This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS198.86 185.54 6798.29 197.49 689.79 5096.29 18
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 8290.27 3297.04 1198.05 1691.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 5597.19 1197.47 1190.27 3297.64 498.13 491.47 8
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2997.71 198.07 1292.31 499.58 1095.66 1799.13 398.84 14
IU-MVS98.77 586.00 5096.84 6881.26 28097.26 795.50 2399.13 399.03 8
test_241102_ONE98.77 585.99 5297.44 1590.26 3497.71 197.96 2092.31 499.38 31
region2R94.43 2694.27 3494.92 2098.65 886.67 3096.92 2497.23 3488.60 9093.58 6197.27 4085.22 5899.54 2092.21 7498.74 3198.56 25
ACMMPR94.43 2694.28 3294.91 2198.63 986.69 2896.94 2097.32 2788.63 8793.53 6497.26 4285.04 6299.54 2092.35 7098.78 2698.50 27
HFP-MVS94.52 2294.40 2694.86 2498.61 1086.81 2596.94 2097.34 2388.63 8793.65 5997.21 4486.10 4899.49 2692.35 7098.77 2898.30 49
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1491.45 11
test_part298.55 1287.22 1996.40 17
XVS94.45 2494.32 2894.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7797.16 5085.02 6399.49 2691.99 8498.56 5098.47 33
X-MVStestdata88.31 18286.13 22994.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7723.41 42085.02 6399.49 2691.99 8498.56 5098.47 33
ZNCC-MVS94.47 2394.28 3295.03 1698.52 1586.96 2096.85 2897.32 2788.24 10093.15 6997.04 5586.17 4799.62 292.40 6798.81 2398.52 26
mPP-MVS93.99 4493.78 5194.63 4098.50 1685.90 6096.87 2696.91 6188.70 8591.83 11197.17 4983.96 7799.55 1691.44 9798.64 4598.43 38
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6989.90 1299.30 4394.70 3198.04 7199.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft94.25 3194.07 4294.77 3598.47 1886.31 4496.71 3196.98 5289.04 7391.98 10297.19 4785.43 5699.56 1292.06 8398.79 2498.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS94.45 2494.20 3895.19 1398.46 1987.50 1695.00 13097.12 4487.13 13192.51 9296.30 8689.24 1799.34 3793.46 4598.62 4698.73 18
PGM-MVS93.96 4693.72 5494.68 3898.43 2086.22 4795.30 10997.78 187.45 12793.26 6697.33 3884.62 7099.51 2490.75 10998.57 4998.32 48
MTAPA94.42 2894.22 3595.00 1898.42 2186.95 2194.36 17796.97 5391.07 1393.14 7097.56 2984.30 7399.56 1293.43 4698.75 3098.47 33
GST-MVS94.21 3493.97 4694.90 2398.41 2286.82 2496.54 3697.19 3588.24 10093.26 6696.83 6485.48 5599.59 891.43 9898.40 5498.30 49
HPM-MVScopyleft94.02 4293.88 4794.43 4798.39 2385.78 6397.25 1097.07 4886.90 13992.62 8996.80 6884.85 6899.17 5092.43 6598.65 4498.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS94.34 2994.21 3794.74 3798.39 2386.64 3297.60 497.24 3288.53 9292.73 8597.23 4385.20 5999.32 4192.15 7798.83 2298.25 61
DPE-MVScopyleft95.57 495.67 495.25 1198.36 2587.28 1895.56 10197.51 589.13 7097.14 997.91 2191.64 799.62 294.61 3399.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS_fast93.40 6493.22 6593.94 6198.36 2584.83 7997.15 1396.80 7485.77 16592.47 9397.13 5182.38 9599.07 5690.51 11298.40 5497.92 84
DP-MVS Recon91.95 8991.28 9693.96 6098.33 2785.92 5794.66 15396.66 8882.69 24290.03 13995.82 11082.30 9999.03 6184.57 18296.48 11096.91 138
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 7596.20 1998.10 889.39 1699.34 3795.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + MP.94.85 1494.94 1494.58 4298.25 2986.33 4296.11 5996.62 9188.14 10596.10 2096.96 5889.09 1898.94 8194.48 3498.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 1094.91 1695.83 498.25 2989.65 495.92 7696.96 5591.75 994.02 5396.83 6488.12 2499.55 1693.41 4898.94 1698.28 54
CPTT-MVS91.99 8891.80 8892.55 12098.24 3181.98 16896.76 3096.49 10181.89 26290.24 13296.44 8478.59 14498.61 11389.68 11897.85 7797.06 127
SR-MVS94.23 3394.17 4094.43 4798.21 3285.78 6396.40 3896.90 6288.20 10394.33 4497.40 3584.75 6999.03 6193.35 4997.99 7298.48 30
MP-MVS-pluss94.21 3494.00 4594.85 2598.17 3386.65 3194.82 14297.17 4086.26 15492.83 7997.87 2385.57 5499.56 1294.37 3698.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS98.15 3486.62 3397.07 4883.63 21694.19 4796.91 6087.57 3199.26 4591.99 8498.44 53
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4697.28 3185.90 16297.67 398.10 888.41 2099.56 1294.66 3299.19 198.71 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 11196.96 5592.09 695.32 3297.08 5289.49 1599.33 4095.10 2898.85 2098.66 21
114514_t89.51 14588.50 15892.54 12198.11 3681.99 16795.16 12296.36 10970.19 39085.81 21795.25 13276.70 16398.63 11082.07 22396.86 10197.00 132
ACMMPcopyleft93.24 6892.88 7294.30 5398.09 3885.33 7296.86 2797.45 1488.33 9690.15 13797.03 5681.44 11299.51 2490.85 10895.74 12098.04 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft94.24 3294.07 4294.75 3698.06 3986.90 2395.88 7896.94 5885.68 16895.05 3897.18 4887.31 3599.07 5691.90 9098.61 4898.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG93.23 6993.05 6893.76 6998.04 4084.07 10396.22 4897.37 2184.15 20490.05 13895.66 11787.77 2699.15 5389.91 11798.27 5898.07 73
ACMMP_NAP94.74 1994.56 2295.28 1098.02 4187.70 1195.68 9097.34 2388.28 9995.30 3397.67 2885.90 5099.54 2093.91 4098.95 1598.60 23
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 5292.59 298.94 8192.25 7398.99 1498.84 14
reproduce_model94.76 1894.92 1594.29 5497.92 4385.18 7495.95 7597.19 3589.67 5495.27 3498.16 386.53 4399.36 3595.42 2498.15 6498.33 44
SR-MVS-dyc-post93.82 4893.82 4893.82 6597.92 4384.57 8696.28 4396.76 7887.46 12593.75 5797.43 3384.24 7499.01 6692.73 5897.80 7997.88 86
RE-MVS-def93.68 5697.92 4384.57 8696.28 4396.76 7887.46 12593.75 5797.43 3382.94 8892.73 5897.80 7997.88 86
APD-MVS_3200maxsize93.78 4993.77 5293.80 6797.92 4384.19 10196.30 4196.87 6586.96 13593.92 5597.47 3183.88 7898.96 8092.71 6197.87 7698.26 60
reproduce-ours94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7997.15 4189.82 4495.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
our_new_method94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7997.15 4189.82 4495.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
save fliter97.85 4985.63 6695.21 11896.82 7189.44 58
SF-MVS94.97 1294.90 1895.20 1297.84 5087.76 1096.65 3497.48 1087.76 12095.71 2797.70 2788.28 2399.35 3693.89 4198.78 2698.48 30
NCCC94.81 1794.69 2195.17 1497.83 5187.46 1795.66 9396.93 5992.34 493.94 5496.58 7987.74 2799.44 2992.83 5798.40 5498.62 22
9.1494.47 2397.79 5296.08 6097.44 1586.13 16095.10 3797.40 3588.34 2299.22 4793.25 5098.70 34
CDPH-MVS92.83 7692.30 8294.44 4597.79 5286.11 4994.06 19696.66 8880.09 29492.77 8296.63 7686.62 4099.04 6087.40 14598.66 4198.17 66
DVP-MVS++95.98 196.36 194.82 3197.78 5486.00 5098.29 197.49 690.75 1997.62 598.06 1492.59 299.61 495.64 1999.02 1298.86 11
MSC_two_6792asdad96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
dcpmvs_293.49 5694.19 3991.38 17497.69 5776.78 29594.25 18096.29 11388.33 9694.46 4296.88 6188.07 2598.64 10893.62 4498.09 6898.73 18
DP-MVS87.25 22285.36 25892.90 10197.65 5883.24 12794.81 14392.00 31274.99 35481.92 31295.00 14372.66 22199.05 5866.92 36792.33 19396.40 157
PAPM_NR91.22 10390.78 10792.52 12297.60 5981.46 18194.37 17596.24 12186.39 15187.41 18194.80 15382.06 10798.48 12182.80 20895.37 13197.61 102
patch_mono-293.74 5194.32 2892.01 14097.54 6078.37 26293.40 22797.19 3588.02 10894.99 3997.21 4488.35 2198.44 13194.07 3898.09 6899.23 1
TEST997.53 6186.49 3794.07 19496.78 7581.61 27292.77 8296.20 9087.71 2899.12 54
train_agg93.44 5993.08 6794.52 4497.53 6186.49 3794.07 19496.78 7581.86 26392.77 8296.20 9087.63 2999.12 5492.14 7898.69 3597.94 81
test_897.49 6386.30 4594.02 19996.76 7881.86 26392.70 8696.20 9087.63 2999.02 64
DeepC-MVS_fast89.43 294.04 4193.79 5094.80 3397.48 6486.78 2695.65 9596.89 6389.40 6092.81 8096.97 5785.37 5799.24 4690.87 10798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary89.89 13689.07 14292.37 12997.41 6583.03 13994.42 16895.92 14982.81 23986.34 20794.65 16073.89 20499.02 6480.69 24995.51 12495.05 212
