This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
PC_three_145282.47 23097.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS89.96 194.20 3394.77 1692.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
SD-MVS94.96 1295.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 24894.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MCST-MVS94.45 2194.20 3495.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
TSAR-MVS + MP.94.85 1394.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15397.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-293.74 4694.32 2592.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
9.1494.47 1997.79 4996.08 6197.44 1586.13 15195.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
SF-MVS94.97 1194.90 1495.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
dcpmvs_293.49 5194.19 3591.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
CSCG93.23 6293.05 6293.76 6498.04 4084.07 9696.22 4997.37 2184.15 19190.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
NCCC94.81 1494.69 1795.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
TEST997.53 5886.49 3694.07 18696.78 7281.61 25692.77 7496.20 8787.71 2899.12 51
train_agg93.44 5493.08 6194.52 4397.53 5886.49 3694.07 18696.78 7281.86 24792.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
test_897.49 6086.30 4494.02 19196.76 7581.86 24792.70 7896.20 8787.63 2999.02 61
ZD-MVS98.15 3486.62 3297.07 4583.63 20394.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
fmvsm_l_conf0.5_n94.29 2794.46 2093.79 6395.28 13385.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
fmvsm_l_conf0.5_n_a94.20 3394.40 2293.60 6795.29 13284.98 7195.61 9296.28 10886.31 14396.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
TSAR-MVS + GP.93.66 4893.41 5594.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
APD-MVScopyleft94.24 2994.07 3894.75 3598.06 3986.90 2295.88 7496.94 5585.68 15995.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
segment_acmp87.16 36
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
CDPH-MVS92.83 6892.30 7494.44 4497.79 4986.11 4894.06 18896.66 8580.09 27692.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
DPM-MVS92.58 7291.74 8095.08 1596.19 9589.31 592.66 24896.56 9383.44 20991.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
test_fmvsmconf_n94.60 1794.81 1593.98 5394.62 16984.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
DELS-MVS93.43 5793.25 5893.97 5495.42 12885.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_fmvsm_n_192094.71 1695.11 1093.50 6995.79 11484.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
ZNCC-MVS94.47 2094.28 2995.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
HFP-MVS94.52 1994.40 2294.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
MVS_111021_HR93.45 5393.31 5693.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
ACMMP_NAP94.74 1594.56 1895.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
CS-MVS94.12 3694.44 2193.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
PHI-MVS93.89 4293.65 5394.62 4096.84 7586.43 3896.69 3297.49 685.15 17393.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
MP-MVS-pluss94.21 3194.00 4194.85 2598.17 3386.65 3094.82 13697.17 3986.26 14592.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 3193.97 4294.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
MP-MVScopyleft94.25 2894.07 3894.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast89.43 294.04 3793.79 4594.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R94.43 2394.27 3194.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
CP-MVS94.34 2694.21 3394.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
test_fmvsmconf0.1_n94.20 3394.31 2793.88 5792.46 24784.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
ACMMPR94.43 2394.28 2994.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
CS-MVS-test94.02 3894.29 2893.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
XVS94.45 2194.32 2594.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
X-MVStestdata88.31 17386.13 21994.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 39685.02 5999.49 2691.99 7498.56 4898.47 33
MSLP-MVS++93.72 4794.08 3792.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 131
HPM-MVScopyleft94.02 3893.88 4394.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS94.23 3094.17 3694.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
PGM-MVS93.96 4193.72 4994.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
EI-MVSNet-Vis-set93.01 6692.92 6593.29 7195.01 14683.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
MTAPA94.42 2594.22 3295.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
SR-MVS-dyc-post93.82 4393.82 4493.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
ETV-MVS92.74 7092.66 6992.97 8895.20 13984.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 140
EI-MVSNet-UG-set92.74 7092.62 7093.12 7894.86 15783.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
mPP-MVS93.99 4093.78 4694.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
APD-MVS_3200maxsize93.78 4493.77 4793.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
EIA-MVS91.95 7991.94 7791.98 13495.16 14080.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
MVS_030494.60 1794.38 2495.23 1195.41 12987.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
fmvsm_s_conf0.5_n93.76 4594.06 4092.86 9495.62 12283.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
casdiffmvs_mvgpermissive92.96 6792.83 6793.35 7094.59 17083.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet91.70 8591.56 8292.13 12995.88 11180.50 20197.33 795.25 19086.15 14989.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
test_fmvsmvis_n_192093.44 5493.55 5493.10 7993.67 21384.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 144
UA-Net92.83 6892.54 7193.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
UniMVSNet_NR-MVSNet89.92 12389.29 12691.81 14993.39 22183.72 10494.43 16197.12 4189.80 4186.46 19093.32 20083.16 7997.23 22784.92 16681.02 31894.49 224
EC-MVSNet93.44 5493.71 5092.63 10795.21 13882.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
fmvsm_s_conf0.5_n_a93.57 4993.76 4893.00 8695.02 14583.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
MM95.68 588.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
RE-MVS-def93.68 5197.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
新几何193.10 7997.30 6684.35 9295.56 16871.09 36691.26 11396.24 8582.87 8598.86 8479.19 25898.10 6296.07 157
fmvsm_s_conf0.1_n93.46 5293.66 5292.85 9593.75 20983.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29090.45 12095.92 10082.65 8798.84 8880.68 23798.26 5796.14 151
