This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM95.68 588.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
MVS_030494.60 1794.38 2495.23 1195.41 12987.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
EPNet91.79 8191.02 9194.10 5290.10 32885.25 6996.03 6692.05 29792.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC94.81 1494.69 1795.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
CS-MVS-test94.02 3894.29 2893.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
UA-Net92.83 6892.54 7193.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
CANet93.54 5093.20 6094.55 4295.65 12085.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS94.12 3694.44 2193.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
MTAPA94.42 2594.22 3295.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
EI-MVSNet-Vis-set93.01 6692.92 6593.29 7195.01 14683.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
3Dnovator+87.14 492.42 7591.37 8395.55 795.63 12188.73 697.07 1896.77 7490.84 1684.02 25896.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
HQP_MVS90.60 10890.19 10291.82 14794.70 16582.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20094.63 209
plane_prior295.85 7590.81 17
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
DELS-MVS93.43 5793.25 5893.97 5495.42 12885.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETV-MVS92.74 7092.66 6992.97 8895.20 13984.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 140
EI-MVSNet-UG-set92.74 7092.62 7093.12 7894.86 15783.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
XVS94.45 2194.32 2594.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
X-MVStestdata88.31 17386.13 21994.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 39685.02 5999.49 2691.99 7498.56 4898.47 33
EC-MVSNet93.44 5493.71 5092.63 10795.21 13882.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
SD-MVS94.96 1295.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 24894.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
casdiffmvs_mvgpermissive92.96 6792.83 6793.35 7094.59 17083.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
plane_prior382.75 13990.26 3386.91 180
DeepPCF-MVS89.96 194.20 3394.77 1692.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
MSLP-MVS++93.72 4794.08 3792.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 131
canonicalmvs93.27 6092.75 6894.85 2595.70 11987.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
Vis-MVSNetpermissive91.75 8391.23 8693.29 7195.32 13183.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet88.84 15887.95 16491.49 16092.68 24383.01 13294.92 13096.31 10489.88 3985.53 21193.85 18776.63 15796.96 24481.91 21479.87 33594.50 222
test_fmvsm_n_192094.71 1695.11 1093.50 6995.79 11484.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
h-mvs3390.80 9890.15 10492.75 10096.01 10482.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 34496.60 136
hse-mvs289.88 12589.34 12491.51 15994.83 15981.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35195.74 171
UniMVSNet_NR-MVSNet89.92 12389.29 12691.81 14993.39 22183.72 10494.43 16197.12 4189.80 4186.46 19093.32 20083.16 7997.23 22784.92 16681.02 31894.49 224
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
alignmvs93.08 6592.50 7294.81 3195.62 12287.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
TSAR-MVS + GP.93.66 4893.41 5594.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
IS-MVSNet91.43 8891.09 9092.46 11595.87 11381.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
plane_prior82.73 14295.21 11189.66 4889.88 205
casdiffmvspermissive92.51 7392.43 7392.74 10194.41 18281.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DU-MVS89.34 14488.50 14891.85 14693.04 23183.72 10494.47 15896.59 9089.50 5086.46 19093.29 20377.25 14997.23 22784.92 16681.02 31894.59 212
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
CANet_DTU90.26 11289.41 12292.81 9693.46 21983.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 143
DeepC-MVS_fast89.43 294.04 3793.79 4594.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n94.60 1794.81 1593.98 5394.62 16984.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
UGNet89.95 12188.95 13392.95 9094.51 17683.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30498.78 9183.92 18196.31 10696.74 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.27 11190.18 10390.53 19893.71 21079.85 22495.77 8097.59 389.31 5686.27 19694.67 15181.93 10397.01 24284.26 17688.09 23994.71 208
test_fmvsmconf0.1_n94.20 3394.31 2793.88 5792.46 24784.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
UniMVSNet (Re)89.80 12689.07 13092.01 13093.60 21584.52 8394.78 13997.47 1189.26 5886.44 19392.32 23482.10 9897.39 21484.81 16980.84 32294.12 239
baseline92.39 7692.29 7592.69 10594.46 17981.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
3Dnovator86.66 591.73 8490.82 9594.44 4494.59 17086.37 4097.18 1297.02 4789.20 6084.31 25496.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
VNet92.24 7791.91 7893.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
FIs90.51 10990.35 9990.99 18693.99 19980.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22685.18 16388.31 23694.76 207
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsmconf0.01_n93.19 6393.02 6393.71 6589.25 34084.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
NR-MVSNet88.58 16887.47 17591.93 13893.04 23184.16 9594.77 14096.25 11289.05 6580.04 31693.29 20379.02 13097.05 24081.71 22180.05 33294.59 212
MP-MVScopyleft94.25 2894.07 3894.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mvsmamba89.96 12089.50 11891.33 16892.90 23881.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 22794.51 219
DeepC-MVS88.79 393.31 5992.99 6494.26 5196.07 10285.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmvis_n_192093.44 5493.55 5493.10 7993.67 21384.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 144
OPM-MVS90.12 11489.56 11791.82 14793.14 22683.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 19993.65 269
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP-NCC94.17 18994.39 16588.81 7285.43 221
ACMP_Plane94.17 18994.39 16588.81 7285.43 221
HQP-MVS89.80 12689.28 12791.34 16794.17 18981.56 16894.39 16596.04 13188.81 7285.43 22193.97 17973.83 19797.96 16587.11 14389.77 20994.50 222
MVS_111021_HR93.45 5393.31 5693.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
SDMVSNet90.19 11389.61 11691.93 13896.00 10583.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23688.90 11789.85 20695.63 176
sd_testset88.59 16787.85 16790.83 19096.00 10580.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27296.43 27779.64 25189.85 20695.63 176
