| MM | | | | | 95.68 5 | | 88.34 9 | 96.68 33 | 94.37 234 | 95.08 1 | 94.68 36 | 97.72 24 | 82.94 83 | 99.64 1 | 97.85 1 | 98.76 28 | 99.06 7 |
|
| MVS_0304 | | | 94.60 17 | 94.38 24 | 95.23 11 | 95.41 129 | 87.49 15 | 96.53 38 | 92.75 277 | 93.82 2 | 93.07 65 | 97.84 22 | 83.66 74 | 99.59 8 | 97.61 2 | 98.76 28 | 98.61 22 |
|
| EPNet | | | 91.79 81 | 91.02 91 | 94.10 52 | 90.10 328 | 85.25 69 | 96.03 66 | 92.05 297 | 92.83 3 | 87.39 171 | 95.78 107 | 79.39 126 | 99.01 63 | 88.13 126 | 97.48 80 | 98.05 68 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| NCCC | | | 94.81 14 | 94.69 17 | 95.17 14 | 97.83 48 | 87.46 16 | 95.66 88 | 96.93 56 | 92.34 4 | 93.94 47 | 96.58 76 | 87.74 27 | 99.44 29 | 92.83 50 | 98.40 52 | 98.62 21 |
|
| CS-MVS-test | | | 94.02 38 | 94.29 28 | 93.24 73 | 96.69 78 | 83.24 119 | 97.49 5 | 96.92 57 | 92.14 5 | 92.90 67 | 95.77 108 | 85.02 59 | 98.33 131 | 93.03 47 | 98.62 44 | 98.13 62 |
|
| CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 8 | 98.11 36 | 88.51 7 | 95.29 105 | 96.96 52 | 92.09 6 | 95.32 31 | 97.08 49 | 89.49 15 | 99.33 37 | 95.10 24 | 98.85 19 | 98.66 20 |
|
| UA-Net | | | 92.83 68 | 92.54 71 | 93.68 66 | 96.10 100 | 84.71 77 | 95.66 88 | 96.39 100 | 91.92 7 | 93.22 60 | 96.49 79 | 83.16 79 | 98.87 82 | 84.47 174 | 95.47 119 | 97.45 99 |
|
| CANet | | | 93.54 50 | 93.20 60 | 94.55 42 | 95.65 120 | 85.73 63 | 94.94 128 | 96.69 84 | 91.89 8 | 90.69 118 | 95.88 102 | 81.99 102 | 99.54 20 | 93.14 46 | 97.95 69 | 98.39 39 |
|
| HPM-MVS++ |  | | 95.14 10 | 94.91 13 | 95.83 4 | 98.25 29 | 89.65 4 | 95.92 73 | 96.96 52 | 91.75 9 | 94.02 46 | 96.83 61 | 88.12 24 | 99.55 16 | 93.41 42 | 98.94 16 | 98.28 50 |
|
| MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 19 | 98.49 17 | 86.52 35 | 96.91 25 | 97.47 11 | 91.73 10 | 96.10 20 | 96.69 66 | 89.90 12 | 99.30 40 | 94.70 25 | 98.04 66 | 99.13 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CS-MVS | | | 94.12 36 | 94.44 21 | 93.17 76 | 96.55 84 | 83.08 129 | 97.63 3 | 96.95 54 | 91.71 11 | 93.50 57 | 96.21 86 | 85.61 48 | 98.24 136 | 93.64 37 | 98.17 58 | 98.19 58 |
|
| SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 25 | 96.99 72 | 86.33 41 | 97.33 7 | 97.30 29 | 91.38 12 | 95.39 30 | 97.46 30 | 88.98 19 | 99.40 30 | 94.12 31 | 98.89 18 | 98.82 16 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MTAPA | | | 94.42 25 | 94.22 32 | 95.00 18 | 98.42 21 | 86.95 20 | 94.36 170 | 96.97 50 | 91.07 13 | 93.14 62 | 97.56 27 | 84.30 67 | 99.56 12 | 93.43 40 | 98.75 30 | 98.47 33 |
|
| test_one_0601 | | | | | | 98.58 11 | 85.83 59 | | 97.44 15 | 91.05 14 | 96.78 15 | 98.06 11 | 91.45 11 | | | | |
|
| EI-MVSNet-Vis-set | | | 93.01 66 | 92.92 65 | 93.29 71 | 95.01 146 | 83.51 113 | 94.48 155 | 95.77 151 | 90.87 15 | 92.52 82 | 96.67 68 | 84.50 66 | 99.00 68 | 91.99 74 | 94.44 144 | 97.36 100 |
|
| 3Dnovator+ | | 87.14 4 | 92.42 75 | 91.37 83 | 95.55 7 | 95.63 121 | 88.73 6 | 97.07 18 | 96.77 74 | 90.84 16 | 84.02 258 | 96.62 74 | 75.95 163 | 99.34 34 | 87.77 130 | 97.68 78 | 98.59 24 |
|
| HQP_MVS | | | 90.60 108 | 90.19 102 | 91.82 147 | 94.70 165 | 82.73 142 | 95.85 75 | 96.22 115 | 90.81 17 | 86.91 180 | 94.86 140 | 74.23 187 | 98.12 144 | 88.15 124 | 89.99 200 | 94.63 209 |
|
| plane_prior2 | | | | | | | | 95.85 75 | | 90.81 17 | | | | | | | |
|
| DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 30 | 97.78 51 | 86.00 49 | 98.29 1 | 97.49 6 | 90.75 19 | 97.62 5 | 98.06 11 | 92.59 2 | 99.61 4 | 95.64 19 | 99.02 12 | 98.86 11 |
|
| test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 11 | 98.05 13 | 92.09 6 | 99.55 16 | 95.64 19 | 99.13 3 | 99.13 2 |
|
| DELS-MVS | | | 93.43 57 | 93.25 58 | 93.97 54 | 95.42 128 | 85.04 70 | 93.06 237 | 97.13 40 | 90.74 21 | 91.84 100 | 95.09 133 | 86.32 42 | 99.21 45 | 91.22 88 | 98.45 50 | 97.65 89 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| ETV-MVS | | | 92.74 70 | 92.66 69 | 92.97 88 | 95.20 139 | 84.04 98 | 95.07 121 | 96.51 94 | 90.73 22 | 92.96 66 | 91.19 273 | 84.06 69 | 98.34 129 | 91.72 82 | 96.54 101 | 96.54 140 |
|
| EI-MVSNet-UG-set | | | 92.74 70 | 92.62 70 | 93.12 78 | 94.86 157 | 83.20 121 | 94.40 163 | 95.74 154 | 90.71 23 | 92.05 91 | 96.60 75 | 84.00 70 | 98.99 70 | 91.55 84 | 93.63 154 | 97.17 108 |
|
| XVS | | | 94.45 21 | 94.32 25 | 94.85 25 | 98.54 13 | 86.60 33 | 96.93 22 | 97.19 35 | 90.66 24 | 92.85 69 | 97.16 47 | 85.02 59 | 99.49 26 | 91.99 74 | 98.56 48 | 98.47 33 |
|
| X-MVStestdata | | | 88.31 173 | 86.13 219 | 94.85 25 | 98.54 13 | 86.60 33 | 96.93 22 | 97.19 35 | 90.66 24 | 92.85 69 | 23.41 396 | 85.02 59 | 99.49 26 | 91.99 74 | 98.56 48 | 98.47 33 |
|
| EC-MVSNet | | | 93.44 54 | 93.71 50 | 92.63 107 | 95.21 138 | 82.43 150 | 97.27 9 | 96.71 82 | 90.57 26 | 92.88 68 | 95.80 106 | 83.16 79 | 98.16 142 | 93.68 36 | 98.14 60 | 97.31 101 |
|
| SD-MVS | | | 94.96 12 | 95.33 8 | 93.88 57 | 97.25 69 | 86.69 27 | 96.19 50 | 97.11 43 | 90.42 27 | 96.95 13 | 97.27 38 | 89.53 14 | 96.91 248 | 94.38 29 | 98.85 19 | 98.03 70 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 32 | 98.77 5 | 85.99 51 | 97.13 14 | 97.44 15 | 90.31 28 | 97.71 1 | 98.07 9 | 92.31 4 | 99.58 10 | 95.66 17 | 99.13 3 | 98.84 14 |
|
| test_241102_TWO | | | | | | | | | 97.44 15 | 90.31 28 | 97.62 5 | 98.07 9 | 91.46 10 | 99.58 10 | 95.66 17 | 99.12 6 | 98.98 10 |
|
| casdiffmvs_mvg |  | | 92.96 67 | 92.83 67 | 93.35 70 | 94.59 170 | 83.40 116 | 95.00 125 | 96.34 103 | 90.30 30 | 92.05 91 | 96.05 95 | 83.43 75 | 98.15 143 | 92.07 70 | 95.67 113 | 98.49 29 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 38 | 98.78 3 | 85.93 54 | 97.09 16 | 96.73 79 | 90.27 31 | 97.04 11 | 98.05 13 | 91.47 8 | 99.55 16 | 95.62 21 | 99.08 7 | 98.45 36 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 98.78 3 | 85.93 54 | 97.19 11 | 97.47 11 | 90.27 31 | 97.64 4 | 98.13 3 | 91.47 8 | | | | |
|
| test_241102_ONE | | | | | | 98.77 5 | 85.99 51 | | 97.44 15 | 90.26 33 | 97.71 1 | 97.96 17 | 92.31 4 | 99.38 31 | | | |
|
| plane_prior3 | | | | | | | 82.75 139 | | | 90.26 33 | 86.91 180 | | | | | | |
|
| DeepPCF-MVS | | 89.96 1 | 94.20 33 | 94.77 16 | 92.49 114 | 96.52 87 | 80.00 219 | 94.00 194 | 97.08 44 | 90.05 35 | 95.65 29 | 97.29 37 | 89.66 13 | 98.97 75 | 93.95 33 | 98.71 32 | 98.50 27 |
|
| MSLP-MVS++ | | | 93.72 47 | 94.08 37 | 92.65 106 | 97.31 65 | 83.43 114 | 95.79 79 | 97.33 25 | 90.03 36 | 93.58 53 | 96.96 55 | 84.87 62 | 97.76 174 | 92.19 66 | 98.66 40 | 96.76 131 |
|
| canonicalmvs | | | 93.27 60 | 92.75 68 | 94.85 25 | 95.70 119 | 87.66 12 | 96.33 42 | 96.41 99 | 90.00 37 | 94.09 44 | 94.60 154 | 82.33 92 | 98.62 103 | 92.40 59 | 92.86 173 | 98.27 52 |
|
| Vis-MVSNet |  | | 91.75 83 | 91.23 86 | 93.29 71 | 95.32 131 | 83.78 103 | 96.14 57 | 95.98 134 | 89.89 38 | 90.45 120 | 96.58 76 | 75.09 175 | 98.31 134 | 84.75 170 | 96.90 92 | 97.78 86 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| TranMVSNet+NR-MVSNet | | | 88.84 158 | 87.95 164 | 91.49 160 | 92.68 243 | 83.01 132 | 94.92 130 | 96.31 104 | 89.88 39 | 85.53 211 | 93.85 187 | 76.63 157 | 96.96 244 | 81.91 214 | 79.87 335 | 94.50 222 |
|
| test_fmvsm_n_1920 | | | 94.71 16 | 95.11 10 | 93.50 69 | 95.79 114 | 84.62 78 | 96.15 55 | 97.64 2 | 89.85 40 | 97.19 8 | 97.89 19 | 86.28 43 | 98.71 97 | 97.11 7 | 98.08 65 | 97.17 108 |
|
| h-mvs33 | | | 90.80 98 | 90.15 104 | 92.75 100 | 96.01 104 | 82.66 146 | 95.43 97 | 95.53 172 | 89.80 41 | 93.08 63 | 95.64 113 | 75.77 164 | 99.00 68 | 92.07 70 | 78.05 344 | 96.60 136 |
|
| hse-mvs2 | | | 89.88 125 | 89.34 124 | 91.51 159 | 94.83 159 | 81.12 184 | 93.94 197 | 93.91 253 | 89.80 41 | 93.08 63 | 93.60 194 | 75.77 164 | 97.66 181 | 92.07 70 | 77.07 351 | 95.74 171 |
|
| UniMVSNet_NR-MVSNet | | | 89.92 123 | 89.29 126 | 91.81 149 | 93.39 221 | 83.72 104 | 94.43 161 | 97.12 41 | 89.80 41 | 86.46 190 | 93.32 200 | 83.16 79 | 97.23 227 | 84.92 166 | 81.02 318 | 94.49 224 |
|
| FOURS1 | | | | | | 98.86 1 | 85.54 65 | 98.29 1 | 97.49 6 | 89.79 44 | 96.29 18 | | | | | | |
|
| alignmvs | | | 93.08 65 | 92.50 72 | 94.81 31 | 95.62 122 | 87.61 13 | 95.99 69 | 96.07 128 | 89.77 45 | 94.12 43 | 94.87 139 | 80.56 111 | 98.66 98 | 92.42 58 | 93.10 169 | 98.15 61 |
|
| TSAR-MVS + GP. | | | 93.66 48 | 93.41 55 | 94.41 48 | 96.59 82 | 86.78 25 | 94.40 163 | 93.93 250 | 89.77 45 | 94.21 41 | 95.59 115 | 87.35 34 | 98.61 104 | 92.72 53 | 96.15 109 | 97.83 83 |
|
| IS-MVSNet | | | 91.43 88 | 91.09 90 | 92.46 115 | 95.87 113 | 81.38 177 | 96.95 19 | 93.69 260 | 89.72 47 | 89.50 134 | 95.98 98 | 78.57 137 | 97.77 173 | 83.02 192 | 96.50 103 | 98.22 57 |
|
| plane_prior | | | | | | | 82.73 142 | 95.21 111 | | 89.66 48 | | | | | | 89.88 205 | |
|
| casdiffmvs |  | | 92.51 73 | 92.43 73 | 92.74 101 | 94.41 182 | 81.98 160 | 94.54 153 | 96.23 114 | 89.57 49 | 91.96 95 | 96.17 91 | 82.58 88 | 98.01 161 | 90.95 95 | 95.45 121 | 98.23 56 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DU-MVS | | | 89.34 144 | 88.50 148 | 91.85 146 | 93.04 231 | 83.72 104 | 94.47 158 | 96.59 90 | 89.50 50 | 86.46 190 | 93.29 203 | 77.25 149 | 97.23 227 | 84.92 166 | 81.02 318 | 94.59 212 |
|
| save fliter | | | | | | 97.85 46 | 85.63 64 | 95.21 111 | 96.82 68 | 89.44 51 | | | | | | | |
|
| CANet_DTU | | | 90.26 112 | 89.41 122 | 92.81 96 | 93.46 219 | 83.01 132 | 93.48 215 | 94.47 229 | 89.43 52 | 87.76 163 | 94.23 168 | 70.54 239 | 99.03 58 | 84.97 165 | 96.39 105 | 96.38 143 |
|
| DeepC-MVS_fast | | 89.43 2 | 94.04 37 | 93.79 45 | 94.80 32 | 97.48 61 | 86.78 25 | 95.65 90 | 96.89 60 | 89.40 53 | 92.81 72 | 96.97 54 | 85.37 53 | 99.24 43 | 90.87 97 | 98.69 35 | 98.38 41 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsmconf_n | | | 94.60 17 | 94.81 15 | 93.98 53 | 94.62 169 | 84.96 72 | 96.15 55 | 97.35 22 | 89.37 54 | 96.03 23 | 98.11 5 | 86.36 41 | 99.01 63 | 97.45 3 | 97.83 73 | 97.96 73 |
|
| UGNet | | | 89.95 121 | 88.95 133 | 92.95 90 | 94.51 176 | 83.31 118 | 95.70 84 | 95.23 191 | 89.37 54 | 87.58 165 | 93.94 180 | 64.00 304 | 98.78 91 | 83.92 181 | 96.31 106 | 96.74 133 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| FC-MVSNet-test | | | 90.27 111 | 90.18 103 | 90.53 198 | 93.71 210 | 79.85 224 | 95.77 80 | 97.59 3 | 89.31 56 | 86.27 196 | 94.67 151 | 81.93 103 | 97.01 242 | 84.26 176 | 88.09 239 | 94.71 208 |
|
| test_fmvsmconf0.1_n | | | 94.20 33 | 94.31 27 | 93.88 57 | 92.46 247 | 84.80 75 | 96.18 52 | 96.82 68 | 89.29 57 | 95.68 28 | 98.11 5 | 85.10 56 | 98.99 70 | 97.38 4 | 97.75 77 | 97.86 80 |
|
