This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 25100.00 198.99 2599.90 799.96 10
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 13699.41 6897.70 8395.46 2898.60 2999.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1197.88 5696.54 1398.84 2499.46 1092.55 2799.98 998.25 4699.93 199.94 18
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1797.72 7894.17 4399.30 899.54 393.32 1999.98 999.70 499.81 2399.99 1
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4497.68 8793.01 7099.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2397.47 13593.95 4899.07 1599.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8197.72 7894.50 3798.64 2899.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
patch_mono-297.10 2597.97 894.49 16899.21 6183.73 28499.62 3798.25 3295.28 3099.38 698.91 7592.28 2899.94 3499.61 999.22 7099.78 38
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9499.33 1992.62 26100.00 198.99 2599.93 199.98 6
DeepPCF-MVS93.56 196.55 3997.84 1092.68 22098.71 8578.11 34199.70 2697.71 8298.18 197.36 6299.76 190.37 4799.94 3499.27 1699.54 5299.99 1
fmvsm_l_conf0.5_n_a97.70 1197.80 1197.42 4597.59 11692.91 8299.86 498.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9899.40 85
fmvsm_l_conf0.5_n97.65 1297.72 1297.41 4697.51 12092.78 8499.85 798.05 4696.78 899.60 199.23 2690.42 4599.92 4099.55 1298.50 10399.55 72
HPM-MVS++copyleft97.72 1097.59 1398.14 2399.53 4094.76 4299.19 8797.75 7395.66 2498.21 4099.29 2091.10 3399.99 597.68 5599.87 999.68 56
test_fmvsm_n_192097.08 2697.55 1495.67 12697.94 10489.61 15599.93 198.48 2497.08 599.08 1499.13 4488.17 6899.93 3899.11 2399.06 7597.47 193
APDe-MVScopyleft97.53 1397.47 1597.70 3699.58 3093.63 6499.56 4397.52 12593.59 6398.01 5099.12 4690.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + MP.97.44 1797.46 1697.39 4899.12 6593.49 6998.52 16797.50 13094.46 3898.99 1798.64 9991.58 3099.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++97.50 1697.45 1797.63 3899.65 1693.21 7299.70 2698.13 4294.61 3597.78 5599.46 1089.85 5199.81 7997.97 5099.91 699.88 26
SD-MVS97.51 1597.40 1897.81 3499.01 7293.79 6399.33 7897.38 14893.73 5998.83 2599.02 5890.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP97.25 1897.34 1997.01 6097.38 12291.46 10299.75 2197.66 9194.14 4798.13 4299.26 2192.16 2999.66 9497.91 5299.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
DPM-MVS97.86 897.25 2099.68 198.25 9399.10 199.76 2097.78 7096.61 1298.15 4199.53 793.62 17100.00 191.79 15799.80 2699.94 18
MVS_030497.53 1397.15 2198.67 1197.30 12696.52 1299.60 3898.88 1497.14 497.21 6698.94 7286.89 9699.91 4599.43 1598.91 8699.59 71
train_agg97.20 2297.08 2297.57 4299.57 3393.17 7399.38 7197.66 9190.18 13498.39 3599.18 3390.94 3599.66 9498.58 3699.85 1399.88 26