casdiffmvspermissive92.51 7392.43 7392.74 10194.41 18281.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS88.79 393.31 5992.99 6494.26 5196.07 10285.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast93.40 5893.22 5993.94 5698.36 2584.83 7497.15 1396.80 7185.77 15692.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
baseline92.39 7692.29 7592.69 10594.46 17981.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
canonicalmvs93.27 6092.75 6894.85 2595.70 11987.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
fmvsm_s_conf0.1_n_a93.19 6393.26 5792.97 8892.49 24583.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
DP-MVS Recon91.95 7991.28 8593.96 5598.33 2785.92 5694.66 14796.66 8582.69 22890.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
PAPR90.02 11789.27 12892.29 12595.78 11580.95 18992.68 24796.22 11581.91 24486.66 18893.75 19282.23 9598.44 12179.40 25794.79 13297.48 97
MVS_Test91.31 9191.11 8891.93 13894.37 18380.14 21093.46 21795.80 14986.46 14091.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
nrg03091.08 9690.39 9893.17 7693.07 22986.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 28994.96 197
UniMVSNet (Re)89.80 12689.07 13092.01 13093.60 21584.52 8394.78 13997.47 1189.26 5886.44 19392.32 23482.10 9897.39 21484.81 16980.84 32294.12 239
testdata90.49 20296.40 8977.89 26995.37 18672.51 35893.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 161
PAPM_NR91.22 9390.78 9692.52 11397.60 5681.46 17494.37 16996.24 11386.39 14287.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
MG-MVS91.77 8291.70 8192.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
CANet93.54 5093.20 6094.55 4295.65 12085.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
FC-MVSNet-test90.27 11190.18 10390.53 19893.71 21079.85 22495.77 8097.59 389.31 5686.27 19694.67 15181.93 10397.01 24284.26 17688.09 23994.71 208
FIs90.51 10990.35 9990.99 18693.99 19980.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22685.18 16388.31 23694.76 207
ACMMPcopyleft93.24 6192.88 6694.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+91.59 8791.11 8893.01 8594.35 18683.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
MVS_111021_LR92.47 7492.29 7592.98 8795.99 10884.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 132
mvs_anonymous89.37 14389.32 12589.51 24893.47 21874.22 31591.65 27994.83 21682.91 22385.45 21893.79 18881.23 10896.36 28286.47 15094.09 14797.94 74
PVSNet_BlendedMVS89.98 11889.70 11490.82 19196.12 9781.25 17993.92 19996.83 6683.49 20889.10 13992.26 23781.04 10998.85 8686.72 14887.86 24392.35 315
PVSNet_Blended90.73 10190.32 10091.98 13496.12 9781.25 17992.55 25296.83 6682.04 24089.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 166
alignmvs93.08 6592.50 7294.81 3195.62 12287.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
API-MVS90.66 10490.07 10692.45 11696.36 9184.57 8096.06 6495.22 19382.39 23189.13 13894.27 16780.32 11298.46 11580.16 24596.71 9894.33 230
PVSNet_Blended_VisFu91.38 8990.91 9392.80 9796.39 9083.17 12294.87 13396.66 8583.29 21389.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 159
test22296.55 8481.70 16692.22 26495.01 20168.36 37290.20 12496.14 9280.26 11497.80 7496.05 159
diffmvspermissive91.37 9091.23 8691.77 15093.09 22880.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20292.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test By Simon80.02 116
IterMVS-LS88.36 17287.91 16689.70 24193.80 20678.29 26093.73 20695.08 20085.73 15784.75 23691.90 25379.88 11796.92 24783.83 18282.51 29593.89 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.10 14788.86 13889.80 23791.84 26778.30 25993.70 20995.01 20185.73 15787.15 17395.28 12279.87 11897.21 22983.81 18387.36 25293.88 251
TAPA-MVS84.62 688.16 17787.01 18791.62 15496.64 8080.65 19694.39 16596.21 11876.38 31986.19 19895.44 11779.75 11998.08 15662.75 36395.29 12596.13 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+89.41 13988.64 14291.71 15294.74 16180.81 19393.54 21395.10 19883.11 21786.82 18690.67 29179.74 12097.75 17780.51 24093.55 15696.57 138
pcd_1.5k_mvsjas6.64 3698.86 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40279.70 1210.00 4030.00 4020.00 4010.00 399
PS-MVSNAJss89.97 11989.62 11591.02 18391.90 26580.85 19295.26 10895.98 13486.26 14586.21 19794.29 16479.70 12197.65 18288.87 11988.10 23794.57 214
PS-MVSNAJ91.18 9490.92 9291.96 13695.26 13682.60 14992.09 26995.70 15886.27 14491.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 233
xiu_mvs_v2_base91.13 9590.89 9491.86 14494.97 14982.42 15192.24 26395.64 16586.11 15291.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 234
WR-MVS_H87.80 18687.37 17789.10 25693.23 22478.12 26395.61 9297.30 2987.90 10583.72 26492.01 25079.65 12596.01 29576.36 28480.54 32693.16 288
EPNet91.79 8191.02 9194.10 5290.10 32885.25 6996.03 6692.05 29792.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth87.22 21786.62 20289.02 25992.13 25677.40 28290.91 29194.81 21881.28 26284.32 25290.08 30279.26 12796.62 25983.81 18382.94 29093.04 293
test_fmvsmconf0.01_n93.19 6393.02 6393.71 6589.25 34084.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
miper_enhance_ethall86.90 22886.18 21889.06 25791.66 27777.58 28090.22 30594.82 21779.16 28784.48 24389.10 31779.19 12996.66 25684.06 17882.94 29092.94 296
NR-MVSNet88.58 16887.47 17591.93 13893.04 23184.16 9594.77 14096.25 11289.05 6580.04 31693.29 20379.02 13097.05 24081.71 22180.05 33294.59 212
TAMVS89.21 14588.29 15691.96 13693.71 21082.62 14893.30 22594.19 24182.22 23587.78 16293.94 18078.83 13196.95 24577.70 27192.98 17196.32 144
c3_l87.14 22286.50 20789.04 25892.20 25377.26 28391.22 28794.70 22482.01 24184.34 25190.43 29578.81 13296.61 26283.70 18581.09 31593.25 283
1112_ss88.42 16987.33 17891.72 15194.92 15380.98 18792.97 24094.54 22778.16 30683.82 26293.88 18578.78 13397.91 16979.45 25389.41 21396.26 148
CDS-MVSNet89.45 13688.51 14792.29 12593.62 21483.61 11193.01 23894.68 22581.95 24287.82 16193.24 20578.69 13496.99 24380.34 24293.23 16796.28 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS89.60 13088.92 13491.67 15395.47 12781.15 18392.38 25694.78 22083.11 21789.06 14194.32 16278.67 13596.61 26281.57 22290.89 19397.24 104
CPTT-MVS91.99 7891.80 7992.55 11198.24 3181.98 16096.76 3096.49 9581.89 24690.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
IS-MVSNet91.43 8891.09 9092.46 11595.87 11381.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
OMC-MVS91.23 9290.62 9793.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 130
