This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 1099.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 26100.00 198.99 2599.90 799.96 10
MSP-MVS97.77 1098.18 296.53 9999.54 3690.14 14899.41 6997.70 8895.46 2898.60 3199.19 3395.71 599.49 11598.15 5299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC98.12 598.11 398.13 2599.76 694.46 5399.81 1297.88 5896.54 1398.84 2499.46 1092.55 2899.98 998.25 5099.93 199.94 18
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8394.17 4499.30 899.54 393.32 2099.98 999.70 599.81 2399.99 1
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9293.01 7499.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14393.95 4999.07 1599.46 1093.18 2399.97 2199.64 899.82 1999.69 58
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8297.72 8394.50 3898.64 3099.54 393.32 2099.97 2199.58 1199.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
patch_mono-297.10 2697.97 894.49 18599.21 6183.73 30199.62 3898.25 3195.28 3099.38 698.91 7892.28 3199.94 3599.61 1099.22 7499.78 41
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 495.96 10199.33 2292.62 27100.00 198.99 2599.93 199.98 6
DeepPCF-MVS93.56 196.55 4597.84 1092.68 23898.71 8978.11 36099.70 2797.71 8798.18 197.36 6599.76 190.37 5299.94 3599.27 1699.54 5499.99 1
fmvsm_l_conf0.5_n_a97.70 1397.80 1197.42 4997.59 12392.91 9099.86 598.04 4896.70 1099.58 299.26 2490.90 4199.94 3599.57 1298.66 10399.40 93
fmvsm_l_conf0.5_n97.65 1497.72 1297.41 5097.51 12892.78 9299.85 898.05 4696.78 899.60 199.23 2990.42 5099.92 4199.55 1398.50 10899.55 77
HPM-MVS++copyleft97.72 1297.59 1398.14 2499.53 4094.76 4599.19 9297.75 7895.66 2498.21 4299.29 2391.10 3699.99 597.68 6099.87 999.68 60
test_fmvsm_n_192097.08 2797.55 1495.67 14197.94 11089.61 16799.93 198.48 2397.08 599.08 1499.13 4788.17 8299.93 3999.11 2399.06 8097.47 212
MVS_030497.81 997.51 1598.74 998.97 7396.57 1199.91 298.17 3697.45 398.76 2698.97 6586.69 11699.96 2899.72 398.92 9099.69 58
APDe-MVScopyleft97.53 1597.47 1697.70 3999.58 3093.63 6999.56 4397.52 13393.59 6498.01 5299.12 4990.80 4499.55 10999.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + MP.97.44 1897.46 1797.39 5299.12 6593.49 7498.52 17997.50 13894.46 3998.99 1798.64 10291.58 3399.08 15198.49 4099.83 1599.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++97.50 1797.45 1897.63 4199.65 1693.21 7999.70 2798.13 4294.61 3697.78 5899.46 1089.85 5999.81 7997.97 5499.91 699.88 26
SD-MVS97.51 1697.40 1997.81 3699.01 7293.79 6899.33 8097.38 15793.73 6098.83 2599.02 6190.87 4399.88 5498.69 3099.74 2999.77 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MM97.76 1197.39 2098.86 598.30 9796.83 799.81 1299.13 997.66 298.29 4198.96 7085.84 13699.90 5099.72 398.80 9699.85 30
SteuartSystems-ACMMP97.25 1997.34 2197.01 6697.38 13291.46 11399.75 2297.66 9794.14 4898.13 4499.26 2492.16 3299.66 9797.91 5699.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
DPM-MVS97.86 897.25 2299.68 198.25 9899.10 199.76 2197.78 7596.61 1298.15 4399.53 793.62 17100.00 191.79 17399.80 2699.94 18
train_agg97.20 2397.08 2397.57 4599.57 3393.17 8099.38 7297.66 9790.18 14498.39 3799.18 3690.94 3999.66 9798.58 3699.85 1399.88 26
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 6199.16 9897.65 10489.55 16699.22 1299.52 890.34 5399.99 598.32 4799.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3899.44 6297.45 14689.60 16298.70 2799.42 1790.42 5099.72 9298.47 4199.65 4099.77 46
TSAR-MVS + GP.96.95 2996.91 2697.07 6398.88 8391.62 10999.58 4196.54 22595.09 3296.84 8098.63 10491.16 3499.77 8899.04 2496.42 15499.81 35
9.1496.87 2799.34 5099.50 5197.49 14089.41 17198.59 3299.43 1689.78 6099.69 9498.69 3099.62 46
CHOSEN 280x42096.80 3496.85 2896.66 9197.85 11394.42 5694.76 34298.36 2892.50 8795.62 11497.52 15597.92 197.38 25098.31 4898.80 9698.20 193
test_fmvsmconf_n96.78 3596.84 2996.61 9295.99 20090.25 14399.90 398.13 4296.68 1198.42 3698.92 7785.34 14699.88 5499.12 2299.08 7899.70 55
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5498.85 13797.64 10596.51 1695.88 10499.39 1887.35 10199.99 596.61 8599.69 3899.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11599.06 1094.45 4196.42 9498.70 9888.81 7399.74 9195.35 11499.86 1299.97 7
reproduce-ours96.66 3796.80 3296.22 11398.95 7789.03 17898.62 16597.38 15793.42 6696.80 8599.36 1988.92 7099.80 8198.51 3899.26 7199.82 32
our_new_method96.66 3796.80 3296.22 11398.95 7789.03 17898.62 16597.38 15793.42 6696.80 8599.36 1988.92 7099.80 8198.51 3899.26 7199.82 32
reproduce_model96.57 4396.75 3496.02 12698.93 8088.46 20098.56 17697.34 16393.18 7296.96 7699.35 2188.69 7599.80 8198.53 3799.21 7799.79 38
APD-MVScopyleft96.95 2996.72 3597.63 4199.51 4193.58 7099.16 9897.44 15090.08 14998.59 3299.07 5489.06 6799.42 12697.92 5599.66 3999.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.69 3696.69 3696.72 8698.58 9291.00 12799.14 10699.45 193.86 5595.15 12298.73 9288.48 7799.76 8997.23 7099.56 5299.40 93
EPNet96.82 3396.68 3797.25 5998.65 9093.10 8299.48 5398.76 1496.54 1397.84 5698.22 12987.49 9499.66 9795.35 11497.78 12699.00 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS97.12 2596.60 3898.68 1198.03 10896.57 1199.84 997.84 6296.36 1895.20 12198.24 12888.17 8299.83 7396.11 9799.60 5099.64 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
balanced_conf0396.83 3296.51 3997.81 3697.60 12295.15 3498.40 19796.77 20993.00 7698.69 2896.19 21689.75 6198.76 16598.45 4299.72 3299.51 82
fmvsm_s_conf0.5_n96.19 5496.49 4095.30 15697.37 13389.16 17299.86 598.47 2495.68 2398.87 2299.15 4282.44 19599.92 4199.14 2197.43 13596.83 232
CANet97.00 2896.49 4098.55 1298.86 8496.10 1699.83 1097.52 13395.90 1997.21 6998.90 7982.66 18899.93 3998.71 2998.80 9699.63 70
PHI-MVS96.65 4096.46 4297.21 6099.34 5091.77 10699.70 2798.05 4686.48 25698.05 4999.20 3289.33 6599.96 2898.38 4399.62 4699.90 22
PS-MVSNAJ96.87 3196.40 4398.29 1997.35 13497.29 599.03 12197.11 18595.83 2098.97 1999.14 4582.48 19199.60 10698.60 3399.08 7898.00 199
XVS96.47 4696.37 4496.77 8099.62 2290.66 13699.43 6697.58 12092.41 9196.86 7898.96 7087.37 9799.87 5895.65 10499.43 6199.78 41
BP-MVS196.59 4196.36 4597.29 5595.05 24394.72 4799.44 6297.45 14692.71 8396.41 9598.50 11294.11 1698.50 17795.61 10997.97 12098.66 166
SPE-MVS-test95.98 6196.34 4694.90 17098.06 10787.66 21599.69 3496.10 25593.66 6198.35 4099.05 5786.28 12797.66 23296.96 7698.90 9299.37 96
HFP-MVS96.42 4796.26 4796.90 7599.69 890.96 12899.47 5597.81 6990.54 13596.88 7799.05 5787.57 9299.96 2895.65 10499.72 3299.78 41
fmvsm_s_conf0.5_n_a95.97 6296.19 4895.31 15596.51 17389.01 18099.81 1298.39 2695.46 2899.19 1399.16 3981.44 21099.91 4698.83 2896.97 14497.01 228
CS-MVS95.75 7496.19 4894.40 18997.88 11286.22 25199.66 3596.12 25492.69 8498.07 4898.89 8187.09 10597.59 23896.71 8098.62 10499.39 95
dcpmvs_295.67 7896.18 5094.12 20198.82 8584.22 29497.37 26995.45 30990.70 12695.77 10998.63 10490.47 4898.68 17199.20 2099.22 7499.45 89
ACMMP_NAP96.59 4196.18 5097.81 3698.82 8593.55 7198.88 13697.59 11890.66 12797.98 5399.14 4586.59 119100.00 196.47 8999.46 5799.89 25
CDPH-MVS96.56 4496.18 5097.70 3999.59 2893.92 6599.13 10997.44 15089.02 17997.90 5599.22 3088.90 7299.49 11594.63 13399.79 2799.68 60
xiu_mvs_v2_base96.66 3796.17 5398.11 2897.11 15096.96 699.01 12497.04 19295.51 2798.86 2399.11 5382.19 19999.36 13398.59 3598.14 11898.00 199
region2R96.30 5196.17 5396.70 8799.70 790.31 14299.46 5997.66 9790.55 13497.07 7399.07 5486.85 11199.97 2195.43 11299.74 2999.81 35
SR-MVS96.13 5596.16 5596.07 12399.42 4789.04 17698.59 17397.33 16490.44 13896.84 8099.12 4986.75 11399.41 12997.47 6399.44 6099.76 48
CP-MVS96.22 5396.15 5696.42 10499.67 1089.62 16699.70 2797.61 11290.07 15096.00 10099.16 3987.43 9599.92 4196.03 9999.72 3299.70 55
ACMMPR96.28 5296.14 5796.73 8499.68 990.47 14099.47 5597.80 7190.54 13596.83 8299.03 5986.51 12399.95 3295.65 10499.72 3299.75 49
