This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6598.99 1498.84 14
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4796.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
DPM-MVS92.58 7591.74 8395.08 1596.19 9589.31 592.66 25096.56 9383.44 21591.68 10995.04 13486.60 4098.99 7085.60 16297.92 7196.93 128
3Dnovator+87.14 492.42 7891.37 8695.55 795.63 12388.73 697.07 1896.77 7490.84 1684.02 26796.62 7475.95 16599.34 3487.77 13397.68 7998.59 24
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10796.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4897.28 3185.90 15797.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23695.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11395.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
sasdasda93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15582.33 9298.62 10392.40 5992.86 17498.27 52
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15582.33 9298.62 10392.40 5992.86 17498.27 52
alignmvs93.08 6792.50 7594.81 3295.62 12487.61 1495.99 7196.07 13089.77 4794.12 4394.87 13980.56 11398.66 9892.42 5893.10 17098.15 63
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12697.12 4187.13 12492.51 8596.30 8389.24 1799.34 3493.46 3998.62 4598.73 17
MVS_030494.60 1894.38 2595.23 1195.41 13287.49 1696.53 3892.75 27993.82 293.07 6797.84 2283.66 7499.59 897.61 298.76 2898.61 22
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4896.58 7687.74 2799.44 2992.83 5098.40 5398.62 21
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.55 1287.22 1996.40 17
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6397.04 5286.17 4499.62 292.40 5998.81 2298.52 26
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17196.97 5091.07 1393.14 6497.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
nrg03091.08 9990.39 10193.17 7893.07 23886.91 2296.41 3996.26 11288.30 9288.37 15594.85 14282.19 9897.64 18991.09 9182.95 29894.96 207
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16395.05 3497.18 4587.31 3599.07 5391.90 8298.61 4798.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6096.83 6185.48 5199.59 891.43 8998.40 5398.30 47
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5397.21 4286.10 4599.49 2692.35 6298.77 2798.30 47
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16493.93 25289.77 4794.21 4195.59 11587.35 3498.61 10592.72 5396.15 11097.83 85
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7496.97 5485.37 5399.24 4390.87 9998.69 3698.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5197.11 4390.42 2796.95 1397.27 3889.53 1496.91 25494.38 2998.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5897.26 4085.04 5899.54 2092.35 6298.78 2598.50 27
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5597.27 3885.22 5499.54 2092.21 6698.74 3198.56 25
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13797.17 3986.26 14792.83 7397.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 7997.23 4185.20 5599.32 3892.15 6998.83 2198.25 57
ZD-MVS98.15 3486.62 3397.07 4583.63 20994.19 4296.91 5787.57 3199.26 4291.99 7698.44 52
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7197.16 4785.02 5999.49 2691.99 7698.56 4998.47 33
X-MVStestdata88.31 17786.13 22394.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7123.41 40585.02 5999.49 2691.99 7698.56 4998.47 33
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6799.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TEST997.53 5886.49 3794.07 18796.78 7281.61 26392.77 7696.20 8787.71 2899.12 51
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18796.78 7281.86 25492.77 7696.20 8787.63 2999.12 5192.14 7098.69 3697.94 76
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17793.56 5796.28 8485.60 4999.31 3992.45 5698.79 2398.12 66
3Dnovator86.66 591.73 8790.82 9894.44 4594.59 17486.37 4197.18 1297.02 4789.20 6284.31 26396.66 6973.74 20199.17 4786.74 14897.96 6997.79 87
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6196.62 8888.14 10096.10 2096.96 5589.09 1898.94 7894.48 2898.68 3898.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9697.19 4485.43 5299.56 1292.06 7598.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_897.49 6086.30 4594.02 19296.76 7581.86 25492.70 8096.20 8787.63 2999.02 61
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10597.78 187.45 12093.26 6097.33 3684.62 6599.51 2490.75 10198.57 4898.32 46
test1294.34 5097.13 7086.15 4896.29 10791.04 11885.08 5799.01 6398.13 6297.86 82
CDPH-MVS92.83 7192.30 7794.44 4597.79 4986.11 4994.06 18996.66 8580.09 28392.77 7696.63 7386.62 3899.04 5787.40 13898.66 4198.17 62
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
IU-MVS98.77 586.00 5096.84 6581.26 27097.26 795.50 2399.13 399.03 8
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
test_prior485.96 5494.11 182
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
MGCFI-Net93.03 6892.63 7294.23 5395.62 12485.92 5796.08 6296.33 10589.86 4193.89 5094.66 15282.11 9998.50 11292.33 6492.82 17798.27 52
agg_prior97.38 6385.92 5796.72 8192.16 9298.97 75
DP-MVS Recon91.95 8291.28 8893.96 5798.33 2785.92 5794.66 14896.66 8582.69 23590.03 13295.82 10582.30 9499.03 5884.57 17496.48 10596.91 130
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10597.17 4683.96 7199.55 1691.44 8898.64 4498.43 38
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10385.83 6194.89 13296.99 4889.02 7189.56 13597.37 3582.51 8999.38 3192.20 6798.30 5697.57 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4196.90 5988.20 9894.33 4097.40 3384.75 6499.03 5893.35 4397.99 6898.48 30
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8296.80 6584.85 6399.17 4792.43 5798.65 4398.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CANet93.54 5193.20 6194.55 4395.65 12285.73 6594.94 12996.69 8491.89 890.69 12195.88 10281.99 10499.54 2093.14 4697.95 7098.39 39
save fliter97.85 4685.63 6695.21 11396.82 6889.44 53
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 13685.43 6895.68 8696.43 9786.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 9797.16 114
OpenMVScopyleft83.78 1188.74 16687.29 18393.08 8392.70 25285.39 6996.57 3696.43 9778.74 30480.85 31296.07 9469.64 25199.01 6378.01 27496.65 10194.83 214
ACMMPcopyleft93.24 6392.88 6794.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13097.03 5381.44 10799.51 2490.85 10095.74 11398.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPNet91.79 8491.02 9494.10 5490.10 33885.25 7196.03 6892.05 30092.83 387.39 17595.78 10779.39 12899.01 6388.13 12997.48 8198.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS93.43 5893.25 5993.97 5695.42 13185.04 7293.06 23897.13 4090.74 2191.84 10395.09 13386.32 4299.21 4591.22 9098.45 5197.65 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13584.98 7395.61 9396.28 11086.31 14596.75 1697.86 2187.40 3398.74 9597.07 897.02 9097.07 116
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17384.96 7496.15 5697.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7497.96 75
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23197.24 3288.76 7791.60 11095.85 10386.07 4698.66 9891.91 8098.16 6098.03 72
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 16092.47 8797.13 4882.38 9099.07 5390.51 10598.40 5397.92 79