mPP-MVS93.99 4093.78 4694.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
VPNet88.20 17687.47 17590.39 20993.56 21679.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23184.05 17980.53 32794.56 215
HFP-MVS94.52 1994.40 2294.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
ACMMPR94.43 2394.28 2994.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
region2R94.43 2394.27 3194.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
WR-MVS88.38 17087.67 17090.52 20093.30 22380.18 20893.26 22895.96 13788.57 8385.47 21792.81 22076.12 15996.91 24881.24 22682.29 29894.47 227
CP-MVS94.34 2694.21 3394.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
EIA-MVS91.95 7991.94 7791.98 13495.16 14080.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
CP-MVSNet87.63 19487.26 18288.74 26693.12 22776.59 29395.29 10596.58 9188.43 8683.49 27292.98 21475.28 17395.83 30378.97 25981.15 31493.79 257
VDD-MVS90.74 10089.92 11293.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31798.64 10090.95 9592.62 17697.93 76
dcpmvs_293.49 5194.19 3591.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
ACMMPcopyleft93.24 6192.88 6694.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
nrg03091.08 9690.39 9893.17 7693.07 22986.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 28994.96 197
ACMMP_NAP94.74 1594.56 1895.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
ZNCC-MVS94.47 2094.28 2995.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
GST-MVS94.21 3193.97 4294.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
RRT_MVS89.09 14988.62 14590.49 20292.85 23979.65 22896.41 3994.41 23288.22 9485.50 21494.77 14669.36 25397.31 21789.33 11286.73 25994.51 219
PS-CasMVS87.32 21186.88 18888.63 26992.99 23476.33 29895.33 10096.61 8988.22 9483.30 27793.07 21273.03 20995.79 30678.36 26381.00 32093.75 264
SR-MVS94.23 3094.17 3694.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
MVS_111021_LR92.47 7492.29 7592.98 8795.99 10884.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 132
TSAR-MVS + MP.94.85 1394.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_s_conf0.5_n93.76 4594.06 4092.86 9495.62 12283.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
test111189.10 14788.64 14290.48 20495.53 12674.97 30896.08 6184.89 37288.13 9990.16 12696.65 7063.29 31198.10 14686.14 15196.90 9298.39 39
patch_mono-293.74 4694.32 2592.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
PEN-MVS86.80 23086.27 21688.40 27292.32 25175.71 30495.18 11396.38 10187.97 10282.82 28193.15 20873.39 20495.92 29876.15 28879.03 34293.59 270
testdata192.15 26687.94 103
VPA-MVSNet89.62 12988.96 13291.60 15593.86 20382.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21187.32 13982.86 29494.52 217
WR-MVS_H87.80 18687.37 17789.10 25693.23 22478.12 26395.61 9297.30 2987.90 10583.72 26492.01 25079.65 12596.01 29576.36 28480.54 32693.16 288
CLD-MVS89.47 13588.90 13691.18 17394.22 18882.07 15892.13 26796.09 12687.90 10585.37 22792.45 23074.38 18597.56 19087.15 14190.43 19593.93 248
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test250687.21 21886.28 21590.02 22795.62 12273.64 32096.25 4871.38 39687.89 10790.45 12096.65 7055.29 35498.09 15486.03 15596.94 9098.33 43
ECVR-MVScopyleft89.09 14988.53 14690.77 19395.62 12275.89 30196.16 5384.22 37487.89 10790.20 12496.65 7063.19 31398.10 14685.90 15696.94 9098.33 43
MG-MVS91.77 8291.70 8192.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
LCM-MVSNet-Re88.30 17488.32 15588.27 27694.71 16472.41 33793.15 23190.98 32787.77 11079.25 32591.96 25178.35 14095.75 30783.04 19195.62 11496.65 135
SF-MVS94.97 1194.90 1495.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
Effi-MVS+-dtu88.65 16488.35 15289.54 24593.33 22276.39 29694.47 15894.36 23587.70 11285.43 22189.56 31373.45 20297.26 22485.57 16191.28 18694.97 194
fmvsm_s_conf0.1_n93.46 5293.66 5292.85 9593.75 20983.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
Vis-MVSNet (Re-imp)89.59 13189.44 12090.03 22595.74 11675.85 30295.61 9290.80 33287.66 11587.83 16095.40 12076.79 15396.46 27578.37 26296.73 9797.80 84
SR-MVS-dyc-post93.82 4393.82 4493.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
RE-MVS-def93.68 5197.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
PGM-MVS93.96 4193.72 4994.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
DTE-MVSNet86.11 24885.48 24287.98 28491.65 27874.92 30994.93 12995.75 15387.36 11982.26 28693.04 21372.85 21095.82 30474.04 30477.46 34893.20 286
iter_conf_final89.42 13888.69 14191.60 15595.12 14382.93 13595.75 8192.14 29487.32 12087.12 17594.07 17067.09 27797.55 19190.61 10189.01 22294.32 231
fmvsm_s_conf0.5_n_a93.57 4993.76 4893.00 8695.02 14583.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
thres100view90087.63 19486.71 19690.38 21196.12 9778.55 25095.03 12491.58 31187.15 12288.06 15592.29 23668.91 26298.10 14670.13 32791.10 18794.48 225
MCST-MVS94.45 2194.20 3495.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
Effi-MVS+91.59 8791.11 8893.01 8594.35 18683.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
thres600view787.65 19186.67 19890.59 19596.08 10178.72 24694.88 13291.58 31187.06 12588.08 15492.30 23568.91 26298.10 14670.05 33091.10 18794.96 197
diffmvspermissive91.37 9091.23 8691.77 15093.09 22880.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20292.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize93.78 4493.77 4793.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
OMC-MVS91.23 9290.62 9793.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 130
tfpn200view987.58 19986.64 19990.41 20895.99 10878.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32791.10 18794.48 225
thres40087.62 19686.64 19990.57 19695.99 10878.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32791.10 18794.96 197
HPM-MVScopyleft94.02 3893.88 4394.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
LFMVS90.08 11589.13 12992.95 9096.71 7782.32 15596.08 6189.91 34786.79 13292.15 9096.81 6362.60 31598.34 12987.18 14093.90 15098.19 58
fmvsm_s_conf0.1_n_a93.19 6393.26 5792.97 8892.49 24583.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
baseline188.10 17887.28 18090.57 19694.96 15080.07 21394.27 17291.29 32086.74 13487.41 16894.00 17776.77 15496.20 28780.77 23479.31 34095.44 180
LPG-MVS_test89.45 13688.90 13691.12 17594.47 17781.49 17295.30 10396.14 12086.73 13585.45 21895.16 13069.89 24598.10 14687.70 13289.23 21893.77 262
LGP-MVS_train91.12 17594.47 17781.49 17296.14 12086.73 13585.45 21895.16 13069.89 24598.10 14687.70 13289.23 21893.77 262
EPNet_dtu86.49 24485.94 23088.14 28190.24 32672.82 32794.11 18192.20 29186.66 13779.42 32492.36 23373.52 20095.81 30571.26 31793.66 15395.80 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_l_conf0.5_n94.29 2794.46 2093.79 6395.28 13385.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