SMA-MVScopyleft97.24 1996.99 2398.00 2999.30 5494.20 5599.16 9397.65 9689.55 15499.22 1299.52 890.34 4899.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS97.22 2196.92 2498.12 2699.11 6694.88 3599.44 6297.45 13889.60 15098.70 2699.42 1790.42 4599.72 8998.47 3899.65 3899.77 43
TSAR-MVS + GP.96.95 2896.91 2597.07 5798.88 7991.62 9899.58 4196.54 20795.09 3296.84 7698.63 10191.16 3199.77 8599.04 2496.42 14499.81 33
9.1496.87 2699.34 5099.50 5197.49 13289.41 15798.59 3099.43 1689.78 5299.69 9198.69 3099.62 44
CHOSEN 280x42096.80 3296.85 2796.66 8497.85 10794.42 5194.76 32198.36 2992.50 8195.62 10597.52 14897.92 197.38 23398.31 4498.80 9198.20 176
test_fmvsmconf_n96.78 3396.84 2896.61 8595.99 18290.25 13199.90 298.13 4296.68 1198.42 3498.92 7485.34 13199.88 5499.12 2299.08 7399.70 52
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2499.61 2494.45 4998.85 13197.64 9796.51 1695.88 9799.39 1887.35 8799.99 596.61 7799.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.24 1996.83 3098.47 1599.79 595.71 1899.07 10999.06 1094.45 4096.42 8898.70 9588.81 6199.74 8895.35 10199.86 1299.97 7
APD-MVScopyleft96.95 2896.72 3197.63 3899.51 4193.58 6599.16 9397.44 14190.08 13998.59 3099.07 5189.06 5799.42 12397.92 5199.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.69 3496.69 3296.72 8098.58 8891.00 11699.14 10199.45 193.86 5495.15 11398.73 8988.48 6499.76 8697.23 6399.56 5099.40 85
EPNet96.82 3196.68 3397.25 5398.65 8693.10 7599.48 5398.76 1596.54 1397.84 5498.22 12287.49 8099.66 9495.35 10197.78 11899.00 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS97.12 2496.60 3498.68 1098.03 10296.57 1199.84 897.84 5996.36 1895.20 11298.24 12188.17 6899.83 7396.11 8699.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_s_conf0.5_n96.19 4896.49 3595.30 13997.37 12389.16 16099.86 498.47 2595.68 2398.87 2299.15 3982.44 18099.92 4099.14 2197.43 12796.83 212
CANet97.00 2796.49 3598.55 1298.86 8096.10 1699.83 997.52 12595.90 1997.21 6698.90 7682.66 17399.93 3898.71 2998.80 9199.63 64
PHI-MVS96.65 3696.46 3797.21 5499.34 5091.77 9599.70 2698.05 4686.48 24098.05 4799.20 2989.33 5599.96 2898.38 3999.62 4499.90 22
PS-MVSNAJ96.87 3096.40 3898.29 1997.35 12497.29 599.03 11597.11 17295.83 2098.97 1999.14 4282.48 17699.60 10398.60 3399.08 7398.00 180
XVS96.47 4096.37 3996.77 7499.62 2290.66 12599.43 6597.58 11292.41 8596.86 7498.96 6687.37 8399.87 5895.65 9299.43 5999.78 38
CS-MVS-test95.98 5496.34 4094.90 15398.06 10187.66 19899.69 3396.10 23593.66 6098.35 3899.05 5486.28 11297.66 21596.96 6998.90 8799.37 88
HFP-MVS96.42 4196.26 4196.90 6999.69 890.96 11799.47 5597.81 6590.54 12596.88 7399.05 5487.57 7899.96 2895.65 9299.72 3199.78 38
fmvsm_s_conf0.5_n_a95.97 5596.19 4295.31 13896.51 15789.01 16699.81 1198.39 2795.46 2899.19 1399.16 3681.44 19499.91 4598.83 2896.97 13697.01 208