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25784.80 7796.18 5396.82 6889.29 5995.68 2898.11 585.10 5698.99 7097.38 497.75 7897.86 82
CNLPA89.07 15487.98 16692.34 12496.87 7484.78 7894.08 18693.24 26781.41 26684.46 25395.13 13275.57 17396.62 26477.21 28193.84 15395.61 187
UA-Net92.83 7192.54 7493.68 6896.10 10084.71 7995.66 8996.39 10191.92 793.22 6296.49 7983.16 7998.87 8284.47 17695.47 12097.45 101
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11584.62 8096.15 5697.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6697.17 110
QAPM89.51 13788.15 16293.59 7094.92 15784.58 8196.82 2996.70 8378.43 30983.41 28296.19 9073.18 20899.30 4077.11 28396.54 10296.89 131
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4696.76 7587.46 11893.75 5197.43 3184.24 6899.01 6392.73 5197.80 7597.88 80
RE-MVS-def93.68 5297.92 4384.57 8296.28 4696.76 7587.46 11893.75 5197.43 3182.94 8392.73 5197.80 7597.88 80
API-MVS90.66 10790.07 10992.45 11896.36 9184.57 8296.06 6695.22 19582.39 23889.13 14194.27 16980.32 11498.46 11880.16 25096.71 9994.33 240
UniMVSNet (Re)89.80 13089.07 13392.01 13493.60 22484.52 8594.78 14097.47 1189.26 6086.44 19792.32 23682.10 10097.39 22084.81 17180.84 33194.12 248
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
MAR-MVS90.30 11389.37 12693.07 8596.61 8184.48 8795.68 8695.67 16282.36 24087.85 16392.85 21876.63 15998.80 9080.01 25196.68 10095.91 171
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v1_base_debu90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
xiu_mvs_v1_base90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
xiu_mvs_v1_base_debi90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
MVS_111021_LR92.47 7792.29 7892.98 8995.99 10984.43 9193.08 23696.09 12888.20 9891.12 11795.72 11181.33 10997.76 17891.74 8397.37 8496.75 137
PCF-MVS84.11 1087.74 19286.08 22792.70 10694.02 20384.43 9189.27 33195.87 14773.62 35784.43 25594.33 16378.48 14198.86 8470.27 33094.45 14494.81 215
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35084.42 9396.06 6696.29 10789.06 6694.68 3698.13 379.22 13098.98 7497.22 597.24 8597.74 89
新几何193.10 8197.30 6684.35 9495.56 17071.09 37591.26 11696.24 8582.87 8598.86 8479.19 26398.10 6396.07 165
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22284.26 9595.83 7996.14 12289.00 7292.43 8897.50 2883.37 7898.72 9696.61 1297.44 8296.32 151
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4496.87 6286.96 12893.92 4997.47 2983.88 7298.96 7792.71 5497.87 7298.26 56
NR-MVSNet88.58 17287.47 17991.93 14293.04 24184.16 9794.77 14196.25 11489.05 6780.04 32593.29 20579.02 13297.05 24681.71 22680.05 34194.59 222
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 5097.37 2184.15 19790.05 13195.66 11287.77 2699.15 5089.91 11098.27 5798.07 68
OMC-MVS91.23 9590.62 10093.08 8396.27 9384.07 9893.52 21595.93 14086.95 12989.51 13696.13 9378.50 14098.35 13285.84 16092.90 17396.83 135
ETV-MVS92.74 7392.66 7192.97 9095.20 14284.04 10095.07 12296.51 9490.73 2292.96 6891.19 27584.06 6998.34 13391.72 8496.54 10296.54 147
ET-MVSNet_ETH3D87.51 20585.91 23592.32 12593.70 22183.93 10192.33 26290.94 33384.16 19672.09 37492.52 23069.90 24695.85 30889.20 11788.36 24597.17 110
OPM-MVS90.12 11789.56 12091.82 15193.14 23583.90 10294.16 17995.74 15688.96 7387.86 16295.43 11972.48 21797.91 17388.10 13190.18 20993.65 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVSFormer91.68 8991.30 8792.80 9993.86 21283.88 10395.96 7395.90 14484.66 19191.76 10694.91 13777.92 14697.30 22489.64 11297.11 8697.24 106
lupinMVS90.92 10090.21 10493.03 8693.86 21283.88 10392.81 24793.86 25679.84 28691.76 10694.29 16677.92 14698.04 16390.48 10897.11 8697.17 110
Vis-MVSNetpermissive91.75 8691.23 8993.29 7395.32 13483.78 10596.14 5895.98 13689.89 3990.45 12396.58 7675.09 17798.31 13884.75 17296.90 9397.78 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet89.92 12689.29 12991.81 15393.39 23083.72 10694.43 16297.12 4189.80 4386.46 19493.32 20283.16 7997.23 23384.92 16881.02 32794.49 234
DU-MVS89.34 14788.50 15191.85 15093.04 24183.72 10694.47 15996.59 9089.50 5286.46 19493.29 20577.25 15197.23 23384.92 16881.02 32794.59 222
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8895.02 14983.67 10896.19 5196.10 12787.27 12295.98 2498.05 1383.07 8298.45 12296.68 1195.51 11796.88 132
FMVSNet287.19 22385.82 23791.30 17294.01 20483.67 10894.79 13994.94 20683.57 21083.88 27092.05 25166.59 28896.51 27577.56 27885.01 27993.73 274
FMVSNet387.40 21086.11 22591.30 17293.79 21783.64 11094.20 17894.81 22083.89 20384.37 25691.87 25668.45 27196.56 27278.23 27185.36 27693.70 276
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9092.49 25583.62 11196.02 6995.72 15986.78 13496.04 2298.19 182.30 9498.43 12796.38 1395.42 12396.86 133
MVS87.44 20886.10 22691.44 16692.61 25483.62 11192.63 25195.66 16467.26 38281.47 30492.15 24277.95 14598.22 14379.71 25495.48 11992.47 317
CDS-MVSNet89.45 14088.51 15092.29 12893.62 22383.61 11393.01 23994.68 22781.95 24987.82 16593.24 20778.69 13696.99 24980.34 24793.23 16896.28 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
jason90.80 10190.10 10892.90 9493.04 24183.53 11493.08 23694.15 24580.22 28091.41 11394.91 13776.87 15397.93 17290.28 10996.90 9397.24 106
jason: jason.
EI-MVSNet-Vis-set93.01 6992.92 6693.29 7395.01 15083.51 11594.48 15695.77 15390.87 1592.52 8496.67 6884.50 6699.00 6891.99 7694.44 14597.36 102
MSLP-MVS++93.72 4894.08 3892.65 10897.31 6583.43 11695.79 8197.33 2590.03 3693.58 5596.96 5584.87 6297.76 17892.19 6898.66 4196.76 136
VNet92.24 8091.91 8193.24 7596.59 8283.43 11694.84 13696.44 9689.19 6394.08 4695.90 10177.85 14998.17 14588.90 12093.38 16498.13 64
casdiffmvs_mvgpermissive92.96 7092.83 6893.35 7294.59 17483.40 11895.00 12696.34 10490.30 3092.05 9496.05 9583.43 7598.15 14792.07 7295.67 11498.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+91.59 9091.11 9193.01 8794.35 19283.39 11994.60 15095.10 20087.10 12590.57 12293.10 21381.43 10898.07 16189.29 11694.48 14397.59 95
UGNet89.95 12488.95 13792.95 9294.51 18083.31 12095.70 8595.23 19389.37 5687.58 16993.94 18264.00 30698.78 9183.92 18396.31 10796.74 138
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 6995.77 10885.02 5998.33 13593.03 4798.62 4598.13 64
DP-MVS87.25 21785.36 25192.90 9497.65 5583.24 12194.81 13892.00 30274.99 34381.92 30195.00 13572.66 21499.05 5566.92 35692.33 18496.40 149
EI-MVSNet-UG-set92.74 7392.62 7393.12 8094.86 16183.20 12394.40 16495.74 15690.71 2392.05 9496.60 7584.00 7098.99 7091.55 8693.63 15597.17 110
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9695.62 12483.17 12496.14 5896.12 12588.13 10195.82 2698.04 1683.43 7598.48 11496.97 996.23 10896.92 129
PVSNet_Blended_VisFu91.38 9290.91 9692.80 9996.39 9083.17 12494.87 13496.66 8583.29 22089.27 14094.46 16080.29 11599.17 4787.57 13695.37 12496.05 168
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9793.75 21883.13 12696.02 6995.74 15687.68 11595.89 2598.17 282.78 8698.46 11896.71 1096.17 10996.98 125
GBi-Net87.26 21585.98 23191.08 18294.01 20483.10 12795.14 11994.94 20683.57 21084.37 25691.64 26066.59 28896.34 28878.23 27185.36 27693.79 266
test187.26 21585.98 23191.08 18294.01 20483.10 12795.14 11994.94 20683.57 21084.37 25691.64 26066.59 28896.34 28878.23 27185.36 27693.79 266