| UniMVSNet (Re) | | | 89.80 126 | 89.07 130 | 92.01 130 | 93.60 215 | 84.52 83 | 94.78 139 | 97.47 11 | 89.26 58 | 86.44 193 | 92.32 234 | 82.10 98 | 97.39 214 | 84.81 169 | 80.84 322 | 94.12 239 |
|
| baseline | | | 92.39 76 | 92.29 75 | 92.69 105 | 94.46 179 | 81.77 165 | 94.14 179 | 96.27 109 | 89.22 59 | 91.88 98 | 96.00 96 | 82.35 91 | 97.99 163 | 91.05 90 | 95.27 127 | 98.30 47 |
|
| 3Dnovator | | 86.66 5 | 91.73 84 | 90.82 95 | 94.44 44 | 94.59 170 | 86.37 40 | 97.18 12 | 97.02 47 | 89.20 60 | 84.31 254 | 96.66 69 | 73.74 199 | 99.17 47 | 86.74 146 | 97.96 68 | 97.79 85 |
|
| VNet | | | 92.24 77 | 91.91 78 | 93.24 73 | 96.59 82 | 83.43 114 | 94.84 135 | 96.44 96 | 89.19 61 | 94.08 45 | 95.90 101 | 77.85 147 | 98.17 141 | 88.90 117 | 93.38 163 | 98.13 62 |
|
| FIs | | | 90.51 109 | 90.35 99 | 90.99 186 | 93.99 199 | 80.98 187 | 95.73 82 | 97.54 4 | 89.15 62 | 86.72 187 | 94.68 150 | 81.83 104 | 97.24 226 | 85.18 163 | 88.31 236 | 94.76 207 |
|
| DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 10 | 98.36 25 | 87.28 17 | 95.56 95 | 97.51 5 | 89.13 63 | 97.14 9 | 97.91 18 | 91.64 7 | 99.62 2 | 94.61 27 | 99.17 2 | 98.86 11 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_fmvsmconf0.01_n | | | 93.19 63 | 93.02 63 | 93.71 65 | 89.25 340 | 84.42 91 | 96.06 64 | 96.29 105 | 89.06 64 | 94.68 36 | 98.13 3 | 79.22 128 | 98.98 74 | 97.22 5 | 97.24 84 | 97.74 87 |
|
| NR-MVSNet | | | 88.58 168 | 87.47 175 | 91.93 138 | 93.04 231 | 84.16 95 | 94.77 140 | 96.25 112 | 89.05 65 | 80.04 316 | 93.29 203 | 79.02 130 | 97.05 240 | 81.71 221 | 80.05 332 | 94.59 212 |
|
| MP-MVS |  | | 94.25 28 | 94.07 38 | 94.77 34 | 98.47 18 | 86.31 43 | 96.71 31 | 96.98 49 | 89.04 66 | 91.98 93 | 97.19 44 | 85.43 52 | 99.56 12 | 92.06 73 | 98.79 23 | 98.44 37 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| APDe-MVS |  | | 95.46 5 | 95.64 5 | 94.91 21 | 98.26 28 | 86.29 45 | 97.46 6 | 97.40 20 | 89.03 67 | 96.20 19 | 98.10 7 | 89.39 16 | 99.34 34 | 95.88 16 | 99.03 11 | 99.10 4 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| mvsmamba | | | 89.96 120 | 89.50 118 | 91.33 168 | 92.90 238 | 81.82 163 | 96.68 33 | 92.37 285 | 89.03 67 | 87.00 176 | 94.85 142 | 73.05 207 | 97.65 182 | 91.03 91 | 88.63 227 | 94.51 219 |
|
| DeepC-MVS | | 88.79 3 | 93.31 59 | 92.99 64 | 94.26 51 | 96.07 102 | 85.83 59 | 94.89 131 | 96.99 48 | 89.02 69 | 89.56 132 | 97.37 35 | 82.51 89 | 99.38 31 | 92.20 65 | 98.30 55 | 97.57 94 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsmvis_n_1920 | | | 93.44 54 | 93.55 54 | 93.10 79 | 93.67 213 | 84.26 93 | 95.83 77 | 96.14 120 | 89.00 70 | 92.43 85 | 97.50 28 | 83.37 78 | 98.72 96 | 96.61 12 | 97.44 81 | 96.32 144 |
|
| OPM-MVS | | | 90.12 114 | 89.56 117 | 91.82 147 | 93.14 226 | 83.90 100 | 94.16 178 | 95.74 154 | 88.96 71 | 87.86 158 | 95.43 119 | 72.48 215 | 97.91 169 | 88.10 128 | 90.18 199 | 93.65 269 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| HQP-NCC | | | | | | 94.17 189 | | 94.39 165 | | 88.81 72 | 85.43 221 | | | | | | |
|
| ACMP_Plane | | | | | | 94.17 189 | | 94.39 165 | | 88.81 72 | 85.43 221 | | | | | | |
|
| HQP-MVS | | | 89.80 126 | 89.28 127 | 91.34 167 | 94.17 189 | 81.56 168 | 94.39 165 | 96.04 131 | 88.81 72 | 85.43 221 | 93.97 179 | 73.83 197 | 97.96 165 | 87.11 143 | 89.77 209 | 94.50 222 |
|
| MVS_111021_HR | | | 93.45 53 | 93.31 56 | 93.84 59 | 96.99 72 | 84.84 73 | 93.24 230 | 97.24 32 | 88.76 75 | 91.60 107 | 95.85 103 | 86.07 46 | 98.66 98 | 91.91 78 | 98.16 59 | 98.03 70 |
|
| SDMVSNet | | | 90.19 113 | 89.61 116 | 91.93 138 | 96.00 105 | 83.09 128 | 92.89 242 | 95.98 134 | 88.73 76 | 86.85 184 | 95.20 128 | 72.09 219 | 97.08 236 | 88.90 117 | 89.85 206 | 95.63 176 |
|
| sd_testset | | | 88.59 167 | 87.85 167 | 90.83 190 | 96.00 105 | 80.42 203 | 92.35 258 | 94.71 223 | 88.73 76 | 86.85 184 | 95.20 128 | 67.31 272 | 96.43 277 | 79.64 251 | 89.85 206 | 95.63 176 |
|
| mPP-MVS | | | 93.99 40 | 93.78 46 | 94.63 39 | 98.50 16 | 85.90 58 | 96.87 26 | 96.91 58 | 88.70 78 | 91.83 102 | 97.17 46 | 83.96 71 | 99.55 16 | 91.44 86 | 98.64 43 | 98.43 38 |
|
| VPNet | | | 88.20 176 | 87.47 175 | 90.39 209 | 93.56 216 | 79.46 231 | 94.04 189 | 95.54 171 | 88.67 79 | 86.96 177 | 94.58 156 | 69.33 254 | 97.15 231 | 84.05 179 | 80.53 327 | 94.56 215 |
|
| HFP-MVS | | | 94.52 19 | 94.40 22 | 94.86 24 | 98.61 10 | 86.81 24 | 96.94 20 | 97.34 23 | 88.63 80 | 93.65 51 | 97.21 42 | 86.10 45 | 99.49 26 | 92.35 61 | 98.77 27 | 98.30 47 |
|
| ACMMPR | | | 94.43 23 | 94.28 29 | 94.91 21 | 98.63 9 | 86.69 27 | 96.94 20 | 97.32 27 | 88.63 80 | 93.53 56 | 97.26 40 | 85.04 58 | 99.54 20 | 92.35 61 | 98.78 25 | 98.50 27 |
|
| region2R | | | 94.43 23 | 94.27 31 | 94.92 20 | 98.65 8 | 86.67 29 | 96.92 24 | 97.23 34 | 88.60 82 | 93.58 53 | 97.27 38 | 85.22 54 | 99.54 20 | 92.21 64 | 98.74 31 | 98.56 25 |
|
| WR-MVS | | | 88.38 170 | 87.67 170 | 90.52 200 | 93.30 223 | 80.18 208 | 93.26 228 | 95.96 137 | 88.57 83 | 85.47 217 | 92.81 220 | 76.12 159 | 96.91 248 | 81.24 226 | 82.29 298 | 94.47 227 |
|
| CP-MVS | | | 94.34 26 | 94.21 33 | 94.74 36 | 98.39 23 | 86.64 31 | 97.60 4 | 97.24 32 | 88.53 84 | 92.73 77 | 97.23 41 | 85.20 55 | 99.32 38 | 92.15 67 | 98.83 21 | 98.25 55 |
|
| EIA-MVS | | | 91.95 79 | 91.94 77 | 91.98 134 | 95.16 140 | 80.01 218 | 95.36 98 | 96.73 79 | 88.44 85 | 89.34 136 | 92.16 239 | 83.82 73 | 98.45 119 | 89.35 111 | 97.06 87 | 97.48 97 |
|
| CP-MVSNet | | | 87.63 194 | 87.26 182 | 88.74 266 | 93.12 227 | 76.59 293 | 95.29 105 | 96.58 91 | 88.43 86 | 83.49 272 | 92.98 214 | 75.28 173 | 95.83 303 | 78.97 259 | 81.15 314 | 93.79 257 |
|
| VDD-MVS | | | 90.74 100 | 89.92 112 | 93.20 75 | 96.27 93 | 83.02 131 | 95.73 82 | 93.86 254 | 88.42 87 | 92.53 81 | 96.84 60 | 62.09 317 | 98.64 100 | 90.95 95 | 92.62 176 | 97.93 76 |
|
| dcpmvs_2 | | | 93.49 51 | 94.19 35 | 91.38 165 | 97.69 54 | 76.78 289 | 94.25 173 | 96.29 105 | 88.33 88 | 94.46 38 | 96.88 58 | 88.07 25 | 98.64 100 | 93.62 38 | 98.09 63 | 98.73 17 |
|
| ACMMP |  | | 93.24 61 | 92.88 66 | 94.30 50 | 98.09 38 | 85.33 68 | 96.86 27 | 97.45 14 | 88.33 88 | 90.15 127 | 97.03 53 | 81.44 105 | 99.51 24 | 90.85 98 | 95.74 112 | 98.04 69 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| nrg030 | | | 91.08 96 | 90.39 98 | 93.17 76 | 93.07 229 | 86.91 21 | 96.41 39 | 96.26 110 | 88.30 90 | 88.37 151 | 94.85 142 | 82.19 97 | 97.64 185 | 91.09 89 | 82.95 289 | 94.96 197 |
|
| ACMMP_NAP | | | 94.74 15 | 94.56 18 | 95.28 9 | 98.02 41 | 87.70 11 | 95.68 85 | 97.34 23 | 88.28 91 | 95.30 32 | 97.67 26 | 85.90 47 | 99.54 20 | 93.91 34 | 98.95 15 | 98.60 23 |
|
| ZNCC-MVS | | | 94.47 20 | 94.28 29 | 95.03 16 | 98.52 15 | 86.96 19 | 96.85 28 | 97.32 27 | 88.24 92 | 93.15 61 | 97.04 52 | 86.17 44 | 99.62 2 | 92.40 59 | 98.81 22 | 98.52 26 |
|
| GST-MVS | | | 94.21 31 | 93.97 42 | 94.90 23 | 98.41 22 | 86.82 23 | 96.54 37 | 97.19 35 | 88.24 92 | 93.26 58 | 96.83 61 | 85.48 51 | 99.59 8 | 91.43 87 | 98.40 52 | 98.30 47 |
|
| RRT_MVS | | | 89.09 149 | 88.62 145 | 90.49 202 | 92.85 239 | 79.65 228 | 96.41 39 | 94.41 232 | 88.22 94 | 85.50 214 | 94.77 146 | 69.36 253 | 97.31 217 | 89.33 112 | 86.73 259 | 94.51 219 |
|
| PS-CasMVS | | | 87.32 211 | 86.88 188 | 88.63 269 | 92.99 234 | 76.33 298 | 95.33 100 | 96.61 89 | 88.22 94 | 83.30 277 | 93.07 212 | 73.03 209 | 95.79 306 | 78.36 263 | 81.00 320 | 93.75 264 |
|
| SR-MVS | | | 94.23 30 | 94.17 36 | 94.43 46 | 98.21 32 | 85.78 61 | 96.40 41 | 96.90 59 | 88.20 96 | 94.33 40 | 97.40 33 | 84.75 64 | 99.03 58 | 93.35 43 | 97.99 67 | 98.48 30 |
|
| MVS_111021_LR | | | 92.47 74 | 92.29 75 | 92.98 87 | 95.99 108 | 84.43 89 | 93.08 235 | 96.09 126 | 88.20 96 | 91.12 114 | 95.72 111 | 81.33 107 | 97.76 174 | 91.74 81 | 97.37 83 | 96.75 132 |
|
| TSAR-MVS + MP. | | | 94.85 13 | 94.94 12 | 94.58 41 | 98.25 29 | 86.33 41 | 96.11 60 | 96.62 88 | 88.14 98 | 96.10 20 | 96.96 55 | 89.09 18 | 98.94 78 | 94.48 28 | 98.68 37 | 98.48 30 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| fmvsm_s_conf0.5_n | | | 93.76 45 | 94.06 40 | 92.86 94 | 95.62 122 | 83.17 122 | 96.14 57 | 96.12 123 | 88.13 99 | 95.82 26 | 98.04 16 | 83.43 75 | 98.48 111 | 96.97 9 | 96.23 107 | 96.92 125 |
|
| test1111 | | | 89.10 147 | 88.64 142 | 90.48 204 | 95.53 126 | 74.97 308 | 96.08 61 | 84.89 372 | 88.13 99 | 90.16 126 | 96.65 70 | 63.29 311 | 98.10 146 | 86.14 151 | 96.90 92 | 98.39 39 |
|
| patch_mono-2 | | | 93.74 46 | 94.32 25 | 92.01 130 | 97.54 57 | 78.37 257 | 93.40 218 | 97.19 35 | 88.02 101 | 94.99 35 | 97.21 42 | 88.35 21 | 98.44 121 | 94.07 32 | 98.09 63 | 99.23 1 |
|
| PEN-MVS | | | 86.80 230 | 86.27 216 | 88.40 272 | 92.32 251 | 75.71 304 | 95.18 113 | 96.38 101 | 87.97 102 | 82.82 281 | 93.15 208 | 73.39 204 | 95.92 298 | 76.15 288 | 79.03 342 | 93.59 270 |
|
| testdata1 | | | | | | | | 92.15 266 | | 87.94 103 | | | | | | | |
|
| VPA-MVSNet | | | 89.62 129 | 88.96 132 | 91.60 155 | 93.86 203 | 82.89 137 | 95.46 96 | 97.33 25 | 87.91 104 | 88.43 150 | 93.31 201 | 74.17 190 | 97.40 211 | 87.32 139 | 82.86 294 | 94.52 217 |
|
| WR-MVS_H | | | 87.80 186 | 87.37 177 | 89.10 256 | 93.23 224 | 78.12 263 | 95.61 92 | 97.30 29 | 87.90 105 | 83.72 264 | 92.01 250 | 79.65 125 | 96.01 295 | 76.36 284 | 80.54 326 | 93.16 288 |
|
| CLD-MVS | | | 89.47 135 | 88.90 136 | 91.18 173 | 94.22 188 | 82.07 158 | 92.13 267 | 96.09 126 | 87.90 105 | 85.37 227 | 92.45 230 | 74.38 185 | 97.56 190 | 87.15 141 | 90.43 195 | 93.93 248 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| test2506 | | | 87.21 218 | 86.28 215 | 90.02 227 | 95.62 122 | 73.64 320 | 96.25 48 | 71.38 396 | 87.89 107 | 90.45 120 | 96.65 70 | 55.29 354 | 98.09 154 | 86.03 155 | 96.94 90 | 98.33 43 |
|
| ECVR-MVS |  | | 89.09 149 | 88.53 146 | 90.77 193 | 95.62 122 | 75.89 301 | 96.16 53 | 84.22 374 | 87.89 107 | 90.20 124 | 96.65 70 | 63.19 313 | 98.10 146 | 85.90 156 | 96.94 90 | 98.33 43 |
|
| MG-MVS | | | 91.77 82 | 91.70 81 | 92.00 133 | 97.08 71 | 80.03 217 | 93.60 212 | 95.18 194 | 87.85 109 | 90.89 116 | 96.47 80 | 82.06 100 | 98.36 126 | 85.07 164 | 97.04 88 | 97.62 90 |
|
| LCM-MVSNet-Re | | | 88.30 174 | 88.32 155 | 88.27 276 | 94.71 164 | 72.41 337 | 93.15 231 | 90.98 327 | 87.77 110 | 79.25 325 | 91.96 251 | 78.35 140 | 95.75 307 | 83.04 191 | 95.62 114 | 96.65 135 |
|
| SF-MVS | | | 94.97 11 | 94.90 14 | 95.20 12 | 97.84 47 | 87.76 10 | 96.65 35 | 97.48 10 | 87.76 111 | 95.71 27 | 97.70 25 | 88.28 23 | 99.35 33 | 93.89 35 | 98.78 25 | 98.48 30 |
|
