This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 5292.59 298.94 8192.25 7398.99 1498.84 14
HPM-MVS++copyleft95.14 1094.91 1695.83 498.25 2989.65 495.92 7696.96 5591.75 994.02 5396.83 6488.12 2499.55 1693.41 4898.94 1698.28 54
DPM-MVS92.58 8091.74 9095.08 1596.19 9989.31 592.66 25896.56 9683.44 22291.68 11595.04 14286.60 4298.99 7385.60 17097.92 7596.93 136
3Dnovator+87.14 492.42 8491.37 9495.55 795.63 12988.73 697.07 1896.77 7790.84 1684.02 27696.62 7775.95 17199.34 3787.77 14097.68 8398.59 24
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 11196.96 5592.09 695.32 3297.08 5289.49 1599.33 4095.10 2898.85 2098.66 21
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4697.28 3185.90 16297.67 398.10 888.41 2099.56 1294.66 3299.19 198.71 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MM95.10 1194.91 1695.68 596.09 10688.34 996.68 3394.37 24495.08 194.68 4097.72 2682.94 8899.64 197.85 198.76 2999.06 7
SF-MVS94.97 1294.90 1895.20 1297.84 5087.76 1096.65 3497.48 1087.76 12095.71 2797.70 2788.28 2399.35 3693.89 4198.78 2698.48 30
ACMMP_NAP94.74 1994.56 2295.28 1098.02 4187.70 1195.68 9097.34 2388.28 9995.30 3397.67 2885.90 5099.54 2093.91 4098.95 1598.60 23
sasdasda93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10590.00 3894.09 4994.60 16282.33 9798.62 11192.40 6792.86 18398.27 56
canonicalmvs93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10590.00 3894.09 4994.60 16282.33 9798.62 11192.40 6792.86 18398.27 56
MVS_030494.18 3993.80 4995.34 994.91 16387.62 1495.97 7293.01 28492.58 394.22 4597.20 4680.56 11899.59 897.04 898.68 3798.81 17
alignmvs93.08 7292.50 8094.81 3295.62 13087.61 1595.99 7096.07 13789.77 5194.12 4894.87 14880.56 11898.66 10492.42 6693.10 17998.15 67
MCST-MVS94.45 2494.20 3895.19 1398.46 1987.50 1695.00 13097.12 4487.13 13192.51 9296.30 8689.24 1799.34 3793.46 4598.62 4698.73 18
NCCC94.81 1794.69 2195.17 1497.83 5187.46 1795.66 9396.93 5992.34 493.94 5496.58 7987.74 2799.44 2992.83 5798.40 5498.62 22
DPE-MVScopyleft95.57 495.67 495.25 1198.36 2587.28 1895.56 10197.51 589.13 7097.14 997.91 2191.64 799.62 294.61 3399.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.55 1287.22 1996.40 17
ZNCC-MVS94.47 2394.28 3295.03 1698.52 1586.96 2096.85 2897.32 2788.24 10093.15 6997.04 5586.17 4799.62 292.40 6798.81 2398.52 26
MTAPA94.42 2894.22 3595.00 1898.42 2186.95 2194.36 17796.97 5391.07 1393.14 7097.56 2984.30 7399.56 1293.43 4698.75 3098.47 33
nrg03091.08 10690.39 11093.17 8493.07 24986.91 2296.41 3796.26 11888.30 9888.37 16394.85 15182.19 10397.64 19491.09 10082.95 30594.96 217
APD-MVScopyleft94.24 3294.07 4294.75 3698.06 3986.90 2395.88 7896.94 5885.68 16895.05 3897.18 4887.31 3599.07 5691.90 9098.61 4898.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS94.21 3493.97 4694.90 2398.41 2286.82 2496.54 3697.19 3588.24 10093.26 6696.83 6485.48 5599.59 891.43 9898.40 5498.30 49
HFP-MVS94.52 2294.40 2694.86 2498.61 1086.81 2596.94 2097.34 2388.63 8793.65 5997.21 4486.10 4899.49 2692.35 7098.77 2898.30 49
TSAR-MVS + GP.93.66 5393.41 6194.41 4996.59 8586.78 2694.40 16993.93 26189.77 5194.21 4695.59 12087.35 3498.61 11392.72 6096.15 11597.83 91
DeepC-MVS_fast89.43 294.04 4193.79 5094.80 3397.48 6486.78 2695.65 9596.89 6389.40 6092.81 8096.97 5785.37 5799.24 4690.87 10798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS94.96 1395.33 893.88 6297.25 7286.69 2896.19 4997.11 4690.42 2796.95 1397.27 4089.53 1496.91 26194.38 3598.85 2098.03 77
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPR94.43 2694.28 3294.91 2198.63 986.69 2896.94 2097.32 2788.63 8793.53 6497.26 4285.04 6299.54 2092.35 7098.78 2698.50 27
region2R94.43 2694.27 3494.92 2098.65 886.67 3096.92 2497.23 3488.60 9093.58 6197.27 4085.22 5899.54 2092.21 7498.74 3198.56 25
MP-MVS-pluss94.21 3494.00 4594.85 2598.17 3386.65 3194.82 14297.17 4086.26 15492.83 7997.87 2385.57 5499.56 1294.37 3698.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS94.34 2994.21 3794.74 3798.39 2386.64 3297.60 497.24 3288.53 9292.73 8597.23 4385.20 5999.32 4192.15 7798.83 2298.25 61
ZD-MVS98.15 3486.62 3397.07 4883.63 21694.19 4796.91 6087.57 3199.26 4591.99 8498.44 53
XVS94.45 2494.32 2894.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7797.16 5085.02 6399.49 2691.99 8498.56 5098.47 33
X-MVStestdata88.31 18286.13 22994.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7723.41 42085.02 6399.49 2691.99 8498.56 5098.47 33
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6989.90 1299.30 4394.70 3198.04 7199.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TEST997.53 6186.49 3794.07 19496.78 7581.61 27292.77 8296.20 9087.71 2899.12 54
train_agg93.44 5993.08 6794.52 4497.53 6186.49 3794.07 19496.78 7581.86 26392.77 8296.20 9087.63 2999.12 5492.14 7898.69 3597.94 81
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
PHI-MVS93.89 4793.65 5894.62 4196.84 7886.43 3996.69 3297.49 685.15 18193.56 6396.28 8785.60 5399.31 4292.45 6498.79 2498.12 71
3Dnovator86.66 591.73 9490.82 10694.44 4594.59 17986.37 4197.18 1297.02 5089.20 6784.31 27196.66 7273.74 20899.17 5086.74 15597.96 7397.79 93
TSAR-MVS + MP.94.85 1494.94 1494.58 4298.25 2986.33 4296.11 5996.62 9188.14 10596.10 2096.96 5889.09 1898.94 8194.48 3498.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7586.33 4297.33 797.30 2991.38 1295.39 3197.46 3288.98 1999.40 3094.12 3798.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft94.25 3194.07 4294.77 3598.47 1886.31 4496.71 3196.98 5289.04 7391.98 10297.19 4785.43 5699.56 1292.06 8398.79 2498.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_897.49 6386.30 4594.02 19996.76 7881.86 26392.70 8696.20 9087.63 2999.02 64
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 7596.20 1998.10 889.39 1699.34 3795.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS93.96 4693.72 5494.68 3898.43 2086.22 4795.30 10997.78 187.45 12793.26 6697.33 3884.62 7099.51 2490.75 10998.57 4998.32 48
test1294.34 5297.13 7386.15 4896.29 11391.04 12485.08 6199.01 6698.13 6697.86 88
CDPH-MVS92.83 7692.30 8294.44 4597.79 5286.11 4994.06 19696.66 8880.09 29492.77 8296.63 7686.62 4099.04 6087.40 14598.66 4198.17 66
DVP-MVS++95.98 196.36 194.82 3197.78 5486.00 5098.29 197.49 690.75 1997.62 598.06 1492.59 299.61 495.64 1999.02 1298.86 11
IU-MVS98.77 586.00 5096.84 6881.26 28097.26 795.50 2399.13 399.03 8
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2997.71 198.07 1292.31 499.58 1095.66 1799.13 398.84 14
test_241102_ONE98.77 585.99 5297.44 1590.26 3497.71 197.96 2092.31 499.38 31
test_prior485.96 5494.11 189
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 8290.27 3297.04 1198.05 1691.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 5597.19 1197.47 1190.27 3297.64 498.13 491.47 8
MGCFI-Net93.03 7392.63 7794.23 5695.62 13085.92 5796.08 6096.33 11189.86 4293.89 5694.66 15982.11 10498.50 11992.33 7292.82 18698.27 56
agg_prior97.38 6685.92 5796.72 8492.16 9898.97 78
DP-MVS Recon91.95 8991.28 9693.96 6098.33 2785.92 5794.66 15396.66 8882.69 24290.03 13995.82 11082.30 9999.03 6184.57 18296.48 11096.91 138
mPP-MVS93.99 4493.78 5194.63 4098.50 1685.90 6096.87 2696.91 6188.70 8591.83 11197.17 4983.96 7799.55 1691.44 9798.64 4598.43 38
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1491.45 11
DeepC-MVS88.79 393.31 6592.99 7094.26 5596.07 10885.83 6194.89 13696.99 5189.02 7689.56 14297.37 3782.51 9499.38 3192.20 7598.30 5797.57 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS94.23 3394.17 4094.43 4798.21 3285.78 6396.40 3896.90 6288.20 10394.33 4497.40 3584.75 6999.03 6193.35 4997.99 7298.48 30
