This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
IU-MVS98.77 586.00 4996.84 6581.26 26397.26 795.50 2399.13 399.03 8
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
region2R94.43 2394.27 3194.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
ACMMPR94.43 2394.28 2994.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
HFP-MVS94.52 1994.40 2294.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
test_part298.55 1287.22 1896.40 17
XVS94.45 2194.32 2594.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
X-MVStestdata88.31 17386.13 21994.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 39685.02 5999.49 2691.99 7498.56 4898.47 33
ZNCC-MVS94.47 2094.28 2995.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
mPP-MVS93.99 4093.78 4694.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft94.25 2894.07 3894.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS94.45 2194.20 3495.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
PGM-MVS93.96 4193.72 4994.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
MTAPA94.42 2594.22 3295.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
GST-MVS94.21 3193.97 4294.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
HPM-MVScopyleft94.02 3893.88 4394.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS94.34 2694.21 3394.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS_fast93.40 5893.22 5993.94 5698.36 2584.83 7497.15 1396.80 7185.77 15692.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
DP-MVS Recon91.95 7991.28 8593.96 5598.33 2785.92 5694.66 14796.66 8582.69 22890.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + MP.94.85 1394.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
CPTT-MVS91.99 7891.80 7992.55 11198.24 3181.98 16096.76 3096.49 9581.89 24690.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
SR-MVS94.23 3094.17 3694.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
MP-MVS-pluss94.21 3194.00 4194.85 2598.17 3386.65 3094.82 13697.17 3986.26 14592.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS98.15 3486.62 3297.07 4583.63 20394.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15397.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
114514_t89.51 13388.50 14892.54 11298.11 3681.99 15995.16 11696.36 10270.19 36985.81 20295.25 12476.70 15598.63 10282.07 21096.86 9597.00 120
ACMMPcopyleft93.24 6192.88 6694.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft94.24 2994.07 3894.75 3598.06 3986.90 2295.88 7496.94 5585.68 15995.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG93.23 6293.05 6293.76 6498.04 4084.07 9696.22 4997.37 2184.15 19190.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
ACMMP_NAP94.74 1594.56 1895.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
SR-MVS-dyc-post93.82 4393.82 4493.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
RE-MVS-def93.68 5197.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
APD-MVS_3200maxsize93.78 4493.77 4793.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
SF-MVS94.97 1194.90 1495.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
NCCC94.81 1494.69 1795.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
9.1494.47 1997.79 4996.08 6197.44 1586.13 15195.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
CDPH-MVS92.83 6892.30 7494.44 4497.79 4986.11 4894.06 18896.66 8580.09 27692.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
dcpmvs_293.49 5194.19 3591.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
DP-MVS87.25 21485.36 24692.90 9297.65 5583.24 11994.81 13792.00 29974.99 33481.92 29295.00 13572.66 21299.05 5566.92 34892.33 18096.40 142
PAPM_NR91.22 9390.78 9692.52 11397.60 5681.46 17494.37 16996.24 11386.39 14287.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
patch_mono-293.74 4694.32 2592.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
TEST997.53 5886.49 3694.07 18696.78 7281.61 25692.77 7496.20 8787.71 2899.12 51
train_agg93.44 5493.08 6194.52 4397.53 5886.49 3694.07 18696.78 7281.86 24792.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
test_897.49 6086.30 4494.02 19196.76 7581.86 24792.70 7896.20 8787.63 2999.02 61
DeepC-MVS_fast89.43 294.04 3793.79 4594.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary89.89 12489.07 13092.37 12097.41 6283.03 13094.42 16295.92 13982.81 22586.34 19594.65 15273.89 19599.02 6180.69 23695.51 11695.05 192
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29090.45 12095.92 10082.65 8798.84 8880.68 23798.26 5796.14 151
MSLP-MVS++93.72 4794.08 3792.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 131
新几何193.10 7997.30 6684.35 9295.56 16871.09 36691.26 11396.24 8582.87 8598.86 8479.19 25898.10 6296.07 157
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
PLCcopyleft84.53 789.06 15288.03 16292.15 12897.27 6882.69 14594.29 17195.44 18079.71 28084.01 25994.18 16976.68 15698.75 9377.28 27593.41 16295.02 193
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS94.96 1295.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 24894.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
MG-MVS91.77 8291.70 8192.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR93.45 5393.31 5693.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
CNLPA89.07 15187.98 16392.34 12196.87 7484.78 7694.08 18593.24 26581.41 25984.46 24495.13 13275.57 17196.62 25977.21 27693.84 15295.61 178
PHI-MVS93.89 4293.65 5394.62 4096.84 7586.43 3896.69 3297.49 685.15 17393.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
LFMVS90.08 11589.13 12992.95 9096.71 7782.32 15596.08 6189.91 34786.79 13292.15 9096.81 6362.60 31598.34 12987.18 14093.90 15098.19 58
CS-MVS-test94.02 3894.29 2893.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
Anonymous20240521187.68 18986.13 21992.31 12396.66 7980.74 19594.87 13391.49 31580.47 27289.46 13595.44 11754.72 35698.23 13782.19 20889.89 20497.97 72
TAPA-MVS84.62 688.16 17787.01 18791.62 15496.64 8080.65 19694.39 16596.21 11876.38 31986.19 19895.44 11779.75 11998.08 15662.75 36395.29 12596.13 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS90.30 11089.37 12393.07 8396.61 8184.48 8595.68 8595.67 16082.36 23387.85 15992.85 21676.63 15798.80 9080.01 24696.68 9995.91 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet92.24 7791.91 7893.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
TSAR-MVS + GP.93.66 4893.41 5594.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
CS-MVS94.12 3694.44 2193.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
test22296.55 8481.70 16692.22 26495.01 20168.36 37290.20 12496.14 9280.26 11497.80 7496.05 159