agg_prior97.38 6685.92 5796.72 8492.16 9898.97 78
原ACMM192.01 14097.34 6781.05 19296.81 7378.89 31090.45 12995.92 10482.65 9298.84 9180.68 25098.26 5996.14 168
MSLP-MVS++93.72 5294.08 4192.65 11597.31 6883.43 12195.79 8597.33 2590.03 3793.58 6196.96 5884.87 6797.76 18492.19 7698.66 4196.76 144
新几何193.10 8897.30 6984.35 9995.56 17871.09 38691.26 12296.24 8882.87 9098.86 8779.19 27198.10 6796.07 174
test_prior93.82 6597.29 7084.49 9096.88 6498.87 8598.11 72
PLCcopyleft84.53 789.06 16288.03 17192.15 13897.27 7182.69 15394.29 17895.44 19079.71 29984.01 27794.18 17876.68 16498.75 9777.28 28993.41 17295.02 213
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS94.96 1395.33 893.88 6297.25 7286.69 2896.19 4997.11 4690.42 2796.95 1397.27 4089.53 1496.91 26194.38 3598.85 2098.03 77
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.34 5297.13 7386.15 4896.29 11391.04 12485.08 6199.01 6698.13 6697.86 88
MG-MVS91.77 9291.70 9192.00 14397.08 7480.03 22393.60 22095.18 20487.85 11690.89 12596.47 8382.06 10798.36 13685.07 17497.04 9497.62 101
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7586.33 4297.33 797.30 2991.38 1295.39 3197.46 3288.98 1999.40 3094.12 3798.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR93.45 5893.31 6293.84 6496.99 7584.84 7893.24 23997.24 3288.76 8291.60 11695.85 10886.07 4998.66 10491.91 8898.16 6398.03 77
CNLPA89.07 16187.98 17292.34 13096.87 7784.78 8194.08 19393.24 27781.41 27684.46 26195.13 14075.57 17996.62 27277.21 29093.84 16295.61 196
PHI-MVS93.89 4793.65 5894.62 4196.84 7886.43 3996.69 3297.49 685.15 18193.56 6396.28 8785.60 5399.31 4292.45 6498.79 2498.12 71
旧先验196.79 7981.81 17195.67 17096.81 6686.69 3997.66 8496.97 134
LFMVS90.08 12889.13 14192.95 9996.71 8082.32 16396.08 6089.91 36386.79 14092.15 9996.81 6662.60 32498.34 13987.18 14993.90 16098.19 64
SPE-MVS-test94.02 4294.29 3193.24 8196.69 8183.24 12797.49 596.92 6092.14 592.90 7595.77 11385.02 6398.33 14193.03 5498.62 4698.13 68
Anonymous20240521187.68 19886.13 22992.31 13296.66 8280.74 20294.87 13891.49 32980.47 29089.46 14695.44 12454.72 37598.23 14782.19 21989.89 22497.97 79
TAPA-MVS84.62 688.16 18687.01 19691.62 16496.64 8380.65 20394.39 17196.21 12676.38 33986.19 21195.44 12479.75 12798.08 16662.75 38495.29 13396.13 169
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS90.30 12389.37 13593.07 9296.61 8484.48 9195.68 9095.67 17082.36 24787.85 17292.85 22376.63 16598.80 9380.01 25996.68 10595.91 180
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet92.24 8691.91 8793.24 8196.59 8583.43 12194.84 14196.44 10289.19 6894.08 5295.90 10577.85 15598.17 15188.90 12793.38 17398.13 68
TSAR-MVS + GP.93.66 5393.41 6194.41 4996.59 8586.78 2694.40 16993.93 26189.77 5194.21 4695.59 12087.35 3498.61 11392.72 6096.15 11597.83 91
MVSMamba_PlusPlus93.44 5993.54 6093.14 8696.58 8783.05 13896.06 6496.50 10084.42 20194.09 4995.56 12185.01 6698.69 10394.96 2998.66 4197.67 99
CS-MVS94.12 4094.44 2593.17 8496.55 8883.08 13797.63 396.95 5791.71 1193.50 6596.21 8985.61 5298.24 14693.64 4398.17 6298.19 64
test22296.55 8881.70 17392.22 27495.01 21268.36 39390.20 13496.14 9580.26 12297.80 7996.05 177
Anonymous2024052988.09 18886.59 21192.58 11996.53 9081.92 17095.99 7095.84 15774.11 36389.06 15395.21 13561.44 33498.81 9283.67 19687.47 26597.01 131
Anonymous2023121186.59 24985.13 26390.98 19696.52 9181.50 17796.14 5696.16 12773.78 36683.65 28592.15 24763.26 32197.37 22682.82 20781.74 32494.06 260
DeepPCF-MVS89.96 194.20 3694.77 2092.49 12396.52 9180.00 22594.00 20297.08 4790.05 3695.65 2997.29 3989.66 1398.97 7893.95 3998.71 3298.50 27
testdata90.49 21096.40 9377.89 27495.37 19672.51 37893.63 6096.69 6982.08 10697.65 19283.08 20097.39 8795.94 179
PVSNet_Blended_VisFu91.38 9990.91 10492.80 10696.39 9483.17 13094.87 13896.66 8883.29 22789.27 14994.46 16780.29 12199.17 5087.57 14395.37 13196.05 177
API-MVS90.66 11690.07 11892.45 12596.36 9584.57 8696.06 6495.22 20382.39 24589.13 15094.27 17580.32 12098.46 12580.16 25896.71 10494.33 248
F-COLMAP87.95 19186.80 20191.40 17396.35 9680.88 19894.73 14895.45 18879.65 30082.04 31094.61 16171.13 23598.50 11976.24 30291.05 20894.80 226
VDD-MVS90.74 11289.92 12493.20 8396.27 9783.02 14095.73 8793.86 26588.42 9592.53 9096.84 6362.09 32698.64 10890.95 10592.62 18897.93 83
OMC-MVS91.23 10290.62 10993.08 9096.27 9784.07 10393.52 22295.93 14886.95 13689.51 14396.13 9678.50 14698.35 13885.84 16892.90 18296.83 143
DPM-MVS92.58 8091.74 9095.08 1596.19 9989.31 592.66 25896.56 9683.44 22291.68 11595.04 14286.60 4298.99 7385.60 17097.92 7596.93 136
CHOSEN 1792x268888.84 16787.69 17892.30 13396.14 10081.42 18390.01 32995.86 15674.52 35987.41 18193.94 18775.46 18098.36 13680.36 25495.53 12397.12 125
balanced_conf0393.98 4594.22 3593.26 8096.13 10183.29 12696.27 4596.52 9889.82 4495.56 3095.51 12284.50 7198.79 9494.83 3098.86 1997.72 96
thres100view90087.63 20386.71 20490.38 21896.12 10278.55 25595.03 12991.58 32587.15 13088.06 16892.29 24368.91 27498.10 15670.13 34591.10 20394.48 243
PVSNet_BlendedMVS89.98 13189.70 12690.82 19996.12 10281.25 18693.92 20796.83 6983.49 22189.10 15192.26 24481.04 11698.85 8986.72 15787.86 26092.35 332
PVSNet_Blended90.73 11390.32 11291.98 14496.12 10281.25 18692.55 26296.83 6982.04 25589.10 15192.56 23481.04 11698.85 8986.72 15795.91 11895.84 184
UA-Net92.83 7692.54 7993.68 7396.10 10584.71 8295.66 9396.39 10791.92 793.22 6896.49 8283.16 8498.87 8584.47 18495.47 12797.45 110
MM95.10 1194.91 1695.68 596.09 10688.34 996.68 3394.37 24495.08 194.68 4097.72 2682.94 8899.64 197.85 198.76 2999.06 7
thres600view787.65 20086.67 20690.59 20396.08 10778.72 25194.88 13791.58 32587.06 13388.08 16792.30 24268.91 27498.10 15670.05 34891.10 20394.96 217
DeepC-MVS88.79 393.31 6592.99 7094.26 5596.07 10885.83 6194.89 13696.99 5189.02 7689.56 14297.37 3782.51 9499.38 3192.20 7598.30 5797.57 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D87.89 19286.32 22292.59 11896.07 10882.92 14495.23 11694.92 22075.66 34682.89 29895.98 10172.48 22499.21 4868.43 35595.23 13695.64 193
h-mvs3390.80 11090.15 11692.75 10996.01 11082.66 15495.43 10395.53 18289.80 4793.08 7195.64 11875.77 17299.00 7192.07 8078.05 36296.60 150
SDMVSNet90.19 12689.61 12991.93 14896.00 11183.09 13692.89 25295.98 14488.73 8386.85 19495.20 13672.09 22897.08 24788.90 12789.85 22695.63 194
sd_testset88.59 17687.85 17690.83 19896.00 11180.42 21092.35 26894.71 23488.73 8386.85 19495.20 13667.31 28496.43 29179.64 26489.85 22695.63 194
HyFIR lowres test88.09 18886.81 20091.93 14896.00 11180.63 20490.01 32995.79 16073.42 37087.68 17792.10 25273.86 20597.96 17580.75 24891.70 19797.19 119
tfpn200view987.58 20786.64 20790.41 21595.99 11478.64 25394.58 15691.98 31486.94 13788.09 16591.77 26369.18 27098.10 15670.13 34591.10 20394.48 243
thres40087.62 20586.64 20790.57 20495.99 11478.64 25394.58 15691.98 31486.94 13788.09 16591.77 26369.18 27098.10 15670.13 34591.10 20394.96 217
MVS_111021_LR92.47 8392.29 8392.98 9695.99 11484.43 9593.08 24496.09 13588.20 10391.12 12395.72 11681.33 11497.76 18491.74 9297.37 8896.75 145
PatchMatch-RL86.77 24485.54 25290.47 21495.88 11782.71 15290.54 31392.31 30279.82 29884.32 26991.57 27568.77 27696.39 29373.16 32693.48 17192.32 333
EPP-MVSNet91.70 9591.56 9292.13 13995.88 11780.50 20897.33 795.25 20086.15 15789.76 14195.60 11983.42 8298.32 14387.37 14793.25 17697.56 106
IS-MVSNet91.43 9891.09 10192.46 12495.87 11981.38 18496.95 1993.69 27189.72 5389.50 14595.98 10178.57 14597.77 18383.02 20296.50 10998.22 63
test_fmvsm_n_192094.71 2095.11 1093.50 7695.79 12084.62 8496.15 5497.64 289.85 4397.19 897.89 2286.28 4698.71 10297.11 698.08 7097.17 120
PAPR90.02 13089.27 14092.29 13495.78 12180.95 19692.68 25796.22 12381.91 25986.66 19893.75 19982.23 10198.44 13179.40 27094.79 14297.48 108