CS-MVS95.75 6796.19 4294.40 17297.88 10686.22 23599.66 3496.12 23492.69 7898.07 4698.89 7887.09 9097.59 22196.71 7298.62 9999.39 87
dcpmvs_295.67 6996.18 4494.12 18598.82 8184.22 27797.37 25295.45 28690.70 11895.77 10198.63 10190.47 4398.68 16499.20 2099.22 7099.45 81
ACMMP_NAP96.59 3796.18 4497.81 3498.82 8193.55 6698.88 13097.59 11090.66 11997.98 5199.14 4286.59 104100.00 196.47 8199.46 5599.89 25
CDPH-MVS96.56 3896.18 4497.70 3699.59 2893.92 6099.13 10497.44 14189.02 16697.90 5399.22 2788.90 6099.49 11294.63 11999.79 2799.68 56
xiu_mvs_v2_base96.66 3596.17 4798.11 2797.11 13796.96 699.01 11897.04 17995.51 2798.86 2399.11 5082.19 18499.36 13098.59 3598.14 11198.00 180
region2R96.30 4596.17 4796.70 8199.70 790.31 13099.46 5997.66 9190.55 12497.07 7199.07 5186.85 9799.97 2195.43 9999.74 2999.81 33
SR-MVS96.13 4996.16 4996.07 11099.42 4789.04 16498.59 16297.33 15290.44 12896.84 7699.12 4686.75 9999.41 12697.47 5899.44 5899.76 45
CP-MVS96.22 4796.15 5096.42 9799.67 1089.62 15499.70 2697.61 10490.07 14096.00 9399.16 3687.43 8199.92 4096.03 8899.72 3199.70 52
ACMMPR96.28 4696.14 5196.73 7899.68 990.47 12899.47 5597.80 6790.54 12596.83 7899.03 5686.51 10899.95 3195.65 9299.72 3199.75 46
ETV-MVS96.00 5296.00 5296.00 11496.56 15491.05 11499.63 3696.61 19993.26 6897.39 6198.30 11986.62 10398.13 18298.07 4997.57 12198.82 140
lupinMVS96.32 4495.94 5397.44 4495.05 22394.87 3699.86 496.50 20993.82 5798.04 4898.77 8585.52 12398.09 18596.98 6898.97 8199.37 88
MVS_111021_LR95.78 6495.94 5395.28 14098.19 9787.69 19598.80 13699.26 793.39 6595.04 11598.69 9684.09 14599.76 8696.96 6999.06 7598.38 165
PAPM96.35 4295.94 5397.58 4094.10 24895.25 2498.93 12598.17 3794.26 4293.94 13198.72 9189.68 5397.88 19796.36 8299.29 6799.62 66
SR-MVS-dyc-post95.75 6795.86 5695.41 13499.22 5987.26 21498.40 18597.21 16089.63 14896.67 8498.97 6286.73 10199.36 13096.62 7599.31 6599.60 67
MP-MVScopyleft96.00 5295.82 5796.54 9199.47 4690.13 13899.36 7597.41 14590.64 12295.49 10798.95 6985.51 12599.98 996.00 8999.59 4999.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR96.35 4295.82 5797.94 3199.63 1894.19 5699.42 6797.55 11792.43 8293.82 13599.12 4687.30 8899.91 4594.02 12699.06 7599.74 47
ZNCC-MVS96.09 5095.81 5996.95 6899.42 4791.19 10699.55 4497.53 12189.72 14595.86 9998.94 7286.59 10499.97 2195.13 10599.56 5099.68 56
MTAPA96.09 5095.80 6096.96 6799.29 5591.19 10697.23 26097.45 13892.58 7994.39 12499.24 2586.43 11099.99 596.22 8399.40 6299.71 51
test_fmvsmconf0.1_n95.94 5895.79 6196.40 9992.42 28589.92 14799.79 1696.85 19096.53 1597.22 6598.67 9782.71 17299.84 6998.92 2798.98 8099.43 84
mPP-MVS95.90 6095.75 6296.38 10099.58 3089.41 15899.26 8497.41 14590.66 11994.82 11798.95 6986.15 11699.98 995.24 10499.64 4099.74 47
RE-MVS-def95.70 6399.22 5987.26 21498.40 18597.21 16089.63 14896.67 8498.97 6285.24 13296.62 7599.31 6599.60 67