ETV-MVS96.00 5996.00 5896.00 12896.56 16991.05 12599.63 3796.61 21793.26 7197.39 6498.30 12686.62 11898.13 19898.07 5397.57 12998.82 150
lupinMVS96.32 5095.94 5997.44 4795.05 24394.87 3999.86 596.50 22793.82 5898.04 5098.77 8885.52 13898.09 20196.98 7598.97 8699.37 96
MVS_111021_LR95.78 7195.94 5995.28 15798.19 10387.69 21298.80 14399.26 793.39 6895.04 12498.69 9984.09 16099.76 8996.96 7699.06 8098.38 178
PAPM96.35 4895.94 5997.58 4394.10 27195.25 2698.93 13198.17 3694.26 4393.94 14598.72 9489.68 6297.88 21496.36 9099.29 6999.62 72
SR-MVS-dyc-post95.75 7495.86 6295.41 15099.22 5987.26 23198.40 19797.21 17389.63 16096.67 9098.97 6586.73 11599.36 13396.62 8399.31 6799.60 73
MP-MVScopyleft96.00 5995.82 6396.54 9899.47 4690.13 15099.36 7697.41 15490.64 13095.49 11698.95 7385.51 14099.98 996.00 10099.59 5199.52 80
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR96.35 4895.82 6397.94 3399.63 1894.19 6299.42 6897.55 12592.43 8893.82 14999.12 4987.30 10299.91 4694.02 14199.06 8099.74 50
ZNCC-MVS96.09 5695.81 6596.95 7499.42 4791.19 11799.55 4497.53 12989.72 15795.86 10698.94 7686.59 11999.97 2195.13 12099.56 5299.68 60
MTAPA96.09 5695.80 6696.96 7399.29 5591.19 11797.23 27697.45 14692.58 8594.39 13699.24 2886.43 12599.99 596.22 9299.40 6499.71 54
test_fmvsmconf0.1_n95.94 6595.79 6796.40 10692.42 30989.92 15999.79 1796.85 20496.53 1597.22 6898.67 10082.71 18799.84 6998.92 2798.98 8599.43 92
mPP-MVS95.90 6795.75 6896.38 10799.58 3089.41 17099.26 8797.41 15490.66 12794.82 12698.95 7386.15 13199.98 995.24 11999.64 4299.74 50
RE-MVS-def95.70 6999.22 5987.26 23198.40 19797.21 17389.63 16096.67 9098.97 6585.24 14796.62 8399.31 6799.60 73
fmvsm_s_conf0.1_n95.56 8095.68 7095.20 15994.35 26389.10 17499.50 5197.67 9694.76 3598.68 2999.03 5981.13 21399.86 6398.63 3297.36 13796.63 235
GST-MVS95.97 6295.66 7196.90 7599.49 4591.22 11599.45 6197.48 14189.69 15895.89 10398.72 9486.37 12699.95 3294.62 13499.22 7499.52 80
PVSNet_Blended95.94 6595.66 7196.75 8298.77 8791.61 11099.88 498.04 4893.64 6394.21 13997.76 14283.50 16699.87 5897.41 6497.75 12798.79 153
APD-MVS_3200maxsize95.64 7995.65 7395.62 14499.24 5887.80 21198.42 19297.22 17288.93 18496.64 9298.98 6485.49 14199.36 13396.68 8299.27 7099.70 55
PGM-MVS95.85 6895.65 7396.45 10299.50 4289.77 16398.22 21598.90 1389.19 17496.74 8798.95 7385.91 13599.92 4193.94 14299.46 5799.66 64
GDP-MVS96.05 5895.63 7597.31 5495.37 22394.65 5099.36 7696.42 23292.14 9897.07 7398.53 10893.33 1998.50 17791.76 17496.66 15198.78 155
EI-MVSNet-Vis-set95.76 7395.63 7596.17 11999.14 6490.33 14198.49 18597.82 6691.92 10094.75 12898.88 8387.06 10799.48 11995.40 11397.17 14298.70 161
UBG95.73 7695.41 7796.69 8896.97 15693.23 7899.13 10997.79 7391.28 11694.38 13796.78 19792.37 3098.56 17696.17 9493.84 18698.26 186
test_fmvsmvis_n_192095.47 8195.40 7895.70 13994.33 26490.22 14699.70 2796.98 19996.80 792.75 16298.89 8182.46 19499.92 4198.36 4498.33 11496.97 229
MP-MVS-pluss95.80 7095.30 7997.29 5598.95 7792.66 9398.59 17397.14 18188.95 18293.12 15899.25 2685.62 13799.94 3596.56 8799.48 5699.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set95.43 8295.29 8095.86 13499.07 7089.87 16098.43 19197.80 7191.78 10294.11 14198.77 8886.25 12999.48 11994.95 12796.45 15398.22 191
EIA-MVS95.11 9195.27 8194.64 18296.34 18286.51 24099.59 4096.62 21692.51 8694.08 14298.64 10286.05 13298.24 19395.07 12298.50 10899.18 114
HPM-MVScopyleft95.41 8495.22 8295.99 12999.29 5589.14 17399.17 9797.09 18987.28 23695.40 11798.48 11884.93 15099.38 13195.64 10899.65 4099.47 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EC-MVSNet95.09 9295.17 8394.84 17395.42 21988.17 20399.48 5395.92 27491.47 11097.34 6698.36 12382.77 18397.41 24997.24 6998.58 10598.94 138
MVSMamba_PlusPlus95.73 7695.15 8497.44 4797.28 13994.35 5998.26 21296.75 21083.09 31097.84 5695.97 22489.59 6398.48 18297.86 5799.73 3199.49 85
fmvsm_s_conf0.1_n_a95.16 9095.15 8495.18 16092.06 31588.94 18499.29 8297.53 12994.46 3998.98 1898.99 6379.99 21999.85 6798.24 5196.86 14796.73 233
DP-MVS Recon95.85 6895.15 8497.95 3299.87 294.38 5799.60 3997.48 14186.58 25194.42 13499.13 4787.36 10099.98 993.64 14998.33 11499.48 86
WTY-MVS95.97 6295.11 8798.54 1397.62 11996.65 999.44 6298.74 1592.25 9495.21 12098.46 12186.56 12199.46 12195.00 12592.69 19899.50 84
mvsany_test194.57 11395.09 8892.98 22895.84 20582.07 32398.76 14995.24 32292.87 8296.45 9398.71 9784.81 15399.15 14497.68 6095.49 17297.73 204
PAPM_NR95.43 8295.05 8996.57 9799.42 4790.14 14898.58 17597.51 13590.65 12992.44 16798.90 7987.77 9199.90 5090.88 18299.32 6699.68 60
alignmvs95.77 7295.00 9098.06 2997.35 13495.68 2099.71 2697.50 13891.50 10996.16 9998.61 10686.28 12799.00 15496.19 9391.74 21799.51 82
testing1195.33 8694.98 9196.37 10897.20 14192.31 9999.29 8297.68 9290.59 13194.43 13397.20 17190.79 4598.60 17495.25 11892.38 20398.18 194
jason95.40 8594.86 9297.03 6592.91 30394.23 6099.70 2796.30 23993.56 6596.73 8898.52 11081.46 20997.91 21196.08 9898.47 11198.96 133
jason: jason.
CSCG94.87 10094.71 9395.36 15199.54 3686.49 24199.34 7998.15 4082.71 32090.15 20699.25 2689.48 6499.86 6394.97 12698.82 9599.72 53
HPM-MVS_fast94.89 9694.62 9495.70 13999.11 6688.44 20199.14 10697.11 18585.82 26495.69 11298.47 11983.46 16899.32 13893.16 15999.63 4599.35 99
test_yl95.27 8894.60 9597.28 5798.53 9392.98 8699.05 11998.70 1886.76 24894.65 13197.74 14487.78 8999.44 12295.57 11092.61 19999.44 90
DCV-MVSNet95.27 8894.60 9597.28 5798.53 9392.98 8699.05 11998.70 1886.76 24894.65 13197.74 14487.78 8999.44 12295.57 11092.61 19999.44 90
testing9994.88 9894.45 9796.17 11997.20 14191.91 10499.20 9197.66 9789.95 15293.68 15097.06 18090.28 5498.50 17793.52 15191.54 22398.12 196
testing9194.88 9894.44 9896.21 11597.19 14391.90 10599.23 8997.66 9789.91 15393.66 15197.05 18290.21 5598.50 17793.52 15191.53 22698.25 187
CPTT-MVS94.60 11194.43 9995.09 16399.66 1286.85 23699.44 6297.47 14383.22 30794.34 13898.96 7082.50 18999.55 10994.81 12899.50 5598.88 143
ACMMPcopyleft94.67 10994.30 10095.79 13699.25 5788.13 20598.41 19498.67 2190.38 14091.43 18498.72 9482.22 19899.95 3293.83 14695.76 16799.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VNet95.08 9394.26 10197.55 4698.07 10693.88 6698.68 15698.73 1790.33 14197.16 7297.43 16079.19 22999.53 11296.91 7891.85 21599.24 109
HY-MVS88.56 795.29 8794.23 10298.48 1497.72 11596.41 1394.03 35198.74 1592.42 9095.65 11394.76 24686.52 12299.49 11595.29 11792.97 19499.53 79
test250694.80 10294.21 10396.58 9596.41 17892.18 10298.01 23598.96 1190.82 12493.46 15497.28 16485.92 13398.45 18389.82 19597.19 14099.12 120
thisisatest051594.75 10494.19 10496.43 10396.13 19792.64 9699.47 5597.60 11487.55 23193.17 15797.59 15294.71 1298.42 18488.28 21493.20 19198.24 190
diffmvspermissive94.59 11294.19 10495.81 13595.54 21590.69 13498.70 15495.68 29691.61 10595.96 10197.81 13880.11 21898.06 20396.52 8895.76 16798.67 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
API-MVS94.78 10394.18 10696.59 9499.21 6190.06 15598.80 14397.78 7583.59 30293.85 14799.21 3183.79 16399.97 2192.37 16899.00 8499.74 50
PVSNet_Blended_VisFu94.67 10994.11 10796.34 11097.14 14791.10 12299.32 8197.43 15292.10 9991.53 18396.38 21283.29 17299.68 9593.42 15696.37 15598.25 187
MAR-MVS94.43 11794.09 10895.45 14899.10 6887.47 22198.39 20197.79 7388.37 20194.02 14499.17 3878.64 23599.91 4692.48 16798.85 9498.96 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSFormer94.71 10894.08 10996.61 9295.05 24394.87 3997.77 24996.17 25186.84 24598.04 5098.52 11085.52 13895.99 31889.83 19398.97 8698.96 133
PLCcopyleft91.07 394.23 12194.01 11094.87 17199.17 6387.49 22099.25 8896.55 22488.43 19991.26 18898.21 13185.92 13399.86 6389.77 19797.57 12997.24 219
