84 18587.06 18590.17 21790.99 30679.23 24394.00 19495.13 19584.87 18085.53 21592.07 24874.45 18497.45 20184.71 17181.75 31193.85 259
pmmvs485.43 26183.86 27490.16 21890.02 33782.97 13490.27 30492.67 28075.93 33080.73 30991.74 25771.05 22795.73 31278.85 26183.46 29191.78 329
V4287.68 19086.86 19090.15 21990.58 32580.14 21094.24 17595.28 18983.66 20485.67 20991.33 26874.73 18197.41 21084.43 17581.83 30992.89 302
MSDG84.86 27483.09 28590.14 22093.80 21080.05 21589.18 33093.09 26878.89 29578.19 33691.91 25265.86 29697.27 22368.47 33988.45 23793.11 294
anonymousdsp87.84 18587.09 18490.12 22189.13 34780.54 20094.67 14695.55 16982.05 24183.82 26792.12 24271.47 22497.15 23287.15 14187.80 25292.67 307
thres20087.21 21986.24 21890.12 22195.36 13178.53 25193.26 22892.10 29586.42 14188.00 15791.11 27969.24 25898.00 16269.58 33491.04 19593.83 260
CR-MVSNet85.35 26483.76 27590.12 22190.58 32579.34 23685.24 36991.96 30378.27 30885.55 21287.87 34371.03 22895.61 31473.96 30789.36 22095.40 185
v114487.61 19886.79 19490.06 22491.01 30579.34 23693.95 19695.42 18383.36 21585.66 21091.31 27174.98 17797.42 20583.37 18782.06 30593.42 282
XXY-MVS87.65 19286.85 19190.03 22592.14 26080.60 19993.76 20595.23 19182.94 22584.60 24494.02 17574.27 18695.49 32181.04 22983.68 28794.01 251
Vis-MVSNet (Re-imp)89.59 13289.44 12190.03 22595.74 11775.85 30395.61 9290.80 33387.66 11587.83 16095.40 12076.79 15396.46 27678.37 26396.73 9797.80 84
test250687.21 21986.28 21690.02 22795.62 12373.64 32396.25 4871.38 40187.89 10790.45 12096.65 7055.29 35898.09 15486.03 15596.94 9098.33 43
BH-untuned88.60 16788.13 16190.01 22895.24 13878.50 25393.29 22694.15 24384.75 18484.46 24993.40 19775.76 16697.40 21277.59 27394.52 14194.12 243
v119287.25 21586.33 21390.00 22990.76 31979.04 24493.80 20395.48 17482.57 23285.48 22091.18 27573.38 20597.42 20582.30 20682.06 30593.53 276
v7n86.81 23085.76 23889.95 23090.72 32179.25 24295.07 12195.92 13984.45 19082.29 29090.86 28472.60 21497.53 19479.42 25780.52 33393.08 296
v887.50 20586.71 19789.89 23191.37 29179.40 23394.50 15495.38 18484.81 18383.60 27491.33 26876.05 16097.42 20582.84 19680.51 33492.84 304
v1087.25 21586.38 21089.85 23291.19 29779.50 23094.48 15595.45 17883.79 20283.62 27391.19 27375.13 17497.42 20581.94 21480.60 32992.63 309
baseline286.50 24485.39 24689.84 23391.12 30276.70 29191.88 27288.58 35982.35 23779.95 32290.95 28373.42 20397.63 18680.27 24589.95 20895.19 192
pm-mvs186.61 23885.54 24289.82 23491.44 28680.18 20895.28 10794.85 21483.84 20081.66 29892.62 22572.45 21796.48 27379.67 25178.06 34892.82 305
TR-MVS86.78 23285.76 23889.82 23494.37 18478.41 25592.47 25392.83 27481.11 27086.36 19492.40 23168.73 26697.48 19773.75 30989.85 21193.57 275
ACMH+81.04 1485.05 27183.46 27989.82 23494.66 16879.37 23494.44 16094.12 24682.19 23978.04 33892.82 21958.23 34597.54 19373.77 30882.90 29892.54 310
EI-MVSNet89.10 14888.86 13989.80 23791.84 27278.30 25993.70 20995.01 20185.73 15887.15 17395.28 12279.87 11897.21 23083.81 18387.36 25793.88 255
v14419287.19 22186.35 21289.74 23890.64 32378.24 26193.92 19995.43 18181.93 24685.51 21791.05 28174.21 18997.45 20182.86 19581.56 31393.53 276
COLMAP_ROBcopyleft80.39 1683.96 28682.04 29589.74 23895.28 13479.75 22594.25 17392.28 28975.17 33778.02 33993.77 19058.60 34497.84 17165.06 36085.92 26891.63 332
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SCA86.32 24885.18 25189.73 24092.15 25976.60 29291.12 29191.69 30883.53 20985.50 21888.81 32666.79 28396.48 27376.65 28290.35 20296.12 155