FMVSNet185.85 25984.11 27391.08 18292.81 25083.10 12795.14 11994.94 20681.64 26182.68 29191.64 26059.01 34696.34 28875.37 29883.78 28893.79 266
SDMVSNet90.19 11689.61 11991.93 14296.00 10683.09 13092.89 24395.98 13688.73 7886.85 18795.20 12872.09 22197.08 24288.90 12089.85 21695.63 185
CS-MVS94.12 3794.44 2293.17 7896.55 8483.08 13197.63 396.95 5491.71 1193.50 5996.21 8685.61 4898.24 14093.64 3798.17 5998.19 60
AdaColmapbinary89.89 12789.07 13392.37 12397.41 6283.03 13294.42 16395.92 14182.81 23286.34 20094.65 15373.89 19799.02 6180.69 24195.51 11795.05 202
VDD-MVS90.74 10389.92 11593.20 7796.27 9383.02 13395.73 8393.86 25688.42 8992.53 8396.84 6062.09 31898.64 10090.95 9792.62 17997.93 78
CANet_DTU90.26 11589.41 12592.81 9893.46 22883.01 13493.48 21694.47 23189.43 5487.76 16794.23 17070.54 24199.03 5884.97 16796.39 10696.38 150
TranMVSNet+NR-MVSNet88.84 16287.95 16791.49 16392.68 25383.01 13494.92 13196.31 10689.88 4085.53 21893.85 18976.63 15996.96 25081.91 21979.87 34494.50 232
pmmvs485.43 26583.86 27890.16 22090.02 34182.97 13690.27 30892.67 28275.93 33480.73 31391.74 25971.05 22995.73 31678.85 26583.46 29591.78 333
LS3D87.89 18786.32 21692.59 11196.07 10382.92 13795.23 11194.92 21175.66 33582.89 28995.98 9872.48 21799.21 4568.43 34495.23 12995.64 184
VPA-MVSNet89.62 13388.96 13691.60 15993.86 21282.89 13895.46 9897.33 2587.91 10688.43 15493.31 20374.17 19297.40 21787.32 14182.86 30394.52 227
HY-MVS83.01 1289.03 15687.94 16892.29 12894.86 16182.77 13992.08 27294.49 23081.52 26586.93 18192.79 22478.32 14398.23 14179.93 25290.55 20395.88 173
plane_prior694.52 17982.75 14074.23 189
plane_prior382.75 14090.26 3386.91 183
plane_prior794.70 16982.74 142
HQP_MVS90.60 11190.19 10591.82 15194.70 16982.73 14395.85 7796.22 11790.81 1786.91 18394.86 14074.23 18998.12 14888.15 12789.99 21094.63 219
plane_prior82.73 14395.21 11389.66 5089.88 215
PatchMatch-RL86.77 23885.54 24590.47 21095.88 11282.71 14590.54 30592.31 29179.82 28784.32 26191.57 26868.77 26796.39 28473.16 31593.48 16292.32 324
PLCcopyleft84.53 789.06 15588.03 16592.15 13297.27 6882.69 14694.29 17295.44 18279.71 28884.01 26894.18 17176.68 15898.75 9377.28 28093.41 16395.02 203
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
h-mvs3390.80 10190.15 10792.75 10296.01 10582.66 14795.43 9995.53 17489.80 4393.08 6595.64 11375.77 16699.00 6892.07 7278.05 35396.60 142
ab-mvs89.41 14288.35 15592.60 11095.15 14582.65 14892.20 26795.60 16983.97 20188.55 15193.70 19574.16 19398.21 14482.46 20589.37 22596.94 127
TAMVS89.21 14888.29 15991.96 14093.71 21982.62 14993.30 22694.19 24382.22 24287.78 16693.94 18278.83 13396.95 25177.70 27692.98 17296.32 151
PS-MVSNAJ91.18 9790.92 9591.96 14095.26 13982.60 15092.09 27195.70 16086.27 14691.84 10392.46 23179.70 12398.99 7089.08 11895.86 11294.29 242
EC-MVSNet93.44 5593.71 5192.63 10995.21 14182.43 15197.27 996.71 8290.57 2692.88 7095.80 10683.16 7998.16 14693.68 3698.14 6197.31 103
xiu_mvs_v2_base91.13 9890.89 9791.86 14894.97 15382.42 15292.24 26595.64 16786.11 15691.74 10893.14 21179.67 12698.89 8189.06 11995.46 12194.28 243
NP-MVS94.37 18882.42 15293.98 179
test_yl90.69 10590.02 11392.71 10495.72 11882.41 15494.11 18295.12 19885.63 16491.49 11194.70 14874.75 18198.42 12886.13 15592.53 18197.31 103
DCV-MVSNet90.69 10590.02 11392.71 10495.72 11882.41 15494.11 18295.12 19885.63 16491.49 11194.70 14874.75 18198.42 12886.13 15592.53 18197.31 103
LFMVS90.08 11889.13 13292.95 9296.71 7782.32 15696.08 6289.91 35386.79 13392.15 9396.81 6362.60 31698.34 13387.18 14293.90 15198.19 60
MVP-Stereo85.97 25684.86 26389.32 25690.92 31682.19 15792.11 27094.19 24378.76 30378.77 33991.63 26368.38 27296.56 27275.01 30393.95 15089.20 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VDDNet89.56 13688.49 15392.76 10195.07 14882.09 15896.30 4493.19 26981.05 27591.88 10196.86 5961.16 33198.33 13588.43 12692.49 18397.84 84
CLD-MVS89.47 13988.90 14091.18 17694.22 19682.07 15992.13 26996.09 12887.90 10785.37 23492.45 23274.38 18797.56 19487.15 14390.43 20593.93 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t89.51 13788.50 15192.54 11498.11 3681.99 16095.16 11896.36 10370.19 37885.81 20995.25 12476.70 15798.63 10282.07 21596.86 9697.00 122
casdiffmvspermissive92.51 7692.43 7692.74 10394.41 18781.98 16194.54 15496.23 11689.57 5191.96 9896.17 9182.58 8898.01 16590.95 9795.45 12298.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS91.99 8191.80 8292.55 11398.24 3181.98 16196.76 3096.49 9581.89 25390.24 12696.44 8178.59 13898.61 10589.68 11197.85 7397.06 117
Anonymous2024052988.09 18386.59 20692.58 11296.53 8681.92 16395.99 7195.84 14974.11 35289.06 14595.21 12761.44 32498.81 8983.67 18887.47 25897.01 121
mvsmamba89.96 12389.50 12191.33 17192.90 24881.82 16496.68 3392.37 28889.03 6987.00 17994.85 14273.05 20997.65 18691.03 9388.63 23794.51 229
旧先验196.79 7681.81 16595.67 16296.81 6386.69 3797.66 8096.97 126
baseline92.39 7992.29 7892.69 10794.46 18381.77 16694.14 18096.27 11189.22 6191.88 10196.00 9682.35 9197.99 16791.05 9295.27 12898.30 47
test22296.55 8481.70 16792.22 26695.01 20368.36 38190.20 12796.14 9280.26 11697.80 7596.05 168
iter_conf0588.85 16188.08 16491.17 17794.27 19481.64 16895.18 11592.15 29786.23 14987.28 17694.07 17263.89 30997.55 19590.63 10289.00 23394.32 241
iter_conf05_1189.88 12889.04 13592.41 11995.12 14681.63 16992.87 24592.45 28686.21 15092.48 8693.95 18159.05 34498.60 10790.50 10698.72 3296.99 123
HQP5-MVS81.56 170
HQP-MVS89.80 13089.28 13091.34 17094.17 19781.56 17094.39 16696.04 13388.81 7485.43 22893.97 18073.83 19997.96 16987.11 14589.77 21994.50 232
Anonymous2023121186.59 24385.13 25690.98 19196.52 8781.50 17296.14 5896.16 12173.78 35583.65 27692.15 24263.26 31397.37 22182.82 19981.74 31694.06 253
LTVRE_ROB82.13 1386.26 25384.90 26290.34 21694.44 18581.50 17292.31 26494.89 21283.03 22679.63 33192.67 22569.69 25097.79 17671.20 32386.26 27191.72 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test89.45 14088.90 14091.12 17894.47 18181.49 17495.30 10596.14 12286.73 13685.45 22595.16 13069.89 24798.10 15087.70 13489.23 22993.77 271
LGP-MVS_train91.12 17894.47 18181.49 17496.14 12286.73 13685.45 22595.16 13069.89 24798.10 15087.70 13489.23 22993.77 271
XVG-OURS89.40 14488.70 14491.52 16194.06 20181.46 17691.27 29196.07 13086.14 15388.89 14795.77 10868.73 26897.26 23087.39 13989.96 21295.83 176
PAPM_NR91.22 9690.78 9992.52 11597.60 5681.46 17694.37 17096.24 11586.39 14487.41 17294.80 14582.06 10298.48 11482.80 20095.37 12497.61 93
CHOSEN 1792x268888.84 16287.69 17392.30 12796.14 9681.42 17890.01 31995.86 14874.52 34887.41 17293.94 18275.46 17498.36 13080.36 24695.53 11697.12 115
IS-MVSNet91.43 9191.09 9392.46 11795.87 11481.38 17996.95 1993.69 26289.72 4989.50 13795.98 9878.57 13997.77 17783.02 19496.50 10498.22 59
ACMP84.23 889.01 15888.35 15590.99 18994.73 16681.27 18095.07 12295.89 14686.48 14083.67 27594.30 16569.33 25697.99 16787.10 14788.55 23893.72 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet_BlendedMVS89.98 12189.70 11790.82 19496.12 9781.25 18193.92 20096.83 6683.49 21489.10 14292.26 23981.04 11198.85 8686.72 15087.86 25392.35 323
PVSNet_Blended90.73 10490.32 10391.98 13896.12 9781.25 18192.55 25496.83 6682.04 24789.10 14292.56 22981.04 11198.85 8686.72 15095.91 11195.84 175