PCF-MVS84.11 1087.74 18886.08 22392.70 10494.02 19484.43 8989.27 32295.87 14573.62 34884.43 24694.33 16178.48 13998.86 8470.27 32394.45 14394.81 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LCM-MVSNet-Re88.30 17488.32 15588.27 27694.71 16472.41 33793.15 23190.98 32787.77 11079.25 32591.96 25178.35 14095.75 30783.04 19195.62 11496.65 135
HY-MVS83.01 1289.03 15387.94 16592.29 12594.86 15782.77 13892.08 27094.49 22881.52 25886.93 17892.79 22278.32 14198.23 13779.93 24790.55 19495.88 164
GeoE90.05 11689.43 12191.90 14395.16 14080.37 20495.80 7894.65 22683.90 19687.55 16794.75 14778.18 14297.62 18781.28 22593.63 15497.71 88
MVS87.44 20586.10 22291.44 16392.61 24483.62 10992.63 24995.66 16267.26 37381.47 29592.15 24077.95 14398.22 13979.71 24995.48 11892.47 309
MVSFormer91.68 8691.30 8492.80 9793.86 20383.88 10195.96 7195.90 14284.66 18591.76 10394.91 13777.92 14497.30 21889.64 10997.11 8597.24 104
lupinMVS90.92 9790.21 10193.03 8493.86 20383.88 10192.81 24593.86 25479.84 27891.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
Test_1112_low_res87.65 19186.51 20691.08 17994.94 15279.28 24091.77 27494.30 23776.04 32483.51 27192.37 23277.86 14697.73 17878.69 26189.13 22096.22 149
VNet92.24 7791.91 7893.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
mvsany_test185.42 26085.30 24785.77 32687.95 35775.41 30787.61 34880.97 38276.82 31688.68 14595.83 10477.44 14890.82 37085.90 15686.51 26091.08 344
DU-MVS89.34 14488.50 14891.85 14693.04 23183.72 10494.47 15896.59 9089.50 5086.46 19093.29 20377.25 14997.23 22784.92 16681.02 31894.59 212
Baseline_NR-MVSNet87.07 22386.63 20188.40 27291.44 28077.87 27094.23 17692.57 28284.12 19285.74 20492.08 24677.25 14996.04 29282.29 20779.94 33391.30 336
jason90.80 9890.10 10592.90 9293.04 23183.53 11293.08 23594.15 24380.22 27391.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
PAPM86.68 23585.39 24490.53 19893.05 23079.33 23989.79 31394.77 22178.82 29281.95 29193.24 20576.81 15297.30 21866.94 34693.16 16894.95 200
Vis-MVSNet (Re-imp)89.59 13189.44 12090.03 22595.74 11675.85 30295.61 9290.80 33287.66 11587.83 16095.40 12076.79 15396.46 27578.37 26296.73 9797.80 84
baseline188.10 17887.28 18090.57 19694.96 15080.07 21394.27 17291.29 32086.74 13487.41 16894.00 17776.77 15496.20 28780.77 23479.31 34095.44 180
114514_t89.51 13388.50 14892.54 11298.11 3681.99 15995.16 11696.36 10270.19 36985.81 20295.25 12476.70 15598.63 10282.07 21096.86 9597.00 120
PLCcopyleft84.53 789.06 15288.03 16292.15 12897.27 6882.69 14594.29 17195.44 18079.71 28084.01 25994.18 16976.68 15698.75 9377.28 27593.41 16295.02 193
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TranMVSNet+NR-MVSNet88.84 15887.95 16491.49 16092.68 24383.01 13294.92 13096.31 10489.88 3985.53 21193.85 18776.63 15796.96 24481.91 21479.87 33594.50 222
MAR-MVS90.30 11089.37 12393.07 8396.61 8184.48 8595.68 8595.67 16082.36 23387.85 15992.85 21676.63 15798.80 9080.01 24696.68 9995.91 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WR-MVS88.38 17087.67 17090.52 20093.30 22380.18 20893.26 22895.96 13788.57 8385.47 21792.81 22076.12 15996.91 24881.24 22682.29 29894.47 227
v887.50 20486.71 19689.89 23191.37 28579.40 23394.50 15495.38 18484.81 18183.60 26991.33 26876.05 16097.42 20482.84 19680.51 32992.84 300
v14887.04 22486.32 21389.21 25290.94 30477.26 28393.71 20894.43 23084.84 18084.36 25090.80 28876.04 16197.05 24082.12 20979.60 33793.31 280
eth_miper_zixun_eth86.50 24285.77 23688.68 26791.94 26275.81 30390.47 29794.89 21082.05 23884.05 25790.46 29475.96 16296.77 25282.76 19979.36 33993.46 277
3Dnovator+87.14 492.42 7591.37 8395.55 795.63 12188.73 697.07 1896.77 7490.84 1684.02 25896.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
h-mvs3390.80 9890.15 10492.75 10096.01 10482.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 34496.60 136
hse-mvs289.88 12589.34 12491.51 15994.83 15981.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35195.74 171
BH-untuned88.60 16688.13 16090.01 22895.24 13778.50 25393.29 22694.15 24384.75 18284.46 24493.40 19775.76 16697.40 21177.59 27294.52 14194.12 239
DIV-MVS_self_test86.53 24085.78 23488.75 26492.02 26176.45 29590.74 29394.30 23781.83 24983.34 27590.82 28775.75 16796.57 26581.73 22081.52 31093.24 284
BH-w/o87.57 20087.05 18589.12 25594.90 15577.90 26892.41 25493.51 26282.89 22483.70 26591.34 26775.75 16797.07 23875.49 29193.49 15992.39 313
cl____86.52 24185.78 23488.75 26492.03 26076.46 29490.74 29394.30 23781.83 24983.34 27590.78 28975.74 16996.57 26581.74 21981.54 30993.22 285
cdsmvs_eth3d_5k22.14 36429.52 3670.00 3840.00 4060.00 4090.00 39595.76 1520.00 4020.00 40394.29 16475.66 1700.00 4030.00 4020.00 4010.00 399
CNLPA89.07 15187.98 16392.34 12196.87 7484.78 7694.08 18593.24 26581.41 25984.46 24495.13 13275.57 17196.62 25977.21 27693.84 15295.61 178
CHOSEN 1792x268888.84 15887.69 16992.30 12496.14 9681.42 17690.01 31095.86 14674.52 33987.41 16893.94 18075.46 17298.36 12680.36 24195.53 11597.12 113
CP-MVSNet87.63 19487.26 18288.74 26693.12 22776.59 29395.29 10596.58 9188.43 8683.49 27292.98 21475.28 17395.83 30378.97 25981.15 31493.79 257
v1087.25 21486.38 20989.85 23291.19 29179.50 23094.48 15595.45 17883.79 20083.62 26891.19 27375.13 17497.42 20481.94 21380.60 32492.63 305
Vis-MVSNetpermissive91.75 8391.23 8693.29 7195.32 13183.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss88.93 15688.26 15890.94 18994.05 19380.78 19491.71 27695.38 18481.55 25788.63 14693.91 18475.04 17695.47 31882.47 20291.61 18496.57 138
v114487.61 19786.79 19390.06 22491.01 29979.34 23693.95 19695.42 18383.36 21285.66 20691.31 27174.98 17797.42 20483.37 18782.06 30093.42 278
miper_lstm_enhance85.27 26584.59 26387.31 29791.28 28974.63 31087.69 34594.09 24781.20 26681.36 29889.85 30874.97 17894.30 33381.03 23079.84 33693.01 294
test_yl90.69 10290.02 11092.71 10295.72 11782.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
DCV-MVSNet90.69 10290.02 11092.71 10295.72 11782.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
V4287.68 18986.86 18990.15 21990.58 31980.14 21094.24 17595.28 18983.66 20285.67 20591.33 26874.73 18197.41 20984.43 17581.83 30492.89 298
FA-MVS(test-final)89.66 12888.91 13591.93 13894.57 17380.27 20591.36 28394.74 22284.87 17889.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
XVG-OURS-SEG-HR89.95 12189.45 11991.47 16294.00 19881.21 18291.87 27296.06 13085.78 15588.55 14795.73 11074.67 18397.27 22288.71 12089.64 21195.91 162
v2v48287.84 18487.06 18490.17 21790.99 30079.23 24394.00 19495.13 19584.87 17885.53 21192.07 24874.45 18497.45 20084.71 17181.75 30693.85 255
CLD-MVS89.47 13588.90 13691.18 17394.22 18882.07 15892.13 26796.09 12687.90 10585.37 22792.45 23074.38 18597.56 19087.15 14190.43 19593.93 248