Anonymous2024052988.09 17986.59 20392.58 11096.53 8681.92 16295.99 6995.84 14774.11 34389.06 14195.21 12761.44 32398.81 8983.67 18687.47 24997.01 119
Anonymous2023121186.59 23885.13 25090.98 18896.52 8781.50 17096.14 5796.16 11973.78 34683.65 26792.15 24063.26 31297.37 21582.82 19781.74 30794.06 244
DeepPCF-MVS89.96 194.20 3394.77 1692.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
testdata90.49 20296.40 8977.89 26995.37 18672.51 35893.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 161
PVSNet_Blended_VisFu91.38 8990.91 9392.80 9796.39 9083.17 12294.87 13396.66 8583.29 21389.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 159
API-MVS90.66 10490.07 10692.45 11696.36 9184.57 8096.06 6495.22 19382.39 23189.13 13894.27 16780.32 11298.46 11580.16 24596.71 9894.33 230
F-COLMAP87.95 18286.80 19291.40 16496.35 9280.88 19194.73 14295.45 17879.65 28182.04 29094.61 15371.13 22698.50 11076.24 28791.05 19194.80 206
VDD-MVS90.74 10089.92 11293.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31798.64 10090.95 9592.62 17697.93 76
OMC-MVS91.23 9290.62 9793.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 130
DPM-MVS92.58 7291.74 8095.08 1596.19 9589.31 592.66 24896.56 9383.44 20991.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
CHOSEN 1792x268888.84 15887.69 16992.30 12496.14 9681.42 17690.01 31095.86 14674.52 33987.41 16893.94 18075.46 17298.36 12680.36 24195.53 11597.12 113
thres100view90087.63 19486.71 19690.38 21196.12 9778.55 25095.03 12491.58 31187.15 12288.06 15592.29 23668.91 26298.10 14670.13 32791.10 18794.48 225
PVSNet_BlendedMVS89.98 11889.70 11490.82 19196.12 9781.25 17993.92 19996.83 6683.49 20889.10 13992.26 23781.04 10998.85 8686.72 14887.86 24392.35 315
PVSNet_Blended90.73 10190.32 10091.98 13496.12 9781.25 17992.55 25296.83 6682.04 24089.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 166
UA-Net92.83 6892.54 7193.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
thres600view787.65 19186.67 19890.59 19596.08 10178.72 24694.88 13291.58 31187.06 12588.08 15492.30 23568.91 26298.10 14670.05 33091.10 18794.96 197
DeepC-MVS88.79 393.31 5992.99 6494.26 5196.07 10285.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D87.89 18386.32 21392.59 10996.07 10282.92 13695.23 10994.92 20975.66 32682.89 28095.98 9872.48 21599.21 4568.43 33795.23 12895.64 175
h-mvs3390.80 9890.15 10492.75 10096.01 10482.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 34496.60 136
SDMVSNet90.19 11389.61 11691.93 13896.00 10583.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23688.90 11789.85 20695.63 176
sd_testset88.59 16787.85 16790.83 19096.00 10580.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27296.43 27779.64 25189.85 20695.63 176
HyFIR lowres test88.09 17986.81 19191.93 13896.00 10580.63 19790.01 31095.79 15073.42 35087.68 16492.10 24573.86 19697.96 16580.75 23591.70 18397.19 107
tfpn200view987.58 19986.64 19990.41 20895.99 10878.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32791.10 18794.48 225
thres40087.62 19686.64 19990.57 19695.99 10878.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32791.10 18794.96 197
MVS_111021_LR92.47 7492.29 7592.98 8795.99 10884.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 132
PatchMatch-RL86.77 23485.54 24090.47 20795.88 11182.71 14490.54 29692.31 28879.82 27984.32 25291.57 26668.77 26496.39 27973.16 31093.48 16192.32 316
EPP-MVSNet91.70 8591.56 8292.13 12995.88 11180.50 20197.33 795.25 19086.15 14989.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
IS-MVSNet91.43 8891.09 9092.46 11595.87 11381.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
test_fmvsm_n_192094.71 1695.11 1093.50 6995.79 11484.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
PAPR90.02 11789.27 12892.29 12595.78 11580.95 18992.68 24796.22 11581.91 24486.66 18893.75 19282.23 9598.44 12179.40 25794.79 13297.48 97
Vis-MVSNet (Re-imp)89.59 13189.44 12090.03 22595.74 11675.85 30295.61 9290.80 33287.66 11587.83 16095.40 12076.79 15396.46 27578.37 26296.73 9797.80 84
test_yl90.69 10290.02 11092.71 10295.72 11782.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
DCV-MVSNet90.69 10290.02 11092.71 10295.72 11782.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
canonicalmvs93.27 6092.75 6894.85 2595.70 11987.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
CANet93.54 5093.20 6094.55 4295.65 12085.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
3Dnovator+87.14 492.42 7591.37 8395.55 795.63 12188.73 697.07 1896.77 7490.84 1684.02 25896.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
fmvsm_s_conf0.5_n93.76 4594.06 4092.86 9495.62 12283.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
test250687.21 21886.28 21590.02 22795.62 12273.64 32096.25 4871.38 39687.89 10790.45 12096.65 7055.29 35498.09 15486.03 15596.94 9098.33 43
ECVR-MVScopyleft89.09 14988.53 14690.77 19395.62 12275.89 30196.16 5384.22 37487.89 10790.20 12496.65 7063.19 31398.10 14685.90 15696.94 9098.33 43
alignmvs93.08 6592.50 7294.81 3195.62 12287.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
test111189.10 14788.64 14290.48 20495.53 12674.97 30896.08 6184.89 37288.13 9990.16 12696.65 7063.29 31198.10 14686.14 15196.90 9298.39 39
WTY-MVS89.60 13088.92 13491.67 15395.47 12781.15 18392.38 25694.78 22083.11 21789.06 14194.32 16278.67 13596.61 26281.57 22290.89 19397.24 104
DELS-MVS93.43 5793.25 5893.97 5495.42 12885.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030494.60 1794.38 2495.23 1195.41 12987.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
thres20087.21 21886.24 21790.12 22195.36 13078.53 25193.26 22892.10 29586.42 14188.00 15791.11 27969.24 25898.00 16269.58 33191.04 19293.83 256
Vis-MVSNetpermissive91.75 8391.23 8693.29 7195.32 13183.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
fmvsm_l_conf0.5_n_a94.20 3394.40 2293.60 6795.29 13284.98 7195.61 9296.28 10886.31 14396.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
fmvsm_l_conf0.5_n94.29 2794.46 2093.79 6395.28 13385.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
BH-RMVSNet88.37 17187.48 17491.02 18395.28 13379.45 23292.89 24293.07 26985.45 16686.91 18094.84 14470.35 24097.76 17473.97 30594.59 13895.85 165
COLMAP_ROBcopyleft80.39 1683.96 28282.04 28989.74 23895.28 13379.75 22594.25 17392.28 28975.17 33278.02 33493.77 19058.60 34297.84 17165.06 35685.92 26391.63 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJ91.18 9490.92 9291.96 13695.26 13682.60 14992.09 26995.70 15886.27 14491.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 233
BH-untuned88.60 16688.13 16090.01 22895.24 13778.50 25393.29 22694.15 24384.75 18284.46 24493.40 19775.76 16697.40 21177.59 27294.52 14194.12 239