fmvsm_s_conf0.1_n95.56 7195.68 6495.20 14294.35 24289.10 16299.50 5197.67 9094.76 3498.68 2799.03 5681.13 19799.86 6398.63 3297.36 12996.63 215
GST-MVS95.97 5595.66 6596.90 6999.49 4591.22 10499.45 6197.48 13389.69 14695.89 9698.72 9186.37 11199.95 3194.62 12099.22 7099.52 75
PVSNet_Blended95.94 5895.66 6596.75 7698.77 8391.61 9999.88 398.04 4893.64 6294.21 12697.76 13583.50 15199.87 5897.41 5997.75 11998.79 143
APD-MVS_3200maxsize95.64 7095.65 6795.62 12899.24 5887.80 19498.42 18097.22 15988.93 17196.64 8698.98 6185.49 12699.36 13096.68 7499.27 6899.70 52
PGM-MVS95.85 6195.65 6796.45 9599.50 4289.77 15198.22 20198.90 1389.19 16196.74 8198.95 6985.91 12099.92 4093.94 12899.46 5599.66 60
EI-MVSNet-Vis-set95.76 6695.63 6996.17 10799.14 6490.33 12998.49 17397.82 6291.92 9594.75 11898.88 8087.06 9299.48 11695.40 10097.17 13498.70 150
test_fmvsmvis_n_192095.47 7295.40 7095.70 12494.33 24390.22 13499.70 2696.98 18696.80 792.75 14698.89 7882.46 17999.92 4098.36 4098.33 10796.97 209
MP-MVS-pluss95.80 6395.30 7197.29 5098.95 7692.66 8598.59 16297.14 16888.95 16993.12 14299.25 2385.62 12299.94 3496.56 7999.48 5499.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set95.43 7395.29 7295.86 11999.07 7089.87 14898.43 17997.80 6791.78 9794.11 12898.77 8586.25 11499.48 11694.95 11296.45 14398.22 174
EIA-MVS95.11 8195.27 7394.64 16596.34 16586.51 22399.59 4096.62 19892.51 8094.08 12998.64 9986.05 11798.24 17995.07 10798.50 10399.18 105
HPM-MVScopyleft95.41 7595.22 7495.99 11599.29 5589.14 16199.17 9297.09 17687.28 22195.40 10898.48 11284.93 13599.38 12895.64 9699.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EC-MVSNet95.09 8295.17 7594.84 15695.42 20088.17 18699.48 5395.92 25291.47 10397.34 6398.36 11682.77 16897.41 23297.24 6298.58 10098.94 128
fmvsm_s_conf0.1_n_a95.16 8095.15 7695.18 14392.06 29188.94 17099.29 8197.53 12194.46 3898.98 1898.99 6079.99 20299.85 6798.24 4796.86 13896.73 213
DP-MVS Recon95.85 6195.15 7697.95 3099.87 294.38 5299.60 3897.48 13386.58 23594.42 12399.13 4487.36 8699.98 993.64 13598.33 10799.48 79
WTY-MVS95.97 5595.11 7898.54 1397.62 11396.65 999.44 6298.74 1692.25 8995.21 11198.46 11586.56 10699.46 11895.00 11092.69 18699.50 78
mvsany_test194.57 9995.09 7992.98 21195.84 18682.07 30598.76 14295.24 29992.87 7796.45 8798.71 9484.81 13899.15 14197.68 5595.49 16297.73 185
PAPM_NR95.43 7395.05 8096.57 9099.42 4790.14 13698.58 16497.51 12790.65 12192.44 15098.90 7687.77 7799.90 5090.88 16599.32 6499.68 56
alignmvs95.77 6595.00 8198.06 2897.35 12495.68 1999.71 2597.50 13091.50 10296.16 9298.61 10386.28 11299.00 15096.19 8491.74 20399.51 77
jason95.40 7694.86 8297.03 5992.91 28094.23 5499.70 2696.30 22093.56 6496.73 8298.52 10681.46 19397.91 19496.08 8798.47 10598.96 123
jason: jason.