| Effi-MVS+-dtu | | | 88.65 164 | 88.35 152 | 89.54 245 | 93.33 222 | 76.39 296 | 94.47 158 | 94.36 235 | 87.70 112 | 85.43 221 | 89.56 313 | 73.45 202 | 97.26 224 | 85.57 161 | 91.28 186 | 94.97 194 |
|
| fmvsm_s_conf0.1_n | | | 93.46 52 | 93.66 52 | 92.85 95 | 93.75 209 | 83.13 124 | 96.02 67 | 95.74 154 | 87.68 113 | 95.89 25 | 98.17 2 | 82.78 86 | 98.46 115 | 96.71 10 | 96.17 108 | 96.98 121 |
|
| test_prior2 | | | | | | | | 94.12 180 | | 87.67 114 | 92.63 79 | 96.39 82 | 86.62 38 | | 91.50 85 | 98.67 39 | |
|
| Vis-MVSNet (Re-imp) | | | 89.59 131 | 89.44 120 | 90.03 225 | 95.74 116 | 75.85 302 | 95.61 92 | 90.80 332 | 87.66 115 | 87.83 160 | 95.40 120 | 76.79 153 | 96.46 275 | 78.37 262 | 96.73 97 | 97.80 84 |
|
| SR-MVS-dyc-post | | | 93.82 43 | 93.82 44 | 93.82 60 | 97.92 43 | 84.57 80 | 96.28 45 | 96.76 75 | 87.46 116 | 93.75 49 | 97.43 31 | 84.24 68 | 99.01 63 | 92.73 51 | 97.80 74 | 97.88 78 |
|
| RE-MVS-def | | | | 93.68 51 | | 97.92 43 | 84.57 80 | 96.28 45 | 96.76 75 | 87.46 116 | 93.75 49 | 97.43 31 | 82.94 83 | | 92.73 51 | 97.80 74 | 97.88 78 |
|
| PGM-MVS | | | 93.96 41 | 93.72 49 | 94.68 37 | 98.43 20 | 86.22 46 | 95.30 103 | 97.78 1 | 87.45 118 | 93.26 58 | 97.33 36 | 84.62 65 | 99.51 24 | 90.75 99 | 98.57 47 | 98.32 46 |
|
| DTE-MVSNet | | | 86.11 248 | 85.48 242 | 87.98 284 | 91.65 278 | 74.92 309 | 94.93 129 | 95.75 153 | 87.36 119 | 82.26 286 | 93.04 213 | 72.85 210 | 95.82 304 | 74.04 304 | 77.46 348 | 93.20 286 |
|
| iter_conf_final | | | 89.42 138 | 88.69 141 | 91.60 155 | 95.12 143 | 82.93 135 | 95.75 81 | 92.14 294 | 87.32 120 | 87.12 175 | 94.07 170 | 67.09 277 | 97.55 191 | 90.61 101 | 89.01 222 | 94.32 231 |
|
| fmvsm_s_conf0.5_n_a | | | 93.57 49 | 93.76 48 | 93.00 86 | 95.02 145 | 83.67 106 | 96.19 50 | 96.10 125 | 87.27 121 | 95.98 24 | 98.05 13 | 83.07 82 | 98.45 119 | 96.68 11 | 95.51 116 | 96.88 128 |
|
| thres100view900 | | | 87.63 194 | 86.71 196 | 90.38 211 | 96.12 97 | 78.55 250 | 95.03 124 | 91.58 311 | 87.15 122 | 88.06 155 | 92.29 236 | 68.91 262 | 98.10 146 | 70.13 327 | 91.10 187 | 94.48 225 |
|
| MCST-MVS | | | 94.45 21 | 94.20 34 | 95.19 13 | 98.46 19 | 87.50 14 | 95.00 125 | 97.12 41 | 87.13 123 | 92.51 83 | 96.30 83 | 89.24 17 | 99.34 34 | 93.46 39 | 98.62 44 | 98.73 17 |
|
| Effi-MVS+ | | | 91.59 87 | 91.11 88 | 93.01 85 | 94.35 186 | 83.39 117 | 94.60 149 | 95.10 198 | 87.10 124 | 90.57 119 | 93.10 211 | 81.43 106 | 98.07 157 | 89.29 113 | 94.48 142 | 97.59 93 |
|
| thres600view7 | | | 87.65 191 | 86.67 198 | 90.59 195 | 96.08 101 | 78.72 246 | 94.88 132 | 91.58 311 | 87.06 125 | 88.08 154 | 92.30 235 | 68.91 262 | 98.10 146 | 70.05 330 | 91.10 187 | 94.96 197 |
|
| diffmvs |  | | 91.37 90 | 91.23 86 | 91.77 150 | 93.09 228 | 80.27 205 | 92.36 257 | 95.52 173 | 87.03 126 | 91.40 111 | 94.93 136 | 80.08 115 | 97.44 202 | 92.13 69 | 94.56 139 | 97.61 91 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| APD-MVS_3200maxsize | | | 93.78 44 | 93.77 47 | 93.80 62 | 97.92 43 | 84.19 94 | 96.30 43 | 96.87 62 | 86.96 127 | 93.92 48 | 97.47 29 | 83.88 72 | 98.96 77 | 92.71 54 | 97.87 71 | 98.26 54 |
|
| OMC-MVS | | | 91.23 92 | 90.62 97 | 93.08 81 | 96.27 93 | 84.07 96 | 93.52 214 | 95.93 138 | 86.95 128 | 89.51 133 | 96.13 93 | 78.50 138 | 98.35 128 | 85.84 158 | 92.90 172 | 96.83 130 |
|
| tfpn200view9 | | | 87.58 199 | 86.64 199 | 90.41 208 | 95.99 108 | 78.64 248 | 94.58 150 | 91.98 301 | 86.94 129 | 88.09 152 | 91.77 255 | 69.18 259 | 98.10 146 | 70.13 327 | 91.10 187 | 94.48 225 |
|
| thres400 | | | 87.62 196 | 86.64 199 | 90.57 196 | 95.99 108 | 78.64 248 | 94.58 150 | 91.98 301 | 86.94 129 | 88.09 152 | 91.77 255 | 69.18 259 | 98.10 146 | 70.13 327 | 91.10 187 | 94.96 197 |
|
| HPM-MVS |  | | 94.02 38 | 93.88 43 | 94.43 46 | 98.39 23 | 85.78 61 | 97.25 10 | 97.07 45 | 86.90 131 | 92.62 80 | 96.80 65 | 84.85 63 | 99.17 47 | 92.43 57 | 98.65 42 | 98.33 43 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| LFMVS | | | 90.08 115 | 89.13 129 | 92.95 90 | 96.71 77 | 82.32 155 | 96.08 61 | 89.91 347 | 86.79 132 | 92.15 90 | 96.81 63 | 62.60 315 | 98.34 129 | 87.18 140 | 93.90 150 | 98.19 58 |
|
| fmvsm_s_conf0.1_n_a | | | 93.19 63 | 93.26 57 | 92.97 88 | 92.49 245 | 83.62 109 | 96.02 67 | 95.72 157 | 86.78 133 | 96.04 22 | 98.19 1 | 82.30 93 | 98.43 123 | 96.38 13 | 95.42 122 | 96.86 129 |
|
| baseline1 | | | 88.10 178 | 87.28 180 | 90.57 196 | 94.96 150 | 80.07 213 | 94.27 172 | 91.29 320 | 86.74 134 | 87.41 168 | 94.00 177 | 76.77 154 | 96.20 287 | 80.77 234 | 79.31 340 | 95.44 180 |
|
| LPG-MVS_test | | | 89.45 136 | 88.90 136 | 91.12 175 | 94.47 177 | 81.49 172 | 95.30 103 | 96.14 120 | 86.73 135 | 85.45 218 | 95.16 130 | 69.89 245 | 98.10 146 | 87.70 132 | 89.23 218 | 93.77 262 |
|
| LGP-MVS_train | | | | | 91.12 175 | 94.47 177 | 81.49 172 | | 96.14 120 | 86.73 135 | 85.45 218 | 95.16 130 | 69.89 245 | 98.10 146 | 87.70 132 | 89.23 218 | 93.77 262 |
|
| EPNet_dtu | | | 86.49 244 | 85.94 230 | 88.14 281 | 90.24 326 | 72.82 327 | 94.11 181 | 92.20 291 | 86.66 137 | 79.42 324 | 92.36 233 | 73.52 200 | 95.81 305 | 71.26 317 | 93.66 153 | 95.80 169 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| fmvsm_l_conf0.5_n | | | 94.29 27 | 94.46 20 | 93.79 63 | 95.28 133 | 85.43 66 | 95.68 85 | 96.43 97 | 86.56 138 | 96.84 14 | 97.81 23 | 87.56 32 | 98.77 92 | 97.14 6 | 96.82 96 | 97.16 112 |
|
| ACMP | | 84.23 8 | 89.01 155 | 88.35 152 | 90.99 186 | 94.73 162 | 81.27 178 | 95.07 121 | 95.89 144 | 86.48 139 | 83.67 266 | 94.30 163 | 69.33 254 | 97.99 163 | 87.10 145 | 88.55 228 | 93.72 266 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| MVS_Test | | | 91.31 91 | 91.11 88 | 91.93 138 | 94.37 183 | 80.14 210 | 93.46 217 | 95.80 149 | 86.46 140 | 91.35 112 | 93.77 190 | 82.21 96 | 98.09 154 | 87.57 134 | 94.95 130 | 97.55 96 |
|
| thres200 | | | 87.21 218 | 86.24 217 | 90.12 221 | 95.36 130 | 78.53 251 | 93.26 228 | 92.10 295 | 86.42 141 | 88.00 157 | 91.11 279 | 69.24 258 | 98.00 162 | 69.58 331 | 91.04 192 | 93.83 256 |
|
| PAPM_NR | | | 91.22 93 | 90.78 96 | 92.52 113 | 97.60 56 | 81.46 174 | 94.37 169 | 96.24 113 | 86.39 142 | 87.41 168 | 94.80 145 | 82.06 100 | 98.48 111 | 82.80 198 | 95.37 123 | 97.61 91 |
|
| fmvsm_l_conf0.5_n_a | | | 94.20 33 | 94.40 22 | 93.60 67 | 95.29 132 | 84.98 71 | 95.61 92 | 96.28 108 | 86.31 143 | 96.75 16 | 97.86 21 | 87.40 33 | 98.74 95 | 97.07 8 | 97.02 89 | 97.07 114 |
|
| PS-MVSNAJ | | | 91.18 94 | 90.92 92 | 91.96 136 | 95.26 136 | 82.60 149 | 92.09 269 | 95.70 158 | 86.27 144 | 91.84 100 | 92.46 229 | 79.70 121 | 98.99 70 | 89.08 115 | 95.86 111 | 94.29 233 |
|
| MP-MVS-pluss | | | 94.21 31 | 94.00 41 | 94.85 25 | 98.17 33 | 86.65 30 | 94.82 136 | 97.17 39 | 86.26 145 | 92.83 71 | 97.87 20 | 85.57 50 | 99.56 12 | 94.37 30 | 98.92 17 | 98.34 42 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| PS-MVSNAJss | | | 89.97 119 | 89.62 115 | 91.02 183 | 91.90 265 | 80.85 192 | 95.26 108 | 95.98 134 | 86.26 145 | 86.21 197 | 94.29 164 | 79.70 121 | 97.65 182 | 88.87 119 | 88.10 237 | 94.57 214 |
|
| iter_conf05 | | | 88.85 157 | 88.08 161 | 91.17 174 | 94.27 187 | 81.64 167 | 95.18 113 | 92.15 293 | 86.23 147 | 87.28 172 | 94.07 170 | 63.89 308 | 97.55 191 | 90.63 100 | 89.00 223 | 94.32 231 |
|
| test_vis1_n_1920 | | | 89.39 142 | 89.84 113 | 88.04 283 | 92.97 235 | 72.64 332 | 94.71 144 | 96.03 133 | 86.18 148 | 91.94 97 | 96.56 78 | 61.63 320 | 95.74 308 | 93.42 41 | 95.11 129 | 95.74 171 |
|
| EPP-MVSNet | | | 91.70 85 | 91.56 82 | 92.13 129 | 95.88 111 | 80.50 201 | 97.33 7 | 95.25 190 | 86.15 149 | 89.76 131 | 95.60 114 | 83.42 77 | 98.32 133 | 87.37 138 | 93.25 166 | 97.56 95 |
|
| XVG-OURS | | | 89.40 141 | 88.70 140 | 91.52 158 | 94.06 192 | 81.46 174 | 91.27 285 | 96.07 128 | 86.14 150 | 88.89 143 | 95.77 108 | 68.73 265 | 97.26 224 | 87.39 137 | 89.96 202 | 95.83 167 |
|
| 9.14 | | | | 94.47 19 | | 97.79 49 | | 96.08 61 | 97.44 15 | 86.13 151 | 95.10 33 | 97.40 33 | 88.34 22 | 99.22 44 | 93.25 44 | 98.70 34 | |
|
| xiu_mvs_v2_base | | | 91.13 95 | 90.89 94 | 91.86 144 | 94.97 149 | 82.42 151 | 92.24 263 | 95.64 165 | 86.11 152 | 91.74 105 | 93.14 209 | 79.67 124 | 98.89 81 | 89.06 116 | 95.46 120 | 94.28 234 |
|
| SMA-MVS |  | | 95.20 8 | 95.07 11 | 95.59 6 | 98.14 35 | 88.48 8 | 96.26 47 | 97.28 31 | 85.90 153 | 97.67 3 | 98.10 7 | 88.41 20 | 99.56 12 | 94.66 26 | 99.19 1 | 98.71 19 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| Fast-Effi-MVS+-dtu | | | 87.44 205 | 86.72 195 | 89.63 243 | 92.04 259 | 77.68 278 | 94.03 190 | 93.94 249 | 85.81 154 | 82.42 284 | 91.32 270 | 70.33 241 | 97.06 239 | 80.33 243 | 90.23 198 | 94.14 238 |
|
| XVG-OURS-SEG-HR | | | 89.95 121 | 89.45 119 | 91.47 162 | 94.00 198 | 81.21 182 | 91.87 272 | 96.06 130 | 85.78 155 | 88.55 147 | 95.73 110 | 74.67 183 | 97.27 222 | 88.71 120 | 89.64 211 | 95.91 162 |
|
| HPM-MVS_fast | | | 93.40 58 | 93.22 59 | 93.94 56 | 98.36 25 | 84.83 74 | 97.15 13 | 96.80 71 | 85.77 156 | 92.47 84 | 97.13 48 | 82.38 90 | 99.07 53 | 90.51 104 | 98.40 52 | 97.92 77 |
|
| EI-MVSNet | | | 89.10 147 | 88.86 138 | 89.80 237 | 91.84 267 | 78.30 259 | 93.70 209 | 95.01 201 | 85.73 157 | 87.15 173 | 95.28 122 | 79.87 118 | 97.21 229 | 83.81 183 | 87.36 252 | 93.88 251 |
|
| IterMVS-LS | | | 88.36 172 | 87.91 166 | 89.70 241 | 93.80 206 | 78.29 260 | 93.73 206 | 95.08 200 | 85.73 157 | 84.75 236 | 91.90 253 | 79.88 117 | 96.92 247 | 83.83 182 | 82.51 295 | 93.89 249 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| bld_raw_dy_0_64 | | | 87.60 198 | 86.73 194 | 90.21 215 | 91.72 272 | 80.26 207 | 95.09 120 | 88.61 356 | 85.68 159 | 85.55 208 | 94.38 159 | 63.93 307 | 96.66 256 | 87.73 131 | 87.84 244 | 93.72 266 |
|
| APD-MVS |  | | 94.24 29 | 94.07 38 | 94.75 35 | 98.06 39 | 86.90 22 | 95.88 74 | 96.94 55 | 85.68 159 | 95.05 34 | 97.18 45 | 87.31 35 | 99.07 53 | 91.90 80 | 98.61 46 | 98.28 50 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| test_yl | | | 90.69 102 | 90.02 110 | 92.71 102 | 95.72 117 | 82.41 153 | 94.11 181 | 95.12 196 | 85.63 161 | 91.49 108 | 94.70 148 | 74.75 179 | 98.42 124 | 86.13 153 | 92.53 177 | 97.31 101 |
|
| DCV-MVSNet | | | 90.69 102 | 90.02 110 | 92.71 102 | 95.72 117 | 82.41 153 | 94.11 181 | 95.12 196 | 85.63 161 | 91.49 108 | 94.70 148 | 74.75 179 | 98.42 124 | 86.13 153 | 92.53 177 | 97.31 101 |
|
| K. test v3 | | | 81.59 303 | 80.15 305 | 85.91 325 | 89.89 334 | 69.42 359 | 92.57 251 | 87.71 361 | 85.56 163 | 73.44 361 | 89.71 310 | 55.58 350 | 95.52 313 | 77.17 277 | 69.76 367 | 92.78 302 |
|
