This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
PGM-MVS93.96 3593.72 4194.68 3598.43 2086.22 4495.30 9097.78 187.45 10793.26 4797.33 2384.62 6099.51 2290.75 8598.57 4598.32 44
FC-MVSNet-test90.27 9990.18 9190.53 18393.71 20079.85 20995.77 6997.59 289.31 5286.27 18094.67 13581.93 9197.01 22884.26 16188.09 22494.71 192
FIs90.51 9790.35 8790.99 17293.99 19080.98 17395.73 7197.54 389.15 5786.72 17194.68 13481.83 9297.24 21385.18 14888.31 22094.76 191
DPE-MVScopyleft95.57 495.67 495.25 998.36 2587.28 1595.56 8297.51 489.13 5897.14 897.91 1191.64 799.62 194.61 1499.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++95.98 196.36 194.82 2897.78 5186.00 4798.29 197.49 590.75 1797.62 598.06 692.59 299.61 395.64 699.02 1298.86 10
FOURS198.86 185.54 6398.29 197.49 589.79 4196.29 15
test_0728_SECOND95.01 1598.79 286.43 3697.09 1697.49 599.61 395.62 899.08 798.99 8
PHI-MVS93.89 3693.65 4494.62 3896.84 7586.43 3696.69 3297.49 585.15 15893.56 4496.28 7185.60 4599.31 3792.45 4398.79 2398.12 62
SF-MVS94.97 1194.90 1395.20 1097.84 4787.76 996.65 3497.48 987.76 10195.71 1997.70 1388.28 2399.35 3193.89 2298.78 2598.48 28
test072698.78 385.93 5297.19 1197.47 1090.27 2997.64 498.13 191.47 8
MSP-MVS95.42 695.56 694.98 1798.49 1786.52 3396.91 2597.47 1091.73 896.10 1796.69 5389.90 1299.30 3894.70 1298.04 6399.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UniMVSNet (Re)89.80 11389.07 11792.01 11793.60 20484.52 7694.78 12697.47 1089.26 5386.44 17792.32 21882.10 8697.39 20184.81 15480.84 30394.12 223
ACMMPcopyleft93.24 5192.88 5494.30 4898.09 3885.33 6596.86 2797.45 1388.33 7990.15 11397.03 4081.44 9399.51 2290.85 8495.74 10198.04 67
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_one_060198.58 1185.83 5797.44 1491.05 1296.78 1398.06 691.45 11
SED-MVS95.91 296.28 294.80 3098.77 585.99 4997.13 1497.44 1490.31 2697.71 198.07 492.31 499.58 895.66 499.13 398.84 13
test_241102_TWO97.44 1490.31 2697.62 598.07 491.46 1099.58 895.66 499.12 698.98 9
test_241102_ONE98.77 585.99 4997.44 1490.26 3197.71 197.96 1092.31 499.38 29
9.1494.47 1797.79 4996.08 5497.44 1486.13 13695.10 2497.40 2088.34 2299.22 4293.25 3198.70 32
APDe-MVS95.46 595.64 594.91 1998.26 2886.29 4397.46 697.40 1989.03 6196.20 1698.10 289.39 1699.34 3295.88 399.03 1199.10 4
CSCG93.23 5293.05 5193.76 5998.04 4084.07 8796.22 4797.37 2084.15 17490.05 11495.66 9887.77 2699.15 4889.91 9398.27 5498.07 64
ACMMP_NAP94.74 1594.56 1695.28 898.02 4187.70 1095.68 7497.34 2188.28 8295.30 2397.67 1485.90 4399.54 1893.91 2198.95 1598.60 21
HFP-MVS94.52 1694.40 1994.86 2298.61 1086.81 2296.94 2097.34 2188.63 7193.65 4097.21 2986.10 4199.49 2492.35 4898.77 2798.30 45
MSLP-MVS++93.72 4094.08 3192.65 9397.31 6583.43 10395.79 6897.33 2390.03 3493.58 4296.96 4284.87 5797.76 16192.19 5398.66 3896.76 119
VPA-MVSNet89.62 11688.96 11991.60 14193.86 19482.89 12395.46 8397.33 2387.91 9488.43 13693.31 18574.17 17797.40 19887.32 12482.86 27594.52 201
ZNCC-MVS94.47 1794.28 2395.03 1498.52 1586.96 1796.85 2897.32 2588.24 8393.15 5097.04 3986.17 4099.62 192.40 4698.81 2298.52 24
ACMMPR94.43 2094.28 2394.91 1998.63 986.69 2596.94 2097.32 2588.63 7193.53 4597.26 2785.04 5399.54 1892.35 4898.78 2598.50 25
WR-MVS_H87.80 17187.37 16289.10 24193.23 21278.12 24895.61 8097.30 2787.90 9583.72 24892.01 23479.65 11396.01 28076.36 26880.54 30793.16 272
SteuartSystems-ACMMP95.20 895.32 994.85 2396.99 7286.33 3997.33 797.30 2791.38 1095.39 2197.46 1788.98 1999.40 2894.12 1898.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3588.48 896.26 4597.28 2985.90 13897.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS94.34 2394.21 2794.74 3498.39 2386.64 2997.60 497.24 3088.53 7592.73 6497.23 2885.20 5199.32 3692.15 5498.83 2198.25 53
MVS_111021_HR93.45 4493.31 4693.84 5596.99 7284.84 6893.24 21697.24 3088.76 6891.60 9395.85 8986.07 4298.66 8991.91 6598.16 5798.03 68
region2R94.43 2094.27 2594.92 1898.65 886.67 2796.92 2497.23 3288.60 7393.58 4297.27 2585.22 5099.54 1892.21 5198.74 2998.56 23
patch_mono-293.74 3994.32 2092.01 11797.54 5778.37 24293.40 20497.19 3388.02 9194.99 2697.21 2988.35 2198.44 10994.07 1998.09 6199.23 1
GST-MVS94.21 2793.97 3594.90 2198.41 2286.82 2196.54 3697.19 3388.24 8393.26 4796.83 4885.48 4799.59 791.43 7398.40 5098.30 45
XVS94.45 1894.32 2094.85 2398.54 1386.60 3196.93 2297.19 3390.66 2292.85 5797.16 3485.02 5499.49 2491.99 6198.56 4698.47 31
X-MVStestdata88.31 15886.13 20494.85 2398.54 1386.60 3196.93 2297.19 3390.66 2292.85 5723.41 37485.02 5499.49 2491.99 6198.56 4698.47 31
MP-MVS-pluss94.21 2794.00 3494.85 2398.17 3386.65 2894.82 12397.17 3786.26 13092.83 5997.87 1285.57 4699.56 1094.37 1798.92 1798.34 40
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DELS-MVS93.43 4793.25 4793.97 5195.42 12485.04 6793.06 22397.13 3890.74 1991.84 8695.09 11786.32 3999.21 4391.22 7498.45 4897.65 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS94.45 1894.20 2895.19 1198.46 1987.50 1395.00 11297.12 3987.13 11192.51 7096.30 7089.24 1799.34 3293.46 2698.62 4298.73 16
UniMVSNet_NR-MVSNet89.92 11089.29 11391.81 13593.39 20983.72 9594.43 14897.12 3989.80 3886.46 17493.32 18483.16 7197.23 21484.92 15181.02 29994.49 208
SD-MVS94.96 1295.33 893.88 5497.25 6986.69 2596.19 4897.11 4190.42 2596.95 1297.27 2589.53 1496.91 23494.38 1698.85 1998.03 68
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS89.96 194.20 2994.77 1492.49 10196.52 8780.00 20494.00 18197.08 4290.05 3395.65 2097.29 2489.66 1398.97 7093.95 2098.71 3098.50 25
ZD-MVS98.15 3486.62 3097.07 4383.63 18694.19 3196.91 4487.57 3199.26 4091.99 6198.44 49
HPM-MVScopyleft94.02 3293.88 3694.43 4498.39 2385.78 5997.25 1097.07 4386.90 11992.62 6796.80 5284.85 5899.17 4592.43 4498.65 4098.33 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator86.66 591.73 7290.82 8394.44 4294.59 16186.37 3897.18 1297.02 4589.20 5584.31 23896.66 5673.74 18699.17 4586.74 13197.96 6597.79 81
DeepC-MVS88.79 393.31 4992.99 5294.26 4996.07 10285.83 5794.89 11896.99 4689.02 6389.56 11897.37 2282.51 7899.38 2992.20 5298.30 5397.57 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 2494.07 3294.77 3298.47 1886.31 4196.71 3196.98 4789.04 6091.98 7997.19 3185.43 4899.56 1092.06 6098.79 2398.44 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTGPAbinary96.97 48
MTAPA94.42 2294.22 2695.00 1698.42 2186.95 1894.36 15796.97 4891.07 1193.14 5197.56 1584.30 6299.56 1093.43 2798.75 2898.47 31
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 2989.65 495.92 6396.96 5091.75 794.02 3596.83 4888.12 2499.55 1493.41 2998.94 1698.28 48
CNVR-MVS95.40 795.37 795.50 798.11 3688.51 795.29 9296.96 5092.09 495.32 2297.08 3689.49 1599.33 3595.10 1198.85 1998.66 19
CS-MVS94.12 3094.44 1893.17 6896.55 8483.08 11597.63 396.95 5291.71 993.50 4696.21 7385.61 4498.24 12393.64 2498.17 5698.19 56
APD-MVScopyleft94.24 2594.07 3294.75 3398.06 3986.90 2095.88 6496.94 5385.68 14495.05 2597.18 3287.31 3399.07 5191.90 6798.61 4498.28 48
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC94.81 1494.69 1595.17 1297.83 4887.46 1495.66 7696.93 5492.34 293.94 3696.58 6387.74 2799.44 2792.83 3798.40 5098.62 20