CSCG94.87 8694.71 8395.36 13599.54 3686.49 22499.34 7798.15 4082.71 30290.15 18799.25 2389.48 5499.86 6394.97 11198.82 9099.72 50
HPM-MVS_fast94.89 8594.62 8495.70 12499.11 6688.44 18499.14 10197.11 17285.82 24895.69 10398.47 11383.46 15399.32 13593.16 14399.63 4399.35 90
test_yl95.27 7894.60 8597.28 5198.53 8992.98 7999.05 11298.70 1986.76 23294.65 12197.74 13787.78 7599.44 11995.57 9792.61 18799.44 82
DCV-MVSNet95.27 7894.60 8597.28 5198.53 8992.98 7999.05 11298.70 1986.76 23294.65 12197.74 13787.78 7599.44 11995.57 9792.61 18799.44 82
CPTT-MVS94.60 9794.43 8795.09 14699.66 1286.85 21999.44 6297.47 13583.22 29194.34 12598.96 6682.50 17499.55 10694.81 11399.50 5398.88 133
ACMMPcopyleft94.67 9594.30 8895.79 12199.25 5788.13 18898.41 18298.67 2290.38 13091.43 16598.72 9182.22 18399.95 3193.83 13295.76 15799.29 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VNet95.08 8394.26 8997.55 4398.07 10093.88 6198.68 14898.73 1890.33 13197.16 7097.43 15379.19 21099.53 10996.91 7191.85 20199.24 100
HY-MVS88.56 795.29 7794.23 9098.48 1497.72 10996.41 1394.03 32998.74 1692.42 8495.65 10494.76 23086.52 10799.49 11295.29 10392.97 18299.53 74
test250694.80 8894.21 9196.58 8896.41 16192.18 9398.01 22098.96 1190.82 11693.46 13897.28 15785.92 11898.45 16989.82 17897.19 13299.12 111
thisisatest051594.75 9094.19 9296.43 9696.13 18092.64 8899.47 5597.60 10687.55 21793.17 14197.59 14594.71 1398.42 17088.28 19693.20 17998.24 173
diffmvspermissive94.59 9894.19 9295.81 12095.54 19690.69 12398.70 14695.68 27391.61 9995.96 9497.81 13180.11 20198.06 18796.52 8095.76 15798.67 152
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
API-MVS94.78 8994.18 9496.59 8799.21 6190.06 14398.80 13697.78 7083.59 28693.85 13399.21 2883.79 14899.97 2192.37 15399.00 7999.74 47
PVSNet_Blended_VisFu94.67 9594.11 9596.34 10297.14 13491.10 11199.32 7997.43 14392.10 9491.53 16496.38 19983.29 15799.68 9293.42 14096.37 14598.25 172
MAR-MVS94.43 10194.09 9695.45 13299.10 6887.47 20498.39 18997.79 6988.37 18894.02 13099.17 3578.64 21699.91 4592.48 15298.85 8998.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSFormer94.71 9494.08 9796.61 8595.05 22394.87 3697.77 23496.17 23186.84 22998.04 4898.52 10685.52 12395.99 30089.83 17698.97 8198.96 123
PLCcopyleft91.07 394.23 10494.01 9894.87 15499.17 6387.49 20399.25 8596.55 20688.43 18691.26 16998.21 12485.92 11899.86 6389.77 18097.57 12197.24 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
xiu_mvs_v1_base94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
xiu_mvs_v1_base_debi94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
canonicalmvs95.02 8493.96 10298.20 2197.53 11995.92 1798.71 14496.19 22991.78 9795.86 9998.49 11079.53 20799.03 14996.12 8591.42 21199.66 60
sss94.85 8793.94 10397.58 4096.43 16094.09 5998.93 12599.16 889.50 15595.27 11097.85 12981.50 19199.65 9892.79 15094.02 17498.99 120
DeepC-MVS91.02 494.56 10093.92 10496.46 9497.16 13290.76 12198.39 18997.11 17293.92 5088.66 20098.33 11778.14 21899.85 6795.02 10898.57 10198.78 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PMMVS93.62 12493.90 10592.79 21596.79 14981.40 31298.85 13196.81 19191.25 10996.82 7998.15 12677.02 22498.13 18293.15 14496.30 14898.83 139