EC-MVSNet93.44 5493.71 5092.63 10795.21 13882.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
ETV-MVS92.74 7092.66 6992.97 8895.20 13984.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 140
GeoE90.05 11689.43 12191.90 14395.16 14080.37 20495.80 7894.65 22683.90 19687.55 16794.75 14778.18 14297.62 18781.28 22593.63 15497.71 88
EIA-MVS91.95 7991.94 7791.98 13495.16 14080.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
ab-mvs89.41 13988.35 15292.60 10895.15 14282.65 14792.20 26595.60 16783.97 19588.55 14793.70 19374.16 19198.21 14082.46 20389.37 21496.94 123
iter_conf_final89.42 13888.69 14191.60 15595.12 14382.93 13595.75 8192.14 29487.32 12087.12 17594.07 17067.09 27797.55 19190.61 10189.01 22294.32 231
VDDNet89.56 13288.49 15092.76 9995.07 14482.09 15796.30 4393.19 26781.05 26891.88 9896.86 5961.16 32998.33 13188.43 12392.49 17997.84 82
fmvsm_s_conf0.5_n_a93.57 4993.76 4893.00 8695.02 14583.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
AllTest83.42 28781.39 29389.52 24695.01 14677.79 27493.12 23290.89 33077.41 31076.12 34693.34 19854.08 35997.51 19568.31 33884.27 27693.26 281
TestCases89.52 24695.01 14677.79 27490.89 33077.41 31076.12 34693.34 19854.08 35997.51 19568.31 33884.27 27693.26 281
EI-MVSNet-Vis-set93.01 6692.92 6593.29 7195.01 14683.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
xiu_mvs_v2_base91.13 9590.89 9491.86 14494.97 14982.42 15192.24 26395.64 16586.11 15291.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 234
tttt051788.61 16587.78 16891.11 17894.96 15077.81 27295.35 9989.69 35185.09 17588.05 15694.59 15566.93 27998.48 11183.27 18992.13 18297.03 118
baseline188.10 17887.28 18090.57 19694.96 15080.07 21394.27 17291.29 32086.74 13487.41 16894.00 17776.77 15496.20 28780.77 23479.31 34095.44 180
Test_1112_low_res87.65 19186.51 20691.08 17994.94 15279.28 24091.77 27494.30 23776.04 32483.51 27192.37 23277.86 14697.73 17878.69 26189.13 22096.22 149
1112_ss88.42 16987.33 17891.72 15194.92 15380.98 18792.97 24094.54 22778.16 30683.82 26293.88 18578.78 13397.91 16979.45 25389.41 21396.26 148
QAPM89.51 13388.15 15993.59 6894.92 15384.58 7996.82 2996.70 8378.43 30083.41 27396.19 9073.18 20699.30 4077.11 27896.54 10196.89 127
BH-w/o87.57 20087.05 18589.12 25594.90 15577.90 26892.41 25493.51 26282.89 22483.70 26591.34 26775.75 16797.07 23875.49 29193.49 15992.39 313
thisisatest053088.67 16387.61 17191.86 14494.87 15680.07 21394.63 14889.90 34884.00 19488.46 14993.78 18966.88 28198.46 11583.30 18892.65 17597.06 115
EI-MVSNet-UG-set92.74 7092.62 7093.12 7894.86 15783.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
HY-MVS83.01 1289.03 15387.94 16592.29 12594.86 15782.77 13892.08 27094.49 22881.52 25886.93 17892.79 22278.32 14198.23 13779.93 24790.55 19495.88 164
hse-mvs289.88 12589.34 12491.51 15994.83 15981.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35195.74 171
AUN-MVS87.78 18786.54 20591.48 16194.82 16081.05 18593.91 20193.93 25083.00 22086.93 17893.53 19569.50 25197.67 17986.14 15177.12 35095.73 173
Fast-Effi-MVS+89.41 13988.64 14291.71 15294.74 16180.81 19393.54 21395.10 19883.11 21786.82 18690.67 29179.74 12097.75 17780.51 24093.55 15696.57 138
ACMP84.23 889.01 15588.35 15290.99 18694.73 16281.27 17895.07 12195.89 14486.48 13983.67 26694.30 16369.33 25497.99 16387.10 14588.55 22893.72 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet78.82 1885.55 25784.65 26188.23 27994.72 16371.93 33887.12 35192.75 27778.80 29384.95 23490.53 29364.43 30296.71 25574.74 30093.86 15196.06 158
LCM-MVSNet-Re88.30 17488.32 15588.27 27694.71 16472.41 33793.15 23190.98 32787.77 11079.25 32591.96 25178.35 14095.75 30783.04 19195.62 11496.65 135
HQP_MVS90.60 10890.19 10291.82 14794.70 16582.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20094.63 209
plane_prior794.70 16582.74 141
ACMH+81.04 1485.05 26983.46 27789.82 23494.66 16779.37 23494.44 16094.12 24682.19 23678.04 33392.82 21958.23 34397.54 19373.77 30782.90 29392.54 306
ACMM84.12 989.14 14688.48 15191.12 17594.65 16881.22 18195.31 10196.12 12385.31 16985.92 20194.34 16070.19 24398.06 15885.65 15988.86 22594.08 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvsmconf_n94.60 1794.81 1593.98 5394.62 16984.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
plane_prior194.59 170
casdiffmvs_mvgpermissive92.96 6792.83 6793.35 7094.59 17083.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator86.66 591.73 8490.82 9594.44 4494.59 17086.37 4097.18 1297.02 4789.20 6084.31 25496.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
FA-MVS(test-final)89.66 12888.91 13591.93 13894.57 17380.27 20591.36 28394.74 22284.87 17889.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
FE-MVS87.40 20786.02 22591.57 15794.56 17479.69 22790.27 29993.72 25980.57 27188.80 14491.62 26265.32 29698.59 10674.97 29994.33 14696.44 141
plane_prior694.52 17582.75 13974.23 187
UGNet89.95 12188.95 13392.95 9094.51 17683.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30498.78 9183.92 18196.31 10696.74 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test89.45 13688.90 13691.12 17594.47 17781.49 17295.30 10396.14 12086.73 13585.45 21895.16 13069.89 24598.10 14687.70 13289.23 21893.77 262
LGP-MVS_train91.12 17594.47 17781.49 17296.14 12086.73 13585.45 21895.16 13069.89 24598.10 14687.70 13289.23 21893.77 262
baseline92.39 7692.29 7592.69 10594.46 17981.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
ACMH80.38 1785.36 26183.68 27490.39 20994.45 18080.63 19794.73 14294.85 21482.09 23777.24 33892.65 22460.01 33597.58 18872.25 31484.87 27192.96 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB82.13 1386.26 24784.90 25690.34 21394.44 18181.50 17092.31 26294.89 21083.03 21979.63 32292.67 22369.69 24897.79 17271.20 31886.26 26291.72 326
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
casdiffmvspermissive92.51 7392.43 7392.74 10194.41 18281.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 9191.11 8891.93 13894.37 18380.14 21093.46 21795.80 14986.46 14091.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
NP-MVS94.37 18382.42 15193.98 178
TR-MVS86.78 23185.76 23789.82 23494.37 18378.41 25592.47 25392.83 27481.11 26786.36 19492.40 23168.73 26597.48 19773.75 30889.85 20693.57 271
Effi-MVS+91.59 8791.11 8893.01 8594.35 18683.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
iter_conf0588.85 15788.08 16191.17 17494.27 18781.64 16795.18 11392.15 29386.23 14787.28 17294.07 17063.89 30897.55 19190.63 10089.00 22394.32 231
CLD-MVS89.47 13588.90 13691.18 17394.22 18882.07 15892.13 26796.09 12687.90 10585.37 22792.45 23074.38 18597.56 19087.15 14190.43 19593.93 248