ACMP84.23 889.01 15588.35 15290.99 18694.73 16281.27 17895.07 12195.89 14486.48 13983.67 26694.30 16369.33 25497.99 16387.10 14588.55 22893.72 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_Test91.31 9191.11 8891.93 13894.37 18380.14 21093.46 21795.80 14986.46 14091.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
thres20087.21 21886.24 21790.12 22195.36 13078.53 25193.26 22892.10 29586.42 14188.00 15791.11 27969.24 25898.00 16269.58 33191.04 19293.83 256
PAPM_NR91.22 9390.78 9692.52 11397.60 5681.46 17494.37 16996.24 11386.39 14287.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
fmvsm_l_conf0.5_n_a94.20 3394.40 2293.60 6795.29 13284.98 7195.61 9296.28 10886.31 14396.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
PS-MVSNAJ91.18 9490.92 9291.96 13695.26 13682.60 14992.09 26995.70 15886.27 14491.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 233
MP-MVS-pluss94.21 3194.00 4194.85 2598.17 3386.65 3094.82 13697.17 3986.26 14592.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PS-MVSNAJss89.97 11989.62 11591.02 18391.90 26580.85 19295.26 10895.98 13486.26 14586.21 19794.29 16479.70 12197.65 18288.87 11988.10 23794.57 214
iter_conf0588.85 15788.08 16191.17 17494.27 18781.64 16795.18 11392.15 29386.23 14787.28 17294.07 17063.89 30897.55 19190.63 10089.00 22394.32 231
test_vis1_n_192089.39 14289.84 11388.04 28392.97 23572.64 33294.71 14496.03 13386.18 14891.94 9796.56 7861.63 32095.74 30893.42 4195.11 12995.74 171
EPP-MVSNet91.70 8591.56 8292.13 12995.88 11180.50 20197.33 795.25 19086.15 14989.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
XVG-OURS89.40 14188.70 14091.52 15894.06 19281.46 17491.27 28596.07 12886.14 15088.89 14395.77 10868.73 26597.26 22487.39 13789.96 20295.83 167
9.1494.47 1997.79 4996.08 6197.44 1586.13 15195.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
xiu_mvs_v2_base91.13 9590.89 9491.86 14494.97 14982.42 15192.24 26395.64 16586.11 15291.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 234
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15397.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+-dtu87.44 20586.72 19589.63 24392.04 25977.68 27894.03 19093.94 24985.81 15482.42 28491.32 27070.33 24197.06 23980.33 24390.23 19894.14 238
XVG-OURS-SEG-HR89.95 12189.45 11991.47 16294.00 19881.21 18291.87 27296.06 13085.78 15588.55 14795.73 11074.67 18397.27 22288.71 12089.64 21195.91 162
HPM-MVS_fast93.40 5893.22 5993.94 5698.36 2584.83 7497.15 1396.80 7185.77 15692.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
EI-MVSNet89.10 14788.86 13889.80 23791.84 26778.30 25993.70 20995.01 20185.73 15787.15 17395.28 12279.87 11897.21 22983.81 18387.36 25293.88 251
IterMVS-LS88.36 17287.91 16689.70 24193.80 20678.29 26093.73 20695.08 20085.73 15784.75 23691.90 25379.88 11796.92 24783.83 18282.51 29593.89 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
bld_raw_dy_0_6487.60 19886.73 19490.21 21591.72 27280.26 20795.09 12088.61 35685.68 15985.55 20894.38 15963.93 30796.66 25687.73 13187.84 24493.72 266
APD-MVScopyleft94.24 2994.07 3894.75 3598.06 3986.90 2295.88 7496.94 5585.68 15995.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_yl90.69 10290.02 11092.71 10295.72 11782.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
DCV-MVSNet90.69 10290.02 11092.71 10295.72 11782.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
K. test v381.59 30380.15 30585.91 32589.89 33469.42 35992.57 25187.71 36185.56 16373.44 36189.71 31055.58 35095.52 31377.17 27769.76 36792.78 302
SixPastTwentyTwo83.91 28482.90 28486.92 31090.99 30070.67 35293.48 21591.99 30085.54 16477.62 33792.11 24460.59 33196.87 25076.05 28977.75 34593.20 286
ITE_SJBPF88.24 27891.88 26677.05 28692.92 27185.54 16480.13 31493.30 20257.29 34696.20 28772.46 31384.71 27291.49 332
BH-RMVSNet88.37 17187.48 17491.02 18395.28 13379.45 23292.89 24293.07 26985.45 16686.91 18094.84 14470.35 24097.76 17473.97 30594.59 13895.85 165
IterMVS-SCA-FT85.45 25884.53 26488.18 28091.71 27476.87 28890.19 30692.65 28185.40 16781.44 29690.54 29266.79 28295.00 32681.04 22881.05 31692.66 304
GA-MVS86.61 23685.27 24890.66 19491.33 28878.71 24790.40 29893.81 25785.34 16885.12 23189.57 31261.25 32597.11 23580.99 23189.59 21296.15 150
ACMM84.12 989.14 14688.48 15191.12 17594.65 16881.22 18195.31 10196.12 12385.31 16985.92 20194.34 16070.19 24398.06 15885.65 15988.86 22594.08 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
xiu_mvs_v1_base90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
xiu_mvs_v1_base_debi90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
PHI-MVS93.89 4293.65 5394.62 4096.84 7586.43 3896.69 3297.49 685.15 17393.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
mvs_tets88.06 18187.28 18090.38 21190.94 30479.88 22295.22 11095.66 16285.10 17484.21 25693.94 18063.53 30997.40 21188.50 12288.40 23493.87 252
tttt051788.61 16587.78 16891.11 17894.96 15077.81 27295.35 9989.69 35185.09 17588.05 15694.59 15566.93 27998.48 11183.27 18992.13 18297.03 118
XVG-ACMP-BASELINE86.00 24984.84 25889.45 24991.20 29078.00 26591.70 27795.55 16985.05 17682.97 27992.25 23854.49 35797.48 19782.93 19387.45 25192.89 298
jajsoiax88.24 17587.50 17390.48 20490.89 30880.14 21095.31 10195.65 16484.97 17784.24 25594.02 17565.31 29797.42 20488.56 12188.52 23093.89 249
FA-MVS(test-final)89.66 12888.91 13591.93 13894.57 17380.27 20591.36 28394.74 22284.87 17889.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
v2v48287.84 18487.06 18490.17 21790.99 30079.23 24394.00 19495.13 19584.87 17885.53 21192.07 24874.45 18497.45 20084.71 17181.75 30693.85 255
v14887.04 22486.32 21389.21 25290.94 30477.26 28393.71 20894.43 23084.84 18084.36 25090.80 28876.04 16197.05 24082.12 20979.60 33793.31 280
v887.50 20486.71 19689.89 23191.37 28579.40 23394.50 15495.38 18484.81 18183.60 26991.33 26876.05 16097.42 20482.84 19680.51 32992.84 300
BH-untuned88.60 16688.13 16090.01 22895.24 13778.50 25393.29 22694.15 24384.75 18284.46 24493.40 19775.76 16697.40 21177.59 27294.52 14194.12 239
OurMVSNet-221017-085.35 26284.64 26287.49 29490.77 31272.59 33494.01 19294.40 23384.72 18379.62 32393.17 20761.91 31996.72 25381.99 21281.16 31293.16 288
dmvs_re84.20 27983.22 28087.14 30691.83 26977.81 27290.04 30990.19 33984.70 18481.49 29489.17 31664.37 30391.13 36871.58 31685.65 26692.46 310
MVSFormer91.68 8691.30 8492.80 9793.86 20383.88 10195.96 7195.90 14284.66 18591.76 10394.91 13777.92 14497.30 21889.64 10997.11 8597.24 104
test_djsdf89.03 15388.64 14290.21 21590.74 31479.28 24095.96 7195.90 14284.66 18585.33 22992.94 21574.02 19397.30 21889.64 10988.53 22994.05 245