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS87.65 19186.85 19090.03 22592.14 25580.60 19993.76 20595.23 19182.94 22284.60 23994.02 17574.27 18695.49 31781.04 22883.68 28294.01 247
HQP_MVS90.60 10890.19 10291.82 14794.70 16582.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20094.63 209
plane_prior694.52 17582.75 13974.23 187
v14419287.19 22086.35 21189.74 23890.64 31778.24 26193.92 19995.43 18181.93 24385.51 21391.05 28174.21 18997.45 20082.86 19581.56 30893.53 272
VPA-MVSNet89.62 12988.96 13291.60 15593.86 20382.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21187.32 13982.86 29494.52 217
ab-mvs89.41 13988.35 15292.60 10895.15 14282.65 14792.20 26595.60 16783.97 19588.55 14793.70 19374.16 19198.21 14082.46 20389.37 21496.94 123
131487.51 20286.57 20490.34 21392.42 24979.74 22692.63 24995.35 18878.35 30180.14 31391.62 26274.05 19297.15 23181.05 22793.53 15794.12 239
test_djsdf89.03 15388.64 14290.21 21590.74 31479.28 24095.96 7195.90 14284.66 18585.33 22992.94 21574.02 19397.30 21889.64 10988.53 22994.05 245
cl2286.78 23185.98 22789.18 25492.34 25077.62 27990.84 29294.13 24581.33 26183.97 26090.15 30073.96 19496.60 26484.19 17782.94 29093.33 279
AdaColmapbinary89.89 12489.07 13092.37 12097.41 6283.03 13094.42 16295.92 13982.81 22586.34 19594.65 15273.89 19599.02 6180.69 23695.51 11695.05 192
HyFIR lowres test88.09 17986.81 19191.93 13896.00 10580.63 19790.01 31095.79 15073.42 35087.68 16492.10 24573.86 19697.96 16580.75 23591.70 18397.19 107
HQP2-MVS73.83 197
HQP-MVS89.80 12689.28 12791.34 16794.17 18981.56 16894.39 16596.04 13188.81 7285.43 22193.97 17973.83 19797.96 16587.11 14389.77 20994.50 222
3Dnovator86.66 591.73 8490.82 9594.44 4494.59 17086.37 4097.18 1297.02 4789.20 6084.31 25496.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
EPNet_dtu86.49 24485.94 23088.14 28190.24 32672.82 32794.11 18192.20 29186.66 13779.42 32492.36 23373.52 20095.81 30571.26 31793.66 15395.80 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)84.43 27783.06 28288.54 27091.72 27278.44 25495.18 11392.82 27582.73 22779.67 32192.12 24273.49 20195.96 29771.10 32268.73 37391.21 338
Effi-MVS+-dtu88.65 16488.35 15289.54 24593.33 22276.39 29694.47 15894.36 23587.70 11285.43 22189.56 31373.45 20297.26 22485.57 16191.28 18694.97 194
baseline286.50 24285.39 24489.84 23391.12 29676.70 29191.88 27188.58 35782.35 23479.95 31790.95 28373.42 20397.63 18680.27 24489.95 20395.19 188
PEN-MVS86.80 23086.27 21688.40 27292.32 25175.71 30495.18 11396.38 10187.97 10282.82 28193.15 20873.39 20495.92 29876.15 28879.03 34293.59 270
v119287.25 21486.33 21290.00 22990.76 31379.04 24493.80 20395.48 17482.57 22985.48 21691.18 27573.38 20597.42 20482.30 20682.06 30093.53 272
QAPM89.51 13388.15 15993.59 6894.92 15384.58 7996.82 2996.70 8378.43 30083.41 27396.19 9073.18 20699.30 4077.11 27896.54 10196.89 127
mvsmamba89.96 12089.50 11891.33 16892.90 23881.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 22794.51 219
tpmrst85.35 26284.99 25286.43 31890.88 30967.88 36488.71 33191.43 31780.13 27586.08 20088.80 32373.05 20796.02 29482.48 20183.40 28895.40 182
PS-CasMVS87.32 21186.88 18888.63 26992.99 23476.33 29895.33 10096.61 8988.22 9483.30 27793.07 21273.03 20995.79 30678.36 26381.00 32093.75 264
DTE-MVSNet86.11 24885.48 24287.98 28491.65 27874.92 30994.93 12995.75 15387.36 11982.26 28693.04 21372.85 21095.82 30474.04 30477.46 34893.20 286
MVSTER88.84 15888.29 15690.51 20192.95 23680.44 20293.73 20695.01 20184.66 18587.15 17393.12 21072.79 21197.21 22987.86 12987.36 25293.87 252
v192192086.97 22686.06 22489.69 24290.53 32278.11 26493.80 20395.43 18181.90 24585.33 22991.05 28172.66 21297.41 20982.05 21181.80 30593.53 272
DP-MVS87.25 21485.36 24692.90 9297.65 5583.24 11994.81 13792.00 29974.99 33481.92 29295.00 13572.66 21299.05 5566.92 34892.33 18096.40 142
v7n86.81 22985.76 23789.95 23090.72 31579.25 24295.07 12195.92 13984.45 18882.29 28590.86 28472.60 21497.53 19479.42 25680.52 32893.08 292
OPM-MVS90.12 11489.56 11791.82 14793.14 22683.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 19993.65 269
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LS3D87.89 18386.32 21392.59 10996.07 10282.92 13695.23 10994.92 20975.66 32682.89 28095.98 9872.48 21599.21 4568.43 33795.23 12895.64 175
pm-mvs186.61 23685.54 24089.82 23491.44 28080.18 20895.28 10794.85 21483.84 19881.66 29392.62 22572.45 21796.48 27279.67 25078.06 34392.82 301
PMMVS85.71 25684.96 25487.95 28588.90 34477.09 28588.68 33290.06 34372.32 36086.47 18990.76 29072.15 21894.40 33081.78 21893.49 15992.36 314
SDMVSNet90.19 11389.61 11691.93 13896.00 10583.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23688.90 11789.85 20695.63 176
PatchmatchNetpermissive85.85 25384.70 26089.29 25191.76 27175.54 30588.49 33491.30 31981.63 25585.05 23288.70 32571.71 22096.24 28674.61 30289.05 22196.08 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs171.70 22196.12 153
patchmatchnet-post83.76 36571.53 22296.48 272
v124086.78 23185.85 23289.56 24490.45 32377.79 27493.61 21195.37 18681.65 25385.43 22191.15 27771.50 22397.43 20381.47 22482.05 30293.47 276
anonymousdsp87.84 18487.09 18390.12 22189.13 34180.54 20094.67 14695.55 16982.05 23883.82 26292.12 24271.47 22497.15 23187.15 14187.80 24792.67 303
Patchmatch-test81.37 30779.30 31587.58 29190.92 30674.16 31780.99 38087.68 36270.52 36876.63 34388.81 32171.21 22592.76 35460.01 37186.93 25895.83 167
F-COLMAP87.95 18286.80 19291.40 16496.35 9280.88 19194.73 14295.45 17879.65 28182.04 29094.61 15371.13 22698.50 11076.24 28791.05 19194.80 206
pmmvs485.43 25983.86 27290.16 21890.02 33182.97 13490.27 29992.67 28075.93 32580.73 30491.74 25771.05 22795.73 30978.85 26083.46 28691.78 325
CR-MVSNet85.35 26283.76 27390.12 22190.58 31979.34 23685.24 36491.96 30378.27 30385.55 20887.87 33871.03 22895.61 31073.96 30689.36 21595.40 182
Patchmtry82.71 29180.93 29788.06 28290.05 33076.37 29784.74 36991.96 30372.28 36181.32 29987.87 33871.03 22895.50 31668.97 33380.15 33192.32 316
CL-MVSNet_self_test81.74 30080.53 29885.36 32985.96 36672.45 33690.25 30193.07 26981.24 26479.85 32087.29 34470.93 23092.52 35566.95 34569.23 36991.11 342
RPMNet83.95 28381.53 29291.21 17190.58 31979.34 23685.24 36496.76 7571.44 36485.55 20882.97 37170.87 23198.91 8061.01 36789.36 21595.40 182
Patchmatch-RL test81.67 30179.96 30786.81 31485.42 37171.23 34682.17 37887.50 36378.47 29877.19 33982.50 37370.81 23293.48 34582.66 20072.89 36195.71 174
CostFormer85.77 25584.94 25588.26 27791.16 29472.58 33589.47 32091.04 32676.26 32286.45 19289.97 30570.74 23396.86 25182.35 20587.07 25795.34 185
sam_mvs70.60 234