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC94.17 18994.39 16588.81 7285.43 221
ACMP_Plane94.17 18994.39 16588.81 7285.43 221
HQP-MVS89.80 12689.28 12791.34 16794.17 18981.56 16894.39 16596.04 13188.81 7285.43 22193.97 17973.83 19797.96 16587.11 14389.77 20994.50 222
XVG-OURS89.40 14188.70 14091.52 15894.06 19281.46 17491.27 28596.07 12886.14 15088.89 14395.77 10868.73 26597.26 22487.39 13789.96 20295.83 167
sss88.93 15688.26 15890.94 18994.05 19380.78 19491.71 27695.38 18481.55 25788.63 14693.91 18475.04 17695.47 31882.47 20291.61 18496.57 138
PCF-MVS84.11 1087.74 18886.08 22392.70 10494.02 19484.43 8989.27 32295.87 14573.62 34884.43 24694.33 16178.48 13998.86 8470.27 32394.45 14394.81 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 21285.98 22791.08 17994.01 19583.10 12595.14 11794.94 20483.57 20484.37 24791.64 25866.59 28696.34 28378.23 26685.36 26793.79 257
test187.26 21285.98 22791.08 17994.01 19583.10 12595.14 11794.94 20483.57 20484.37 24791.64 25866.59 28696.34 28378.23 26685.36 26793.79 257
FMVSNet287.19 22085.82 23391.30 16994.01 19583.67 10694.79 13894.94 20483.57 20483.88 26192.05 24966.59 28696.51 27077.56 27385.01 27093.73 265
XVG-OURS-SEG-HR89.95 12189.45 11991.47 16294.00 19881.21 18291.87 27296.06 13085.78 15588.55 14795.73 11074.67 18397.27 22288.71 12089.64 21195.91 162
FIs90.51 10990.35 9990.99 18693.99 19980.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22685.18 16388.31 23694.76 207
xiu_mvs_v1_base_debu90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
xiu_mvs_v1_base90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
xiu_mvs_v1_base_debi90.64 10590.05 10792.40 11793.97 20084.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 235
VPA-MVSNet89.62 12988.96 13291.60 15593.86 20382.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21187.32 13982.86 29494.52 217
MVSFormer91.68 8691.30 8492.80 9793.86 20383.88 10195.96 7195.90 14284.66 18591.76 10394.91 13777.92 14497.30 21889.64 10997.11 8597.24 104
lupinMVS90.92 9790.21 10193.03 8493.86 20383.88 10192.81 24593.86 25479.84 27891.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
IterMVS-LS88.36 17287.91 16689.70 24193.80 20678.29 26093.73 20695.08 20085.73 15784.75 23691.90 25379.88 11796.92 24783.83 18282.51 29593.89 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 27283.09 28190.14 22093.80 20680.05 21589.18 32593.09 26878.89 29078.19 33191.91 25265.86 29597.27 22268.47 33688.45 23293.11 290
FMVSNet387.40 20786.11 22191.30 16993.79 20883.64 10894.20 17794.81 21883.89 19784.37 24791.87 25468.45 26896.56 26778.23 26685.36 26793.70 268
fmvsm_s_conf0.1_n93.46 5293.66 5292.85 9593.75 20983.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
FC-MVSNet-test90.27 11190.18 10390.53 19893.71 21079.85 22495.77 8097.59 389.31 5686.27 19694.67 15181.93 10397.01 24284.26 17688.09 23994.71 208
TAMVS89.21 14588.29 15691.96 13693.71 21082.62 14893.30 22594.19 24182.22 23587.78 16293.94 18078.83 13196.95 24577.70 27192.98 17196.32 144
ET-MVSNet_ETH3D87.51 20285.91 23192.32 12293.70 21283.93 9992.33 26090.94 32884.16 19072.09 36592.52 22869.90 24495.85 30289.20 11488.36 23597.17 108
test_fmvsmvis_n_192093.44 5493.55 5493.10 7993.67 21384.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 144
CDS-MVSNet89.45 13688.51 14792.29 12593.62 21483.61 11193.01 23894.68 22581.95 24287.82 16193.24 20578.69 13496.99 24380.34 24293.23 16796.28 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet (Re)89.80 12689.07 13092.01 13093.60 21584.52 8394.78 13997.47 1189.26 5886.44 19392.32 23482.10 9897.39 21484.81 16980.84 32294.12 239
VPNet88.20 17687.47 17590.39 20993.56 21679.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23184.05 17980.53 32794.56 215
thisisatest051587.33 21085.99 22691.37 16693.49 21779.55 22990.63 29589.56 35480.17 27487.56 16690.86 28467.07 27898.28 13581.50 22393.02 17096.29 146
mvs_anonymous89.37 14389.32 12589.51 24893.47 21874.22 31591.65 27994.83 21682.91 22385.45 21893.79 18881.23 10896.36 28286.47 15094.09 14797.94 74
CANet_DTU90.26 11289.41 12292.81 9693.46 21983.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 143
testing380.46 31579.59 31383.06 34593.44 22064.64 37493.33 22085.47 36984.34 18979.93 31890.84 28644.35 37992.39 35657.06 37787.56 24892.16 320
UniMVSNet_NR-MVSNet89.92 12389.29 12691.81 14993.39 22183.72 10494.43 16197.12 4189.80 4186.46 19093.32 20083.16 7997.23 22784.92 16681.02 31894.49 224
Effi-MVS+-dtu88.65 16488.35 15289.54 24593.33 22276.39 29694.47 15894.36 23587.70 11285.43 22189.56 31373.45 20297.26 22485.57 16191.28 18694.97 194
WR-MVS88.38 17087.67 17090.52 20093.30 22380.18 20893.26 22895.96 13788.57 8385.47 21792.81 22076.12 15996.91 24881.24 22682.29 29894.47 227
WR-MVS_H87.80 18687.37 17789.10 25693.23 22478.12 26395.61 9297.30 2987.90 10583.72 26492.01 25079.65 12596.01 29576.36 28480.54 32693.16 288
test_040281.30 30979.17 31987.67 28993.19 22578.17 26292.98 23991.71 30675.25 33176.02 34890.31 29759.23 33996.37 28050.22 38283.63 28388.47 367
OPM-MVS90.12 11489.56 11791.82 14793.14 22683.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 19993.65 269
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CP-MVSNet87.63 19487.26 18288.74 26693.12 22776.59 29395.29 10596.58 9188.43 8683.49 27292.98 21475.28 17395.83 30378.97 25981.15 31493.79 257
diffmvspermissive91.37 9091.23 8691.77 15093.09 22880.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20292.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
nrg03091.08 9690.39 9893.17 7693.07 22986.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 28994.96 197
PAPM86.68 23585.39 24490.53 19893.05 23079.33 23989.79 31394.77 22178.82 29281.95 29193.24 20576.81 15297.30 21866.94 34693.16 16894.95 200
DU-MVS89.34 14488.50 14891.85 14693.04 23183.72 10494.47 15896.59 9089.50 5086.46 19093.29 20377.25 14997.23 22784.92 16681.02 31894.59 212
NR-MVSNet88.58 16887.47 17591.93 13893.04 23184.16 9594.77 14096.25 11289.05 6580.04 31693.29 20379.02 13097.05 24081.71 22180.05 33294.59 212
jason90.80 9890.10 10592.90 9293.04 23183.53 11293.08 23594.15 24380.22 27391.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
PS-CasMVS87.32 21186.88 18888.63 26992.99 23476.33 29895.33 10096.61 8988.22 9483.30 27793.07 21273.03 20995.79 30678.36 26381.00 32093.75 264
test_vis1_n_192089.39 14289.84 11388.04 28392.97 23572.64 33294.71 14496.03 13386.18 14891.94 9796.56 7861.63 32095.74 30893.42 4195.11 12995.74 171
MVSTER88.84 15888.29 15690.51 20192.95 23680.44 20293.73 20695.01 20184.66 18587.15 17393.12 21072.79 21197.21 22987.86 12987.36 25293.87 252