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testing22294.48 11694.00 11195.95 13197.30 13692.27 10098.82 14097.92 5689.20 17394.82 12697.26 16687.13 10497.32 25391.95 17191.56 22198.25 187
xiu_mvs_v1_base_debu94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
xiu_mvs_v1_base94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
xiu_mvs_v1_base_debi94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
sasdasda95.02 9493.96 11598.20 2197.53 12695.92 1798.71 15196.19 24891.78 10295.86 10698.49 11579.53 22499.03 15296.12 9591.42 22999.66 64
canonicalmvs95.02 9493.96 11598.20 2197.53 12695.92 1798.71 15196.19 24891.78 10295.86 10698.49 11579.53 22499.03 15296.12 9591.42 22999.66 64
sss94.85 10193.94 11797.58 4396.43 17694.09 6498.93 13199.16 889.50 16795.27 11997.85 13681.50 20799.65 10192.79 16594.02 18498.99 130
DeepC-MVS91.02 494.56 11493.92 11896.46 10197.16 14690.76 13298.39 20197.11 18593.92 5188.66 22098.33 12478.14 23999.85 6795.02 12398.57 10698.78 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsmamba94.27 12093.91 11995.35 15296.42 17788.61 19597.77 24996.38 23491.17 11994.05 14395.27 23878.41 23797.96 21097.36 6698.40 11299.48 86
ETVMVS94.50 11593.90 12096.31 11197.48 13092.98 8699.07 11597.86 6088.09 21294.40 13596.90 18988.35 7997.28 25490.72 18792.25 20998.66 166
PMMVS93.62 14193.90 12092.79 23396.79 16481.40 32998.85 13796.81 20591.25 11796.82 8398.15 13377.02 24598.13 19893.15 16096.30 15898.83 149
MGCFI-Net94.89 9693.84 12298.06 2997.49 12995.55 2198.64 16296.10 25591.60 10795.75 11098.46 12179.31 22898.98 15695.95 10191.24 23399.65 67
CHOSEN 1792x268894.35 11893.82 12395.95 13197.40 13188.74 19398.41 19498.27 3092.18 9691.43 18496.40 20978.88 23099.81 7993.59 15097.81 12399.30 104
baseline294.04 12493.80 12494.74 17793.07 30290.25 14398.12 22598.16 3989.86 15486.53 24196.95 18695.56 698.05 20591.44 17694.53 17995.93 251
test_cas_vis1_n_192093.86 13293.74 12594.22 19795.39 22286.08 25799.73 2396.07 25996.38 1797.19 7197.78 14165.46 33399.86 6396.71 8098.92 9096.73 233
EPP-MVSNet93.75 13593.67 12694.01 20795.86 20485.70 26998.67 15897.66 9784.46 28791.36 18797.18 17491.16 3497.79 22092.93 16293.75 18798.53 170
OMC-MVS93.90 13093.62 12794.73 17898.63 9187.00 23498.04 23496.56 22392.19 9592.46 16698.73 9279.49 22699.14 14892.16 17094.34 18298.03 198
mamv491.41 19093.57 12884.91 36097.11 15058.11 40795.68 33395.93 27282.09 33289.78 21195.71 22990.09 5798.24 19397.26 6898.50 10898.38 178
thisisatest053094.00 12593.52 12995.43 14995.76 20890.02 15798.99 12697.60 11486.58 25191.74 17597.36 16394.78 1198.34 18686.37 23592.48 20297.94 201
test_fmvsmconf0.01_n94.14 12293.51 13096.04 12486.79 38189.19 17199.28 8595.94 26995.70 2195.50 11598.49 11573.27 26999.79 8598.28 4998.32 11699.15 116
casdiffmvspermissive93.98 12793.43 13195.61 14595.07 24289.86 16198.80 14395.84 28790.98 12192.74 16397.66 14979.71 22198.10 20094.72 13195.37 17398.87 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis1_n_192093.08 15893.42 13292.04 25196.31 18379.36 34799.83 1096.06 26096.72 998.53 3498.10 13458.57 35899.91 4697.86 5798.79 9996.85 231
UWE-MVS93.18 15493.40 13392.50 24196.56 16983.55 30398.09 23197.84 6289.50 16791.72 17696.23 21591.08 3796.70 27686.28 23693.33 19097.26 218
CANet_DTU94.31 11993.35 13497.20 6197.03 15594.71 4898.62 16595.54 30495.61 2597.21 6998.47 11971.88 28299.84 6988.38 21397.46 13497.04 226
casdiffmvs_mvgpermissive94.00 12593.33 13596.03 12595.22 22790.90 13099.09 11395.99 26290.58 13291.55 18297.37 16279.91 22098.06 20395.01 12495.22 17499.13 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline93.91 12993.30 13695.72 13895.10 24090.07 15297.48 26495.91 27991.03 12093.54 15397.68 14779.58 22298.02 20794.27 13895.14 17599.08 125
HyFIR lowres test93.68 13893.29 13794.87 17197.57 12588.04 20798.18 21998.47 2487.57 23091.24 18995.05 24285.49 14197.46 24593.22 15892.82 19599.10 123
TESTMET0.1,193.82 13393.26 13895.49 14795.21 22890.25 14399.15 10397.54 12889.18 17591.79 17494.87 24489.13 6697.63 23586.21 23796.29 15998.60 168
PVSNet_BlendedMVS93.36 14893.20 13993.84 21398.77 8791.61 11099.47 5598.04 4891.44 11194.21 13992.63 28883.50 16699.87 5897.41 6483.37 28590.05 350
Effi-MVS+93.87 13193.15 14096.02 12695.79 20690.76 13296.70 29895.78 28886.98 24295.71 11197.17 17579.58 22298.01 20894.57 13596.09 16299.31 103
AdaColmapbinary93.82 13393.06 14196.10 12299.88 189.07 17598.33 20697.55 12586.81 24790.39 20398.65 10175.09 25199.98 993.32 15797.53 13299.26 108
114514_t94.06 12393.05 14297.06 6499.08 6992.26 10198.97 12997.01 19782.58 32292.57 16598.22 12980.68 21699.30 13989.34 20399.02 8399.63 70
CDS-MVSNet93.47 14293.04 14394.76 17594.75 25589.45 16998.82 14097.03 19487.91 21990.97 19196.48 20789.06 6796.36 29589.50 19992.81 19798.49 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051793.30 15093.01 14494.17 19995.57 21386.47 24298.51 18297.60 11485.99 26290.55 19897.19 17394.80 1098.31 18785.06 25091.86 21497.74 203
Vis-MVSNet (Re-imp)93.26 15393.00 14594.06 20496.14 19486.71 23998.68 15696.70 21288.30 20589.71 21497.64 15085.43 14496.39 29388.06 21896.32 15699.08 125
test_fmvs192.35 17192.94 14690.57 28397.19 14375.43 37299.55 4494.97 32995.20 3196.82 8397.57 15459.59 35699.84 6997.30 6798.29 11796.46 243
test-mter93.27 15292.89 14794.40 18994.94 24987.27 22999.15 10397.25 16788.95 18291.57 17994.04 25288.03 8797.58 23985.94 24196.13 16098.36 182
PVSNet87.13 1293.69 13692.83 14896.28 11297.99 10990.22 14699.38 7298.93 1291.42 11393.66 15197.68 14771.29 28999.64 10387.94 21997.20 13998.98 131
CNLPA93.64 14092.74 14996.36 10998.96 7690.01 15899.19 9295.89 28286.22 25989.40 21598.85 8480.66 21799.84 6988.57 21196.92 14699.24 109
test-LLR93.11 15792.68 15094.40 18994.94 24987.27 22999.15 10397.25 16790.21 14291.57 17994.04 25284.89 15197.58 23985.94 24196.13 16098.36 182
MVS_Test93.67 13992.67 15196.69 8896.72 16692.66 9397.22 27796.03 26187.69 22895.12 12394.03 25481.55 20598.28 19089.17 20796.46 15299.14 117
RRT-MVS93.39 14692.64 15295.64 14296.11 19888.75 19297.40 26595.77 29089.46 16992.70 16495.42 23572.98 27198.81 16196.91 7896.97 14499.37 96
UA-Net93.30 15092.62 15395.34 15396.27 18588.53 19995.88 32596.97 20090.90 12295.37 11897.07 17982.38 19699.10 15083.91 26994.86 17898.38 178
thres20093.69 13692.59 15496.97 7297.76 11494.74 4699.35 7899.36 289.23 17291.21 19096.97 18583.42 16998.77 16385.08 24990.96 23497.39 214
IS-MVSNet93.00 15992.51 15594.49 18596.14 19487.36 22598.31 20995.70 29488.58 19290.17 20597.50 15683.02 17997.22 25587.06 22496.07 16498.90 142
CostFormer92.89 16092.48 15694.12 20194.99 24685.89 26492.89 36197.00 19886.98 24295.00 12590.78 32390.05 5897.51 24392.92 16391.73 21898.96 133
MVSTER92.71 16292.32 15793.86 21297.29 13792.95 8999.01 12496.59 21990.09 14885.51 24994.00 25694.61 1596.56 28290.77 18683.03 28792.08 289
MVS93.92 12892.28 15898.83 795.69 21096.82 896.22 31498.17 3684.89 28284.34 25998.61 10679.32 22799.83 7393.88 14499.43 6199.86 29
tfpn200view993.43 14492.27 15996.90 7597.68 11794.84 4199.18 9499.36 288.45 19690.79 19396.90 18983.31 17098.75 16684.11 26590.69 23697.12 221
thres40093.39 14692.27 15996.73 8497.68 11794.84 4199.18 9499.36 288.45 19690.79 19396.90 18983.31 17098.75 16684.11 26590.69 23696.61 236
tpmrst92.78 16192.16 16194.65 18096.27 18587.45 22291.83 37197.10 18889.10 17894.68 13090.69 32788.22 8197.73 23089.78 19691.80 21698.77 157
thres100view90093.34 14992.15 16296.90 7597.62 11994.84 4199.06 11899.36 287.96 21790.47 20196.78 19783.29 17298.75 16684.11 26590.69 23697.12 221
EPNet_dtu92.28 17492.15 16292.70 23797.29 13784.84 28698.64 16297.82 6692.91 8093.02 16097.02 18385.48 14395.70 33372.25 35794.89 17797.55 211
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAMVS92.62 16592.09 16494.20 19894.10 27187.68 21398.41 19496.97 20087.53 23289.74 21296.04 22284.77 15596.49 28888.97 20992.31 20698.42 174