xiu_mvs_v1_base_debu90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
xiu_mvs_v1_base90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
xiu_mvs_v1_base_debi90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
test_post10.29 39770.57 23895.91 300
CANet_DTU90.26 11289.41 12292.81 9693.46 21983.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 143
BH-RMVSNet88.37 17187.48 17491.02 18395.28 13379.45 23292.89 24293.07 26985.45 16686.91 18094.84 14470.35 24097.76 17473.97 30594.59 13895.85 165
Fast-Effi-MVS+-dtu87.44 20586.72 19589.63 24392.04 25977.68 27894.03 19093.94 24985.81 15482.42 28491.32 27070.33 24197.06 23980.33 24390.23 19894.14 238
MDTV_nov1_ep13_2view55.91 39387.62 34773.32 35184.59 24070.33 24174.65 30195.50 179
ACMM84.12 989.14 14688.48 15191.12 17594.65 16881.22 18195.31 10196.12 12385.31 16985.92 20194.34 16070.19 24398.06 15885.65 15988.86 22594.08 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D87.51 20285.91 23192.32 12293.70 21283.93 9992.33 26090.94 32884.16 19072.09 36592.52 22869.90 24495.85 30289.20 11488.36 23597.17 108
LPG-MVS_test89.45 13688.90 13691.12 17594.47 17781.49 17295.30 10396.14 12086.73 13585.45 21895.16 13069.89 24598.10 14687.70 13289.23 21893.77 262
LGP-MVS_train91.12 17594.47 17781.49 17296.14 12086.73 13585.45 21895.16 13069.89 24598.10 14687.70 13289.23 21893.77 262
CHOSEN 280x42085.15 26783.99 27088.65 26892.47 24678.40 25679.68 38492.76 27674.90 33681.41 29789.59 31169.85 24795.51 31479.92 24895.29 12592.03 321
LTVRE_ROB82.13 1386.26 24784.90 25690.34 21394.44 18181.50 17092.31 26294.89 21083.03 21979.63 32292.67 22369.69 24897.79 17271.20 31886.26 26291.72 326
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft83.78 1188.74 16287.29 17993.08 8192.70 24285.39 6796.57 3696.43 9778.74 29580.85 30396.07 9469.64 24999.01 6378.01 26996.65 10094.83 204
MDTV_nov1_ep1383.56 27691.69 27669.93 35787.75 34491.54 31378.60 29784.86 23588.90 32069.54 25096.03 29370.25 32488.93 224
AUN-MVS87.78 18786.54 20591.48 16194.82 16081.05 18593.91 20193.93 25083.00 22086.93 17893.53 19569.50 25197.67 17986.14 15177.12 35095.73 173
PatchT82.68 29281.27 29486.89 31290.09 32970.94 35184.06 37190.15 34074.91 33585.63 20783.57 36669.37 25294.87 32765.19 35388.50 23194.84 203
RRT_MVS89.09 14988.62 14590.49 20292.85 23979.65 22896.41 3994.41 23288.22 9485.50 21494.77 14669.36 25397.31 21789.33 11286.73 25994.51 219
VPNet88.20 17687.47 17590.39 20993.56 21679.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23184.05 17980.53 32794.56 215
ACMP84.23 889.01 15588.35 15290.99 18694.73 16281.27 17895.07 12195.89 14486.48 13983.67 26694.30 16369.33 25497.99 16387.10 14588.55 22893.72 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_post188.00 3409.81 39869.31 25695.53 31276.65 281
tpmvs83.35 28982.07 28887.20 30491.07 29871.00 35088.31 33791.70 30778.91 28980.49 30987.18 34769.30 25797.08 23668.12 34183.56 28493.51 275
thres20087.21 21886.24 21790.12 22195.36 13078.53 25193.26 22892.10 29586.42 14188.00 15791.11 27969.24 25898.00 16269.58 33191.04 19293.83 256
tfpn200view987.58 19986.64 19990.41 20895.99 10878.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32791.10 18794.48 225
thres40087.62 19686.64 19990.57 19695.99 10878.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32791.10 18794.96 197
tfpnnormal84.72 27483.23 27989.20 25392.79 24180.05 21594.48 15595.81 14882.38 23281.08 30191.21 27269.01 26196.95 24561.69 36580.59 32590.58 350
thres100view90087.63 19486.71 19690.38 21196.12 9778.55 25095.03 12491.58 31187.15 12288.06 15592.29 23668.91 26298.10 14670.13 32791.10 18794.48 225
thres600view787.65 19186.67 19890.59 19596.08 10178.72 24694.88 13291.58 31187.06 12588.08 15492.30 23568.91 26298.10 14670.05 33091.10 18794.96 197
PatchMatch-RL86.77 23485.54 24090.47 20795.88 11182.71 14490.54 29692.31 28879.82 27984.32 25291.57 26668.77 26496.39 27973.16 31093.48 16192.32 316
XVG-OURS89.40 14188.70 14091.52 15894.06 19281.46 17491.27 28596.07 12886.14 15088.89 14395.77 10868.73 26597.26 22487.39 13789.96 20295.83 167
TR-MVS86.78 23185.76 23789.82 23494.37 18378.41 25592.47 25392.83 27481.11 26786.36 19492.40 23168.73 26597.48 19773.75 30889.85 20693.57 271
tpm84.73 27384.02 26986.87 31390.33 32468.90 36089.06 32789.94 34680.85 26985.75 20389.86 30768.54 26795.97 29677.76 27084.05 27895.75 170
FMVSNet387.40 20786.11 22191.30 16993.79 20883.64 10894.20 17794.81 21883.89 19784.37 24791.87 25468.45 26896.56 26778.23 26685.36 26793.70 268
MVP-Stereo85.97 25084.86 25789.32 25090.92 30682.19 15692.11 26894.19 24178.76 29478.77 33091.63 26168.38 26996.56 26775.01 29893.95 14989.20 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat181.96 29680.27 30287.01 30791.09 29771.02 34987.38 34991.53 31466.25 37480.17 31186.35 35368.22 27096.15 29069.16 33282.29 29893.86 254
dmvs_testset74.57 34075.81 33970.86 36687.72 35940.47 39987.05 35277.90 39182.75 22671.15 37085.47 35967.98 27184.12 38845.26 38576.98 35288.00 369
sd_testset88.59 16787.85 16790.83 19096.00 10580.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27296.43 27779.64 25189.85 20695.63 176
tpm284.08 28082.94 28387.48 29591.39 28471.27 34589.23 32490.37 33671.95 36284.64 23889.33 31467.30 27396.55 26975.17 29587.09 25694.63 209
test-LLR85.87 25285.41 24387.25 30090.95 30271.67 34389.55 31689.88 34983.41 21084.54 24187.95 33567.25 27495.11 32381.82 21693.37 16494.97 194
test0.0.03 182.41 29481.69 29084.59 33588.23 35272.89 32690.24 30387.83 36083.41 21079.86 31989.78 30967.25 27488.99 37865.18 35483.42 28791.90 324
CVMVSNet84.69 27584.79 25984.37 33791.84 26764.92 37393.70 20991.47 31666.19 37586.16 19995.28 12267.18 27693.33 34780.89 23390.42 19694.88 202
iter_conf_final89.42 13888.69 14191.60 15595.12 14382.93 13595.75 8192.14 29487.32 12087.12 17594.07 17067.09 27797.55 19190.61 10189.01 22294.32 231
thisisatest051587.33 21085.99 22691.37 16693.49 21779.55 22990.63 29589.56 35480.17 27487.56 16690.86 28467.07 27898.28 13581.50 22393.02 17096.29 146
tttt051788.61 16587.78 16891.11 17894.96 15077.81 27295.35 9989.69 35185.09 17588.05 15694.59 15566.93 27998.48 11183.27 18992.13 18297.03 118
our_test_381.93 29780.46 30086.33 32088.46 34973.48 32288.46 33591.11 32276.46 31776.69 34288.25 33166.89 28094.36 33168.75 33479.08 34191.14 340
thisisatest053088.67 16387.61 17191.86 14494.87 15680.07 21394.63 14889.90 34884.00 19488.46 14993.78 18966.88 28198.46 11583.30 18892.65 17597.06 115
IterMVS-SCA-FT85.45 25884.53 26488.18 28091.71 27476.87 28890.19 30692.65 28185.40 16781.44 29690.54 29266.79 28295.00 32681.04 22881.05 31692.66 304