RPSCF85.07 26884.27 26587.48 29592.91 23770.62 35391.69 27892.46 28376.20 32382.67 28395.22 12563.94 30597.29 22177.51 27485.80 26494.53 216
mvsmamba89.96 12089.50 11891.33 16892.90 23881.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 22794.51 219
RRT_MVS89.09 14988.62 14590.49 20292.85 23979.65 22896.41 3994.41 23288.22 9485.50 21494.77 14669.36 25397.31 21789.33 11286.73 25994.51 219
FMVSNet185.85 25384.11 26791.08 17992.81 24083.10 12595.14 11794.94 20481.64 25482.68 28291.64 25859.01 34196.34 28375.37 29383.78 27993.79 257
tfpnnormal84.72 27483.23 27989.20 25392.79 24180.05 21594.48 15595.81 14882.38 23281.08 30191.21 27269.01 26196.95 24561.69 36580.59 32590.58 350
OpenMVScopyleft83.78 1188.74 16287.29 17993.08 8192.70 24285.39 6796.57 3696.43 9778.74 29580.85 30396.07 9469.64 24999.01 6378.01 26996.65 10094.83 204
TranMVSNet+NR-MVSNet88.84 15887.95 16491.49 16092.68 24383.01 13294.92 13096.31 10489.88 3985.53 21193.85 18776.63 15796.96 24481.91 21479.87 33594.50 222
MVS87.44 20586.10 22291.44 16392.61 24483.62 10992.63 24995.66 16267.26 37381.47 29592.15 24077.95 14398.22 13979.71 24995.48 11892.47 309
fmvsm_s_conf0.1_n_a93.19 6393.26 5792.97 8892.49 24583.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
CHOSEN 280x42085.15 26783.99 27088.65 26892.47 24678.40 25679.68 38492.76 27674.90 33681.41 29789.59 31169.85 24795.51 31479.92 24895.29 12592.03 321
test_fmvsmconf0.1_n94.20 3394.31 2793.88 5792.46 24784.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
UniMVSNet_ETH3D87.53 20186.37 21091.00 18592.44 24878.96 24594.74 14195.61 16684.07 19385.36 22894.52 15759.78 33797.34 21682.93 19387.88 24296.71 134
131487.51 20286.57 20490.34 21392.42 24979.74 22692.63 24995.35 18878.35 30180.14 31391.62 26274.05 19297.15 23181.05 22793.53 15794.12 239
cl2286.78 23185.98 22789.18 25492.34 25077.62 27990.84 29294.13 24581.33 26183.97 26090.15 30073.96 19496.60 26484.19 17782.94 29093.33 279
PEN-MVS86.80 23086.27 21688.40 27292.32 25175.71 30495.18 11396.38 10187.97 10282.82 28193.15 20873.39 20495.92 29876.15 28879.03 34293.59 270
tt080586.92 22785.74 23990.48 20492.22 25279.98 22095.63 9194.88 21283.83 19984.74 23792.80 22157.61 34597.67 17985.48 16284.42 27493.79 257
c3_l87.14 22286.50 20789.04 25892.20 25377.26 28391.22 28794.70 22482.01 24184.34 25190.43 29578.81 13296.61 26283.70 18581.09 31593.25 283
SCA86.32 24685.18 24989.73 24092.15 25476.60 29291.12 28891.69 30883.53 20785.50 21488.81 32166.79 28296.48 27276.65 28190.35 19796.12 153
XXY-MVS87.65 19186.85 19090.03 22592.14 25580.60 19993.76 20595.23 19182.94 22284.60 23994.02 17574.27 18695.49 31781.04 22883.68 28294.01 247
miper_ehance_all_eth87.22 21786.62 20289.02 25992.13 25677.40 28290.91 29194.81 21881.28 26284.32 25290.08 30279.26 12796.62 25983.81 18382.94 29093.04 293
IB-MVS80.51 1585.24 26683.26 27891.19 17292.13 25679.86 22391.75 27591.29 32083.28 21480.66 30688.49 32761.28 32498.46 11580.99 23179.46 33895.25 187
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 24584.98 25390.80 19292.10 25880.92 19090.24 30395.91 14173.10 35383.57 27088.39 32865.15 29897.46 19984.90 16891.43 18594.03 246
Fast-Effi-MVS+-dtu87.44 20586.72 19589.63 24392.04 25977.68 27894.03 19093.94 24985.81 15482.42 28491.32 27070.33 24197.06 23980.33 24390.23 19894.14 238
cl____86.52 24185.78 23488.75 26492.03 26076.46 29490.74 29394.30 23781.83 24983.34 27590.78 28975.74 16996.57 26581.74 21981.54 30993.22 285
DIV-MVS_self_test86.53 24085.78 23488.75 26492.02 26176.45 29590.74 29394.30 23781.83 24983.34 27590.82 28775.75 16796.57 26581.73 22081.52 31093.24 284
eth_miper_zixun_eth86.50 24285.77 23688.68 26791.94 26275.81 30390.47 29794.89 21082.05 23884.05 25790.46 29475.96 16296.77 25282.76 19979.36 33993.46 277
Syy-MVS80.07 31979.78 30880.94 35291.92 26359.93 38389.75 31487.40 36481.72 25178.82 32787.20 34566.29 29091.29 36647.06 38487.84 24491.60 329
myMVS_eth3d79.67 32478.79 32382.32 35091.92 26364.08 37589.75 31487.40 36481.72 25178.82 32787.20 34545.33 37791.29 36659.09 37387.84 24491.60 329
PS-MVSNAJss89.97 11989.62 11591.02 18391.90 26580.85 19295.26 10895.98 13486.26 14586.21 19794.29 16479.70 12197.65 18288.87 11988.10 23794.57 214
ITE_SJBPF88.24 27891.88 26677.05 28692.92 27185.54 16480.13 31493.30 20257.29 34696.20 28772.46 31384.71 27291.49 332
EI-MVSNet89.10 14788.86 13889.80 23791.84 26778.30 25993.70 20995.01 20185.73 15787.15 17395.28 12279.87 11897.21 22983.81 18387.36 25293.88 251
CVMVSNet84.69 27584.79 25984.37 33791.84 26764.92 37393.70 20991.47 31666.19 37586.16 19995.28 12267.18 27693.33 34780.89 23390.42 19694.88 202
dmvs_re84.20 27983.22 28087.14 30691.83 26977.81 27290.04 30990.19 33984.70 18481.49 29489.17 31664.37 30391.13 36871.58 31685.65 26692.46 310
MVS-HIRNet73.70 34172.20 34478.18 35991.81 27056.42 39182.94 37782.58 37855.24 38368.88 37366.48 38755.32 35395.13 32258.12 37488.42 23383.01 376
PatchmatchNetpermissive85.85 25384.70 26089.29 25191.76 27175.54 30588.49 33491.30 31981.63 25585.05 23288.70 32571.71 22096.24 28674.61 30289.05 22196.08 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
bld_raw_dy_0_6487.60 19886.73 19490.21 21591.72 27280.26 20795.09 12088.61 35685.68 15985.55 20894.38 15963.93 30796.66 25687.73 13187.84 24493.72 266
TransMVSNet (Re)84.43 27783.06 28288.54 27091.72 27278.44 25495.18 11392.82 27582.73 22779.67 32192.12 24273.49 20195.96 29771.10 32268.73 37391.21 338
IterMVS-SCA-FT85.45 25884.53 26488.18 28091.71 27476.87 28890.19 30692.65 28185.40 16781.44 29690.54 29266.79 28295.00 32681.04 22881.05 31692.66 304
TinyColmap79.76 32377.69 32685.97 32291.71 27473.12 32489.55 31690.36 33775.03 33372.03 36690.19 29846.22 37696.19 28963.11 36181.03 31788.59 366
MDTV_nov1_ep1383.56 27691.69 27669.93 35787.75 34491.54 31378.60 29784.86 23588.90 32069.54 25096.03 29370.25 32488.93 224
miper_enhance_ethall86.90 22886.18 21889.06 25791.66 27777.58 28090.22 30594.82 21779.16 28784.48 24389.10 31779.19 12996.66 25684.06 17882.94 29092.94 296
DTE-MVSNet86.11 24885.48 24287.98 28491.65 27874.92 30994.93 12995.75 15387.36 11982.26 28693.04 21372.85 21095.82 30474.04 30477.46 34893.20 286
MIMVSNet82.59 29380.53 29888.76 26391.51 27978.32 25886.57 35590.13 34179.32 28380.70 30588.69 32652.98 36393.07 35266.03 35188.86 22594.90 201
pm-mvs186.61 23685.54 24089.82 23491.44 28080.18 20895.28 10794.85 21483.84 19881.66 29392.62 22572.45 21796.48 27279.67 25078.06 34392.82 301
Baseline_NR-MVSNet87.07 22386.63 20188.40 27291.44 28077.87 27094.23 17692.57 28284.12 19285.74 20492.08 24677.25 14996.04 29282.29 20779.94 33391.30 336