CS-MVS-test94.02 3294.29 2293.24 6596.69 7883.24 10897.49 596.92 5592.14 392.90 5595.77 9485.02 5498.33 11893.03 3498.62 4298.13 60
mPP-MVS93.99 3493.78 3994.63 3798.50 1685.90 5696.87 2696.91 5688.70 6991.83 8897.17 3383.96 6699.55 1491.44 7298.64 4198.43 36
SR-MVS94.23 2694.17 3094.43 4498.21 3285.78 5996.40 3996.90 5788.20 8794.33 2997.40 2084.75 5999.03 5693.35 3097.99 6498.48 28
DeepC-MVS_fast89.43 294.04 3193.79 3894.80 3097.48 6186.78 2395.65 7896.89 5889.40 5092.81 6096.97 4185.37 4999.24 4190.87 8398.69 3398.38 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior93.82 5697.29 6784.49 7796.88 5998.87 7798.11 63
APD-MVS_3200maxsize93.78 3893.77 4093.80 5897.92 4384.19 8596.30 4196.87 6086.96 11593.92 3797.47 1683.88 6798.96 7292.71 4197.87 6898.26 52
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6199.61 396.03 199.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6199.61 396.03 199.06 999.07 5
IU-MVS98.77 586.00 4796.84 6381.26 24297.26 795.50 1099.13 399.03 7
PVSNet_BlendedMVS89.98 10589.70 10290.82 17696.12 9781.25 16593.92 18696.83 6483.49 19189.10 12592.26 22181.04 9798.85 8186.72 13387.86 22892.35 298
PVSNet_Blended90.73 8990.32 8891.98 12196.12 9781.25 16592.55 23796.83 6482.04 22189.10 12592.56 21181.04 9798.85 8186.72 13395.91 9995.84 153
save fliter97.85 4685.63 6295.21 9896.82 6689.44 48
原ACMM192.01 11797.34 6481.05 17196.81 6778.89 27090.45 10695.92 8682.65 7698.84 8380.68 22298.26 5596.14 138
HPM-MVS_fast93.40 4893.22 4893.94 5398.36 2584.83 6997.15 1396.80 6885.77 14192.47 7197.13 3582.38 7999.07 5190.51 9098.40 5097.92 74
TEST997.53 5886.49 3494.07 17396.78 6981.61 23592.77 6196.20 7487.71 2899.12 49
train_agg93.44 4593.08 5094.52 4197.53 5886.49 3494.07 17396.78 6981.86 22892.77 6196.20 7487.63 2999.12 4992.14 5598.69 3397.94 71
3Dnovator+87.14 492.42 6391.37 7195.55 695.63 11888.73 697.07 1896.77 7190.84 1484.02 24296.62 6175.95 15099.34 3287.77 11597.68 7398.59 22
SR-MVS-dyc-post93.82 3793.82 3793.82 5697.92 4384.57 7396.28 4396.76 7287.46 10593.75 3897.43 1884.24 6399.01 6192.73 3897.80 7097.88 75
RE-MVS-def93.68 4397.92 4384.57 7396.28 4396.76 7287.46 10593.75 3897.43 1882.94 7492.73 3897.80 7097.88 75
test_897.49 6086.30 4294.02 17896.76 7281.86 22892.70 6596.20 7487.63 2999.02 59
RPMNet83.95 26781.53 27791.21 15790.58 30279.34 22185.24 34296.76 7271.44 34285.55 19282.97 35070.87 21798.91 7561.01 35189.36 19995.40 167
EIA-MVS91.95 6791.94 6591.98 12195.16 13380.01 20395.36 8596.73 7688.44 7689.34 12292.16 22383.82 6898.45 10889.35 9797.06 8097.48 92
DVP-MVScopyleft95.67 396.02 394.64 3698.78 385.93 5297.09 1696.73 7690.27 2997.04 1098.05 891.47 899.55 1495.62 899.08 798.45 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
agg_prior97.38 6385.92 5496.72 7892.16 7598.97 70
DROMVSNet93.44 4593.71 4292.63 9495.21 13182.43 13697.27 996.71 7990.57 2492.88 5695.80 9283.16 7198.16 12993.68 2398.14 5897.31 96
QAPM89.51 12088.15 14593.59 6194.92 14584.58 7296.82 2996.70 8078.43 28083.41 25796.19 7773.18 19399.30 3877.11 26296.54 9296.89 117
CANet93.54 4293.20 4994.55 4095.65 11785.73 6194.94 11596.69 8191.89 690.69 10495.88 8881.99 9099.54 1893.14 3397.95 6698.39 37
CDPH-MVS92.83 5692.30 6294.44 4297.79 4986.11 4694.06 17596.66 8280.09 25592.77 6196.63 6086.62 3699.04 5587.40 12198.66 3898.17 58
PVSNet_Blended_VisFu91.38 7790.91 8192.80 8496.39 9083.17 11194.87 12096.66 8283.29 19689.27 12394.46 14280.29 10199.17 4587.57 11995.37 11096.05 146
DP-MVS Recon91.95 6791.28 7393.96 5298.33 2785.92 5494.66 13496.66 8282.69 20990.03 11595.82 9182.30 8299.03 5684.57 15796.48 9596.91 116
TSAR-MVS + MP.94.85 1394.94 1194.58 3998.25 2986.33 3996.11 5396.62 8588.14 8996.10 1796.96 4289.09 1898.94 7394.48 1598.68 3598.48 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PS-CasMVS87.32 19686.88 17388.63 25392.99 22276.33 28295.33 8796.61 8688.22 8583.30 26193.07 19673.03 19695.79 29178.36 24781.00 30193.75 248
DU-MVS89.34 13188.50 13491.85 13293.04 21983.72 9594.47 14596.59 8789.50 4786.46 17493.29 18777.25 13697.23 21484.92 15181.02 29994.59 196
CP-MVSNet87.63 17987.26 16788.74 25093.12 21576.59 27795.29 9296.58 8888.43 7783.49 25692.98 19875.28 16095.83 28878.97 24381.15 29593.79 241
test1196.57 89
DPM-MVS92.58 6091.74 6895.08 1396.19 9589.31 592.66 23396.56 9083.44 19291.68 9295.04 11886.60 3898.99 6785.60 14597.92 6796.93 115
ETV-MVS92.74 5892.66 5792.97 7895.20 13284.04 8995.07 10896.51 9190.73 2092.96 5491.19 25784.06 6498.34 11691.72 6996.54 9296.54 128
CPTT-MVS91.99 6691.80 6792.55 9898.24 3181.98 14696.76 3096.49 9281.89 22790.24 10996.44 6878.59 12398.61 9589.68 9497.85 6997.06 107
VNet92.24 6591.91 6693.24 6596.59 8283.43 10394.84 12296.44 9389.19 5694.08 3495.90 8777.85 13498.17 12888.90 10393.38 14998.13 60
OpenMVScopyleft83.78 1188.74 14887.29 16493.08 7292.70 23085.39 6496.57 3596.43 9478.74 27580.85 28696.07 8169.64 23599.01 6178.01 25396.65 9194.83 188
canonicalmvs93.27 5092.75 5694.85 2395.70 11687.66 1196.33 4096.41 9590.00 3594.09 3394.60 13882.33 8198.62 9492.40 4692.86 15998.27 50
UA-Net92.83 5692.54 5993.68 6096.10 10084.71 7195.66 7696.39 9691.92 593.22 4996.49 6683.16 7198.87 7784.47 15995.47 10797.45 94
PEN-MVS86.80 21586.27 20188.40 25692.32 23775.71 28895.18 10096.38 9787.97 9282.82 26593.15 19273.39 19195.92 28376.15 27279.03 32393.59 254
114514_t89.51 12088.50 13492.54 9998.11 3681.99 14595.16 10396.36 9870.19 34785.81 18695.25 11076.70 14298.63 9382.07 19596.86 8797.00 112
casdiffmvs_mvgpermissive92.96 5592.83 5593.35 6294.59 16183.40 10595.00 11296.34 9990.30 2892.05 7796.05 8283.43 6998.15 13092.07 5795.67 10298.49 27
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet88.84 14587.95 15091.49 14692.68 23183.01 11894.92 11796.31 10089.88 3785.53 19593.85 17176.63 14496.96 23081.91 19979.87 31694.50 206
dcpmvs_293.49 4394.19 2991.38 15197.69 5476.78 27494.25 16096.29 10188.33 7994.46 2796.88 4588.07 2598.64 9193.62 2598.09 6198.73 16
test1294.34 4797.13 7086.15 4596.29 10191.04 10185.08 5299.01 6198.13 5997.86 77
baseline92.39 6492.29 6392.69 9294.46 17081.77 15194.14 16696.27 10389.22 5491.88 8496.00 8382.35 8097.99 15091.05 7695.27 11498.30 45
nrg03091.08 8490.39 8693.17 6893.07 21786.91 1996.41 3796.26 10488.30 8188.37 13794.85 12682.19 8597.64 17291.09 7582.95 27094.96 181
无先验93.28 21296.26 10473.95 32599.05 5380.56 22496.59 125
NR-MVSNet88.58 15387.47 16091.93 12593.04 21984.16 8694.77 12796.25 10689.05 5980.04 30093.29 18779.02 11797.05 22681.71 20680.05 31394.59 196
PAPM_NR91.22 8190.78 8492.52 10097.60 5681.46 16094.37 15696.24 10786.39 12887.41 15494.80 12982.06 8898.48 10282.80 18395.37 11097.61 86
casdiffmvspermissive92.51 6192.43 6192.74 8894.41 17381.98 14694.54 14096.23 10889.57 4691.96 8196.17 7882.58 7798.01 14890.95 8195.45 10998.23 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP_MVS90.60 9690.19 9091.82 13394.70 15782.73 12895.85 6596.22 10990.81 1586.91 16694.86 12474.23 17498.12 13188.15 10989.99 18694.63 193