| SixPastTwentyTwo | | | 83.91 284 | 82.90 284 | 86.92 310 | 90.99 300 | 70.67 352 | 93.48 215 | 91.99 300 | 85.54 164 | 77.62 337 | 92.11 244 | 60.59 331 | 96.87 250 | 76.05 289 | 77.75 345 | 93.20 286 |
|
| ITE_SJBPF | | | | | 88.24 278 | 91.88 266 | 77.05 286 | | 92.92 271 | 85.54 164 | 80.13 314 | 93.30 202 | 57.29 346 | 96.20 287 | 72.46 313 | 84.71 272 | 91.49 332 |
|
| BH-RMVSNet | | | 88.37 171 | 87.48 174 | 91.02 183 | 95.28 133 | 79.45 232 | 92.89 242 | 93.07 269 | 85.45 166 | 86.91 180 | 94.84 144 | 70.35 240 | 97.76 174 | 73.97 305 | 94.59 138 | 95.85 165 |
|
| IterMVS-SCA-FT | | | 85.45 258 | 84.53 264 | 88.18 280 | 91.71 274 | 76.87 288 | 90.19 306 | 92.65 281 | 85.40 167 | 81.44 296 | 90.54 292 | 66.79 282 | 95.00 326 | 81.04 228 | 81.05 316 | 92.66 304 |
|
| GA-MVS | | | 86.61 236 | 85.27 248 | 90.66 194 | 91.33 288 | 78.71 247 | 90.40 298 | 93.81 257 | 85.34 168 | 85.12 231 | 89.57 312 | 61.25 325 | 97.11 235 | 80.99 231 | 89.59 212 | 96.15 150 |
|
| ACMM | | 84.12 9 | 89.14 146 | 88.48 151 | 91.12 175 | 94.65 168 | 81.22 181 | 95.31 101 | 96.12 123 | 85.31 169 | 85.92 201 | 94.34 160 | 70.19 243 | 98.06 158 | 85.65 159 | 88.86 225 | 94.08 243 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| xiu_mvs_v1_base_debu | | | 90.64 105 | 90.05 107 | 92.40 117 | 93.97 200 | 84.46 86 | 93.32 221 | 95.46 175 | 85.17 170 | 92.25 86 | 94.03 172 | 70.59 235 | 98.57 107 | 90.97 92 | 94.67 134 | 94.18 235 |
|
| xiu_mvs_v1_base | | | 90.64 105 | 90.05 107 | 92.40 117 | 93.97 200 | 84.46 86 | 93.32 221 | 95.46 175 | 85.17 170 | 92.25 86 | 94.03 172 | 70.59 235 | 98.57 107 | 90.97 92 | 94.67 134 | 94.18 235 |
|
| xiu_mvs_v1_base_debi | | | 90.64 105 | 90.05 107 | 92.40 117 | 93.97 200 | 84.46 86 | 93.32 221 | 95.46 175 | 85.17 170 | 92.25 86 | 94.03 172 | 70.59 235 | 98.57 107 | 90.97 92 | 94.67 134 | 94.18 235 |
|
| PHI-MVS | | | 93.89 42 | 93.65 53 | 94.62 40 | 96.84 75 | 86.43 38 | 96.69 32 | 97.49 6 | 85.15 173 | 93.56 55 | 96.28 84 | 85.60 49 | 99.31 39 | 92.45 56 | 98.79 23 | 98.12 64 |
|
| mvs_tets | | | 88.06 181 | 87.28 180 | 90.38 211 | 90.94 304 | 79.88 222 | 95.22 110 | 95.66 162 | 85.10 174 | 84.21 256 | 93.94 180 | 63.53 309 | 97.40 211 | 88.50 122 | 88.40 234 | 93.87 252 |
|
| tttt0517 | | | 88.61 165 | 87.78 168 | 91.11 178 | 94.96 150 | 77.81 272 | 95.35 99 | 89.69 351 | 85.09 175 | 88.05 156 | 94.59 155 | 66.93 279 | 98.48 111 | 83.27 189 | 92.13 182 | 97.03 118 |
|
| XVG-ACMP-BASELINE | | | 86.00 249 | 84.84 258 | 89.45 249 | 91.20 290 | 78.00 265 | 91.70 277 | 95.55 169 | 85.05 176 | 82.97 279 | 92.25 238 | 54.49 357 | 97.48 197 | 82.93 193 | 87.45 251 | 92.89 298 |
|
| jajsoiax | | | 88.24 175 | 87.50 173 | 90.48 204 | 90.89 308 | 80.14 210 | 95.31 101 | 95.65 164 | 84.97 177 | 84.24 255 | 94.02 175 | 65.31 297 | 97.42 204 | 88.56 121 | 88.52 230 | 93.89 249 |
|
| FA-MVS(test-final) | | | 89.66 128 | 88.91 135 | 91.93 138 | 94.57 173 | 80.27 205 | 91.36 283 | 94.74 222 | 84.87 178 | 89.82 130 | 92.61 226 | 74.72 182 | 98.47 114 | 83.97 180 | 93.53 157 | 97.04 117 |
|
| v2v482 | | | 87.84 184 | 87.06 184 | 90.17 217 | 90.99 300 | 79.23 243 | 94.00 194 | 95.13 195 | 84.87 178 | 85.53 211 | 92.07 248 | 74.45 184 | 97.45 200 | 84.71 171 | 81.75 306 | 93.85 255 |
|
| v148 | | | 87.04 224 | 86.32 213 | 89.21 252 | 90.94 304 | 77.26 283 | 93.71 208 | 94.43 230 | 84.84 180 | 84.36 250 | 90.80 288 | 76.04 161 | 97.05 240 | 82.12 209 | 79.60 337 | 93.31 280 |
|
| v8 | | | 87.50 204 | 86.71 196 | 89.89 231 | 91.37 285 | 79.40 233 | 94.50 154 | 95.38 184 | 84.81 181 | 83.60 269 | 91.33 268 | 76.05 160 | 97.42 204 | 82.84 196 | 80.51 329 | 92.84 300 |
|
| BH-untuned | | | 88.60 166 | 88.13 160 | 90.01 228 | 95.24 137 | 78.50 253 | 93.29 226 | 94.15 243 | 84.75 182 | 84.46 244 | 93.40 197 | 75.76 166 | 97.40 211 | 77.59 272 | 94.52 141 | 94.12 239 |
|
| OurMVSNet-221017-0 | | | 85.35 262 | 84.64 262 | 87.49 294 | 90.77 312 | 72.59 334 | 94.01 192 | 94.40 233 | 84.72 183 | 79.62 323 | 93.17 207 | 61.91 319 | 96.72 253 | 81.99 212 | 81.16 312 | 93.16 288 |
|
| dmvs_re | | | 84.20 279 | 83.22 280 | 87.14 306 | 91.83 269 | 77.81 272 | 90.04 309 | 90.19 339 | 84.70 184 | 81.49 294 | 89.17 316 | 64.37 303 | 91.13 368 | 71.58 316 | 85.65 266 | 92.46 310 |
|
| MVSFormer | | | 91.68 86 | 91.30 84 | 92.80 97 | 93.86 203 | 83.88 101 | 95.96 71 | 95.90 142 | 84.66 185 | 91.76 103 | 94.91 137 | 77.92 144 | 97.30 218 | 89.64 109 | 97.11 85 | 97.24 104 |
|
| test_djsdf | | | 89.03 153 | 88.64 142 | 90.21 215 | 90.74 314 | 79.28 240 | 95.96 71 | 95.90 142 | 84.66 185 | 85.33 229 | 92.94 215 | 74.02 193 | 97.30 218 | 89.64 109 | 88.53 229 | 94.05 245 |
|
| MVSTER | | | 88.84 158 | 88.29 156 | 90.51 201 | 92.95 236 | 80.44 202 | 93.73 206 | 95.01 201 | 84.66 185 | 87.15 173 | 93.12 210 | 72.79 211 | 97.21 229 | 87.86 129 | 87.36 252 | 93.87 252 |
|
| v7n | | | 86.81 229 | 85.76 237 | 89.95 230 | 90.72 315 | 79.25 242 | 95.07 121 | 95.92 139 | 84.45 188 | 82.29 285 | 90.86 284 | 72.60 214 | 97.53 194 | 79.42 256 | 80.52 328 | 93.08 292 |
|
| testing3 | | | 80.46 315 | 79.59 313 | 83.06 345 | 93.44 220 | 64.64 374 | 93.33 220 | 85.47 369 | 84.34 189 | 79.93 318 | 90.84 286 | 44.35 379 | 92.39 356 | 57.06 377 | 87.56 248 | 92.16 320 |
|
| ET-MVSNet_ETH3D | | | 87.51 202 | 85.91 231 | 92.32 122 | 93.70 212 | 83.93 99 | 92.33 260 | 90.94 328 | 84.16 190 | 72.09 365 | 92.52 228 | 69.90 244 | 95.85 302 | 89.20 114 | 88.36 235 | 97.17 108 |
|
| CSCG | | | 93.23 62 | 93.05 62 | 93.76 64 | 98.04 40 | 84.07 96 | 96.22 49 | 97.37 21 | 84.15 191 | 90.05 128 | 95.66 112 | 87.77 26 | 99.15 50 | 89.91 107 | 98.27 56 | 98.07 66 |
|
| Baseline_NR-MVSNet | | | 87.07 223 | 86.63 201 | 88.40 272 | 91.44 280 | 77.87 270 | 94.23 176 | 92.57 282 | 84.12 192 | 85.74 204 | 92.08 246 | 77.25 149 | 96.04 292 | 82.29 207 | 79.94 333 | 91.30 336 |
|
| UniMVSNet_ETH3D | | | 87.53 201 | 86.37 210 | 91.00 185 | 92.44 248 | 78.96 245 | 94.74 141 | 95.61 166 | 84.07 193 | 85.36 228 | 94.52 157 | 59.78 337 | 97.34 216 | 82.93 193 | 87.88 242 | 96.71 134 |
|
| thisisatest0530 | | | 88.67 163 | 87.61 171 | 91.86 144 | 94.87 156 | 80.07 213 | 94.63 148 | 89.90 348 | 84.00 194 | 88.46 149 | 93.78 189 | 66.88 281 | 98.46 115 | 83.30 188 | 92.65 175 | 97.06 115 |
|
| ab-mvs | | | 89.41 139 | 88.35 152 | 92.60 108 | 95.15 142 | 82.65 147 | 92.20 265 | 95.60 167 | 83.97 195 | 88.55 147 | 93.70 193 | 74.16 191 | 98.21 140 | 82.46 203 | 89.37 214 | 96.94 123 |
|
| GeoE | | | 90.05 116 | 89.43 121 | 91.90 143 | 95.16 140 | 80.37 204 | 95.80 78 | 94.65 226 | 83.90 196 | 87.55 167 | 94.75 147 | 78.18 142 | 97.62 187 | 81.28 225 | 93.63 154 | 97.71 88 |
|
| FMVSNet3 | | | 87.40 207 | 86.11 221 | 91.30 169 | 93.79 208 | 83.64 108 | 94.20 177 | 94.81 218 | 83.89 197 | 84.37 247 | 91.87 254 | 68.45 268 | 96.56 267 | 78.23 266 | 85.36 267 | 93.70 268 |
|
| pm-mvs1 | | | 86.61 236 | 85.54 240 | 89.82 234 | 91.44 280 | 80.18 208 | 95.28 107 | 94.85 214 | 83.84 198 | 81.66 293 | 92.62 225 | 72.45 217 | 96.48 272 | 79.67 250 | 78.06 343 | 92.82 301 |
|
| tt0805 | | | 86.92 227 | 85.74 239 | 90.48 204 | 92.22 252 | 79.98 220 | 95.63 91 | 94.88 212 | 83.83 199 | 84.74 237 | 92.80 221 | 57.61 345 | 97.67 179 | 85.48 162 | 84.42 274 | 93.79 257 |
|
| v10 | | | 87.25 214 | 86.38 209 | 89.85 232 | 91.19 291 | 79.50 230 | 94.48 155 | 95.45 178 | 83.79 200 | 83.62 268 | 91.19 273 | 75.13 174 | 97.42 204 | 81.94 213 | 80.60 324 | 92.63 305 |
|
| testgi | | | 80.94 313 | 80.20 304 | 83.18 343 | 87.96 356 | 66.29 368 | 91.28 284 | 90.70 334 | 83.70 201 | 78.12 332 | 92.84 217 | 51.37 365 | 90.82 370 | 63.34 360 | 82.46 296 | 92.43 311 |
|
| V42 | | | 87.68 189 | 86.86 189 | 90.15 219 | 90.58 319 | 80.14 210 | 94.24 175 | 95.28 189 | 83.66 202 | 85.67 205 | 91.33 268 | 74.73 181 | 97.41 209 | 84.43 175 | 81.83 304 | 92.89 298 |
|
| ZD-MVS | | | | | | 98.15 34 | 86.62 32 | | 97.07 45 | 83.63 203 | 94.19 42 | 96.91 57 | 87.57 31 | 99.26 42 | 91.99 74 | 98.44 51 | |
|
| GBi-Net | | | 87.26 212 | 85.98 227 | 91.08 179 | 94.01 195 | 83.10 125 | 95.14 117 | 94.94 204 | 83.57 204 | 84.37 247 | 91.64 258 | 66.59 286 | 96.34 283 | 78.23 266 | 85.36 267 | 93.79 257 |
|
| test1 | | | 87.26 212 | 85.98 227 | 91.08 179 | 94.01 195 | 83.10 125 | 95.14 117 | 94.94 204 | 83.57 204 | 84.37 247 | 91.64 258 | 66.59 286 | 96.34 283 | 78.23 266 | 85.36 267 | 93.79 257 |
|
| FMVSNet2 | | | 87.19 220 | 85.82 233 | 91.30 169 | 94.01 195 | 83.67 106 | 94.79 138 | 94.94 204 | 83.57 204 | 83.88 261 | 92.05 249 | 66.59 286 | 96.51 270 | 77.56 273 | 85.01 270 | 93.73 265 |
|
| SCA | | | 86.32 246 | 85.18 249 | 89.73 240 | 92.15 254 | 76.60 292 | 91.12 288 | 91.69 308 | 83.53 207 | 85.50 214 | 88.81 321 | 66.79 282 | 96.48 272 | 76.65 281 | 90.35 197 | 96.12 153 |
|
| PVSNet_BlendedMVS | | | 89.98 118 | 89.70 114 | 90.82 191 | 96.12 97 | 81.25 179 | 93.92 199 | 96.83 66 | 83.49 208 | 89.10 139 | 92.26 237 | 81.04 109 | 98.85 86 | 86.72 148 | 87.86 243 | 92.35 315 |
|
| DPM-MVS | | | 92.58 72 | 91.74 80 | 95.08 15 | 96.19 95 | 89.31 5 | 92.66 248 | 96.56 93 | 83.44 209 | 91.68 106 | 95.04 134 | 86.60 40 | 98.99 70 | 85.60 160 | 97.92 70 | 96.93 124 |
|
| test-LLR | | | 85.87 252 | 85.41 243 | 87.25 300 | 90.95 302 | 71.67 343 | 89.55 316 | 89.88 349 | 83.41 210 | 84.54 241 | 87.95 335 | 67.25 274 | 95.11 323 | 81.82 216 | 93.37 164 | 94.97 194 |
|
| test0.0.03 1 | | | 82.41 294 | 81.69 290 | 84.59 335 | 88.23 352 | 72.89 326 | 90.24 303 | 87.83 360 | 83.41 210 | 79.86 319 | 89.78 309 | 67.25 274 | 88.99 378 | 65.18 354 | 83.42 287 | 91.90 324 |
|
| v1144 | | | 87.61 197 | 86.79 193 | 90.06 224 | 91.01 299 | 79.34 236 | 93.95 196 | 95.42 183 | 83.36 212 | 85.66 206 | 91.31 271 | 74.98 177 | 97.42 204 | 83.37 187 | 82.06 300 | 93.42 278 |
|
| PVSNet_Blended_VisFu | | | 91.38 89 | 90.91 93 | 92.80 97 | 96.39 90 | 83.17 122 | 94.87 133 | 96.66 85 | 83.29 213 | 89.27 137 | 94.46 158 | 80.29 113 | 99.17 47 | 87.57 134 | 95.37 123 | 96.05 159 |
|
| IB-MVS | | 80.51 15 | 85.24 266 | 83.26 278 | 91.19 172 | 92.13 256 | 79.86 223 | 91.75 275 | 91.29 320 | 83.28 214 | 80.66 306 | 88.49 327 | 61.28 324 | 98.46 115 | 80.99 231 | 79.46 338 | 95.25 187 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| IterMVS | | | 84.88 271 | 83.98 271 | 87.60 290 | 91.44 280 | 76.03 300 | 90.18 307 | 92.41 284 | 83.24 215 | 81.06 302 | 90.42 296 | 66.60 285 | 94.28 334 | 79.46 252 | 80.98 321 | 92.48 308 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| test_cas_vis1_n_1920 | | | 88.83 161 | 88.85 139 | 88.78 262 | 91.15 295 | 76.72 290 | 93.85 202 | 94.93 208 | 83.23 216 | 92.81 72 | 96.00 96 | 61.17 328 | 94.45 328 | 91.67 83 | 94.84 131 | 95.17 189 |