thres600view793.18 15492.00 16596.75 8297.62 11994.92 3699.07 11599.36 287.96 21790.47 20196.78 19783.29 17298.71 17082.93 27990.47 24096.61 236
131493.44 14391.98 16697.84 3495.24 22594.38 5796.22 31497.92 5690.18 14482.28 28797.71 14677.63 24299.80 8191.94 17298.67 10299.34 101
h-mvs3392.47 17091.95 16794.05 20597.13 14885.01 28398.36 20498.08 4493.85 5696.27 9796.73 20083.19 17599.43 12595.81 10268.09 37497.70 205
Vis-MVSNetpermissive92.64 16491.85 16895.03 16795.12 23688.23 20298.48 18796.81 20591.61 10592.16 17297.22 17071.58 28798.00 20985.85 24497.81 12398.88 143
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+87.72 893.43 14491.84 16998.17 2395.73 20995.08 3598.92 13397.04 19291.42 11381.48 30497.60 15174.60 25499.79 8590.84 18398.97 8699.64 68
reproduce_monomvs92.11 18091.82 17092.98 22898.25 9890.55 13898.38 20397.93 5594.81 3380.46 31392.37 29096.46 397.17 25694.06 14073.61 34591.23 318
BH-w/o92.32 17291.79 17193.91 21196.85 15986.18 25399.11 11295.74 29288.13 21084.81 25397.00 18477.26 24497.91 21189.16 20898.03 11997.64 206
3Dnovator87.35 1193.17 15691.77 17297.37 5395.41 22093.07 8398.82 14097.85 6191.53 10882.56 28097.58 15371.97 28199.82 7691.01 18099.23 7399.22 112
F-COLMAP92.07 18191.75 17393.02 22798.16 10482.89 31398.79 14795.97 26486.54 25387.92 22597.80 13978.69 23499.65 10185.97 23995.93 16696.53 241
mvs_anonymous92.50 16991.65 17495.06 16496.60 16889.64 16597.06 28296.44 23186.64 25084.14 26093.93 25982.49 19096.17 31291.47 17596.08 16399.35 99
EPMVS92.59 16791.59 17595.59 14697.22 14090.03 15691.78 37298.04 4890.42 13991.66 17890.65 33086.49 12497.46 24581.78 29096.31 15799.28 106
1112_ss92.71 16291.55 17696.20 11695.56 21491.12 12098.48 18794.69 34088.29 20686.89 23898.50 11287.02 10898.66 17284.75 25489.77 24498.81 151
hse-mvs291.67 18691.51 17792.15 24896.22 18782.61 31997.74 25397.53 12993.85 5696.27 9796.15 21783.19 17597.44 24795.81 10266.86 38196.40 245
ET-MVSNet_ETH3D92.56 16891.45 17895.88 13396.39 18094.13 6399.46 5996.97 20092.18 9666.94 39298.29 12794.65 1494.28 36294.34 13783.82 28099.24 109
test_fmvs1_n91.07 19991.41 17990.06 29794.10 27174.31 37699.18 9494.84 33394.81 3396.37 9697.46 15850.86 38999.82 7697.14 7197.90 12196.04 250
ECVR-MVScopyleft92.29 17391.33 18095.15 16196.41 17887.84 21098.10 22894.84 33390.82 12491.42 18697.28 16465.61 33098.49 18190.33 18997.19 14099.12 120
baseline192.61 16691.28 18196.58 9597.05 15494.63 5197.72 25496.20 24689.82 15588.56 22196.85 19386.85 11197.82 21888.42 21280.10 30297.30 216
HQP-MVS91.50 18791.23 18292.29 24393.95 27686.39 24599.16 9896.37 23593.92 5187.57 22896.67 20373.34 26697.77 22293.82 14786.29 25792.72 269
test111192.12 17891.19 18394.94 16996.15 19287.36 22598.12 22594.84 33390.85 12390.97 19197.26 16665.60 33198.37 18589.74 19897.14 14399.07 127
tpm291.77 18491.09 18493.82 21494.83 25385.56 27292.51 36697.16 18084.00 29393.83 14890.66 32987.54 9397.17 25687.73 22191.55 22298.72 159
FA-MVS(test-final)92.22 17791.08 18595.64 14296.05 19988.98 18191.60 37597.25 16786.99 23991.84 17392.12 29283.03 17899.00 15486.91 22993.91 18598.93 139
PatchmatchNetpermissive92.05 18291.04 18695.06 16496.17 19189.04 17691.26 38097.26 16689.56 16590.64 19790.56 33688.35 7997.11 25979.53 30396.07 16499.03 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Test_1112_low_res92.27 17590.97 18796.18 11795.53 21691.10 12298.47 18994.66 34188.28 20786.83 23993.50 27287.00 10998.65 17384.69 25589.74 24598.80 152
HQP_MVS91.26 19490.95 18892.16 24793.84 28386.07 25999.02 12296.30 23993.38 6986.99 23596.52 20572.92 27297.75 22893.46 15486.17 26092.67 271
CVMVSNet90.30 21590.91 18988.46 33094.32 26573.58 38097.61 26197.59 11890.16 14788.43 22397.10 17776.83 24692.86 37382.64 28193.54 18998.93 139
UGNet91.91 18390.85 19095.10 16297.06 15388.69 19498.01 23598.24 3392.41 9192.39 16993.61 26860.52 35399.68 9588.14 21697.25 13896.92 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS92.23 17690.84 19196.42 10498.24 10091.08 12498.24 21496.22 24583.39 30594.74 12998.31 12561.12 35198.85 15994.45 13692.82 19599.32 102
BH-untuned91.46 18990.84 19193.33 22296.51 17384.83 28798.84 13995.50 30686.44 25883.50 26496.70 20175.49 25097.77 22286.78 23297.81 12397.40 213
IB-MVS89.43 692.12 17890.83 19395.98 13095.40 22190.78 13199.81 1298.06 4591.23 11885.63 24893.66 26790.63 4698.78 16291.22 17771.85 36398.36 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+91.72 18590.79 19494.49 18595.89 20287.40 22499.54 4995.70 29485.01 28089.28 21795.68 23077.75 24197.57 24283.22 27495.06 17698.51 171
CLD-MVS91.06 20090.71 19592.10 24994.05 27586.10 25699.55 4496.29 24294.16 4684.70 25497.17 17569.62 29897.82 21894.74 13086.08 26292.39 274
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu89.97 22490.68 19687.81 33495.15 23371.98 38797.87 24395.40 31391.92 10087.57 22891.44 31074.27 26096.84 27089.45 20093.10 19394.60 259
XVG-OURS-SEG-HR90.95 20290.66 19791.83 25495.18 23281.14 33695.92 32295.92 27488.40 20090.33 20497.85 13670.66 29299.38 13192.83 16488.83 24694.98 257
PatchMatch-RL91.47 18890.54 19894.26 19598.20 10186.36 24796.94 28697.14 18187.75 22488.98 21895.75 22871.80 28499.40 13080.92 29597.39 13697.02 227
WBMVS91.35 19390.49 19993.94 20996.97 15693.40 7699.27 8696.71 21187.40 23483.10 27291.76 30492.38 2996.23 30988.95 21077.89 31192.17 285
XVG-OURS90.83 20490.49 19991.86 25395.23 22681.25 33395.79 33095.92 27488.96 18190.02 20898.03 13571.60 28699.35 13691.06 17987.78 25094.98 257
MDTV_nov1_ep1390.47 20196.14 19488.55 19791.34 37997.51 13589.58 16392.24 17090.50 34086.99 11097.61 23777.64 31892.34 205
test_vis1_n90.40 21290.27 20290.79 27891.55 32676.48 36699.12 11194.44 34594.31 4297.34 6696.95 18643.60 40099.42 12697.57 6297.60 12896.47 242
VDD-MVS91.24 19790.18 20394.45 18897.08 15285.84 26798.40 19796.10 25586.99 23993.36 15598.16 13254.27 37699.20 14196.59 8690.63 23998.31 185
FE-MVS91.38 19290.16 20495.05 16696.46 17587.53 21989.69 38997.84 6282.97 31392.18 17192.00 29884.07 16198.93 15880.71 29795.52 17198.68 162
BH-RMVSNet91.25 19689.99 20595.03 16796.75 16588.55 19798.65 16094.95 33087.74 22587.74 22797.80 13968.27 30798.14 19780.53 30097.49 13398.41 175
SDMVSNet91.09 19889.91 20694.65 18096.80 16290.54 13997.78 24797.81 6988.34 20385.73 24595.26 23966.44 32598.26 19194.25 13986.75 25495.14 254
FIs90.70 20789.87 20793.18 22492.29 31091.12 12098.17 22198.25 3189.11 17783.44 26594.82 24582.26 19796.17 31287.76 22082.76 28992.25 279
MonoMVSNet90.69 20889.78 20893.45 21991.78 32284.97 28596.51 30294.44 34590.56 13385.96 24490.97 31978.61 23696.27 30895.35 11483.79 28199.11 122
miper_enhance_ethall90.33 21489.70 20992.22 24497.12 14988.93 18698.35 20595.96 26688.60 19183.14 27192.33 29187.38 9696.18 31186.49 23477.89 31191.55 304
PCF-MVS89.78 591.26 19489.63 21096.16 12195.44 21891.58 11295.29 33796.10 25585.07 27782.75 27497.45 15978.28 23899.78 8780.60 29995.65 17097.12 221
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE90.60 21189.56 21193.72 21795.10 24085.43 27399.41 6994.94 33183.96 29587.21 23496.83 19674.37 25897.05 26380.50 30193.73 18898.67 163
AUN-MVS90.17 21989.50 21292.19 24696.21 18882.67 31797.76 25297.53 12988.05 21391.67 17796.15 21783.10 17797.47 24488.11 21766.91 38096.43 244
QAPM91.41 19089.49 21397.17 6295.66 21293.42 7598.60 17197.51 13580.92 34681.39 30597.41 16172.89 27499.87 5882.33 28498.68 10198.21 192
TR-MVS90.77 20589.44 21494.76 17596.31 18388.02 20897.92 23995.96 26685.52 26988.22 22497.23 16966.80 32198.09 20184.58 25792.38 20398.17 195
FC-MVSNet-test90.22 21789.40 21592.67 23991.78 32289.86 16197.89 24098.22 3488.81 18782.96 27394.66 24781.90 20395.96 32085.89 24382.52 29292.20 284
EI-MVSNet89.87 22589.38 21691.36 26594.32 26585.87 26597.61 26196.59 21985.10 27585.51 24997.10 17781.30 21296.56 28283.85 27183.03 28791.64 296