SCA86.32 24685.18 24989.73 24092.15 25476.60 29291.12 28891.69 30883.53 20785.50 21488.81 32166.79 28296.48 27276.65 28190.35 19796.12 153
D2MVS85.90 25185.09 25188.35 27490.79 31177.42 28191.83 27395.70 15880.77 27080.08 31590.02 30366.74 28496.37 28081.88 21587.97 24191.26 337
IterMVS84.88 27183.98 27187.60 29091.44 28076.03 30090.18 30792.41 28483.24 21581.06 30290.42 29666.60 28594.28 33479.46 25280.98 32192.48 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net87.26 21285.98 22791.08 17994.01 19583.10 12595.14 11794.94 20483.57 20484.37 24791.64 25866.59 28696.34 28378.23 26685.36 26793.79 257
test187.26 21285.98 22791.08 17994.01 19583.10 12595.14 11794.94 20483.57 20484.37 24791.64 25866.59 28696.34 28378.23 26685.36 26793.79 257
FMVSNet287.19 22085.82 23391.30 16994.01 19583.67 10694.79 13894.94 20483.57 20483.88 26192.05 24966.59 28696.51 27077.56 27385.01 27093.73 265
EPMVS83.90 28582.70 28787.51 29290.23 32772.67 33088.62 33381.96 38081.37 26085.01 23388.34 32966.31 28994.45 32875.30 29487.12 25595.43 181
Syy-MVS80.07 31979.78 30880.94 35291.92 26359.93 38389.75 31487.40 36481.72 25178.82 32787.20 34566.29 29091.29 36647.06 38487.84 24491.60 329
ppachtmachnet_test81.84 29880.07 30687.15 30588.46 34974.43 31489.04 32892.16 29275.33 33077.75 33588.99 31866.20 29195.37 31965.12 35577.60 34691.65 327
MDA-MVSNet_test_wron79.21 32877.19 33085.29 33088.22 35372.77 32885.87 35890.06 34374.34 34062.62 38087.56 34166.14 29291.99 36166.90 34973.01 35991.10 343
YYNet179.22 32777.20 32985.28 33188.20 35472.66 33185.87 35890.05 34574.33 34162.70 37887.61 34066.09 29392.03 35966.94 34672.97 36091.15 339
JIA-IIPM81.04 31078.98 32287.25 30088.64 34573.48 32281.75 37989.61 35373.19 35282.05 28973.71 38366.07 29495.87 30171.18 32084.60 27392.41 312
MSDG84.86 27283.09 28190.14 22093.80 20680.05 21589.18 32593.09 26878.89 29078.19 33191.91 25265.86 29597.27 22268.47 33688.45 23293.11 290
FE-MVS87.40 20786.02 22591.57 15794.56 17479.69 22790.27 29993.72 25980.57 27188.80 14491.62 26265.32 29698.59 10674.97 29994.33 14696.44 141
jajsoiax88.24 17587.50 17390.48 20490.89 30880.14 21095.31 10195.65 16484.97 17784.24 25594.02 17565.31 29797.42 20488.56 12188.52 23093.89 249
cascas86.43 24584.98 25390.80 19292.10 25880.92 19090.24 30395.91 14173.10 35383.57 27088.39 32865.15 29897.46 19984.90 16891.43 18594.03 246
ADS-MVSNet281.66 30279.71 31187.50 29391.35 28674.19 31683.33 37488.48 35872.90 35582.24 28785.77 35764.98 29993.20 35064.57 35783.74 28095.12 190
ADS-MVSNet81.56 30479.78 30886.90 31191.35 28671.82 34083.33 37489.16 35572.90 35582.24 28785.77 35764.98 29993.76 34164.57 35783.74 28095.12 190
pmmvs584.21 27882.84 28688.34 27588.95 34376.94 28792.41 25491.91 30575.63 32780.28 31091.18 27564.59 30195.57 31177.09 27983.47 28592.53 307
PVSNet78.82 1885.55 25784.65 26188.23 27994.72 16371.93 33887.12 35192.75 27778.80 29384.95 23490.53 29364.43 30296.71 25574.74 30093.86 15196.06 158
dmvs_re84.20 27983.22 28087.14 30691.83 26977.81 27290.04 30990.19 33984.70 18481.49 29489.17 31664.37 30391.13 36871.58 31685.65 26692.46 310
UGNet89.95 12188.95 13392.95 9094.51 17683.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30498.78 9183.92 18196.31 10696.74 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WB-MVS67.92 34767.49 34969.21 37081.09 38041.17 39888.03 33978.00 39073.50 34962.63 37983.11 37063.94 30586.52 38225.66 39551.45 38879.94 381
RPSCF85.07 26884.27 26587.48 29592.91 23770.62 35391.69 27892.46 28376.20 32382.67 28395.22 12563.94 30597.29 22177.51 27485.80 26494.53 216
bld_raw_dy_0_6487.60 19886.73 19490.21 21591.72 27280.26 20795.09 12088.61 35685.68 15985.55 20894.38 15963.93 30796.66 25687.73 13187.84 24493.72 266
iter_conf0588.85 15788.08 16191.17 17494.27 18781.64 16795.18 11392.15 29386.23 14787.28 17294.07 17063.89 30897.55 19190.63 10089.00 22394.32 231
mvs_tets88.06 18187.28 18090.38 21190.94 30479.88 22295.22 11095.66 16285.10 17484.21 25693.94 18063.53 30997.40 21188.50 12288.40 23493.87 252
SSC-MVS67.06 34866.56 35068.56 37280.54 38140.06 40087.77 34377.37 39372.38 35961.75 38182.66 37263.37 31086.45 38324.48 39648.69 39179.16 383
test111189.10 14788.64 14290.48 20495.53 12674.97 30896.08 6184.89 37288.13 9990.16 12696.65 7063.29 31198.10 14686.14 15196.90 9298.39 39
Anonymous2023121186.59 23885.13 25090.98 18896.52 8781.50 17096.14 5796.16 11973.78 34683.65 26792.15 24063.26 31297.37 21582.82 19781.74 30794.06 244
ECVR-MVScopyleft89.09 14988.53 14690.77 19395.62 12275.89 30196.16 5384.22 37487.89 10790.20 12496.65 7063.19 31398.10 14685.90 15696.94 9098.33 43
dp81.47 30680.23 30385.17 33289.92 33365.49 37186.74 35390.10 34276.30 32181.10 30087.12 34862.81 31495.92 29868.13 34079.88 33494.09 242
LFMVS90.08 11589.13 12992.95 9096.71 7782.32 15596.08 6189.91 34786.79 13292.15 9096.81 6362.60 31598.34 12987.18 14093.90 15098.19 58
Anonymous2023120681.03 31179.77 31084.82 33487.85 35870.26 35591.42 28292.08 29673.67 34777.75 33589.25 31562.43 31693.08 35161.50 36682.00 30391.12 341
VDD-MVS90.74 10089.92 11293.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31798.64 10090.95 9592.62 17697.93 76
MS-PatchMatch85.05 26984.16 26687.73 28891.42 28378.51 25291.25 28693.53 26177.50 30980.15 31291.58 26461.99 31895.51 31475.69 29094.35 14589.16 361
OurMVSNet-221017-085.35 26284.64 26287.49 29490.77 31272.59 33494.01 19294.40 23384.72 18379.62 32393.17 20761.91 31996.72 25381.99 21281.16 31293.16 288
test_vis1_n_192089.39 14289.84 11388.04 28392.97 23572.64 33294.71 14496.03 13386.18 14891.94 9796.56 7861.63 32095.74 30893.42 4195.11 12995.74 171
test20.0379.95 32179.08 32082.55 34785.79 36867.74 36591.09 28991.08 32381.23 26574.48 35789.96 30661.63 32090.15 37260.08 36976.38 35389.76 353
DSMNet-mixed76.94 33676.29 33578.89 35683.10 37756.11 39287.78 34279.77 38460.65 38175.64 34988.71 32461.56 32288.34 37960.07 37089.29 21792.21 319
Anonymous2024052988.09 17986.59 20392.58 11096.53 8681.92 16295.99 6995.84 14774.11 34389.06 14195.21 12761.44 32398.81 8983.67 18687.47 24997.01 119
IB-MVS80.51 1585.24 26683.26 27891.19 17292.13 25679.86 22391.75 27591.29 32083.28 21480.66 30688.49 32761.28 32498.46 11580.99 23179.46 33895.25 187
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GA-MVS86.61 23685.27 24890.66 19491.33 28878.71 24790.40 29893.81 25785.34 16885.12 23189.57 31261.25 32597.11 23580.99 23189.59 21296.15 150
N_pmnet68.89 34668.44 34870.23 36789.07 34228.79 40488.06 33819.50 40469.47 37071.86 36784.93 36061.24 32691.75 36354.70 37977.15 34990.15 351
EU-MVSNet81.32 30880.95 29682.42 34988.50 34863.67 37793.32 22191.33 31864.02 37880.57 30892.83 21861.21 32792.27 35876.34 28580.38 33091.32 335