ACMM84.12 989.14 14988.48 15491.12 17894.65 17281.22 18395.31 10396.12 12585.31 17285.92 20894.34 16270.19 24598.06 16285.65 16188.86 23594.08 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR89.95 12489.45 12291.47 16594.00 20781.21 18491.87 27596.06 13285.78 15988.55 15195.73 11074.67 18597.27 22888.71 12389.64 22195.91 171
bld_raw_dy_0_6488.86 16087.75 17292.21 13195.12 14681.19 18595.56 9691.29 32385.30 17389.10 14294.38 16159.04 34598.44 12490.50 10689.43 22396.99 123
WTY-MVS89.60 13488.92 13891.67 15795.47 13081.15 18692.38 25894.78 22283.11 22489.06 14594.32 16478.67 13796.61 26781.57 22790.89 20097.24 106
hse-mvs289.88 12889.34 12791.51 16294.83 16381.12 18793.94 19893.91 25589.80 4393.08 6593.60 19675.77 16697.66 18592.07 7277.07 36095.74 180
AUN-MVS87.78 19186.54 20891.48 16494.82 16481.05 18893.91 20293.93 25283.00 22786.93 18193.53 19769.50 25397.67 18386.14 15377.12 35995.73 182
原ACMM192.01 13497.34 6481.05 18896.81 7078.89 29990.45 12395.92 10082.65 8798.84 8880.68 24298.26 5896.14 159
FIs90.51 11290.35 10290.99 18993.99 20880.98 19095.73 8397.54 489.15 6486.72 19094.68 15081.83 10697.24 23285.18 16588.31 24694.76 217
1112_ss88.42 17387.33 18291.72 15594.92 15780.98 19092.97 24194.54 22978.16 31583.82 27193.88 18778.78 13597.91 17379.45 25889.41 22496.26 155
PAPR90.02 12089.27 13192.29 12895.78 11680.95 19292.68 24996.22 11781.91 25186.66 19193.75 19482.23 9698.44 12479.40 26294.79 13397.48 99
cascas86.43 25184.98 25990.80 19592.10 26880.92 19390.24 31295.91 14373.10 36283.57 27988.39 33765.15 30097.46 20484.90 17091.43 19094.03 255
F-COLMAP87.95 18686.80 19691.40 16796.35 9280.88 19494.73 14395.45 18079.65 28982.04 29994.61 15471.13 22898.50 11276.24 29291.05 19894.80 216
PS-MVSNAJss89.97 12289.62 11891.02 18691.90 27580.85 19595.26 11095.98 13686.26 14786.21 20394.29 16679.70 12397.65 18688.87 12288.10 24794.57 224
Fast-Effi-MVS+89.41 14288.64 14591.71 15694.74 16580.81 19693.54 21495.10 20083.11 22486.82 18990.67 29479.74 12297.75 18180.51 24593.55 15796.57 145
sss88.93 15988.26 16190.94 19294.05 20280.78 19791.71 27995.38 18681.55 26488.63 15093.91 18675.04 17895.47 32682.47 20491.61 18896.57 145
Anonymous20240521187.68 19386.13 22392.31 12696.66 7980.74 19894.87 13491.49 31880.47 27989.46 13895.44 11754.72 36498.23 14182.19 21189.89 21497.97 74
TAPA-MVS84.62 688.16 18187.01 19191.62 15896.64 8080.65 19994.39 16696.21 12076.38 32886.19 20495.44 11779.75 12198.08 16062.75 37295.29 12696.13 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HyFIR lowres test88.09 18386.81 19591.93 14296.00 10680.63 20090.01 31995.79 15273.42 35987.68 16892.10 24773.86 19897.96 16980.75 24091.70 18797.19 109
ACMH80.38 1785.36 26783.68 28090.39 21294.45 18480.63 20094.73 14394.85 21682.09 24477.24 34792.65 22660.01 33797.58 19272.25 31984.87 28092.96 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS87.65 19586.85 19490.03 22792.14 26580.60 20293.76 20695.23 19382.94 22984.60 24894.02 17674.27 18895.49 32581.04 23383.68 29194.01 256
anonymousdsp87.84 18887.09 18790.12 22389.13 35180.54 20394.67 14795.55 17182.05 24583.82 27192.12 24471.47 22697.15 23787.15 14387.80 25692.67 311
EPP-MVSNet91.70 8891.56 8592.13 13395.88 11280.50 20497.33 795.25 19286.15 15289.76 13495.60 11483.42 7798.32 13787.37 14093.25 16797.56 97
MVSTER88.84 16288.29 15990.51 20492.95 24680.44 20593.73 20795.01 20384.66 19187.15 17793.12 21272.79 21397.21 23587.86 13287.36 26193.87 261
sd_testset88.59 17187.85 17090.83 19396.00 10680.42 20692.35 26094.71 22588.73 7886.85 18795.20 12867.31 27596.43 28279.64 25689.85 21695.63 185
GeoE90.05 11989.43 12491.90 14795.16 14380.37 20795.80 8094.65 22883.90 20287.55 17194.75 14778.18 14497.62 19181.28 23093.63 15597.71 90
FA-MVS(test-final)89.66 13288.91 13991.93 14294.57 17780.27 20891.36 28794.74 22484.87 18389.82 13392.61 22874.72 18498.47 11783.97 18293.53 15897.04 119
diffmvspermissive91.37 9391.23 8991.77 15493.09 23780.27 20892.36 25995.52 17587.03 12791.40 11494.93 13680.08 11797.44 20892.13 7194.56 14097.61 93
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pm-mvs186.61 24185.54 24589.82 23791.44 29080.18 21095.28 10994.85 21683.84 20481.66 30292.62 22772.45 21996.48 27779.67 25578.06 35292.82 309
WR-MVS88.38 17487.67 17490.52 20393.30 23280.18 21093.26 22995.96 13988.57 8585.47 22492.81 22276.12 16196.91 25481.24 23182.29 30794.47 237
jajsoiax88.24 17987.50 17790.48 20790.89 31880.14 21295.31 10395.65 16684.97 18184.24 26494.02 17665.31 29997.42 21088.56 12488.52 24093.89 258
V4287.68 19386.86 19390.15 22190.58 32980.14 21294.24 17695.28 19183.66 20885.67 21391.33 27074.73 18397.41 21584.43 17781.83 31392.89 306
MVS_Test91.31 9491.11 9191.93 14294.37 18880.14 21293.46 21895.80 15186.46 14291.35 11593.77 19282.21 9798.09 15887.57 13694.95 13197.55 98
thisisatest053088.67 16787.61 17591.86 14894.87 16080.07 21594.63 14989.90 35484.00 20088.46 15393.78 19166.88 28398.46 11883.30 19092.65 17897.06 117
baseline188.10 18287.28 18490.57 19994.96 15480.07 21594.27 17391.29 32386.74 13587.41 17294.00 17876.77 15696.20 29380.77 23979.31 34995.44 189
tfpnnormal84.72 28183.23 28789.20 25992.79 25180.05 21794.48 15695.81 15082.38 23981.08 31091.21 27469.01 26496.95 25161.69 37480.59 33490.58 359
MSDG84.86 27883.09 28990.14 22293.80 21580.05 21789.18 33493.09 27078.89 29978.19 34091.91 25465.86 29797.27 22868.47 34388.45 24293.11 298
MG-MVS91.77 8591.70 8492.00 13797.08 7180.03 21993.60 21395.18 19687.85 11190.89 11996.47 8082.06 10298.36 13085.07 16697.04 8997.62 92
EIA-MVS91.95 8291.94 8091.98 13895.16 14380.01 22095.36 10096.73 7988.44 8789.34 13992.16 24183.82 7398.45 12289.35 11497.06 8897.48 99
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11696.52 8780.00 22194.00 19597.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3398.50 27
tt080586.92 23185.74 24390.48 20792.22 26279.98 22295.63 9294.88 21483.83 20584.74 24692.80 22357.61 35197.67 18385.48 16484.42 28393.79 266
pmmvs-eth3d80.97 32278.72 33487.74 29484.99 38379.97 22390.11 31791.65 31275.36 33873.51 36986.03 36359.45 34093.96 34875.17 30072.21 37189.29 368
mvs_tets88.06 18587.28 18490.38 21490.94 31479.88 22495.22 11295.66 16485.10 17884.21 26593.94 18263.53 31097.40 21788.50 12588.40 24493.87 261
IB-MVS80.51 1585.24 27283.26 28691.19 17592.13 26679.86 22591.75 27891.29 32383.28 22180.66 31588.49 33661.28 32598.46 11880.99 23679.46 34795.25 197
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FC-MVSNet-test90.27 11490.18 10690.53 20193.71 21979.85 22695.77 8297.59 389.31 5886.27 20194.67 15181.93 10597.01 24884.26 17888.09 24994.71 218
COLMAP_ROBcopyleft80.39 1683.96 29082.04 29989.74 24195.28 13679.75 22794.25 17492.28 29275.17 34178.02 34393.77 19258.60 34897.84 17565.06 36485.92 27291.63 336
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
131487.51 20586.57 20790.34 21692.42 25979.74 22892.63 25195.35 19078.35 31080.14 32291.62 26474.05 19497.15 23781.05 23293.53 15894.12 248
FE-MVS87.40 21086.02 22991.57 16094.56 17879.69 22990.27 30893.72 26180.57 27888.80 14891.62 26465.32 29898.59 10874.97 30494.33 14796.44 148
RRT_MVS89.09 15288.62 14890.49 20592.85 24979.65 23096.41 3994.41 23488.22 9685.50 22194.77 14669.36 25597.31 22389.33 11586.73 26894.51 229