plane_prior596.22 10998.12 13188.15 10989.99 18694.63 193
PAPR90.02 10489.27 11592.29 11295.78 11280.95 17592.68 23296.22 10981.91 22586.66 17293.75 17682.23 8398.44 10979.40 24194.79 11897.48 92
TAPA-MVS84.62 688.16 16287.01 17291.62 14096.64 8080.65 18294.39 15296.21 11276.38 29986.19 18295.44 10379.75 10798.08 14362.75 34795.29 11296.13 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous2023121186.59 22385.13 23590.98 17496.52 8781.50 15696.14 5196.16 11373.78 32683.65 25192.15 22463.26 29297.37 20282.82 18281.74 28894.06 228
LPG-MVS_test89.45 12388.90 12391.12 16194.47 16881.49 15895.30 9096.14 11486.73 12285.45 20295.16 11469.89 23198.10 13387.70 11789.23 20293.77 246
LGP-MVS_train91.12 16194.47 16881.49 15896.14 11486.73 12285.45 20295.16 11469.89 23198.10 13387.70 11789.23 20293.77 246
ACMM84.12 989.14 13388.48 13791.12 16194.65 16081.22 16795.31 8896.12 11685.31 15485.92 18594.34 14470.19 22998.06 14585.65 14488.86 20994.08 227
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_LR92.47 6292.29 6392.98 7795.99 10684.43 8293.08 22196.09 11788.20 8791.12 10095.72 9781.33 9597.76 16191.74 6897.37 7796.75 120
CLD-MVS89.47 12288.90 12391.18 15994.22 17982.07 14492.13 25196.09 11787.90 9585.37 21192.45 21474.38 17297.56 17787.15 12690.43 18193.93 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
alignmvs93.08 5392.50 6094.81 2995.62 11987.61 1295.99 5996.07 11989.77 4294.12 3294.87 12380.56 9998.66 8992.42 4593.10 15598.15 59
XVG-OURS89.40 12888.70 12691.52 14494.06 18381.46 16091.27 26996.07 11986.14 13588.89 12995.77 9468.73 25197.26 21187.39 12289.96 18895.83 154
XVG-OURS-SEG-HR89.95 10889.45 10691.47 14894.00 18981.21 16891.87 25696.06 12185.78 14088.55 13395.73 9674.67 17097.27 20988.71 10589.64 19595.91 149
HQP3-MVS96.04 12289.77 193
HQP-MVS89.80 11389.28 11491.34 15394.17 18081.56 15494.39 15296.04 12288.81 6585.43 20593.97 16373.83 18497.96 15287.11 12889.77 19394.50 206
test_vis1_n_192089.39 12989.84 10188.04 26892.97 22372.64 31694.71 13196.03 12486.18 13391.94 8396.56 6561.63 30095.74 29393.42 2895.11 11695.74 158
PS-MVSNAJss89.97 10689.62 10391.02 16991.90 24980.85 17895.26 9595.98 12586.26 13086.21 18194.29 14879.70 10997.65 16988.87 10488.10 22294.57 198
Vis-MVSNetpermissive91.75 7191.23 7493.29 6395.32 12683.78 9496.14 5195.98 12589.89 3690.45 10696.58 6375.09 16298.31 12184.75 15596.90 8497.78 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS88.38 15587.67 15590.52 18593.30 21180.18 19393.26 21395.96 12788.57 7485.47 20192.81 20476.12 14696.91 23481.24 21182.29 27994.47 211
OMC-MVS91.23 8090.62 8593.08 7296.27 9384.07 8793.52 20095.93 12886.95 11689.51 11996.13 8078.50 12598.35 11585.84 14392.90 15896.83 118
v7n86.81 21485.76 22289.95 21590.72 29779.25 22795.07 10895.92 12984.45 17282.29 26990.86 26872.60 20197.53 18179.42 24080.52 30993.08 276
AdaColmapbinary89.89 11189.07 11792.37 10797.41 6283.03 11694.42 14995.92 12982.81 20786.34 17994.65 13673.89 18299.02 5980.69 22195.51 10595.05 176
cascas86.43 23084.98 23890.80 17792.10 24480.92 17690.24 28795.91 13173.10 33283.57 25488.39 31065.15 28197.46 18684.90 15391.43 17194.03 230
MVSFormer91.68 7491.30 7292.80 8493.86 19483.88 9295.96 6195.90 13284.66 16991.76 8994.91 12177.92 13197.30 20589.64 9597.11 7897.24 99
test_djsdf89.03 14088.64 12890.21 20090.74 29679.28 22595.96 6195.90 13284.66 16985.33 21392.94 19974.02 18097.30 20589.64 9588.53 21394.05 229
ACMP84.23 889.01 14288.35 13890.99 17294.73 15481.27 16495.07 10895.89 13486.48 12583.67 25094.30 14769.33 24097.99 15087.10 13088.55 21293.72 250
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS84.11 1087.74 17386.08 20892.70 9194.02 18584.43 8289.27 30395.87 13573.62 32884.43 23094.33 14578.48 12698.86 7970.27 30794.45 12994.81 189
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CHOSEN 1792x268888.84 14587.69 15492.30 11196.14 9681.42 16290.01 29395.86 13674.52 31987.41 15493.94 16475.46 15998.36 11380.36 22695.53 10497.12 106
Anonymous2024052988.09 16486.59 18892.58 9796.53 8681.92 14895.99 5995.84 13774.11 32389.06 12795.21 11361.44 30398.81 8483.67 17187.47 23197.01 111
tfpnnormal84.72 25983.23 26489.20 23892.79 22980.05 20094.48 14295.81 13882.38 21381.08 28491.21 25669.01 24796.95 23161.69 34980.59 30690.58 331
MVS_Test91.31 7991.11 7691.93 12594.37 17480.14 19593.46 20395.80 13986.46 12691.35 9893.77 17482.21 8498.09 14187.57 11994.95 11797.55 91
HyFIR lowres test88.09 16486.81 17691.93 12596.00 10580.63 18390.01 29395.79 14073.42 32987.68 15092.10 22973.86 18397.96 15280.75 22091.70 16997.19 102
EI-MVSNet-Vis-set93.01 5492.92 5393.29 6395.01 13883.51 10294.48 14295.77 14190.87 1392.52 6996.67 5584.50 6199.00 6591.99 6194.44 13097.36 95
cdsmvs_eth3d_5k22.14 34329.52 3460.00 3620.00 3850.00 3860.00 37395.76 1420.00 3800.00 38194.29 14875.66 1570.00 3810.00 3790.00 3790.00 377
DTE-MVSNet86.11 23385.48 22787.98 26991.65 26174.92 29394.93 11695.75 14387.36 10882.26 27093.04 19772.85 19795.82 28974.04 28977.46 32993.20 270
OPM-MVS90.12 10189.56 10491.82 13393.14 21483.90 9194.16 16595.74 14488.96 6487.86 14495.43 10572.48 20297.91 15688.10 11390.18 18593.65 253
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet-UG-set92.74 5892.62 5893.12 7094.86 14983.20 11094.40 15095.74 14490.71 2192.05 7796.60 6284.00 6598.99 6791.55 7093.63 14097.17 103
D2MVS85.90 23685.09 23688.35 25890.79 29377.42 26691.83 25795.70 14680.77 24980.08 29990.02 28666.74 26896.37 26581.88 20087.97 22691.26 317
PS-MVSNAJ91.18 8290.92 8091.96 12395.26 12982.60 13592.09 25395.70 14686.27 12991.84 8692.46 21379.70 10998.99 6789.08 10195.86 10094.29 217
旧先验196.79 7681.81 15095.67 14896.81 5086.69 3597.66 7496.97 113
MAR-MVS90.30 9889.37 11093.07 7496.61 8184.48 7895.68 7495.67 14882.36 21487.85 14592.85 20076.63 14498.80 8580.01 23196.68 9095.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_tets88.06 16687.28 16590.38 19690.94 28679.88 20795.22 9795.66 15085.10 15984.21 24093.94 16463.53 29097.40 19888.50 10788.40 21893.87 236
MVS87.44 19086.10 20791.44 14992.61 23283.62 9992.63 23495.66 15067.26 35181.47 27892.15 22477.95 13098.22 12679.71 23495.48 10692.47 293
jajsoiax88.24 16087.50 15890.48 18990.89 29080.14 19595.31 8895.65 15284.97 16284.24 23994.02 15965.31 28097.42 19188.56 10688.52 21493.89 233
xiu_mvs_v2_base91.13 8390.89 8291.86 13094.97 14182.42 13792.24 24795.64 15386.11 13791.74 9193.14 19379.67 11298.89 7689.06 10295.46 10894.28 218
UniMVSNet_ETH3D87.53 18686.37 19591.00 17192.44 23478.96 23094.74 12895.61 15484.07 17685.36 21294.52 14159.78 31697.34 20382.93 17887.88 22796.71 122
ab-mvs89.41 12688.35 13892.60 9595.15 13582.65 13392.20 24995.60 15583.97 17888.55 13393.70 17774.16 17898.21 12782.46 18889.37 19896.94 114
新几何193.10 7197.30 6684.35 8495.56 15671.09 34491.26 9996.24 7282.87 7598.86 7979.19 24298.10 6096.07 144
anonymousdsp87.84 16987.09 16890.12 20689.13 32380.54 18694.67 13395.55 15782.05 21983.82 24692.12 22671.47 21097.15 21887.15 12687.80 23092.67 287
XVG-ACMP-BASELINE86.00 23484.84 24389.45 23491.20 27378.00 25091.70 26195.55 15785.05 16182.97 26392.25 22254.49 33697.48 18482.93 17887.45 23392.89 282