MVSTER88.84 15888.29 15690.51 20192.95 23680.44 20293.73 20695.01 20184.66 18587.15 17393.12 21072.79 21197.21 22987.86 12987.36 25293.87 252
v7n86.81 22985.76 23789.95 23090.72 31579.25 24295.07 12195.92 13984.45 18882.29 28590.86 28472.60 21497.53 19479.42 25680.52 32893.08 292
testing380.46 31579.59 31383.06 34593.44 22064.64 37493.33 22085.47 36984.34 18979.93 31890.84 28644.35 37992.39 35657.06 37787.56 24892.16 320
ET-MVSNet_ETH3D87.51 20285.91 23192.32 12293.70 21283.93 9992.33 26090.94 32884.16 19072.09 36592.52 22869.90 24495.85 30289.20 11488.36 23597.17 108
CSCG93.23 6293.05 6293.76 6498.04 4084.07 9696.22 4997.37 2184.15 19190.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
Baseline_NR-MVSNet87.07 22386.63 20188.40 27291.44 28077.87 27094.23 17692.57 28284.12 19285.74 20492.08 24677.25 14996.04 29282.29 20779.94 33391.30 336
UniMVSNet_ETH3D87.53 20186.37 21091.00 18592.44 24878.96 24594.74 14195.61 16684.07 19385.36 22894.52 15759.78 33797.34 21682.93 19387.88 24296.71 134
thisisatest053088.67 16387.61 17191.86 14494.87 15680.07 21394.63 14889.90 34884.00 19488.46 14993.78 18966.88 28198.46 11583.30 18892.65 17597.06 115
ab-mvs89.41 13988.35 15292.60 10895.15 14282.65 14792.20 26595.60 16783.97 19588.55 14793.70 19374.16 19198.21 14082.46 20389.37 21496.94 123
GeoE90.05 11689.43 12191.90 14395.16 14080.37 20495.80 7894.65 22683.90 19687.55 16794.75 14778.18 14297.62 18781.28 22593.63 15497.71 88
FMVSNet387.40 20786.11 22191.30 16993.79 20883.64 10894.20 17794.81 21883.89 19784.37 24791.87 25468.45 26896.56 26778.23 26685.36 26793.70 268
pm-mvs186.61 23685.54 24089.82 23491.44 28080.18 20895.28 10794.85 21483.84 19881.66 29392.62 22572.45 21796.48 27279.67 25078.06 34392.82 301
tt080586.92 22785.74 23990.48 20492.22 25279.98 22095.63 9194.88 21283.83 19984.74 23792.80 22157.61 34597.67 17985.48 16284.42 27493.79 257
v1087.25 21486.38 20989.85 23291.19 29179.50 23094.48 15595.45 17883.79 20083.62 26891.19 27375.13 17497.42 20481.94 21380.60 32492.63 305
testgi80.94 31380.20 30483.18 34387.96 35666.29 36891.28 28490.70 33483.70 20178.12 33292.84 21751.37 36590.82 37063.34 36082.46 29692.43 311
V4287.68 18986.86 18990.15 21990.58 31980.14 21094.24 17595.28 18983.66 20285.67 20591.33 26874.73 18197.41 20984.43 17581.83 30492.89 298
ZD-MVS98.15 3486.62 3297.07 4583.63 20394.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
GBi-Net87.26 21285.98 22791.08 17994.01 19583.10 12595.14 11794.94 20483.57 20484.37 24791.64 25866.59 28696.34 28378.23 26685.36 26793.79 257
test187.26 21285.98 22791.08 17994.01 19583.10 12595.14 11794.94 20483.57 20484.37 24791.64 25866.59 28696.34 28378.23 26685.36 26793.79 257
FMVSNet287.19 22085.82 23391.30 16994.01 19583.67 10694.79 13894.94 20483.57 20483.88 26192.05 24966.59 28696.51 27077.56 27385.01 27093.73 265
SCA86.32 24685.18 24989.73 24092.15 25476.60 29291.12 28891.69 30883.53 20785.50 21488.81 32166.79 28296.48 27276.65 28190.35 19796.12 153
PVSNet_BlendedMVS89.98 11889.70 11490.82 19196.12 9781.25 17993.92 19996.83 6683.49 20889.10 13992.26 23781.04 10998.85 8686.72 14887.86 24392.35 315
DPM-MVS92.58 7291.74 8095.08 1596.19 9589.31 592.66 24896.56 9383.44 20991.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
test-LLR85.87 25285.41 24387.25 30090.95 30271.67 34389.55 31689.88 34983.41 21084.54 24187.95 33567.25 27495.11 32381.82 21693.37 16494.97 194
test0.0.03 182.41 29481.69 29084.59 33588.23 35272.89 32690.24 30387.83 36083.41 21079.86 31989.78 30967.25 27488.99 37865.18 35483.42 28791.90 324
v114487.61 19786.79 19390.06 22491.01 29979.34 23693.95 19695.42 18383.36 21285.66 20691.31 27174.98 17797.42 20483.37 18782.06 30093.42 278
PVSNet_Blended_VisFu91.38 8990.91 9392.80 9796.39 9083.17 12294.87 13396.66 8583.29 21389.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 159
IB-MVS80.51 1585.24 26683.26 27891.19 17292.13 25679.86 22391.75 27591.29 32083.28 21480.66 30688.49 32761.28 32498.46 11580.99 23179.46 33895.25 187
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS84.88 27183.98 27187.60 29091.44 28076.03 30090.18 30792.41 28483.24 21581.06 30290.42 29666.60 28594.28 33479.46 25280.98 32192.48 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_cas_vis1_n_192088.83 16188.85 13988.78 26291.15 29576.72 29093.85 20294.93 20883.23 21692.81 7296.00 9661.17 32894.45 32891.67 8394.84 13195.17 189
Fast-Effi-MVS+89.41 13988.64 14291.71 15294.74 16180.81 19393.54 21395.10 19883.11 21786.82 18690.67 29179.74 12097.75 17780.51 24093.55 15696.57 138
WTY-MVS89.60 13088.92 13491.67 15395.47 12781.15 18392.38 25694.78 22083.11 21789.06 14194.32 16278.67 13596.61 26281.57 22290.89 19397.24 104
LTVRE_ROB82.13 1386.26 24784.90 25690.34 21394.44 18181.50 17092.31 26294.89 21083.03 21979.63 32292.67 22369.69 24897.79 17271.20 31886.26 26291.72 326
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS87.78 18786.54 20591.48 16194.82 16081.05 18593.91 20193.93 25083.00 22086.93 17893.53 19569.50 25197.67 17986.14 15177.12 35095.73 173
UnsupCasMVSNet_eth80.07 31978.27 32585.46 32885.24 37272.63 33388.45 33694.87 21382.99 22171.64 36888.07 33456.34 34891.75 36373.48 30963.36 38092.01 322
XXY-MVS87.65 19186.85 19090.03 22592.14 25580.60 19993.76 20595.23 19182.94 22284.60 23994.02 17574.27 18695.49 31781.04 22883.68 28294.01 247
mvs_anonymous89.37 14389.32 12589.51 24893.47 21874.22 31591.65 27994.83 21682.91 22385.45 21893.79 18881.23 10896.36 28286.47 15094.09 14797.94 74
BH-w/o87.57 20087.05 18589.12 25594.90 15577.90 26892.41 25493.51 26282.89 22483.70 26591.34 26775.75 16797.07 23875.49 29193.49 15992.39 313
AdaColmapbinary89.89 12489.07 13092.37 12097.41 6283.03 13094.42 16295.92 13982.81 22586.34 19594.65 15273.89 19599.02 6180.69 23695.51 11695.05 192
dmvs_testset74.57 34075.81 33970.86 36687.72 35940.47 39987.05 35277.90 39182.75 22671.15 37085.47 35967.98 27184.12 38845.26 38576.98 35288.00 369
TransMVSNet (Re)84.43 27783.06 28288.54 27091.72 27278.44 25495.18 11392.82 27582.73 22779.67 32192.12 24273.49 20195.96 29771.10 32268.73 37391.21 338
DP-MVS Recon91.95 7991.28 8593.96 5598.33 2785.92 5694.66 14796.66 8582.69 22890.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
v119287.25 21486.33 21290.00 22990.76 31379.04 24493.80 20395.48 17482.57 22985.48 21691.18 27573.38 20597.42 20482.30 20682.06 30093.53 272
PC_three_145282.47 23097.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
API-MVS90.66 10490.07 10692.45 11696.36 9184.57 8096.06 6495.22 19382.39 23189.13 13894.27 16780.32 11298.46 11580.16 24596.71 9894.33 230
tfpnnormal84.72 27483.23 27989.20 25392.79 24180.05 21594.48 15595.81 14882.38 23281.08 30191.21 27269.01 26196.95 24561.69 36580.59 32590.58 350