thisisatest051587.33 21385.99 23091.37 16993.49 22679.55 23190.63 30489.56 36080.17 28187.56 17090.86 28667.07 28098.28 13981.50 22893.02 17196.29 153
v1087.25 21786.38 21289.85 23591.19 30179.50 23294.48 15695.45 18083.79 20683.62 27791.19 27575.13 17697.42 21081.94 21880.60 33392.63 313
VPNet88.20 18087.47 17990.39 21293.56 22579.46 23394.04 19095.54 17388.67 8186.96 18094.58 15869.33 25697.15 23784.05 18180.53 33694.56 225
BH-RMVSNet88.37 17587.48 17891.02 18695.28 13679.45 23492.89 24393.07 27185.45 16986.91 18394.84 14470.35 24297.76 17873.97 31094.59 13995.85 174
v887.50 20786.71 19989.89 23491.37 29579.40 23594.50 15595.38 18684.81 18683.60 27891.33 27076.05 16297.42 21082.84 19880.51 33892.84 308
ACMH+81.04 1485.05 27583.46 28389.82 23794.66 17179.37 23694.44 16194.12 24882.19 24378.04 34292.82 22158.23 34997.54 19673.77 31282.90 30292.54 314
EG-PatchMatch MVS82.37 30580.34 31188.46 27890.27 33579.35 23792.80 24894.33 23877.14 32373.26 37190.18 30547.47 38396.72 25970.25 33187.32 26389.30 367
v114487.61 20186.79 19790.06 22691.01 30979.34 23893.95 19795.42 18583.36 21985.66 21491.31 27374.98 17997.42 21083.37 18982.06 30993.42 286
CR-MVSNet85.35 26883.76 27990.12 22390.58 32979.34 23885.24 37391.96 30678.27 31285.55 21687.87 34771.03 23095.61 31873.96 31189.36 22695.40 191
RPMNet83.95 29181.53 30291.21 17490.58 32979.34 23885.24 37396.76 7571.44 37385.55 21682.97 38070.87 23398.91 8061.01 37689.36 22695.40 191
PAPM86.68 24085.39 24990.53 20193.05 24079.33 24189.79 32294.77 22378.82 30181.95 30093.24 20776.81 15497.30 22466.94 35493.16 16994.95 210
test_djsdf89.03 15688.64 14590.21 21890.74 32479.28 24295.96 7395.90 14484.66 19185.33 23692.94 21774.02 19597.30 22489.64 11288.53 23994.05 254
Test_1112_low_res87.65 19586.51 20991.08 18294.94 15679.28 24291.77 27794.30 23976.04 33383.51 28092.37 23477.86 14897.73 18278.69 26689.13 23196.22 156
v7n86.81 23385.76 24189.95 23290.72 32579.25 24495.07 12295.92 14184.45 19482.29 29490.86 28672.60 21697.53 19779.42 26180.52 33793.08 300
v2v48287.84 18887.06 18890.17 21990.99 31079.23 24594.00 19595.13 19784.87 18385.53 21892.07 25074.45 18697.45 20584.71 17381.75 31593.85 264
v119287.25 21786.33 21590.00 23190.76 32379.04 24693.80 20495.48 17682.57 23685.48 22391.18 27773.38 20797.42 21082.30 20882.06 30993.53 280
UniMVSNet_ETH3D87.53 20486.37 21391.00 18892.44 25878.96 24794.74 14295.61 16884.07 19985.36 23594.52 15959.78 33997.34 22282.93 19587.88 25296.71 139
thres600view787.65 19586.67 20190.59 19896.08 10278.72 24894.88 13391.58 31487.06 12688.08 15892.30 23768.91 26598.10 15070.05 33791.10 19394.96 207
GA-MVS86.61 24185.27 25490.66 19791.33 29878.71 24990.40 30793.81 25985.34 17185.12 23889.57 31961.25 32697.11 24180.99 23689.59 22296.15 158
tfpn200view987.58 20286.64 20290.41 21195.99 10978.64 25094.58 15191.98 30486.94 13088.09 15691.77 25769.18 26198.10 15070.13 33491.10 19394.48 235
thres40087.62 20086.64 20290.57 19995.99 10978.64 25094.58 15191.98 30486.94 13088.09 15691.77 25769.18 26198.10 15070.13 33491.10 19394.96 207
thres100view90087.63 19886.71 19990.38 21496.12 9778.55 25295.03 12591.58 31487.15 12388.06 15992.29 23868.91 26598.10 15070.13 33491.10 19394.48 235
thres20087.21 22186.24 22090.12 22395.36 13378.53 25393.26 22992.10 29886.42 14388.00 16191.11 28169.24 26098.00 16669.58 33891.04 19993.83 265
MS-PatchMatch85.05 27584.16 27287.73 29591.42 29378.51 25491.25 29293.53 26377.50 31880.15 32191.58 26661.99 31995.51 32275.69 29594.35 14689.16 370
BH-untuned88.60 17088.13 16390.01 23095.24 14078.50 25593.29 22794.15 24584.75 18884.46 25393.40 19975.76 16897.40 21777.59 27794.52 14294.12 248
TransMVSNet (Re)84.43 28483.06 29188.54 27791.72 28278.44 25695.18 11592.82 27782.73 23479.67 33092.12 24473.49 20395.96 30371.10 32768.73 38291.21 346
TR-MVS86.78 23585.76 24189.82 23794.37 18878.41 25792.47 25592.83 27681.11 27486.36 19892.40 23368.73 26897.48 20173.75 31389.85 21693.57 279
CHOSEN 280x42085.15 27383.99 27688.65 27592.47 25678.40 25879.68 39392.76 27874.90 34581.41 30689.59 31869.85 24995.51 32279.92 25395.29 12692.03 329
patch_mono-293.74 4794.32 2692.01 13497.54 5778.37 25993.40 21997.19 3588.02 10394.99 3597.21 4288.35 2198.44 12494.07 3298.09 6499.23 1
MIMVSNet82.59 30380.53 30888.76 27091.51 28878.32 26086.57 36490.13 34779.32 29180.70 31488.69 33552.98 37193.07 36166.03 35988.86 23594.90 211
EI-MVSNet89.10 15088.86 14289.80 24091.84 27778.30 26193.70 21095.01 20385.73 16187.15 17795.28 12279.87 12097.21 23583.81 18587.36 26193.88 260
IterMVS-LS88.36 17687.91 16989.70 24493.80 21578.29 26293.73 20795.08 20285.73 16184.75 24591.90 25579.88 11996.92 25383.83 18482.51 30493.89 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419287.19 22386.35 21489.74 24190.64 32778.24 26393.92 20095.43 18381.93 25085.51 22091.05 28374.21 19197.45 20582.86 19781.56 31793.53 280
test_040281.30 31979.17 32987.67 29693.19 23478.17 26492.98 24091.71 30975.25 34076.02 35790.31 30059.23 34296.37 28550.22 39183.63 29288.47 376
WR-MVS_H87.80 19087.37 18189.10 26293.23 23378.12 26595.61 9397.30 2987.90 10783.72 27392.01 25279.65 12796.01 30176.36 28980.54 33593.16 296
v192192086.97 23086.06 22889.69 24590.53 33278.11 26693.80 20495.43 18381.90 25285.33 23691.05 28372.66 21497.41 21582.05 21681.80 31493.53 280
XVG-ACMP-BASELINE86.00 25584.84 26489.45 25491.20 30078.00 26791.70 28095.55 17185.05 18082.97 28892.25 24054.49 36597.48 20182.93 19587.45 26092.89 306
FMVSNet581.52 31579.60 32287.27 30591.17 30277.95 26891.49 28592.26 29476.87 32476.16 35487.91 34651.67 37392.34 36667.74 34981.16 32191.52 339
GG-mvs-BLEND87.94 29389.73 34777.91 26987.80 35078.23 39880.58 31683.86 37359.88 33895.33 32871.20 32392.22 18590.60 358
BH-w/o87.57 20387.05 18989.12 26194.90 15977.90 27092.41 25693.51 26482.89 23183.70 27491.34 26975.75 16997.07 24475.49 29693.49 16092.39 321
testdata90.49 20596.40 8977.89 27195.37 18872.51 36793.63 5496.69 6682.08 10197.65 18683.08 19297.39 8395.94 170
pmmvs683.42 29781.60 30188.87 26888.01 36577.87 27294.96 12894.24 24274.67 34778.80 33891.09 28260.17 33696.49 27677.06 28575.40 36692.23 326
Baseline_NR-MVSNet87.07 22786.63 20488.40 27991.44 29077.87 27294.23 17792.57 28484.12 19885.74 21292.08 24877.25 15196.04 29882.29 20979.94 34291.30 344
dmvs_re84.20 28783.22 28887.14 31391.83 27977.81 27490.04 31890.19 34584.70 19081.49 30389.17 32464.37 30591.13 37771.58 32185.65 27592.46 318
tttt051788.61 16987.78 17191.11 18194.96 15477.81 27495.35 10189.69 35785.09 17988.05 16094.59 15766.93 28198.48 11483.27 19192.13 18697.03 120
AllTest83.42 29781.39 30389.52 25195.01 15077.79 27693.12 23390.89 33577.41 31976.12 35593.34 20054.08 36797.51 19968.31 34584.27 28593.26 289
TestCases89.52 25195.01 15077.79 27690.89 33577.41 31976.12 35593.34 20054.08 36797.51 19968.31 34584.27 28593.26 289
v124086.78 23585.85 23689.56 24990.45 33377.79 27693.61 21295.37 18881.65 26085.43 22891.15 27971.50 22597.43 20981.47 22982.05 31193.47 284
gg-mvs-nofinetune81.77 30979.37 32488.99 26690.85 32077.73 27986.29 36579.63 39474.88 34683.19 28769.05 39560.34 33496.11 29775.46 29794.64 13893.11 298
Fast-Effi-MVS+-dtu87.44 20886.72 19889.63 24892.04 26977.68 28094.03 19193.94 25185.81 15882.42 29391.32 27270.33 24397.06 24580.33 24890.23 20894.14 247