VPNet88.20 16187.47 16090.39 19493.56 20579.46 21694.04 17695.54 15988.67 7086.96 16394.58 14069.33 24097.15 21884.05 16480.53 30894.56 199
h-mvs3390.80 8690.15 9292.75 8796.01 10482.66 13295.43 8495.53 16089.80 3893.08 5295.64 9975.77 15199.00 6592.07 5778.05 32596.60 124
diffmvspermissive91.37 7891.23 7491.77 13693.09 21680.27 19092.36 24295.52 16187.03 11491.40 9794.93 12080.08 10397.44 18992.13 5694.56 12597.61 86
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v119287.25 19986.33 19790.00 21490.76 29579.04 22993.80 18995.48 16282.57 21085.48 20091.18 25973.38 19297.42 19182.30 19182.06 28193.53 256
xiu_mvs_v1_base_debu90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20695.46 16385.17 15592.25 7294.03 15670.59 22198.57 9890.97 7894.67 12094.18 219
xiu_mvs_v1_base90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20695.46 16385.17 15592.25 7294.03 15670.59 22198.57 9890.97 7894.67 12094.18 219
xiu_mvs_v1_base_debi90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20695.46 16385.17 15592.25 7294.03 15670.59 22198.57 9890.97 7894.67 12094.18 219
v1087.25 19986.38 19489.85 21791.19 27479.50 21594.48 14295.45 16683.79 18383.62 25291.19 25775.13 16197.42 19181.94 19880.60 30592.63 289
F-COLMAP87.95 16786.80 17791.40 15096.35 9280.88 17794.73 12995.45 16679.65 26182.04 27494.61 13771.13 21298.50 10176.24 27191.05 17794.80 190
PLCcopyleft84.53 789.06 13988.03 14892.15 11597.27 6882.69 13194.29 15895.44 16879.71 26084.01 24394.18 15376.68 14398.75 8777.28 25993.41 14895.02 177
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v14419287.19 20586.35 19689.74 22390.64 29978.24 24693.92 18695.43 16981.93 22485.51 19791.05 26574.21 17697.45 18782.86 18081.56 28993.53 256
v192192086.97 21186.06 20989.69 22790.53 30578.11 24993.80 18995.43 16981.90 22685.33 21391.05 26572.66 19997.41 19682.05 19681.80 28693.53 256
v114487.61 18286.79 17890.06 20991.01 28179.34 22193.95 18395.42 17183.36 19585.66 19091.31 25574.98 16497.42 19183.37 17282.06 28193.42 262
v887.50 18986.71 18189.89 21691.37 26879.40 21894.50 14195.38 17284.81 16683.60 25391.33 25276.05 14797.42 19182.84 18180.51 31092.84 284
sss88.93 14388.26 14490.94 17594.05 18480.78 18091.71 26095.38 17281.55 23688.63 13293.91 16875.04 16395.47 30482.47 18791.61 17096.57 126
v124086.78 21685.85 21789.56 22990.45 30677.79 25893.61 19795.37 17481.65 23285.43 20591.15 26171.50 20997.43 19081.47 20982.05 28393.47 260
testdata90.49 18796.40 8977.89 25495.37 17472.51 33793.63 4196.69 5382.08 8797.65 16983.08 17597.39 7695.94 148
131487.51 18786.57 18990.34 19892.42 23579.74 21192.63 23495.35 17678.35 28180.14 29791.62 24674.05 17997.15 21881.05 21293.53 14394.12 223
V4287.68 17486.86 17490.15 20490.58 30280.14 19594.24 16295.28 17783.66 18585.67 18991.33 25274.73 16897.41 19684.43 16081.83 28592.89 282
EPP-MVSNet91.70 7391.56 7092.13 11695.88 10980.50 18797.33 795.25 17886.15 13489.76 11795.60 10083.42 7098.32 12087.37 12393.25 15297.56 90
UGNet89.95 10888.95 12092.95 7994.51 16783.31 10795.70 7395.23 17989.37 5187.58 15193.94 16464.00 28698.78 8683.92 16696.31 9796.74 121
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS87.65 17686.85 17590.03 21092.14 24180.60 18593.76 19195.23 17982.94 20484.60 22394.02 15974.27 17395.49 30381.04 21383.68 26394.01 231
API-MVS90.66 9290.07 9492.45 10396.36 9184.57 7396.06 5795.22 18182.39 21289.13 12494.27 15180.32 10098.46 10580.16 23096.71 8994.33 214
MG-MVS91.77 7091.70 6992.00 12097.08 7180.03 20293.60 19895.18 18287.85 9990.89 10296.47 6782.06 8898.36 11385.07 14997.04 8197.62 85
v2v48287.84 16987.06 16990.17 20290.99 28279.23 22894.00 18195.13 18384.87 16385.53 19592.07 23274.45 17197.45 18784.71 15681.75 28793.85 239
test_yl90.69 9090.02 9892.71 8995.72 11482.41 13994.11 16895.12 18485.63 14691.49 9494.70 13274.75 16698.42 11186.13 13892.53 16397.31 96
DCV-MVSNet90.69 9090.02 9892.71 8995.72 11482.41 13994.11 16895.12 18485.63 14691.49 9494.70 13274.75 16698.42 11186.13 13892.53 16397.31 96
Effi-MVS+91.59 7591.11 7693.01 7694.35 17783.39 10694.60 13695.10 18687.10 11290.57 10593.10 19581.43 9498.07 14489.29 9994.48 12897.59 88
Fast-Effi-MVS+89.41 12688.64 12891.71 13894.74 15380.81 17993.54 19995.10 18683.11 19986.82 17090.67 27479.74 10897.75 16480.51 22593.55 14296.57 126
IterMVS-LS88.36 15787.91 15289.70 22693.80 19778.29 24593.73 19295.08 18885.73 14284.75 22091.90 23779.88 10596.92 23383.83 16782.51 27693.89 233
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test22296.55 8481.70 15292.22 24895.01 18968.36 35090.20 11096.14 7980.26 10297.80 7096.05 146
EI-MVSNet89.10 13488.86 12589.80 22291.84 25178.30 24493.70 19595.01 18985.73 14287.15 15995.28 10879.87 10697.21 21683.81 16887.36 23493.88 235
MVSTER88.84 14588.29 14290.51 18692.95 22480.44 18893.73 19295.01 18984.66 16987.15 15993.12 19472.79 19897.21 21687.86 11487.36 23493.87 236
GBi-Net87.26 19785.98 21291.08 16594.01 18683.10 11295.14 10494.94 19283.57 18784.37 23191.64 24266.59 27096.34 26878.23 25085.36 24893.79 241
test187.26 19785.98 21291.08 16594.01 18683.10 11295.14 10494.94 19283.57 18784.37 23191.64 24266.59 27096.34 26878.23 25085.36 24893.79 241
FMVSNet287.19 20585.82 21891.30 15594.01 18683.67 9794.79 12594.94 19283.57 18783.88 24592.05 23366.59 27096.51 25677.56 25785.01 25193.73 249
FMVSNet185.85 23884.11 25291.08 16592.81 22883.10 11295.14 10494.94 19281.64 23382.68 26691.64 24259.01 32096.34 26875.37 27883.78 26093.79 241
LS3D87.89 16886.32 19892.59 9696.07 10282.92 12295.23 9694.92 19675.66 30682.89 26495.98 8472.48 20299.21 4368.43 32195.23 11595.64 162
eth_miper_zixun_eth86.50 22785.77 22188.68 25191.94 24875.81 28790.47 28194.89 19782.05 21984.05 24190.46 27775.96 14996.77 23882.76 18479.36 32093.46 261
LTVRE_ROB82.13 1386.26 23284.90 24190.34 19894.44 17281.50 15692.31 24694.89 19783.03 20179.63 30592.67 20769.69 23497.79 15971.20 30286.26 24491.72 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tt080586.92 21285.74 22490.48 18992.22 23879.98 20595.63 7994.88 19983.83 18284.74 22192.80 20557.61 32497.67 16685.48 14784.42 25593.79 241
UnsupCasMVSNet_eth80.07 30378.27 30785.46 31285.24 35372.63 31788.45 31794.87 20082.99 20371.64 34988.07 31656.34 32791.75 34773.48 29463.36 36092.01 304
pm-mvs186.61 22185.54 22589.82 21991.44 26380.18 19395.28 9494.85 20183.84 18181.66 27792.62 20972.45 20496.48 25879.67 23578.06 32492.82 285
ACMH80.38 1785.36 24683.68 25990.39 19494.45 17180.63 18394.73 12994.85 20182.09 21877.24 31992.65 20860.01 31497.58 17572.25 29984.87 25292.96 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_anonymous89.37 13089.32 11289.51 23393.47 20774.22 29991.65 26394.83 20382.91 20585.45 20293.79 17281.23 9696.36 26786.47 13594.09 13397.94 71
miper_enhance_ethall86.90 21386.18 20389.06 24291.66 26077.58 26490.22 28994.82 20479.16 26784.48 22789.10 29979.19 11696.66 24284.06 16382.94 27192.94 280
miper_ehance_all_eth87.22 20286.62 18789.02 24492.13 24277.40 26790.91 27594.81 20581.28 24184.32 23690.08 28579.26 11596.62 24583.81 16882.94 27193.04 277