MAR-MVS90.30 11089.37 12393.07 8396.61 8184.48 8595.68 8595.67 16082.36 23387.85 15992.85 21676.63 15798.80 9080.01 24696.68 9995.91 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline286.50 24285.39 24489.84 23391.12 29676.70 29191.88 27188.58 35782.35 23479.95 31790.95 28373.42 20397.63 18680.27 24489.95 20395.19 188
TAMVS89.21 14588.29 15691.96 13693.71 21082.62 14893.30 22594.19 24182.22 23587.78 16293.94 18078.83 13196.95 24577.70 27192.98 17196.32 144
ACMH+81.04 1485.05 26983.46 27789.82 23494.66 16779.37 23494.44 16094.12 24682.19 23678.04 33392.82 21958.23 34397.54 19373.77 30782.90 29392.54 306
ACMH80.38 1785.36 26183.68 27490.39 20994.45 18080.63 19794.73 14294.85 21482.09 23777.24 33892.65 22460.01 33597.58 18872.25 31484.87 27192.96 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
eth_miper_zixun_eth86.50 24285.77 23688.68 26791.94 26275.81 30390.47 29794.89 21082.05 23884.05 25790.46 29475.96 16296.77 25282.76 19979.36 33993.46 277
anonymousdsp87.84 18487.09 18390.12 22189.13 34180.54 20094.67 14695.55 16982.05 23883.82 26292.12 24271.47 22497.15 23187.15 14187.80 24792.67 303
PVSNet_Blended90.73 10190.32 10091.98 13496.12 9781.25 17992.55 25296.83 6682.04 24089.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 166
c3_l87.14 22286.50 20789.04 25892.20 25377.26 28391.22 28794.70 22482.01 24184.34 25190.43 29578.81 13296.61 26283.70 18581.09 31593.25 283
CDS-MVSNet89.45 13688.51 14792.29 12593.62 21483.61 11193.01 23894.68 22581.95 24287.82 16193.24 20578.69 13496.99 24380.34 24293.23 16796.28 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v14419287.19 22086.35 21189.74 23890.64 31778.24 26193.92 19995.43 18181.93 24385.51 21391.05 28174.21 18997.45 20082.86 19581.56 30893.53 272
PAPR90.02 11789.27 12892.29 12595.78 11580.95 18992.68 24796.22 11581.91 24486.66 18893.75 19282.23 9598.44 12179.40 25794.79 13297.48 97
v192192086.97 22686.06 22489.69 24290.53 32278.11 26493.80 20395.43 18181.90 24585.33 22991.05 28172.66 21297.41 20982.05 21181.80 30593.53 272
CPTT-MVS91.99 7891.80 7992.55 11198.24 3181.98 16096.76 3096.49 9581.89 24690.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
train_agg93.44 5493.08 6194.52 4397.53 5886.49 3694.07 18696.78 7281.86 24792.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
test_897.49 6086.30 4494.02 19196.76 7581.86 24792.70 7896.20 8787.63 2999.02 61
cl____86.52 24185.78 23488.75 26492.03 26076.46 29490.74 29394.30 23781.83 24983.34 27590.78 28975.74 16996.57 26581.74 21981.54 30993.22 285
DIV-MVS_self_test86.53 24085.78 23488.75 26492.02 26176.45 29590.74 29394.30 23781.83 24983.34 27590.82 28775.75 16796.57 26581.73 22081.52 31093.24 284
Syy-MVS80.07 31979.78 30880.94 35291.92 26359.93 38389.75 31487.40 36481.72 25178.82 32787.20 34566.29 29091.29 36647.06 38487.84 24491.60 329
myMVS_eth3d79.67 32478.79 32382.32 35091.92 26364.08 37589.75 31487.40 36481.72 25178.82 32787.20 34545.33 37791.29 36659.09 37387.84 24491.60 329
v124086.78 23185.85 23289.56 24490.45 32377.79 27493.61 21195.37 18681.65 25385.43 22191.15 27771.50 22397.43 20381.47 22482.05 30293.47 276
FMVSNet185.85 25384.11 26791.08 17992.81 24083.10 12595.14 11794.94 20481.64 25482.68 28291.64 25859.01 34196.34 28375.37 29383.78 27993.79 257
PatchmatchNetpermissive85.85 25384.70 26089.29 25191.76 27175.54 30588.49 33491.30 31981.63 25585.05 23288.70 32571.71 22096.24 28674.61 30289.05 22196.08 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TEST997.53 5886.49 3694.07 18696.78 7281.61 25692.77 7496.20 8787.71 2899.12 51
sss88.93 15688.26 15890.94 18994.05 19380.78 19491.71 27695.38 18481.55 25788.63 14693.91 18475.04 17695.47 31882.47 20291.61 18496.57 138
HY-MVS83.01 1289.03 15387.94 16592.29 12594.86 15782.77 13892.08 27094.49 22881.52 25886.93 17892.79 22278.32 14198.23 13779.93 24790.55 19495.88 164
CNLPA89.07 15187.98 16392.34 12196.87 7484.78 7694.08 18593.24 26581.41 25984.46 24495.13 13275.57 17196.62 25977.21 27693.84 15295.61 178
EPMVS83.90 28582.70 28787.51 29290.23 32772.67 33088.62 33381.96 38081.37 26085.01 23388.34 32966.31 28994.45 32875.30 29487.12 25595.43 181
cl2286.78 23185.98 22789.18 25492.34 25077.62 27990.84 29294.13 24581.33 26183.97 26090.15 30073.96 19496.60 26484.19 17782.94 29093.33 279
miper_ehance_all_eth87.22 21786.62 20289.02 25992.13 25677.40 28290.91 29194.81 21881.28 26284.32 25290.08 30279.26 12796.62 25983.81 18382.94 29093.04 293
IU-MVS98.77 586.00 4996.84 6581.26 26397.26 795.50 2399.13 399.03 8
CL-MVSNet_self_test81.74 30080.53 29885.36 32985.96 36672.45 33690.25 30193.07 26981.24 26479.85 32087.29 34470.93 23092.52 35566.95 34569.23 36991.11 342
test20.0379.95 32179.08 32082.55 34785.79 36867.74 36591.09 28991.08 32381.23 26574.48 35789.96 30661.63 32090.15 37260.08 36976.38 35389.76 353
miper_lstm_enhance85.27 26584.59 26387.31 29791.28 28974.63 31087.69 34594.09 24781.20 26681.36 29889.85 30874.97 17894.30 33381.03 23079.84 33693.01 294
TR-MVS86.78 23185.76 23789.82 23494.37 18378.41 25592.47 25392.83 27481.11 26786.36 19492.40 23168.73 26597.48 19773.75 30889.85 20693.57 271
VDDNet89.56 13288.49 15092.76 9995.07 14482.09 15796.30 4393.19 26781.05 26891.88 9896.86 5961.16 32998.33 13188.43 12392.49 17997.84 82
tpm84.73 27384.02 26986.87 31390.33 32468.90 36089.06 32789.94 34680.85 26985.75 20389.86 30768.54 26795.97 29677.76 27084.05 27895.75 170
D2MVS85.90 25185.09 25188.35 27490.79 31177.42 28191.83 27395.70 15880.77 27080.08 31590.02 30366.74 28496.37 28081.88 21587.97 24191.26 337
FE-MVS87.40 20786.02 22591.57 15794.56 17479.69 22790.27 29993.72 25980.57 27188.80 14491.62 26265.32 29698.59 10674.97 29994.33 14696.44 141
Anonymous20240521187.68 18986.13 21992.31 12396.66 7980.74 19594.87 13391.49 31580.47 27289.46 13595.44 11754.72 35698.23 13782.19 20889.89 20497.97 72
jason90.80 9890.10 10592.90 9293.04 23183.53 11293.08 23594.15 24380.22 27391.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
thisisatest051587.33 21085.99 22691.37 16693.49 21779.55 22990.63 29589.56 35480.17 27487.56 16690.86 28467.07 27898.28 13581.50 22393.02 17096.29 146
tpmrst85.35 26284.99 25286.43 31890.88 30967.88 36488.71 33191.43 31780.13 27586.08 20088.80 32373.05 20796.02 29482.48 20183.40 28895.40 182
CDPH-MVS92.83 6892.30 7494.44 4497.79 4986.11 4894.06 18896.66 8580.09 27692.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
PM-MVS78.11 33276.12 33684.09 34183.54 37670.08 35688.97 32985.27 37179.93 27774.73 35586.43 35134.70 38593.48 34579.43 25572.06 36388.72 364
lupinMVS90.92 9790.21 10193.03 8493.86 20383.88 10192.81 24593.86 25479.84 27891.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