Vis-MVSNet (Re-imp)89.59 14389.44 13290.03 23195.74 12275.85 30995.61 9790.80 34787.66 12487.83 17395.40 12776.79 16196.46 28978.37 27696.73 10397.80 92
test_yl90.69 11490.02 12292.71 11195.72 12382.41 16194.11 18995.12 20685.63 16991.49 11794.70 15574.75 18798.42 13486.13 16392.53 19097.31 112
DCV-MVSNet90.69 11490.02 12292.71 11195.72 12382.41 16194.11 18995.12 20685.63 16991.49 11794.70 15574.75 18798.42 13486.13 16392.53 19097.31 112
sasdasda93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10590.00 3894.09 4994.60 16282.33 9798.62 11192.40 6792.86 18398.27 56
canonicalmvs93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10590.00 3894.09 4994.60 16282.33 9798.62 11192.40 6792.86 18398.27 56
mamv490.92 10791.78 8988.33 28895.67 12770.75 37192.92 25196.02 14381.90 26088.11 16495.34 12885.88 5196.97 25695.22 2795.01 13897.26 115
CANet93.54 5593.20 6694.55 4395.65 12885.73 6594.94 13396.69 8791.89 890.69 12795.88 10781.99 10999.54 2093.14 5297.95 7498.39 39
3Dnovator+87.14 492.42 8491.37 9495.55 795.63 12988.73 697.07 1896.77 7790.84 1684.02 27696.62 7775.95 17199.34 3787.77 14097.68 8398.59 24
MGCFI-Net93.03 7392.63 7794.23 5695.62 13085.92 5796.08 6096.33 11189.86 4293.89 5694.66 15982.11 10498.50 11992.33 7292.82 18698.27 56
fmvsm_s_conf0.5_n93.76 5094.06 4492.86 10395.62 13083.17 13096.14 5696.12 13288.13 10695.82 2698.04 1983.43 8098.48 12196.97 996.23 11396.92 137
test250687.21 22686.28 22490.02 23395.62 13073.64 33496.25 4771.38 41887.89 11490.45 12996.65 7355.29 37298.09 16486.03 16596.94 9698.33 44
ECVR-MVScopyleft89.09 16088.53 15690.77 20195.62 13075.89 30896.16 5284.22 39687.89 11490.20 13496.65 7363.19 32298.10 15685.90 16696.94 9698.33 44
alignmvs93.08 7292.50 8094.81 3295.62 13087.61 1595.99 7096.07 13789.77 5194.12 4894.87 14880.56 11898.66 10492.42 6693.10 17998.15 67
test111189.10 15888.64 15390.48 21195.53 13574.97 31896.08 6084.89 39488.13 10690.16 13696.65 7363.29 32098.10 15686.14 16196.90 9898.39 39
WTY-MVS89.60 14288.92 14691.67 16395.47 13681.15 19092.38 26694.78 23183.11 23189.06 15394.32 17078.67 14396.61 27581.57 23590.89 21097.24 116
DELS-MVS93.43 6393.25 6493.97 5995.42 13785.04 7593.06 24697.13 4390.74 2191.84 10995.09 14186.32 4599.21 4891.22 9998.45 5297.65 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thres20087.21 22686.24 22690.12 22795.36 13878.53 25693.26 23792.10 30886.42 15088.00 17091.11 28869.24 26998.00 17269.58 34991.04 20993.83 273
Vis-MVSNetpermissive91.75 9391.23 9793.29 7895.32 13983.78 11096.14 5695.98 14489.89 4090.45 12996.58 7975.09 18398.31 14484.75 18096.90 9897.78 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
fmvsm_l_conf0.5_n_a94.20 3694.40 2693.60 7495.29 14084.98 7695.61 9796.28 11686.31 15296.75 1697.86 2487.40 3398.74 9997.07 797.02 9597.07 126
fmvsm_l_conf0.5_n94.29 3094.46 2493.79 6895.28 14185.43 7095.68 9096.43 10386.56 14696.84 1497.81 2587.56 3298.77 9697.14 596.82 10297.16 124
BH-RMVSNet88.37 18087.48 18391.02 19195.28 14179.45 23792.89 25293.07 28285.45 17486.91 19094.84 15270.35 24997.76 18473.97 32094.59 14895.85 183
COLMAP_ROBcopyleft80.39 1683.96 30082.04 30989.74 24595.28 14179.75 23194.25 18092.28 30375.17 35278.02 35493.77 19758.60 35797.84 18165.06 37685.92 27891.63 345
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJ91.18 10490.92 10391.96 14695.26 14482.60 15792.09 27995.70 16886.27 15391.84 10992.46 23679.70 12998.99 7389.08 12595.86 11994.29 249
BH-untuned88.60 17588.13 17090.01 23495.24 14578.50 25893.29 23594.15 25484.75 19484.46 26193.40 20475.76 17497.40 22277.59 28694.52 15194.12 255
EC-MVSNet93.44 5993.71 5592.63 11695.21 14682.43 15897.27 996.71 8590.57 2692.88 7695.80 11183.16 8498.16 15293.68 4298.14 6597.31 112
ETV-MVS92.74 7892.66 7692.97 9795.20 14784.04 10595.07 12696.51 9990.73 2292.96 7491.19 28284.06 7598.34 13991.72 9396.54 10796.54 155
mvsmamba90.33 12289.69 12792.25 13795.17 14881.64 17495.27 11493.36 27684.88 18889.51 14394.27 17569.29 26897.42 21489.34 12296.12 11697.68 98
GeoE90.05 12989.43 13391.90 15395.16 14980.37 21195.80 8494.65 23783.90 20987.55 18094.75 15478.18 15097.62 19681.28 23893.63 16497.71 97
EIA-MVS91.95 8991.94 8691.98 14495.16 14980.01 22495.36 10496.73 8288.44 9389.34 14792.16 24683.82 7998.45 12989.35 12197.06 9397.48 108
ab-mvs89.41 15088.35 16292.60 11795.15 15182.65 15592.20 27595.60 17783.97 20888.55 15993.70 20074.16 20098.21 15082.46 21389.37 23496.94 135
VDDNet89.56 14488.49 16092.76 10895.07 15282.09 16596.30 4193.19 27981.05 28591.88 10796.86 6261.16 34298.33 14188.43 13392.49 19297.84 90
fmvsm_s_conf0.5_n_a93.57 5493.76 5393.00 9595.02 15383.67 11396.19 4996.10 13487.27 12995.98 2498.05 1683.07 8798.45 12996.68 1195.51 12496.88 140
AllTest83.42 30781.39 31389.52 25595.01 15477.79 27993.12 24190.89 34577.41 33076.12 36693.34 20554.08 37897.51 20368.31 35684.27 29193.26 297
TestCases89.52 25595.01 15477.79 27990.89 34577.41 33076.12 36693.34 20554.08 37897.51 20368.31 35684.27 29193.26 297
EI-MVSNet-Vis-set93.01 7492.92 7193.29 7895.01 15483.51 12094.48 16195.77 16190.87 1592.52 9196.67 7184.50 7199.00 7191.99 8494.44 15497.36 111
xiu_mvs_v2_base91.13 10590.89 10591.86 15494.97 15782.42 15992.24 27395.64 17586.11 16191.74 11493.14 21679.67 13298.89 8489.06 12695.46 12894.28 250
tttt051788.61 17487.78 17791.11 18694.96 15877.81 27795.35 10589.69 36785.09 18388.05 16994.59 16466.93 29098.48 12183.27 19992.13 19597.03 130
baseline188.10 18787.28 18990.57 20494.96 15880.07 21994.27 17991.29 33486.74 14287.41 18194.00 18476.77 16296.20 30280.77 24779.31 35895.44 198
Test_1112_low_res87.65 20086.51 21591.08 18794.94 16079.28 24591.77 28594.30 24776.04 34483.51 28992.37 23977.86 15497.73 18878.69 27589.13 24096.22 164
1112_ss88.42 17887.33 18791.72 16194.92 16180.98 19492.97 24994.54 23878.16 32683.82 28093.88 19278.78 14197.91 17979.45 26689.41 23396.26 163
QAPM89.51 14588.15 16993.59 7594.92 16184.58 8596.82 2996.70 8678.43 32083.41 29196.19 9373.18 21699.30 4377.11 29296.54 10796.89 139
MVS_030494.18 3993.80 4995.34 994.91 16387.62 1495.97 7293.01 28492.58 394.22 4597.20 4680.56 11899.59 897.04 898.68 3798.81 17
BH-w/o87.57 20887.05 19489.12 26594.90 16477.90 27392.41 26493.51 27382.89 23883.70 28391.34 27675.75 17597.07 24975.49 30693.49 16992.39 330
thisisatest053088.67 17287.61 18091.86 15494.87 16580.07 21994.63 15489.90 36484.00 20788.46 16193.78 19666.88 29298.46 12583.30 19892.65 18797.06 127
EI-MVSNet-UG-set92.74 7892.62 7893.12 8794.86 16683.20 12994.40 16995.74 16490.71 2392.05 10096.60 7884.00 7698.99 7391.55 9593.63 16497.17 120
HY-MVS83.01 1289.03 16387.94 17492.29 13494.86 16682.77 14692.08 28094.49 23981.52 27586.93 18892.79 22978.32 14998.23 14779.93 26090.55 21395.88 182
hse-mvs289.88 13789.34 13691.51 16894.83 16881.12 19193.94 20593.91 26489.80 4793.08 7193.60 20175.77 17297.66 19192.07 8077.07 36995.74 189
AUN-MVS87.78 19686.54 21491.48 17094.82 16981.05 19293.91 20993.93 26183.00 23486.93 18893.53 20269.50 26297.67 18986.14 16177.12 36895.73 191
Fast-Effi-MVS+89.41 15088.64 15391.71 16294.74 17080.81 20093.54 22195.10 20883.11 23186.82 19690.67 30379.74 12897.75 18780.51 25393.55 16696.57 153
ACMP84.23 889.01 16588.35 16290.99 19494.73 17181.27 18595.07 12695.89 15486.48 14783.67 28494.30 17169.33 26497.99 17387.10 15488.55 24593.72 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet78.82 1885.55 27084.65 27488.23 29294.72 17271.93 35487.12 37392.75 29278.80 31384.95 25090.53 30564.43 31396.71 26874.74 31593.86 16196.06 176
LCM-MVSNet-Re88.30 18388.32 16588.27 28994.71 17372.41 35393.15 24090.98 34187.77 11979.25 34591.96 25878.35 14895.75 32483.04 20195.62 12296.65 149
HQP_MVS90.60 12090.19 11491.82 15794.70 17482.73 15095.85 8196.22 12390.81 1786.91 19094.86 14974.23 19698.12 15488.15 13489.99 22094.63 229
plane_prior794.70 17482.74 149