CHOSEN 1792x268894.35 10293.82 10695.95 11797.40 12188.74 17898.41 18298.27 3192.18 9191.43 16596.40 19678.88 21199.81 7993.59 13697.81 11599.30 95
baseline294.04 10793.80 10794.74 16093.07 27990.25 13198.12 21098.16 3989.86 14286.53 22296.95 17595.56 698.05 18991.44 15994.53 16995.93 231
test_cas_vis1_n_192093.86 11593.74 10894.22 18195.39 20386.08 24199.73 2296.07 23896.38 1797.19 6997.78 13465.46 31299.86 6396.71 7298.92 8596.73 213
EPP-MVSNet93.75 11893.67 10994.01 19195.86 18585.70 25298.67 15097.66 9184.46 27191.36 16897.18 16591.16 3197.79 20392.93 14693.75 17698.53 157
OMC-MVS93.90 11393.62 11094.73 16198.63 8787.00 21798.04 21996.56 20592.19 9092.46 14998.73 8979.49 20899.14 14592.16 15594.34 17298.03 179
thisisatest053094.00 10893.52 11195.43 13395.76 18990.02 14598.99 12097.60 10686.58 23591.74 15797.36 15694.78 1298.34 17286.37 21892.48 19097.94 182
test_fmvsmconf0.01_n94.14 10593.51 11296.04 11186.79 35989.19 15999.28 8395.94 24895.70 2195.50 10698.49 11073.27 24999.79 8298.28 4598.32 10999.15 107
casdiffmvspermissive93.98 11093.43 11395.61 12995.07 22289.86 14998.80 13695.84 26590.98 11392.74 14797.66 14279.71 20498.10 18494.72 11695.37 16398.87 135
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis1_n_192093.08 14193.42 11492.04 23296.31 16679.36 32999.83 996.06 23996.72 998.53 3298.10 12758.57 33799.91 4597.86 5398.79 9496.85 211
CANet_DTU94.31 10393.35 11597.20 5597.03 14194.71 4498.62 15695.54 28195.61 2597.21 6698.47 11371.88 26299.84 6988.38 19597.46 12697.04 206
casdiffmvs_mvgpermissive94.00 10893.33 11696.03 11295.22 20790.90 11999.09 10795.99 24190.58 12391.55 16397.37 15579.91 20398.06 18795.01 10995.22 16499.13 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline93.91 11293.30 11795.72 12395.10 22090.07 14097.48 24895.91 25791.03 11193.54 13797.68 14079.58 20598.02 19194.27 12495.14 16599.08 115
HyFIR lowres test93.68 12193.29 11894.87 15497.57 11888.04 19098.18 20598.47 2587.57 21691.24 17095.05 22485.49 12697.46 22893.22 14292.82 18399.10 113
TESTMET0.1,193.82 11693.26 11995.49 13195.21 20890.25 13199.15 9897.54 12089.18 16291.79 15694.87 22789.13 5697.63 21886.21 21996.29 14998.60 155
PVSNet_BlendedMVS93.36 13193.20 12093.84 19698.77 8391.61 9999.47 5598.04 4891.44 10494.21 12692.63 27183.50 15199.87 5897.41 5983.37 26790.05 331
iter_conf0593.48 12593.18 12194.39 17597.15 13394.17 5799.30 8092.97 34692.38 8886.70 22195.42 21795.67 596.59 25994.67 11884.32 25692.39 254
Effi-MVS+93.87 11493.15 12296.02 11395.79 18790.76 12196.70 28295.78 26686.98 22695.71 10297.17 16679.58 20598.01 19294.57 12196.09 15299.31 94
AdaColmapbinary93.82 11693.06 12396.10 10999.88 189.07 16398.33 19397.55 11786.81 23190.39 18498.65 9875.09 23199.98 993.32 14197.53 12499.26 99
114514_t94.06 10693.05 12497.06 5899.08 6992.26 9198.97 12397.01 18482.58 30492.57 14898.22 12280.68 19999.30 13689.34 18699.02 7899.63 64
iter_conf_final93.22 13793.04 12593.76 19897.03 14192.22 9299.05 11293.31 34392.11 9386.93 21695.42 21795.01 1096.59 25993.98 12784.48 25392.46 253