PatchMatch-RL86.77 23485.54 24090.47 20795.88 11182.71 14490.54 29692.31 28879.82 27984.32 25291.57 26668.77 26496.39 27973.16 31093.48 16192.32 316
PLCcopyleft84.53 789.06 15288.03 16292.15 12897.27 6882.69 14594.29 17195.44 18079.71 28084.01 25994.18 16976.68 15698.75 9377.28 27593.41 16295.02 193
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
F-COLMAP87.95 18286.80 19291.40 16496.35 9280.88 19194.73 14295.45 17879.65 28182.04 29094.61 15371.13 22698.50 11076.24 28791.05 19194.80 206
test_vis1_n86.56 23986.49 20886.78 31588.51 34672.69 32994.68 14593.78 25879.55 28290.70 11795.31 12148.75 37193.28 34893.15 4593.99 14894.38 229
MIMVSNet82.59 29380.53 29888.76 26391.51 27978.32 25886.57 35590.13 34179.32 28380.70 30588.69 32652.98 36393.07 35266.03 35188.86 22594.90 201
KD-MVS_2432*160078.50 33076.02 33785.93 32386.22 36474.47 31284.80 36792.33 28679.29 28476.98 34085.92 35553.81 36193.97 33767.39 34357.42 38589.36 356
miper_refine_blended78.50 33076.02 33785.93 32386.22 36474.47 31284.80 36792.33 28679.29 28476.98 34085.92 35553.81 36193.97 33767.39 34357.42 38589.36 356
test-mter84.54 27683.64 27587.25 30090.95 30271.67 34389.55 31689.88 34979.17 28684.54 24187.95 33555.56 35195.11 32381.82 21693.37 16494.97 194
miper_enhance_ethall86.90 22886.18 21889.06 25791.66 27777.58 28090.22 30594.82 21779.16 28784.48 24389.10 31779.19 12996.66 25684.06 17882.94 29092.94 296
MDA-MVSNet-bldmvs78.85 32976.31 33486.46 31789.76 33573.88 31888.79 33090.42 33579.16 28759.18 38288.33 33060.20 33394.04 33662.00 36468.96 37191.48 333
tpmvs83.35 28982.07 28887.20 30491.07 29871.00 35088.31 33791.70 30778.91 28980.49 30987.18 34769.30 25797.08 23668.12 34183.56 28493.51 275
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29090.45 12095.92 10082.65 8798.84 8880.68 23798.26 5796.14 151
MSDG84.86 27283.09 28190.14 22093.80 20680.05 21589.18 32593.09 26878.89 29078.19 33191.91 25265.86 29597.27 22268.47 33688.45 23293.11 290
PAPM86.68 23585.39 24490.53 19893.05 23079.33 23989.79 31394.77 22178.82 29281.95 29193.24 20576.81 15297.30 21866.94 34693.16 16894.95 200
PVSNet78.82 1885.55 25784.65 26188.23 27994.72 16371.93 33887.12 35192.75 27778.80 29384.95 23490.53 29364.43 30296.71 25574.74 30093.86 15196.06 158
MVP-Stereo85.97 25084.86 25789.32 25090.92 30682.19 15692.11 26894.19 24178.76 29478.77 33091.63 26168.38 26996.56 26775.01 29893.95 14989.20 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OpenMVScopyleft83.78 1188.74 16287.29 17993.08 8192.70 24285.39 6796.57 3696.43 9778.74 29580.85 30396.07 9469.64 24999.01 6378.01 26996.65 10094.83 204
KD-MVS_self_test80.20 31879.24 31683.07 34485.64 37065.29 37291.01 29093.93 25078.71 29676.32 34486.40 35259.20 34092.93 35372.59 31269.35 36891.00 345
MDTV_nov1_ep1383.56 27691.69 27669.93 35787.75 34491.54 31378.60 29784.86 23588.90 32069.54 25096.03 29370.25 32488.93 224
test_fmvs1_n87.03 22587.04 18686.97 30889.74 33671.86 33994.55 15294.43 23078.47 29891.95 9695.50 11651.16 36693.81 34093.02 4894.56 13995.26 186
Patchmatch-RL test81.67 30179.96 30786.81 31485.42 37171.23 34682.17 37887.50 36378.47 29877.19 33982.50 37370.81 23293.48 34582.66 20072.89 36195.71 174
QAPM89.51 13388.15 15993.59 6894.92 15384.58 7996.82 2996.70 8378.43 30083.41 27396.19 9073.18 20699.30 4077.11 27896.54 10196.89 127
131487.51 20286.57 20490.34 21392.42 24979.74 22692.63 24995.35 18878.35 30180.14 31391.62 26274.05 19297.15 23181.05 22793.53 15794.12 239
test_fmvs187.34 20987.56 17286.68 31690.59 31871.80 34194.01 19294.04 24878.30 30291.97 9495.22 12556.28 34993.71 34292.89 4994.71 13394.52 217
CR-MVSNet85.35 26283.76 27390.12 22190.58 31979.34 23685.24 36491.96 30378.27 30385.55 20887.87 33871.03 22895.61 31073.96 30689.36 21595.40 182
USDC82.76 29081.26 29587.26 29991.17 29274.55 31189.27 32293.39 26478.26 30475.30 35192.08 24654.43 35896.63 25871.64 31585.79 26590.61 347
new-patchmatchnet76.41 33775.17 34080.13 35382.65 37959.61 38487.66 34691.08 32378.23 30569.85 37283.22 36754.76 35591.63 36564.14 35964.89 37889.16 361
1112_ss88.42 16987.33 17891.72 15194.92 15380.98 18792.97 24094.54 22778.16 30683.82 26293.88 18578.78 13397.91 16979.45 25389.41 21396.26 148
MIMVSNet179.38 32677.28 32885.69 32786.35 36373.67 31991.61 28092.75 27778.11 30772.64 36488.12 33348.16 37291.97 36260.32 36877.49 34791.43 334
test_fmvs283.98 28184.03 26883.83 34287.16 36067.53 36793.93 19892.89 27277.62 30886.89 18393.53 19547.18 37592.02 36090.54 10286.51 26091.93 323
MS-PatchMatch85.05 26984.16 26687.73 28891.42 28378.51 25291.25 28693.53 26177.50 30980.15 31291.58 26461.99 31895.51 31475.69 29094.35 14589.16 361
AllTest83.42 28781.39 29389.52 24695.01 14677.79 27493.12 23290.89 33077.41 31076.12 34693.34 19854.08 35997.51 19568.31 33884.27 27693.26 281
TestCases89.52 24695.01 14677.79 27490.89 33077.41 31076.12 34693.34 19854.08 35997.51 19568.31 33884.27 27693.26 281
TESTMET0.1,183.74 28682.85 28586.42 31989.96 33271.21 34789.55 31687.88 35977.41 31083.37 27487.31 34356.71 34793.65 34480.62 23892.85 17494.40 228
gm-plane-assit89.60 33968.00 36277.28 31388.99 31897.57 18979.44 254
EG-PatchMatch MVS82.37 29580.34 30188.46 27190.27 32579.35 23592.80 24694.33 23677.14 31473.26 36290.18 29947.47 37496.72 25370.25 32487.32 25489.30 358
FMVSNet581.52 30579.60 31287.27 29891.17 29277.95 26691.49 28192.26 29076.87 31576.16 34587.91 33751.67 36492.34 35767.74 34281.16 31291.52 331
mvsany_test185.42 26085.30 24785.77 32687.95 35775.41 30787.61 34880.97 38276.82 31688.68 14595.83 10477.44 14890.82 37085.90 15686.51 26091.08 344
our_test_381.93 29780.46 30086.33 32088.46 34973.48 32288.46 33591.11 32276.46 31776.69 34288.25 33166.89 28094.36 33168.75 33479.08 34191.14 340
TDRefinement79.81 32277.34 32787.22 30379.24 38575.48 30693.12 23292.03 29876.45 31875.01 35291.58 26449.19 37096.44 27670.22 32669.18 37089.75 354
LF4IMVS80.37 31779.07 32184.27 33986.64 36269.87 35889.39 32191.05 32576.38 31974.97 35390.00 30447.85 37394.25 33574.55 30380.82 32388.69 365
TAPA-MVS84.62 688.16 17787.01 18791.62 15496.64 8080.65 19694.39 16596.21 11876.38 31986.19 19895.44 11779.75 11998.08 15662.75 36395.29 12596.13 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dp81.47 30680.23 30385.17 33289.92 33365.49 37186.74 35390.10 34276.30 32181.10 30087.12 34862.81 31495.92 29868.13 34079.88 33494.09 242
CostFormer85.77 25584.94 25588.26 27791.16 29472.58 33589.47 32091.04 32676.26 32286.45 19289.97 30570.74 23396.86 25182.35 20587.07 25795.34 185
RPSCF85.07 26884.27 26587.48 29592.91 23770.62 35391.69 27892.46 28376.20 32382.67 28395.22 12563.94 30597.29 22177.51 27485.80 26494.53 216