ACMH+81.04 1485.05 28383.46 29389.82 24194.66 17679.37 23994.44 16694.12 25782.19 25178.04 35392.82 22658.23 35897.54 20073.77 32382.90 30992.54 323
ACMM84.12 989.14 15788.48 16191.12 18394.65 17781.22 18895.31 10796.12 13285.31 17785.92 21594.34 16870.19 25298.06 16885.65 16988.86 24394.08 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvsmconf_n94.60 2194.81 1993.98 5894.62 17884.96 7796.15 5497.35 2289.37 6196.03 2398.11 686.36 4499.01 6697.45 297.83 7897.96 80
plane_prior194.59 179
casdiffmvs_mvgpermissive92.96 7592.83 7393.35 7794.59 17983.40 12395.00 13096.34 11090.30 3192.05 10096.05 9883.43 8098.15 15392.07 8095.67 12198.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator86.66 591.73 9490.82 10694.44 4594.59 17986.37 4197.18 1297.02 5089.20 6784.31 27196.66 7273.74 20899.17 5086.74 15597.96 7397.79 93
FA-MVS(test-final)89.66 14088.91 14791.93 14894.57 18280.27 21291.36 29594.74 23384.87 18989.82 14092.61 23374.72 19098.47 12483.97 19093.53 16797.04 129
FE-MVS87.40 21586.02 23591.57 16694.56 18379.69 23390.27 31693.72 27080.57 28888.80 15691.62 27165.32 30798.59 11574.97 31494.33 15696.44 156
GDP-MVS92.04 8791.46 9393.75 7094.55 18484.69 8395.60 10096.56 9687.83 11793.07 7395.89 10673.44 21298.65 10690.22 11596.03 11797.91 85
plane_prior694.52 18582.75 14774.23 196
UGNet89.95 13388.95 14592.95 9994.51 18683.31 12595.70 8995.23 20189.37 6187.58 17893.94 18764.00 31598.78 9583.92 19196.31 11296.74 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BP-MVS192.48 8292.07 8593.72 7194.50 18784.39 9895.90 7794.30 24790.39 2892.67 8795.94 10374.46 19298.65 10693.14 5297.35 8998.13 68
LPG-MVS_test89.45 14888.90 14891.12 18394.47 18881.49 17995.30 10996.14 12886.73 14385.45 23295.16 13869.89 25598.10 15687.70 14189.23 23893.77 279
LGP-MVS_train91.12 18394.47 18881.49 17996.14 12886.73 14385.45 23295.16 13869.89 25598.10 15687.70 14189.23 23893.77 279
baseline92.39 8592.29 8392.69 11494.46 19081.77 17294.14 18696.27 11789.22 6691.88 10796.00 9982.35 9697.99 17391.05 10195.27 13598.30 49
ACMH80.38 1785.36 27583.68 29090.39 21694.45 19180.63 20494.73 14894.85 22582.09 25277.24 35892.65 23160.01 34897.58 19772.25 33084.87 28692.96 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB82.13 1386.26 26084.90 26990.34 22094.44 19281.50 17792.31 27294.89 22183.03 23379.63 34292.67 23069.69 25897.79 18271.20 33486.26 27791.72 343
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testing9187.11 23186.18 22789.92 23794.43 19375.38 31791.53 29292.27 30486.48 14786.50 19990.24 31161.19 34097.53 20182.10 22190.88 21196.84 142
casdiffmvspermissive92.51 8192.43 8192.74 11094.41 19481.98 16894.54 15996.23 12289.57 5691.96 10496.17 9482.58 9398.01 17190.95 10595.45 12998.23 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETVMVS84.43 29482.92 30388.97 27194.37 19574.67 32191.23 30188.35 37683.37 22586.06 21489.04 33755.38 37095.67 32767.12 36391.34 20196.58 152
MVS_Test91.31 10191.11 9991.93 14894.37 19580.14 21693.46 22595.80 15986.46 14991.35 12193.77 19782.21 10298.09 16487.57 14394.95 13997.55 107
NP-MVS94.37 19582.42 15993.98 185
TR-MVS86.78 24185.76 24889.82 24194.37 19578.41 26092.47 26392.83 28881.11 28486.36 20592.40 23868.73 27797.48 20573.75 32489.85 22693.57 287
Effi-MVS+91.59 9791.11 9993.01 9494.35 19983.39 12494.60 15595.10 20887.10 13290.57 12893.10 21881.43 11398.07 16789.29 12394.48 15297.59 104
testing1186.44 25685.35 25989.69 24994.29 20075.40 31691.30 29790.53 35084.76 19385.06 24790.13 31758.95 35697.45 20982.08 22291.09 20796.21 166
RRT-MVS90.85 10990.70 10891.30 17794.25 20176.83 29494.85 14096.13 13189.04 7390.23 13394.88 14770.15 25398.72 10091.86 9194.88 14098.34 42
testing9986.72 24585.73 25189.69 24994.23 20274.91 32091.35 29690.97 34286.14 15886.36 20590.22 31259.41 35297.48 20582.24 21890.66 21296.69 148
CLD-MVS89.47 14788.90 14891.18 18294.22 20382.07 16692.13 27796.09 13587.90 11285.37 24192.45 23774.38 19497.56 19987.15 15090.43 21593.93 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UBG85.51 27184.57 27788.35 28594.21 20471.78 35890.07 32789.66 36982.28 24985.91 21689.01 33861.30 33597.06 25076.58 29892.06 19696.22 164
HQP-NCC94.17 20594.39 17188.81 7985.43 235
ACMP_Plane94.17 20594.39 17188.81 7985.43 235
HQP-MVS89.80 13889.28 13991.34 17694.17 20581.56 17594.39 17196.04 14088.81 7985.43 23593.97 18673.83 20697.96 17587.11 15289.77 22994.50 240
testing22284.84 28983.32 29489.43 25994.15 20875.94 30791.09 30489.41 37284.90 18785.78 21889.44 33252.70 38396.28 30070.80 34091.57 19996.07 174
WBMVS84.97 28684.18 28087.34 31394.14 20971.62 36290.20 32392.35 29981.61 27284.06 27490.76 29961.82 32996.52 28378.93 27383.81 29493.89 265
XVG-OURS89.40 15288.70 15291.52 16794.06 21081.46 18191.27 29996.07 13786.14 15888.89 15595.77 11368.73 27797.26 23487.39 14689.96 22295.83 185
sss88.93 16688.26 16890.94 19794.05 21180.78 20191.71 28795.38 19481.55 27488.63 15893.91 19175.04 18495.47 33682.47 21291.61 19896.57 153
PCF-MVS84.11 1087.74 19786.08 23392.70 11394.02 21284.43 9589.27 34295.87 15573.62 36884.43 26394.33 16978.48 14798.86 8770.27 34194.45 15394.81 225
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 22085.98 23791.08 18794.01 21383.10 13395.14 12394.94 21583.57 21784.37 26491.64 26766.59 29796.34 29778.23 28085.36 28293.79 274
test187.26 22085.98 23791.08 18794.01 21383.10 13395.14 12394.94 21583.57 21784.37 26491.64 26766.59 29796.34 29778.23 28085.36 28293.79 274
FMVSNet287.19 22885.82 24491.30 17794.01 21383.67 11394.79 14494.94 21583.57 21783.88 27992.05 25666.59 29796.51 28477.56 28785.01 28593.73 282
XVG-OURS-SEG-HR89.95 13389.45 13191.47 17194.00 21681.21 18991.87 28396.06 13985.78 16488.55 15995.73 11574.67 19197.27 23288.71 13089.64 23195.91 180
FIs90.51 12190.35 11190.99 19493.99 21780.98 19495.73 8797.54 489.15 6986.72 19794.68 15781.83 11197.24 23685.18 17388.31 25394.76 227
xiu_mvs_v1_base_debu90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
xiu_mvs_v1_base90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
xiu_mvs_v1_base_debi90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
VPA-MVSNet89.62 14188.96 14491.60 16593.86 22182.89 14595.46 10297.33 2587.91 11188.43 16293.31 20874.17 19997.40 22287.32 14882.86 31094.52 237
MVSFormer91.68 9691.30 9592.80 10693.86 22183.88 10895.96 7395.90 15284.66 19791.76 11294.91 14577.92 15297.30 22889.64 11997.11 9197.24 116
lupinMVS90.92 10790.21 11393.03 9393.86 22183.88 10892.81 25593.86 26579.84 29791.76 11294.29 17277.92 15298.04 16990.48 11397.11 9197.17 120
IterMVS-LS88.36 18187.91 17589.70 24893.80 22478.29 26593.73 21495.08 21085.73 16684.75 25391.90 26179.88 12596.92 26083.83 19282.51 31193.89 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 28883.09 29990.14 22693.80 22480.05 22189.18 34593.09 28178.89 31078.19 35191.91 26065.86 30697.27 23268.47 35488.45 24993.11 307
FMVSNet387.40 21586.11 23191.30 17793.79 22683.64 11594.20 18494.81 22983.89 21084.37 26491.87 26268.45 28096.56 28078.23 28085.36 28293.70 284
fmvsm_s_conf0.1_n93.46 5793.66 5792.85 10493.75 22783.13 13296.02 6895.74 16487.68 12295.89 2598.17 282.78 9198.46 12596.71 1096.17 11496.98 133
FC-MVSNet-test90.27 12490.18 11590.53 20693.71 22879.85 23095.77 8697.59 389.31 6386.27 20894.67 15881.93 11097.01 25484.26 18688.09 25694.71 228
TAMVS89.21 15688.29 16691.96 14693.71 22882.62 15693.30 23494.19 25282.22 25087.78 17593.94 18778.83 13996.95 25877.70 28592.98 18196.32 159
ET-MVSNet_ETH3D87.51 21085.91 24192.32 13193.70 23083.93 10692.33 27090.94 34384.16 20372.09 38692.52 23569.90 25495.85 31889.20 12488.36 25297.17 120
test_fmvsmvis_n_192093.44 5993.55 5993.10 8893.67 23184.26 10095.83 8396.14 12889.00 7792.43 9497.50 3083.37 8398.72 10096.61 1297.44 8696.32 159
reproduce_monomvs86.37 25885.87 24287.87 30193.66 23273.71 33293.44 22695.02 21188.61 8982.64 30291.94 25957.88 36096.68 26989.96 11679.71 35493.22 301