IterMVS-LS88.36 17387.91 16789.70 24193.80 21078.29 26093.73 20695.08 20085.73 15884.75 24191.90 25379.88 11796.92 24883.83 18282.51 30093.89 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing9986.72 23685.73 24189.69 24294.23 19074.91 31191.35 28590.97 32886.14 15086.36 19490.22 29959.41 34097.48 19782.24 20890.66 19796.69 135
v192192086.97 22786.06 22589.69 24290.53 32878.11 26493.80 20395.43 18181.90 24885.33 23391.05 28172.66 21297.41 21082.05 21281.80 31093.53 276
Fast-Effi-MVS+-dtu87.44 20686.72 19689.63 24492.04 26477.68 27894.03 19093.94 24985.81 15582.42 28991.32 27070.33 24197.06 24080.33 24490.23 20394.14 242
v124086.78 23285.85 23389.56 24590.45 32977.79 27493.61 21195.37 18681.65 25685.43 22591.15 27771.50 22397.43 20481.47 22582.05 30793.47 280
Effi-MVS+-dtu88.65 16588.35 15389.54 24693.33 22676.39 29694.47 15894.36 23587.70 11285.43 22589.56 31673.45 20297.26 22585.57 16191.28 18994.97 198
AllTest83.42 29381.39 29989.52 24795.01 14777.79 27493.12 23290.89 33177.41 31576.12 35193.34 19854.08 36397.51 19568.31 34184.27 28193.26 285
TestCases89.52 24795.01 14777.79 27490.89 33177.41 31576.12 35193.34 19854.08 36397.51 19568.31 34184.27 28193.26 285
mvs_anonymous89.37 14489.32 12689.51 24993.47 22274.22 31891.65 28094.83 21682.91 22685.45 22293.79 18881.23 10896.36 28386.47 15094.09 14797.94 74
XVG-ACMP-BASELINE86.00 25184.84 26089.45 25091.20 29678.00 26591.70 27895.55 16985.05 17782.97 28492.25 23854.49 36197.48 19782.93 19387.45 25692.89 302
testing22284.84 27583.32 28089.43 25194.15 19575.94 30191.09 29289.41 35684.90 17985.78 20689.44 31752.70 36896.28 28770.80 32591.57 18696.07 159
MVP-Stereo85.97 25284.86 25989.32 25290.92 31282.19 15692.11 26894.19 24178.76 29978.77 33591.63 26168.38 27096.56 26875.01 29993.95 14989.20 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchmatchNetpermissive85.85 25584.70 26289.29 25391.76 27675.54 30688.49 33991.30 31981.63 25885.05 23688.70 33071.71 22096.24 28874.61 30389.05 22696.08 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14887.04 22586.32 21489.21 25490.94 31077.26 28393.71 20894.43 23084.84 18284.36 25590.80 28876.04 16197.05 24182.12 21079.60 34293.31 284
tfpnnormal84.72 27783.23 28389.20 25592.79 24680.05 21594.48 15595.81 14882.38 23581.08 30691.21 27269.01 26296.95 24661.69 37080.59 33090.58 355
cl2286.78 23285.98 22889.18 25692.34 25577.62 27990.84 29794.13 24581.33 26483.97 26590.15 30373.96 19496.60 26584.19 17782.94 29593.33 283
BH-w/o87.57 20187.05 18689.12 25794.90 15677.90 26892.41 25493.51 26282.89 22783.70 27091.34 26775.75 16797.07 23975.49 29293.49 15992.39 317
WR-MVS_H87.80 18787.37 17889.10 25893.23 22878.12 26395.61 9297.30 2987.90 10583.72 26992.01 25079.65 12596.01 29776.36 28580.54 33193.16 292
miper_enhance_ethall86.90 22986.18 21989.06 25991.66 28277.58 28090.22 31094.82 21779.16 29184.48 24889.10 32179.19 12996.66 25784.06 17882.94 29592.94 300
c3_l87.14 22386.50 20889.04 26092.20 25877.26 28391.22 29094.70 22482.01 24484.34 25690.43 29678.81 13296.61 26383.70 18581.09 32093.25 287
miper_ehance_all_eth87.22 21886.62 20389.02 26192.13 26177.40 28290.91 29694.81 21881.28 26584.32 25790.08 30579.26 12796.62 26083.81 18382.94 29593.04 297
gg-mvs-nofinetune81.77 30579.37 32088.99 26290.85 31677.73 27786.29 36179.63 39074.88 34283.19 28369.05 39160.34 33396.11 29375.46 29394.64 13793.11 294
ETVMVS84.43 28082.92 28988.97 26394.37 18474.67 31291.23 28988.35 36183.37 21486.06 20389.04 32255.38 35695.67 31367.12 34891.34 18896.58 139
pmmvs683.42 29381.60 29788.87 26488.01 36177.87 27094.96 12794.24 24074.67 34378.80 33491.09 28060.17 33596.49 27277.06 28175.40 36292.23 322