IterMVS84.88 27183.98 27187.60 29091.44 28076.03 30090.18 30792.41 28483.24 21581.06 30290.42 29666.60 28594.28 33479.46 25280.98 32192.48 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch85.05 26984.16 26687.73 28891.42 28378.51 25291.25 28693.53 26177.50 30980.15 31291.58 26461.99 31895.51 31475.69 29094.35 14589.16 361
tpm284.08 28082.94 28387.48 29591.39 28471.27 34589.23 32490.37 33671.95 36284.64 23889.33 31467.30 27396.55 26975.17 29587.09 25694.63 209
v887.50 20486.71 19689.89 23191.37 28579.40 23394.50 15495.38 18484.81 18183.60 26991.33 26876.05 16097.42 20482.84 19680.51 32992.84 300
ADS-MVSNet281.66 30279.71 31187.50 29391.35 28674.19 31683.33 37488.48 35872.90 35582.24 28785.77 35764.98 29993.20 35064.57 35783.74 28095.12 190
ADS-MVSNet81.56 30479.78 30886.90 31191.35 28671.82 34083.33 37489.16 35572.90 35582.24 28785.77 35764.98 29993.76 34164.57 35783.74 28095.12 190
GA-MVS86.61 23685.27 24890.66 19491.33 28878.71 24790.40 29893.81 25785.34 16885.12 23189.57 31261.25 32597.11 23580.99 23189.59 21296.15 150
miper_lstm_enhance85.27 26584.59 26387.31 29791.28 28974.63 31087.69 34594.09 24781.20 26681.36 29889.85 30874.97 17894.30 33381.03 23079.84 33693.01 294
XVG-ACMP-BASELINE86.00 24984.84 25889.45 24991.20 29078.00 26591.70 27795.55 16985.05 17682.97 27992.25 23854.49 35797.48 19782.93 19387.45 25192.89 298
v1087.25 21486.38 20989.85 23291.19 29179.50 23094.48 15595.45 17883.79 20083.62 26891.19 27375.13 17497.42 20481.94 21380.60 32492.63 305
FMVSNet581.52 30579.60 31287.27 29891.17 29277.95 26691.49 28192.26 29076.87 31576.16 34587.91 33751.67 36492.34 35767.74 34281.16 31291.52 331
USDC82.76 29081.26 29587.26 29991.17 29274.55 31189.27 32293.39 26478.26 30475.30 35192.08 24654.43 35896.63 25871.64 31585.79 26590.61 347
CostFormer85.77 25584.94 25588.26 27791.16 29472.58 33589.47 32091.04 32676.26 32286.45 19289.97 30570.74 23396.86 25182.35 20587.07 25795.34 185
test_cas_vis1_n_192088.83 16188.85 13988.78 26291.15 29576.72 29093.85 20294.93 20883.23 21692.81 7296.00 9661.17 32894.45 32891.67 8394.84 13195.17 189
baseline286.50 24285.39 24489.84 23391.12 29676.70 29191.88 27188.58 35782.35 23479.95 31790.95 28373.42 20397.63 18680.27 24489.95 20395.19 188
tpm cat181.96 29680.27 30287.01 30791.09 29771.02 34987.38 34991.53 31466.25 37480.17 31186.35 35368.22 27096.15 29069.16 33282.29 29893.86 254
tpmvs83.35 28982.07 28887.20 30491.07 29871.00 35088.31 33791.70 30778.91 28980.49 30987.18 34769.30 25797.08 23668.12 34183.56 28493.51 275
v114487.61 19786.79 19390.06 22491.01 29979.34 23693.95 19695.42 18383.36 21285.66 20691.31 27174.98 17797.42 20483.37 18782.06 30093.42 278
v2v48287.84 18487.06 18490.17 21790.99 30079.23 24394.00 19495.13 19584.87 17885.53 21192.07 24874.45 18497.45 20084.71 17181.75 30693.85 255
SixPastTwentyTwo83.91 28482.90 28486.92 31090.99 30070.67 35293.48 21591.99 30085.54 16477.62 33792.11 24460.59 33196.87 25076.05 28977.75 34593.20 286
test-LLR85.87 25285.41 24387.25 30090.95 30271.67 34389.55 31689.88 34983.41 21084.54 24187.95 33567.25 27495.11 32381.82 21693.37 16494.97 194
test-mter84.54 27683.64 27587.25 30090.95 30271.67 34389.55 31689.88 34979.17 28684.54 24187.95 33555.56 35195.11 32381.82 21693.37 16494.97 194
v14887.04 22486.32 21389.21 25290.94 30477.26 28393.71 20894.43 23084.84 18084.36 25090.80 28876.04 16197.05 24082.12 20979.60 33793.31 280
mvs_tets88.06 18187.28 18090.38 21190.94 30479.88 22295.22 11095.66 16285.10 17484.21 25693.94 18063.53 30997.40 21188.50 12288.40 23493.87 252
MVP-Stereo85.97 25084.86 25789.32 25090.92 30682.19 15692.11 26894.19 24178.76 29478.77 33091.63 26168.38 26996.56 26775.01 29893.95 14989.20 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test81.37 30779.30 31587.58 29190.92 30674.16 31780.99 38087.68 36270.52 36876.63 34388.81 32171.21 22592.76 35460.01 37186.93 25895.83 167
jajsoiax88.24 17587.50 17390.48 20490.89 30880.14 21095.31 10195.65 16484.97 17784.24 25594.02 17565.31 29797.42 20488.56 12188.52 23093.89 249
tpmrst85.35 26284.99 25286.43 31890.88 30967.88 36488.71 33191.43 31780.13 27586.08 20088.80 32373.05 20796.02 29482.48 20183.40 28895.40 182
gg-mvs-nofinetune81.77 29979.37 31488.99 26090.85 31077.73 27786.29 35679.63 38574.88 33783.19 27869.05 38660.34 33296.11 29175.46 29294.64 13793.11 290
D2MVS85.90 25185.09 25188.35 27490.79 31177.42 28191.83 27395.70 15880.77 27080.08 31590.02 30366.74 28496.37 28081.88 21587.97 24191.26 337
OurMVSNet-221017-085.35 26284.64 26287.49 29490.77 31272.59 33494.01 19294.40 23384.72 18379.62 32393.17 20761.91 31996.72 25381.99 21281.16 31293.16 288
v119287.25 21486.33 21290.00 22990.76 31379.04 24493.80 20395.48 17482.57 22985.48 21691.18 27573.38 20597.42 20482.30 20682.06 30093.53 272
test_djsdf89.03 15388.64 14290.21 21590.74 31479.28 24095.96 7195.90 14284.66 18585.33 22992.94 21574.02 19397.30 21889.64 10988.53 22994.05 245
v7n86.81 22985.76 23789.95 23090.72 31579.25 24295.07 12195.92 13984.45 18882.29 28590.86 28472.60 21497.53 19479.42 25680.52 32893.08 292
PVSNet_073.20 2077.22 33574.83 34184.37 33790.70 31671.10 34883.09 37689.67 35272.81 35773.93 35983.13 36860.79 33093.70 34368.54 33550.84 38988.30 368
v14419287.19 22086.35 21189.74 23890.64 31778.24 26193.92 19995.43 18181.93 24385.51 21391.05 28174.21 18997.45 20082.86 19581.56 30893.53 272
test_fmvs187.34 20987.56 17286.68 31690.59 31871.80 34194.01 19294.04 24878.30 30291.97 9495.22 12556.28 34993.71 34292.89 4994.71 13394.52 217
V4287.68 18986.86 18990.15 21990.58 31980.14 21094.24 17595.28 18983.66 20285.67 20591.33 26874.73 18197.41 20984.43 17581.83 30492.89 298
CR-MVSNet85.35 26283.76 27390.12 22190.58 31979.34 23685.24 36491.96 30378.27 30385.55 20887.87 33871.03 22895.61 31073.96 30689.36 21595.40 182
RPMNet83.95 28381.53 29291.21 17190.58 31979.34 23685.24 36496.76 7571.44 36485.55 20882.97 37170.87 23198.91 8061.01 36789.36 21595.40 182
v192192086.97 22686.06 22489.69 24290.53 32278.11 26493.80 20395.43 18181.90 24585.33 22991.05 28172.66 21297.41 20982.05 21181.80 30593.53 272
v124086.78 23185.85 23289.56 24490.45 32377.79 27493.61 21195.37 18681.65 25385.43 22191.15 27771.50 22397.43 20381.47 22482.05 30293.47 276
tpm84.73 27384.02 26986.87 31390.33 32468.90 36089.06 32789.94 34680.85 26985.75 20389.86 30768.54 26795.97 29677.76 27084.05 27895.75 170
EG-PatchMatch MVS82.37 29580.34 30188.46 27190.27 32579.35 23592.80 24694.33 23677.14 31473.26 36290.18 29947.47 37496.72 25370.25 32487.32 25489.30 358
EPNet_dtu86.49 24485.94 23088.14 28190.24 32672.82 32794.11 18192.20 29186.66 13779.42 32492.36 23373.52 20095.81 30571.26 31793.66 15395.80 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS83.90 28582.70 28787.51 29290.23 32772.67 33088.62 33381.96 38081.37 26085.01 23388.34 32966.31 28994.45 32875.30 29487.12 25595.43 181