CDS-MVSNet89.45 14888.51 15792.29 13493.62 23383.61 11893.01 24794.68 23681.95 25787.82 17493.24 21278.69 14296.99 25580.34 25593.23 17796.28 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet (Re)89.80 13889.07 14292.01 14093.60 23484.52 8994.78 14597.47 1189.26 6586.44 20492.32 24182.10 10597.39 22584.81 17980.84 33994.12 255
VPNet88.20 18587.47 18490.39 21693.56 23579.46 23694.04 19795.54 18188.67 8686.96 18794.58 16569.33 26497.15 24184.05 18980.53 34494.56 235
thisisatest051587.33 21885.99 23691.37 17593.49 23679.55 23490.63 31289.56 37180.17 29287.56 17990.86 29367.07 28998.28 14581.50 23693.02 18096.29 161
mvs_anonymous89.37 15489.32 13789.51 25793.47 23774.22 32791.65 29094.83 22782.91 23785.45 23293.79 19581.23 11596.36 29686.47 15994.09 15797.94 81
CANet_DTU90.26 12589.41 13492.81 10593.46 23883.01 14193.48 22394.47 24089.43 5987.76 17694.23 17770.54 24899.03 6184.97 17596.39 11196.38 158
testing380.46 33679.59 33383.06 36593.44 23964.64 39693.33 22985.47 39184.34 20279.93 33890.84 29544.35 40192.39 37657.06 39987.56 26492.16 337
UniMVSNet_NR-MVSNet89.92 13589.29 13891.81 15993.39 24083.72 11194.43 16797.12 4489.80 4786.46 20193.32 20783.16 8497.23 23784.92 17681.02 33594.49 242
Effi-MVS+-dtu88.65 17388.35 16289.54 25493.33 24176.39 30294.47 16494.36 24587.70 12185.43 23589.56 33173.45 21197.26 23485.57 17191.28 20294.97 214
WR-MVS88.38 17987.67 17990.52 20893.30 24280.18 21493.26 23795.96 14788.57 9185.47 23192.81 22776.12 16796.91 26181.24 23982.29 31594.47 245
WR-MVS_H87.80 19587.37 18689.10 26693.23 24378.12 26895.61 9797.30 2987.90 11283.72 28292.01 25779.65 13396.01 31076.36 29980.54 34393.16 305
test_040281.30 32979.17 33987.67 30593.19 24478.17 26792.98 24891.71 31975.25 35176.02 36890.31 31059.23 35396.37 29450.22 40483.63 29988.47 389
OPM-MVS90.12 12789.56 13091.82 15793.14 24583.90 10794.16 18595.74 16488.96 7887.86 17195.43 12672.48 22497.91 17988.10 13890.18 21993.65 285
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CP-MVSNet87.63 20387.26 19188.74 27793.12 24676.59 29995.29 11196.58 9488.43 9483.49 29092.98 22175.28 18195.83 31978.97 27281.15 33193.79 274
mmtdpeth85.04 28584.15 28287.72 30493.11 24775.74 31194.37 17592.83 28884.98 18589.31 14886.41 37361.61 33297.14 24492.63 6362.11 40190.29 369
diffmvspermissive91.37 10091.23 9791.77 16093.09 24880.27 21292.36 26795.52 18387.03 13491.40 12094.93 14480.08 12397.44 21292.13 7994.56 14997.61 102
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
nrg03091.08 10690.39 11093.17 8493.07 24986.91 2296.41 3796.26 11888.30 9888.37 16394.85 15182.19 10397.64 19491.09 10082.95 30594.96 217
UWE-MVS83.69 30683.09 29985.48 34693.06 25065.27 39490.92 30786.14 38679.90 29686.26 20990.72 30257.17 36395.81 32171.03 33992.62 18895.35 203
PAPM86.68 24685.39 25690.53 20693.05 25179.33 24489.79 33294.77 23278.82 31281.95 31193.24 21276.81 16097.30 22866.94 36593.16 17894.95 220
DU-MVS89.34 15588.50 15891.85 15693.04 25283.72 11194.47 16496.59 9389.50 5786.46 20193.29 21077.25 15797.23 23784.92 17681.02 33594.59 232
NR-MVSNet88.58 17787.47 18491.93 14893.04 25284.16 10294.77 14696.25 12089.05 7280.04 33693.29 21079.02 13897.05 25281.71 23480.05 34994.59 232
jason90.80 11090.10 11792.90 10193.04 25283.53 11993.08 24494.15 25480.22 29191.41 11994.91 14576.87 15997.93 17890.28 11496.90 9897.24 116
jason: jason.
PS-CasMVS87.32 21986.88 19788.63 28092.99 25576.33 30495.33 10696.61 9288.22 10283.30 29593.07 21973.03 21895.79 32378.36 27781.00 33793.75 281
test_vis1_n_192089.39 15389.84 12588.04 29692.97 25672.64 34894.71 15096.03 14286.18 15691.94 10696.56 8161.63 33095.74 32593.42 4795.11 13795.74 189
MVSTER88.84 16788.29 16690.51 20992.95 25780.44 20993.73 21495.01 21284.66 19787.15 18593.12 21772.79 22097.21 23987.86 13987.36 26893.87 269
RPSCF85.07 28284.27 27987.48 31192.91 25870.62 37391.69 28992.46 29776.20 34382.67 30195.22 13363.94 31697.29 23177.51 28885.80 27994.53 236
FMVSNet185.85 26684.11 28391.08 18792.81 25983.10 13395.14 12394.94 21581.64 27082.68 30091.64 26759.01 35596.34 29775.37 30883.78 29593.79 274
tfpnnormal84.72 29183.23 29789.20 26392.79 26080.05 22194.48 16195.81 15882.38 24681.08 32191.21 28169.01 27396.95 25861.69 38680.59 34290.58 368
OpenMVScopyleft83.78 1188.74 17187.29 18893.08 9092.70 26185.39 7196.57 3596.43 10378.74 31580.85 32396.07 9769.64 25999.01 6678.01 28396.65 10694.83 224
TranMVSNet+NR-MVSNet88.84 16787.95 17391.49 16992.68 26283.01 14194.92 13596.31 11289.88 4185.53 22693.85 19476.63 16596.96 25781.91 22779.87 35294.50 240
MVS87.44 21386.10 23291.44 17292.61 26383.62 11692.63 25995.66 17267.26 39581.47 31592.15 24777.95 15198.22 14979.71 26295.48 12692.47 326
fmvsm_s_conf0.1_n_a93.19 7093.26 6392.97 9792.49 26483.62 11696.02 6895.72 16786.78 14196.04 2298.19 182.30 9998.43 13396.38 1395.42 13096.86 141
CHOSEN 280x42085.15 28183.99 28688.65 27992.47 26578.40 26179.68 40892.76 29174.90 35681.41 31789.59 32969.85 25795.51 33279.92 26195.29 13392.03 338
test_fmvsmconf0.1_n94.20 3694.31 3093.88 6292.46 26684.80 8096.18 5196.82 7189.29 6495.68 2898.11 685.10 6098.99 7397.38 397.75 8297.86 88
UniMVSNet_ETH3D87.53 20986.37 21991.00 19392.44 26778.96 25094.74 14795.61 17684.07 20685.36 24294.52 16659.78 35097.34 22782.93 20387.88 25996.71 147
131487.51 21086.57 21290.34 22092.42 26879.74 23292.63 25995.35 19878.35 32180.14 33391.62 27174.05 20197.15 24181.05 24093.53 16794.12 255
cl2286.78 24185.98 23789.18 26492.34 26977.62 28490.84 30994.13 25681.33 27883.97 27890.15 31673.96 20396.60 27784.19 18782.94 30693.33 295
PEN-MVS86.80 24086.27 22588.40 28392.32 27075.71 31295.18 12096.38 10887.97 10982.82 29993.15 21573.39 21495.92 31476.15 30379.03 36093.59 286
tt080586.92 23685.74 25090.48 21192.22 27179.98 22695.63 9694.88 22383.83 21284.74 25492.80 22857.61 36197.67 18985.48 17284.42 28993.79 274
c3_l87.14 23086.50 21689.04 26892.20 27277.26 28891.22 30294.70 23582.01 25684.34 26890.43 30878.81 14096.61 27583.70 19581.09 33293.25 299
SCA86.32 25985.18 26289.73 24792.15 27376.60 29891.12 30391.69 32183.53 22085.50 22988.81 34266.79 29396.48 28676.65 29590.35 21796.12 170
XXY-MVS87.65 20086.85 19990.03 23192.14 27480.60 20693.76 21395.23 20182.94 23684.60 25694.02 18274.27 19595.49 33581.04 24183.68 29894.01 263
miper_ehance_all_eth87.22 22586.62 21089.02 26992.13 27577.40 28790.91 30894.81 22981.28 27984.32 26990.08 31979.26 13596.62 27283.81 19382.94 30693.04 310
IB-MVS80.51 1585.24 28083.26 29691.19 18192.13 27579.86 22991.75 28691.29 33483.28 22880.66 32688.49 34861.28 33698.46 12580.99 24479.46 35695.25 206
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 25784.98 26690.80 20092.10 27780.92 19790.24 32095.91 15173.10 37383.57 28888.39 34965.15 30997.46 20884.90 17891.43 20094.03 262
Fast-Effi-MVS+-dtu87.44 21386.72 20389.63 25292.04 27877.68 28394.03 19893.94 26085.81 16382.42 30391.32 27970.33 25097.06 25080.33 25690.23 21894.14 254
cl____86.52 25285.78 24588.75 27592.03 27976.46 30090.74 31094.30 24781.83 26583.34 29390.78 29875.74 17796.57 27881.74 23281.54 32693.22 301
DIV-MVS_self_test86.53 25185.78 24588.75 27592.02 28076.45 30190.74 31094.30 24781.83 26583.34 29390.82 29675.75 17596.57 27881.73 23381.52 32793.24 300
eth_miper_zixun_eth86.50 25385.77 24788.68 27891.94 28175.81 31090.47 31494.89 22182.05 25384.05 27590.46 30775.96 17096.77 26582.76 20979.36 35793.46 293
Syy-MVS80.07 34079.78 32880.94 37491.92 28259.93 40589.75 33487.40 38381.72 26778.82 34787.20 36666.29 30191.29 38647.06 40687.84 26191.60 346
myMVS_eth3d79.67 34578.79 34482.32 37191.92 28264.08 39789.75 33487.40 38381.72 26778.82 34787.20 36645.33 39991.29 38659.09 39487.84 26191.60 346
PS-MVSNAJss89.97 13289.62 12891.02 19191.90 28480.85 19995.26 11595.98 14486.26 15486.21 21094.29 17279.70 12997.65 19288.87 12988.10 25494.57 234