test_cas_vis1_n_192088.83 16188.85 13988.78 26291.15 29576.72 29093.85 20294.93 20883.23 21692.81 7296.00 9661.17 32894.45 32891.67 8394.84 13195.17 189
VDDNet89.56 13288.49 15092.76 9995.07 14482.09 15796.30 4393.19 26781.05 26891.88 9896.86 5961.16 32998.33 13188.43 12392.49 17997.84 82
PVSNet_073.20 2077.22 33574.83 34184.37 33790.70 31671.10 34883.09 37689.67 35272.81 35773.93 35983.13 36860.79 33093.70 34368.54 33550.84 38988.30 368
SixPastTwentyTwo83.91 28482.90 28486.92 31090.99 30070.67 35293.48 21591.99 30085.54 16477.62 33792.11 24460.59 33196.87 25076.05 28977.75 34593.20 286
gg-mvs-nofinetune81.77 29979.37 31488.99 26090.85 31077.73 27786.29 35679.63 38574.88 33783.19 27869.05 38660.34 33296.11 29175.46 29294.64 13793.11 290
MDA-MVSNet-bldmvs78.85 32976.31 33486.46 31789.76 33573.88 31888.79 33090.42 33579.16 28759.18 38288.33 33060.20 33394.04 33662.00 36468.96 37191.48 333
pmmvs683.42 28781.60 29188.87 26188.01 35577.87 27094.96 12794.24 24074.67 33878.80 32991.09 28060.17 33496.49 27177.06 28075.40 35792.23 318
ACMH80.38 1785.36 26183.68 27490.39 20994.45 18080.63 19794.73 14294.85 21482.09 23777.24 33892.65 22460.01 33597.58 18872.25 31484.87 27192.96 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GG-mvs-BLEND87.94 28689.73 33777.91 26787.80 34178.23 38980.58 30783.86 36459.88 33695.33 32071.20 31892.22 18190.60 349
UniMVSNet_ETH3D87.53 20186.37 21091.00 18592.44 24878.96 24594.74 14195.61 16684.07 19385.36 22894.52 15759.78 33797.34 21682.93 19387.88 24296.71 134
pmmvs-eth3d80.97 31278.72 32487.74 28784.99 37379.97 22190.11 30891.65 30975.36 32973.51 36086.03 35459.45 33893.96 33975.17 29572.21 36289.29 359
test_040281.30 30979.17 31987.67 28993.19 22578.17 26292.98 23991.71 30675.25 33176.02 34890.31 29759.23 33996.37 28050.22 38283.63 28388.47 367
KD-MVS_self_test80.20 31879.24 31683.07 34485.64 37065.29 37291.01 29093.93 25078.71 29676.32 34486.40 35259.20 34092.93 35372.59 31269.35 36891.00 345
FMVSNet185.85 25384.11 26791.08 17992.81 24083.10 12595.14 11794.94 20481.64 25482.68 28291.64 25859.01 34196.34 28375.37 29383.78 27993.79 257
COLMAP_ROBcopyleft80.39 1683.96 28282.04 28989.74 23895.28 13379.75 22594.25 17392.28 28975.17 33278.02 33493.77 19058.60 34297.84 17165.06 35685.92 26391.63 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+81.04 1485.05 26983.46 27789.82 23494.66 16779.37 23494.44 16094.12 24682.19 23678.04 33392.82 21958.23 34397.54 19373.77 30782.90 29392.54 306
CMPMVSbinary59.16 2180.52 31479.20 31884.48 33683.98 37467.63 36689.95 31293.84 25664.79 37766.81 37691.14 27857.93 34495.17 32176.25 28688.10 23790.65 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tt080586.92 22785.74 23990.48 20492.22 25279.98 22095.63 9194.88 21283.83 19984.74 23792.80 22157.61 34597.67 17985.48 16284.42 27493.79 257
ITE_SJBPF88.24 27891.88 26677.05 28692.92 27185.54 16480.13 31493.30 20257.29 34696.20 28772.46 31384.71 27291.49 332
TESTMET0.1,183.74 28682.85 28586.42 31989.96 33271.21 34789.55 31687.88 35977.41 31083.37 27487.31 34356.71 34793.65 34480.62 23892.85 17494.40 228
UnsupCasMVSNet_eth80.07 31978.27 32585.46 32885.24 37272.63 33388.45 33694.87 21382.99 22171.64 36888.07 33456.34 34891.75 36373.48 30963.36 38092.01 322
test_fmvs187.34 20987.56 17286.68 31690.59 31871.80 34194.01 19294.04 24878.30 30291.97 9495.22 12556.28 34993.71 34292.89 4994.71 13394.52 217
K. test v381.59 30380.15 30585.91 32589.89 33469.42 35992.57 25187.71 36185.56 16373.44 36189.71 31055.58 35095.52 31377.17 27769.76 36792.78 302
test-mter84.54 27683.64 27587.25 30090.95 30271.67 34389.55 31689.88 34979.17 28684.54 24187.95 33555.56 35195.11 32381.82 21693.37 16494.97 194
lessismore_v086.04 32188.46 34968.78 36180.59 38373.01 36390.11 30155.39 35296.43 27775.06 29765.06 37792.90 297
MVS-HIRNet73.70 34172.20 34478.18 35991.81 27056.42 39182.94 37782.58 37855.24 38368.88 37366.48 38755.32 35395.13 32258.12 37488.42 23383.01 376
test250687.21 21886.28 21590.02 22795.62 12273.64 32096.25 4871.38 39687.89 10790.45 12096.65 7055.29 35498.09 15486.03 15596.94 9098.33 43
new-patchmatchnet76.41 33775.17 34080.13 35382.65 37959.61 38487.66 34691.08 32378.23 30569.85 37283.22 36754.76 35591.63 36564.14 35964.89 37889.16 361
Anonymous20240521187.68 18986.13 21992.31 12396.66 7980.74 19594.87 13391.49 31580.47 27289.46 13595.44 11754.72 35698.23 13782.19 20889.89 20497.97 72
XVG-ACMP-BASELINE86.00 24984.84 25889.45 24991.20 29078.00 26591.70 27795.55 16985.05 17682.97 27992.25 23854.49 35797.48 19782.93 19387.45 25192.89 298
USDC82.76 29081.26 29587.26 29991.17 29274.55 31189.27 32293.39 26478.26 30475.30 35192.08 24654.43 35896.63 25871.64 31585.79 26590.61 347
AllTest83.42 28781.39 29389.52 24695.01 14677.79 27493.12 23290.89 33077.41 31076.12 34693.34 19854.08 35997.51 19568.31 33884.27 27693.26 281
TestCases89.52 24695.01 14677.79 27490.89 33077.41 31076.12 34693.34 19854.08 35997.51 19568.31 33884.27 27693.26 281
KD-MVS_2432*160078.50 33076.02 33785.93 32386.22 36474.47 31284.80 36792.33 28679.29 28476.98 34085.92 35553.81 36193.97 33767.39 34357.42 38589.36 356
miper_refine_blended78.50 33076.02 33785.93 32386.22 36474.47 31284.80 36792.33 28679.29 28476.98 34085.92 35553.81 36193.97 33767.39 34357.42 38589.36 356
MIMVSNet82.59 29380.53 29888.76 26391.51 27978.32 25886.57 35590.13 34179.32 28380.70 30588.69 32652.98 36393.07 35266.03 35188.86 22594.90 201
FMVSNet581.52 30579.60 31287.27 29891.17 29277.95 26691.49 28192.26 29076.87 31576.16 34587.91 33751.67 36492.34 35767.74 34281.16 31291.52 331
testgi80.94 31380.20 30483.18 34387.96 35666.29 36891.28 28490.70 33483.70 20178.12 33292.84 21751.37 36590.82 37063.34 36082.46 29692.43 311
test_fmvs1_n87.03 22587.04 18686.97 30889.74 33671.86 33994.55 15294.43 23078.47 29891.95 9695.50 11651.16 36693.81 34093.02 4894.56 13995.26 186
Anonymous2024052180.44 31679.21 31784.11 34085.75 36967.89 36392.86 24493.23 26675.61 32875.59 35087.47 34250.03 36794.33 33271.14 32181.21 31190.12 352
UnsupCasMVSNet_bld76.23 33873.27 34285.09 33383.79 37572.92 32585.65 36193.47 26371.52 36368.84 37479.08 37849.77 36893.21 34966.81 35060.52 38289.13 363
OpenMVS_ROBcopyleft74.94 1979.51 32577.03 33286.93 30987.00 36176.23 29992.33 26090.74 33368.93 37174.52 35688.23 33249.58 36996.62 25957.64 37584.29 27587.94 370
TDRefinement79.81 32277.34 32787.22 30379.24 38575.48 30693.12 23292.03 29876.45 31875.01 35291.58 26449.19 37096.44 27670.22 32669.18 37089.75 354
test_vis1_n86.56 23986.49 20886.78 31588.51 34672.69 32994.68 14593.78 25879.55 28290.70 11795.31 12148.75 37193.28 34893.15 4593.99 14894.38 229