Test_1112_low_res87.65 19186.51 20691.08 17994.94 15279.28 24091.77 27494.30 23776.04 32483.51 27192.37 23277.86 14697.73 17878.69 26189.13 22096.22 149
pmmvs485.43 25983.86 27290.16 21890.02 33182.97 13490.27 29992.67 28075.93 32580.73 30491.74 25771.05 22795.73 30978.85 26083.46 28691.78 325
LS3D87.89 18386.32 21392.59 10996.07 10282.92 13695.23 10994.92 20975.66 32682.89 28095.98 9872.48 21599.21 4568.43 33795.23 12895.64 175
pmmvs584.21 27882.84 28688.34 27588.95 34376.94 28792.41 25491.91 30575.63 32780.28 31091.18 27564.59 30195.57 31177.09 27983.47 28592.53 307
Anonymous2024052180.44 31679.21 31784.11 34085.75 36967.89 36392.86 24493.23 26675.61 32875.59 35087.47 34250.03 36794.33 33271.14 32181.21 31190.12 352
pmmvs-eth3d80.97 31278.72 32487.74 28784.99 37379.97 22190.11 30891.65 30975.36 32973.51 36086.03 35459.45 33893.96 33975.17 29572.21 36289.29 359
ppachtmachnet_test81.84 29880.07 30687.15 30588.46 34974.43 31489.04 32892.16 29275.33 33077.75 33588.99 31866.20 29195.37 31965.12 35577.60 34691.65 327
test_040281.30 30979.17 31987.67 28993.19 22578.17 26292.98 23991.71 30675.25 33176.02 34890.31 29759.23 33996.37 28050.22 38283.63 28388.47 367
COLMAP_ROBcopyleft80.39 1683.96 28282.04 28989.74 23895.28 13379.75 22594.25 17392.28 28975.17 33278.02 33493.77 19058.60 34297.84 17165.06 35685.92 26391.63 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap79.76 32377.69 32685.97 32291.71 27473.12 32489.55 31690.36 33775.03 33372.03 36690.19 29846.22 37696.19 28963.11 36181.03 31788.59 366
DP-MVS87.25 21485.36 24692.90 9297.65 5583.24 11994.81 13792.00 29974.99 33481.92 29295.00 13572.66 21299.05 5566.92 34892.33 18096.40 142
PatchT82.68 29281.27 29486.89 31290.09 32970.94 35184.06 37190.15 34074.91 33585.63 20783.57 36669.37 25294.87 32765.19 35388.50 23194.84 203
CHOSEN 280x42085.15 26783.99 27088.65 26892.47 24678.40 25679.68 38492.76 27674.90 33681.41 29789.59 31169.85 24795.51 31479.92 24895.29 12592.03 321
gg-mvs-nofinetune81.77 29979.37 31488.99 26090.85 31077.73 27786.29 35679.63 38574.88 33783.19 27869.05 38660.34 33296.11 29175.46 29294.64 13793.11 290
pmmvs683.42 28781.60 29188.87 26188.01 35577.87 27094.96 12794.24 24074.67 33878.80 32991.09 28060.17 33496.49 27177.06 28075.40 35792.23 318
CHOSEN 1792x268888.84 15887.69 16992.30 12496.14 9681.42 17690.01 31095.86 14674.52 33987.41 16893.94 18075.46 17298.36 12680.36 24195.53 11597.12 113
MDA-MVSNet_test_wron79.21 32877.19 33085.29 33088.22 35372.77 32885.87 35890.06 34374.34 34062.62 38087.56 34166.14 29291.99 36166.90 34973.01 35991.10 343
YYNet179.22 32777.20 32985.28 33188.20 35472.66 33185.87 35890.05 34574.33 34162.70 37887.61 34066.09 29392.03 35966.94 34672.97 36091.15 339
mvsany_test374.95 33973.26 34380.02 35474.61 38763.16 37985.53 36278.42 38774.16 34274.89 35486.46 35036.02 38489.09 37782.39 20466.91 37487.82 371
Anonymous2024052988.09 17986.59 20392.58 11096.53 8681.92 16295.99 6995.84 14774.11 34389.06 14195.21 12761.44 32398.81 8983.67 18687.47 24997.01 119
test_fmvs377.67 33477.16 33179.22 35579.52 38461.14 38192.34 25991.64 31073.98 34478.86 32686.59 34927.38 38987.03 38088.12 12775.97 35589.50 355
无先验93.28 22796.26 11073.95 34599.05 5580.56 23996.59 137
Anonymous2023121186.59 23885.13 25090.98 18896.52 8781.50 17096.14 5796.16 11973.78 34683.65 26792.15 24063.26 31297.37 21582.82 19781.74 30794.06 244
Anonymous2023120681.03 31179.77 31084.82 33487.85 35870.26 35591.42 28292.08 29673.67 34777.75 33589.25 31562.43 31693.08 35161.50 36682.00 30391.12 341
PCF-MVS84.11 1087.74 18886.08 22392.70 10494.02 19484.43 8989.27 32295.87 14573.62 34884.43 24694.33 16178.48 13998.86 8470.27 32394.45 14394.81 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVS67.92 34767.49 34969.21 37081.09 38041.17 39888.03 33978.00 39073.50 34962.63 37983.11 37063.94 30586.52 38225.66 39551.45 38879.94 381
HyFIR lowres test88.09 17986.81 19191.93 13896.00 10580.63 19790.01 31095.79 15073.42 35087.68 16492.10 24573.86 19697.96 16580.75 23591.70 18397.19 107
MDTV_nov1_ep13_2view55.91 39387.62 34773.32 35184.59 24070.33 24174.65 30195.50 179
JIA-IIPM81.04 31078.98 32287.25 30088.64 34573.48 32281.75 37989.61 35373.19 35282.05 28973.71 38366.07 29495.87 30171.18 32084.60 27392.41 312
cascas86.43 24584.98 25390.80 19292.10 25880.92 19090.24 30395.91 14173.10 35383.57 27088.39 32865.15 29897.46 19984.90 16891.43 18594.03 246
ANet_high58.88 35654.22 36072.86 36356.50 40056.67 38880.75 38186.00 36673.09 35437.39 39364.63 39022.17 39379.49 39343.51 38723.96 39582.43 379
ADS-MVSNet281.66 30279.71 31187.50 29391.35 28674.19 31683.33 37488.48 35872.90 35582.24 28785.77 35764.98 29993.20 35064.57 35783.74 28095.12 190
ADS-MVSNet81.56 30479.78 30886.90 31191.35 28671.82 34083.33 37489.16 35572.90 35582.24 28785.77 35764.98 29993.76 34164.57 35783.74 28095.12 190
PVSNet_073.20 2077.22 33574.83 34184.37 33790.70 31671.10 34883.09 37689.67 35272.81 35773.93 35983.13 36860.79 33093.70 34368.54 33550.84 38988.30 368
testdata90.49 20296.40 8977.89 26995.37 18672.51 35893.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 161
SSC-MVS67.06 34866.56 35068.56 37280.54 38140.06 40087.77 34377.37 39372.38 35961.75 38182.66 37263.37 31086.45 38324.48 39648.69 39179.16 383
PMMVS85.71 25684.96 25487.95 28588.90 34477.09 28588.68 33290.06 34372.32 36086.47 18990.76 29072.15 21894.40 33081.78 21893.49 15992.36 314
Patchmtry82.71 29180.93 29788.06 28290.05 33076.37 29784.74 36991.96 30372.28 36181.32 29987.87 33871.03 22895.50 31668.97 33380.15 33192.32 316
tpm284.08 28082.94 28387.48 29591.39 28471.27 34589.23 32490.37 33671.95 36284.64 23889.33 31467.30 27396.55 26975.17 29587.09 25694.63 209
UnsupCasMVSNet_bld76.23 33873.27 34285.09 33383.79 37572.92 32585.65 36193.47 26371.52 36368.84 37479.08 37849.77 36893.21 34966.81 35060.52 38289.13 363
RPMNet83.95 28381.53 29291.21 17190.58 31979.34 23685.24 36496.76 7571.44 36485.55 20882.97 37170.87 23198.91 8061.01 36789.36 21595.40 182
旧先验293.36 21971.25 36594.37 3997.13 23486.74 146
新几何193.10 7997.30 6684.35 9295.56 16871.09 36691.26 11396.24 8582.87 8598.86 8479.19 25898.10 6296.07 157
test_vis1_rt77.96 33376.46 33382.48 34885.89 36771.74 34290.25 30178.89 38671.03 36771.30 36981.35 37542.49 38191.05 36984.55 17382.37 29784.65 373
Patchmatch-test81.37 30779.30 31587.58 29190.92 30674.16 31780.99 38087.68 36270.52 36876.63 34388.81 32171.21 22592.76 35460.01 37186.93 25895.83 167
114514_t89.51 13388.50 14892.54 11298.11 3681.99 15995.16 11696.36 10270.19 36985.81 20295.25 12476.70 15598.63 10282.07 21096.86 9597.00 120
N_pmnet68.89 34668.44 34870.23 36789.07 34228.79 40488.06 33819.50 40469.47 37071.86 36784.93 36061.24 32691.75 36354.70 37977.15 34990.15 351