ITE_SJBPF88.24 29191.88 28577.05 29192.92 28585.54 17280.13 33493.30 20957.29 36296.20 30272.46 32984.71 28791.49 349
EI-MVSNet89.10 15888.86 15089.80 24491.84 28678.30 26493.70 21795.01 21285.73 16687.15 18595.28 13079.87 12697.21 23983.81 19387.36 26893.88 268
CVMVSNet84.69 29284.79 27284.37 35791.84 28664.92 39593.70 21791.47 33066.19 39786.16 21295.28 13067.18 28893.33 36780.89 24690.42 21694.88 222
dmvs_re84.20 29783.22 29887.14 32391.83 28877.81 27790.04 32890.19 35584.70 19681.49 31489.17 33564.37 31491.13 38871.58 33285.65 28192.46 327
MVS-HIRNet73.70 36372.20 36678.18 38191.81 28956.42 41382.94 39982.58 40055.24 40768.88 39466.48 41055.32 37195.13 34058.12 39688.42 25083.01 398
PatchmatchNetpermissive85.85 26684.70 27389.29 26191.76 29075.54 31388.49 35491.30 33381.63 27185.05 24888.70 34671.71 22996.24 30174.61 31789.05 24196.08 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TransMVSNet (Re)84.43 29483.06 30188.54 28191.72 29178.44 25995.18 12092.82 29082.73 24179.67 34192.12 24973.49 21095.96 31271.10 33868.73 39191.21 355
IterMVS-SCA-FT85.45 27284.53 27888.18 29391.71 29276.87 29390.19 32492.65 29585.40 17581.44 31690.54 30466.79 29395.00 34481.04 24181.05 33392.66 321
TinyColmap79.76 34477.69 34785.97 34091.71 29273.12 33989.55 33690.36 35375.03 35372.03 38790.19 31446.22 39896.19 30463.11 38281.03 33488.59 388
MDTV_nov1_ep1383.56 29291.69 29469.93 37787.75 36691.54 32778.60 31784.86 25188.90 34169.54 26196.03 30870.25 34288.93 242
miper_enhance_ethall86.90 23786.18 22789.06 26791.66 29577.58 28590.22 32294.82 22879.16 30684.48 26089.10 33679.19 13796.66 27084.06 18882.94 30692.94 313
DTE-MVSNet86.11 26185.48 25487.98 29791.65 29674.92 31994.93 13495.75 16387.36 12882.26 30593.04 22072.85 21995.82 32074.04 31977.46 36693.20 303
MIMVSNet82.59 31380.53 31888.76 27491.51 29778.32 26386.57 37790.13 35779.32 30280.70 32588.69 34752.98 38293.07 37266.03 37188.86 24394.90 221
WB-MVSnew83.77 30483.28 29585.26 35191.48 29871.03 36791.89 28187.98 37778.91 30884.78 25290.22 31269.11 27294.02 35664.70 37790.44 21490.71 363
pm-mvs186.61 24785.54 25289.82 24191.44 29980.18 21495.28 11394.85 22583.84 21181.66 31392.62 23272.45 22696.48 28679.67 26378.06 36192.82 318
Baseline_NR-MVSNet87.07 23286.63 20988.40 28391.44 29977.87 27594.23 18392.57 29684.12 20585.74 22092.08 25377.25 15796.04 30782.29 21779.94 35091.30 353
IterMVS84.88 28783.98 28787.60 30691.44 29976.03 30690.18 32592.41 29883.24 22981.06 32290.42 30966.60 29694.28 35379.46 26580.98 33892.48 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch85.05 28384.16 28187.73 30391.42 30278.51 25791.25 30093.53 27277.50 32980.15 33291.58 27361.99 32795.51 33275.69 30594.35 15589.16 382
tpm284.08 29882.94 30287.48 31191.39 30371.27 36389.23 34490.37 35271.95 38284.64 25589.33 33367.30 28596.55 28275.17 31087.09 27294.63 229
v887.50 21286.71 20489.89 23891.37 30479.40 23894.50 16095.38 19484.81 19283.60 28791.33 27776.05 16897.42 21482.84 20680.51 34692.84 317
ADS-MVSNet281.66 32279.71 33187.50 30991.35 30574.19 32883.33 39688.48 37572.90 37582.24 30685.77 37964.98 31093.20 37064.57 37883.74 29695.12 209
ADS-MVSNet81.56 32479.78 32886.90 32891.35 30571.82 35683.33 39689.16 37372.90 37582.24 30685.77 37964.98 31093.76 36164.57 37883.74 29695.12 209
GA-MVS86.61 24785.27 26190.66 20291.33 30778.71 25290.40 31593.81 26885.34 17685.12 24589.57 33061.25 33797.11 24680.99 24489.59 23296.15 167
miper_lstm_enhance85.27 27984.59 27687.31 31491.28 30874.63 32287.69 36794.09 25881.20 28381.36 31889.85 32574.97 18694.30 35281.03 24379.84 35393.01 311
XVG-ACMP-BASELINE86.00 26284.84 27189.45 25891.20 30978.00 27091.70 28895.55 17985.05 18482.97 29792.25 24554.49 37697.48 20582.93 20387.45 26792.89 315
v1087.25 22286.38 21889.85 23991.19 31079.50 23594.48 16195.45 18883.79 21383.62 28691.19 28275.13 18297.42 21481.94 22680.60 34192.63 322
FMVSNet581.52 32579.60 33287.27 31591.17 31177.95 27191.49 29392.26 30576.87 33576.16 36587.91 35851.67 38492.34 37767.74 36081.16 32991.52 348
USDC82.76 31081.26 31587.26 31691.17 31174.55 32389.27 34293.39 27578.26 32475.30 37292.08 25354.43 37796.63 27171.64 33185.79 28090.61 365
CostFormer85.77 26884.94 26888.26 29091.16 31372.58 35189.47 34091.04 34076.26 34286.45 20389.97 32270.74 24296.86 26482.35 21587.07 27395.34 204
test_cas_vis1_n_192088.83 17088.85 15188.78 27391.15 31476.72 29693.85 21094.93 21983.23 23092.81 8096.00 9961.17 34194.45 34791.67 9494.84 14195.17 208
baseline286.50 25385.39 25689.84 24091.12 31576.70 29791.88 28288.58 37482.35 24879.95 33790.95 29273.42 21397.63 19580.27 25789.95 22395.19 207
tpm cat181.96 31680.27 32287.01 32491.09 31671.02 36887.38 37191.53 32866.25 39680.17 33186.35 37568.22 28296.15 30569.16 35082.29 31593.86 271
tpmvs83.35 30982.07 30887.20 32191.07 31771.00 36988.31 35791.70 32078.91 30880.49 32987.18 36869.30 26797.08 24768.12 35983.56 30093.51 291
v114487.61 20686.79 20290.06 23091.01 31879.34 24193.95 20495.42 19383.36 22685.66 22291.31 28074.98 18597.42 21483.37 19782.06 31793.42 294
v2v48287.84 19387.06 19390.17 22390.99 31979.23 24894.00 20295.13 20584.87 18985.53 22692.07 25574.45 19397.45 20984.71 18181.75 32393.85 272
SixPastTwentyTwo83.91 30282.90 30486.92 32790.99 31970.67 37293.48 22391.99 31385.54 17277.62 35792.11 25160.59 34496.87 26376.05 30477.75 36393.20 303
test-LLR85.87 26585.41 25587.25 31790.95 32171.67 36089.55 33689.88 36583.41 22384.54 25887.95 35667.25 28695.11 34181.82 22993.37 17494.97 214
test-mter84.54 29383.64 29187.25 31790.95 32171.67 36089.55 33689.88 36579.17 30584.54 25887.95 35655.56 36895.11 34181.82 22993.37 17494.97 214
v14887.04 23386.32 22289.21 26290.94 32377.26 28893.71 21694.43 24184.84 19184.36 26790.80 29776.04 16997.05 25282.12 22079.60 35593.31 296
mvs_tets88.06 19087.28 18990.38 21890.94 32379.88 22895.22 11795.66 17285.10 18284.21 27393.94 18763.53 31897.40 22288.50 13288.40 25193.87 269
MVP-Stereo85.97 26384.86 27089.32 26090.92 32582.19 16492.11 27894.19 25278.76 31478.77 35091.63 27068.38 28196.56 28075.01 31393.95 15989.20 381
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test81.37 32779.30 33587.58 30790.92 32574.16 32980.99 40387.68 38170.52 38876.63 36388.81 34271.21 23492.76 37460.01 39286.93 27495.83 185
jajsoiax88.24 18487.50 18290.48 21190.89 32780.14 21695.31 10795.65 17484.97 18684.24 27294.02 18265.31 30897.42 21488.56 13188.52 24793.89 265
tpmrst85.35 27684.99 26586.43 33690.88 32867.88 38488.71 35191.43 33180.13 29386.08 21388.80 34473.05 21796.02 30982.48 21183.40 30495.40 200
gg-mvs-nofinetune81.77 31979.37 33488.99 27090.85 32977.73 28286.29 37879.63 40774.88 35783.19 29669.05 40960.34 34596.11 30675.46 30794.64 14793.11 307
D2MVS85.90 26485.09 26488.35 28590.79 33077.42 28691.83 28495.70 16880.77 28780.08 33590.02 32066.74 29596.37 29481.88 22887.97 25891.26 354
OurMVSNet-221017-085.35 27684.64 27587.49 31090.77 33172.59 35094.01 20094.40 24384.72 19579.62 34393.17 21461.91 32896.72 26681.99 22581.16 32993.16 305
v119287.25 22286.33 22190.00 23590.76 33279.04 24993.80 21195.48 18482.57 24385.48 23091.18 28473.38 21597.42 21482.30 21682.06 31793.53 288
test_djsdf89.03 16388.64 15390.21 22290.74 33379.28 24595.96 7395.90 15284.66 19785.33 24392.94 22274.02 20297.30 22889.64 11988.53 24694.05 261
v7n86.81 23985.76 24889.95 23690.72 33479.25 24795.07 12695.92 14984.45 20082.29 30490.86 29372.60 22397.53 20179.42 26980.52 34593.08 309
PVSNet_073.20 2077.22 35674.83 36284.37 35790.70 33571.10 36683.09 39889.67 36872.81 37773.93 38083.13 39060.79 34393.70 36368.54 35350.84 41188.30 390
v14419287.19 22886.35 22089.74 24590.64 33678.24 26693.92 20795.43 19181.93 25885.51 22891.05 29074.21 19897.45 20982.86 20581.56 32593.53 288
test_fmvs187.34 21787.56 18186.68 33390.59 33771.80 35794.01 20094.04 25978.30 32291.97 10395.22 13356.28 36693.71 36292.89 5694.71 14394.52 237