HPM-MVScopyleft94.02 4293.88 4794.43 4798.39 2385.78 6397.25 1097.07 4886.90 13992.62 8996.80 6884.85 6899.17 5092.43 6598.65 4498.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CANet93.54 5593.20 6694.55 4395.65 12885.73 6594.94 13396.69 8791.89 890.69 12795.88 10781.99 10999.54 2093.14 5297.95 7498.39 39
save fliter97.85 4985.63 6695.21 11896.82 7189.44 58
FOURS198.86 185.54 6798.29 197.49 689.79 5096.29 18
reproduce-ours94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7997.15 4189.82 4495.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
our_new_method94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7997.15 4189.82 4495.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
fmvsm_l_conf0.5_n94.29 3094.46 2493.79 6895.28 14185.43 7095.68 9096.43 10386.56 14696.84 1497.81 2587.56 3298.77 9697.14 596.82 10297.16 124
OpenMVScopyleft83.78 1188.74 17187.29 18893.08 9092.70 26185.39 7196.57 3596.43 10378.74 31580.85 32396.07 9769.64 25999.01 6678.01 28396.65 10694.83 224
ACMMPcopyleft93.24 6892.88 7294.30 5398.09 3885.33 7296.86 2797.45 1488.33 9690.15 13797.03 5681.44 11299.51 2490.85 10895.74 12098.04 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPNet91.79 9191.02 10294.10 5790.10 34785.25 7396.03 6792.05 31092.83 287.39 18495.78 11279.39 13499.01 6688.13 13697.48 8598.05 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
reproduce_model94.76 1894.92 1594.29 5497.92 4385.18 7495.95 7597.19 3589.67 5495.27 3498.16 386.53 4399.36 3595.42 2498.15 6498.33 44
DELS-MVS93.43 6393.25 6493.97 5995.42 13785.04 7593.06 24697.13 4390.74 2191.84 10995.09 14186.32 4599.21 4891.22 9998.45 5297.65 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_l_conf0.5_n_a94.20 3694.40 2693.60 7495.29 14084.98 7695.61 9796.28 11686.31 15296.75 1697.86 2487.40 3398.74 9997.07 797.02 9597.07 126
test_fmvsmconf_n94.60 2194.81 1993.98 5894.62 17884.96 7796.15 5497.35 2289.37 6196.03 2398.11 686.36 4499.01 6697.45 297.83 7897.96 80
MVS_111021_HR93.45 5893.31 6293.84 6496.99 7584.84 7893.24 23997.24 3288.76 8291.60 11695.85 10886.07 4998.66 10491.91 8898.16 6398.03 77
HPM-MVS_fast93.40 6493.22 6593.94 6198.36 2584.83 7997.15 1396.80 7485.77 16592.47 9397.13 5182.38 9599.07 5690.51 11298.40 5497.92 84
test_fmvsmconf0.1_n94.20 3694.31 3093.88 6292.46 26684.80 8096.18 5196.82 7189.29 6495.68 2898.11 685.10 6098.99 7397.38 397.75 8297.86 88
CNLPA89.07 16187.98 17292.34 13096.87 7784.78 8194.08 19393.24 27781.41 27684.46 26195.13 14075.57 17996.62 27277.21 29093.84 16295.61 196
UA-Net92.83 7692.54 7993.68 7396.10 10584.71 8295.66 9396.39 10791.92 793.22 6896.49 8283.16 8498.87 8584.47 18495.47 12797.45 110
GDP-MVS92.04 8791.46 9393.75 7094.55 18484.69 8395.60 10096.56 9687.83 11793.07 7395.89 10673.44 21298.65 10690.22 11596.03 11797.91 85
test_fmvsm_n_192094.71 2095.11 1093.50 7695.79 12084.62 8496.15 5497.64 289.85 4397.19 897.89 2286.28 4698.71 10297.11 698.08 7097.17 120
QAPM89.51 14588.15 16993.59 7594.92 16184.58 8596.82 2996.70 8678.43 32083.41 29196.19 9373.18 21699.30 4377.11 29296.54 10796.89 139
SR-MVS-dyc-post93.82 4893.82 4893.82 6597.92 4384.57 8696.28 4396.76 7887.46 12593.75 5797.43 3384.24 7499.01 6692.73 5897.80 7997.88 86
RE-MVS-def93.68 5697.92 4384.57 8696.28 4396.76 7887.46 12593.75 5797.43 3382.94 8892.73 5897.80 7997.88 86
API-MVS90.66 11690.07 11892.45 12596.36 9584.57 8696.06 6495.22 20382.39 24589.13 15094.27 17580.32 12098.46 12580.16 25896.71 10494.33 248
UniMVSNet (Re)89.80 13889.07 14292.01 14093.60 23484.52 8994.78 14597.47 1189.26 6586.44 20492.32 24182.10 10597.39 22584.81 17980.84 33994.12 255
test_prior93.82 6597.29 7084.49 9096.88 6498.87 8598.11 72
MAR-MVS90.30 12389.37 13593.07 9296.61 8484.48 9195.68 9095.67 17082.36 24787.85 17292.85 22376.63 16598.80 9380.01 25996.68 10595.91 180
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v1_base_debu90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
xiu_mvs_v1_base90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
xiu_mvs_v1_base_debi90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
MVS_111021_LR92.47 8392.29 8392.98 9695.99 11484.43 9593.08 24496.09 13588.20 10391.12 12395.72 11681.33 11497.76 18491.74 9297.37 8896.75 145
PCF-MVS84.11 1087.74 19786.08 23392.70 11394.02 21284.43 9589.27 34295.87 15573.62 36884.43 26394.33 16978.48 14798.86 8770.27 34194.45 15394.81 225
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsmconf0.01_n93.19 7093.02 6993.71 7289.25 36084.42 9796.06 6496.29 11389.06 7194.68 4098.13 479.22 13698.98 7797.22 497.24 9097.74 95
BP-MVS192.48 8292.07 8593.72 7194.50 18784.39 9895.90 7794.30 24790.39 2892.67 8795.94 10374.46 19298.65 10693.14 5297.35 8998.13 68
新几何193.10 8897.30 6984.35 9995.56 17871.09 38691.26 12296.24 8882.87 9098.86 8779.19 27198.10 6796.07 174
test_fmvsmvis_n_192093.44 5993.55 5993.10 8893.67 23184.26 10095.83 8396.14 12889.00 7792.43 9497.50 3083.37 8398.72 10096.61 1297.44 8696.32 159
APD-MVS_3200maxsize93.78 4993.77 5293.80 6797.92 4384.19 10196.30 4196.87 6586.96 13593.92 5597.47 3183.88 7898.96 8092.71 6197.87 7698.26 60
NR-MVSNet88.58 17787.47 18491.93 14893.04 25284.16 10294.77 14696.25 12089.05 7280.04 33693.29 21079.02 13897.05 25281.71 23480.05 34994.59 232
CSCG93.23 6993.05 6893.76 6998.04 4084.07 10396.22 4897.37 2184.15 20490.05 13895.66 11787.77 2699.15 5389.91 11798.27 5898.07 73
OMC-MVS91.23 10290.62 10993.08 9096.27 9784.07 10393.52 22295.93 14886.95 13689.51 14396.13 9678.50 14698.35 13885.84 16892.90 18296.83 143
ETV-MVS92.74 7892.66 7692.97 9795.20 14784.04 10595.07 12696.51 9990.73 2292.96 7491.19 28284.06 7598.34 13991.72 9396.54 10796.54 155
ET-MVSNet_ETH3D87.51 21085.91 24192.32 13193.70 23083.93 10692.33 27090.94 34384.16 20372.09 38692.52 23569.90 25495.85 31889.20 12488.36 25297.17 120
OPM-MVS90.12 12789.56 13091.82 15793.14 24583.90 10794.16 18595.74 16488.96 7887.86 17195.43 12672.48 22497.91 17988.10 13890.18 21993.65 285
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVSFormer91.68 9691.30 9592.80 10693.86 22183.88 10895.96 7395.90 15284.66 19791.76 11294.91 14577.92 15297.30 22889.64 11997.11 9197.24 116
lupinMVS90.92 10790.21 11393.03 9393.86 22183.88 10892.81 25593.86 26579.84 29791.76 11294.29 17277.92 15298.04 16990.48 11397.11 9197.17 120
Vis-MVSNetpermissive91.75 9391.23 9793.29 7895.32 13983.78 11096.14 5695.98 14489.89 4090.45 12996.58 7975.09 18398.31 14484.75 18096.90 9897.78 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet89.92 13589.29 13891.81 15993.39 24083.72 11194.43 16797.12 4489.80 4786.46 20193.32 20783.16 8497.23 23784.92 17681.02 33594.49 242
DU-MVS89.34 15588.50 15891.85 15693.04 25283.72 11194.47 16496.59 9389.50 5786.46 20193.29 21077.25 15797.23 23784.92 17681.02 33594.59 232
fmvsm_s_conf0.5_n_a93.57 5493.76 5393.00 9595.02 15383.67 11396.19 4996.10 13487.27 12995.98 2498.05 1683.07 8798.45 12996.68 1195.51 12496.88 140
FMVSNet287.19 22885.82 24491.30 17794.01 21383.67 11394.79 14494.94 21583.57 21783.88 27992.05 25666.59 29796.51 28477.56 28785.01 28593.73 282
FMVSNet387.40 21586.11 23191.30 17793.79 22683.64 11594.20 18494.81 22983.89 21084.37 26491.87 26268.45 28096.56 28078.23 28085.36 28293.70 284
fmvsm_s_conf0.1_n_a93.19 7093.26 6392.97 9792.49 26483.62 11696.02 6895.72 16786.78 14196.04 2298.19 182.30 9998.43 13396.38 1395.42 13096.86 141
MVS87.44 21386.10 23291.44 17292.61 26383.62 11692.63 25995.66 17267.26 39581.47 31592.15 24777.95 15198.22 14979.71 26295.48 12692.47 326
CDS-MVSNet89.45 14888.51 15792.29 13493.62 23383.61 11893.01 24794.68 23681.95 25787.82 17493.24 21278.69 14296.99 25580.34 25593.23 17796.28 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
jason90.80 11090.10 11792.90 10193.04 25283.53 11993.08 24494.15 25480.22 29191.41 11994.91 14576.87 15997.93 17890.28 11496.90 9897.24 116
jason: jason.