test_cas_vis1_n_192088.83 16288.85 14088.78 26591.15 30176.72 29093.85 20294.93 20883.23 21992.81 7296.00 9661.17 32994.45 33291.67 8394.84 13195.17 193
MIMVSNet82.59 29980.53 30488.76 26691.51 28478.32 25886.57 36090.13 34279.32 28780.70 31088.69 33152.98 36793.07 35766.03 35588.86 23094.90 205
cl____86.52 24385.78 23588.75 26792.03 26576.46 29490.74 29894.30 23781.83 25283.34 28090.78 28975.74 16996.57 26681.74 22081.54 31493.22 289
DIV-MVS_self_test86.53 24285.78 23588.75 26792.02 26676.45 29590.74 29894.30 23781.83 25283.34 28090.82 28775.75 16796.57 26681.73 22181.52 31593.24 288
CP-MVSNet87.63 19587.26 18388.74 26993.12 23176.59 29395.29 10596.58 9188.43 8683.49 27792.98 21475.28 17395.83 30578.97 26081.15 31993.79 261
eth_miper_zixun_eth86.50 24485.77 23788.68 27091.94 26775.81 30490.47 30294.89 21082.05 24184.05 26290.46 29575.96 16296.77 25382.76 19979.36 34493.46 281
CHOSEN 280x42085.15 26983.99 27288.65 27192.47 25178.40 25679.68 38992.76 27674.90 34181.41 30289.59 31469.85 24795.51 31879.92 24995.29 12592.03 325
PS-CasMVS87.32 21286.88 18988.63 27292.99 23976.33 29895.33 10096.61 8988.22 9483.30 28293.07 21273.03 20995.79 30978.36 26481.00 32593.75 268
TransMVSNet (Re)84.43 28083.06 28788.54 27391.72 27778.44 25495.18 11392.82 27582.73 23079.67 32692.12 24273.49 20195.96 29971.10 32368.73 37891.21 342
EG-PatchMatch MVS82.37 30180.34 30788.46 27490.27 33179.35 23592.80 24694.33 23677.14 31973.26 36790.18 30247.47 37996.72 25470.25 32787.32 25989.30 363
PEN-MVS86.80 23186.27 21788.40 27592.32 25675.71 30595.18 11396.38 10187.97 10282.82 28693.15 20873.39 20495.92 30076.15 28979.03 34793.59 274
Baseline_NR-MVSNet87.07 22486.63 20288.40 27591.44 28677.87 27094.23 17692.57 28284.12 19485.74 20892.08 24677.25 14996.04 29482.29 20779.94 33891.30 340
D2MVS85.90 25385.09 25388.35 27790.79 31777.42 28191.83 27495.70 15880.77 27380.08 32090.02 30666.74 28596.37 28181.88 21687.97 24691.26 341
pmmvs584.21 28282.84 29288.34 27888.95 34976.94 28792.41 25491.91 30575.63 33280.28 31591.18 27564.59 30295.57 31577.09 28083.47 29092.53 311
LCM-MVSNet-Re88.30 17588.32 15688.27 27994.71 16572.41 34093.15 23190.98 32787.77 11079.25 33091.96 25178.35 14095.75 31083.04 19195.62 11496.65 136
CostFormer85.77 25784.94 25788.26 28091.16 30072.58 33889.47 32591.04 32676.26 32786.45 19289.97 30870.74 23396.86 25282.35 20587.07 26295.34 189
ITE_SJBPF88.24 28191.88 27177.05 28692.92 27185.54 16580.13 31993.30 20257.29 34896.20 28972.46 31484.71 27791.49 336
PVSNet78.82 1885.55 25984.65 26388.23 28294.72 16471.93 34187.12 35692.75 27778.80 29884.95 23890.53 29464.43 30396.71 25674.74 30193.86 15196.06 161
IterMVS-SCA-FT85.45 26084.53 26688.18 28391.71 27976.87 28890.19 31192.65 28185.40 16881.44 30190.54 29366.79 28395.00 33081.04 22981.05 32192.66 308
EPNet_dtu86.49 24685.94 23188.14 28490.24 33272.82 33094.11 18192.20 29186.66 13779.42 32992.36 23373.52 20095.81 30771.26 31893.66 15395.80 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry82.71 29780.93 30388.06 28590.05 33676.37 29784.74 37491.96 30372.28 36681.32 30487.87 34371.03 22895.50 32068.97 33680.15 33692.32 320
test_vis1_n_192089.39 14389.84 11488.04 28692.97 24072.64 33594.71 14496.03 13386.18 14891.94 9796.56 7861.63 32195.74 31193.42 4195.11 12995.74 174
DTE-MVSNet86.11 25085.48 24487.98 28791.65 28374.92 31094.93 12995.75 15387.36 11982.26 29193.04 21372.85 21095.82 30674.04 30577.46 35393.20 290
PMMVS85.71 25884.96 25687.95 28888.90 35077.09 28588.68 33790.06 34472.32 36586.47 18990.76 29072.15 21894.40 33481.78 21993.49 15992.36 318
GG-mvs-BLEND87.94 28989.73 34377.91 26787.80 34678.23 39480.58 31283.86 36959.88 33795.33 32471.20 31992.22 18290.60 354