OpenMVS_ROBcopyleft74.94 1979.51 32577.03 33286.93 30987.00 36176.23 29992.33 26090.74 33368.93 37174.52 35688.23 33249.58 36996.62 25957.64 37584.29 27587.94 370
test22296.55 8481.70 16692.22 26495.01 20168.36 37290.20 12496.14 9280.26 11497.80 7496.05 159
MVS87.44 20586.10 22291.44 16392.61 24483.62 10992.63 24995.66 16267.26 37381.47 29592.15 24077.95 14398.22 13979.71 24995.48 11892.47 309
tpm cat181.96 29680.27 30287.01 30791.09 29771.02 34987.38 34991.53 31466.25 37480.17 31186.35 35368.22 27096.15 29069.16 33282.29 29893.86 254
CVMVSNet84.69 27584.79 25984.37 33791.84 26764.92 37393.70 20991.47 31666.19 37586.16 19995.28 12267.18 27693.33 34780.89 23390.42 19694.88 202
test_f71.95 34370.87 34575.21 36274.21 38959.37 38585.07 36685.82 36765.25 37670.42 37183.13 36823.62 39082.93 39078.32 26471.94 36483.33 375
CMPMVSbinary59.16 2180.52 31479.20 31884.48 33683.98 37467.63 36689.95 31293.84 25664.79 37766.81 37691.14 27857.93 34495.17 32176.25 28688.10 23790.65 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet81.32 30880.95 29682.42 34988.50 34863.67 37793.32 22191.33 31864.02 37880.57 30892.83 21861.21 32792.27 35876.34 28580.38 33091.32 335
test_vis3_rt65.12 35062.60 35272.69 36471.44 39060.71 38287.17 35065.55 39763.80 37953.22 38565.65 38914.54 39989.44 37676.65 28165.38 37667.91 388
new_pmnet72.15 34270.13 34678.20 35882.95 37865.68 36983.91 37282.40 37962.94 38064.47 37779.82 37742.85 38086.26 38457.41 37674.44 35882.65 378
DSMNet-mixed76.94 33676.29 33578.89 35683.10 37756.11 39287.78 34279.77 38460.65 38175.64 34988.71 32461.56 32288.34 37960.07 37089.29 21792.21 319
pmmvs371.81 34468.71 34781.11 35175.86 38670.42 35486.74 35383.66 37558.95 38268.64 37580.89 37636.93 38389.52 37563.10 36263.59 37983.39 374
MVS-HIRNet73.70 34172.20 34478.18 35991.81 27056.42 39182.94 37782.58 37855.24 38368.88 37366.48 38755.32 35395.13 32258.12 37488.42 23383.01 376
PMMVS259.60 35356.40 35569.21 37068.83 39446.58 39673.02 38977.48 39255.07 38449.21 38772.95 38517.43 39780.04 39249.32 38344.33 39280.99 380
APD_test169.04 34566.26 35177.36 36180.51 38262.79 38085.46 36383.51 37654.11 38559.14 38384.79 36223.40 39289.61 37455.22 37870.24 36679.68 382
FPMVS64.63 35162.55 35370.88 36570.80 39156.71 38784.42 37084.42 37351.78 38649.57 38681.61 37423.49 39181.48 39140.61 39176.25 35474.46 384
LCM-MVSNet66.00 34962.16 35477.51 36064.51 39758.29 38683.87 37390.90 32948.17 38754.69 38473.31 38416.83 39886.75 38165.47 35261.67 38187.48 372
DeepMVS_CXcopyleft56.31 37774.23 38851.81 39456.67 40244.85 38848.54 38875.16 38127.87 38858.74 39840.92 39052.22 38758.39 391
Gipumacopyleft57.99 35754.91 35967.24 37388.51 34665.59 37052.21 39290.33 33843.58 38942.84 39251.18 39320.29 39585.07 38534.77 39270.45 36551.05 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf159.54 35456.11 35769.85 36869.28 39256.61 38980.37 38276.55 39442.58 39045.68 38975.61 37911.26 40084.18 38643.20 38860.44 38368.75 386
APD_test259.54 35456.11 35769.85 36869.28 39256.61 38980.37 38276.55 39442.58 39045.68 38975.61 37911.26 40084.18 38643.20 38860.44 38368.75 386
PMVScopyleft47.18 2252.22 35848.46 36263.48 37445.72 40246.20 39773.41 38878.31 38841.03 39230.06 39565.68 3886.05 40283.43 38930.04 39365.86 37560.80 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN43.23 36142.29 36346.03 37865.58 39637.41 40173.51 38764.62 39833.99 39328.47 39747.87 39419.90 39667.91 39522.23 39724.45 39432.77 393
EMVS42.07 36241.12 36444.92 37963.45 39835.56 40373.65 38663.48 39933.05 39426.88 39845.45 39521.27 39467.14 39619.80 39823.02 39632.06 394
MVEpermissive39.65 2343.39 36038.59 36657.77 37556.52 39948.77 39555.38 39158.64 40129.33 39528.96 39652.65 3924.68 40364.62 39728.11 39433.07 39359.93 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 35948.47 36156.66 37652.26 40118.98 40641.51 39481.40 38110.10 39644.59 39175.01 38228.51 38768.16 39453.54 38049.31 39082.83 377
wuyk23d21.27 36520.48 36823.63 38168.59 39536.41 40249.57 3936.85 4059.37 3977.89 3994.46 4014.03 40431.37 39917.47 39916.07 3983.12 396
tmp_tt35.64 36339.24 36524.84 38014.87 40323.90 40562.71 39051.51 4036.58 39836.66 39462.08 39144.37 37830.34 40052.40 38122.00 39720.27 395
testmvs8.92 36611.52 3691.12 3831.06 4040.46 40886.02 3570.65 4060.62 3992.74 4009.52 3990.31 4060.45 4022.38 4000.39 3992.46 398
test1238.76 36711.22 3701.39 3820.85 4050.97 40785.76 3600.35 4070.54 4002.45 4018.14 4000.60 4050.48 4012.16 4010.17 4002.71 397
EGC-MVSNET61.97 35256.37 35678.77 35789.63 33873.50 32189.12 32682.79 3770.21 4011.24 40284.80 36139.48 38290.04 37344.13 38675.94 35672.79 385
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k22.14 36429.52 3670.00 3840.00 4060.00 4090.00 39595.76 1520.00 4020.00 40394.29 16475.66 1700.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.64 3698.86 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40279.70 1210.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.82 36810.43 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40393.88 1850.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS64.08 37559.14 372
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
eth-test20.00 406
eth-test0.00 406
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
GSMVS96.12 153
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 153
sam_mvs70.60 234
ambc83.06 34579.99 38363.51 37877.47 38592.86 27374.34 35884.45 36328.74 38695.06 32573.06 31168.89 37290.61 347
MTGPAbinary96.97 50
test_post188.00 3409.81 39869.31 25695.53 31276.65 281
test_post10.29 39770.57 23895.91 300
patchmatchnet-post83.76 36571.53 22296.48 272
GG-mvs-BLEND87.94 28689.73 33777.91 26787.80 34178.23 38980.58 30783.86 36459.88 33695.33 32071.20 31892.22 18190.60 349
MTMP96.16 5360.64 400
test9_res91.91 7898.71 3298.07 66
agg_prior290.54 10298.68 3798.27 52
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
test_prior485.96 5394.11 181
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
新几何293.11 234
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
原ACMM292.94 241
testdata298.75 9378.30 265
segment_acmp87.16 36
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
plane_prior794.70 16582.74 141
plane_prior694.52 17582.75 13974.23 187
plane_prior596.22 11598.12 14488.15 12489.99 20094.63 209
plane_prior494.86 140
plane_prior194.59 170
n20.00 408
nn0.00 408
door-mid85.49 368
lessismore_v086.04 32188.46 34968.78 36180.59 38373.01 36390.11 30155.39 35296.43 27775.06 29765.06 37792.90 297
test1196.57 92
door85.33 370
HQP5-MVS81.56 168
BP-MVS87.11 143
HQP4-MVS85.43 22197.96 16594.51 219
HQP3-MVS96.04 13189.77 209
HQP2-MVS73.83 197
NP-MVS94.37 18382.42 15193.98 178
ACMMP++_ref87.47 249
ACMMP++88.01 240
Test By Simon80.02 116