EPNet91.79 8191.02 9194.10 5290.10 32885.25 6996.03 6692.05 29792.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT82.68 29281.27 29486.89 31290.09 32970.94 35184.06 37190.15 34074.91 33585.63 20783.57 36669.37 25294.87 32765.19 35388.50 23194.84 203
Patchmtry82.71 29180.93 29788.06 28290.05 33076.37 29784.74 36991.96 30372.28 36181.32 29987.87 33871.03 22895.50 31668.97 33380.15 33192.32 316
pmmvs485.43 25983.86 27290.16 21890.02 33182.97 13490.27 29992.67 28075.93 32580.73 30491.74 25771.05 22795.73 30978.85 26083.46 28691.78 325
TESTMET0.1,183.74 28682.85 28586.42 31989.96 33271.21 34789.55 31687.88 35977.41 31083.37 27487.31 34356.71 34793.65 34480.62 23892.85 17494.40 228
dp81.47 30680.23 30385.17 33289.92 33365.49 37186.74 35390.10 34276.30 32181.10 30087.12 34862.81 31495.92 29868.13 34079.88 33494.09 242
K. test v381.59 30380.15 30585.91 32589.89 33469.42 35992.57 25187.71 36185.56 16373.44 36189.71 31055.58 35095.52 31377.17 27769.76 36792.78 302
MDA-MVSNet-bldmvs78.85 32976.31 33486.46 31789.76 33573.88 31888.79 33090.42 33579.16 28759.18 38288.33 33060.20 33394.04 33662.00 36468.96 37191.48 333
test_fmvs1_n87.03 22587.04 18686.97 30889.74 33671.86 33994.55 15294.43 23078.47 29891.95 9695.50 11651.16 36693.81 34093.02 4894.56 13995.26 186
GG-mvs-BLEND87.94 28689.73 33777.91 26787.80 34178.23 38980.58 30783.86 36459.88 33695.33 32071.20 31892.22 18190.60 349
EGC-MVSNET61.97 35256.37 35678.77 35789.63 33873.50 32189.12 32682.79 3770.21 4011.24 40284.80 36139.48 38290.04 37344.13 38675.94 35672.79 385
gm-plane-assit89.60 33968.00 36277.28 31388.99 31897.57 18979.44 254
test_fmvsmconf0.01_n93.19 6393.02 6393.71 6589.25 34084.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
anonymousdsp87.84 18487.09 18390.12 22189.13 34180.54 20094.67 14695.55 16982.05 23883.82 26292.12 24271.47 22497.15 23187.15 14187.80 24792.67 303
N_pmnet68.89 34668.44 34870.23 36789.07 34228.79 40488.06 33819.50 40469.47 37071.86 36784.93 36061.24 32691.75 36354.70 37977.15 34990.15 351
pmmvs584.21 27882.84 28688.34 27588.95 34376.94 28792.41 25491.91 30575.63 32780.28 31091.18 27564.59 30195.57 31177.09 27983.47 28592.53 307
PMMVS85.71 25684.96 25487.95 28588.90 34477.09 28588.68 33290.06 34372.32 36086.47 18990.76 29072.15 21894.40 33081.78 21893.49 15992.36 314
JIA-IIPM81.04 31078.98 32287.25 30088.64 34573.48 32281.75 37989.61 35373.19 35282.05 28973.71 38366.07 29495.87 30171.18 32084.60 27392.41 312
test_vis1_n86.56 23986.49 20886.78 31588.51 34672.69 32994.68 14593.78 25879.55 28290.70 11795.31 12148.75 37193.28 34893.15 4593.99 14894.38 229
Gipumacopyleft57.99 35754.91 35967.24 37388.51 34665.59 37052.21 39290.33 33843.58 38942.84 39251.18 39320.29 39585.07 38534.77 39270.45 36551.05 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet81.32 30880.95 29682.42 34988.50 34863.67 37793.32 22191.33 31864.02 37880.57 30892.83 21861.21 32792.27 35876.34 28580.38 33091.32 335
our_test_381.93 29780.46 30086.33 32088.46 34973.48 32288.46 33591.11 32276.46 31776.69 34288.25 33166.89 28094.36 33168.75 33479.08 34191.14 340
ppachtmachnet_test81.84 29880.07 30687.15 30588.46 34974.43 31489.04 32892.16 29275.33 33077.75 33588.99 31866.20 29195.37 31965.12 35577.60 34691.65 327
lessismore_v086.04 32188.46 34968.78 36180.59 38373.01 36390.11 30155.39 35296.43 27775.06 29765.06 37792.90 297
test0.0.03 182.41 29481.69 29084.59 33588.23 35272.89 32690.24 30387.83 36083.41 21079.86 31989.78 30967.25 27488.99 37865.18 35483.42 28791.90 324
MDA-MVSNet_test_wron79.21 32877.19 33085.29 33088.22 35372.77 32885.87 35890.06 34374.34 34062.62 38087.56 34166.14 29291.99 36166.90 34973.01 35991.10 343
YYNet179.22 32777.20 32985.28 33188.20 35472.66 33185.87 35890.05 34574.33 34162.70 37887.61 34066.09 29392.03 35966.94 34672.97 36091.15 339
pmmvs683.42 28781.60 29188.87 26188.01 35577.87 27094.96 12794.24 24074.67 33878.80 32991.09 28060.17 33496.49 27177.06 28075.40 35792.23 318
testgi80.94 31380.20 30483.18 34387.96 35666.29 36891.28 28490.70 33483.70 20178.12 33292.84 21751.37 36590.82 37063.34 36082.46 29692.43 311
mvsany_test185.42 26085.30 24785.77 32687.95 35775.41 30787.61 34880.97 38276.82 31688.68 14595.83 10477.44 14890.82 37085.90 15686.51 26091.08 344
Anonymous2023120681.03 31179.77 31084.82 33487.85 35870.26 35591.42 28292.08 29673.67 34777.75 33589.25 31562.43 31693.08 35161.50 36682.00 30391.12 341
dmvs_testset74.57 34075.81 33970.86 36687.72 35940.47 39987.05 35277.90 39182.75 22671.15 37085.47 35967.98 27184.12 38845.26 38576.98 35288.00 369
test_fmvs283.98 28184.03 26883.83 34287.16 36067.53 36793.93 19892.89 27277.62 30886.89 18393.53 19547.18 37592.02 36090.54 10286.51 26091.93 323
OpenMVS_ROBcopyleft74.94 1979.51 32577.03 33286.93 30987.00 36176.23 29992.33 26090.74 33368.93 37174.52 35688.23 33249.58 36996.62 25957.64 37584.29 27587.94 370
LF4IMVS80.37 31779.07 32184.27 33986.64 36269.87 35889.39 32191.05 32576.38 31974.97 35390.00 30447.85 37394.25 33574.55 30380.82 32388.69 365
MIMVSNet179.38 32677.28 32885.69 32786.35 36373.67 31991.61 28092.75 27778.11 30772.64 36488.12 33348.16 37291.97 36260.32 36877.49 34791.43 334
KD-MVS_2432*160078.50 33076.02 33785.93 32386.22 36474.47 31284.80 36792.33 28679.29 28476.98 34085.92 35553.81 36193.97 33767.39 34357.42 38589.36 356
miper_refine_blended78.50 33076.02 33785.93 32386.22 36474.47 31284.80 36792.33 28679.29 28476.98 34085.92 35553.81 36193.97 33767.39 34357.42 38589.36 356
CL-MVSNet_self_test81.74 30080.53 29885.36 32985.96 36672.45 33690.25 30193.07 26981.24 26479.85 32087.29 34470.93 23092.52 35566.95 34569.23 36991.11 342
test_vis1_rt77.96 33376.46 33382.48 34885.89 36771.74 34290.25 30178.89 38671.03 36771.30 36981.35 37542.49 38191.05 36984.55 17382.37 29784.65 373
test20.0379.95 32179.08 32082.55 34785.79 36867.74 36591.09 28991.08 32381.23 26574.48 35789.96 30661.63 32090.15 37260.08 36976.38 35389.76 353
Anonymous2024052180.44 31679.21 31784.11 34085.75 36967.89 36392.86 24493.23 26675.61 32875.59 35087.47 34250.03 36794.33 33271.14 32181.21 31190.12 352
KD-MVS_self_test80.20 31879.24 31683.07 34485.64 37065.29 37291.01 29093.93 25078.71 29676.32 34486.40 35259.20 34092.93 35372.59 31269.35 36891.00 345
Patchmatch-RL test81.67 30179.96 30786.81 31485.42 37171.23 34682.17 37887.50 36378.47 29877.19 33982.50 37370.81 23293.48 34582.66 20072.89 36195.71 174
UnsupCasMVSNet_eth80.07 31978.27 32585.46 32885.24 37272.63 33388.45 33694.87 21382.99 22171.64 36888.07 33456.34 34891.75 36373.48 30963.36 38092.01 322
pmmvs-eth3d80.97 31278.72 32487.74 28784.99 37379.97 22190.11 30891.65 30975.36 32973.51 36086.03 35459.45 33893.96 33975.17 29572.21 36289.29 359