pmmvs-eth3d80.97 31878.72 33087.74 29084.99 37979.97 22190.11 31391.65 30975.36 33473.51 36586.03 35959.45 33993.96 34475.17 29672.21 36789.29 364
MS-PatchMatch85.05 27184.16 26887.73 29191.42 28978.51 25291.25 28893.53 26177.50 31480.15 31791.58 26461.99 31995.51 31875.69 29194.35 14589.16 366
test_040281.30 31579.17 32587.67 29293.19 22978.17 26292.98 23991.71 30675.25 33676.02 35390.31 29859.23 34196.37 28150.22 38783.63 28888.47 372
IterMVS84.88 27383.98 27387.60 29391.44 28676.03 30090.18 31292.41 28483.24 21881.06 30790.42 29766.60 28694.28 33879.46 25380.98 32692.48 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test81.37 31379.30 32187.58 29490.92 31274.16 32080.99 38587.68 36670.52 37376.63 34888.81 32671.21 22592.76 35960.01 37686.93 26395.83 170
EPMVS83.90 28982.70 29387.51 29590.23 33372.67 33388.62 33881.96 38581.37 26385.01 23788.34 33466.31 29094.45 33275.30 29587.12 26095.43 184
ADS-MVSNet281.66 30879.71 31787.50 29691.35 29274.19 31983.33 37988.48 36072.90 36082.24 29285.77 36264.98 30093.20 35564.57 36283.74 28595.12 194
OurMVSNet-221017-085.35 26484.64 26487.49 29790.77 31872.59 33794.01 19294.40 23384.72 18579.62 32893.17 20761.91 32096.72 25481.99 21381.16 31793.16 292
tpm284.08 28482.94 28887.48 29891.39 29071.27 34889.23 32990.37 33771.95 36784.64 24389.33 31867.30 27496.55 27075.17 29687.09 26194.63 213
RPSCF85.07 27084.27 26787.48 29892.91 24270.62 35791.69 27992.46 28376.20 32882.67 28895.22 12563.94 30697.29 22277.51 27585.80 26994.53 220
miper_lstm_enhance85.27 26784.59 26587.31 30091.28 29574.63 31387.69 35094.09 24781.20 26981.36 30389.85 31174.97 17894.30 33781.03 23179.84 34193.01 298
FMVSNet581.52 31179.60 31887.27 30191.17 29877.95 26691.49 28292.26 29076.87 32076.16 35087.91 34251.67 36992.34 36267.74 34581.16 31791.52 335
USDC82.76 29681.26 30187.26 30291.17 29874.55 31489.27 32793.39 26478.26 30975.30 35692.08 24654.43 36296.63 25971.64 31685.79 27090.61 352
test-LLR85.87 25485.41 24587.25 30390.95 30871.67 34689.55 32189.88 35083.41 21284.54 24687.95 34067.25 27595.11 32781.82 21793.37 16494.97 198
test-mter84.54 27983.64 27787.25 30390.95 30871.67 34689.55 32189.88 35079.17 29084.54 24687.95 34055.56 35495.11 32781.82 21793.37 16494.97 198
JIA-IIPM81.04 31678.98 32887.25 30388.64 35173.48 32581.75 38489.61 35473.19 35782.05 29473.71 38866.07 29595.87 30371.18 32184.60 27892.41 316
TDRefinement79.81 32877.34 33387.22 30679.24 39175.48 30793.12 23292.03 29876.45 32375.01 35791.58 26449.19 37596.44 27770.22 32969.18 37589.75 359
tpmvs83.35 29582.07 29487.20 30791.07 30471.00 35488.31 34291.70 30778.91 29380.49 31487.18 35269.30 25797.08 23768.12 34483.56 28993.51 279
ppachtmachnet_test81.84 30480.07 31287.15 30888.46 35574.43 31789.04 33392.16 29275.33 33577.75 34088.99 32366.20 29295.37 32365.12 35977.60 35191.65 331
dmvs_re84.20 28383.22 28487.14 30991.83 27477.81 27290.04 31490.19 34084.70 18681.49 29989.17 32064.37 30491.13 37371.58 31785.65 27192.46 314
tpm cat181.96 30280.27 30887.01 31091.09 30371.02 35387.38 35491.53 31466.25 37980.17 31686.35 35868.22 27196.15 29269.16 33582.29 30393.86 258
test_fmvs1_n87.03 22687.04 18786.97 31189.74 34271.86 34294.55 15294.43 23078.47 30391.95 9695.50 11651.16 37193.81 34593.02 4894.56 13995.26 190
OpenMVS_ROBcopyleft74.94 1979.51 33177.03 33886.93 31287.00 36776.23 29992.33 26090.74 33468.93 37674.52 36188.23 33749.58 37496.62 26057.64 38084.29 28087.94 375
SixPastTwentyTwo83.91 28882.90 29086.92 31390.99 30670.67 35693.48 21591.99 30085.54 16577.62 34292.11 24460.59 33296.87 25176.05 29077.75 35093.20 290