FMVSNet387.40 19286.11 20691.30 15593.79 19983.64 9894.20 16494.81 20583.89 18084.37 23191.87 23868.45 25496.56 25378.23 25085.36 24893.70 252
WTY-MVS89.60 11788.92 12191.67 13995.47 12381.15 16992.38 24194.78 20783.11 19989.06 12794.32 14678.67 12296.61 24881.57 20790.89 17997.24 99
PAPM86.68 22085.39 22990.53 18393.05 21879.33 22489.79 29694.77 20878.82 27281.95 27593.24 18976.81 13997.30 20566.94 33093.16 15494.95 184
FA-MVS(test-final)89.66 11588.91 12291.93 12594.57 16480.27 19091.36 26794.74 20984.87 16389.82 11692.61 21074.72 16998.47 10483.97 16593.53 14397.04 109
c3_l87.14 20786.50 19289.04 24392.20 23977.26 26891.22 27194.70 21082.01 22284.34 23590.43 27878.81 11996.61 24883.70 17081.09 29693.25 267
CDS-MVSNet89.45 12388.51 13392.29 11293.62 20383.61 10093.01 22494.68 21181.95 22387.82 14793.24 18978.69 12196.99 22980.34 22793.23 15396.28 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GeoE90.05 10389.43 10891.90 12995.16 13380.37 18995.80 6794.65 21283.90 17987.55 15394.75 13178.18 12997.62 17481.28 21093.63 14097.71 83
1112_ss88.42 15487.33 16391.72 13794.92 14580.98 17392.97 22694.54 21378.16 28683.82 24693.88 16978.78 12097.91 15679.45 23789.41 19796.26 135
HY-MVS83.01 1289.03 14087.94 15192.29 11294.86 14982.77 12492.08 25494.49 21481.52 23786.93 16492.79 20678.32 12898.23 12479.93 23290.55 18095.88 151
CANet_DTU90.26 10089.41 10992.81 8393.46 20883.01 11893.48 20194.47 21589.43 4987.76 14994.23 15270.54 22599.03 5684.97 15096.39 9696.38 131
test_fmvs1_n87.03 21087.04 17186.97 29289.74 31971.86 32394.55 13994.43 21678.47 27891.95 8295.50 10251.16 34593.81 32593.02 3594.56 12595.26 171
v14887.04 20986.32 19889.21 23790.94 28677.26 26893.71 19494.43 21684.84 16584.36 23490.80 27176.04 14897.05 22682.12 19479.60 31893.31 264
RRT_MVS89.09 13688.62 13190.49 18792.85 22779.65 21396.41 3794.41 21888.22 8585.50 19894.77 13069.36 23997.31 20489.33 9886.73 24194.51 203
OurMVSNet-221017-085.35 24784.64 24787.49 27990.77 29472.59 31894.01 17994.40 21984.72 16879.62 30693.17 19161.91 29996.72 23981.99 19781.16 29393.16 272
Effi-MVS+-dtu88.65 15088.35 13889.54 23093.33 21076.39 28094.47 14594.36 22087.70 10285.43 20589.56 29673.45 18997.26 21185.57 14691.28 17294.97 178
EG-PatchMatch MVS82.37 28080.34 28688.46 25590.27 30879.35 22092.80 23194.33 22177.14 29473.26 34390.18 28247.47 35496.72 23970.25 30887.32 23689.30 339
cl____86.52 22685.78 21988.75 24892.03 24676.46 27890.74 27794.30 22281.83 23083.34 25990.78 27275.74 15696.57 25181.74 20481.54 29093.22 269
DIV-MVS_self_test86.53 22585.78 21988.75 24892.02 24776.45 27990.74 27794.30 22281.83 23083.34 25990.82 27075.75 15496.57 25181.73 20581.52 29193.24 268
Test_1112_low_res87.65 17686.51 19191.08 16594.94 14479.28 22591.77 25894.30 22276.04 30483.51 25592.37 21677.86 13397.73 16578.69 24589.13 20496.22 136
pmmvs683.42 27281.60 27688.87 24688.01 33777.87 25594.96 11494.24 22574.67 31878.80 31091.09 26460.17 31396.49 25777.06 26475.40 33792.23 301
MVP-Stereo85.97 23584.86 24289.32 23590.92 28882.19 14292.11 25294.19 22678.76 27478.77 31191.63 24568.38 25596.56 25375.01 28393.95 13589.20 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TAMVS89.21 13288.29 14291.96 12393.71 20082.62 13493.30 21094.19 22682.22 21687.78 14893.94 16478.83 11896.95 23177.70 25592.98 15796.32 132
jason90.80 8690.10 9392.90 8193.04 21983.53 10193.08 22194.15 22880.22 25291.41 9694.91 12176.87 13897.93 15590.28 9296.90 8497.24 99
jason: jason.
BH-untuned88.60 15288.13 14690.01 21395.24 13078.50 23893.29 21194.15 22884.75 16784.46 22893.40 18175.76 15397.40 19877.59 25694.52 12794.12 223
cl2286.78 21685.98 21289.18 23992.34 23677.62 26390.84 27694.13 23081.33 24083.97 24490.15 28373.96 18196.60 25084.19 16282.94 27193.33 263
ACMH+81.04 1485.05 25483.46 26289.82 21994.66 15979.37 21994.44 14794.12 23182.19 21778.04 31492.82 20358.23 32297.54 18073.77 29282.90 27492.54 290
miper_lstm_enhance85.27 25084.59 24887.31 28291.28 27274.63 29487.69 32494.09 23281.20 24581.36 28189.85 29174.97 16594.30 31881.03 21579.84 31793.01 278
test_fmvs187.34 19487.56 15786.68 30090.59 30171.80 32594.01 17994.04 23378.30 28291.97 8095.22 11156.28 32893.71 32792.89 3694.71 11994.52 201
Fast-Effi-MVS+-dtu87.44 19086.72 18089.63 22892.04 24577.68 26294.03 17793.94 23485.81 13982.42 26891.32 25470.33 22797.06 22580.33 22890.23 18494.14 222
KD-MVS_self_test80.20 30279.24 29983.07 32885.64 35165.29 35691.01 27493.93 23578.71 27676.32 32586.40 33359.20 31992.93 33872.59 29769.35 34891.00 326
AUN-MVS87.78 17286.54 19091.48 14794.82 15281.05 17193.91 18893.93 23583.00 20286.93 16493.53 17969.50 23797.67 16686.14 13677.12 33195.73 160
TSAR-MVS + GP.93.66 4193.41 4594.41 4696.59 8286.78 2394.40 15093.93 23589.77 4294.21 3095.59 10187.35 3298.61 9592.72 4096.15 9897.83 79
hse-mvs289.88 11289.34 11191.51 14594.83 15181.12 17093.94 18493.91 23889.80 3893.08 5293.60 17875.77 15197.66 16892.07 5777.07 33295.74 158
VDD-MVS90.74 8889.92 10093.20 6796.27 9383.02 11795.73 7193.86 23988.42 7892.53 6896.84 4762.09 29798.64 9190.95 8192.62 16297.93 73
lupinMVS90.92 8590.21 8993.03 7593.86 19483.88 9292.81 23093.86 23979.84 25891.76 8994.29 14877.92 13198.04 14690.48 9197.11 7897.17 103
CMPMVSbinary59.16 2180.52 29979.20 30184.48 32083.98 35567.63 35089.95 29593.84 24164.79 35566.81 35691.14 26257.93 32395.17 30776.25 27088.10 22290.65 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GA-MVS86.61 22185.27 23390.66 17991.33 27178.71 23290.40 28293.81 24285.34 15385.12 21589.57 29561.25 30597.11 22280.99 21689.59 19696.15 137
test_vis1_n86.56 22486.49 19386.78 29988.51 32872.69 31394.68 13293.78 24379.55 26290.70 10395.31 10748.75 35093.28 33393.15 3293.99 13494.38 213
MVS_030483.46 27181.92 27488.10 26690.63 30077.49 26593.26 21393.75 24480.04 25680.44 29387.24 32747.94 35295.55 29775.79 27488.16 22191.26 317
FE-MVS87.40 19286.02 21091.57 14394.56 16579.69 21290.27 28393.72 24580.57 25088.80 13091.62 24665.32 27998.59 9774.97 28494.33 13296.44 129
IS-MVSNet91.43 7691.09 7892.46 10295.87 11181.38 16396.95 1993.69 24689.72 4489.50 12095.98 8478.57 12497.77 16083.02 17796.50 9498.22 55
MS-PatchMatch85.05 25484.16 25187.73 27391.42 26678.51 23791.25 27093.53 24777.50 28980.15 29691.58 24861.99 29895.51 30075.69 27594.35 13189.16 342
BH-w/o87.57 18587.05 17089.12 24094.90 14777.90 25392.41 23993.51 24882.89 20683.70 24991.34 25175.75 15497.07 22475.49 27693.49 14592.39 296
UnsupCasMVSNet_bld76.23 32073.27 32385.09 31783.79 35672.92 30985.65 33993.47 24971.52 34168.84 35479.08 35649.77 34793.21 33466.81 33460.52 36289.13 344
USDC82.76 27581.26 28087.26 28491.17 27574.55 29589.27 30393.39 25078.26 28475.30 33292.08 23054.43 33796.63 24471.64 30085.79 24790.61 328
CNLPA89.07 13887.98 14992.34 10896.87 7484.78 7094.08 17293.24 25181.41 23884.46 22895.13 11675.57 15896.62 24577.21 26093.84 13895.61 163
Anonymous2024052180.44 30079.21 30084.11 32485.75 35067.89 34792.86 22993.23 25275.61 30875.59 33187.47 32450.03 34694.33 31771.14 30581.21 29290.12 333