V4287.68 19886.86 19890.15 22590.58 33880.14 21694.24 18295.28 19983.66 21585.67 22191.33 27774.73 18997.41 22084.43 18581.83 32192.89 315
CR-MVSNet85.35 27683.76 28990.12 22790.58 33879.34 24185.24 38691.96 31678.27 32385.55 22487.87 35971.03 23795.61 32873.96 32189.36 23595.40 200
RPMNet83.95 30181.53 31291.21 18090.58 33879.34 24185.24 38696.76 7871.44 38485.55 22482.97 39370.87 24098.91 8361.01 38889.36 23595.40 200
v192192086.97 23586.06 23489.69 24990.53 34178.11 26993.80 21195.43 19181.90 26085.33 24391.05 29072.66 22197.41 22082.05 22481.80 32293.53 288
v124086.78 24185.85 24389.56 25390.45 34277.79 27993.61 21995.37 19681.65 26985.43 23591.15 28671.50 23297.43 21381.47 23782.05 31993.47 292
tpm84.73 29084.02 28586.87 33090.33 34368.90 38089.06 34789.94 36280.85 28685.75 21989.86 32468.54 27995.97 31177.76 28484.05 29395.75 188
EG-PatchMatch MVS82.37 31580.34 32188.46 28290.27 34479.35 24092.80 25694.33 24677.14 33473.26 38390.18 31547.47 39496.72 26670.25 34287.32 27089.30 378
EPNet_dtu86.49 25585.94 24088.14 29490.24 34572.82 34394.11 18992.20 30686.66 14579.42 34492.36 24073.52 20995.81 32171.26 33393.66 16395.80 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS83.90 30382.70 30787.51 30890.23 34672.67 34688.62 35381.96 40281.37 27785.01 24988.34 35066.31 30094.45 34775.30 30987.12 27195.43 199
EPNet91.79 9191.02 10294.10 5790.10 34785.25 7396.03 6792.05 31092.83 287.39 18495.78 11279.39 13499.01 6688.13 13697.48 8598.05 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT82.68 31281.27 31486.89 32990.09 34870.94 37084.06 39390.15 35674.91 35585.63 22383.57 38869.37 26394.87 34665.19 37388.50 24894.84 223
Patchmtry82.71 31180.93 31788.06 29590.05 34976.37 30384.74 39191.96 31672.28 38181.32 31987.87 35971.03 23795.50 33468.97 35180.15 34892.32 333
pmmvs485.43 27383.86 28890.16 22490.02 35082.97 14390.27 31692.67 29475.93 34580.73 32491.74 26571.05 23695.73 32678.85 27483.46 30291.78 342
TESTMET0.1,183.74 30582.85 30586.42 33789.96 35171.21 36589.55 33687.88 37877.41 33083.37 29287.31 36456.71 36493.65 36480.62 25192.85 18594.40 246
dp81.47 32680.23 32385.17 35289.92 35265.49 39286.74 37590.10 35876.30 34181.10 32087.12 36962.81 32395.92 31468.13 35879.88 35194.09 258
K. test v381.59 32380.15 32585.91 34389.89 35369.42 37992.57 26187.71 38085.56 17173.44 38289.71 32855.58 36795.52 33177.17 29169.76 38592.78 319
MDA-MVSNet-bldmvs78.85 35076.31 35586.46 33489.76 35473.88 33088.79 35090.42 35179.16 30659.18 40588.33 35160.20 34694.04 35562.00 38568.96 38991.48 350
test_fmvs1_n87.03 23487.04 19586.97 32589.74 35571.86 35594.55 15894.43 24178.47 31891.95 10595.50 12351.16 38693.81 36093.02 5594.56 14995.26 205
GG-mvs-BLEND87.94 29989.73 35677.91 27287.80 36278.23 41180.58 32783.86 38659.88 34995.33 33871.20 33492.22 19490.60 367
EGC-MVSNET61.97 37556.37 38078.77 37989.63 35773.50 33589.12 34682.79 3990.21 4251.24 42684.80 38339.48 40490.04 39344.13 40875.94 37472.79 407
gm-plane-assit89.60 35868.00 38277.28 33388.99 33997.57 19879.44 267
MonoMVSNet86.89 23886.55 21387.92 30089.46 35973.75 33194.12 18793.10 28087.82 11885.10 24690.76 29969.59 26094.94 34586.47 15982.50 31295.07 211
test_fmvsmconf0.01_n93.19 7093.02 6993.71 7289.25 36084.42 9796.06 6496.29 11389.06 7194.68 4098.13 479.22 13698.98 7797.22 497.24 9097.74 95
anonymousdsp87.84 19387.09 19290.12 22789.13 36180.54 20794.67 15295.55 17982.05 25383.82 28092.12 24971.47 23397.15 24187.15 15087.80 26392.67 320
N_pmnet68.89 36968.44 37170.23 38989.07 36228.79 42888.06 35919.50 42869.47 39171.86 38884.93 38261.24 33891.75 38354.70 40177.15 36790.15 370
pmmvs584.21 29682.84 30688.34 28788.95 36376.94 29292.41 26491.91 31875.63 34780.28 33091.18 28464.59 31295.57 32977.09 29383.47 30192.53 324
PMMVS85.71 26984.96 26787.95 29888.90 36477.09 29088.68 35290.06 35972.32 38086.47 20090.76 29972.15 22794.40 34981.78 23193.49 16992.36 331
JIA-IIPM81.04 33078.98 34387.25 31788.64 36573.48 33681.75 40289.61 37073.19 37282.05 30973.71 40566.07 30595.87 31771.18 33684.60 28892.41 329
test_vis1_n86.56 25086.49 21786.78 33288.51 36672.69 34594.68 15193.78 26979.55 30190.70 12695.31 12948.75 39193.28 36893.15 5193.99 15894.38 247
Gipumacopyleft57.99 38154.91 38367.24 39588.51 36665.59 39152.21 41690.33 35443.58 41342.84 41651.18 41720.29 41985.07 40734.77 41470.45 38351.05 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet81.32 32880.95 31682.42 37088.50 36863.67 39993.32 23091.33 33264.02 40080.57 32892.83 22561.21 33992.27 37876.34 30080.38 34791.32 352
our_test_381.93 31780.46 32086.33 33888.46 36973.48 33688.46 35591.11 33676.46 33776.69 36288.25 35266.89 29194.36 35068.75 35279.08 35991.14 357
ppachtmachnet_test81.84 31880.07 32687.15 32288.46 36974.43 32689.04 34892.16 30775.33 35077.75 35588.99 33966.20 30295.37 33765.12 37577.60 36491.65 344
lessismore_v086.04 33988.46 36968.78 38180.59 40573.01 38490.11 31855.39 36996.43 29175.06 31265.06 39692.90 314
test0.0.03 182.41 31481.69 31084.59 35588.23 37272.89 34290.24 32087.83 37983.41 22379.86 33989.78 32667.25 28688.99 39965.18 37483.42 30391.90 341
MDA-MVSNet_test_wron79.21 34977.19 35185.29 34988.22 37372.77 34485.87 38090.06 35974.34 36062.62 40287.56 36266.14 30391.99 38166.90 36873.01 37791.10 360
YYNet179.22 34877.20 35085.28 35088.20 37472.66 34785.87 38090.05 36174.33 36162.70 40087.61 36166.09 30492.03 37966.94 36572.97 37891.15 356
pmmvs683.42 30781.60 31188.87 27288.01 37577.87 27594.96 13294.24 25174.67 35878.80 34991.09 28960.17 34796.49 28577.06 29475.40 37592.23 335
testgi80.94 33480.20 32483.18 36387.96 37666.29 38991.28 29890.70 34983.70 21478.12 35292.84 22451.37 38590.82 39063.34 38182.46 31392.43 328
mvsany_test185.42 27485.30 26085.77 34487.95 37775.41 31587.61 37080.97 40476.82 33688.68 15795.83 10977.44 15690.82 39085.90 16686.51 27591.08 361
Anonymous2023120681.03 33179.77 33084.82 35487.85 37870.26 37591.42 29492.08 30973.67 36777.75 35589.25 33462.43 32593.08 37161.50 38782.00 32091.12 358
dmvs_testset74.57 36275.81 36070.86 38887.72 37940.47 42387.05 37477.90 41382.75 24071.15 39185.47 38167.98 28384.12 41045.26 40776.98 37088.00 391
test_fmvs283.98 29984.03 28483.83 36287.16 38067.53 38893.93 20692.89 28677.62 32886.89 19393.53 20247.18 39592.02 38090.54 11086.51 27591.93 340
OpenMVS_ROBcopyleft74.94 1979.51 34677.03 35386.93 32687.00 38176.23 30592.33 27090.74 34868.93 39274.52 37788.23 35349.58 38996.62 27257.64 39784.29 29087.94 392
LF4IMVS80.37 33879.07 34284.27 35986.64 38269.87 37889.39 34191.05 33976.38 33974.97 37490.00 32147.85 39394.25 35474.55 31880.82 34088.69 387
MIMVSNet179.38 34777.28 34985.69 34586.35 38373.67 33391.61 29192.75 29278.11 32772.64 38588.12 35448.16 39291.97 38260.32 38977.49 36591.43 351
KD-MVS_2432*160078.50 35176.02 35885.93 34186.22 38474.47 32484.80 38992.33 30079.29 30376.98 36085.92 37753.81 38093.97 35767.39 36157.42 40689.36 376
miper_refine_blended78.50 35176.02 35885.93 34186.22 38474.47 32484.80 38992.33 30079.29 30376.98 36085.92 37753.81 38093.97 35767.39 36157.42 40689.36 376
CL-MVSNet_self_test81.74 32080.53 31885.36 34885.96 38672.45 35290.25 31893.07 28281.24 28179.85 34087.29 36570.93 23992.52 37566.95 36469.23 38791.11 359
test_vis1_rt77.96 35476.46 35482.48 36985.89 38771.74 35990.25 31878.89 40871.03 38771.30 39081.35 39742.49 40391.05 38984.55 18382.37 31484.65 395
test20.0379.95 34279.08 34182.55 36785.79 38867.74 38691.09 30491.08 33781.23 28274.48 37889.96 32361.63 33090.15 39260.08 39076.38 37189.76 373
Anonymous2024052180.44 33779.21 33784.11 36085.75 38967.89 38392.86 25493.23 27875.61 34875.59 37187.47 36350.03 38794.33 35171.14 33781.21 32890.12 371
KD-MVS_self_test80.20 33979.24 33683.07 36485.64 39065.29 39391.01 30693.93 26178.71 31676.32 36486.40 37459.20 35492.93 37372.59 32869.35 38691.00 362