CMPMVSbinary59.16 2180.52 31479.20 31884.48 33683.98 37467.63 36689.95 31293.84 25664.79 37766.81 37691.14 27857.93 34495.17 32176.25 28688.10 23790.65 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld76.23 33873.27 34285.09 33383.79 37572.92 32585.65 36193.47 26371.52 36368.84 37479.08 37849.77 36893.21 34966.81 35060.52 38289.13 363
PM-MVS78.11 33276.12 33684.09 34183.54 37670.08 35688.97 32985.27 37179.93 27774.73 35586.43 35134.70 38593.48 34579.43 25572.06 36388.72 364
DSMNet-mixed76.94 33676.29 33578.89 35683.10 37756.11 39287.78 34279.77 38460.65 38175.64 34988.71 32461.56 32288.34 37960.07 37089.29 21792.21 319
new_pmnet72.15 34270.13 34678.20 35882.95 37865.68 36983.91 37282.40 37962.94 38064.47 37779.82 37742.85 38086.26 38457.41 37674.44 35882.65 378
new-patchmatchnet76.41 33775.17 34080.13 35382.65 37959.61 38487.66 34691.08 32378.23 30569.85 37283.22 36754.76 35591.63 36564.14 35964.89 37889.16 361
WB-MVS67.92 34767.49 34969.21 37081.09 38041.17 39888.03 33978.00 39073.50 34962.63 37983.11 37063.94 30586.52 38225.66 39551.45 38879.94 381
SSC-MVS67.06 34866.56 35068.56 37280.54 38140.06 40087.77 34377.37 39372.38 35961.75 38182.66 37263.37 31086.45 38324.48 39648.69 39179.16 383
APD_test169.04 34566.26 35177.36 36180.51 38262.79 38085.46 36383.51 37654.11 38559.14 38384.79 36223.40 39289.61 37455.22 37870.24 36679.68 382
ambc83.06 34579.99 38363.51 37877.47 38592.86 27374.34 35884.45 36328.74 38695.06 32573.06 31168.89 37290.61 347
test_fmvs377.67 33477.16 33179.22 35579.52 38461.14 38192.34 25991.64 31073.98 34478.86 32686.59 34927.38 38987.03 38088.12 12775.97 35589.50 355
TDRefinement79.81 32277.34 32787.22 30379.24 38575.48 30693.12 23292.03 29876.45 31875.01 35291.58 26449.19 37096.44 27670.22 32669.18 37089.75 354
pmmvs371.81 34468.71 34781.11 35175.86 38670.42 35486.74 35383.66 37558.95 38268.64 37580.89 37636.93 38389.52 37563.10 36263.59 37983.39 374
mvsany_test374.95 33973.26 34380.02 35474.61 38763.16 37985.53 36278.42 38774.16 34274.89 35486.46 35036.02 38489.09 37782.39 20466.91 37487.82 371
DeepMVS_CXcopyleft56.31 37774.23 38851.81 39456.67 40244.85 38848.54 38875.16 38127.87 38858.74 39840.92 39052.22 38758.39 391
test_f71.95 34370.87 34575.21 36274.21 38959.37 38585.07 36685.82 36765.25 37670.42 37183.13 36823.62 39082.93 39078.32 26471.94 36483.33 375
test_vis3_rt65.12 35062.60 35272.69 36471.44 39060.71 38287.17 35065.55 39763.80 37953.22 38565.65 38914.54 39989.44 37676.65 28165.38 37667.91 388
FPMVS64.63 35162.55 35370.88 36570.80 39156.71 38784.42 37084.42 37351.78 38649.57 38681.61 37423.49 39181.48 39140.61 39176.25 35474.46 384
testf159.54 35456.11 35769.85 36869.28 39256.61 38980.37 38276.55 39442.58 39045.68 38975.61 37911.26 40084.18 38643.20 38860.44 38368.75 386
APD_test259.54 35456.11 35769.85 36869.28 39256.61 38980.37 38276.55 39442.58 39045.68 38975.61 37911.26 40084.18 38643.20 38860.44 38368.75 386
PMMVS259.60 35356.40 35569.21 37068.83 39446.58 39673.02 38977.48 39255.07 38449.21 38772.95 38517.43 39780.04 39249.32 38344.33 39280.99 380
wuyk23d21.27 36520.48 36823.63 38168.59 39536.41 40249.57 3936.85 4059.37 3977.89 3994.46 4014.03 40431.37 39917.47 39916.07 3983.12 396
E-PMN43.23 36142.29 36346.03 37865.58 39637.41 40173.51 38764.62 39833.99 39328.47 39747.87 39419.90 39667.91 39522.23 39724.45 39432.77 393
LCM-MVSNet66.00 34962.16 35477.51 36064.51 39758.29 38683.87 37390.90 32948.17 38754.69 38473.31 38416.83 39886.75 38165.47 35261.67 38187.48 372
EMVS42.07 36241.12 36444.92 37963.45 39835.56 40373.65 38663.48 39933.05 39426.88 39845.45 39521.27 39467.14 39619.80 39823.02 39632.06 394
MVEpermissive39.65 2343.39 36038.59 36657.77 37556.52 39948.77 39555.38 39158.64 40129.33 39528.96 39652.65 3924.68 40364.62 39728.11 39433.07 39359.93 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high58.88 35654.22 36072.86 36356.50 40056.67 38880.75 38186.00 36673.09 35437.39 39364.63 39022.17 39379.49 39343.51 38723.96 39582.43 379
test_method50.52 35948.47 36156.66 37652.26 40118.98 40641.51 39481.40 38110.10 39644.59 39175.01 38228.51 38768.16 39453.54 38049.31 39082.83 377
PMVScopyleft47.18 2252.22 35848.46 36263.48 37445.72 40246.20 39773.41 38878.31 38841.03 39230.06 39565.68 3886.05 40283.43 38930.04 39365.86 37560.80 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt35.64 36339.24 36524.84 38014.87 40323.90 40562.71 39051.51 4036.58 39836.66 39462.08 39144.37 37830.34 40052.40 38122.00 39720.27 395
testmvs8.92 36611.52 3691.12 3831.06 4040.46 40886.02 3570.65 4060.62 3992.74 4009.52 3990.31 4060.45 4022.38 4000.39 3992.46 398
test1238.76 36711.22 3701.39 3820.85 4050.97 40785.76 3600.35 4070.54 4002.45 4018.14 4000.60 4050.48 4012.16 4010.17 4002.71 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
eth-test20.00 406
eth-test0.00 406
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k22.14 36429.52 3670.00 3840.00 4060.00 4090.00 39595.76 1520.00 4020.00 40394.29 16475.66 1700.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.64 3698.86 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40279.70 1210.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.82 36810.43 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40393.88 1850.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
MM95.68 588.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
WAC-MVS64.08 37559.14 372
PC_three_145282.47 23097.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
GSMVS96.12 153
sam_mvs171.70 22196.12 153
sam_mvs70.60 234
MTGPAbinary96.97 50
test_post188.00 3409.81 39869.31 25695.53 31276.65 281
test_post10.29 39770.57 23895.91 300
patchmatchnet-post83.76 36571.53 22296.48 272
MTMP96.16 5360.64 400
test9_res91.91 7898.71 3298.07 66
agg_prior290.54 10298.68 3798.27 52
test_prior485.96 5394.11 181
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
旧先验293.36 21971.25 36594.37 3997.13 23486.74 146
新几何293.11 234
无先验93.28 22796.26 11073.95 34599.05 5580.56 23996.59 137
原ACMM292.94 241
testdata298.75 9378.30 265
segment_acmp87.16 36
testdata192.15 26687.94 103
plane_prior596.22 11598.12 14488.15 12489.99 20094.63 209
plane_prior494.86 140
plane_prior382.75 13990.26 3386.91 180
plane_prior295.85 7590.81 17
plane_prior82.73 14295.21 11189.66 4889.88 205
n20.00 408
nn0.00 408
door-mid85.49 368
test1196.57 92
door85.33 370
HQP5-MVS81.56 168
BP-MVS87.11 143
HQP4-MVS85.43 22197.96 16594.51 219
HQP3-MVS96.04 13189.77 209
HQP2-MVS73.83 197
MDTV_nov1_ep13_2view55.91 39387.62 34773.32 35184.59 24070.33 24174.65 30195.50 179
ACMMP++_ref87.47 249
ACMMP++88.01 240
Test By Simon80.02 116