VDDNet89.56 11988.49 13692.76 8695.07 13782.09 14396.30 4193.19 25381.05 24791.88 8496.86 4661.16 30898.33 11888.43 10892.49 16597.84 78
MSDG84.86 25783.09 26590.14 20593.80 19780.05 20089.18 30693.09 25478.89 27078.19 31291.91 23665.86 27897.27 20968.47 32088.45 21693.11 274
CL-MVSNet_self_test81.74 28580.53 28385.36 31385.96 34772.45 32090.25 28593.07 25581.24 24379.85 30387.29 32670.93 21692.52 34066.95 32969.23 34991.11 323
BH-RMVSNet88.37 15687.48 15991.02 16995.28 12779.45 21792.89 22893.07 25585.45 15186.91 16694.84 12870.35 22697.76 16173.97 29094.59 12495.85 152
ITE_SJBPF88.24 26291.88 25077.05 27192.92 25785.54 14980.13 29893.30 18657.29 32596.20 27272.46 29884.71 25391.49 312
test_fmvs283.98 26584.03 25383.83 32687.16 34167.53 35193.93 18592.89 25877.62 28886.89 16993.53 17947.18 35592.02 34490.54 8886.51 24291.93 305
ambc83.06 32979.99 36263.51 35977.47 36392.86 25974.34 33984.45 34328.74 36495.06 31173.06 29668.89 35290.61 328
TR-MVS86.78 21685.76 22289.82 21994.37 17478.41 24092.47 23892.83 26081.11 24686.36 17892.40 21568.73 25197.48 18473.75 29389.85 19293.57 255
TransMVSNet (Re)84.43 26283.06 26688.54 25491.72 25578.44 23995.18 10092.82 26182.73 20879.67 30492.12 22673.49 18895.96 28271.10 30668.73 35391.21 319
CHOSEN 280x42085.15 25283.99 25588.65 25292.47 23378.40 24179.68 36292.76 26274.90 31681.41 28089.59 29469.85 23395.51 30079.92 23395.29 11292.03 303
MIMVSNet179.38 30877.28 31085.69 31186.35 34473.67 30391.61 26492.75 26378.11 28772.64 34588.12 31548.16 35191.97 34660.32 35277.49 32891.43 314
PVSNet78.82 1885.55 24284.65 24688.23 26394.72 15571.93 32287.12 33092.75 26378.80 27384.95 21890.53 27664.43 28596.71 24174.74 28593.86 13796.06 145
pmmvs485.43 24483.86 25790.16 20390.02 31482.97 12090.27 28392.67 26575.93 30580.73 28791.74 24171.05 21395.73 29478.85 24483.46 26791.78 307
IterMVS-SCA-FT85.45 24384.53 24988.18 26491.71 25776.87 27390.19 29092.65 26685.40 15281.44 27990.54 27566.79 26695.00 31281.04 21381.05 29792.66 288
Baseline_NR-MVSNet87.07 20886.63 18688.40 25691.44 26377.87 25594.23 16392.57 26784.12 17585.74 18892.08 23077.25 13696.04 27782.29 19279.94 31491.30 316
RPSCF85.07 25384.27 25087.48 28092.91 22570.62 33791.69 26292.46 26876.20 30382.67 26795.22 11163.94 28797.29 20877.51 25885.80 24694.53 200
IterMVS84.88 25683.98 25687.60 27591.44 26376.03 28490.18 29192.41 26983.24 19881.06 28590.42 27966.60 26994.28 31979.46 23680.98 30292.48 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvsmamba89.96 10789.50 10591.33 15492.90 22681.82 14996.68 3392.37 27089.03 6187.00 16294.85 12673.05 19497.65 16991.03 7788.63 21194.51 203
KD-MVS_2432*160078.50 31276.02 31985.93 30786.22 34574.47 29684.80 34592.33 27179.29 26476.98 32185.92 33653.81 34093.97 32267.39 32757.42 36589.36 337
miper_refine_blended78.50 31276.02 31985.93 30786.22 34574.47 29684.80 34592.33 27179.29 26476.98 32185.92 33653.81 34093.97 32267.39 32757.42 36589.36 337
PatchMatch-RL86.77 21985.54 22590.47 19295.88 10982.71 13090.54 28092.31 27379.82 25984.32 23691.57 25068.77 25096.39 26473.16 29593.48 14792.32 299
COLMAP_ROBcopyleft80.39 1683.96 26682.04 27389.74 22395.28 12779.75 21094.25 16092.28 27475.17 31278.02 31593.77 17458.60 32197.84 15865.06 34085.92 24591.63 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet581.52 29079.60 29687.27 28391.17 27577.95 25191.49 26592.26 27576.87 29576.16 32687.91 31951.67 34392.34 34167.74 32681.16 29391.52 311
EPNet_dtu86.49 22985.94 21588.14 26590.24 30972.82 31194.11 16892.20 27686.66 12479.42 30792.36 21773.52 18795.81 29071.26 30193.66 13995.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ppachtmachnet_test81.84 28380.07 29187.15 29088.46 33174.43 29889.04 30992.16 27775.33 31077.75 31688.99 30066.20 27495.37 30565.12 33977.60 32791.65 309
iter_conf0588.85 14488.08 14791.17 16094.27 17881.64 15395.18 10092.15 27886.23 13287.28 15894.07 15463.89 28997.55 17890.63 8689.00 20794.32 215
iter_conf_final89.42 12588.69 12791.60 14195.12 13682.93 12195.75 7092.14 27987.32 10987.12 16194.07 15467.09 26197.55 17890.61 8789.01 20694.32 215
thres20087.21 20386.24 20290.12 20695.36 12578.53 23693.26 21392.10 28086.42 12788.00 14391.11 26369.24 24498.00 14969.58 31591.04 17893.83 240
Anonymous2023120681.03 29679.77 29484.82 31887.85 34070.26 33991.42 26692.08 28173.67 32777.75 31689.25 29862.43 29693.08 33661.50 35082.00 28491.12 322
EPNet91.79 6991.02 7994.10 5090.10 31185.25 6696.03 5892.05 28292.83 187.39 15795.78 9379.39 11499.01 6188.13 11197.48 7598.05 66
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement79.81 30577.34 30987.22 28879.24 36475.48 29093.12 21892.03 28376.45 29875.01 33391.58 24849.19 34996.44 26270.22 31069.18 35089.75 335
DP-MVS87.25 19985.36 23192.90 8197.65 5583.24 10894.81 12492.00 28474.99 31481.92 27695.00 11972.66 19999.05 5366.92 33292.33 16696.40 130
SixPastTwentyTwo83.91 26882.90 26886.92 29490.99 28270.67 33693.48 20191.99 28585.54 14977.62 31892.11 22860.59 31096.87 23676.05 27377.75 32693.20 270
tfpn200view987.58 18486.64 18490.41 19395.99 10678.64 23394.58 13791.98 28686.94 11788.09 13891.77 23969.18 24598.10 13370.13 31191.10 17394.48 209
thres40087.62 18186.64 18490.57 18195.99 10678.64 23394.58 13791.98 28686.94 11788.09 13891.77 23969.18 24598.10 13370.13 31191.10 17394.96 181
CR-MVSNet85.35 24783.76 25890.12 20690.58 30279.34 22185.24 34291.96 28878.27 28385.55 19287.87 32071.03 21495.61 29573.96 29189.36 19995.40 167
Patchmtry82.71 27680.93 28288.06 26790.05 31376.37 28184.74 34791.96 28872.28 33981.32 28287.87 32071.03 21495.50 30268.97 31780.15 31292.32 299
pmmvs584.21 26382.84 27088.34 25988.95 32576.94 27292.41 23991.91 29075.63 30780.28 29491.18 25964.59 28495.57 29677.09 26383.47 26692.53 291
test_040281.30 29479.17 30287.67 27493.19 21378.17 24792.98 22591.71 29175.25 31176.02 32990.31 28059.23 31896.37 26550.22 36383.63 26488.47 348
tpmvs83.35 27482.07 27287.20 28991.07 28071.00 33488.31 31891.70 29278.91 26980.49 29287.18 32869.30 24397.08 22368.12 32583.56 26593.51 259
SCA86.32 23185.18 23489.73 22592.15 24076.60 27691.12 27291.69 29383.53 19085.50 19888.81 30366.79 26696.48 25876.65 26590.35 18396.12 140
pmmvs-eth3d80.97 29778.72 30687.74 27284.99 35479.97 20690.11 29291.65 29475.36 30973.51 34186.03 33559.45 31793.96 32475.17 28072.21 34289.29 340
test_fmvs377.67 31677.16 31379.22 33679.52 36361.14 36292.34 24391.64 29573.98 32478.86 30986.59 33027.38 36787.03 36188.12 11275.97 33589.50 336
thres100view90087.63 17986.71 18190.38 19696.12 9778.55 23595.03 11191.58 29687.15 11088.06 14192.29 22068.91 24898.10 13370.13 31191.10 17394.48 209
thres600view787.65 17686.67 18390.59 18096.08 10178.72 23194.88 11991.58 29687.06 11388.08 14092.30 21968.91 24898.10 13370.05 31491.10 17394.96 181
MDTV_nov1_ep1383.56 26191.69 25969.93 34187.75 32391.54 29878.60 27784.86 21988.90 30269.54 23696.03 27870.25 30888.93 208
tpm cat181.96 28180.27 28787.01 29191.09 27971.02 33387.38 32891.53 29966.25 35280.17 29586.35 33468.22 25696.15 27569.16 31682.29 27993.86 238