CDS-MVSNet93.47 12693.04 12594.76 15894.75 23489.45 15798.82 13497.03 18187.91 20590.97 17296.48 19489.06 5796.36 27789.50 18292.81 18598.49 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051793.30 13393.01 12794.17 18395.57 19486.47 22598.51 17097.60 10685.99 24690.55 17997.19 16494.80 1198.31 17385.06 23291.86 20097.74 184
Vis-MVSNet (Re-imp)93.26 13693.00 12894.06 18896.14 17786.71 22298.68 14896.70 19488.30 19289.71 19497.64 14385.43 12996.39 27588.06 20096.32 14699.08 115
test_fmvs192.35 15492.94 12990.57 26697.19 13075.43 35099.55 4494.97 30695.20 3196.82 7997.57 14759.59 33599.84 6997.30 6198.29 11096.46 223
test-mter93.27 13592.89 13094.40 17294.94 22887.27 21299.15 9897.25 15488.95 16991.57 16094.04 23788.03 7397.58 22285.94 22396.13 15098.36 168
PVSNet87.13 1293.69 11992.83 13196.28 10397.99 10390.22 13499.38 7198.93 1291.42 10693.66 13697.68 14071.29 26999.64 10087.94 20297.20 13198.98 121
CNLPA93.64 12392.74 13296.36 10198.96 7590.01 14699.19 8795.89 26086.22 24389.40 19598.85 8180.66 20099.84 6988.57 19396.92 13799.24 100
test-LLR93.11 14092.68 13394.40 17294.94 22887.27 21299.15 9897.25 15490.21 13291.57 16094.04 23784.89 13697.58 22285.94 22396.13 15098.36 168
MVS_Test93.67 12292.67 13496.69 8296.72 15192.66 8597.22 26196.03 24087.69 21495.12 11494.03 23981.55 19098.28 17689.17 19096.46 14299.14 108
UA-Net93.30 13392.62 13595.34 13696.27 16888.53 18395.88 30796.97 18790.90 11495.37 10997.07 17082.38 18199.10 14783.91 25194.86 16898.38 165
thres20093.69 11992.59 13696.97 6697.76 10894.74 4399.35 7699.36 289.23 16091.21 17196.97 17483.42 15498.77 15785.08 23190.96 21497.39 195
IS-MVSNet93.00 14292.51 13794.49 16896.14 17787.36 20898.31 19695.70 27188.58 17990.17 18697.50 14983.02 16497.22 23687.06 20796.07 15498.90 132
CostFormer92.89 14392.48 13894.12 18594.99 22585.89 24792.89 33997.00 18586.98 22695.00 11690.78 30290.05 5097.51 22692.92 14791.73 20498.96 123
MVSTER92.71 14592.32 13993.86 19597.29 12792.95 8199.01 11896.59 20190.09 13885.51 22994.00 24194.61 1696.56 26390.77 16983.03 27092.08 271
MVS93.92 11192.28 14098.83 795.69 19196.82 896.22 29798.17 3784.89 26684.34 24098.61 10379.32 20999.83 7393.88 13099.43 5999.86 29
tfpn200view993.43 12892.27 14196.90 6997.68 11194.84 3899.18 8999.36 288.45 18390.79 17496.90 17883.31 15598.75 15984.11 24790.69 21697.12 201
thres40093.39 13092.27 14196.73 7897.68 11194.84 3899.18 8999.36 288.45 18390.79 17496.90 17883.31 15598.75 15984.11 24790.69 21696.61 216
tpmrst92.78 14492.16 14394.65 16396.27 16887.45 20591.83 34897.10 17589.10 16594.68 12090.69 30688.22 6797.73 21389.78 17991.80 20298.77 146
thres100view90093.34 13292.15 14496.90 6997.62 11394.84 3899.06 11199.36 287.96 20390.47 18296.78 18583.29 15798.75 15984.11 24790.69 21697.12 201
EPNet_dtu92.28 15792.15 14492.70 21997.29 12784.84 26998.64 15497.82 6292.91 7593.02 14497.02 17285.48 12895.70 31472.25 33794.89 16797.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAMVS92.62 14892.09 14694.20 18294.10 24887.68 19698.41 18296.97 18787.53 21889.74 19296.04 20684.77 14096.49 27088.97 19292.31 19398.42 161