cascas90.93 20389.33 21795.76 13795.69 21093.03 8598.99 12696.59 21980.49 34886.79 24094.45 24965.23 33498.60 17493.52 15192.18 21095.66 253
SCA90.64 21089.25 21894.83 17494.95 24888.83 18896.26 31197.21 17390.06 15190.03 20790.62 33266.61 32296.81 27283.16 27594.36 18198.84 146
ab-mvs91.05 20189.17 21996.69 8895.96 20191.72 10892.62 36597.23 17185.61 26889.74 21293.89 26168.55 30499.42 12691.09 17887.84 24998.92 141
OPM-MVS89.76 22689.15 22091.57 26290.53 33985.58 27198.11 22795.93 27292.88 8186.05 24296.47 20867.06 32097.87 21589.29 20686.08 26291.26 317
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
myMVS_eth3d88.68 25089.07 22187.50 33895.14 23479.74 34597.68 25796.66 21486.52 25482.63 27796.84 19485.22 14889.89 39569.43 36691.54 22392.87 267
PS-MVSNAJss89.54 23089.05 22291.00 27188.77 36184.36 29297.39 26695.97 26488.47 19381.88 29793.80 26382.48 19196.50 28689.34 20383.34 28692.15 286
TAPA-MVS87.50 990.35 21389.05 22294.25 19698.48 9585.17 28098.42 19296.58 22282.44 32787.24 23398.53 10882.77 18398.84 16059.09 39897.88 12298.72 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm89.67 22788.95 22491.82 25592.54 30781.43 32892.95 36095.92 27487.81 22190.50 20089.44 35684.99 14995.65 33483.67 27282.71 29098.38 178
nrg03090.23 21688.87 22594.32 19391.53 32793.54 7298.79 14795.89 28288.12 21184.55 25694.61 24878.80 23396.88 26992.35 16975.21 32792.53 273
OpenMVScopyleft85.28 1490.75 20688.84 22696.48 10093.58 29093.51 7398.80 14397.41 15482.59 32178.62 33497.49 15768.00 31199.82 7684.52 25998.55 10796.11 249
dp90.16 22088.83 22794.14 20096.38 18186.42 24391.57 37697.06 19184.76 28488.81 21990.19 34884.29 15897.43 24875.05 33591.35 23298.56 169
cl2289.57 22988.79 22891.91 25297.94 11087.62 21697.98 23796.51 22685.03 27882.37 28691.79 30183.65 16496.50 28685.96 24077.89 31191.61 301
LS3D90.19 21888.72 22994.59 18498.97 7386.33 24896.90 28896.60 21874.96 37684.06 26298.74 9175.78 24899.83 7374.93 33697.57 12997.62 209
GA-MVS90.10 22188.69 23094.33 19292.44 30887.97 20999.08 11496.26 24389.65 15986.92 23793.11 28068.09 30996.96 26582.54 28390.15 24198.05 197
X-MVStestdata90.69 20888.66 23196.77 8099.62 2290.66 13699.43 6697.58 12092.41 9196.86 7829.59 42487.37 9799.87 5895.65 10499.43 6199.78 41
test0.0.03 188.96 23688.61 23290.03 30191.09 33384.43 29198.97 12997.02 19690.21 14280.29 31596.31 21484.89 15191.93 38772.98 35285.70 26593.73 261
LCM-MVSNet-Re88.59 25188.61 23288.51 32995.53 21672.68 38596.85 29088.43 40588.45 19673.14 36890.63 33175.82 24794.38 36192.95 16195.71 16998.48 173
Fast-Effi-MVS+-dtu88.84 24088.59 23489.58 31293.44 29578.18 35898.65 16094.62 34288.46 19584.12 26195.37 23768.91 30196.52 28582.06 28791.70 21994.06 260
UniMVSNet_NR-MVSNet89.60 22888.55 23592.75 23592.17 31390.07 15298.74 15098.15 4088.37 20183.21 26793.98 25782.86 18195.93 32286.95 22772.47 35792.25 279
VDDNet90.08 22288.54 23694.69 17994.41 26287.68 21398.21 21796.40 23376.21 37093.33 15697.75 14354.93 37498.77 16394.71 13290.96 23497.61 210
LPG-MVS_test88.86 23988.47 23790.06 29793.35 29780.95 33898.22 21595.94 26987.73 22683.17 26996.11 21966.28 32697.77 22290.19 19185.19 26791.46 307
WB-MVSnew88.69 24888.34 23889.77 30794.30 26985.99 26298.14 22297.31 16587.15 23887.85 22696.07 22169.91 29395.52 33772.83 35491.47 22787.80 374
UniMVSNet (Re)89.50 23188.32 23993.03 22692.21 31290.96 12898.90 13598.39 2689.13 17683.22 26692.03 29481.69 20496.34 30186.79 23172.53 35691.81 294
ACMP87.39 1088.71 24788.24 24090.12 29693.91 28181.06 33798.50 18395.67 29789.43 17080.37 31495.55 23165.67 32897.83 21790.55 18884.51 27191.47 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testing387.75 26288.22 24186.36 34794.66 25877.41 36399.52 5097.95 5486.05 26181.12 30696.69 20286.18 13089.31 39961.65 39290.12 24292.35 278
ACMM86.95 1388.77 24588.22 24190.43 28893.61 28981.34 33198.50 18395.92 27487.88 22083.85 26395.20 24167.20 31897.89 21386.90 23084.90 26992.06 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth88.94 23788.12 24391.40 26395.32 22486.93 23597.85 24495.55 30384.19 29081.97 29591.50 30984.16 15995.91 32584.69 25577.89 31191.36 312
dmvs_re88.69 24888.06 24490.59 28293.83 28578.68 35495.75 33196.18 25087.99 21684.48 25896.32 21367.52 31596.94 26784.98 25285.49 26696.14 248
sd_testset89.23 23288.05 24592.74 23696.80 16285.33 27695.85 32897.03 19488.34 20385.73 24595.26 23961.12 35197.76 22785.61 24586.75 25495.14 254
tpmvs89.16 23387.76 24693.35 22197.19 14384.75 28890.58 38797.36 16181.99 33384.56 25589.31 35983.98 16298.17 19674.85 33890.00 24397.12 221
test_djsdf88.26 25687.73 24789.84 30488.05 37082.21 32197.77 24996.17 25186.84 24582.41 28591.95 30072.07 28095.99 31889.83 19384.50 27291.32 314
gg-mvs-nofinetune90.00 22387.71 24896.89 7996.15 19294.69 4985.15 39997.74 7968.32 39892.97 16160.16 41296.10 496.84 27093.89 14398.87 9399.14 117
VPA-MVSNet89.10 23487.66 24993.45 21992.56 30691.02 12697.97 23898.32 2986.92 24486.03 24392.01 29668.84 30397.10 26190.92 18175.34 32692.23 281
DU-MVS88.83 24287.51 25092.79 23391.46 32890.07 15298.71 15197.62 11188.87 18683.21 26793.68 26574.63 25295.93 32286.95 22772.47 35792.36 275
IterMVS-LS88.34 25387.44 25191.04 27094.10 27185.85 26698.10 22895.48 30785.12 27482.03 29491.21 31581.35 21195.63 33583.86 27075.73 32491.63 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS87.96 25887.39 25289.70 30991.84 32183.40 30598.31 20998.49 2288.04 21478.23 34090.26 34273.57 26496.79 27484.21 26283.53 28388.90 366
CR-MVSNet88.83 24287.38 25393.16 22593.47 29286.24 24984.97 40194.20 35488.92 18590.76 19586.88 37784.43 15694.82 35470.64 36192.17 21198.41 175
ADS-MVSNet88.99 23587.30 25494.07 20396.21 18887.56 21887.15 39396.78 20883.01 31189.91 20987.27 37378.87 23197.01 26474.20 34392.27 20797.64 206
tpm cat188.89 23887.27 25593.76 21595.79 20685.32 27790.76 38597.09 18976.14 37185.72 24788.59 36282.92 18098.04 20676.96 32291.43 22897.90 202
c3_l88.19 25787.23 25691.06 26994.97 24786.17 25497.72 25495.38 31483.43 30481.68 30291.37 31182.81 18295.72 33284.04 26873.70 34491.29 316
WR-MVS88.54 25287.22 25792.52 24091.93 32089.50 16898.56 17697.84 6286.99 23981.87 29893.81 26274.25 26195.92 32485.29 24774.43 33692.12 287
FMVSNet388.81 24487.08 25893.99 20896.52 17294.59 5298.08 23296.20 24685.85 26382.12 29091.60 30774.05 26295.40 34279.04 30780.24 29991.99 292
Anonymous20240521188.84 24087.03 25994.27 19498.14 10584.18 29598.44 19095.58 30276.79 36889.34 21696.88 19253.42 38099.54 11187.53 22387.12 25399.09 124
eth_miper_zixun_eth87.76 26187.00 26090.06 29794.67 25782.65 31897.02 28595.37 31584.19 29081.86 30091.58 30881.47 20895.90 32683.24 27373.61 34591.61 301
ADS-MVSNet287.62 26786.88 26189.86 30396.21 18879.14 35087.15 39392.99 36883.01 31189.91 20987.27 37378.87 23192.80 37674.20 34392.27 20797.64 206
DIV-MVS_self_test87.82 25986.81 26290.87 27694.87 25285.39 27597.81 24595.22 32782.92 31780.76 30991.31 31381.99 20095.81 32981.36 29175.04 32991.42 310
cl____87.82 25986.79 26390.89 27594.88 25185.43 27397.81 24595.24 32282.91 31880.71 31091.22 31481.97 20295.84 32781.34 29275.06 32891.40 311
VPNet88.30 25486.57 26493.49 21891.95 31891.35 11498.18 21997.20 17788.61 19084.52 25794.89 24362.21 34696.76 27589.34 20372.26 36092.36 275
DP-MVS88.75 24686.56 26595.34 15398.92 8187.45 22297.64 26093.52 36570.55 38981.49 30397.25 16874.43 25799.88 5471.14 36094.09 18398.67 163
jajsoiax87.35 26986.51 26689.87 30287.75 37581.74 32597.03 28395.98 26388.47 19380.15 31793.80 26361.47 34896.36 29589.44 20184.47 27391.50 305
MSDG88.29 25586.37 26794.04 20696.90 15886.15 25596.52 30194.36 35177.89 36379.22 32996.95 18669.72 29699.59 10773.20 35192.58 20196.37 246
TranMVSNet+NR-MVSNet87.75 26286.31 26892.07 25090.81 33688.56 19698.33 20697.18 17887.76 22381.87 29893.90 26072.45 27695.43 34083.13 27771.30 36792.23 281