cl2286.78 23585.98 23189.18 26092.34 26077.62 28190.84 30194.13 24781.33 26883.97 26990.15 30673.96 19696.60 26984.19 17982.94 29993.33 287
miper_enhance_ethall86.90 23286.18 22189.06 26391.66 28677.58 28290.22 31494.82 21979.16 29584.48 25289.10 32579.19 13196.66 26284.06 18082.94 29992.94 304
D2MVS85.90 25785.09 25788.35 28190.79 32177.42 28391.83 27695.70 16080.77 27780.08 32490.02 31066.74 28696.37 28581.88 22087.97 25191.26 345
miper_ehance_all_eth87.22 22086.62 20589.02 26592.13 26677.40 28490.91 30094.81 22081.28 26984.32 26190.08 30979.26 12996.62 26483.81 18582.94 29993.04 301
c3_l87.14 22586.50 21089.04 26492.20 26377.26 28591.22 29494.70 22682.01 24884.34 26090.43 29878.81 13496.61 26783.70 18781.09 32493.25 291
v14887.04 22886.32 21689.21 25890.94 31477.26 28593.71 20994.43 23284.84 18584.36 25990.80 29076.04 16397.05 24682.12 21279.60 34693.31 288
PMMVS85.71 26284.96 26087.95 29288.90 35477.09 28788.68 34190.06 34972.32 36986.47 19390.76 29272.15 22094.40 33881.78 22393.49 16092.36 322
ITE_SJBPF88.24 28591.88 27677.05 28892.92 27385.54 16780.13 32393.30 20457.29 35296.20 29372.46 31884.71 28191.49 340
pmmvs584.21 28682.84 29688.34 28288.95 35376.94 28992.41 25691.91 30875.63 33680.28 31991.18 27764.59 30395.57 31977.09 28483.47 29492.53 315
IterMVS-SCA-FT85.45 26484.53 27088.18 28791.71 28376.87 29090.19 31592.65 28385.40 17081.44 30590.54 29566.79 28495.00 33481.04 23381.05 32592.66 312
dcpmvs_293.49 5294.19 3691.38 16897.69 5476.78 29194.25 17496.29 10788.33 9094.46 3896.88 5888.07 2598.64 10093.62 3898.09 6498.73 17
test_cas_vis1_n_192088.83 16588.85 14388.78 26991.15 30576.72 29293.85 20394.93 21083.23 22392.81 7496.00 9661.17 33094.45 33691.67 8594.84 13295.17 199
baseline286.50 24785.39 24989.84 23691.12 30676.70 29391.88 27488.58 36382.35 24179.95 32690.95 28573.42 20597.63 19080.27 24989.95 21395.19 198
SCA86.32 25285.18 25589.73 24392.15 26476.60 29491.12 29591.69 31183.53 21385.50 22188.81 33066.79 28496.48 27776.65 28690.35 20796.12 161
CP-MVSNet87.63 19887.26 18688.74 27393.12 23676.59 29595.29 10796.58 9188.43 8883.49 28192.98 21675.28 17595.83 30978.97 26481.15 32393.79 266
cl____86.52 24685.78 23888.75 27192.03 27076.46 29690.74 30294.30 23981.83 25683.34 28490.78 29175.74 17196.57 27081.74 22481.54 31893.22 293
DIV-MVS_self_test86.53 24585.78 23888.75 27192.02 27176.45 29790.74 30294.30 23981.83 25683.34 28490.82 28975.75 16996.57 27081.73 22581.52 31993.24 292
Effi-MVS+-dtu88.65 16888.35 15589.54 25093.33 23176.39 29894.47 15994.36 23787.70 11485.43 22889.56 32073.45 20497.26 23085.57 16391.28 19294.97 204
Patchmtry82.71 30180.93 30788.06 28990.05 34076.37 29984.74 37891.96 30672.28 37081.32 30887.87 34771.03 23095.50 32468.97 34080.15 34092.32 324
PS-CasMVS87.32 21486.88 19288.63 27692.99 24476.33 30095.33 10296.61 8988.22 9683.30 28693.07 21473.03 21195.79 31378.36 26881.00 32993.75 273
OpenMVS_ROBcopyleft74.94 1979.51 33577.03 34286.93 31687.00 37176.23 30192.33 26290.74 33868.93 38074.52 36588.23 34149.58 37896.62 26457.64 38484.29 28487.94 379
IterMVS84.88 27783.98 27787.60 29791.44 29076.03 30290.18 31692.41 28783.24 22281.06 31190.42 29966.60 28794.28 34279.46 25780.98 33092.48 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing22284.84 27983.32 28489.43 25594.15 20075.94 30391.09 29689.41 36184.90 18285.78 21089.44 32152.70 37296.28 29170.80 32991.57 18996.07 165
ECVR-MVScopyleft89.09 15288.53 14990.77 19695.62 12475.89 30496.16 5484.22 38387.89 10990.20 12796.65 7063.19 31498.10 15085.90 15896.94 9198.33 43
Vis-MVSNet (Re-imp)89.59 13589.44 12390.03 22795.74 11775.85 30595.61 9390.80 33787.66 11787.83 16495.40 12076.79 15596.46 28078.37 26796.73 9897.80 86
eth_miper_zixun_eth86.50 24785.77 24088.68 27491.94 27275.81 30690.47 30694.89 21282.05 24584.05 26690.46 29775.96 16496.77 25882.76 20179.36 34893.46 285
PEN-MVS86.80 23486.27 21988.40 27992.32 26175.71 30795.18 11596.38 10287.97 10482.82 29093.15 21073.39 20695.92 30476.15 29379.03 35193.59 278
PatchmatchNetpermissive85.85 25984.70 26689.29 25791.76 28175.54 30888.49 34391.30 32281.63 26285.05 24088.70 33471.71 22296.24 29274.61 30789.05 23296.08 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TDRefinement79.81 33277.34 33787.22 31079.24 39575.48 30993.12 23392.03 30176.45 32775.01 36191.58 26649.19 37996.44 28170.22 33369.18 37989.75 363
mvsany_test185.42 26685.30 25385.77 33387.95 36775.41 31087.61 35780.97 39176.82 32588.68 14995.83 10477.44 15090.82 37985.90 15886.51 26991.08 352
testing1186.44 25085.35 25289.69 24594.29 19375.40 31191.30 28990.53 34084.76 18785.06 23990.13 30758.95 34797.45 20582.08 21491.09 19796.21 157
testing9187.11 22686.18 22189.92 23394.43 18675.38 31291.53 28492.27 29386.48 14086.50 19290.24 30161.19 32997.53 19782.10 21390.88 20196.84 134
test111189.10 15088.64 14590.48 20795.53 12974.97 31396.08 6284.89 38188.13 10190.16 12996.65 7063.29 31298.10 15086.14 15396.90 9398.39 39
DTE-MVSNet86.11 25485.48 24787.98 29191.65 28774.92 31494.93 13095.75 15587.36 12182.26 29593.04 21572.85 21295.82 31074.04 30977.46 35793.20 294
testing9986.72 23985.73 24489.69 24594.23 19574.91 31591.35 28890.97 33286.14 15386.36 19890.22 30259.41 34197.48 20182.24 21090.66 20296.69 140
ETVMVS84.43 28482.92 29388.97 26794.37 18874.67 31691.23 29388.35 36583.37 21886.06 20789.04 32655.38 36095.67 31767.12 35291.34 19196.58 144
miper_lstm_enhance85.27 27184.59 26987.31 30491.28 29974.63 31787.69 35494.09 24981.20 27381.36 30789.85 31574.97 18094.30 34181.03 23579.84 34593.01 302
USDC82.76 30081.26 30587.26 30691.17 30274.55 31889.27 33193.39 26678.26 31375.30 36092.08 24854.43 36696.63 26371.64 32085.79 27490.61 356
KD-MVS_2432*160078.50 34076.02 34785.93 33086.22 37474.47 31984.80 37692.33 28979.29 29276.98 34985.92 36453.81 36993.97 34667.39 35057.42 39489.36 365
miper_refine_blended78.50 34076.02 34785.93 33086.22 37474.47 31984.80 37692.33 28979.29 29276.98 34985.92 36453.81 36993.97 34667.39 35057.42 39489.36 365
ppachtmachnet_test81.84 30880.07 31687.15 31288.46 35974.43 32189.04 33792.16 29675.33 33977.75 34488.99 32766.20 29395.37 32765.12 36377.60 35591.65 335
mvs_anonymous89.37 14689.32 12889.51 25393.47 22774.22 32291.65 28294.83 21882.91 23085.45 22593.79 19081.23 11096.36 28786.47 15294.09 14897.94 76
ADS-MVSNet281.66 31279.71 32187.50 30091.35 29674.19 32383.33 38388.48 36472.90 36482.24 29685.77 36664.98 30193.20 35964.57 36683.74 28995.12 200
Patchmatch-test81.37 31779.30 32587.58 29890.92 31674.16 32480.99 38987.68 37070.52 37776.63 35288.81 33071.21 22792.76 36360.01 38086.93 26795.83 176
MDA-MVSNet-bldmvs78.85 33976.31 34486.46 32489.76 34573.88 32588.79 33990.42 34179.16 29559.18 39188.33 33960.20 33594.04 34462.00 37368.96 38091.48 341
MIMVSNet179.38 33677.28 33885.69 33486.35 37373.67 32691.61 28392.75 27978.11 31672.64 37388.12 34248.16 38191.97 37160.32 37777.49 35691.43 342
test250687.21 22186.28 21890.02 22995.62 12473.64 32796.25 4971.38 40587.89 10990.45 12396.65 7055.29 36298.09 15886.03 15796.94 9198.33 43
EGC-MVSNET61.97 36256.37 36678.77 36689.63 34873.50 32889.12 33582.79 3860.21 4101.24 41184.80 37039.48 39190.04 38244.13 39575.94 36572.79 394
our_test_381.93 30780.46 31086.33 32788.46 35973.48 32988.46 34491.11 32676.46 32676.69 35188.25 34066.89 28294.36 33968.75 34179.08 35091.14 348