|
| Fast-Effi-MVS+ | | | 89.41 139 | 88.64 142 | 91.71 152 | 94.74 161 | 80.81 193 | 93.54 213 | 95.10 198 | 83.11 217 | 86.82 186 | 90.67 291 | 79.74 120 | 97.75 177 | 80.51 240 | 93.55 156 | 96.57 138 |
|
| WTY-MVS | | | 89.60 130 | 88.92 134 | 91.67 153 | 95.47 127 | 81.15 183 | 92.38 256 | 94.78 220 | 83.11 217 | 89.06 141 | 94.32 162 | 78.67 135 | 96.61 262 | 81.57 222 | 90.89 193 | 97.24 104 |
|
| LTVRE_ROB | | 82.13 13 | 86.26 247 | 84.90 256 | 90.34 213 | 94.44 181 | 81.50 170 | 92.31 262 | 94.89 210 | 83.03 219 | 79.63 322 | 92.67 223 | 69.69 248 | 97.79 172 | 71.20 318 | 86.26 262 | 91.72 326 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| AUN-MVS | | | 87.78 187 | 86.54 205 | 91.48 161 | 94.82 160 | 81.05 185 | 93.91 201 | 93.93 250 | 83.00 220 | 86.93 178 | 93.53 195 | 69.50 251 | 97.67 179 | 86.14 151 | 77.12 350 | 95.73 173 |
|
| UnsupCasMVSNet_eth | | | 80.07 319 | 78.27 325 | 85.46 328 | 85.24 372 | 72.63 333 | 88.45 336 | 94.87 213 | 82.99 221 | 71.64 368 | 88.07 334 | 56.34 348 | 91.75 363 | 73.48 309 | 63.36 380 | 92.01 322 |
|
| XXY-MVS | | | 87.65 191 | 86.85 190 | 90.03 225 | 92.14 255 | 80.60 199 | 93.76 205 | 95.23 191 | 82.94 222 | 84.60 239 | 94.02 175 | 74.27 186 | 95.49 317 | 81.04 228 | 83.68 282 | 94.01 247 |
|
| mvs_anonymous | | | 89.37 143 | 89.32 125 | 89.51 248 | 93.47 218 | 74.22 315 | 91.65 279 | 94.83 216 | 82.91 223 | 85.45 218 | 93.79 188 | 81.23 108 | 96.36 282 | 86.47 150 | 94.09 147 | 97.94 74 |
|
| BH-w/o | | | 87.57 200 | 87.05 185 | 89.12 255 | 94.90 155 | 77.90 268 | 92.41 254 | 93.51 262 | 82.89 224 | 83.70 265 | 91.34 267 | 75.75 167 | 97.07 238 | 75.49 291 | 93.49 159 | 92.39 313 |
|
| AdaColmap |  | | 89.89 124 | 89.07 130 | 92.37 120 | 97.41 62 | 83.03 130 | 94.42 162 | 95.92 139 | 82.81 225 | 86.34 195 | 94.65 152 | 73.89 195 | 99.02 61 | 80.69 236 | 95.51 116 | 95.05 192 |
|
| dmvs_testset | | | 74.57 340 | 75.81 339 | 70.86 366 | 87.72 359 | 40.47 399 | 87.05 352 | 77.90 391 | 82.75 226 | 71.15 370 | 85.47 359 | 67.98 271 | 84.12 388 | 45.26 385 | 76.98 352 | 88.00 369 |
|
| TransMVSNet (Re) | | | 84.43 277 | 83.06 282 | 88.54 270 | 91.72 272 | 78.44 254 | 95.18 113 | 92.82 275 | 82.73 227 | 79.67 321 | 92.12 242 | 73.49 201 | 95.96 297 | 71.10 322 | 68.73 373 | 91.21 338 |
|
| DP-MVS Recon | | | 91.95 79 | 91.28 85 | 93.96 55 | 98.33 27 | 85.92 56 | 94.66 147 | 96.66 85 | 82.69 228 | 90.03 129 | 95.82 105 | 82.30 93 | 99.03 58 | 84.57 172 | 96.48 104 | 96.91 126 |
|
| v1192 | | | 87.25 214 | 86.33 212 | 90.00 229 | 90.76 313 | 79.04 244 | 93.80 203 | 95.48 174 | 82.57 229 | 85.48 216 | 91.18 275 | 73.38 205 | 97.42 204 | 82.30 206 | 82.06 300 | 93.53 272 |
|
| PC_three_1452 | | | | | | | | | | 82.47 230 | 97.09 10 | 97.07 51 | 92.72 1 | 98.04 159 | 92.70 55 | 99.02 12 | 98.86 11 |
|
| API-MVS | | | 90.66 104 | 90.07 106 | 92.45 116 | 96.36 91 | 84.57 80 | 96.06 64 | 95.22 193 | 82.39 231 | 89.13 138 | 94.27 167 | 80.32 112 | 98.46 115 | 80.16 245 | 96.71 98 | 94.33 230 |
|
| tfpnnormal | | | 84.72 274 | 83.23 279 | 89.20 253 | 92.79 241 | 80.05 215 | 94.48 155 | 95.81 148 | 82.38 232 | 81.08 301 | 91.21 272 | 69.01 261 | 96.95 245 | 61.69 365 | 80.59 325 | 90.58 350 |
|
| MAR-MVS | | | 90.30 110 | 89.37 123 | 93.07 83 | 96.61 81 | 84.48 85 | 95.68 85 | 95.67 160 | 82.36 233 | 87.85 159 | 92.85 216 | 76.63 157 | 98.80 90 | 80.01 246 | 96.68 99 | 95.91 162 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| baseline2 | | | 86.50 242 | 85.39 244 | 89.84 233 | 91.12 296 | 76.70 291 | 91.88 271 | 88.58 357 | 82.35 234 | 79.95 317 | 90.95 283 | 73.42 203 | 97.63 186 | 80.27 244 | 89.95 203 | 95.19 188 |
|
| TAMVS | | | 89.21 145 | 88.29 156 | 91.96 136 | 93.71 210 | 82.62 148 | 93.30 225 | 94.19 241 | 82.22 235 | 87.78 162 | 93.94 180 | 78.83 131 | 96.95 245 | 77.70 271 | 92.98 171 | 96.32 144 |
|
| ACMH+ | | 81.04 14 | 85.05 269 | 83.46 277 | 89.82 234 | 94.66 167 | 79.37 234 | 94.44 160 | 94.12 246 | 82.19 236 | 78.04 333 | 92.82 219 | 58.23 343 | 97.54 193 | 73.77 307 | 82.90 293 | 92.54 306 |
|
| ACMH | | 80.38 17 | 85.36 261 | 83.68 274 | 90.39 209 | 94.45 180 | 80.63 197 | 94.73 142 | 94.85 214 | 82.09 237 | 77.24 338 | 92.65 224 | 60.01 335 | 97.58 188 | 72.25 314 | 84.87 271 | 92.96 295 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| eth_miper_zixun_eth | | | 86.50 242 | 85.77 236 | 88.68 267 | 91.94 262 | 75.81 303 | 90.47 297 | 94.89 210 | 82.05 238 | 84.05 257 | 90.46 294 | 75.96 162 | 96.77 252 | 82.76 199 | 79.36 339 | 93.46 277 |
|
| anonymousdsp | | | 87.84 184 | 87.09 183 | 90.12 221 | 89.13 341 | 80.54 200 | 94.67 146 | 95.55 169 | 82.05 238 | 83.82 262 | 92.12 242 | 71.47 224 | 97.15 231 | 87.15 141 | 87.80 247 | 92.67 303 |
|
| PVSNet_Blended | | | 90.73 101 | 90.32 100 | 91.98 134 | 96.12 97 | 81.25 179 | 92.55 252 | 96.83 66 | 82.04 240 | 89.10 139 | 92.56 227 | 81.04 109 | 98.85 86 | 86.72 148 | 95.91 110 | 95.84 166 |
|
| c3_l | | | 87.14 222 | 86.50 207 | 89.04 258 | 92.20 253 | 77.26 283 | 91.22 287 | 94.70 224 | 82.01 241 | 84.34 251 | 90.43 295 | 78.81 132 | 96.61 262 | 83.70 185 | 81.09 315 | 93.25 283 |
|
| CDS-MVSNet | | | 89.45 136 | 88.51 147 | 92.29 125 | 93.62 214 | 83.61 111 | 93.01 238 | 94.68 225 | 81.95 242 | 87.82 161 | 93.24 205 | 78.69 134 | 96.99 243 | 80.34 242 | 93.23 167 | 96.28 147 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| v144192 | | | 87.19 220 | 86.35 211 | 89.74 238 | 90.64 317 | 78.24 261 | 93.92 199 | 95.43 181 | 81.93 243 | 85.51 213 | 91.05 281 | 74.21 189 | 97.45 200 | 82.86 195 | 81.56 308 | 93.53 272 |
|
| PAPR | | | 90.02 117 | 89.27 128 | 92.29 125 | 95.78 115 | 80.95 189 | 92.68 247 | 96.22 115 | 81.91 244 | 86.66 188 | 93.75 192 | 82.23 95 | 98.44 121 | 79.40 257 | 94.79 132 | 97.48 97 |
|
| v1921920 | | | 86.97 226 | 86.06 224 | 89.69 242 | 90.53 322 | 78.11 264 | 93.80 203 | 95.43 181 | 81.90 245 | 85.33 229 | 91.05 281 | 72.66 212 | 97.41 209 | 82.05 211 | 81.80 305 | 93.53 272 |
|
| CPTT-MVS | | | 91.99 78 | 91.80 79 | 92.55 111 | 98.24 31 | 81.98 160 | 96.76 30 | 96.49 95 | 81.89 246 | 90.24 123 | 96.44 81 | 78.59 136 | 98.61 104 | 89.68 108 | 97.85 72 | 97.06 115 |
|
| train_agg | | | 93.44 54 | 93.08 61 | 94.52 43 | 97.53 58 | 86.49 36 | 94.07 186 | 96.78 72 | 81.86 247 | 92.77 74 | 96.20 87 | 87.63 29 | 99.12 51 | 92.14 68 | 98.69 35 | 97.94 74 |
|
| test_8 | | | | | | 97.49 60 | 86.30 44 | 94.02 191 | 96.76 75 | 81.86 247 | 92.70 78 | 96.20 87 | 87.63 29 | 99.02 61 | | | |
|
| cl____ | | | 86.52 241 | 85.78 234 | 88.75 264 | 92.03 260 | 76.46 294 | 90.74 293 | 94.30 237 | 81.83 249 | 83.34 275 | 90.78 289 | 75.74 169 | 96.57 265 | 81.74 219 | 81.54 309 | 93.22 285 |
|
| DIV-MVS_self_test | | | 86.53 240 | 85.78 234 | 88.75 264 | 92.02 261 | 76.45 295 | 90.74 293 | 94.30 237 | 81.83 249 | 83.34 275 | 90.82 287 | 75.75 167 | 96.57 265 | 81.73 220 | 81.52 310 | 93.24 284 |
|
| Syy-MVS | | | 80.07 319 | 79.78 308 | 80.94 352 | 91.92 263 | 59.93 383 | 89.75 314 | 87.40 364 | 81.72 251 | 78.82 327 | 87.20 345 | 66.29 290 | 91.29 366 | 47.06 384 | 87.84 244 | 91.60 329 |
|
| myMVS_eth3d | | | 79.67 324 | 78.79 323 | 82.32 350 | 91.92 263 | 64.08 375 | 89.75 314 | 87.40 364 | 81.72 251 | 78.82 327 | 87.20 345 | 45.33 377 | 91.29 366 | 59.09 373 | 87.84 244 | 91.60 329 |
|
| v1240 | | | 86.78 231 | 85.85 232 | 89.56 244 | 90.45 323 | 77.79 274 | 93.61 211 | 95.37 186 | 81.65 253 | 85.43 221 | 91.15 277 | 71.50 223 | 97.43 203 | 81.47 224 | 82.05 302 | 93.47 276 |
|
| FMVSNet1 | | | 85.85 253 | 84.11 267 | 91.08 179 | 92.81 240 | 83.10 125 | 95.14 117 | 94.94 204 | 81.64 254 | 82.68 282 | 91.64 258 | 59.01 341 | 96.34 283 | 75.37 293 | 83.78 279 | 93.79 257 |
|
| PatchmatchNet |  | | 85.85 253 | 84.70 260 | 89.29 251 | 91.76 271 | 75.54 305 | 88.49 334 | 91.30 319 | 81.63 255 | 85.05 232 | 88.70 325 | 71.71 220 | 96.24 286 | 74.61 302 | 89.05 221 | 96.08 156 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| TEST9 | | | | | | 97.53 58 | 86.49 36 | 94.07 186 | 96.78 72 | 81.61 256 | 92.77 74 | 96.20 87 | 87.71 28 | 99.12 51 | | | |
|
| sss | | | 88.93 156 | 88.26 158 | 90.94 189 | 94.05 193 | 80.78 194 | 91.71 276 | 95.38 184 | 81.55 257 | 88.63 146 | 93.91 184 | 75.04 176 | 95.47 318 | 82.47 202 | 91.61 184 | 96.57 138 |
|
| HY-MVS | | 83.01 12 | 89.03 153 | 87.94 165 | 92.29 125 | 94.86 157 | 82.77 138 | 92.08 270 | 94.49 228 | 81.52 258 | 86.93 178 | 92.79 222 | 78.32 141 | 98.23 137 | 79.93 247 | 90.55 194 | 95.88 164 |
|
| CNLPA | | | 89.07 151 | 87.98 163 | 92.34 121 | 96.87 74 | 84.78 76 | 94.08 185 | 93.24 265 | 81.41 259 | 84.46 244 | 95.13 132 | 75.57 171 | 96.62 259 | 77.21 276 | 93.84 152 | 95.61 178 |
|
| EPMVS | | | 83.90 285 | 82.70 287 | 87.51 292 | 90.23 327 | 72.67 330 | 88.62 333 | 81.96 380 | 81.37 260 | 85.01 233 | 88.34 329 | 66.31 289 | 94.45 328 | 75.30 294 | 87.12 255 | 95.43 181 |
|
| cl22 | | | 86.78 231 | 85.98 227 | 89.18 254 | 92.34 250 | 77.62 279 | 90.84 292 | 94.13 245 | 81.33 261 | 83.97 260 | 90.15 300 | 73.96 194 | 96.60 264 | 84.19 177 | 82.94 290 | 93.33 279 |
|
| miper_ehance_all_eth | | | 87.22 217 | 86.62 202 | 89.02 259 | 92.13 256 | 77.40 282 | 90.91 291 | 94.81 218 | 81.28 262 | 84.32 252 | 90.08 302 | 79.26 127 | 96.62 259 | 83.81 183 | 82.94 290 | 93.04 293 |
|
| IU-MVS | | | | | | 98.77 5 | 86.00 49 | | 96.84 65 | 81.26 263 | 97.26 7 | | | | 95.50 23 | 99.13 3 | 99.03 8 |
|
| CL-MVSNet_self_test | | | 81.74 300 | 80.53 298 | 85.36 329 | 85.96 366 | 72.45 336 | 90.25 301 | 93.07 269 | 81.24 264 | 79.85 320 | 87.29 344 | 70.93 230 | 92.52 355 | 66.95 345 | 69.23 369 | 91.11 342 |
|
| test20.03 | | | 79.95 321 | 79.08 320 | 82.55 347 | 85.79 368 | 67.74 365 | 91.09 289 | 91.08 323 | 81.23 265 | 74.48 357 | 89.96 306 | 61.63 320 | 90.15 372 | 60.08 369 | 76.38 353 | 89.76 353 |
|
| miper_lstm_enhance | | | 85.27 265 | 84.59 263 | 87.31 297 | 91.28 289 | 74.63 310 | 87.69 345 | 94.09 247 | 81.20 266 | 81.36 298 | 89.85 308 | 74.97 178 | 94.30 333 | 81.03 230 | 79.84 336 | 93.01 294 |
|
| TR-MVS | | | 86.78 231 | 85.76 237 | 89.82 234 | 94.37 183 | 78.41 255 | 92.47 253 | 92.83 274 | 81.11 267 | 86.36 194 | 92.40 231 | 68.73 265 | 97.48 197 | 73.75 308 | 89.85 206 | 93.57 271 |
|
| VDDNet | | | 89.56 132 | 88.49 150 | 92.76 99 | 95.07 144 | 82.09 157 | 96.30 43 | 93.19 267 | 81.05 268 | 91.88 98 | 96.86 59 | 61.16 329 | 98.33 131 | 88.43 123 | 92.49 179 | 97.84 82 |