ADS-MVSNet81.56 31079.78 31486.90 31491.35 29271.82 34383.33 37989.16 35772.90 36082.24 29285.77 36264.98 30093.76 34664.57 36283.74 28595.12 194
PatchT82.68 29881.27 30086.89 31590.09 33570.94 35584.06 37690.15 34174.91 34085.63 21183.57 37169.37 25294.87 33165.19 35788.50 23694.84 207
tpm84.73 27684.02 27186.87 31690.33 33068.90 36489.06 33289.94 34780.85 27285.75 20789.86 31068.54 26895.97 29877.76 27184.05 28395.75 173
Patchmatch-RL test81.67 30779.96 31386.81 31785.42 37771.23 34982.17 38387.50 36778.47 30377.19 34482.50 37870.81 23293.48 35082.66 20072.89 36695.71 177
test_vis1_n86.56 24186.49 20986.78 31888.51 35272.69 33294.68 14593.78 25879.55 28690.70 11795.31 12148.75 37693.28 35393.15 4593.99 14894.38 233
test_fmvs187.34 21087.56 17386.68 31990.59 32471.80 34494.01 19294.04 24878.30 30791.97 9495.22 12556.28 35293.71 34792.89 4994.71 13394.52 221
MDA-MVSNet-bldmvs78.85 33576.31 34086.46 32089.76 34173.88 32188.79 33590.42 33679.16 29159.18 38788.33 33560.20 33494.04 34062.00 36968.96 37691.48 337
tpmrst85.35 26484.99 25486.43 32190.88 31567.88 36888.71 33691.43 31780.13 27886.08 20288.80 32873.05 20796.02 29682.48 20183.40 29395.40 185
TESTMET0.1,183.74 29182.85 29186.42 32289.96 33871.21 35089.55 32187.88 36377.41 31583.37 27987.31 34856.71 35093.65 34980.62 23992.85 17494.40 232
our_test_381.93 30380.46 30686.33 32388.46 35573.48 32588.46 34091.11 32276.46 32276.69 34788.25 33666.89 28194.36 33568.75 33779.08 34691.14 344
lessismore_v086.04 32488.46 35568.78 36580.59 38873.01 36890.11 30455.39 35596.43 27875.06 29865.06 38292.90 301
TinyColmap79.76 32977.69 33285.97 32591.71 27973.12 32789.55 32190.36 33875.03 33872.03 37190.19 30146.22 38196.19 29163.11 36681.03 32288.59 371
KD-MVS_2432*160078.50 33676.02 34385.93 32686.22 37074.47 31584.80 37292.33 28679.29 28876.98 34585.92 36053.81 36593.97 34267.39 34657.42 39089.36 361
miper_refine_blended78.50 33676.02 34385.93 32686.22 37074.47 31584.80 37292.33 28679.29 28876.98 34585.92 36053.81 36593.97 34267.39 34657.42 39089.36 361
K. test v381.59 30980.15 31185.91 32889.89 34069.42 36392.57 25187.71 36585.56 16473.44 36689.71 31355.58 35395.52 31777.17 27869.76 37292.78 306
mvsany_test185.42 26285.30 24985.77 32987.95 36375.41 30887.61 35380.97 38776.82 32188.68 14595.83 10477.44 14890.82 37585.90 15686.51 26591.08 348
MIMVSNet179.38 33277.28 33485.69 33086.35 36973.67 32291.61 28192.75 27778.11 31272.64 36988.12 33848.16 37791.97 36760.32 37377.49 35291.43 338
UWE-MVS83.69 29283.09 28585.48 33193.06 23465.27 37790.92 29586.14 37079.90 28186.26 19890.72 29157.17 34995.81 30771.03 32492.62 17695.35 188
UnsupCasMVSNet_eth80.07 32578.27 33185.46 33285.24 37872.63 33688.45 34194.87 21382.99 22471.64 37388.07 33956.34 35191.75 36873.48 31063.36 38592.01 326
CL-MVSNet_self_test81.74 30680.53 30485.36 33385.96 37272.45 33990.25 30693.07 26981.24 26779.85 32587.29 34970.93 23092.52 36066.95 34969.23 37491.11 346
MDA-MVSNet_test_wron79.21 33477.19 33685.29 33488.22 35972.77 33185.87 36390.06 34474.34 34562.62 38587.56 34666.14 29391.99 36666.90 35373.01 36491.10 347
YYNet179.22 33377.20 33585.28 33588.20 36072.66 33485.87 36390.05 34674.33 34662.70 38387.61 34566.09 29492.03 36466.94 35072.97 36591.15 343
WB-MVSnew83.77 29083.28 28185.26 33691.48 28571.03 35291.89 27187.98 36278.91 29384.78 24090.22 29969.11 26194.02 34164.70 36190.44 19990.71 350
dp81.47 31280.23 30985.17 33789.92 33965.49 37586.74 35890.10 34376.30 32681.10 30587.12 35362.81 31595.92 30068.13 34379.88 33994.09 246
UnsupCasMVSNet_bld76.23 34473.27 34885.09 33883.79 38172.92 32885.65 36693.47 26371.52 36868.84 37979.08 38349.77 37393.21 35466.81 35460.52 38789.13 368