JIA-IIPM81.04 32078.98 33287.25 30788.64 35573.48 32981.75 38889.61 35973.19 36182.05 29873.71 39266.07 29695.87 30771.18 32584.60 28292.41 320
TinyColmap79.76 33377.69 33685.97 32991.71 28373.12 33189.55 32590.36 34375.03 34272.03 37590.19 30446.22 38596.19 29563.11 37081.03 32688.59 375
UnsupCasMVSNet_bld76.23 34873.27 35285.09 34283.79 38572.92 33285.65 37093.47 26571.52 37268.84 38379.08 38749.77 37793.21 35866.81 35860.52 39189.13 372
test0.0.03 182.41 30481.69 30084.59 34488.23 36272.89 33390.24 31287.83 36883.41 21679.86 32889.78 31667.25 27788.99 38765.18 36283.42 29691.90 332
EPNet_dtu86.49 24985.94 23488.14 28890.24 33672.82 33494.11 18292.20 29586.66 13879.42 33392.36 23573.52 20295.81 31171.26 32293.66 15495.80 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet_test_wron79.21 33877.19 34085.29 33888.22 36372.77 33585.87 36790.06 34974.34 34962.62 38987.56 35066.14 29491.99 37066.90 35773.01 36891.10 351
test_vis1_n86.56 24486.49 21186.78 32288.51 35672.69 33694.68 14693.78 26079.55 29090.70 12095.31 12148.75 38093.28 35793.15 4593.99 14994.38 239
EPMVS83.90 29382.70 29787.51 29990.23 33772.67 33788.62 34281.96 38981.37 26785.01 24188.34 33866.31 29194.45 33675.30 29987.12 26495.43 190
YYNet179.22 33777.20 33985.28 33988.20 36472.66 33885.87 36790.05 35174.33 35062.70 38787.61 34966.09 29592.03 36866.94 35472.97 36991.15 347
test_vis1_n_192089.39 14589.84 11688.04 29092.97 24572.64 33994.71 14596.03 13586.18 15191.94 10096.56 7861.63 32195.74 31593.42 4195.11 13095.74 180
UnsupCasMVSNet_eth80.07 32978.27 33585.46 33685.24 38272.63 34088.45 34594.87 21582.99 22871.64 37788.07 34356.34 35591.75 37273.48 31463.36 38992.01 330
OurMVSNet-221017-085.35 26884.64 26887.49 30190.77 32272.59 34194.01 19394.40 23584.72 18979.62 33293.17 20961.91 32096.72 25981.99 21781.16 32193.16 296
CostFormer85.77 26184.94 26188.26 28491.16 30472.58 34289.47 32991.04 33076.26 33186.45 19689.97 31270.74 23596.86 25782.35 20787.07 26695.34 195
CL-MVSNet_self_test81.74 31080.53 30885.36 33785.96 37672.45 34390.25 31093.07 27181.24 27179.85 32987.29 35370.93 23292.52 36466.95 35369.23 37891.11 350
LCM-MVSNet-Re88.30 17888.32 15888.27 28394.71 16872.41 34493.15 23290.98 33187.77 11279.25 33491.96 25378.35 14295.75 31483.04 19395.62 11596.65 141
PVSNet78.82 1885.55 26384.65 26788.23 28694.72 16771.93 34587.12 36092.75 27978.80 30284.95 24290.53 29664.43 30496.71 26174.74 30593.86 15296.06 167
test_fmvs1_n87.03 22987.04 19086.97 31589.74 34671.86 34694.55 15394.43 23278.47 30791.95 9995.50 11651.16 37593.81 34993.02 4894.56 14095.26 196
ADS-MVSNet81.56 31479.78 31886.90 31891.35 29671.82 34783.33 38389.16 36272.90 36482.24 29685.77 36664.98 30193.76 35064.57 36683.74 28995.12 200
test_fmvs187.34 21287.56 17686.68 32390.59 32871.80 34894.01 19394.04 25078.30 31191.97 9795.22 12556.28 35693.71 35192.89 4994.71 13494.52 227
test_vis1_rt77.96 34376.46 34382.48 35785.89 37771.74 34990.25 31078.89 39571.03 37671.30 37881.35 38442.49 39091.05 37884.55 17582.37 30684.65 382
test-LLR85.87 25885.41 24887.25 30790.95 31271.67 35089.55 32589.88 35583.41 21684.54 25087.95 34467.25 27795.11 33181.82 22193.37 16594.97 204
test-mter84.54 28383.64 28187.25 30790.95 31271.67 35089.55 32589.88 35579.17 29484.54 25087.95 34455.56 35895.11 33181.82 22193.37 16594.97 204
tpm284.08 28882.94 29287.48 30291.39 29471.27 35289.23 33390.37 34271.95 37184.64 24789.33 32267.30 27696.55 27475.17 30087.09 26594.63 219
Patchmatch-RL test81.67 31179.96 31786.81 32185.42 38171.23 35382.17 38787.50 37178.47 30777.19 34882.50 38270.81 23493.48 35482.66 20272.89 37095.71 183
TESTMET0.1,183.74 29582.85 29586.42 32689.96 34271.21 35489.55 32587.88 36777.41 31983.37 28387.31 35256.71 35493.65 35380.62 24392.85 17694.40 238
PVSNet_073.20 2077.22 34574.83 35184.37 34690.70 32671.10 35583.09 38589.67 35872.81 36673.93 36883.13 37760.79 33293.70 35268.54 34250.84 39888.30 377
WB-MVSnew83.77 29483.28 28585.26 34091.48 28971.03 35691.89 27387.98 36678.91 29784.78 24490.22 30269.11 26394.02 34564.70 36590.44 20490.71 354
tpm cat181.96 30680.27 31287.01 31491.09 30771.02 35787.38 35891.53 31766.25 38380.17 32086.35 36268.22 27396.15 29669.16 33982.29 30793.86 263
tpmvs83.35 29982.07 29887.20 31191.07 30871.00 35888.31 34691.70 31078.91 29780.49 31887.18 35669.30 25997.08 24268.12 34883.56 29393.51 283
PatchT82.68 30281.27 30486.89 31990.09 33970.94 35984.06 38090.15 34674.91 34485.63 21583.57 37569.37 25494.87 33565.19 36188.50 24194.84 213
SixPastTwentyTwo83.91 29282.90 29486.92 31790.99 31070.67 36093.48 21691.99 30385.54 16777.62 34692.11 24660.59 33396.87 25676.05 29477.75 35493.20 294
RPSCF85.07 27484.27 27187.48 30292.91 24770.62 36191.69 28192.46 28576.20 33282.67 29295.22 12563.94 30797.29 22777.51 27985.80 27394.53 226
pmmvs371.81 35468.71 35781.11 36075.86 39670.42 36286.74 36283.66 38458.95 39168.64 38480.89 38536.93 39289.52 38463.10 37163.59 38883.39 383
Anonymous2023120681.03 32179.77 32084.82 34387.85 36870.26 36391.42 28692.08 29973.67 35677.75 34489.25 32362.43 31793.08 36061.50 37582.00 31291.12 349
PM-MVS78.11 34276.12 34684.09 35083.54 38670.08 36488.97 33885.27 38079.93 28474.73 36486.43 36034.70 39493.48 35479.43 26072.06 37288.72 373
MDTV_nov1_ep1383.56 28291.69 28569.93 36587.75 35391.54 31678.60 30684.86 24388.90 32969.54 25296.03 29970.25 33188.93 234
LF4IMVS80.37 32779.07 33184.27 34886.64 37269.87 36689.39 33091.05 32976.38 32874.97 36290.00 31147.85 38294.25 34374.55 30880.82 33288.69 374
K. test v381.59 31380.15 31585.91 33289.89 34469.42 36792.57 25387.71 36985.56 16673.44 37089.71 31755.58 35795.52 32177.17 28269.76 37692.78 310
tpm84.73 28084.02 27586.87 32090.33 33468.90 36889.06 33689.94 35280.85 27685.75 21189.86 31468.54 27095.97 30277.76 27584.05 28795.75 179
lessismore_v086.04 32888.46 35968.78 36980.59 39273.01 37290.11 30855.39 35996.43 28275.06 30265.06 38692.90 305
gm-plane-assit89.60 34968.00 37077.28 32288.99 32797.57 19379.44 259
Anonymous2024052180.44 32679.21 32784.11 34985.75 37967.89 37192.86 24693.23 26875.61 33775.59 35987.47 35150.03 37694.33 34071.14 32681.21 32090.12 361
tpmrst85.35 26884.99 25886.43 32590.88 31967.88 37288.71 34091.43 32080.13 28286.08 20688.80 33273.05 20996.02 30082.48 20383.40 29795.40 191
test20.0379.95 33179.08 33082.55 35685.79 37867.74 37391.09 29691.08 32781.23 27274.48 36689.96 31361.63 32190.15 38160.08 37876.38 36289.76 362
CMPMVSbinary59.16 2180.52 32479.20 32884.48 34583.98 38467.63 37489.95 32193.84 25864.79 38666.81 38591.14 28057.93 35095.17 32976.25 29188.10 24790.65 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvs283.98 28984.03 27483.83 35187.16 37067.53 37593.93 19992.89 27477.62 31786.89 18693.53 19747.18 38492.02 36990.54 10386.51 26991.93 331
testgi80.94 32380.20 31483.18 35287.96 36666.29 37691.28 29090.70 33983.70 20778.12 34192.84 21951.37 37490.82 37963.34 36982.46 30592.43 319
new_pmnet72.15 35270.13 35678.20 36782.95 38865.68 37783.91 38182.40 38862.94 38964.47 38679.82 38642.85 38986.26 39357.41 38574.44 36782.65 387
Gipumacopyleft57.99 36754.91 36967.24 38288.51 35665.59 37852.21 40190.33 34443.58 39842.84 40151.18 40220.29 40485.07 39434.77 40170.45 37451.05 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
dp81.47 31680.23 31385.17 34189.92 34365.49 37986.74 36290.10 34876.30 33081.10 30987.12 35762.81 31595.92 30468.13 34779.88 34394.09 251