MIMVSNet179.38 32677.28 32885.69 32786.35 36373.67 31991.61 28092.75 27778.11 30772.64 36488.12 33348.16 37291.97 36260.32 36877.49 34791.43 334
LF4IMVS80.37 31779.07 32184.27 33986.64 36269.87 35889.39 32191.05 32576.38 31974.97 35390.00 30447.85 37394.25 33574.55 30380.82 32388.69 365
EG-PatchMatch MVS82.37 29580.34 30188.46 27190.27 32579.35 23592.80 24694.33 23677.14 31473.26 36290.18 29947.47 37496.72 25370.25 32487.32 25489.30 358
test_fmvs283.98 28184.03 26883.83 34287.16 36067.53 36793.93 19892.89 27277.62 30886.89 18393.53 19547.18 37592.02 36090.54 10286.51 26091.93 323
TinyColmap79.76 32377.69 32685.97 32291.71 27473.12 32489.55 31690.36 33775.03 33372.03 36690.19 29846.22 37696.19 28963.11 36181.03 31788.59 366
myMVS_eth3d79.67 32478.79 32382.32 35091.92 26364.08 37589.75 31487.40 36481.72 25178.82 32787.20 34545.33 37791.29 36659.09 37387.84 24491.60 329
tmp_tt35.64 36339.24 36524.84 38014.87 40323.90 40562.71 39051.51 4036.58 39836.66 39462.08 39144.37 37830.34 40052.40 38122.00 39720.27 395
testing380.46 31579.59 31383.06 34593.44 22064.64 37493.33 22085.47 36984.34 18979.93 31890.84 28644.35 37992.39 35657.06 37787.56 24892.16 320
new_pmnet72.15 34270.13 34678.20 35882.95 37865.68 36983.91 37282.40 37962.94 38064.47 37779.82 37742.85 38086.26 38457.41 37674.44 35882.65 378
test_vis1_rt77.96 33376.46 33382.48 34885.89 36771.74 34290.25 30178.89 38671.03 36771.30 36981.35 37542.49 38191.05 36984.55 17382.37 29784.65 373
EGC-MVSNET61.97 35256.37 35678.77 35789.63 33873.50 32189.12 32682.79 3770.21 4011.24 40284.80 36139.48 38290.04 37344.13 38675.94 35672.79 385
pmmvs371.81 34468.71 34781.11 35175.86 38670.42 35486.74 35383.66 37558.95 38268.64 37580.89 37636.93 38389.52 37563.10 36263.59 37983.39 374
mvsany_test374.95 33973.26 34380.02 35474.61 38763.16 37985.53 36278.42 38774.16 34274.89 35486.46 35036.02 38489.09 37782.39 20466.91 37487.82 371
PM-MVS78.11 33276.12 33684.09 34183.54 37670.08 35688.97 32985.27 37179.93 27774.73 35586.43 35134.70 38593.48 34579.43 25572.06 36388.72 364
ambc83.06 34579.99 38363.51 37877.47 38592.86 27374.34 35884.45 36328.74 38695.06 32573.06 31168.89 37290.61 347
test_method50.52 35948.47 36156.66 37652.26 40118.98 40641.51 39481.40 38110.10 39644.59 39175.01 38228.51 38768.16 39453.54 38049.31 39082.83 377
DeepMVS_CXcopyleft56.31 37774.23 38851.81 39456.67 40244.85 38848.54 38875.16 38127.87 38858.74 39840.92 39052.22 38758.39 391
test_fmvs377.67 33477.16 33179.22 35579.52 38461.14 38192.34 25991.64 31073.98 34478.86 32686.59 34927.38 38987.03 38088.12 12775.97 35589.50 355
test_f71.95 34370.87 34575.21 36274.21 38959.37 38585.07 36685.82 36765.25 37670.42 37183.13 36823.62 39082.93 39078.32 26471.94 36483.33 375
FPMVS64.63 35162.55 35370.88 36570.80 39156.71 38784.42 37084.42 37351.78 38649.57 38681.61 37423.49 39181.48 39140.61 39176.25 35474.46 384
APD_test169.04 34566.26 35177.36 36180.51 38262.79 38085.46 36383.51 37654.11 38559.14 38384.79 36223.40 39289.61 37455.22 37870.24 36679.68 382
ANet_high58.88 35654.22 36072.86 36356.50 40056.67 38880.75 38186.00 36673.09 35437.39 39364.63 39022.17 39379.49 39343.51 38723.96 39582.43 379
EMVS42.07 36241.12 36444.92 37963.45 39835.56 40373.65 38663.48 39933.05 39426.88 39845.45 39521.27 39467.14 39619.80 39823.02 39632.06 394
Gipumacopyleft57.99 35754.91 35967.24 37388.51 34665.59 37052.21 39290.33 33843.58 38942.84 39251.18 39320.29 39585.07 38534.77 39270.45 36551.05 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 36142.29 36346.03 37865.58 39637.41 40173.51 38764.62 39833.99 39328.47 39747.87 39419.90 39667.91 39522.23 39724.45 39432.77 393
PMMVS259.60 35356.40 35569.21 37068.83 39446.58 39673.02 38977.48 39255.07 38449.21 38772.95 38517.43 39780.04 39249.32 38344.33 39280.99 380
LCM-MVSNet66.00 34962.16 35477.51 36064.51 39758.29 38683.87 37390.90 32948.17 38754.69 38473.31 38416.83 39886.75 38165.47 35261.67 38187.48 372
test_vis3_rt65.12 35062.60 35272.69 36471.44 39060.71 38287.17 35065.55 39763.80 37953.22 38565.65 38914.54 39989.44 37676.65 28165.38 37667.91 388
testf159.54 35456.11 35769.85 36869.28 39256.61 38980.37 38276.55 39442.58 39045.68 38975.61 37911.26 40084.18 38643.20 38860.44 38368.75 386
APD_test259.54 35456.11 35769.85 36869.28 39256.61 38980.37 38276.55 39442.58 39045.68 38975.61 37911.26 40084.18 38643.20 38860.44 38368.75 386
PMVScopyleft47.18 2252.22 35848.46 36263.48 37445.72 40246.20 39773.41 38878.31 38841.03 39230.06 39565.68 3886.05 40283.43 38930.04 39365.86 37560.80 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 36038.59 36657.77 37556.52 39948.77 39555.38 39158.64 40129.33 39528.96 39652.65 3924.68 40364.62 39728.11 39433.07 39359.93 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d21.27 36520.48 36823.63 38168.59 39536.41 40249.57 3936.85 4059.37 3977.89 3994.46 4014.03 40431.37 39917.47 39916.07 3983.12 396
test1238.76 36711.22 3701.39 3820.85 4050.97 40785.76 3600.35 4070.54 4002.45 4018.14 4000.60 4050.48 4012.16 4010.17 4002.71 397
testmvs8.92 36611.52 3691.12 3831.06 4040.46 40886.02 3570.65 4060.62 3992.74 4009.52 3990.31 4060.45 4022.38 4000.39 3992.46 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.82 36810.43 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40393.88 1850.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS64.08 37559.14 372
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
eth-test20.00 406
eth-test0.00 406
IU-MVS98.77 586.00 4996.84 6581.26 26397.26 795.50 2399.13 399.03 8
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
GSMVS96.12 153
test_part298.55 1287.22 1896.40 17
MTGPAbinary96.97 50
MTMP96.16 5360.64 400
gm-plane-assit89.60 33968.00 36277.28 31388.99 31897.57 18979.44 254
test9_res91.91 7898.71 3298.07 66
agg_prior290.54 10298.68 3798.27 52
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
test_prior485.96 5394.11 181
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
旧先验293.36 21971.25 36594.37 3997.13 23486.74 146
新几何293.11 234
无先验93.28 22796.26 11073.95 34599.05 5580.56 23996.59 137
原ACMM292.94 241
testdata298.75 9378.30 265
testdata192.15 26687.94 103
plane_prior794.70 16582.74 141
plane_prior596.22 11598.12 14488.15 12489.99 20094.63 209
plane_prior494.86 140
plane_prior382.75 13990.26 3386.91 180
plane_prior295.85 7590.81 17
plane_prior194.59 170
plane_prior82.73 14295.21 11189.66 4889.88 205
n20.00 408
nn0.00 408
door-mid85.49 368
test1196.57 92
door85.33 370
HQP5-MVS81.56 168
HQP-NCC94.17 18994.39 16588.81 7285.43 221
ACMP_Plane94.17 18994.39 16588.81 7285.43 221
BP-MVS87.11 143
HQP4-MVS85.43 22197.96 16594.51 219
HQP3-MVS96.04 13189.77 209
NP-MVS94.37 18382.42 15193.98 178
ACMMP++_ref87.47 249
ACMMP++88.01 240