Anonymous2023120681.03 31779.77 31684.82 33987.85 36470.26 35991.42 28392.08 29673.67 35277.75 34089.25 31962.43 31793.08 35661.50 37182.00 30891.12 345
test0.0.03 182.41 30081.69 29684.59 34088.23 35872.89 32990.24 30887.83 36483.41 21279.86 32489.78 31267.25 27588.99 38365.18 35883.42 29291.90 328
CMPMVSbinary59.16 2180.52 32079.20 32484.48 34183.98 38067.63 37089.95 31793.84 25664.79 38266.81 38191.14 27857.93 34695.17 32576.25 28788.10 24290.65 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet84.69 27884.79 26184.37 34291.84 27264.92 37893.70 20991.47 31666.19 38086.16 20195.28 12267.18 27793.33 35280.89 23490.42 20194.88 206
PVSNet_073.20 2077.22 34174.83 34784.37 34290.70 32271.10 35183.09 38189.67 35372.81 36273.93 36483.13 37360.79 33193.70 34868.54 33850.84 39488.30 373
LF4IMVS80.37 32379.07 32784.27 34486.64 36869.87 36289.39 32691.05 32576.38 32474.97 35890.00 30747.85 37894.25 33974.55 30480.82 32888.69 370
Anonymous2024052180.44 32279.21 32384.11 34585.75 37567.89 36792.86 24493.23 26675.61 33375.59 35587.47 34750.03 37294.33 33671.14 32281.21 31690.12 357
PM-MVS78.11 33876.12 34284.09 34683.54 38270.08 36088.97 33485.27 37679.93 28074.73 36086.43 35634.70 39093.48 35079.43 25672.06 36888.72 369
test_fmvs283.98 28584.03 27083.83 34787.16 36667.53 37193.93 19892.89 27277.62 31386.89 18393.53 19547.18 38092.02 36590.54 10286.51 26591.93 327
testgi80.94 31980.20 31083.18 34887.96 36266.29 37291.28 28690.70 33583.70 20378.12 33792.84 21751.37 37090.82 37563.34 36582.46 30192.43 315
KD-MVS_self_test80.20 32479.24 32283.07 34985.64 37665.29 37691.01 29493.93 25078.71 30176.32 34986.40 35759.20 34292.93 35872.59 31369.35 37391.00 349
testing380.46 32179.59 31983.06 35093.44 22464.64 37993.33 22085.47 37484.34 19179.93 32390.84 28644.35 38492.39 36157.06 38287.56 25392.16 324
ambc83.06 35079.99 38963.51 38377.47 39092.86 27374.34 36384.45 36828.74 39195.06 32973.06 31268.89 37790.61 352
test20.0379.95 32779.08 32682.55 35285.79 37467.74 36991.09 29291.08 32381.23 26874.48 36289.96 30961.63 32190.15 37760.08 37476.38 35889.76 358
test_vis1_rt77.96 33976.46 33982.48 35385.89 37371.74 34590.25 30678.89 39171.03 37271.30 37481.35 38042.49 38691.05 37484.55 17382.37 30284.65 378
EU-MVSNet81.32 31480.95 30282.42 35488.50 35463.67 38293.32 22191.33 31864.02 38380.57 31392.83 21861.21 32892.27 36376.34 28680.38 33591.32 339
myMVS_eth3d79.67 33078.79 32982.32 35591.92 26864.08 38089.75 31987.40 36881.72 25478.82 33287.20 35045.33 38291.29 37159.09 37887.84 24991.60 333
pmmvs371.81 35068.71 35381.11 35675.86 39270.42 35886.74 35883.66 38058.95 38768.64 38080.89 38136.93 38889.52 38063.10 36763.59 38483.39 379
Syy-MVS80.07 32579.78 31480.94 35791.92 26859.93 38889.75 31987.40 36881.72 25478.82 33287.20 35066.29 29191.29 37147.06 38987.84 24991.60 333
new-patchmatchnet76.41 34375.17 34680.13 35882.65 38559.61 38987.66 35191.08 32378.23 31069.85 37783.22 37254.76 35991.63 37064.14 36464.89 38389.16 366
mvsany_test374.95 34573.26 34980.02 35974.61 39363.16 38485.53 36778.42 39274.16 34774.89 35986.46 35536.02 38989.09 38282.39 20466.91 37987.82 376
test_fmvs377.67 34077.16 33779.22 36079.52 39061.14 38692.34 25991.64 31073.98 34978.86 33186.59 35427.38 39487.03 38588.12 12775.97 36089.50 360
DSMNet-mixed76.94 34276.29 34178.89 36183.10 38356.11 39787.78 34779.77 38960.65 38675.64 35488.71 32961.56 32388.34 38460.07 37589.29 22292.21 323
EGC-MVSNET61.97 35856.37 36278.77 36289.63 34473.50 32489.12 33182.79 3820.21 4061.24 40784.80 36639.48 38790.04 37844.13 39175.94 36172.79 390