EI-MVSNet-Vis-set93.01 7492.92 7193.29 7895.01 15483.51 12094.48 16195.77 16190.87 1592.52 9196.67 7184.50 7199.00 7191.99 8494.44 15497.36 111
MSLP-MVS++93.72 5294.08 4192.65 11597.31 6883.43 12195.79 8597.33 2590.03 3793.58 6196.96 5884.87 6797.76 18492.19 7698.66 4196.76 144
VNet92.24 8691.91 8793.24 8196.59 8583.43 12194.84 14196.44 10289.19 6894.08 5295.90 10577.85 15598.17 15188.90 12793.38 17398.13 68
casdiffmvs_mvgpermissive92.96 7592.83 7393.35 7794.59 17983.40 12395.00 13096.34 11090.30 3192.05 10096.05 9883.43 8098.15 15392.07 8095.67 12198.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+91.59 9791.11 9993.01 9494.35 19983.39 12494.60 15595.10 20887.10 13290.57 12893.10 21881.43 11398.07 16789.29 12394.48 15297.59 104
UGNet89.95 13388.95 14592.95 9994.51 18683.31 12595.70 8995.23 20189.37 6187.58 17893.94 18764.00 31598.78 9583.92 19196.31 11296.74 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
balanced_conf0393.98 4594.22 3593.26 8096.13 10183.29 12696.27 4596.52 9889.82 4495.56 3095.51 12284.50 7198.79 9494.83 3098.86 1997.72 96
SPE-MVS-test94.02 4294.29 3193.24 8196.69 8183.24 12797.49 596.92 6092.14 592.90 7595.77 11385.02 6398.33 14193.03 5498.62 4698.13 68
DP-MVS87.25 22285.36 25892.90 10197.65 5883.24 12794.81 14392.00 31274.99 35481.92 31295.00 14372.66 22199.05 5866.92 36792.33 19396.40 157
EI-MVSNet-UG-set92.74 7892.62 7893.12 8794.86 16683.20 12994.40 16995.74 16490.71 2392.05 10096.60 7884.00 7698.99 7391.55 9593.63 16497.17 120
fmvsm_s_conf0.5_n93.76 5094.06 4492.86 10395.62 13083.17 13096.14 5696.12 13288.13 10695.82 2698.04 1983.43 8098.48 12196.97 996.23 11396.92 137
PVSNet_Blended_VisFu91.38 9990.91 10492.80 10696.39 9483.17 13094.87 13896.66 8883.29 22789.27 14994.46 16780.29 12199.17 5087.57 14395.37 13196.05 177
fmvsm_s_conf0.1_n93.46 5793.66 5792.85 10493.75 22783.13 13296.02 6895.74 16487.68 12295.89 2598.17 282.78 9198.46 12596.71 1096.17 11496.98 133
GBi-Net87.26 22085.98 23791.08 18794.01 21383.10 13395.14 12394.94 21583.57 21784.37 26491.64 26766.59 29796.34 29778.23 28085.36 28293.79 274
test187.26 22085.98 23791.08 18794.01 21383.10 13395.14 12394.94 21583.57 21784.37 26491.64 26766.59 29796.34 29778.23 28085.36 28293.79 274
FMVSNet185.85 26684.11 28391.08 18792.81 25983.10 13395.14 12394.94 21581.64 27082.68 30091.64 26759.01 35596.34 29775.37 30883.78 29593.79 274
SDMVSNet90.19 12689.61 12991.93 14896.00 11183.09 13692.89 25295.98 14488.73 8386.85 19495.20 13672.09 22897.08 24788.90 12789.85 22695.63 194
CS-MVS94.12 4094.44 2593.17 8496.55 8883.08 13797.63 396.95 5791.71 1193.50 6596.21 8985.61 5298.24 14693.64 4398.17 6298.19 64
MVSMamba_PlusPlus93.44 5993.54 6093.14 8696.58 8783.05 13896.06 6496.50 10084.42 20194.09 4995.56 12185.01 6698.69 10394.96 2998.66 4197.67 99
AdaColmapbinary89.89 13689.07 14292.37 12997.41 6583.03 13994.42 16895.92 14982.81 23986.34 20794.65 16073.89 20499.02 6480.69 24995.51 12495.05 212
VDD-MVS90.74 11289.92 12493.20 8396.27 9783.02 14095.73 8793.86 26588.42 9592.53 9096.84 6362.09 32698.64 10890.95 10592.62 18897.93 83
CANet_DTU90.26 12589.41 13492.81 10593.46 23883.01 14193.48 22394.47 24089.43 5987.76 17694.23 17770.54 24899.03 6184.97 17596.39 11196.38 158
TranMVSNet+NR-MVSNet88.84 16787.95 17391.49 16992.68 26283.01 14194.92 13596.31 11289.88 4185.53 22693.85 19476.63 16596.96 25781.91 22779.87 35294.50 240
pmmvs485.43 27383.86 28890.16 22490.02 35082.97 14390.27 31692.67 29475.93 34580.73 32491.74 26571.05 23695.73 32678.85 27483.46 30291.78 342
LS3D87.89 19286.32 22292.59 11896.07 10882.92 14495.23 11694.92 22075.66 34682.89 29895.98 10172.48 22499.21 4868.43 35595.23 13695.64 193
VPA-MVSNet89.62 14188.96 14491.60 16593.86 22182.89 14595.46 10297.33 2587.91 11188.43 16293.31 20874.17 19997.40 22287.32 14882.86 31094.52 237
HY-MVS83.01 1289.03 16387.94 17492.29 13494.86 16682.77 14692.08 28094.49 23981.52 27586.93 18892.79 22978.32 14998.23 14779.93 26090.55 21395.88 182
plane_prior694.52 18582.75 14774.23 196
plane_prior382.75 14790.26 3486.91 190
plane_prior794.70 17482.74 149
HQP_MVS90.60 12090.19 11491.82 15794.70 17482.73 15095.85 8196.22 12390.81 1786.91 19094.86 14974.23 19698.12 15488.15 13489.99 22094.63 229
plane_prior82.73 15095.21 11889.66 5589.88 225
PatchMatch-RL86.77 24485.54 25290.47 21495.88 11782.71 15290.54 31392.31 30279.82 29884.32 26991.57 27568.77 27696.39 29373.16 32693.48 17192.32 333
PLCcopyleft84.53 789.06 16288.03 17192.15 13897.27 7182.69 15394.29 17895.44 19079.71 29984.01 27794.18 17876.68 16498.75 9777.28 28993.41 17295.02 213
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
h-mvs3390.80 11090.15 11692.75 10996.01 11082.66 15495.43 10395.53 18289.80 4793.08 7195.64 11875.77 17299.00 7192.07 8078.05 36296.60 150
ab-mvs89.41 15088.35 16292.60 11795.15 15182.65 15592.20 27595.60 17783.97 20888.55 15993.70 20074.16 20098.21 15082.46 21389.37 23496.94 135
TAMVS89.21 15688.29 16691.96 14693.71 22882.62 15693.30 23494.19 25282.22 25087.78 17593.94 18778.83 13996.95 25877.70 28592.98 18196.32 159
PS-MVSNAJ91.18 10490.92 10391.96 14695.26 14482.60 15792.09 27995.70 16886.27 15391.84 10992.46 23679.70 12998.99 7389.08 12595.86 11994.29 249
EC-MVSNet93.44 5993.71 5592.63 11695.21 14682.43 15897.27 996.71 8590.57 2692.88 7695.80 11183.16 8498.16 15293.68 4298.14 6597.31 112
xiu_mvs_v2_base91.13 10590.89 10591.86 15494.97 15782.42 15992.24 27395.64 17586.11 16191.74 11493.14 21679.67 13298.89 8489.06 12695.46 12894.28 250
NP-MVS94.37 19582.42 15993.98 185
test_yl90.69 11490.02 12292.71 11195.72 12382.41 16194.11 18995.12 20685.63 16991.49 11794.70 15574.75 18798.42 13486.13 16392.53 19097.31 112
DCV-MVSNet90.69 11490.02 12292.71 11195.72 12382.41 16194.11 18995.12 20685.63 16991.49 11794.70 15574.75 18798.42 13486.13 16392.53 19097.31 112
LFMVS90.08 12889.13 14192.95 9996.71 8082.32 16396.08 6089.91 36386.79 14092.15 9996.81 6662.60 32498.34 13987.18 14993.90 16098.19 64
MVP-Stereo85.97 26384.86 27089.32 26090.92 32582.19 16492.11 27894.19 25278.76 31478.77 35091.63 27068.38 28196.56 28075.01 31393.95 15989.20 381
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VDDNet89.56 14488.49 16092.76 10895.07 15282.09 16596.30 4193.19 27981.05 28591.88 10796.86 6261.16 34298.33 14188.43 13392.49 19297.84 90
CLD-MVS89.47 14788.90 14891.18 18294.22 20382.07 16692.13 27796.09 13587.90 11285.37 24192.45 23774.38 19497.56 19987.15 15090.43 21593.93 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t89.51 14588.50 15892.54 12198.11 3681.99 16795.16 12296.36 10970.19 39085.81 21795.25 13276.70 16398.63 11082.07 22396.86 10197.00 132
casdiffmvspermissive92.51 8192.43 8192.74 11094.41 19481.98 16894.54 15996.23 12289.57 5691.96 10496.17 9482.58 9398.01 17190.95 10595.45 12998.23 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS91.99 8891.80 8892.55 12098.24 3181.98 16896.76 3096.49 10181.89 26290.24 13296.44 8478.59 14498.61 11389.68 11897.85 7797.06 127
Anonymous2024052988.09 18886.59 21192.58 11996.53 9081.92 17095.99 7095.84 15774.11 36389.06 15395.21 13561.44 33498.81 9283.67 19687.47 26597.01 131
旧先验196.79 7981.81 17195.67 17096.81 6686.69 3997.66 8496.97 134
baseline92.39 8592.29 8392.69 11494.46 19081.77 17294.14 18696.27 11789.22 6691.88 10796.00 9982.35 9697.99 17391.05 10195.27 13598.30 49
test22296.55 8881.70 17392.22 27495.01 21268.36 39390.20 13496.14 9580.26 12297.80 7996.05 177
mvsmamba90.33 12289.69 12792.25 13795.17 14881.64 17495.27 11493.36 27684.88 18889.51 14394.27 17569.29 26897.42 21489.34 12296.12 11697.68 98
HQP5-MVS81.56 175
HQP-MVS89.80 13889.28 13991.34 17694.17 20581.56 17594.39 17196.04 14088.81 7985.43 23593.97 18673.83 20697.96 17587.11 15289.77 22994.50 240
Anonymous2023121186.59 24985.13 26390.98 19696.52 9181.50 17796.14 5696.16 12773.78 36683.65 28592.15 24763.26 32197.37 22682.82 20781.74 32494.06 260