mvs_tets87.09 27286.22 26989.71 30887.87 37181.39 33096.73 29795.90 28088.19 20979.99 31993.61 26859.96 35596.31 30389.40 20284.34 27491.43 309
miper_lstm_enhance86.90 27486.20 27089.00 32494.53 26081.19 33496.74 29695.24 32282.33 32880.15 31790.51 33981.99 20094.68 35880.71 29773.58 34791.12 321
pmmvs487.58 26886.17 27191.80 25689.58 35188.92 18797.25 27495.28 31882.54 32380.49 31293.17 27975.62 24996.05 31782.75 28078.90 30690.42 341
XXY-MVS87.75 26286.02 27292.95 23190.46 34089.70 16497.71 25695.90 28084.02 29280.95 30794.05 25167.51 31697.10 26185.16 24878.41 30892.04 291
NR-MVSNet87.74 26586.00 27392.96 23091.46 32890.68 13596.65 29997.42 15388.02 21573.42 36593.68 26577.31 24395.83 32884.26 26171.82 36492.36 275
MS-PatchMatch86.75 27785.92 27489.22 31991.97 31682.47 32096.91 28796.14 25383.74 29877.73 34293.53 27158.19 36097.37 25276.75 32598.35 11387.84 372
MVP-Stereo86.61 28185.83 27588.93 32688.70 36383.85 30096.07 31994.41 35082.15 33175.64 35391.96 29967.65 31496.45 29177.20 32198.72 10086.51 384
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v2v48287.27 27185.76 27691.78 26089.59 35087.58 21798.56 17695.54 30484.53 28682.51 28191.78 30273.11 27096.47 28982.07 28674.14 34291.30 315
anonymousdsp86.69 27885.75 27789.53 31386.46 38382.94 31096.39 30595.71 29383.97 29479.63 32490.70 32668.85 30295.94 32186.01 23884.02 27789.72 356
V4287.00 27385.68 27890.98 27289.91 34486.08 25798.32 20895.61 30083.67 30182.72 27590.67 32874.00 26396.53 28481.94 28974.28 33990.32 343
Anonymous2024052987.66 26685.58 27993.92 21097.59 12385.01 28398.13 22397.13 18366.69 40388.47 22296.01 22355.09 37299.51 11387.00 22684.12 27697.23 220
RPSCF85.33 30285.55 28084.67 36394.63 25962.28 40293.73 35393.76 35974.38 37985.23 25297.06 18064.09 33798.31 18780.98 29386.08 26293.41 265
WR-MVS_H86.53 28385.49 28189.66 31191.04 33483.31 30797.53 26398.20 3584.95 28179.64 32390.90 32178.01 24095.33 34376.29 32872.81 35390.35 342
test_fmvs285.10 30485.45 28284.02 36689.85 34765.63 40098.49 18592.59 37390.45 13785.43 25193.32 27343.94 39896.59 28090.81 18484.19 27589.85 354
CP-MVSNet86.54 28285.45 28289.79 30691.02 33582.78 31697.38 26897.56 12485.37 27179.53 32693.03 28171.86 28395.25 34579.92 30273.43 35191.34 313
v114486.83 27685.31 28491.40 26389.75 34887.21 23398.31 20995.45 30983.22 30782.70 27690.78 32373.36 26596.36 29579.49 30474.69 33390.63 338
PVSNet_083.28 1687.31 27085.16 28593.74 21694.78 25484.59 28998.91 13498.69 2089.81 15678.59 33693.23 27761.95 34799.34 13794.75 12955.72 40397.30 216
v14886.38 28685.06 28690.37 29289.47 35584.10 29698.52 17995.48 30783.80 29780.93 30890.22 34674.60 25496.31 30380.92 29571.55 36590.69 336
GBi-Net86.67 27984.96 28791.80 25695.11 23788.81 18996.77 29295.25 31982.94 31482.12 29090.25 34362.89 34394.97 34979.04 30780.24 29991.62 298
test186.67 27984.96 28791.80 25695.11 23788.81 18996.77 29295.25 31982.94 31482.12 29090.25 34362.89 34394.97 34979.04 30780.24 29991.62 298
XVG-ACMP-BASELINE85.86 29384.95 28988.57 32889.90 34577.12 36494.30 34695.60 30187.40 23482.12 29092.99 28353.42 38097.66 23285.02 25183.83 27890.92 326
v14419286.40 28584.89 29090.91 27389.48 35485.59 27098.21 21795.43 31282.45 32682.62 27990.58 33572.79 27596.36 29578.45 31474.04 34390.79 330
JIA-IIPM85.97 29184.85 29189.33 31893.23 29973.68 37985.05 40097.13 18369.62 39491.56 18168.03 41088.03 8796.96 26577.89 31793.12 19297.34 215
Baseline_NR-MVSNet85.83 29484.82 29288.87 32788.73 36283.34 30698.63 16491.66 38680.41 35182.44 28291.35 31274.63 25295.42 34184.13 26471.39 36687.84 372
tt080586.50 28484.79 29391.63 26191.97 31681.49 32796.49 30397.38 15782.24 32982.44 28295.82 22751.22 38698.25 19284.55 25880.96 29895.13 256
FMVSNet286.90 27484.79 29393.24 22395.11 23792.54 9797.67 25995.86 28682.94 31480.55 31191.17 31662.89 34395.29 34477.23 31979.71 30591.90 293
v119286.32 28784.71 29591.17 26789.53 35386.40 24498.13 22395.44 31182.52 32482.42 28490.62 33271.58 28796.33 30277.23 31974.88 33090.79 330
IterMVS85.81 29584.67 29689.22 31993.51 29183.67 30296.32 30894.80 33685.09 27678.69 33290.17 34966.57 32493.17 37279.48 30577.42 31890.81 328
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 29884.64 29789.00 32493.46 29482.90 31296.27 30994.70 33985.02 27978.62 33490.35 34166.61 32293.33 36979.38 30677.36 31990.76 332
PS-CasMVS85.81 29584.58 29889.49 31690.77 33782.11 32297.20 27897.36 16184.83 28379.12 33192.84 28467.42 31795.16 34778.39 31573.25 35291.21 319
Syy-MVS84.10 32184.53 29982.83 37295.14 23465.71 39997.68 25796.66 21486.52 25482.63 27796.84 19468.15 30889.89 39545.62 41091.54 22392.87 267
v886.11 28984.45 30091.10 26889.99 34386.85 23697.24 27595.36 31681.99 33379.89 32189.86 35274.53 25696.39 29378.83 31172.32 35990.05 350
v192192086.02 29084.44 30190.77 27989.32 35685.20 27898.10 22895.35 31782.19 33082.25 28890.71 32570.73 29096.30 30676.85 32474.49 33590.80 329
EU-MVSNet84.19 31884.42 30283.52 37088.64 36467.37 39896.04 32095.76 29185.29 27278.44 33793.18 27870.67 29191.48 38975.79 33275.98 32291.70 295
pmmvs585.87 29284.40 30390.30 29388.53 36584.23 29398.60 17193.71 36181.53 33880.29 31592.02 29564.51 33695.52 33782.04 28878.34 30991.15 320
v124085.77 29784.11 30490.73 28089.26 35785.15 28197.88 24295.23 32681.89 33682.16 28990.55 33769.60 29996.31 30375.59 33374.87 33190.72 335
Patchmatch-test86.25 28884.06 30592.82 23294.42 26182.88 31482.88 40894.23 35371.58 38579.39 32790.62 33289.00 6996.42 29263.03 38891.37 23199.16 115
v1085.73 29884.01 30690.87 27690.03 34286.73 23897.20 27895.22 32781.25 34179.85 32289.75 35373.30 26896.28 30776.87 32372.64 35589.61 358
PEN-MVS85.21 30383.93 30789.07 32389.89 34681.31 33297.09 28197.24 17084.45 28878.66 33392.68 28768.44 30694.87 35275.98 33070.92 36891.04 323
UniMVSNet_ETH3D85.65 30083.79 30891.21 26690.41 34180.75 34195.36 33595.78 28878.76 35781.83 30194.33 25049.86 39196.66 27784.30 26083.52 28496.22 247
OurMVSNet-221017-084.13 32083.59 30985.77 35487.81 37270.24 39294.89 34193.65 36386.08 26076.53 34593.28 27661.41 34996.14 31480.95 29477.69 31790.93 325
kuosan84.40 31683.34 31087.60 33695.87 20379.21 34892.39 36796.87 20376.12 37273.79 36293.98 25781.51 20690.63 39164.13 38475.42 32592.95 266
PatchT85.44 30183.19 31192.22 24493.13 30183.00 30983.80 40796.37 23570.62 38890.55 19879.63 40284.81 15394.87 35258.18 40091.59 22098.79 153
AllTest84.97 30683.12 31290.52 28696.82 16078.84 35295.89 32392.17 37877.96 36175.94 34995.50 23255.48 36899.18 14271.15 35887.14 25193.55 263
USDC84.74 30782.93 31390.16 29591.73 32483.54 30495.00 34093.30 36788.77 18873.19 36793.30 27553.62 37997.65 23475.88 33181.54 29689.30 361
COLMAP_ROBcopyleft82.69 1884.54 31282.82 31489.70 30996.72 16678.85 35195.89 32392.83 37171.55 38677.54 34495.89 22659.40 35799.14 14867.26 37588.26 24791.11 322
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
our_test_384.47 31482.80 31589.50 31489.01 35883.90 29997.03 28394.56 34381.33 34075.36 35590.52 33871.69 28594.54 36068.81 36976.84 32090.07 348
DTE-MVSNet84.14 31982.80 31588.14 33188.95 36079.87 34496.81 29196.24 24483.50 30377.60 34392.52 28967.89 31394.24 36372.64 35569.05 37290.32 343
pm-mvs184.68 30982.78 31790.40 28989.58 35185.18 27997.31 27094.73 33881.93 33576.05 34892.01 29665.48 33296.11 31578.75 31269.14 37189.91 353
v7n84.42 31582.75 31889.43 31788.15 36881.86 32496.75 29595.67 29780.53 34778.38 33889.43 35769.89 29496.35 30073.83 34772.13 36190.07 348
LTVRE_ROB81.71 1984.59 31182.72 31990.18 29492.89 30483.18 30893.15 35894.74 33778.99 35475.14 35692.69 28665.64 32997.63 23569.46 36581.82 29589.74 355
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023121184.72 30882.65 32090.91 27397.71 11684.55 29097.28 27296.67 21366.88 40279.18 33090.87 32258.47 35996.60 27982.61 28274.20 34091.59 303
ACMH83.09 1784.60 31082.61 32190.57 28393.18 30082.94 31096.27 30994.92 33281.01 34472.61 37493.61 26856.54 36497.79 22074.31 34181.07 29790.99 324