Patchmatch-RL test81.67 32179.96 32786.81 33185.42 39171.23 36482.17 40187.50 38278.47 31877.19 35982.50 39570.81 24193.48 36582.66 21072.89 37995.71 192
UnsupCasMVSNet_eth80.07 34078.27 34685.46 34785.24 39272.63 34988.45 35694.87 22482.99 23571.64 38988.07 35556.34 36591.75 38373.48 32563.36 39992.01 339
pmmvs-eth3d80.97 33378.72 34587.74 30284.99 39379.97 22790.11 32691.65 32375.36 34973.51 38186.03 37659.45 35193.96 35975.17 31072.21 38089.29 380
mvs5depth80.98 33279.15 34086.45 33584.57 39473.29 33887.79 36391.67 32280.52 28982.20 30889.72 32755.14 37395.93 31373.93 32266.83 39390.12 371
CMPMVSbinary59.16 2180.52 33579.20 33884.48 35683.98 39567.63 38789.95 33193.84 26764.79 39966.81 39791.14 28757.93 35995.17 33976.25 30188.10 25490.65 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld76.23 36073.27 36485.09 35383.79 39672.92 34185.65 38393.47 27471.52 38368.84 39579.08 40049.77 38893.21 36966.81 36960.52 40389.13 384
PM-MVS78.11 35376.12 35784.09 36183.54 39770.08 37688.97 34985.27 39379.93 29574.73 37686.43 37234.70 40993.48 36579.43 26872.06 38188.72 386
dongtai58.82 38058.24 37860.56 39783.13 39845.09 42182.32 40048.22 42767.61 39461.70 40469.15 40838.75 40576.05 41632.01 41541.31 41560.55 412
DSMNet-mixed76.94 35776.29 35678.89 37883.10 39956.11 41487.78 36479.77 40660.65 40475.64 37088.71 34561.56 33388.34 40060.07 39189.29 23792.21 336
new_pmnet72.15 36570.13 36878.20 38082.95 40065.68 39083.91 39482.40 40162.94 40264.47 39979.82 39942.85 40286.26 40557.41 39874.44 37682.65 400
new-patchmatchnet76.41 35975.17 36180.13 37582.65 40159.61 40687.66 36891.08 33778.23 32569.85 39383.22 38954.76 37491.63 38564.14 38064.89 39789.16 382
ttmdpeth76.55 35874.64 36382.29 37282.25 40267.81 38589.76 33385.69 38970.35 38975.76 36991.69 26646.88 39689.77 39466.16 37063.23 40089.30 378
WB-MVS67.92 37067.49 37269.21 39281.09 40341.17 42288.03 36078.00 41273.50 36962.63 40183.11 39263.94 31686.52 40325.66 41851.45 41079.94 403
SSC-MVS67.06 37166.56 37368.56 39480.54 40440.06 42487.77 36577.37 41572.38 37961.75 40382.66 39463.37 31986.45 40424.48 41948.69 41379.16 405
APD_test169.04 36866.26 37477.36 38380.51 40562.79 40285.46 38583.51 39854.11 40959.14 40684.79 38423.40 41689.61 39555.22 40070.24 38479.68 404
ambc83.06 36579.99 40663.51 40077.47 40992.86 28774.34 37984.45 38528.74 41095.06 34373.06 32768.89 39090.61 365
test_fmvs377.67 35577.16 35279.22 37779.52 40761.14 40392.34 26991.64 32473.98 36478.86 34686.59 37027.38 41387.03 40188.12 13775.97 37389.50 375
TDRefinement79.81 34377.34 34887.22 32079.24 40875.48 31493.12 24192.03 31176.45 33875.01 37391.58 27349.19 39096.44 29070.22 34469.18 38889.75 374
MVStest172.91 36469.70 36982.54 36878.14 40973.05 34088.21 35886.21 38560.69 40364.70 39890.53 30546.44 39785.70 40658.78 39553.62 40888.87 385
kuosan53.51 38253.30 38554.13 40176.06 41045.36 42080.11 40748.36 42659.63 40554.84 40763.43 41437.41 40662.07 42120.73 42139.10 41654.96 415
pmmvs371.81 36768.71 37081.11 37375.86 41170.42 37486.74 37583.66 39758.95 40668.64 39680.89 39836.93 40789.52 39663.10 38363.59 39883.39 396
mvsany_test374.95 36173.26 36580.02 37674.61 41263.16 40185.53 38478.42 40974.16 36274.89 37586.46 37136.02 40889.09 39882.39 21466.91 39287.82 393
DeepMVS_CXcopyleft56.31 40074.23 41351.81 41656.67 42444.85 41248.54 41275.16 40327.87 41258.74 42240.92 41252.22 40958.39 414
test_f71.95 36670.87 36775.21 38474.21 41459.37 40785.07 38885.82 38865.25 39870.42 39283.13 39023.62 41482.93 41278.32 27871.94 38283.33 397
test_vis3_rt65.12 37362.60 37572.69 38671.44 41560.71 40487.17 37265.55 41963.80 40153.22 40965.65 41214.54 42389.44 39776.65 29565.38 39567.91 410
FPMVS64.63 37462.55 37670.88 38770.80 41656.71 40984.42 39284.42 39551.78 41049.57 41081.61 39623.49 41581.48 41340.61 41376.25 37274.46 406
testf159.54 37756.11 38169.85 39069.28 41756.61 41180.37 40576.55 41642.58 41445.68 41375.61 40111.26 42484.18 40843.20 41060.44 40468.75 408
APD_test259.54 37756.11 38169.85 39069.28 41756.61 41180.37 40576.55 41642.58 41445.68 41375.61 40111.26 42484.18 40843.20 41060.44 40468.75 408
PMMVS259.60 37656.40 37969.21 39268.83 41946.58 41873.02 41377.48 41455.07 40849.21 41172.95 40717.43 42180.04 41449.32 40544.33 41480.99 402
wuyk23d21.27 39020.48 39323.63 40568.59 42036.41 42649.57 4176.85 4299.37 4217.89 4234.46 4254.03 42831.37 42317.47 42316.07 4223.12 420
E-PMN43.23 38642.29 38846.03 40265.58 42137.41 42573.51 41164.62 42033.99 41728.47 42147.87 41819.90 42067.91 41822.23 42024.45 41832.77 417
LCM-MVSNet66.00 37262.16 37777.51 38264.51 42258.29 40883.87 39590.90 34448.17 41154.69 40873.31 40616.83 42286.75 40265.47 37261.67 40287.48 394
EMVS42.07 38741.12 38944.92 40363.45 42335.56 42773.65 41063.48 42133.05 41826.88 42245.45 41921.27 41867.14 41919.80 42223.02 42032.06 418
MVEpermissive39.65 2343.39 38538.59 39157.77 39856.52 42448.77 41755.38 41558.64 42329.33 41928.96 42052.65 4164.68 42764.62 42028.11 41733.07 41759.93 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high58.88 37954.22 38472.86 38556.50 42556.67 41080.75 40486.00 38773.09 37437.39 41764.63 41322.17 41779.49 41543.51 40923.96 41982.43 401
test_method50.52 38448.47 38656.66 39952.26 42618.98 43041.51 41881.40 40310.10 42044.59 41575.01 40428.51 41168.16 41753.54 40249.31 41282.83 399
PMVScopyleft47.18 2252.22 38348.46 38763.48 39645.72 42746.20 41973.41 41278.31 41041.03 41630.06 41965.68 4116.05 42683.43 41130.04 41665.86 39460.80 411
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt35.64 38839.24 39024.84 40414.87 42823.90 42962.71 41451.51 4256.58 42236.66 41862.08 41544.37 40030.34 42452.40 40322.00 42120.27 419
testmvs8.92 39111.52 3941.12 4071.06 4290.46 43286.02 3790.65 4300.62 4232.74 4249.52 4230.31 4300.45 4262.38 4240.39 4232.46 422
test1238.76 39211.22 3951.39 4060.85 4300.97 43185.76 3820.35 4310.54 4242.45 4258.14 4240.60 4290.48 4252.16 4250.17 4242.71 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
eth-test20.00 431
eth-test0.00 431
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k22.14 38929.52 3920.00 4080.00 4310.00 4330.00 41995.76 1620.00 4260.00 42794.29 17275.66 1780.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.64 3948.86 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42679.70 1290.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.82 39310.43 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42793.88 1920.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS64.08 39759.14 393
PC_three_145282.47 24497.09 1097.07 5492.72 198.04 16992.70 6299.02 1298.86 11
test_241102_TWO97.44 1590.31 2997.62 598.07 1291.46 1099.58 1095.66 1799.12 698.98 10
test_0728_THIRD90.75 1997.04 1198.05 1692.09 699.55 1695.64 1999.13 399.13 2
GSMVS96.12 170
sam_mvs171.70 23096.12 170
sam_mvs70.60 243
MTGPAbinary96.97 53
test_post188.00 3619.81 42269.31 26695.53 33076.65 295
test_post10.29 42170.57 24795.91 316
patchmatchnet-post83.76 38771.53 23196.48 286
MTMP96.16 5260.64 422
test9_res91.91 8898.71 3298.07 73
agg_prior290.54 11098.68 3798.27 56
test_prior485.96 5494.11 189
test_prior294.12 18787.67 12392.63 8896.39 8586.62 4091.50 9698.67 40
旧先验293.36 22871.25 38594.37 4397.13 24586.74 155
新几何293.11 243
无先验93.28 23696.26 11873.95 36599.05 5880.56 25296.59 151
原ACMM292.94 250
testdata298.75 9778.30 279
segment_acmp87.16 36
testdata192.15 27687.94 110
plane_prior596.22 12398.12 15488.15 13489.99 22094.63 229
plane_prior494.86 149
plane_prior382.75 14790.26 3486.91 190
plane_prior295.85 8190.81 17
plane_prior82.73 15095.21 11889.66 5589.88 225
n20.00 432
nn0.00 432
door-mid85.49 390
test1196.57 95
door85.33 392
HQP5-MVS81.56 175
BP-MVS87.11 152
HQP4-MVS85.43 23597.96 17594.51 239
HQP3-MVS96.04 14089.77 229
HQP2-MVS73.83 206
MDTV_nov1_ep13_2view55.91 41587.62 36973.32 37184.59 25770.33 25074.65 31695.50 197
ACMMP++_ref87.47 265
ACMMP++88.01 257
Test By Simon80.02 124