LTVRE_ROB82.13 1386.26 26084.90 26990.34 22094.44 19281.50 17792.31 27294.89 22183.03 23379.63 34292.67 23069.69 25897.79 18271.20 33486.26 27791.72 343
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test89.45 14888.90 14891.12 18394.47 18881.49 17995.30 10996.14 12886.73 14385.45 23295.16 13869.89 25598.10 15687.70 14189.23 23893.77 279
LGP-MVS_train91.12 18394.47 18881.49 17996.14 12886.73 14385.45 23295.16 13869.89 25598.10 15687.70 14189.23 23893.77 279
XVG-OURS89.40 15288.70 15291.52 16794.06 21081.46 18191.27 29996.07 13786.14 15888.89 15595.77 11368.73 27797.26 23487.39 14689.96 22295.83 185
PAPM_NR91.22 10390.78 10792.52 12297.60 5981.46 18194.37 17596.24 12186.39 15187.41 18194.80 15382.06 10798.48 12182.80 20895.37 13197.61 102
CHOSEN 1792x268888.84 16787.69 17892.30 13396.14 10081.42 18390.01 32995.86 15674.52 35987.41 18193.94 18775.46 18098.36 13680.36 25495.53 12397.12 125
IS-MVSNet91.43 9891.09 10192.46 12495.87 11981.38 18496.95 1993.69 27189.72 5389.50 14595.98 10178.57 14597.77 18383.02 20296.50 10998.22 63
ACMP84.23 889.01 16588.35 16290.99 19494.73 17181.27 18595.07 12695.89 15486.48 14783.67 28494.30 17169.33 26497.99 17387.10 15488.55 24593.72 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet_BlendedMVS89.98 13189.70 12690.82 19996.12 10281.25 18693.92 20796.83 6983.49 22189.10 15192.26 24481.04 11698.85 8986.72 15787.86 26092.35 332
PVSNet_Blended90.73 11390.32 11291.98 14496.12 10281.25 18692.55 26296.83 6982.04 25589.10 15192.56 23481.04 11698.85 8986.72 15795.91 11895.84 184
ACMM84.12 989.14 15788.48 16191.12 18394.65 17781.22 18895.31 10796.12 13285.31 17785.92 21594.34 16870.19 25298.06 16885.65 16988.86 24394.08 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR89.95 13389.45 13191.47 17194.00 21681.21 18991.87 28396.06 13985.78 16488.55 15995.73 11574.67 19197.27 23288.71 13089.64 23195.91 180
WTY-MVS89.60 14288.92 14691.67 16395.47 13681.15 19092.38 26694.78 23183.11 23189.06 15394.32 17078.67 14396.61 27581.57 23590.89 21097.24 116
hse-mvs289.88 13789.34 13691.51 16894.83 16881.12 19193.94 20593.91 26489.80 4793.08 7193.60 20175.77 17297.66 19192.07 8077.07 36995.74 189
AUN-MVS87.78 19686.54 21491.48 17094.82 16981.05 19293.91 20993.93 26183.00 23486.93 18893.53 20269.50 26297.67 18986.14 16177.12 36895.73 191
原ACMM192.01 14097.34 6781.05 19296.81 7378.89 31090.45 12995.92 10482.65 9298.84 9180.68 25098.26 5996.14 168
FIs90.51 12190.35 11190.99 19493.99 21780.98 19495.73 8797.54 489.15 6986.72 19794.68 15781.83 11197.24 23685.18 17388.31 25394.76 227
1112_ss88.42 17887.33 18791.72 16194.92 16180.98 19492.97 24994.54 23878.16 32683.82 28093.88 19278.78 14197.91 17979.45 26689.41 23396.26 163
PAPR90.02 13089.27 14092.29 13495.78 12180.95 19692.68 25796.22 12381.91 25986.66 19893.75 19982.23 10198.44 13179.40 27094.79 14297.48 108
cascas86.43 25784.98 26690.80 20092.10 27780.92 19790.24 32095.91 15173.10 37383.57 28888.39 34965.15 30997.46 20884.90 17891.43 20094.03 262
F-COLMAP87.95 19186.80 20191.40 17396.35 9680.88 19894.73 14895.45 18879.65 30082.04 31094.61 16171.13 23598.50 11976.24 30291.05 20894.80 226
PS-MVSNAJss89.97 13289.62 12891.02 19191.90 28480.85 19995.26 11595.98 14486.26 15486.21 21094.29 17279.70 12997.65 19288.87 12988.10 25494.57 234
Fast-Effi-MVS+89.41 15088.64 15391.71 16294.74 17080.81 20093.54 22195.10 20883.11 23186.82 19690.67 30379.74 12897.75 18780.51 25393.55 16696.57 153
sss88.93 16688.26 16890.94 19794.05 21180.78 20191.71 28795.38 19481.55 27488.63 15893.91 19175.04 18495.47 33682.47 21291.61 19896.57 153
Anonymous20240521187.68 19886.13 22992.31 13296.66 8280.74 20294.87 13891.49 32980.47 29089.46 14695.44 12454.72 37598.23 14782.19 21989.89 22497.97 79
TAPA-MVS84.62 688.16 18687.01 19691.62 16496.64 8380.65 20394.39 17196.21 12676.38 33986.19 21195.44 12479.75 12798.08 16662.75 38495.29 13396.13 169
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HyFIR lowres test88.09 18886.81 20091.93 14896.00 11180.63 20490.01 32995.79 16073.42 37087.68 17792.10 25273.86 20597.96 17580.75 24891.70 19797.19 119
ACMH80.38 1785.36 27583.68 29090.39 21694.45 19180.63 20494.73 14894.85 22582.09 25277.24 35892.65 23160.01 34897.58 19772.25 33084.87 28692.96 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS87.65 20086.85 19990.03 23192.14 27480.60 20693.76 21395.23 20182.94 23684.60 25694.02 18274.27 19595.49 33581.04 24183.68 29894.01 263
anonymousdsp87.84 19387.09 19290.12 22789.13 36180.54 20794.67 15295.55 17982.05 25383.82 28092.12 24971.47 23397.15 24187.15 15087.80 26392.67 320
EPP-MVSNet91.70 9591.56 9292.13 13995.88 11780.50 20897.33 795.25 20086.15 15789.76 14195.60 11983.42 8298.32 14387.37 14793.25 17697.56 106
MVSTER88.84 16788.29 16690.51 20992.95 25780.44 20993.73 21495.01 21284.66 19787.15 18593.12 21772.79 22097.21 23987.86 13987.36 26893.87 269
sd_testset88.59 17687.85 17690.83 19896.00 11180.42 21092.35 26894.71 23488.73 8386.85 19495.20 13667.31 28496.43 29179.64 26489.85 22695.63 194
GeoE90.05 12989.43 13391.90 15395.16 14980.37 21195.80 8494.65 23783.90 20987.55 18094.75 15478.18 15097.62 19681.28 23893.63 16497.71 97
FA-MVS(test-final)89.66 14088.91 14791.93 14894.57 18280.27 21291.36 29594.74 23384.87 18989.82 14092.61 23374.72 19098.47 12483.97 19093.53 16797.04 129
diffmvspermissive91.37 10091.23 9791.77 16093.09 24880.27 21292.36 26795.52 18387.03 13491.40 12094.93 14480.08 12397.44 21292.13 7994.56 14997.61 102
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pm-mvs186.61 24785.54 25289.82 24191.44 29980.18 21495.28 11394.85 22583.84 21181.66 31392.62 23272.45 22696.48 28679.67 26378.06 36192.82 318
WR-MVS88.38 17987.67 17990.52 20893.30 24280.18 21493.26 23795.96 14788.57 9185.47 23192.81 22776.12 16796.91 26181.24 23982.29 31594.47 245
jajsoiax88.24 18487.50 18290.48 21190.89 32780.14 21695.31 10795.65 17484.97 18684.24 27294.02 18265.31 30897.42 21488.56 13188.52 24793.89 265
V4287.68 19886.86 19890.15 22590.58 33880.14 21694.24 18295.28 19983.66 21585.67 22191.33 27774.73 18997.41 22084.43 18581.83 32192.89 315
MVS_Test91.31 10191.11 9991.93 14894.37 19580.14 21693.46 22595.80 15986.46 14991.35 12193.77 19782.21 10298.09 16487.57 14394.95 13997.55 107
thisisatest053088.67 17287.61 18091.86 15494.87 16580.07 21994.63 15489.90 36484.00 20788.46 16193.78 19666.88 29298.46 12583.30 19892.65 18797.06 127
baseline188.10 18787.28 18990.57 20494.96 15880.07 21994.27 17991.29 33486.74 14287.41 18194.00 18476.77 16296.20 30280.77 24779.31 35895.44 198
tfpnnormal84.72 29183.23 29789.20 26392.79 26080.05 22194.48 16195.81 15882.38 24681.08 32191.21 28169.01 27396.95 25861.69 38680.59 34290.58 368
MSDG84.86 28883.09 29990.14 22693.80 22480.05 22189.18 34593.09 28178.89 31078.19 35191.91 26065.86 30697.27 23268.47 35488.45 24993.11 307
MG-MVS91.77 9291.70 9192.00 14397.08 7480.03 22393.60 22095.18 20487.85 11690.89 12596.47 8382.06 10798.36 13685.07 17497.04 9497.62 101
EIA-MVS91.95 8991.94 8691.98 14495.16 14980.01 22495.36 10496.73 8288.44 9389.34 14792.16 24683.82 7998.45 12989.35 12197.06 9397.48 108
DeepPCF-MVS89.96 194.20 3694.77 2092.49 12396.52 9180.00 22594.00 20297.08 4790.05 3695.65 2997.29 3989.66 1398.97 7893.95 3998.71 3298.50 27
tt080586.92 23685.74 25090.48 21192.22 27179.98 22695.63 9694.88 22383.83 21284.74 25492.80 22857.61 36197.67 18985.48 17284.42 28993.79 274
pmmvs-eth3d80.97 33378.72 34587.74 30284.99 39379.97 22790.11 32691.65 32375.36 34973.51 38186.03 37659.45 35193.96 35975.17 31072.21 38089.29 380
mvs_tets88.06 19087.28 18990.38 21890.94 32379.88 22895.22 11795.66 17285.10 18284.21 27393.94 18763.53 31897.40 22288.50 13288.40 25193.87 269
IB-MVS80.51 1585.24 28083.26 29691.19 18192.13 27579.86 22991.75 28691.29 33483.28 22880.66 32688.49 34861.28 33698.46 12580.99 24479.46 35695.25 206
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FC-MVSNet-test90.27 12490.18 11590.53 20693.71 22879.85 23095.77 8697.59 389.31 6386.27 20894.67 15881.93 11097.01 25484.26 18688.09 25694.71 228