|
| tpm | | | 84.73 273 | 84.02 269 | 86.87 313 | 90.33 324 | 68.90 360 | 89.06 327 | 89.94 346 | 80.85 269 | 85.75 203 | 89.86 307 | 68.54 267 | 95.97 296 | 77.76 270 | 84.05 278 | 95.75 170 |
|
| D2MVS | | | 85.90 251 | 85.09 251 | 88.35 274 | 90.79 311 | 77.42 281 | 91.83 273 | 95.70 158 | 80.77 270 | 80.08 315 | 90.02 303 | 66.74 284 | 96.37 280 | 81.88 215 | 87.97 241 | 91.26 337 |
|
| FE-MVS | | | 87.40 207 | 86.02 225 | 91.57 157 | 94.56 174 | 79.69 227 | 90.27 299 | 93.72 259 | 80.57 271 | 88.80 144 | 91.62 262 | 65.32 296 | 98.59 106 | 74.97 299 | 94.33 146 | 96.44 141 |
|
| Anonymous202405211 | | | 87.68 189 | 86.13 219 | 92.31 123 | 96.66 79 | 80.74 195 | 94.87 133 | 91.49 315 | 80.47 272 | 89.46 135 | 95.44 117 | 54.72 356 | 98.23 137 | 82.19 208 | 89.89 204 | 97.97 72 |
|
| jason | | | 90.80 98 | 90.10 105 | 92.90 92 | 93.04 231 | 83.53 112 | 93.08 235 | 94.15 243 | 80.22 273 | 91.41 110 | 94.91 137 | 76.87 151 | 97.93 168 | 90.28 106 | 96.90 92 | 97.24 104 |
| jason: jason. |
| thisisatest0515 | | | 87.33 210 | 85.99 226 | 91.37 166 | 93.49 217 | 79.55 229 | 90.63 295 | 89.56 354 | 80.17 274 | 87.56 166 | 90.86 284 | 67.07 278 | 98.28 135 | 81.50 223 | 93.02 170 | 96.29 146 |
|
| tpmrst | | | 85.35 262 | 84.99 252 | 86.43 318 | 90.88 309 | 67.88 364 | 88.71 331 | 91.43 317 | 80.13 275 | 86.08 200 | 88.80 323 | 73.05 207 | 96.02 294 | 82.48 201 | 83.40 288 | 95.40 182 |
|
| CDPH-MVS | | | 92.83 68 | 92.30 74 | 94.44 44 | 97.79 49 | 86.11 48 | 94.06 188 | 96.66 85 | 80.09 276 | 92.77 74 | 96.63 73 | 86.62 38 | 99.04 57 | 87.40 136 | 98.66 40 | 98.17 60 |
|
| PM-MVS | | | 78.11 332 | 76.12 336 | 84.09 341 | 83.54 376 | 70.08 356 | 88.97 329 | 85.27 371 | 79.93 277 | 74.73 355 | 86.43 351 | 34.70 385 | 93.48 345 | 79.43 255 | 72.06 363 | 88.72 364 |
|
| lupinMVS | | | 90.92 97 | 90.21 101 | 93.03 84 | 93.86 203 | 83.88 101 | 92.81 245 | 93.86 254 | 79.84 278 | 91.76 103 | 94.29 164 | 77.92 144 | 98.04 159 | 90.48 105 | 97.11 85 | 97.17 108 |
|
| PatchMatch-RL | | | 86.77 234 | 85.54 240 | 90.47 207 | 95.88 111 | 82.71 144 | 90.54 296 | 92.31 288 | 79.82 279 | 84.32 252 | 91.57 266 | 68.77 264 | 96.39 279 | 73.16 310 | 93.48 161 | 92.32 316 |
|
| PLC |  | 84.53 7 | 89.06 152 | 88.03 162 | 92.15 128 | 97.27 68 | 82.69 145 | 94.29 171 | 95.44 180 | 79.71 280 | 84.01 259 | 94.18 169 | 76.68 156 | 98.75 93 | 77.28 275 | 93.41 162 | 95.02 193 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| F-COLMAP | | | 87.95 182 | 86.80 192 | 91.40 164 | 96.35 92 | 80.88 191 | 94.73 142 | 95.45 178 | 79.65 281 | 82.04 290 | 94.61 153 | 71.13 226 | 98.50 110 | 76.24 287 | 91.05 191 | 94.80 206 |
|
| test_vis1_n | | | 86.56 239 | 86.49 208 | 86.78 315 | 88.51 346 | 72.69 329 | 94.68 145 | 93.78 258 | 79.55 282 | 90.70 117 | 95.31 121 | 48.75 371 | 93.28 348 | 93.15 45 | 93.99 148 | 94.38 229 |
|
| MIMVSNet | | | 82.59 293 | 80.53 298 | 88.76 263 | 91.51 279 | 78.32 258 | 86.57 355 | 90.13 341 | 79.32 283 | 80.70 305 | 88.69 326 | 52.98 363 | 93.07 352 | 66.03 351 | 88.86 225 | 94.90 201 |
|
| KD-MVS_2432*1600 | | | 78.50 330 | 76.02 337 | 85.93 323 | 86.22 364 | 74.47 312 | 84.80 367 | 92.33 286 | 79.29 284 | 76.98 340 | 85.92 355 | 53.81 361 | 93.97 337 | 67.39 343 | 57.42 385 | 89.36 356 |
|
| miper_refine_blended | | | 78.50 330 | 76.02 337 | 85.93 323 | 86.22 364 | 74.47 312 | 84.80 367 | 92.33 286 | 79.29 284 | 76.98 340 | 85.92 355 | 53.81 361 | 93.97 337 | 67.39 343 | 57.42 385 | 89.36 356 |
|
| test-mter | | | 84.54 276 | 83.64 275 | 87.25 300 | 90.95 302 | 71.67 343 | 89.55 316 | 89.88 349 | 79.17 286 | 84.54 241 | 87.95 335 | 55.56 351 | 95.11 323 | 81.82 216 | 93.37 164 | 94.97 194 |
|
| miper_enhance_ethall | | | 86.90 228 | 86.18 218 | 89.06 257 | 91.66 277 | 77.58 280 | 90.22 305 | 94.82 217 | 79.16 287 | 84.48 243 | 89.10 317 | 79.19 129 | 96.66 256 | 84.06 178 | 82.94 290 | 92.94 296 |
|
| MDA-MVSNet-bldmvs | | | 78.85 329 | 76.31 334 | 86.46 317 | 89.76 335 | 73.88 318 | 88.79 330 | 90.42 335 | 79.16 287 | 59.18 382 | 88.33 330 | 60.20 333 | 94.04 336 | 62.00 364 | 68.96 371 | 91.48 333 |
|
| tpmvs | | | 83.35 289 | 82.07 288 | 87.20 304 | 91.07 298 | 71.00 350 | 88.31 337 | 91.70 307 | 78.91 289 | 80.49 309 | 87.18 347 | 69.30 257 | 97.08 236 | 68.12 341 | 83.56 284 | 93.51 275 |
|
| 原ACMM1 | | | | | 92.01 130 | 97.34 64 | 81.05 185 | | 96.81 70 | 78.89 290 | 90.45 120 | 95.92 100 | 82.65 87 | 98.84 88 | 80.68 237 | 98.26 57 | 96.14 151 |
|
| MSDG | | | 84.86 272 | 83.09 281 | 90.14 220 | 93.80 206 | 80.05 215 | 89.18 325 | 93.09 268 | 78.89 290 | 78.19 331 | 91.91 252 | 65.86 295 | 97.27 222 | 68.47 336 | 88.45 232 | 93.11 290 |
|
| PAPM | | | 86.68 235 | 85.39 244 | 90.53 198 | 93.05 230 | 79.33 239 | 89.79 313 | 94.77 221 | 78.82 292 | 81.95 291 | 93.24 205 | 76.81 152 | 97.30 218 | 66.94 346 | 93.16 168 | 94.95 200 |
|
| PVSNet | | 78.82 18 | 85.55 257 | 84.65 261 | 88.23 279 | 94.72 163 | 71.93 338 | 87.12 351 | 92.75 277 | 78.80 293 | 84.95 234 | 90.53 293 | 64.43 302 | 96.71 255 | 74.74 300 | 93.86 151 | 96.06 158 |
|
| MVP-Stereo | | | 85.97 250 | 84.86 257 | 89.32 250 | 90.92 306 | 82.19 156 | 92.11 268 | 94.19 241 | 78.76 294 | 78.77 330 | 91.63 261 | 68.38 269 | 96.56 267 | 75.01 298 | 93.95 149 | 89.20 360 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| OpenMVS |  | 83.78 11 | 88.74 162 | 87.29 179 | 93.08 81 | 92.70 242 | 85.39 67 | 96.57 36 | 96.43 97 | 78.74 295 | 80.85 303 | 96.07 94 | 69.64 249 | 99.01 63 | 78.01 269 | 96.65 100 | 94.83 204 |
|
| KD-MVS_self_test | | | 80.20 318 | 79.24 316 | 83.07 344 | 85.64 370 | 65.29 372 | 91.01 290 | 93.93 250 | 78.71 296 | 76.32 344 | 86.40 352 | 59.20 340 | 92.93 353 | 72.59 312 | 69.35 368 | 91.00 345 |
|
| MDTV_nov1_ep13 | | | | 83.56 276 | | 91.69 276 | 69.93 357 | 87.75 344 | 91.54 313 | 78.60 297 | 84.86 235 | 88.90 320 | 69.54 250 | 96.03 293 | 70.25 324 | 88.93 224 | |
|
| test_fmvs1_n | | | 87.03 225 | 87.04 186 | 86.97 308 | 89.74 336 | 71.86 339 | 94.55 152 | 94.43 230 | 78.47 298 | 91.95 96 | 95.50 116 | 51.16 366 | 93.81 340 | 93.02 48 | 94.56 139 | 95.26 186 |
|
| Patchmatch-RL test | | | 81.67 301 | 79.96 307 | 86.81 314 | 85.42 371 | 71.23 346 | 82.17 378 | 87.50 363 | 78.47 298 | 77.19 339 | 82.50 373 | 70.81 232 | 93.48 345 | 82.66 200 | 72.89 361 | 95.71 174 |
|
| QAPM | | | 89.51 133 | 88.15 159 | 93.59 68 | 94.92 153 | 84.58 79 | 96.82 29 | 96.70 83 | 78.43 300 | 83.41 273 | 96.19 90 | 73.18 206 | 99.30 40 | 77.11 278 | 96.54 101 | 96.89 127 |
|
| 1314 | | | 87.51 202 | 86.57 204 | 90.34 213 | 92.42 249 | 79.74 226 | 92.63 249 | 95.35 188 | 78.35 301 | 80.14 313 | 91.62 262 | 74.05 192 | 97.15 231 | 81.05 227 | 93.53 157 | 94.12 239 |
|
| test_fmvs1 | | | 87.34 209 | 87.56 172 | 86.68 316 | 90.59 318 | 71.80 341 | 94.01 192 | 94.04 248 | 78.30 302 | 91.97 94 | 95.22 125 | 56.28 349 | 93.71 342 | 92.89 49 | 94.71 133 | 94.52 217 |
|
| CR-MVSNet | | | 85.35 262 | 83.76 273 | 90.12 221 | 90.58 319 | 79.34 236 | 85.24 364 | 91.96 303 | 78.27 303 | 85.55 208 | 87.87 338 | 71.03 228 | 95.61 310 | 73.96 306 | 89.36 215 | 95.40 182 |
|
| USDC | | | 82.76 290 | 81.26 295 | 87.26 299 | 91.17 292 | 74.55 311 | 89.27 322 | 93.39 264 | 78.26 304 | 75.30 351 | 92.08 246 | 54.43 358 | 96.63 258 | 71.64 315 | 85.79 265 | 90.61 347 |
|
| new-patchmatchnet | | | 76.41 337 | 75.17 340 | 80.13 353 | 82.65 379 | 59.61 384 | 87.66 346 | 91.08 323 | 78.23 305 | 69.85 372 | 83.22 367 | 54.76 355 | 91.63 365 | 64.14 359 | 64.89 378 | 89.16 361 |
|
| 1112_ss | | | 88.42 169 | 87.33 178 | 91.72 151 | 94.92 153 | 80.98 187 | 92.97 240 | 94.54 227 | 78.16 306 | 83.82 262 | 93.88 185 | 78.78 133 | 97.91 169 | 79.45 253 | 89.41 213 | 96.26 148 |
|
| MIMVSNet1 | | | 79.38 326 | 77.28 328 | 85.69 327 | 86.35 363 | 73.67 319 | 91.61 280 | 92.75 277 | 78.11 307 | 72.64 364 | 88.12 333 | 48.16 372 | 91.97 362 | 60.32 368 | 77.49 347 | 91.43 334 |
|
| test_fmvs2 | | | 83.98 281 | 84.03 268 | 83.83 342 | 87.16 360 | 67.53 367 | 93.93 198 | 92.89 272 | 77.62 308 | 86.89 183 | 93.53 195 | 47.18 375 | 92.02 360 | 90.54 102 | 86.51 260 | 91.93 323 |
|
| MS-PatchMatch | | | 85.05 269 | 84.16 266 | 87.73 288 | 91.42 283 | 78.51 252 | 91.25 286 | 93.53 261 | 77.50 309 | 80.15 312 | 91.58 264 | 61.99 318 | 95.51 314 | 75.69 290 | 94.35 145 | 89.16 361 |
|
| AllTest | | | 83.42 287 | 81.39 293 | 89.52 246 | 95.01 146 | 77.79 274 | 93.12 232 | 90.89 330 | 77.41 310 | 76.12 346 | 93.34 198 | 54.08 359 | 97.51 195 | 68.31 338 | 84.27 276 | 93.26 281 |
|
| TestCases | | | | | 89.52 246 | 95.01 146 | 77.79 274 | | 90.89 330 | 77.41 310 | 76.12 346 | 93.34 198 | 54.08 359 | 97.51 195 | 68.31 338 | 84.27 276 | 93.26 281 |
|
| TESTMET0.1,1 | | | 83.74 286 | 82.85 285 | 86.42 319 | 89.96 332 | 71.21 347 | 89.55 316 | 87.88 359 | 77.41 310 | 83.37 274 | 87.31 343 | 56.71 347 | 93.65 344 | 80.62 238 | 92.85 174 | 94.40 228 |
|
| gm-plane-assit | | | | | | 89.60 339 | 68.00 362 | | | 77.28 313 | | 88.99 318 | | 97.57 189 | 79.44 254 | | |
|
| EG-PatchMatch MVS | | | 82.37 295 | 80.34 301 | 88.46 271 | 90.27 325 | 79.35 235 | 92.80 246 | 94.33 236 | 77.14 314 | 73.26 362 | 90.18 299 | 47.47 374 | 96.72 253 | 70.25 324 | 87.32 254 | 89.30 358 |
|
| FMVSNet5 | | | 81.52 305 | 79.60 312 | 87.27 298 | 91.17 292 | 77.95 266 | 91.49 281 | 92.26 290 | 76.87 315 | 76.16 345 | 87.91 337 | 51.67 364 | 92.34 357 | 67.74 342 | 81.16 312 | 91.52 331 |
|
| mvsany_test1 | | | 85.42 260 | 85.30 247 | 85.77 326 | 87.95 357 | 75.41 307 | 87.61 348 | 80.97 382 | 76.82 316 | 88.68 145 | 95.83 104 | 77.44 148 | 90.82 370 | 85.90 156 | 86.51 260 | 91.08 344 |
|
| our_test_3 | | | 81.93 297 | 80.46 300 | 86.33 320 | 88.46 349 | 73.48 322 | 88.46 335 | 91.11 322 | 76.46 317 | 76.69 342 | 88.25 331 | 66.89 280 | 94.36 331 | 68.75 334 | 79.08 341 | 91.14 340 |
|
| TDRefinement | | | 79.81 322 | 77.34 327 | 87.22 303 | 79.24 385 | 75.48 306 | 93.12 232 | 92.03 298 | 76.45 318 | 75.01 352 | 91.58 264 | 49.19 370 | 96.44 276 | 70.22 326 | 69.18 370 | 89.75 354 |
|
| LF4IMVS | | | 80.37 317 | 79.07 321 | 84.27 339 | 86.64 362 | 69.87 358 | 89.39 321 | 91.05 325 | 76.38 319 | 74.97 353 | 90.00 304 | 47.85 373 | 94.25 335 | 74.55 303 | 80.82 323 | 88.69 365 |
|
| TAPA-MVS | | 84.62 6 | 88.16 177 | 87.01 187 | 91.62 154 | 96.64 80 | 80.65 196 | 94.39 165 | 96.21 118 | 76.38 319 | 86.19 198 | 95.44 117 | 79.75 119 | 98.08 156 | 62.75 363 | 95.29 125 | 96.13 152 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| dp | | | 81.47 306 | 80.23 303 | 85.17 332 | 89.92 333 | 65.49 371 | 86.74 353 | 90.10 342 | 76.30 321 | 81.10 300 | 87.12 348 | 62.81 314 | 95.92 298 | 68.13 340 | 79.88 334 | 94.09 242 |