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mmtdpeth83.69 32382.59 32286.99 34392.82 30576.98 36596.16 31791.63 38782.89 31992.41 16882.90 38854.95 37398.19 19596.27 9153.27 40685.81 388
ACMH+83.78 1584.21 31782.56 32389.15 32193.73 28879.16 34996.43 30494.28 35281.09 34374.00 36194.03 25454.58 37597.67 23176.10 32978.81 30790.63 338
RPMNet85.07 30581.88 32494.64 18293.47 29286.24 24984.97 40197.21 17364.85 40590.76 19578.80 40380.95 21599.27 14053.76 40492.17 21198.41 175
MIMVSNet84.48 31381.83 32592.42 24291.73 32487.36 22585.52 39694.42 34981.40 33981.91 29687.58 36751.92 38392.81 37573.84 34688.15 24897.08 225
Patchmtry83.61 32681.64 32689.50 31493.36 29682.84 31584.10 40494.20 35469.47 39579.57 32586.88 37784.43 15694.78 35568.48 37174.30 33890.88 327
SixPastTwentyTwo82.63 32981.58 32785.79 35388.12 36971.01 39095.17 33892.54 37484.33 28972.93 37292.08 29360.41 35495.61 33674.47 34074.15 34190.75 333
ppachtmachnet_test83.63 32581.57 32889.80 30589.01 35885.09 28297.13 28094.50 34478.84 35576.14 34791.00 31869.78 29594.61 35963.40 38674.36 33789.71 357
DSMNet-mixed81.60 33581.43 32982.10 37584.36 39060.79 40393.63 35586.74 40879.00 35379.32 32887.15 37563.87 33989.78 39766.89 37791.92 21395.73 252
tfpnnormal83.65 32481.35 33090.56 28591.37 33088.06 20697.29 27197.87 5978.51 35876.20 34690.91 32064.78 33596.47 28961.71 39173.50 34887.13 381
FMVSNet183.94 32281.32 33191.80 25691.94 31988.81 18996.77 29295.25 31977.98 35978.25 33990.25 34350.37 39094.97 34973.27 35077.81 31691.62 298
LF4IMVS81.94 33381.17 33284.25 36587.23 37968.87 39793.35 35791.93 38383.35 30675.40 35493.00 28249.25 39496.65 27878.88 31078.11 31087.22 380
testgi82.29 33081.00 33386.17 34987.24 37874.84 37597.39 26691.62 38888.63 18975.85 35295.42 23546.07 39791.55 38866.87 37879.94 30392.12 287
dongtai81.36 33680.61 33483.62 36994.25 27073.32 38195.15 33996.81 20573.56 38269.79 37992.81 28581.00 21486.80 40652.08 40770.06 37090.75 333
FMVSNet582.29 33080.54 33587.52 33793.79 28784.01 29793.73 35392.47 37576.92 36674.27 35986.15 38163.69 34189.24 40069.07 36874.79 33289.29 362
KD-MVS_2432*160082.98 32780.52 33690.38 29094.32 26588.98 18192.87 36295.87 28480.46 34973.79 36287.49 37082.76 18593.29 37070.56 36246.53 41488.87 367
miper_refine_blended82.98 32780.52 33690.38 29094.32 26588.98 18192.87 36295.87 28480.46 34973.79 36287.49 37082.76 18593.29 37070.56 36246.53 41488.87 367
Patchmatch-RL test81.90 33480.13 33887.23 34180.71 40170.12 39484.07 40588.19 40683.16 30970.57 37682.18 39387.18 10392.59 37882.28 28562.78 38898.98 131
CMPMVSbinary58.40 2180.48 34080.11 33981.59 37885.10 38859.56 40594.14 35095.95 26868.54 39760.71 40193.31 27455.35 37197.87 21583.06 27884.85 27087.33 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_rt81.31 33780.05 34085.11 35791.29 33170.66 39198.98 12877.39 42085.76 26668.80 38382.40 39136.56 40799.44 12292.67 16686.55 25685.24 395
K. test v381.04 33879.77 34184.83 36187.41 37670.23 39395.60 33493.93 35883.70 30067.51 39089.35 35855.76 36693.58 36876.67 32668.03 37590.67 337
TransMVSNet (Re)81.97 33279.61 34289.08 32289.70 34984.01 29797.26 27391.85 38478.84 35573.07 37191.62 30667.17 31995.21 34667.50 37459.46 39788.02 371
Anonymous2023120680.76 33979.42 34384.79 36284.78 38972.98 38296.53 30092.97 36979.56 35274.33 35888.83 36061.27 35092.15 38460.59 39475.92 32389.24 363
dmvs_testset77.17 35978.99 34471.71 38887.25 37738.55 42591.44 37781.76 41685.77 26569.49 38195.94 22569.71 29784.37 40852.71 40676.82 32192.21 283
CL-MVSNet_self_test79.89 34478.34 34584.54 36481.56 39975.01 37396.88 28995.62 29981.10 34275.86 35185.81 38268.49 30590.26 39363.21 38756.51 40188.35 369
TinyColmap80.42 34177.94 34687.85 33392.09 31478.58 35593.74 35289.94 39874.99 37569.77 38091.78 30246.09 39697.58 23965.17 38377.89 31187.38 376
ttmdpeth79.80 34577.91 34785.47 35683.34 39475.75 36995.32 33691.45 39176.84 36774.81 35791.71 30553.98 37894.13 36472.42 35661.29 39286.51 384
EG-PatchMatch MVS79.92 34277.59 34886.90 34487.06 38077.90 36296.20 31694.06 35674.61 37766.53 39488.76 36140.40 40596.20 31067.02 37683.66 28286.61 382
test20.0378.51 35377.48 34981.62 37783.07 39571.03 38996.11 31892.83 37181.66 33769.31 38289.68 35457.53 36187.29 40558.65 39968.47 37386.53 383
pmmvs679.90 34377.31 35087.67 33584.17 39178.13 35995.86 32793.68 36267.94 39972.67 37389.62 35550.98 38895.75 33074.80 33966.04 38289.14 364
MDA-MVSNet_test_wron79.65 34677.05 35187.45 33987.79 37480.13 34296.25 31294.44 34573.87 38051.80 40887.47 37268.04 31092.12 38566.02 37967.79 37790.09 346
YYNet179.64 34777.04 35287.43 34087.80 37379.98 34396.23 31394.44 34573.83 38151.83 40787.53 36867.96 31292.07 38666.00 38067.75 37890.23 345
Anonymous2024052178.63 35276.90 35383.82 36782.82 39672.86 38395.72 33293.57 36473.55 38372.17 37584.79 38449.69 39292.51 38065.29 38274.50 33486.09 387
UnsupCasMVSNet_eth78.90 34976.67 35485.58 35582.81 39774.94 37491.98 37096.31 23884.64 28565.84 39687.71 36651.33 38592.23 38372.89 35356.50 40289.56 359
test_040278.81 35076.33 35586.26 34891.18 33278.44 35795.88 32591.34 39268.55 39670.51 37889.91 35152.65 38294.99 34847.14 40979.78 30485.34 394
pmmvs-eth3d78.71 35176.16 35686.38 34680.25 40481.19 33494.17 34992.13 38077.97 36066.90 39382.31 39255.76 36692.56 37973.63 34962.31 39185.38 392
KD-MVS_self_test77.47 35875.88 35782.24 37381.59 39868.93 39692.83 36494.02 35777.03 36573.14 36883.39 38755.44 37090.42 39267.95 37257.53 40087.38 376
mvs5depth78.17 35475.56 35885.97 35180.43 40376.44 36785.46 39789.24 40376.39 36978.17 34188.26 36351.73 38495.73 33169.31 36761.09 39385.73 389
TDRefinement78.01 35575.31 35986.10 35070.06 41573.84 37893.59 35691.58 38974.51 37873.08 37091.04 31749.63 39397.12 25874.88 33759.47 39687.33 378
test_fmvs375.09 36475.19 36074.81 38577.45 40854.08 41195.93 32190.64 39582.51 32573.29 36681.19 39622.29 41486.29 40785.50 24667.89 37684.06 398
MVS-HIRNet79.01 34875.13 36190.66 28193.82 28681.69 32685.16 39893.75 36054.54 40874.17 36059.15 41457.46 36296.58 28163.74 38594.38 18093.72 262
OpenMVS_ROBcopyleft73.86 2077.99 35675.06 36286.77 34583.81 39377.94 36196.38 30691.53 39067.54 40068.38 38587.13 37643.94 39896.08 31655.03 40381.83 29486.29 386
MDA-MVSNet-bldmvs77.82 35774.75 36387.03 34288.33 36678.52 35696.34 30792.85 37075.57 37348.87 41087.89 36557.32 36392.49 38160.79 39364.80 38690.08 347
mvsany_test375.85 36374.52 36479.83 38073.53 41260.64 40491.73 37387.87 40783.91 29670.55 37782.52 39031.12 40993.66 36686.66 23362.83 38785.19 396
new_pmnet76.02 36173.71 36582.95 37183.88 39272.85 38491.26 38092.26 37770.44 39062.60 39981.37 39547.64 39592.32 38261.85 39072.10 36283.68 400
MVStest176.56 36073.43 36685.96 35286.30 38580.88 34094.26 34791.74 38561.98 40758.53 40389.96 35069.30 30091.47 39059.26 39749.56 41285.52 391
MIMVSNet175.92 36273.30 36783.81 36881.29 40075.57 37192.26 36892.05 38173.09 38467.48 39186.18 38040.87 40487.64 40455.78 40270.68 36988.21 370
PM-MVS74.88 36572.85 36880.98 37978.98 40664.75 40190.81 38485.77 40980.95 34568.23 38782.81 38929.08 41192.84 37476.54 32762.46 39085.36 393
new-patchmatchnet74.80 36672.40 36981.99 37678.36 40772.20 38694.44 34492.36 37677.06 36463.47 39879.98 40151.04 38788.85 40160.53 39554.35 40484.92 397
test_f71.94 36970.82 37075.30 38472.77 41353.28 41291.62 37489.66 40175.44 37464.47 39778.31 40420.48 41589.56 39878.63 31366.02 38383.05 403
UnsupCasMVSNet_bld73.85 36770.14 37184.99 35979.44 40575.73 37088.53 39095.24 32270.12 39261.94 40074.81 40741.41 40393.62 36768.65 37051.13 41085.62 390
N_pmnet70.19 37069.87 37271.12 39088.24 36730.63 42995.85 32828.70 42870.18 39168.73 38486.55 37964.04 33893.81 36553.12 40573.46 34988.94 365
pmmvs372.86 36869.76 37382.17 37473.86 41174.19 37794.20 34889.01 40464.23 40667.72 38880.91 39941.48 40288.65 40262.40 38954.02 40583.68 400