COLMAP_ROBcopyleft80.39 1683.96 30082.04 30989.74 24595.28 14179.75 23194.25 18092.28 30375.17 35278.02 35493.77 19758.60 35797.84 18165.06 37685.92 27891.63 345
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
131487.51 21086.57 21290.34 22092.42 26879.74 23292.63 25995.35 19878.35 32180.14 33391.62 27174.05 20197.15 24181.05 24093.53 16794.12 255
FE-MVS87.40 21586.02 23591.57 16694.56 18379.69 23390.27 31693.72 27080.57 28888.80 15691.62 27165.32 30798.59 11574.97 31494.33 15696.44 156
thisisatest051587.33 21885.99 23691.37 17593.49 23679.55 23490.63 31289.56 37180.17 29287.56 17990.86 29367.07 28998.28 14581.50 23693.02 18096.29 161
v1087.25 22286.38 21889.85 23991.19 31079.50 23594.48 16195.45 18883.79 21383.62 28691.19 28275.13 18297.42 21481.94 22680.60 34192.63 322
VPNet88.20 18587.47 18490.39 21693.56 23579.46 23694.04 19795.54 18188.67 8686.96 18794.58 16569.33 26497.15 24184.05 18980.53 34494.56 235
BH-RMVSNet88.37 18087.48 18391.02 19195.28 14179.45 23792.89 25293.07 28285.45 17486.91 19094.84 15270.35 24997.76 18473.97 32094.59 14895.85 183
v887.50 21286.71 20489.89 23891.37 30479.40 23894.50 16095.38 19484.81 19283.60 28791.33 27776.05 16897.42 21482.84 20680.51 34692.84 317
ACMH+81.04 1485.05 28383.46 29389.82 24194.66 17679.37 23994.44 16694.12 25782.19 25178.04 35392.82 22658.23 35897.54 20073.77 32382.90 30992.54 323
EG-PatchMatch MVS82.37 31580.34 32188.46 28290.27 34479.35 24092.80 25694.33 24677.14 33473.26 38390.18 31547.47 39496.72 26670.25 34287.32 27089.30 378
v114487.61 20686.79 20290.06 23091.01 31879.34 24193.95 20495.42 19383.36 22685.66 22291.31 28074.98 18597.42 21483.37 19782.06 31793.42 294
CR-MVSNet85.35 27683.76 28990.12 22790.58 33879.34 24185.24 38691.96 31678.27 32385.55 22487.87 35971.03 23795.61 32873.96 32189.36 23595.40 200
RPMNet83.95 30181.53 31291.21 18090.58 33879.34 24185.24 38696.76 7871.44 38485.55 22482.97 39370.87 24098.91 8361.01 38889.36 23595.40 200
PAPM86.68 24685.39 25690.53 20693.05 25179.33 24489.79 33294.77 23278.82 31281.95 31193.24 21276.81 16097.30 22866.94 36593.16 17894.95 220
test_djsdf89.03 16388.64 15390.21 22290.74 33379.28 24595.96 7395.90 15284.66 19785.33 24392.94 22274.02 20297.30 22889.64 11988.53 24694.05 261
Test_1112_low_res87.65 20086.51 21591.08 18794.94 16079.28 24591.77 28594.30 24776.04 34483.51 28992.37 23977.86 15497.73 18878.69 27589.13 24096.22 164
v7n86.81 23985.76 24889.95 23690.72 33479.25 24795.07 12695.92 14984.45 20082.29 30490.86 29372.60 22397.53 20179.42 26980.52 34593.08 309
v2v48287.84 19387.06 19390.17 22390.99 31979.23 24894.00 20295.13 20584.87 18985.53 22692.07 25574.45 19397.45 20984.71 18181.75 32393.85 272
v119287.25 22286.33 22190.00 23590.76 33279.04 24993.80 21195.48 18482.57 24385.48 23091.18 28473.38 21597.42 21482.30 21682.06 31793.53 288
UniMVSNet_ETH3D87.53 20986.37 21991.00 19392.44 26778.96 25094.74 14795.61 17684.07 20685.36 24294.52 16659.78 35097.34 22782.93 20387.88 25996.71 147
thres600view787.65 20086.67 20690.59 20396.08 10778.72 25194.88 13791.58 32587.06 13388.08 16792.30 24268.91 27498.10 15670.05 34891.10 20394.96 217
GA-MVS86.61 24785.27 26190.66 20291.33 30778.71 25290.40 31593.81 26885.34 17685.12 24589.57 33061.25 33797.11 24680.99 24489.59 23296.15 167
tfpn200view987.58 20786.64 20790.41 21595.99 11478.64 25394.58 15691.98 31486.94 13788.09 16591.77 26369.18 27098.10 15670.13 34591.10 20394.48 243
thres40087.62 20586.64 20790.57 20495.99 11478.64 25394.58 15691.98 31486.94 13788.09 16591.77 26369.18 27098.10 15670.13 34591.10 20394.96 217
thres100view90087.63 20386.71 20490.38 21896.12 10278.55 25595.03 12991.58 32587.15 13088.06 16892.29 24368.91 27498.10 15670.13 34591.10 20394.48 243
thres20087.21 22686.24 22690.12 22795.36 13878.53 25693.26 23792.10 30886.42 15088.00 17091.11 28869.24 26998.00 17269.58 34991.04 20993.83 273
MS-PatchMatch85.05 28384.16 28187.73 30391.42 30278.51 25791.25 30093.53 27277.50 32980.15 33291.58 27361.99 32795.51 33275.69 30594.35 15589.16 382
BH-untuned88.60 17588.13 17090.01 23495.24 14578.50 25893.29 23594.15 25484.75 19484.46 26193.40 20475.76 17497.40 22277.59 28694.52 15194.12 255
TransMVSNet (Re)84.43 29483.06 30188.54 28191.72 29178.44 25995.18 12092.82 29082.73 24179.67 34192.12 24973.49 21095.96 31271.10 33868.73 39191.21 355
TR-MVS86.78 24185.76 24889.82 24194.37 19578.41 26092.47 26392.83 28881.11 28486.36 20592.40 23868.73 27797.48 20573.75 32489.85 22693.57 287
CHOSEN 280x42085.15 28183.99 28688.65 27992.47 26578.40 26179.68 40892.76 29174.90 35681.41 31789.59 32969.85 25795.51 33279.92 26195.29 13392.03 338
patch_mono-293.74 5194.32 2892.01 14097.54 6078.37 26293.40 22797.19 3588.02 10894.99 3997.21 4488.35 2198.44 13194.07 3898.09 6899.23 1
MIMVSNet82.59 31380.53 31888.76 27491.51 29778.32 26386.57 37790.13 35779.32 30280.70 32588.69 34752.98 38293.07 37266.03 37188.86 24394.90 221
EI-MVSNet89.10 15888.86 15089.80 24491.84 28678.30 26493.70 21795.01 21285.73 16687.15 18595.28 13079.87 12697.21 23983.81 19387.36 26893.88 268
IterMVS-LS88.36 18187.91 17589.70 24893.80 22478.29 26593.73 21495.08 21085.73 16684.75 25391.90 26179.88 12596.92 26083.83 19282.51 31193.89 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419287.19 22886.35 22089.74 24590.64 33678.24 26693.92 20795.43 19181.93 25885.51 22891.05 29074.21 19897.45 20982.86 20581.56 32593.53 288
test_040281.30 32979.17 33987.67 30593.19 24478.17 26792.98 24891.71 31975.25 35176.02 36890.31 31059.23 35396.37 29450.22 40483.63 29988.47 389
WR-MVS_H87.80 19587.37 18689.10 26693.23 24378.12 26895.61 9797.30 2987.90 11283.72 28292.01 25779.65 13396.01 31076.36 29980.54 34393.16 305
v192192086.97 23586.06 23489.69 24990.53 34178.11 26993.80 21195.43 19181.90 26085.33 24391.05 29072.66 22197.41 22082.05 22481.80 32293.53 288
XVG-ACMP-BASELINE86.00 26284.84 27189.45 25891.20 30978.00 27091.70 28895.55 17985.05 18482.97 29792.25 24554.49 37697.48 20582.93 20387.45 26792.89 315
FMVSNet581.52 32579.60 33287.27 31591.17 31177.95 27191.49 29392.26 30576.87 33576.16 36587.91 35851.67 38492.34 37767.74 36081.16 32991.52 348
GG-mvs-BLEND87.94 29989.73 35677.91 27287.80 36278.23 41180.58 32783.86 38659.88 34995.33 33871.20 33492.22 19490.60 367
BH-w/o87.57 20887.05 19489.12 26594.90 16477.90 27392.41 26493.51 27382.89 23883.70 28391.34 27675.75 17597.07 24975.49 30693.49 16992.39 330
testdata90.49 21096.40 9377.89 27495.37 19672.51 37893.63 6096.69 6982.08 10697.65 19283.08 20097.39 8795.94 179
pmmvs683.42 30781.60 31188.87 27288.01 37577.87 27594.96 13294.24 25174.67 35878.80 34991.09 28960.17 34796.49 28577.06 29475.40 37592.23 335
Baseline_NR-MVSNet87.07 23286.63 20988.40 28391.44 29977.87 27594.23 18392.57 29684.12 20585.74 22092.08 25377.25 15796.04 30782.29 21779.94 35091.30 353
dmvs_re84.20 29783.22 29887.14 32391.83 28877.81 27790.04 32890.19 35584.70 19681.49 31489.17 33564.37 31491.13 38871.58 33285.65 28192.46 327
tttt051788.61 17487.78 17791.11 18694.96 15877.81 27795.35 10589.69 36785.09 18388.05 16994.59 16466.93 29098.48 12183.27 19992.13 19597.03 130
AllTest83.42 30781.39 31389.52 25595.01 15477.79 27993.12 24190.89 34577.41 33076.12 36693.34 20554.08 37897.51 20368.31 35684.27 29193.26 297
TestCases89.52 25595.01 15477.79 27990.89 34577.41 33076.12 36693.34 20554.08 37897.51 20368.31 35684.27 29193.26 297
v124086.78 24185.85 24389.56 25390.45 34277.79 27993.61 21995.37 19681.65 26985.43 23591.15 28671.50 23297.43 21381.47 23782.05 31993.47 292
gg-mvs-nofinetune81.77 31979.37 33488.99 27090.85 32977.73 28286.29 37879.63 40774.88 35783.19 29669.05 40960.34 34596.11 30675.46 30794.64 14793.11 307
Fast-Effi-MVS+-dtu87.44 21386.72 20389.63 25292.04 27877.68 28394.03 19893.94 26085.81 16382.42 30391.32 27970.33 25097.06 25080.33 25690.23 21894.14 254