new_pmnet72.15 34870.13 35278.20 36382.95 38465.68 37383.91 37782.40 38462.94 38564.47 38279.82 38242.85 38586.26 38957.41 38174.44 36382.65 383
MVS-HIRNet73.70 34772.20 35078.18 36491.81 27556.42 39682.94 38282.58 38355.24 38868.88 37866.48 39255.32 35795.13 32658.12 37988.42 23883.01 381
LCM-MVSNet66.00 35562.16 36077.51 36564.51 40358.29 39183.87 37890.90 33048.17 39254.69 38973.31 38916.83 40386.75 38665.47 35661.67 38687.48 377
APD_test169.04 35166.26 35777.36 36680.51 38862.79 38585.46 36883.51 38154.11 39059.14 38884.79 36723.40 39789.61 37955.22 38370.24 37179.68 387
test_f71.95 34970.87 35175.21 36774.21 39559.37 39085.07 37185.82 37265.25 38170.42 37683.13 37323.62 39582.93 39578.32 26571.94 36983.33 380
ANet_high58.88 36254.22 36672.86 36856.50 40656.67 39380.75 38686.00 37173.09 35937.39 39864.63 39522.17 39879.49 39843.51 39223.96 40082.43 384
test_vis3_rt65.12 35662.60 35872.69 36971.44 39660.71 38787.17 35565.55 40263.80 38453.22 39065.65 39414.54 40489.44 38176.65 28265.38 38167.91 393
FPMVS64.63 35762.55 35970.88 37070.80 39756.71 39284.42 37584.42 37851.78 39149.57 39181.61 37923.49 39681.48 39640.61 39676.25 35974.46 389
dmvs_testset74.57 34675.81 34570.86 37187.72 36540.47 40487.05 35777.90 39682.75 22971.15 37585.47 36467.98 27284.12 39345.26 39076.98 35788.00 374
N_pmnet68.89 35268.44 35470.23 37289.07 34828.79 40988.06 34319.50 40969.47 37571.86 37284.93 36561.24 32791.75 36854.70 38477.15 35490.15 356
testf159.54 36056.11 36369.85 37369.28 39856.61 39480.37 38776.55 39942.58 39545.68 39475.61 38411.26 40584.18 39143.20 39360.44 38868.75 391
APD_test259.54 36056.11 36369.85 37369.28 39856.61 39480.37 38776.55 39942.58 39545.68 39475.61 38411.26 40584.18 39143.20 39360.44 38868.75 391
WB-MVS67.92 35367.49 35569.21 37581.09 38641.17 40388.03 34478.00 39573.50 35462.63 38483.11 37563.94 30686.52 38725.66 40051.45 39379.94 386
PMMVS259.60 35956.40 36169.21 37568.83 40046.58 40173.02 39477.48 39755.07 38949.21 39272.95 39017.43 40280.04 39749.32 38844.33 39780.99 385
SSC-MVS67.06 35466.56 35668.56 37780.54 38740.06 40587.77 34877.37 39872.38 36461.75 38682.66 37763.37 31186.45 38824.48 40148.69 39679.16 388
Gipumacopyleft57.99 36354.91 36567.24 37888.51 35265.59 37452.21 39790.33 33943.58 39442.84 39751.18 39820.29 40085.07 39034.77 39770.45 37051.05 397
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 36448.46 36863.48 37945.72 40846.20 40273.41 39378.31 39341.03 39730.06 40065.68 3936.05 40783.43 39430.04 39865.86 38060.80 394
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 36638.59 37257.77 38056.52 40548.77 40055.38 39658.64 40629.33 40028.96 40152.65 3974.68 40864.62 40228.11 39933.07 39859.93 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 36548.47 36756.66 38152.26 40718.98 41141.51 39981.40 38610.10 40144.59 39675.01 38728.51 39268.16 39953.54 38549.31 39582.83 382
DeepMVS_CXcopyleft56.31 38274.23 39451.81 39956.67 40744.85 39348.54 39375.16 38627.87 39358.74 40340.92 39552.22 39258.39 396
E-PMN43.23 36742.29 36946.03 38365.58 40237.41 40673.51 39264.62 40333.99 39828.47 40247.87 39919.90 40167.91 40022.23 40224.45 39932.77 398
EMVS42.07 36841.12 37044.92 38463.45 40435.56 40873.65 39163.48 40433.05 39926.88 40345.45 40021.27 39967.14 40119.80 40323.02 40132.06 399
tmp_tt35.64 36939.24 37124.84 38514.87 40923.90 41062.71 39551.51 4086.58 40336.66 39962.08 39644.37 38330.34 40552.40 38622.00 40220.27 400
wuyk23d21.27 37120.48 37423.63 38668.59 40136.41 40749.57 3986.85 4109.37 4027.89 4044.46 4064.03 40931.37 40417.47 40416.07 4033.12 401
test1238.76 37311.22 3761.39 3870.85 4110.97 41285.76 3650.35 4120.54 4052.45 4068.14 4050.60 4100.48 4062.16 4060.17 4052.71 402