test_method70.10 37168.66 37474.41 38786.30 38555.84 40994.47 34389.82 39935.18 41666.15 39584.75 38530.54 41077.96 41770.40 36460.33 39589.44 360
APD_test168.93 37266.98 37574.77 38680.62 40253.15 41387.97 39185.01 41153.76 40959.26 40287.52 36925.19 41289.95 39456.20 40167.33 37981.19 404
WB-MVS66.44 37366.29 37666.89 39374.84 40944.93 42093.00 35984.09 41471.15 38755.82 40581.63 39463.79 34080.31 41521.85 41950.47 41175.43 406
SSC-MVS65.42 37465.20 37766.06 39473.96 41043.83 42192.08 36983.54 41569.77 39354.73 40680.92 39863.30 34279.92 41620.48 42048.02 41374.44 407
FPMVS61.57 37560.32 37865.34 39560.14 42242.44 42391.02 38389.72 40044.15 41142.63 41480.93 39719.02 41680.59 41442.50 41172.76 35473.00 408
test_vis3_rt61.29 37658.75 37968.92 39267.41 41652.84 41491.18 38259.23 42766.96 40141.96 41558.44 41511.37 42394.72 35774.25 34257.97 39959.20 414
LCM-MVSNet60.07 37856.37 38071.18 38954.81 42448.67 41782.17 40989.48 40237.95 41449.13 40969.12 40813.75 42281.76 40959.28 39651.63 40983.10 402
EGC-MVSNET60.70 37755.37 38176.72 38286.35 38471.08 38889.96 38884.44 4130.38 4251.50 42684.09 38637.30 40688.10 40340.85 41473.44 35070.97 410
PMMVS258.97 37955.07 38270.69 39162.72 41955.37 41085.97 39580.52 41749.48 41045.94 41168.31 40915.73 42080.78 41349.79 40837.12 41675.91 405
testf156.38 38053.73 38364.31 39764.84 41745.11 41880.50 41075.94 42238.87 41242.74 41275.07 40511.26 42481.19 41141.11 41253.27 40666.63 411
APD_test256.38 38053.73 38364.31 39764.84 41745.11 41880.50 41075.94 42238.87 41242.74 41275.07 40511.26 42481.19 41141.11 41253.27 40666.63 411
tmp_tt53.66 38352.86 38556.05 40032.75 42841.97 42473.42 41476.12 42121.91 42139.68 41796.39 21142.59 40165.10 42078.00 31614.92 42161.08 413
Gipumacopyleft54.77 38252.22 38662.40 39986.50 38259.37 40650.20 41790.35 39736.52 41541.20 41649.49 41718.33 41881.29 41032.10 41665.34 38446.54 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high50.71 38446.17 38764.33 39644.27 42652.30 41576.13 41378.73 41864.95 40427.37 41955.23 41614.61 42167.74 41936.01 41518.23 41972.95 409
PMVScopyleft41.42 2345.67 38542.50 38855.17 40134.28 42732.37 42766.24 41578.71 41930.72 41722.04 42259.59 4134.59 42677.85 41827.49 41758.84 39855.29 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN41.02 38740.93 38941.29 40361.97 42033.83 42684.00 40665.17 42527.17 41827.56 41846.72 41917.63 41960.41 42219.32 42118.82 41829.61 418
EMVS39.96 38839.88 39040.18 40459.57 42332.12 42884.79 40364.57 42626.27 41926.14 42044.18 42218.73 41759.29 42317.03 42217.67 42029.12 419
MVEpermissive44.00 2241.70 38637.64 39153.90 40249.46 42543.37 42265.09 41666.66 42426.19 42025.77 42148.53 4183.58 42863.35 42126.15 41827.28 41754.97 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k22.52 38930.03 3920.00 4080.00 4310.00 4330.00 41997.17 1790.00 4260.00 42798.77 8874.35 2590.00 4270.00 4260.00 4250.00 423
testmvs18.81 39023.05 3936.10 4074.48 4292.29 43297.78 2473.00 4303.27 42318.60 42362.71 4111.53 4302.49 42614.26 4241.80 42313.50 421
test12316.58 39219.47 3947.91 4063.59 4305.37 43194.32 3451.39 4312.49 42413.98 42444.60 4212.91 4292.65 42511.35 4250.57 42415.70 420
wuyk23d16.71 39116.73 39516.65 40560.15 42125.22 43041.24 4185.17 4296.56 4225.48 4253.61 4253.64 42722.72 42415.20 4239.52 4221.99 422
ab-mvs-re8.21 39310.94 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42798.50 1120.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.87 3949.16 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42682.48 1910.00 4270.00 4260.00 4250.00 423
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS79.74 34567.75 373
FOURS199.50 4288.94 18499.55 4497.47 14391.32 11598.12 46
MSC_two_6792asdad99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
PC_three_145294.60 3799.41 499.12 4995.50 799.96 2899.84 299.92 399.97 7
No_MVS99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
test_one_060199.59 2894.89 3797.64 10593.14 7398.93 2199.45 1493.45 18
eth-test20.00 431
eth-test0.00 431
ZD-MVS99.67 1093.28 7797.61 11287.78 22297.41 6399.16 3990.15 5699.56 10898.35 4599.70 37
IU-MVS99.63 1895.38 2497.73 8295.54 2699.54 399.69 799.81 2399.99 1
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3395.12 899.97 2199.90 199.92 399.99 1
test_241102_TWO97.72 8394.17 4499.23 1099.54 393.14 2599.98 999.70 599.82 1999.99 1
test_241102_ONE99.63 1895.24 2797.72 8394.16 4699.30 899.49 993.32 2099.98 9
save fliter99.34 5093.85 6799.65 3697.63 10995.69 22
test_0728_THIRD93.01 7499.07 1599.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9299.98 999.64 899.82 1999.96 10
test072699.66 1295.20 3299.77 1897.70 8893.95 4999.35 799.54 393.18 23
GSMVS98.84 146
test_part299.54 3695.42 2298.13 44
sam_mvs188.39 7898.84 146
sam_mvs87.08 106
ambc79.60 38172.76 41456.61 40876.20 41292.01 38268.25 38680.23 40023.34 41394.73 35673.78 34860.81 39487.48 375
MTGPAbinary97.45 146
test_post190.74 38641.37 42385.38 14596.36 29583.16 275
test_post46.00 42087.37 9797.11 259
patchmatchnet-post84.86 38388.73 7496.81 272
GG-mvs-BLEND96.98 7196.53 17194.81 4487.20 39297.74 7993.91 14696.40 20996.56 296.94 26795.08 12198.95 8999.20 113
MTMP99.21 9091.09 393
gm-plane-assit94.69 25688.14 20488.22 20897.20 17198.29 18990.79 185
test9_res98.60 3399.87 999.90 22
TEST999.57 3393.17 8099.38 7297.66 9789.57 16498.39 3799.18 3690.88 4299.66 97
test_899.55 3593.07 8399.37 7597.64 10590.18 14498.36 3999.19 3390.94 3999.64 103
agg_prior297.84 5999.87 999.91 21
agg_prior99.54 3692.66 9397.64 10597.98 5399.61 105
TestCases90.52 28696.82 16078.84 35292.17 37877.96 36175.94 34995.50 23255.48 36899.18 14271.15 35887.14 25193.55 263
test_prior492.00 10399.41 69
test_prior299.57 4291.43 11298.12 4698.97 6590.43 4998.33 4699.81 23
test_prior97.01 6699.58 3091.77 10697.57 12399.49 11599.79 38
旧先验298.67 15885.75 26798.96 2098.97 15793.84 145
新几何298.26 212
新几何197.40 5198.92 8192.51 9897.77 7785.52 26996.69 8999.06 5688.08 8699.89 5384.88 25399.62 4699.79 38
旧先验198.97 7392.90 9197.74 7999.15 4291.05 3899.33 6599.60 73
无先验98.52 17997.82 6687.20 23799.90 5087.64 22299.85 30
原ACMM298.69 155
原ACMM196.18 11799.03 7190.08 15197.63 10988.98 18097.00 7598.97 6588.14 8599.71 9388.23 21599.62 4698.76 158
test22298.32 9691.21 11698.08 23297.58 12083.74 29895.87 10599.02 6186.74 11499.64 4299.81 35
testdata299.88 5484.16 263
segment_acmp90.56 47
testdata95.26 15898.20 10187.28 22897.60 11485.21 27398.48 3599.15 4288.15 8498.72 16990.29 19099.45 5999.78 41
testdata197.89 24092.43 88
test1297.83 3599.33 5394.45 5497.55 12597.56 5988.60 7699.50 11499.71 3699.55 77
plane_prior793.84 28385.73 268
plane_prior693.92 28086.02 26172.92 272
plane_prior596.30 23997.75 22893.46 15486.17 26092.67 271
plane_prior496.52 205
plane_prior385.91 26393.65 6286.99 235
plane_prior299.02 12293.38 69
plane_prior193.90 282
plane_prior86.07 25999.14 10693.81 5986.26 259
n20.00 432
nn0.00 432
door-mid84.90 412
lessismore_v085.08 35885.59 38769.28 39590.56 39667.68 38990.21 34754.21 37795.46 33973.88 34562.64 38990.50 340
LGP-MVS_train90.06 29793.35 29780.95 33895.94 26987.73 22683.17 26996.11 21966.28 32697.77 22290.19 19185.19 26791.46 307
test1197.68 92
door85.30 410
HQP5-MVS86.39 245
HQP-NCC93.95 27699.16 9893.92 5187.57 228
ACMP_Plane93.95 27699.16 9893.92 5187.57 228
BP-MVS93.82 147
HQP4-MVS87.57 22897.77 22292.72 269
HQP3-MVS96.37 23586.29 257
HQP2-MVS73.34 266
NP-MVS93.94 27986.22 25196.67 203
MDTV_nov1_ep13_2view91.17 11991.38 37887.45 23393.08 15986.67 11787.02 22598.95 137
ACMMP++_ref82.64 291
ACMMP++83.83 278
Test By Simon83.62 165
ITE_SJBPF87.93 33292.26 31176.44 36793.47 36687.67 22979.95 32095.49 23456.50 36597.38 25075.24 33482.33 29389.98 352
DeepMVS_CXcopyleft76.08 38390.74 33851.65 41690.84 39486.47 25757.89 40487.98 36435.88 40892.60 37765.77 38165.06 38583.97 399