cl2286.78 24185.98 23789.18 26492.34 26977.62 28490.84 30994.13 25681.33 27883.97 27890.15 31673.96 20396.60 27784.19 18782.94 30693.33 295
miper_enhance_ethall86.90 23786.18 22789.06 26791.66 29577.58 28590.22 32294.82 22879.16 30684.48 26089.10 33679.19 13796.66 27084.06 18882.94 30692.94 313
D2MVS85.90 26485.09 26488.35 28590.79 33077.42 28691.83 28495.70 16880.77 28780.08 33590.02 32066.74 29596.37 29481.88 22887.97 25891.26 354
miper_ehance_all_eth87.22 22586.62 21089.02 26992.13 27577.40 28790.91 30894.81 22981.28 27984.32 26990.08 31979.26 13596.62 27283.81 19382.94 30693.04 310
c3_l87.14 23086.50 21689.04 26892.20 27277.26 28891.22 30294.70 23582.01 25684.34 26890.43 30878.81 14096.61 27583.70 19581.09 33293.25 299
v14887.04 23386.32 22289.21 26290.94 32377.26 28893.71 21694.43 24184.84 19184.36 26790.80 29776.04 16997.05 25282.12 22079.60 35593.31 296
PMMVS85.71 26984.96 26787.95 29888.90 36477.09 29088.68 35290.06 35972.32 38086.47 20090.76 29972.15 22794.40 34981.78 23193.49 16992.36 331
ITE_SJBPF88.24 29191.88 28577.05 29192.92 28585.54 17280.13 33493.30 20957.29 36296.20 30272.46 32984.71 28791.49 349
pmmvs584.21 29682.84 30688.34 28788.95 36376.94 29292.41 26491.91 31875.63 34780.28 33091.18 28464.59 31295.57 32977.09 29383.47 30192.53 324
IterMVS-SCA-FT85.45 27284.53 27888.18 29391.71 29276.87 29390.19 32492.65 29585.40 17581.44 31690.54 30466.79 29395.00 34481.04 24181.05 33392.66 321
RRT-MVS90.85 10990.70 10891.30 17794.25 20176.83 29494.85 14096.13 13189.04 7390.23 13394.88 14770.15 25398.72 10091.86 9194.88 14098.34 42
dcpmvs_293.49 5694.19 3991.38 17497.69 5776.78 29594.25 18096.29 11388.33 9694.46 4296.88 6188.07 2598.64 10893.62 4498.09 6898.73 18
test_cas_vis1_n_192088.83 17088.85 15188.78 27391.15 31476.72 29693.85 21094.93 21983.23 23092.81 8096.00 9961.17 34194.45 34791.67 9494.84 14195.17 208
baseline286.50 25385.39 25689.84 24091.12 31576.70 29791.88 28288.58 37482.35 24879.95 33790.95 29273.42 21397.63 19580.27 25789.95 22395.19 207
SCA86.32 25985.18 26289.73 24792.15 27376.60 29891.12 30391.69 32183.53 22085.50 22988.81 34266.79 29396.48 28676.65 29590.35 21796.12 170
CP-MVSNet87.63 20387.26 19188.74 27793.12 24676.59 29995.29 11196.58 9488.43 9483.49 29092.98 22175.28 18195.83 31978.97 27281.15 33193.79 274
cl____86.52 25285.78 24588.75 27592.03 27976.46 30090.74 31094.30 24781.83 26583.34 29390.78 29875.74 17796.57 27881.74 23281.54 32693.22 301
DIV-MVS_self_test86.53 25185.78 24588.75 27592.02 28076.45 30190.74 31094.30 24781.83 26583.34 29390.82 29675.75 17596.57 27881.73 23381.52 32793.24 300
Effi-MVS+-dtu88.65 17388.35 16289.54 25493.33 24176.39 30294.47 16494.36 24587.70 12185.43 23589.56 33173.45 21197.26 23485.57 17191.28 20294.97 214
Patchmtry82.71 31180.93 31788.06 29590.05 34976.37 30384.74 39191.96 31672.28 38181.32 31987.87 35971.03 23795.50 33468.97 35180.15 34892.32 333
PS-CasMVS87.32 21986.88 19788.63 28092.99 25576.33 30495.33 10696.61 9288.22 10283.30 29593.07 21973.03 21895.79 32378.36 27781.00 33793.75 281
OpenMVS_ROBcopyleft74.94 1979.51 34677.03 35386.93 32687.00 38176.23 30592.33 27090.74 34868.93 39274.52 37788.23 35349.58 38996.62 27257.64 39784.29 29087.94 392
IterMVS84.88 28783.98 28787.60 30691.44 29976.03 30690.18 32592.41 29883.24 22981.06 32290.42 30966.60 29694.28 35379.46 26580.98 33892.48 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing22284.84 28983.32 29489.43 25994.15 20875.94 30791.09 30489.41 37284.90 18785.78 21889.44 33252.70 38396.28 30070.80 34091.57 19996.07 174
ECVR-MVScopyleft89.09 16088.53 15690.77 20195.62 13075.89 30896.16 5284.22 39687.89 11490.20 13496.65 7363.19 32298.10 15685.90 16696.94 9698.33 44
Vis-MVSNet (Re-imp)89.59 14389.44 13290.03 23195.74 12275.85 30995.61 9790.80 34787.66 12487.83 17395.40 12776.79 16196.46 28978.37 27696.73 10397.80 92
eth_miper_zixun_eth86.50 25385.77 24788.68 27891.94 28175.81 31090.47 31494.89 22182.05 25384.05 27590.46 30775.96 17096.77 26582.76 20979.36 35793.46 293
mmtdpeth85.04 28584.15 28287.72 30493.11 24775.74 31194.37 17592.83 28884.98 18589.31 14886.41 37361.61 33297.14 24492.63 6362.11 40190.29 369
PEN-MVS86.80 24086.27 22588.40 28392.32 27075.71 31295.18 12096.38 10887.97 10982.82 29993.15 21573.39 21495.92 31476.15 30379.03 36093.59 286
PatchmatchNetpermissive85.85 26684.70 27389.29 26191.76 29075.54 31388.49 35491.30 33381.63 27185.05 24888.70 34671.71 22996.24 30174.61 31789.05 24196.08 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TDRefinement79.81 34377.34 34887.22 32079.24 40875.48 31493.12 24192.03 31176.45 33875.01 37391.58 27349.19 39096.44 29070.22 34469.18 38889.75 374
mvsany_test185.42 27485.30 26085.77 34487.95 37775.41 31587.61 37080.97 40476.82 33688.68 15795.83 10977.44 15690.82 39085.90 16686.51 27591.08 361
testing1186.44 25685.35 25989.69 24994.29 20075.40 31691.30 29790.53 35084.76 19385.06 24790.13 31758.95 35697.45 20982.08 22291.09 20796.21 166
testing9187.11 23186.18 22789.92 23794.43 19375.38 31791.53 29292.27 30486.48 14786.50 19990.24 31161.19 34097.53 20182.10 22190.88 21196.84 142
test111189.10 15888.64 15390.48 21195.53 13574.97 31896.08 6084.89 39488.13 10690.16 13696.65 7363.29 32098.10 15686.14 16196.90 9898.39 39
DTE-MVSNet86.11 26185.48 25487.98 29791.65 29674.92 31994.93 13495.75 16387.36 12882.26 30593.04 22072.85 21995.82 32074.04 31977.46 36693.20 303
testing9986.72 24585.73 25189.69 24994.23 20274.91 32091.35 29690.97 34286.14 15886.36 20590.22 31259.41 35297.48 20582.24 21890.66 21296.69 148
ETVMVS84.43 29482.92 30388.97 27194.37 19574.67 32191.23 30188.35 37683.37 22586.06 21489.04 33755.38 37095.67 32767.12 36391.34 20196.58 152
miper_lstm_enhance85.27 27984.59 27687.31 31491.28 30874.63 32287.69 36794.09 25881.20 28381.36 31889.85 32574.97 18694.30 35281.03 24379.84 35393.01 311
USDC82.76 31081.26 31587.26 31691.17 31174.55 32389.27 34293.39 27578.26 32475.30 37292.08 25354.43 37796.63 27171.64 33185.79 28090.61 365
KD-MVS_2432*160078.50 35176.02 35885.93 34186.22 38474.47 32484.80 38992.33 30079.29 30376.98 36085.92 37753.81 38093.97 35767.39 36157.42 40689.36 376
miper_refine_blended78.50 35176.02 35885.93 34186.22 38474.47 32484.80 38992.33 30079.29 30376.98 36085.92 37753.81 38093.97 35767.39 36157.42 40689.36 376
ppachtmachnet_test81.84 31880.07 32687.15 32288.46 36974.43 32689.04 34892.16 30775.33 35077.75 35588.99 33966.20 30295.37 33765.12 37577.60 36491.65 344
mvs_anonymous89.37 15489.32 13789.51 25793.47 23774.22 32791.65 29094.83 22782.91 23785.45 23293.79 19581.23 11596.36 29686.47 15994.09 15797.94 81
ADS-MVSNet281.66 32279.71 33187.50 30991.35 30574.19 32883.33 39688.48 37572.90 37582.24 30685.77 37964.98 31093.20 37064.57 37883.74 29695.12 209
Patchmatch-test81.37 32779.30 33587.58 30790.92 32574.16 32980.99 40387.68 38170.52 38876.63 36388.81 34271.21 23492.76 37460.01 39286.93 27495.83 185
MDA-MVSNet-bldmvs78.85 35076.31 35586.46 33489.76 35473.88 33088.79 35090.42 35179.16 30659.18 40588.33 35160.20 34694.04 35562.00 38568.96 38991.48 350
MonoMVSNet86.89 23886.55 21387.92 30089.46 35973.75 33194.12 18793.10 28087.82 11885.10 24690.76 29969.59 26094.94 34586.47 15982.50 31295.07 211
reproduce_monomvs86.37 25885.87 24287.87 30193.66 23273.71 33293.44 22695.02 21188.61 8982.64 30291.94 25957.88 36096.68 26989.96 11679.71 35493.22 301
MIMVSNet179.38 34777.28 34985.69 34586.35 38373.67 33391.61 29192.75 29278.11 32772.64 38588.12 35448.16 39291.97 38260.32 38977.49 36591.43 351
test250687.21 22686.28 22490.02 23395.62 13073.64 33496.25 4771.38 41887.89 11490.45 12996.65 7355.29 37298.09 16486.03 16596.94 9698.33 44
EGC-MVSNET61.97 37556.37 38078.77 37989.63 35773.50 33589.12 34682.79 3990.21 4251.24 42684.80 38339.48 40490.04 39344.13 40875.94 37472.79 407
our_test_381.93 31780.46 32086.33 33888.46 36973.48 33688.46 35591.11 33676.46 33776.69 36288.25 35266.89 29194.36 35068.75 35279.08 35991.14 357