Anonymous20240521187.68 17486.13 20492.31 11096.66 7980.74 18194.87 12091.49 30080.47 25189.46 12195.44 10354.72 33598.23 12482.19 19389.89 19097.97 70
CVMVSNet84.69 26084.79 24484.37 32191.84 25164.92 35793.70 19591.47 30166.19 35386.16 18395.28 10867.18 26093.33 33280.89 21890.42 18294.88 186
tpmrst85.35 24784.99 23786.43 30290.88 29167.88 34888.71 31291.43 30280.13 25486.08 18488.80 30573.05 19496.02 27982.48 18683.40 26995.40 167
EU-MVSNet81.32 29380.95 28182.42 33288.50 33063.67 35893.32 20691.33 30364.02 35680.57 29192.83 20261.21 30792.27 34276.34 26980.38 31191.32 315
PatchmatchNetpermissive85.85 23884.70 24589.29 23691.76 25475.54 28988.49 31591.30 30481.63 23485.05 21688.70 30771.71 20696.24 27174.61 28789.05 20596.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline188.10 16387.28 16590.57 18194.96 14280.07 19894.27 15991.29 30586.74 12187.41 15494.00 16176.77 14196.20 27280.77 21979.31 32195.44 165
IB-MVS80.51 1585.24 25183.26 26391.19 15892.13 24279.86 20891.75 25991.29 30583.28 19780.66 28988.49 30961.28 30498.46 10580.99 21679.46 31995.25 172
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_381.93 28280.46 28586.33 30488.46 33173.48 30688.46 31691.11 30776.46 29776.69 32388.25 31366.89 26494.36 31668.75 31879.08 32291.14 321
new-patchmatchnet76.41 31975.17 32180.13 33482.65 36059.61 36487.66 32591.08 30878.23 28569.85 35283.22 34754.76 33491.63 34964.14 34364.89 35889.16 342
test20.0379.95 30479.08 30382.55 33085.79 34967.74 34991.09 27391.08 30881.23 24474.48 33889.96 28961.63 30090.15 35360.08 35376.38 33389.76 334
LF4IMVS80.37 30179.07 30484.27 32386.64 34369.87 34289.39 30291.05 31076.38 29974.97 33490.00 28747.85 35394.25 32074.55 28880.82 30488.69 346
CostFormer85.77 24084.94 24088.26 26191.16 27772.58 31989.47 30191.04 31176.26 30286.45 17689.97 28870.74 21996.86 23782.35 19087.07 23995.34 170
LCM-MVSNet-Re88.30 15988.32 14188.27 26094.71 15672.41 32193.15 21790.98 31287.77 10079.25 30891.96 23578.35 12795.75 29283.04 17695.62 10396.65 123
ET-MVSNet_ETH3D87.51 18785.91 21692.32 10993.70 20283.93 9092.33 24490.94 31384.16 17372.09 34692.52 21269.90 23095.85 28789.20 10088.36 21997.17 103
LCM-MVSNet66.00 32862.16 33377.51 34164.51 37658.29 36683.87 35190.90 31448.17 36554.69 36273.31 36216.83 37686.75 36265.47 33661.67 36187.48 352
AllTest83.42 27281.39 27889.52 23195.01 13877.79 25893.12 21890.89 31577.41 29076.12 32793.34 18254.08 33897.51 18268.31 32284.27 25793.26 265
TestCases89.52 23195.01 13877.79 25890.89 31577.41 29076.12 32793.34 18254.08 33897.51 18268.31 32284.27 25793.26 265
Vis-MVSNet (Re-imp)89.59 11889.44 10790.03 21095.74 11375.85 28695.61 8090.80 31787.66 10487.83 14695.40 10676.79 14096.46 26178.37 24696.73 8897.80 80
OpenMVS_ROBcopyleft74.94 1979.51 30777.03 31486.93 29387.00 34276.23 28392.33 24490.74 31868.93 34974.52 33788.23 31449.58 34896.62 24557.64 35784.29 25687.94 350
testgi80.94 29880.20 28983.18 32787.96 33866.29 35291.28 26890.70 31983.70 18478.12 31392.84 20151.37 34490.82 35163.34 34482.46 27792.43 294
MDA-MVSNet-bldmvs78.85 31176.31 31686.46 30189.76 31873.88 30288.79 31190.42 32079.16 26759.18 36088.33 31260.20 31294.04 32162.00 34868.96 35191.48 313
tpm284.08 26482.94 26787.48 28091.39 26771.27 32989.23 30590.37 32171.95 34084.64 22289.33 29767.30 25796.55 25575.17 28087.09 23894.63 193
TinyColmap79.76 30677.69 30885.97 30691.71 25773.12 30889.55 29790.36 32275.03 31372.03 34790.19 28146.22 35696.19 27463.11 34581.03 29888.59 347
Gipumacopyleft57.99 33654.91 33867.24 35188.51 32865.59 35452.21 37090.33 32343.58 36742.84 37051.18 37120.29 37385.07 36434.77 37170.45 34551.05 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PatchT82.68 27781.27 27986.89 29690.09 31270.94 33584.06 34990.15 32474.91 31585.63 19183.57 34669.37 23894.87 31365.19 33788.50 21594.84 187
MIMVSNet82.59 27880.53 28388.76 24791.51 26278.32 24386.57 33390.13 32579.32 26380.70 28888.69 30852.98 34293.07 33766.03 33588.86 20994.90 185
dp81.47 29180.23 28885.17 31689.92 31665.49 35586.74 33190.10 32676.30 30181.10 28387.12 32962.81 29495.92 28368.13 32479.88 31594.09 226
MDA-MVSNet_test_wron79.21 31077.19 31285.29 31488.22 33572.77 31285.87 33690.06 32774.34 32062.62 35987.56 32366.14 27591.99 34566.90 33373.01 33991.10 324
PMMVS85.71 24184.96 23987.95 27088.90 32677.09 27088.68 31390.06 32772.32 33886.47 17390.76 27372.15 20594.40 31581.78 20393.49 14592.36 297
YYNet179.22 30977.20 31185.28 31588.20 33672.66 31585.87 33690.05 32974.33 32162.70 35887.61 32266.09 27692.03 34366.94 33072.97 34091.15 320
tpm84.73 25884.02 25486.87 29790.33 30768.90 34489.06 30889.94 33080.85 24885.75 18789.86 29068.54 25395.97 28177.76 25484.05 25995.75 157
LFMVS90.08 10289.13 11692.95 7996.71 7782.32 14196.08 5489.91 33186.79 12092.15 7696.81 5062.60 29598.34 11687.18 12593.90 13698.19 56
thisisatest053088.67 14987.61 15691.86 13094.87 14880.07 19894.63 13589.90 33284.00 17788.46 13593.78 17366.88 26598.46 10583.30 17392.65 16197.06 107
test-LLR85.87 23785.41 22887.25 28590.95 28471.67 32789.55 29789.88 33383.41 19384.54 22587.95 31767.25 25895.11 30981.82 20193.37 15094.97 178
test-mter84.54 26183.64 26087.25 28590.95 28471.67 32789.55 29789.88 33379.17 26684.54 22587.95 31755.56 33095.11 30981.82 20193.37 15094.97 178
tttt051788.61 15187.78 15391.11 16494.96 14277.81 25795.35 8689.69 33585.09 16088.05 14294.59 13966.93 26398.48 10283.27 17492.13 16897.03 110
PVSNet_073.20 2077.22 31774.83 32284.37 32190.70 29871.10 33283.09 35489.67 33672.81 33673.93 34083.13 34860.79 30993.70 32868.54 31950.84 36888.30 349
JIA-IIPM81.04 29578.98 30587.25 28588.64 32773.48 30681.75 35789.61 33773.19 33182.05 27373.71 36166.07 27795.87 28671.18 30484.60 25492.41 295
thisisatest051587.33 19585.99 21191.37 15293.49 20679.55 21490.63 27989.56 33880.17 25387.56 15290.86 26867.07 26298.28 12281.50 20893.02 15696.29 133
ADS-MVSNet81.56 28979.78 29386.90 29591.35 26971.82 32483.33 35289.16 33972.90 33482.24 27185.77 33864.98 28293.76 32664.57 34183.74 26195.12 174
bld_raw_dy_0_6487.60 18386.73 17990.21 20091.72 25580.26 19295.09 10788.61 34085.68 14485.55 19294.38 14363.93 28896.66 24287.73 11687.84 22993.72 250
baseline286.50 22785.39 22989.84 21891.12 27876.70 27591.88 25588.58 34182.35 21579.95 30190.95 26773.42 19097.63 17380.27 22989.95 18995.19 173
ADS-MVSNet281.66 28779.71 29587.50 27891.35 26974.19 30083.33 35288.48 34272.90 33482.24 27185.77 33864.98 28293.20 33564.57 34183.74 26195.12 174
TESTMET0.1,183.74 27082.85 26986.42 30389.96 31571.21 33189.55 29787.88 34377.41 29083.37 25887.31 32556.71 32693.65 32980.62 22392.85 16094.40 212
test0.0.03 182.41 27981.69 27584.59 31988.23 33472.89 31090.24 28787.83 34483.41 19379.86 30289.78 29267.25 25888.99 35965.18 33883.42 26891.90 306
K. test v381.59 28880.15 29085.91 30989.89 31769.42 34392.57 23687.71 34585.56 14873.44 34289.71 29355.58 32995.52 29977.17 26169.76 34792.78 286
Patchmatch-test81.37 29279.30 29887.58 27690.92 28874.16 30180.99 35887.68 34670.52 34676.63 32488.81 30371.21 21192.76 33960.01 35586.93 24095.83 154