testmvs8.92 37211.52 3751.12 3881.06 4100.46 41386.02 3620.65 4110.62 4042.74 4059.52 4040.31 4110.45 4072.38 4050.39 4042.46 403
test_blank0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
uanet_test0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
DCPMVS0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
cdsmvs_eth3d_5k22.14 37029.52 3730.00 3890.00 4120.00 4140.00 40095.76 1520.00 4070.00 40894.29 16475.66 1700.00 4080.00 4070.00 4060.00 404
pcd_1.5k_mvsjas6.64 3758.86 3780.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 40779.70 1210.00 4080.00 4070.00 4060.00 404
sosnet-low-res0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
sosnet0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
uncertanet0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
Regformer0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
ab-mvs-re7.82 37410.43 3770.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 40893.88 1850.00 4120.00 4080.00 4070.00 4060.00 404
uanet0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
WAC-MVS64.08 38059.14 377
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
PC_three_145282.47 23397.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 412
eth-test0.00 412
ZD-MVS98.15 3486.62 3297.07 4583.63 20594.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
RE-MVS-def93.68 5297.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
IU-MVS98.77 586.00 4996.84 6581.26 26697.26 795.50 2399.13 399.03 8
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 2097.79 4996.08 6197.44 1586.13 15295.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 155
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 155
sam_mvs70.60 234
MTGPAbinary96.97 50
test_post188.00 3459.81 40369.31 25695.53 31676.65 282
test_post10.29 40270.57 23895.91 302
patchmatchnet-post83.76 37071.53 22296.48 273
MTMP96.16 5360.64 405
gm-plane-assit89.60 34568.00 36677.28 31888.99 32397.57 18979.44 255
test9_res91.91 7898.71 3298.07 66
TEST997.53 5886.49 3694.07 18696.78 7281.61 25992.77 7496.20 8787.71 2899.12 51
test_897.49 6086.30 4494.02 19196.76 7581.86 25092.70 7896.20 8787.63 2999.02 61
agg_prior290.54 10298.68 3798.27 52
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
test_prior485.96 5394.11 181
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
旧先验293.36 21971.25 37094.37 3997.13 23586.74 146
新几何293.11 234
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
无先验93.28 22796.26 11073.95 35099.05 5580.56 24096.59 138
原ACMM292.94 241
test22296.55 8481.70 16692.22 26495.01 20168.36 37790.20 12496.14 9280.26 11497.80 7496.05 162
testdata298.75 9378.30 266
segment_acmp87.16 36
testdata192.15 26687.94 103
plane_prior794.70 16682.74 141
plane_prior694.52 17682.75 13974.23 187
plane_prior596.22 11598.12 14488.15 12489.99 20594.63 213
plane_prior494.86 140
plane_prior382.75 13990.26 3386.91 180
plane_prior295.85 7590.81 17
plane_prior194.59 171
plane_prior82.73 14295.21 11189.66 4889.88 210
n20.00 413
nn0.00 413
door-mid85.49 373
test1196.57 92
door85.33 375
HQP5-MVS81.56 168
HQP-NCC94.17 19294.39 16588.81 7285.43 225
ACMP_Plane94.17 19294.39 16588.81 7285.43 225
BP-MVS87.11 143
HQP4-MVS85.43 22597.96 16594.51 223
HQP3-MVS96.04 13189.77 214
HQP2-MVS73.83 197
NP-MVS94.37 18482.42 15193.98 178
MDTV_nov1_ep13_2view55.91 39887.62 35273.32 35684.59 24570.33 24174.65 30295.50 182
MDTV_nov1_ep1383.56 27891.69 28169.93 36187.75 34991.54 31378.60 30284.86 23988.90 32569.54 25096.03 29570.25 32788.93 229
ACMMP++_ref87.47 254
ACMMP++88.01 245
Test By Simon80.02 116