|
| CostFormer | | | 85.77 255 | 84.94 255 | 88.26 277 | 91.16 294 | 72.58 335 | 89.47 320 | 91.04 326 | 76.26 322 | 86.45 192 | 89.97 305 | 70.74 233 | 96.86 251 | 82.35 205 | 87.07 257 | 95.34 185 |
|
| RPSCF | | | 85.07 268 | 84.27 265 | 87.48 295 | 92.91 237 | 70.62 353 | 91.69 278 | 92.46 283 | 76.20 323 | 82.67 283 | 95.22 125 | 63.94 305 | 97.29 221 | 77.51 274 | 85.80 264 | 94.53 216 |
|
| Test_1112_low_res | | | 87.65 191 | 86.51 206 | 91.08 179 | 94.94 152 | 79.28 240 | 91.77 274 | 94.30 237 | 76.04 324 | 83.51 271 | 92.37 232 | 77.86 146 | 97.73 178 | 78.69 261 | 89.13 220 | 96.22 149 |
|
| pmmvs4 | | | 85.43 259 | 83.86 272 | 90.16 218 | 90.02 331 | 82.97 134 | 90.27 299 | 92.67 280 | 75.93 325 | 80.73 304 | 91.74 257 | 71.05 227 | 95.73 309 | 78.85 260 | 83.46 286 | 91.78 325 |
|
| LS3D | | | 87.89 183 | 86.32 213 | 92.59 109 | 96.07 102 | 82.92 136 | 95.23 109 | 94.92 209 | 75.66 326 | 82.89 280 | 95.98 98 | 72.48 215 | 99.21 45 | 68.43 337 | 95.23 128 | 95.64 175 |
|
| pmmvs5 | | | 84.21 278 | 82.84 286 | 88.34 275 | 88.95 343 | 76.94 287 | 92.41 254 | 91.91 305 | 75.63 327 | 80.28 310 | 91.18 275 | 64.59 301 | 95.57 311 | 77.09 279 | 83.47 285 | 92.53 307 |
|
| Anonymous20240521 | | | 80.44 316 | 79.21 317 | 84.11 340 | 85.75 369 | 67.89 363 | 92.86 244 | 93.23 266 | 75.61 328 | 75.59 350 | 87.47 342 | 50.03 367 | 94.33 332 | 71.14 321 | 81.21 311 | 90.12 352 |
|
| pmmvs-eth3d | | | 80.97 312 | 78.72 324 | 87.74 287 | 84.99 373 | 79.97 221 | 90.11 308 | 91.65 309 | 75.36 329 | 73.51 360 | 86.03 354 | 59.45 338 | 93.96 339 | 75.17 295 | 72.21 362 | 89.29 359 |
|
| ppachtmachnet_test | | | 81.84 298 | 80.07 306 | 87.15 305 | 88.46 349 | 74.43 314 | 89.04 328 | 92.16 292 | 75.33 330 | 77.75 335 | 88.99 318 | 66.20 291 | 95.37 319 | 65.12 355 | 77.60 346 | 91.65 327 |
|
| test_0402 | | | 81.30 309 | 79.17 319 | 87.67 289 | 93.19 225 | 78.17 262 | 92.98 239 | 91.71 306 | 75.25 331 | 76.02 348 | 90.31 297 | 59.23 339 | 96.37 280 | 50.22 382 | 83.63 283 | 88.47 367 |
|
| COLMAP_ROB |  | 80.39 16 | 83.96 282 | 82.04 289 | 89.74 238 | 95.28 133 | 79.75 225 | 94.25 173 | 92.28 289 | 75.17 332 | 78.02 334 | 93.77 190 | 58.60 342 | 97.84 171 | 65.06 356 | 85.92 263 | 91.63 328 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| TinyColmap | | | 79.76 323 | 77.69 326 | 85.97 322 | 91.71 274 | 73.12 324 | 89.55 316 | 90.36 337 | 75.03 333 | 72.03 366 | 90.19 298 | 46.22 376 | 96.19 289 | 63.11 361 | 81.03 317 | 88.59 366 |
|
| DP-MVS | | | 87.25 214 | 85.36 246 | 92.90 92 | 97.65 55 | 83.24 119 | 94.81 137 | 92.00 299 | 74.99 334 | 81.92 292 | 95.00 135 | 72.66 212 | 99.05 55 | 66.92 348 | 92.33 180 | 96.40 142 |
|
| PatchT | | | 82.68 292 | 81.27 294 | 86.89 312 | 90.09 329 | 70.94 351 | 84.06 371 | 90.15 340 | 74.91 335 | 85.63 207 | 83.57 366 | 69.37 252 | 94.87 327 | 65.19 353 | 88.50 231 | 94.84 203 |
|
| CHOSEN 280x420 | | | 85.15 267 | 83.99 270 | 88.65 268 | 92.47 246 | 78.40 256 | 79.68 384 | 92.76 276 | 74.90 336 | 81.41 297 | 89.59 311 | 69.85 247 | 95.51 314 | 79.92 248 | 95.29 125 | 92.03 321 |
|
| gg-mvs-nofinetune | | | 81.77 299 | 79.37 314 | 88.99 260 | 90.85 310 | 77.73 277 | 86.29 356 | 79.63 385 | 74.88 337 | 83.19 278 | 69.05 386 | 60.34 332 | 96.11 291 | 75.46 292 | 94.64 137 | 93.11 290 |
|
| pmmvs6 | | | 83.42 287 | 81.60 291 | 88.87 261 | 88.01 355 | 77.87 270 | 94.96 127 | 94.24 240 | 74.67 338 | 78.80 329 | 91.09 280 | 60.17 334 | 96.49 271 | 77.06 280 | 75.40 357 | 92.23 318 |
|
| CHOSEN 1792x2688 | | | 88.84 158 | 87.69 169 | 92.30 124 | 96.14 96 | 81.42 176 | 90.01 310 | 95.86 146 | 74.52 339 | 87.41 168 | 93.94 180 | 75.46 172 | 98.36 126 | 80.36 241 | 95.53 115 | 97.12 113 |
|
| MDA-MVSNet_test_wron | | | 79.21 328 | 77.19 330 | 85.29 330 | 88.22 353 | 72.77 328 | 85.87 358 | 90.06 343 | 74.34 340 | 62.62 380 | 87.56 341 | 66.14 292 | 91.99 361 | 66.90 349 | 73.01 359 | 91.10 343 |
|
| YYNet1 | | | 79.22 327 | 77.20 329 | 85.28 331 | 88.20 354 | 72.66 331 | 85.87 358 | 90.05 345 | 74.33 341 | 62.70 378 | 87.61 340 | 66.09 293 | 92.03 359 | 66.94 346 | 72.97 360 | 91.15 339 |
|
| mvsany_test3 | | | 74.95 339 | 73.26 343 | 80.02 354 | 74.61 387 | 63.16 379 | 85.53 362 | 78.42 387 | 74.16 342 | 74.89 354 | 86.46 350 | 36.02 384 | 89.09 377 | 82.39 204 | 66.91 374 | 87.82 371 |
|
| Anonymous20240529 | | | 88.09 179 | 86.59 203 | 92.58 110 | 96.53 86 | 81.92 162 | 95.99 69 | 95.84 147 | 74.11 343 | 89.06 141 | 95.21 127 | 61.44 323 | 98.81 89 | 83.67 186 | 87.47 249 | 97.01 119 |
|
| test_fmvs3 | | | 77.67 334 | 77.16 331 | 79.22 355 | 79.52 384 | 61.14 381 | 92.34 259 | 91.64 310 | 73.98 344 | 78.86 326 | 86.59 349 | 27.38 389 | 87.03 380 | 88.12 127 | 75.97 355 | 89.50 355 |
|
| 无先验 | | | | | | | | 93.28 227 | 96.26 110 | 73.95 345 | | | | 99.05 55 | 80.56 239 | | 96.59 137 |
|
| Anonymous20231211 | | | 86.59 238 | 85.13 250 | 90.98 188 | 96.52 87 | 81.50 170 | 96.14 57 | 96.16 119 | 73.78 346 | 83.65 267 | 92.15 240 | 63.26 312 | 97.37 215 | 82.82 197 | 81.74 307 | 94.06 244 |
|
| Anonymous20231206 | | | 81.03 311 | 79.77 310 | 84.82 334 | 87.85 358 | 70.26 355 | 91.42 282 | 92.08 296 | 73.67 347 | 77.75 335 | 89.25 315 | 62.43 316 | 93.08 351 | 61.50 366 | 82.00 303 | 91.12 341 |
|
| PCF-MVS | | 84.11 10 | 87.74 188 | 86.08 223 | 92.70 104 | 94.02 194 | 84.43 89 | 89.27 322 | 95.87 145 | 73.62 348 | 84.43 246 | 94.33 161 | 78.48 139 | 98.86 84 | 70.27 323 | 94.45 143 | 94.81 205 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| WB-MVS | | | 67.92 347 | 67.49 349 | 69.21 370 | 81.09 380 | 41.17 398 | 88.03 339 | 78.00 390 | 73.50 349 | 62.63 379 | 83.11 370 | 63.94 305 | 86.52 382 | 25.66 395 | 51.45 388 | 79.94 381 |
|
| HyFIR lowres test | | | 88.09 179 | 86.81 191 | 91.93 138 | 96.00 105 | 80.63 197 | 90.01 310 | 95.79 150 | 73.42 350 | 87.68 164 | 92.10 245 | 73.86 196 | 97.96 165 | 80.75 235 | 91.70 183 | 97.19 107 |
|
| MDTV_nov1_ep13_2view | | | | | | | 55.91 393 | 87.62 347 | | 73.32 351 | 84.59 240 | | 70.33 241 | | 74.65 301 | | 95.50 179 |
|
| JIA-IIPM | | | 81.04 310 | 78.98 322 | 87.25 300 | 88.64 345 | 73.48 322 | 81.75 379 | 89.61 353 | 73.19 352 | 82.05 289 | 73.71 383 | 66.07 294 | 95.87 301 | 71.18 320 | 84.60 273 | 92.41 312 |
|
| cascas | | | 86.43 245 | 84.98 253 | 90.80 192 | 92.10 258 | 80.92 190 | 90.24 303 | 95.91 141 | 73.10 353 | 83.57 270 | 88.39 328 | 65.15 298 | 97.46 199 | 84.90 168 | 91.43 185 | 94.03 246 |
|
| ANet_high | | | 58.88 356 | 54.22 360 | 72.86 363 | 56.50 400 | 56.67 388 | 80.75 381 | 86.00 366 | 73.09 354 | 37.39 393 | 64.63 390 | 22.17 393 | 79.49 393 | 43.51 387 | 23.96 395 | 82.43 379 |
|
| ADS-MVSNet2 | | | 81.66 302 | 79.71 311 | 87.50 293 | 91.35 286 | 74.19 316 | 83.33 374 | 88.48 358 | 72.90 355 | 82.24 287 | 85.77 357 | 64.98 299 | 93.20 350 | 64.57 357 | 83.74 280 | 95.12 190 |
|
| ADS-MVSNet | | | 81.56 304 | 79.78 308 | 86.90 311 | 91.35 286 | 71.82 340 | 83.33 374 | 89.16 355 | 72.90 355 | 82.24 287 | 85.77 357 | 64.98 299 | 93.76 341 | 64.57 357 | 83.74 280 | 95.12 190 |
|
| PVSNet_0 | | 73.20 20 | 77.22 335 | 74.83 341 | 84.37 337 | 90.70 316 | 71.10 348 | 83.09 376 | 89.67 352 | 72.81 357 | 73.93 359 | 83.13 368 | 60.79 330 | 93.70 343 | 68.54 335 | 50.84 389 | 88.30 368 |
|
| testdata | | | | | 90.49 202 | 96.40 89 | 77.89 269 | | 95.37 186 | 72.51 358 | 93.63 52 | 96.69 66 | 82.08 99 | 97.65 182 | 83.08 190 | 97.39 82 | 95.94 161 |
|
| SSC-MVS | | | 67.06 348 | 66.56 350 | 68.56 372 | 80.54 381 | 40.06 400 | 87.77 343 | 77.37 393 | 72.38 359 | 61.75 381 | 82.66 372 | 63.37 310 | 86.45 383 | 24.48 396 | 48.69 391 | 79.16 383 |
|
| PMMVS | | | 85.71 256 | 84.96 254 | 87.95 285 | 88.90 344 | 77.09 285 | 88.68 332 | 90.06 343 | 72.32 360 | 86.47 189 | 90.76 290 | 72.15 218 | 94.40 330 | 81.78 218 | 93.49 159 | 92.36 314 |
|
| Patchmtry | | | 82.71 291 | 80.93 297 | 88.06 282 | 90.05 330 | 76.37 297 | 84.74 369 | 91.96 303 | 72.28 361 | 81.32 299 | 87.87 338 | 71.03 228 | 95.50 316 | 68.97 333 | 80.15 331 | 92.32 316 |
|
| tpm2 | | | 84.08 280 | 82.94 283 | 87.48 295 | 91.39 284 | 71.27 345 | 89.23 324 | 90.37 336 | 71.95 362 | 84.64 238 | 89.33 314 | 67.30 273 | 96.55 269 | 75.17 295 | 87.09 256 | 94.63 209 |
|
| UnsupCasMVSNet_bld | | | 76.23 338 | 73.27 342 | 85.09 333 | 83.79 375 | 72.92 325 | 85.65 361 | 93.47 263 | 71.52 363 | 68.84 374 | 79.08 378 | 49.77 368 | 93.21 349 | 66.81 350 | 60.52 382 | 89.13 363 |
|
| RPMNet | | | 83.95 283 | 81.53 292 | 91.21 171 | 90.58 319 | 79.34 236 | 85.24 364 | 96.76 75 | 71.44 364 | 85.55 208 | 82.97 371 | 70.87 231 | 98.91 80 | 61.01 367 | 89.36 215 | 95.40 182 |
|
| 旧先验2 | | | | | | | | 93.36 219 | | 71.25 365 | 94.37 39 | | | 97.13 234 | 86.74 146 | | |
|
| 新几何1 | | | | | 93.10 79 | 97.30 66 | 84.35 92 | | 95.56 168 | 71.09 366 | 91.26 113 | 96.24 85 | 82.87 85 | 98.86 84 | 79.19 258 | 98.10 62 | 96.07 157 |
|
| test_vis1_rt | | | 77.96 333 | 76.46 333 | 82.48 348 | 85.89 367 | 71.74 342 | 90.25 301 | 78.89 386 | 71.03 367 | 71.30 369 | 81.35 375 | 42.49 381 | 91.05 369 | 84.55 173 | 82.37 297 | 84.65 373 |
|
| Patchmatch-test | | | 81.37 307 | 79.30 315 | 87.58 291 | 90.92 306 | 74.16 317 | 80.99 380 | 87.68 362 | 70.52 368 | 76.63 343 | 88.81 321 | 71.21 225 | 92.76 354 | 60.01 371 | 86.93 258 | 95.83 167 |
|
| 114514_t | | | 89.51 133 | 88.50 148 | 92.54 112 | 98.11 36 | 81.99 159 | 95.16 116 | 96.36 102 | 70.19 369 | 85.81 202 | 95.25 124 | 76.70 155 | 98.63 102 | 82.07 210 | 96.86 95 | 97.00 120 |
|
| N_pmnet | | | 68.89 346 | 68.44 348 | 70.23 367 | 89.07 342 | 28.79 404 | 88.06 338 | 19.50 404 | 69.47 370 | 71.86 367 | 84.93 360 | 61.24 326 | 91.75 363 | 54.70 379 | 77.15 349 | 90.15 351 |
|
| OpenMVS_ROB |  | 74.94 19 | 79.51 325 | 77.03 332 | 86.93 309 | 87.00 361 | 76.23 299 | 92.33 260 | 90.74 333 | 68.93 371 | 74.52 356 | 88.23 332 | 49.58 369 | 96.62 259 | 57.64 375 | 84.29 275 | 87.94 370 |
|
| test222 | | | | | | 96.55 84 | 81.70 166 | 92.22 264 | 95.01 201 | 68.36 372 | 90.20 124 | 96.14 92 | 80.26 114 | | | 97.80 74 | 96.05 159 |
|
| MVS | | | 87.44 205 | 86.10 222 | 91.44 163 | 92.61 244 | 83.62 109 | 92.63 249 | 95.66 162 | 67.26 373 | 81.47 295 | 92.15 240 | 77.95 143 | 98.22 139 | 79.71 249 | 95.48 118 | 92.47 309 |
|
| tpm cat1 | | | 81.96 296 | 80.27 302 | 87.01 307 | 91.09 297 | 71.02 349 | 87.38 349 | 91.53 314 | 66.25 374 | 80.17 311 | 86.35 353 | 68.22 270 | 96.15 290 | 69.16 332 | 82.29 298 | 93.86 254 |