Patchmatch-RL test81.67 28679.96 29286.81 29885.42 35271.23 33082.17 35687.50 34778.47 27877.19 32082.50 35170.81 21893.48 33082.66 18572.89 34195.71 161
ANet_high58.88 33554.22 33972.86 34456.50 37956.67 36880.75 35986.00 34873.09 33337.39 37164.63 36822.17 37179.49 37143.51 36623.96 37382.43 359
test_f71.95 32470.87 32675.21 34374.21 36859.37 36585.07 34485.82 34965.25 35470.42 35183.13 34823.62 36882.93 36878.32 24871.94 34483.33 355
door-mid85.49 350
door85.33 351
PM-MVS78.11 31476.12 31884.09 32583.54 35770.08 34088.97 31085.27 35279.93 25774.73 33686.43 33234.70 36393.48 33079.43 23972.06 34388.72 345
test111189.10 13488.64 12890.48 18995.53 12274.97 29296.08 5484.89 35388.13 9090.16 11296.65 5763.29 29198.10 13386.14 13696.90 8498.39 37
FPMVS64.63 33062.55 33270.88 34670.80 37056.71 36784.42 34884.42 35451.78 36449.57 36481.61 35223.49 36981.48 36940.61 37076.25 33474.46 362
ECVR-MVScopyleft89.09 13688.53 13290.77 17895.62 11975.89 28596.16 4984.22 35587.89 9790.20 11096.65 5763.19 29398.10 13385.90 14196.94 8298.33 41
pmmvs371.81 32568.71 32881.11 33375.86 36570.42 33886.74 33183.66 35658.95 36068.64 35580.89 35436.93 36189.52 35663.10 34663.59 35983.39 354
APD_test169.04 32666.26 33077.36 34280.51 36162.79 36185.46 34183.51 35754.11 36359.14 36184.79 34223.40 37089.61 35555.22 35970.24 34679.68 361
EGC-MVSNET61.97 33156.37 33578.77 33889.63 32173.50 30589.12 30782.79 3580.21 3791.24 38084.80 34139.48 36090.04 35444.13 36575.94 33672.79 363
MVS-HIRNet73.70 32272.20 32578.18 34091.81 25356.42 37182.94 35582.58 35955.24 36168.88 35366.48 36555.32 33295.13 30858.12 35688.42 21783.01 356
new_pmnet72.15 32370.13 32778.20 33982.95 35965.68 35383.91 35082.40 36062.94 35864.47 35779.82 35542.85 35886.26 36357.41 35874.44 33882.65 358
EPMVS83.90 26982.70 27187.51 27790.23 31072.67 31488.62 31481.96 36181.37 23985.01 21788.34 31166.31 27394.45 31475.30 27987.12 23795.43 166
test_method50.52 33848.47 34056.66 35452.26 38018.98 38341.51 37281.40 36210.10 37444.59 36975.01 36028.51 36568.16 37253.54 36149.31 36982.83 357
mvsany_test185.42 24585.30 23285.77 31087.95 33975.41 29187.61 32780.97 36376.82 29688.68 13195.83 9077.44 13590.82 35185.90 14186.51 24291.08 325
lessismore_v086.04 30588.46 33168.78 34580.59 36473.01 34490.11 28455.39 33196.43 26375.06 28265.06 35792.90 281
DSMNet-mixed76.94 31876.29 31778.89 33783.10 35856.11 37287.78 32279.77 36560.65 35975.64 33088.71 30661.56 30288.34 36060.07 35489.29 20192.21 302
gg-mvs-nofinetune81.77 28479.37 29788.99 24590.85 29277.73 26186.29 33479.63 36674.88 31783.19 26269.05 36460.34 31196.11 27675.46 27794.64 12393.11 274
test_vis1_rt77.96 31576.46 31582.48 33185.89 34871.74 32690.25 28578.89 36771.03 34571.30 35081.35 35342.49 35991.05 35084.55 15882.37 27884.65 353
mvsany_test374.95 32173.26 32480.02 33574.61 36663.16 36085.53 34078.42 36874.16 32274.89 33586.46 33136.02 36289.09 35882.39 18966.91 35487.82 351
PMVScopyleft47.18 2252.22 33748.46 34163.48 35245.72 38146.20 37773.41 36678.31 36941.03 37030.06 37365.68 3666.05 38083.43 36730.04 37265.86 35560.80 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND87.94 27189.73 32077.91 25287.80 32178.23 37080.58 29083.86 34459.88 31595.33 30671.20 30292.22 16790.60 330
PMMVS259.60 33256.40 33469.21 35068.83 37346.58 37673.02 36777.48 37155.07 36249.21 36572.95 36317.43 37580.04 37049.32 36444.33 37080.99 360
testf159.54 33356.11 33669.85 34869.28 37156.61 36980.37 36076.55 37242.58 36845.68 36775.61 35711.26 37884.18 36543.20 36760.44 36368.75 364
APD_test259.54 33356.11 33669.85 34869.28 37156.61 36980.37 36076.55 37242.58 36845.68 36775.61 35711.26 37884.18 36543.20 36760.44 36368.75 364
test250687.21 20386.28 20090.02 21295.62 11973.64 30496.25 4671.38 37487.89 9790.45 10696.65 5755.29 33398.09 14186.03 14096.94 8298.33 41
test_vis3_rt65.12 32962.60 33172.69 34571.44 36960.71 36387.17 32965.55 37563.80 35753.22 36365.65 36714.54 37789.44 35776.65 26565.38 35667.91 366
E-PMN43.23 34042.29 34246.03 35665.58 37537.41 37873.51 36564.62 37633.99 37128.47 37547.87 37219.90 37467.91 37322.23 37424.45 37232.77 371
EMVS42.07 34141.12 34344.92 35763.45 37735.56 38073.65 36463.48 37733.05 37226.88 37645.45 37321.27 37267.14 37419.80 37523.02 37432.06 372
MTMP96.16 4960.64 378
MVEpermissive39.65 2343.39 33938.59 34557.77 35356.52 37848.77 37555.38 36958.64 37929.33 37328.96 37452.65 3704.68 38164.62 37528.11 37333.07 37159.93 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft56.31 35574.23 36751.81 37456.67 38044.85 36648.54 36675.16 35927.87 36658.74 37640.92 36952.22 36758.39 369
tmp_tt35.64 34239.24 34424.84 35814.87 38223.90 38262.71 36851.51 3816.58 37636.66 37262.08 36944.37 35730.34 37852.40 36222.00 37520.27 373
N_pmnet68.89 32768.44 32970.23 34789.07 32428.79 38188.06 31919.50 38269.47 34871.86 34884.93 34061.24 30691.75 34754.70 36077.15 33090.15 332
wuyk23d21.27 34420.48 34723.63 35968.59 37436.41 37949.57 3716.85 3839.37 3757.89 3774.46 3794.03 38231.37 37717.47 37616.07 3763.12 374
testmvs8.92 34511.52 3481.12 3611.06 3830.46 38586.02 3350.65 3840.62 3772.74 3789.52 3770.31 3840.45 3802.38 3770.39 3772.46 376
test1238.76 34611.22 3491.39 3600.85 3840.97 38485.76 3380.35 3850.54 3782.45 3798.14 3780.60 3830.48 3792.16 3780.17 3782.71 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.64 3488.86 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38079.70 1090.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
n20.00 386
nn0.00 386
ab-mvs-re7.82 34710.43 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38193.88 1690.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
PC_three_145282.47 21197.09 997.07 3892.72 198.04 14692.70 4299.02 1298.86 10
eth-test20.00 385
eth-test0.00 385
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 3692.59 298.94 7392.25 5098.99 1498.84 13
test_0728_THIRD90.75 1797.04 1098.05 892.09 699.55 1495.64 699.13 399.13 2
GSMVS96.12 140
test_part298.55 1287.22 1696.40 14
sam_mvs171.70 20796.12 140
sam_mvs70.60 220
test_post188.00 3209.81 37669.31 24295.53 29876.65 265
test_post10.29 37570.57 22495.91 285
patchmatchnet-post83.76 34571.53 20896.48 258
gm-plane-assit89.60 32268.00 34677.28 29388.99 30097.57 17679.44 238
test9_res91.91 6598.71 3098.07 64
agg_prior290.54 8898.68 3598.27 50
test_prior485.96 5194.11 168
test_prior294.12 16787.67 10392.63 6696.39 6986.62 3691.50 7198.67 37
旧先验293.36 20571.25 34394.37 2897.13 22186.74 131
新几何293.11 220
原ACMM292.94 227
testdata298.75 8778.30 249
segment_acmp87.16 34
testdata192.15 25087.94 93
plane_prior794.70 15782.74 127
plane_prior694.52 16682.75 12574.23 174
plane_prior494.86 124
plane_prior382.75 12590.26 3186.91 166
plane_prior295.85 6590.81 15
plane_prior194.59 161
plane_prior82.73 12895.21 9889.66 4589.88 191
HQP5-MVS81.56 154
HQP-NCC94.17 18094.39 15288.81 6585.43 205
ACMP_Plane94.17 18094.39 15288.81 6585.43 205
BP-MVS87.11 128
HQP4-MVS85.43 20597.96 15294.51 203
HQP2-MVS73.83 184
NP-MVS94.37 17482.42 13793.98 162
MDTV_nov1_ep13_2view55.91 37387.62 32673.32 33084.59 22470.33 22774.65 28695.50 164
ACMMP++_ref87.47 231
ACMMP++88.01 225
Test By Simon80.02 104