JIA-IIPM81.04 33078.98 34387.25 31788.64 36573.48 33681.75 40289.61 37073.19 37282.05 30973.71 40566.07 30595.87 31771.18 33684.60 28892.41 329
mvs5depth80.98 33279.15 34086.45 33584.57 39473.29 33887.79 36391.67 32280.52 28982.20 30889.72 32755.14 37395.93 31373.93 32266.83 39390.12 371
TinyColmap79.76 34477.69 34785.97 34091.71 29273.12 33989.55 33690.36 35375.03 35372.03 38790.19 31446.22 39896.19 30463.11 38281.03 33488.59 388
MVStest172.91 36469.70 36982.54 36878.14 40973.05 34088.21 35886.21 38560.69 40364.70 39890.53 30546.44 39785.70 40658.78 39553.62 40888.87 385
UnsupCasMVSNet_bld76.23 36073.27 36485.09 35383.79 39672.92 34185.65 38393.47 27471.52 38368.84 39579.08 40049.77 38893.21 36966.81 36960.52 40389.13 384
test0.0.03 182.41 31481.69 31084.59 35588.23 37272.89 34290.24 32087.83 37983.41 22379.86 33989.78 32667.25 28688.99 39965.18 37483.42 30391.90 341
EPNet_dtu86.49 25585.94 24088.14 29490.24 34572.82 34394.11 18992.20 30686.66 14579.42 34492.36 24073.52 20995.81 32171.26 33393.66 16395.80 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet_test_wron79.21 34977.19 35185.29 34988.22 37372.77 34485.87 38090.06 35974.34 36062.62 40287.56 36266.14 30391.99 38166.90 36873.01 37791.10 360
test_vis1_n86.56 25086.49 21786.78 33288.51 36672.69 34594.68 15193.78 26979.55 30190.70 12695.31 12948.75 39193.28 36893.15 5193.99 15894.38 247
EPMVS83.90 30382.70 30787.51 30890.23 34672.67 34688.62 35381.96 40281.37 27785.01 24988.34 35066.31 30094.45 34775.30 30987.12 27195.43 199
YYNet179.22 34877.20 35085.28 35088.20 37472.66 34785.87 38090.05 36174.33 36162.70 40087.61 36166.09 30492.03 37966.94 36572.97 37891.15 356
test_vis1_n_192089.39 15389.84 12588.04 29692.97 25672.64 34894.71 15096.03 14286.18 15691.94 10696.56 8161.63 33095.74 32593.42 4795.11 13795.74 189
UnsupCasMVSNet_eth80.07 34078.27 34685.46 34785.24 39272.63 34988.45 35694.87 22482.99 23571.64 38988.07 35556.34 36591.75 38373.48 32563.36 39992.01 339
OurMVSNet-221017-085.35 27684.64 27587.49 31090.77 33172.59 35094.01 20094.40 24384.72 19579.62 34393.17 21461.91 32896.72 26681.99 22581.16 32993.16 305
CostFormer85.77 26884.94 26888.26 29091.16 31372.58 35189.47 34091.04 34076.26 34286.45 20389.97 32270.74 24296.86 26482.35 21587.07 27395.34 204
CL-MVSNet_self_test81.74 32080.53 31885.36 34885.96 38672.45 35290.25 31893.07 28281.24 28179.85 34087.29 36570.93 23992.52 37566.95 36469.23 38791.11 359
LCM-MVSNet-Re88.30 18388.32 16588.27 28994.71 17372.41 35393.15 24090.98 34187.77 11979.25 34591.96 25878.35 14895.75 32483.04 20195.62 12296.65 149
PVSNet78.82 1885.55 27084.65 27488.23 29294.72 17271.93 35487.12 37392.75 29278.80 31384.95 25090.53 30564.43 31396.71 26874.74 31593.86 16196.06 176
test_fmvs1_n87.03 23487.04 19586.97 32589.74 35571.86 35594.55 15894.43 24178.47 31891.95 10595.50 12351.16 38693.81 36093.02 5594.56 14995.26 205
ADS-MVSNet81.56 32479.78 32886.90 32891.35 30571.82 35683.33 39689.16 37372.90 37582.24 30685.77 37964.98 31093.76 36164.57 37883.74 29695.12 209
test_fmvs187.34 21787.56 18186.68 33390.59 33771.80 35794.01 20094.04 25978.30 32291.97 10395.22 13356.28 36693.71 36292.89 5694.71 14394.52 237
UBG85.51 27184.57 27788.35 28594.21 20471.78 35890.07 32789.66 36982.28 24985.91 21689.01 33861.30 33597.06 25076.58 29892.06 19696.22 164
test_vis1_rt77.96 35476.46 35482.48 36985.89 38771.74 35990.25 31878.89 40871.03 38771.30 39081.35 39742.49 40391.05 38984.55 18382.37 31484.65 395
test-LLR85.87 26585.41 25587.25 31790.95 32171.67 36089.55 33689.88 36583.41 22384.54 25887.95 35667.25 28695.11 34181.82 22993.37 17494.97 214
test-mter84.54 29383.64 29187.25 31790.95 32171.67 36089.55 33689.88 36579.17 30584.54 25887.95 35655.56 36895.11 34181.82 22993.37 17494.97 214
WBMVS84.97 28684.18 28087.34 31394.14 20971.62 36290.20 32392.35 29981.61 27284.06 27490.76 29961.82 32996.52 28378.93 27383.81 29493.89 265
tpm284.08 29882.94 30287.48 31191.39 30371.27 36389.23 34490.37 35271.95 38284.64 25589.33 33367.30 28596.55 28275.17 31087.09 27294.63 229
Patchmatch-RL test81.67 32179.96 32786.81 33185.42 39171.23 36482.17 40187.50 38278.47 31877.19 35982.50 39570.81 24193.48 36582.66 21072.89 37995.71 192
TESTMET0.1,183.74 30582.85 30586.42 33789.96 35171.21 36589.55 33687.88 37877.41 33083.37 29287.31 36456.71 36493.65 36480.62 25192.85 18594.40 246
PVSNet_073.20 2077.22 35674.83 36284.37 35790.70 33571.10 36683.09 39889.67 36872.81 37773.93 38083.13 39060.79 34393.70 36368.54 35350.84 41188.30 390
WB-MVSnew83.77 30483.28 29585.26 35191.48 29871.03 36791.89 28187.98 37778.91 30884.78 25290.22 31269.11 27294.02 35664.70 37790.44 21490.71 363
tpm cat181.96 31680.27 32287.01 32491.09 31671.02 36887.38 37191.53 32866.25 39680.17 33186.35 37568.22 28296.15 30569.16 35082.29 31593.86 271
tpmvs83.35 30982.07 30887.20 32191.07 31771.00 36988.31 35791.70 32078.91 30880.49 32987.18 36869.30 26797.08 24768.12 35983.56 30093.51 291
PatchT82.68 31281.27 31486.89 32990.09 34870.94 37084.06 39390.15 35674.91 35585.63 22383.57 38869.37 26394.87 34665.19 37388.50 24894.84 223
mamv490.92 10791.78 8988.33 28895.67 12770.75 37192.92 25196.02 14381.90 26088.11 16495.34 12885.88 5196.97 25695.22 2795.01 13897.26 115
SixPastTwentyTwo83.91 30282.90 30486.92 32790.99 31970.67 37293.48 22391.99 31385.54 17277.62 35792.11 25160.59 34496.87 26376.05 30477.75 36393.20 303
RPSCF85.07 28284.27 27987.48 31192.91 25870.62 37391.69 28992.46 29776.20 34382.67 30195.22 13363.94 31697.29 23177.51 28885.80 27994.53 236
pmmvs371.81 36768.71 37081.11 37375.86 41170.42 37486.74 37583.66 39758.95 40668.64 39680.89 39836.93 40789.52 39663.10 38363.59 39883.39 396
Anonymous2023120681.03 33179.77 33084.82 35487.85 37870.26 37591.42 29492.08 30973.67 36777.75 35589.25 33462.43 32593.08 37161.50 38782.00 32091.12 358
PM-MVS78.11 35376.12 35784.09 36183.54 39770.08 37688.97 34985.27 39379.93 29574.73 37686.43 37234.70 40993.48 36579.43 26872.06 38188.72 386
MDTV_nov1_ep1383.56 29291.69 29469.93 37787.75 36691.54 32778.60 31784.86 25188.90 34169.54 26196.03 30870.25 34288.93 242
LF4IMVS80.37 33879.07 34284.27 35986.64 38269.87 37889.39 34191.05 33976.38 33974.97 37490.00 32147.85 39394.25 35474.55 31880.82 34088.69 387
K. test v381.59 32380.15 32585.91 34389.89 35369.42 37992.57 26187.71 38085.56 17173.44 38289.71 32855.58 36795.52 33177.17 29169.76 38592.78 319
tpm84.73 29084.02 28586.87 33090.33 34368.90 38089.06 34789.94 36280.85 28685.75 21989.86 32468.54 27995.97 31177.76 28484.05 29395.75 188
lessismore_v086.04 33988.46 36968.78 38180.59 40573.01 38490.11 31855.39 36996.43 29175.06 31265.06 39692.90 314
gm-plane-assit89.60 35868.00 38277.28 33388.99 33997.57 19879.44 267
Anonymous2024052180.44 33779.21 33784.11 36085.75 38967.89 38392.86 25493.23 27875.61 34875.59 37187.47 36350.03 38794.33 35171.14 33781.21 32890.12 371
tpmrst85.35 27684.99 26586.43 33690.88 32867.88 38488.71 35191.43 33180.13 29386.08 21388.80 34473.05 21796.02 30982.48 21183.40 30495.40 200
ttmdpeth76.55 35874.64 36382.29 37282.25 40267.81 38589.76 33385.69 38970.35 38975.76 36991.69 26646.88 39689.77 39466.16 37063.23 40089.30 378
test20.0379.95 34279.08 34182.55 36785.79 38867.74 38691.09 30491.08 33781.23 28274.48 37889.96 32361.63 33090.15 39260.08 39076.38 37189.76 373
CMPMVSbinary59.16 2180.52 33579.20 33884.48 35683.98 39567.63 38789.95 33193.84 26764.79 39966.81 39791.14 28757.93 35995.17 33976.25 30188.10 25490.65 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvs283.98 29984.03 28483.83 36287.16 38067.53 38893.93 20692.89 28677.62 32886.89 19393.53 20247.18 39592.02 38090.54 11086.51 27591.93 340
testgi80.94 33480.20 32483.18 36387.96 37666.29 38991.28 29890.70 34983.70 21478.12 35292.84 22451.37 38590.82 39063.34 38182.46 31392.43 328
new_pmnet72.15 36570.13 36878.20 38082.95 40065.68 39083.91 39482.40 40162.94 40264.47 39979.82 39942.85 40286.26 40557.41 39874.44 37682.65 400