KD-MVS_self_test80.20 32879.24 32683.07 35385.64 38065.29 38091.01 29893.93 25278.71 30576.32 35386.40 36159.20 34392.93 36272.59 31769.35 37791.00 353
UWE-MVS83.69 29683.09 28985.48 33593.06 23965.27 38190.92 29986.14 37479.90 28586.26 20290.72 29357.17 35395.81 31171.03 32892.62 17995.35 194
CVMVSNet84.69 28284.79 26584.37 34691.84 27764.92 38293.70 21091.47 31966.19 38486.16 20595.28 12267.18 27993.33 35680.89 23890.42 20694.88 212
testing380.46 32579.59 32383.06 35493.44 22964.64 38393.33 22185.47 37884.34 19579.93 32790.84 28844.35 38892.39 36557.06 38687.56 25792.16 328
WAC-MVS64.08 38459.14 381
myMVS_eth3d79.67 33478.79 33382.32 35991.92 27364.08 38489.75 32387.40 37281.72 25878.82 33687.20 35445.33 38691.29 37559.09 38287.84 25491.60 337
EU-MVSNet81.32 31880.95 30682.42 35888.50 35863.67 38693.32 22291.33 32164.02 38780.57 31792.83 22061.21 32892.27 36776.34 29080.38 33991.32 343
ambc83.06 35479.99 39363.51 38777.47 39492.86 27574.34 36784.45 37228.74 39595.06 33373.06 31668.89 38190.61 356
mvsany_test374.95 34973.26 35380.02 36374.61 39763.16 38885.53 37178.42 39674.16 35174.89 36386.46 35936.02 39389.09 38682.39 20666.91 38387.82 380
APD_test169.04 35566.26 36177.36 37080.51 39262.79 38985.46 37283.51 38554.11 39459.14 39284.79 37123.40 40189.61 38355.22 38770.24 37579.68 391
test_fmvs377.67 34477.16 34179.22 36479.52 39461.14 39092.34 26191.64 31373.98 35378.86 33586.59 35827.38 39887.03 38988.12 13075.97 36489.50 364
test_vis3_rt65.12 36062.60 36272.69 37371.44 40060.71 39187.17 35965.55 40663.80 38853.22 39465.65 39814.54 40889.44 38576.65 28665.38 38567.91 397
Syy-MVS80.07 32979.78 31880.94 36191.92 27359.93 39289.75 32387.40 37281.72 25878.82 33687.20 35466.29 29291.29 37547.06 39387.84 25491.60 337
new-patchmatchnet76.41 34775.17 35080.13 36282.65 38959.61 39387.66 35591.08 32778.23 31469.85 38183.22 37654.76 36391.63 37464.14 36864.89 38789.16 370
test_f71.95 35370.87 35575.21 37174.21 39959.37 39485.07 37585.82 37665.25 38570.42 38083.13 37723.62 39982.93 39978.32 26971.94 37383.33 384
LCM-MVSNet66.00 35962.16 36477.51 36964.51 40758.29 39583.87 38290.90 33448.17 39654.69 39373.31 39316.83 40786.75 39065.47 36061.67 39087.48 381
FPMVS64.63 36162.55 36370.88 37470.80 40156.71 39684.42 37984.42 38251.78 39549.57 39581.61 38323.49 40081.48 40040.61 40076.25 36374.46 393
ANet_high58.88 36654.22 37072.86 37256.50 41056.67 39780.75 39086.00 37573.09 36337.39 40264.63 39922.17 40279.49 40243.51 39623.96 40482.43 388
testf159.54 36456.11 36769.85 37769.28 40256.61 39880.37 39176.55 40342.58 39945.68 39875.61 38811.26 40984.18 39543.20 39760.44 39268.75 395
APD_test259.54 36456.11 36769.85 37769.28 40256.61 39880.37 39176.55 40342.58 39945.68 39875.61 38811.26 40984.18 39543.20 39760.44 39268.75 395
MVS-HIRNet73.70 35172.20 35478.18 36891.81 28056.42 40082.94 38682.58 38755.24 39268.88 38266.48 39655.32 36195.13 33058.12 38388.42 24383.01 385
DSMNet-mixed76.94 34676.29 34578.89 36583.10 38756.11 40187.78 35179.77 39360.65 39075.64 35888.71 33361.56 32388.34 38860.07 37989.29 22892.21 327
MDTV_nov1_ep13_2view55.91 40287.62 35673.32 36084.59 24970.33 24374.65 30695.50 188
DeepMVS_CXcopyleft56.31 38674.23 39851.81 40356.67 41144.85 39748.54 39775.16 39027.87 39758.74 40740.92 39952.22 39658.39 400
MVEpermissive39.65 2343.39 37038.59 37657.77 38456.52 40948.77 40455.38 40058.64 41029.33 40428.96 40552.65 4014.68 41264.62 40628.11 40333.07 40259.93 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS259.60 36356.40 36569.21 37968.83 40446.58 40573.02 39877.48 40155.07 39349.21 39672.95 39417.43 40680.04 40149.32 39244.33 40180.99 389
PMVScopyleft47.18 2252.22 36848.46 37263.48 38345.72 41246.20 40673.41 39778.31 39741.03 40130.06 40465.68 3976.05 41183.43 39830.04 40265.86 38460.80 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS67.92 35767.49 35969.21 37981.09 39041.17 40788.03 34878.00 39973.50 35862.63 38883.11 37963.94 30786.52 39125.66 40451.45 39779.94 390
dmvs_testset74.57 35075.81 34970.86 37587.72 36940.47 40887.05 36177.90 40082.75 23371.15 37985.47 36867.98 27484.12 39745.26 39476.98 36188.00 378
SSC-MVS67.06 35866.56 36068.56 38180.54 39140.06 40987.77 35277.37 40272.38 36861.75 39082.66 38163.37 31186.45 39224.48 40548.69 40079.16 392
E-PMN43.23 37142.29 37346.03 38765.58 40637.41 41073.51 39664.62 40733.99 40228.47 40647.87 40319.90 40567.91 40422.23 40624.45 40332.77 402
wuyk23d21.27 37520.48 37823.63 39068.59 40536.41 41149.57 4026.85 4149.37 4067.89 4084.46 4104.03 41331.37 40817.47 40816.07 4073.12 405
EMVS42.07 37241.12 37444.92 38863.45 40835.56 41273.65 39563.48 40833.05 40326.88 40745.45 40421.27 40367.14 40519.80 40723.02 40532.06 403
N_pmnet68.89 35668.44 35870.23 37689.07 35228.79 41388.06 34719.50 41369.47 37971.86 37684.93 36961.24 32791.75 37254.70 38877.15 35890.15 360
tmp_tt35.64 37339.24 37524.84 38914.87 41323.90 41462.71 39951.51 4126.58 40736.66 40362.08 40044.37 38730.34 40952.40 39022.00 40620.27 404
test_method50.52 36948.47 37156.66 38552.26 41118.98 41541.51 40381.40 39010.10 40544.59 40075.01 39128.51 39668.16 40353.54 38949.31 39982.83 386
test1238.76 37711.22 3801.39 3910.85 4150.97 41685.76 3690.35 4160.54 4092.45 4108.14 4090.60 4140.48 4102.16 4100.17 4092.71 406
testmvs8.92 37611.52 3791.12 3921.06 4140.46 41786.02 3660.65 4150.62 4082.74 4099.52 4080.31 4150.45 4112.38 4090.39 4082.46 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k22.14 37429.52 3770.00 3930.00 4160.00 4180.00 40495.76 1540.00 4110.00 41294.29 16675.66 1720.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.64 3798.86 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41179.70 1230.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.82 37810.43 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41293.88 1870.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
PC_three_145282.47 23797.09 1097.07 5192.72 198.04 16392.70 5599.02 1298.86 11
eth-test20.00 416
eth-test0.00 416
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
9.1494.47 2097.79 4996.08 6297.44 1586.13 15595.10 3397.40 3388.34 2299.22 4493.25 4498.70 35
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
GSMVS96.12 161
sam_mvs171.70 22396.12 161
sam_mvs70.60 236
MTGPAbinary96.97 50
test_post188.00 3499.81 40769.31 25895.53 32076.65 286
test_post10.29 40670.57 24095.91 306
patchmatchnet-post83.76 37471.53 22496.48 277
MTMP96.16 5460.64 409
test9_res91.91 8098.71 3398.07 68
agg_prior290.54 10398.68 3898.27 52
test_prior294.12 18187.67 11692.63 8196.39 8286.62 3891.50 8798.67 40
旧先验293.36 22071.25 37494.37 3997.13 24086.74 148
新几何293.11 235
无先验93.28 22896.26 11273.95 35499.05 5580.56 24496.59 143
原ACMM292.94 242
testdata298.75 9378.30 270
segment_acmp87.16 36
testdata192.15 26887.94 105
plane_prior596.22 11798.12 14888.15 12789.99 21094.63 219
plane_prior494.86 140
plane_prior295.85 7790.81 17
plane_prior194.59 174
n20.00 417
nn0.00 417
door-mid85.49 377
test1196.57 92
door85.33 379
HQP-NCC94.17 19794.39 16688.81 7485.43 228
ACMP_Plane94.17 19794.39 16688.81 7485.43 228
BP-MVS87.11 145
HQP4-MVS85.43 22897.96 16994.51 229
HQP3-MVS96.04 13389.77 219
HQP2-MVS73.83 199
ACMMP++_ref87.47 258
ACMMP++88.01 250
Test By Simon80.02 118