|
| CVMVSNet | | | 84.69 275 | 84.79 259 | 84.37 337 | 91.84 267 | 64.92 373 | 93.70 209 | 91.47 316 | 66.19 375 | 86.16 199 | 95.28 122 | 67.18 276 | 93.33 347 | 80.89 233 | 90.42 196 | 94.88 202 |
|
| test_f | | | 71.95 343 | 70.87 345 | 75.21 362 | 74.21 389 | 59.37 385 | 85.07 366 | 85.82 367 | 65.25 376 | 70.42 371 | 83.13 368 | 23.62 390 | 82.93 390 | 78.32 264 | 71.94 364 | 83.33 375 |
|
| CMPMVS |  | 59.16 21 | 80.52 314 | 79.20 318 | 84.48 336 | 83.98 374 | 67.63 366 | 89.95 312 | 93.84 256 | 64.79 377 | 66.81 376 | 91.14 278 | 57.93 344 | 95.17 321 | 76.25 286 | 88.10 237 | 90.65 346 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| EU-MVSNet | | | 81.32 308 | 80.95 296 | 82.42 349 | 88.50 348 | 63.67 377 | 93.32 221 | 91.33 318 | 64.02 378 | 80.57 308 | 92.83 218 | 61.21 327 | 92.27 358 | 76.34 285 | 80.38 330 | 91.32 335 |
|
| test_vis3_rt | | | 65.12 350 | 62.60 352 | 72.69 364 | 71.44 390 | 60.71 382 | 87.17 350 | 65.55 397 | 63.80 379 | 53.22 385 | 65.65 389 | 14.54 399 | 89.44 376 | 76.65 281 | 65.38 376 | 67.91 388 |
|
| new_pmnet | | | 72.15 342 | 70.13 346 | 78.20 358 | 82.95 378 | 65.68 369 | 83.91 372 | 82.40 379 | 62.94 380 | 64.47 377 | 79.82 377 | 42.85 380 | 86.26 384 | 57.41 376 | 74.44 358 | 82.65 378 |
|
| DSMNet-mixed | | | 76.94 336 | 76.29 335 | 78.89 356 | 83.10 377 | 56.11 392 | 87.78 342 | 79.77 384 | 60.65 381 | 75.64 349 | 88.71 324 | 61.56 322 | 88.34 379 | 60.07 370 | 89.29 217 | 92.21 319 |
|
| pmmvs3 | | | 71.81 344 | 68.71 347 | 81.11 351 | 75.86 386 | 70.42 354 | 86.74 353 | 83.66 375 | 58.95 382 | 68.64 375 | 80.89 376 | 36.93 383 | 89.52 375 | 63.10 362 | 63.59 379 | 83.39 374 |
|
| MVS-HIRNet | | | 73.70 341 | 72.20 344 | 78.18 359 | 91.81 270 | 56.42 391 | 82.94 377 | 82.58 378 | 55.24 383 | 68.88 373 | 66.48 387 | 55.32 353 | 95.13 322 | 58.12 374 | 88.42 233 | 83.01 376 |
|
| PMMVS2 | | | 59.60 353 | 56.40 355 | 69.21 370 | 68.83 394 | 46.58 396 | 73.02 389 | 77.48 392 | 55.07 384 | 49.21 387 | 72.95 385 | 17.43 397 | 80.04 392 | 49.32 383 | 44.33 392 | 80.99 380 |
|
| APD_test1 | | | 69.04 345 | 66.26 351 | 77.36 361 | 80.51 382 | 62.79 380 | 85.46 363 | 83.51 376 | 54.11 385 | 59.14 383 | 84.79 362 | 23.40 392 | 89.61 374 | 55.22 378 | 70.24 366 | 79.68 382 |
|
| FPMVS | | | 64.63 351 | 62.55 353 | 70.88 365 | 70.80 391 | 56.71 387 | 84.42 370 | 84.42 373 | 51.78 386 | 49.57 386 | 81.61 374 | 23.49 391 | 81.48 391 | 40.61 391 | 76.25 354 | 74.46 384 |
|
| LCM-MVSNet | | | 66.00 349 | 62.16 354 | 77.51 360 | 64.51 397 | 58.29 386 | 83.87 373 | 90.90 329 | 48.17 387 | 54.69 384 | 73.31 384 | 16.83 398 | 86.75 381 | 65.47 352 | 61.67 381 | 87.48 372 |
|
| DeepMVS_CX |  | | | | 56.31 377 | 74.23 388 | 51.81 394 | | 56.67 402 | 44.85 388 | 48.54 388 | 75.16 381 | 27.87 388 | 58.74 398 | 40.92 390 | 52.22 387 | 58.39 391 |
|
| Gipuma |  | | 57.99 357 | 54.91 359 | 67.24 373 | 88.51 346 | 65.59 370 | 52.21 392 | 90.33 338 | 43.58 389 | 42.84 392 | 51.18 393 | 20.29 395 | 85.07 385 | 34.77 392 | 70.45 365 | 51.05 392 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 59.54 354 | 56.11 357 | 69.85 368 | 69.28 392 | 56.61 389 | 80.37 382 | 76.55 394 | 42.58 390 | 45.68 389 | 75.61 379 | 11.26 400 | 84.18 386 | 43.20 388 | 60.44 383 | 68.75 386 |
|
| APD_test2 | | | 59.54 354 | 56.11 357 | 69.85 368 | 69.28 392 | 56.61 389 | 80.37 382 | 76.55 394 | 42.58 390 | 45.68 389 | 75.61 379 | 11.26 400 | 84.18 386 | 43.20 388 | 60.44 383 | 68.75 386 |
|
| PMVS |  | 47.18 22 | 52.22 358 | 48.46 362 | 63.48 374 | 45.72 402 | 46.20 397 | 73.41 388 | 78.31 388 | 41.03 392 | 30.06 395 | 65.68 388 | 6.05 402 | 83.43 389 | 30.04 393 | 65.86 375 | 60.80 389 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 43.23 361 | 42.29 363 | 46.03 378 | 65.58 396 | 37.41 401 | 73.51 387 | 64.62 398 | 33.99 393 | 28.47 397 | 47.87 394 | 19.90 396 | 67.91 395 | 22.23 397 | 24.45 394 | 32.77 393 |
|
| EMVS | | | 42.07 362 | 41.12 364 | 44.92 379 | 63.45 398 | 35.56 403 | 73.65 386 | 63.48 399 | 33.05 394 | 26.88 398 | 45.45 395 | 21.27 394 | 67.14 396 | 19.80 398 | 23.02 396 | 32.06 394 |
|
| MVE |  | 39.65 23 | 43.39 360 | 38.59 366 | 57.77 375 | 56.52 399 | 48.77 395 | 55.38 391 | 58.64 401 | 29.33 395 | 28.96 396 | 52.65 392 | 4.68 403 | 64.62 397 | 28.11 394 | 33.07 393 | 59.93 390 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 50.52 359 | 48.47 361 | 56.66 376 | 52.26 401 | 18.98 406 | 41.51 394 | 81.40 381 | 10.10 396 | 44.59 391 | 75.01 382 | 28.51 387 | 68.16 394 | 53.54 380 | 49.31 390 | 82.83 377 |
|
| wuyk23d | | | 21.27 365 | 20.48 368 | 23.63 381 | 68.59 395 | 36.41 402 | 49.57 393 | 6.85 405 | 9.37 397 | 7.89 399 | 4.46 401 | 4.03 404 | 31.37 399 | 17.47 399 | 16.07 398 | 3.12 396 |
|
| tmp_tt | | | 35.64 363 | 39.24 365 | 24.84 380 | 14.87 403 | 23.90 405 | 62.71 390 | 51.51 403 | 6.58 398 | 36.66 394 | 62.08 391 | 44.37 378 | 30.34 400 | 52.40 381 | 22.00 397 | 20.27 395 |
|
| testmvs | | | 8.92 366 | 11.52 369 | 1.12 383 | 1.06 404 | 0.46 408 | 86.02 357 | 0.65 406 | 0.62 399 | 2.74 400 | 9.52 399 | 0.31 406 | 0.45 402 | 2.38 400 | 0.39 399 | 2.46 398 |
|
| test123 | | | 8.76 367 | 11.22 370 | 1.39 382 | 0.85 405 | 0.97 407 | 85.76 360 | 0.35 407 | 0.54 400 | 2.45 401 | 8.14 400 | 0.60 405 | 0.48 401 | 2.16 401 | 0.17 400 | 2.71 397 |
|
| EGC-MVSNET | | | 61.97 352 | 56.37 356 | 78.77 357 | 89.63 338 | 73.50 321 | 89.12 326 | 82.79 377 | 0.21 401 | 1.24 402 | 84.80 361 | 39.48 382 | 90.04 373 | 44.13 386 | 75.94 356 | 72.79 385 |
|
| test_blank | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet_test | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| DCPMVS | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| cdsmvs_eth3d_5k | | | 22.14 364 | 29.52 367 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 95.76 152 | 0.00 402 | 0.00 403 | 94.29 164 | 75.66 170 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| pcd_1.5k_mvsjas | | | 6.64 369 | 8.86 372 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 79.70 121 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet-low-res | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uncertanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| Regformer | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| ab-mvs-re | | | 7.82 368 | 10.43 371 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 93.88 185 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| WAC-MVS | | | | | | | 64.08 375 | | | | | | | | 59.14 372 | | |
|
| MSC_two_6792asdad | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 63 | | | | | 99.61 4 | 96.03 14 | 99.06 9 | 99.07 5 |
|
| No_MVS | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 63 | | | | | 99.61 4 | 96.03 14 | 99.06 9 | 99.07 5 |
|
| eth-test2 | | | | | | 0.00 406 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 406 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 96.21 3 | 98.00 42 | 90.85 3 | 97.13 14 | | | | 97.08 49 | 92.59 2 | 98.94 78 | 92.25 63 | 98.99 14 | 98.84 14 |
|
| test_0728_SECOND | | | | | 95.01 17 | 98.79 2 | 86.43 38 | 97.09 16 | 97.49 6 | | | | | 99.61 4 | 95.62 21 | 99.08 7 | 98.99 9 |
|
| GSMVS | | | | | | | | | | | | | | | | | 96.12 153 |
|
| test_part2 | | | | | | 98.55 12 | 87.22 18 | | | | 96.40 17 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 71.70 221 | | | | 96.12 153 |
|
| sam_mvs | | | | | | | | | | | | | 70.60 234 | | | | |
|
| ambc | | | | | 83.06 345 | 79.99 383 | 63.51 378 | 77.47 385 | 92.86 273 | | 74.34 358 | 84.45 363 | 28.74 386 | 95.06 325 | 73.06 311 | 68.89 372 | 90.61 347 |
|
| MTGPA |  | | | | | | | | 96.97 50 | | | | | | | | |
|
| test_post1 | | | | | | | | 88.00 340 | | | | 9.81 398 | 69.31 256 | 95.53 312 | 76.65 281 | | |
|
| test_post | | | | | | | | | | | | 10.29 397 | 70.57 238 | 95.91 300 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 83.76 365 | 71.53 222 | 96.48 272 | | | |
|
| GG-mvs-BLEND | | | | | 87.94 286 | 89.73 337 | 77.91 267 | 87.80 341 | 78.23 389 | | 80.58 307 | 83.86 364 | 59.88 336 | 95.33 320 | 71.20 318 | 92.22 181 | 90.60 349 |
|
| MTMP | | | | | | | | 96.16 53 | 60.64 400 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 91.91 78 | 98.71 32 | 98.07 66 |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.54 102 | 98.68 37 | 98.27 52 |
|
| agg_prior | | | | | | 97.38 63 | 85.92 56 | | 96.72 81 | | 92.16 89 | | | 98.97 75 | | | |
|
| test_prior4 | | | | | | | 85.96 53 | 94.11 181 | | | | | | | | | |
|
| test_prior | | | | | 93.82 60 | 97.29 67 | 84.49 84 | | 96.88 61 | | | | | 98.87 82 | | | 98.11 65 |
|
| 新几何2 | | | | | | | | 93.11 234 | | | | | | | | | |
|
| 旧先验1 | | | | | | 96.79 76 | 81.81 164 | | 95.67 160 | | | 96.81 63 | 86.69 37 | | | 97.66 79 | 96.97 122 |
|
| 原ACMM2 | | | | | | | | 92.94 241 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 98.75 93 | 78.30 265 | | |
|
| segment_acmp | | | | | | | | | | | | | 87.16 36 | | | | |
|
| test12 | | | | | 94.34 49 | 97.13 70 | 86.15 47 | | 96.29 105 | | 91.04 115 | | 85.08 57 | 99.01 63 | | 98.13 61 | 97.86 80 |
|
| plane_prior7 | | | | | | 94.70 165 | 82.74 141 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 94.52 175 | 82.75 139 | | | | | | 74.23 187 | | | | |
|
| plane_prior5 | | | | | | | | | 96.22 115 | | | | | 98.12 144 | 88.15 124 | 89.99 200 | 94.63 209 |
|
| plane_prior4 | | | | | | | | | | | | 94.86 140 | | | | | |
|
| plane_prior1 | | | | | | 94.59 170 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 408 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 408 | | | | | | | | |
|
| door-mid | | | | | | | | | 85.49 368 | | | | | | | | |
|
| lessismore_v0 | | | | | 86.04 321 | 88.46 349 | 68.78 361 | | 80.59 383 | | 73.01 363 | 90.11 301 | 55.39 352 | 96.43 277 | 75.06 297 | 65.06 377 | 92.90 297 |
|
| test11 | | | | | | | | | 96.57 92 | | | | | | | | |
|
| door | | | | | | | | | 85.33 370 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 81.56 168 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.11 143 | | |
|
| HQP4-MVS | | | | | | | | | | | 85.43 221 | | | 97.96 165 | | | 94.51 219 |
|
| HQP3-MVS | | | | | | | | | 96.04 131 | | | | | | | 89.77 209 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.83 197 | | | | |
|
| NP-MVS | | | | | | 94.37 183 | 82.42 151 | | | | | 93.98 178 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 249 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.01 240 | |
|
| Test By Simon | | | | | | | | | | | | | 80.02 116 | | | | |
|