Gipumacopyleft57.99 38154.91 38367.24 39588.51 36665.59 39152.21 41690.33 35443.58 41342.84 41651.18 41720.29 41985.07 40734.77 41470.45 38351.05 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
dp81.47 32680.23 32385.17 35289.92 35265.49 39286.74 37590.10 35876.30 34181.10 32087.12 36962.81 32395.92 31468.13 35879.88 35194.09 258
KD-MVS_self_test80.20 33979.24 33683.07 36485.64 39065.29 39391.01 30693.93 26178.71 31676.32 36486.40 37459.20 35492.93 37372.59 32869.35 38691.00 362
UWE-MVS83.69 30683.09 29985.48 34693.06 25065.27 39490.92 30786.14 38679.90 29686.26 20990.72 30257.17 36395.81 32171.03 33992.62 18895.35 203
CVMVSNet84.69 29284.79 27284.37 35791.84 28664.92 39593.70 21791.47 33066.19 39786.16 21295.28 13067.18 28893.33 36780.89 24690.42 21694.88 222
testing380.46 33679.59 33383.06 36593.44 23964.64 39693.33 22985.47 39184.34 20279.93 33890.84 29544.35 40192.39 37657.06 39987.56 26492.16 337
WAC-MVS64.08 39759.14 393
myMVS_eth3d79.67 34578.79 34482.32 37191.92 28264.08 39789.75 33487.40 38381.72 26778.82 34787.20 36645.33 39991.29 38659.09 39487.84 26191.60 346
EU-MVSNet81.32 32880.95 31682.42 37088.50 36863.67 39993.32 23091.33 33264.02 40080.57 32892.83 22561.21 33992.27 37876.34 30080.38 34791.32 352
ambc83.06 36579.99 40663.51 40077.47 40992.86 28774.34 37984.45 38528.74 41095.06 34373.06 32768.89 39090.61 365
mvsany_test374.95 36173.26 36580.02 37674.61 41263.16 40185.53 38478.42 40974.16 36274.89 37586.46 37136.02 40889.09 39882.39 21466.91 39287.82 393
APD_test169.04 36866.26 37477.36 38380.51 40562.79 40285.46 38583.51 39854.11 40959.14 40684.79 38423.40 41689.61 39555.22 40070.24 38479.68 404
test_fmvs377.67 35577.16 35279.22 37779.52 40761.14 40392.34 26991.64 32473.98 36478.86 34686.59 37027.38 41387.03 40188.12 13775.97 37389.50 375
test_vis3_rt65.12 37362.60 37572.69 38671.44 41560.71 40487.17 37265.55 41963.80 40153.22 40965.65 41214.54 42389.44 39776.65 29565.38 39567.91 410
Syy-MVS80.07 34079.78 32880.94 37491.92 28259.93 40589.75 33487.40 38381.72 26778.82 34787.20 36666.29 30191.29 38647.06 40687.84 26191.60 346
new-patchmatchnet76.41 35975.17 36180.13 37582.65 40159.61 40687.66 36891.08 33778.23 32569.85 39383.22 38954.76 37491.63 38564.14 38064.89 39789.16 382
test_f71.95 36670.87 36775.21 38474.21 41459.37 40785.07 38885.82 38865.25 39870.42 39283.13 39023.62 41482.93 41278.32 27871.94 38283.33 397
LCM-MVSNet66.00 37262.16 37777.51 38264.51 42258.29 40883.87 39590.90 34448.17 41154.69 40873.31 40616.83 42286.75 40265.47 37261.67 40287.48 394
FPMVS64.63 37462.55 37670.88 38770.80 41656.71 40984.42 39284.42 39551.78 41049.57 41081.61 39623.49 41581.48 41340.61 41376.25 37274.46 406
ANet_high58.88 37954.22 38472.86 38556.50 42556.67 41080.75 40486.00 38773.09 37437.39 41764.63 41322.17 41779.49 41543.51 40923.96 41982.43 401
testf159.54 37756.11 38169.85 39069.28 41756.61 41180.37 40576.55 41642.58 41445.68 41375.61 40111.26 42484.18 40843.20 41060.44 40468.75 408
APD_test259.54 37756.11 38169.85 39069.28 41756.61 41180.37 40576.55 41642.58 41445.68 41375.61 40111.26 42484.18 40843.20 41060.44 40468.75 408
MVS-HIRNet73.70 36372.20 36678.18 38191.81 28956.42 41382.94 39982.58 40055.24 40768.88 39466.48 41055.32 37195.13 34058.12 39688.42 25083.01 398
DSMNet-mixed76.94 35776.29 35678.89 37883.10 39956.11 41487.78 36479.77 40660.65 40475.64 37088.71 34561.56 33388.34 40060.07 39189.29 23792.21 336
MDTV_nov1_ep13_2view55.91 41587.62 36973.32 37184.59 25770.33 25074.65 31695.50 197
DeepMVS_CXcopyleft56.31 40074.23 41351.81 41656.67 42444.85 41248.54 41275.16 40327.87 41258.74 42240.92 41252.22 40958.39 414
MVEpermissive39.65 2343.39 38538.59 39157.77 39856.52 42448.77 41755.38 41558.64 42329.33 41928.96 42052.65 4164.68 42764.62 42028.11 41733.07 41759.93 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS259.60 37656.40 37969.21 39268.83 41946.58 41873.02 41377.48 41455.07 40849.21 41172.95 40717.43 42180.04 41449.32 40544.33 41480.99 402
PMVScopyleft47.18 2252.22 38348.46 38763.48 39645.72 42746.20 41973.41 41278.31 41041.03 41630.06 41965.68 4116.05 42683.43 41130.04 41665.86 39460.80 411
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
kuosan53.51 38253.30 38554.13 40176.06 41045.36 42080.11 40748.36 42659.63 40554.84 40763.43 41437.41 40662.07 42120.73 42139.10 41654.96 415
dongtai58.82 38058.24 37860.56 39783.13 39845.09 42182.32 40048.22 42767.61 39461.70 40469.15 40838.75 40576.05 41632.01 41541.31 41560.55 412
WB-MVS67.92 37067.49 37269.21 39281.09 40341.17 42288.03 36078.00 41273.50 36962.63 40183.11 39263.94 31686.52 40325.66 41851.45 41079.94 403
dmvs_testset74.57 36275.81 36070.86 38887.72 37940.47 42387.05 37477.90 41382.75 24071.15 39185.47 38167.98 28384.12 41045.26 40776.98 37088.00 391
SSC-MVS67.06 37166.56 37368.56 39480.54 40440.06 42487.77 36577.37 41572.38 37961.75 40382.66 39463.37 31986.45 40424.48 41948.69 41379.16 405
E-PMN43.23 38642.29 38846.03 40265.58 42137.41 42573.51 41164.62 42033.99 41728.47 42147.87 41819.90 42067.91 41822.23 42024.45 41832.77 417
wuyk23d21.27 39020.48 39323.63 40568.59 42036.41 42649.57 4176.85 4299.37 4217.89 4234.46 4254.03 42831.37 42317.47 42316.07 4223.12 420
EMVS42.07 38741.12 38944.92 40363.45 42335.56 42773.65 41063.48 42133.05 41826.88 42245.45 41921.27 41867.14 41919.80 42223.02 42032.06 418
N_pmnet68.89 36968.44 37170.23 38989.07 36228.79 42888.06 35919.50 42869.47 39171.86 38884.93 38261.24 33891.75 38354.70 40177.15 36790.15 370
tmp_tt35.64 38839.24 39024.84 40414.87 42823.90 42962.71 41451.51 4256.58 42236.66 41862.08 41544.37 40030.34 42452.40 40322.00 42120.27 419
test_method50.52 38448.47 38656.66 39952.26 42618.98 43041.51 41881.40 40310.10 42044.59 41575.01 40428.51 41168.16 41753.54 40249.31 41282.83 399
test1238.76 39211.22 3951.39 4060.85 4300.97 43185.76 3820.35 4310.54 4242.45 4258.14 4240.60 4290.48 4252.16 4250.17 4242.71 421
testmvs8.92 39111.52 3941.12 4071.06 4290.46 43286.02 3790.65 4300.62 4232.74 4249.52 4230.31 4300.45 4262.38 4240.39 4232.46 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k22.14 38929.52 3920.00 4080.00 4310.00 4330.00 41995.76 1620.00 4260.00 42794.29 17275.66 1780.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.64 3948.86 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42679.70 1290.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.82 39310.43 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42793.88 1920.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
PC_three_145282.47 24497.09 1097.07 5492.72 198.04 16992.70 6299.02 1298.86 11
eth-test20.00 431
eth-test0.00 431
test_241102_TWO97.44 1590.31 2997.62 598.07 1291.46 1099.58 1095.66 1799.12 698.98 10
9.1494.47 2397.79 5296.08 6097.44 1586.13 16095.10 3797.40 3588.34 2299.22 4793.25 5098.70 34
test_0728_THIRD90.75 1997.04 1198.05 1692.09 699.55 1695.64 1999.13 399.13 2
GSMVS96.12 170
sam_mvs171.70 23096.12 170
sam_mvs70.60 243
MTGPAbinary96.97 53
test_post188.00 3619.81 42269.31 26695.53 33076.65 295
test_post10.29 42170.57 24795.91 316
patchmatchnet-post83.76 38771.53 23196.48 286
MTMP96.16 5260.64 422
test9_res91.91 8898.71 3298.07 73
agg_prior290.54 11098.68 3798.27 56
test_prior294.12 18787.67 12392.63 8896.39 8586.62 4091.50 9698.67 40
旧先验293.36 22871.25 38594.37 4397.13 24586.74 155
新几何293.11 243
无先验93.28 23696.26 11873.95 36599.05 5880.56 25296.59 151
原ACMM292.94 250
testdata298.75 9778.30 279
segment_acmp87.16 36
testdata192.15 27687.94 110
plane_prior596.22 12398.12 15488.15 13489.99 22094.63 229
plane_prior494.86 149
plane_prior295.85 8190.81 17
plane_prior194.59 179
n20.00 432
nn0.00 432
door-mid85.49 390
test1196.57 95
door85.33 392
HQP-NCC94.17 20594.39 17188.81 7985.43 235
ACMP_Plane94.17 20594.39 17188.81 7985.43 235
BP-MVS87.11 152
HQP4-MVS85.43 23597.96 17594.51 239
HQP3-MVS96.04 14089.77 229
HQP2-MVS73.83 206
ACMMP++_ref87.47 265
ACMMP++88.01 257
Test By Simon80.02 124