thres600view793.18 13892.00 14796.75 7697.62 11394.92 3399.07 10999.36 287.96 20390.47 18296.78 18583.29 15798.71 16382.93 26190.47 22096.61 216
131493.44 12791.98 14897.84 3295.24 20594.38 5296.22 29797.92 5590.18 13482.28 26997.71 13977.63 22199.80 8191.94 15698.67 9799.34 92
h-mvs3392.47 15391.95 14994.05 18997.13 13585.01 26798.36 19198.08 4493.85 5596.27 9096.73 18783.19 16099.43 12295.81 9068.09 35497.70 186
Vis-MVSNetpermissive92.64 14791.85 15095.03 15095.12 21688.23 18598.48 17596.81 19191.61 9992.16 15497.22 16271.58 26798.00 19385.85 22697.81 11598.88 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+87.72 893.43 12891.84 15198.17 2295.73 19095.08 3298.92 12797.04 17991.42 10681.48 28697.60 14474.60 23499.79 8290.84 16698.97 8199.64 62
BH-w/o92.32 15591.79 15293.91 19496.85 14486.18 23799.11 10695.74 26988.13 19784.81 23397.00 17377.26 22397.91 19489.16 19198.03 11297.64 187
3Dnovator87.35 1193.17 13991.77 15397.37 4995.41 20193.07 7698.82 13497.85 5891.53 10182.56 26197.58 14671.97 26199.82 7691.01 16399.23 6999.22 103
F-COLMAP92.07 16391.75 15493.02 21098.16 9882.89 29598.79 14095.97 24386.54 23787.92 20597.80 13278.69 21599.65 9885.97 22195.93 15696.53 221
mvs_anonymous92.50 15291.65 15595.06 14796.60 15389.64 15397.06 26696.44 21386.64 23484.14 24193.93 24382.49 17596.17 29391.47 15896.08 15399.35 90
EPMVS92.59 15091.59 15695.59 13097.22 12990.03 14491.78 34998.04 4890.42 12991.66 15990.65 30986.49 10997.46 22881.78 27296.31 14799.28 97
1112_ss92.71 14591.55 15796.20 10495.56 19591.12 10998.48 17594.69 31788.29 19386.89 21898.50 10887.02 9398.66 16584.75 23689.77 22498.81 141
hse-mvs291.67 16891.51 15892.15 22996.22 17082.61 30197.74 23797.53 12193.85 5596.27 9096.15 20283.19 16097.44 23095.81 9066.86 36196.40 225
ET-MVSNet_ETH3D92.56 15191.45 15995.88 11896.39 16394.13 5899.46 5996.97 18792.18 9166.94 36998.29 12094.65 1594.28 34294.34 12383.82 26399.24 100
test_fmvs1_n91.07 17991.41 16090.06 28094.10 24874.31 35499.18 8994.84 31094.81 3396.37 8997.46 15150.86 36599.82 7697.14 6497.90 11396.04 230
ECVR-MVScopyleft92.29 15691.33 16195.15 14496.41 16187.84 19398.10 21394.84 31090.82 11691.42 16797.28 15765.61 30998.49 16890.33 17297.19 13299.12 111
baseline192.61 14991.28 16296.58 8897.05 14094.63 4697.72 23896.20 22789.82 14388.56 20196.85 18186.85 9797.82 20188.42 19480.10 28697.30 197
HQP-MVS91.50 16991.23 16392.29 22493.95 25386.39 22899.16 9396.37 21693.92 5087.57 20796.67 19073.34 24697.77 20593.82 13386.29 23792.72 248
test111192.12 16191.19 16494.94 15296.15 17587.36 20898.12 21094.84 31090.85 11590.97 17297.26 15965.60 31098.37 17189.74 18197.14 13599.07 117
tpm291.77 16691.09 16593.82 19794.83 23285.56 25692.51 34497.16 16784.00 27793.83 13490.66 30887.54 7997.17 23787.73 20491.55 20798.72 148
FA-MVS(test-final)92.22 16091.08 16695.64 12796.05 18188.98 16791.60 35297.25 15486.99 22391.84 15592.12 27483.03 16399.00 15086.91 21293.91 17598.93 129
PatchmatchNetpermissive92.05 16491.04 16795.06 14796.17 17489.04 16491.26 35797.26 15389.56 15390.64 17890.56 31588.35 6697.11 23979.53 28596.07 15499.03 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Test_1112_low_res92.27 15890.97 16896.18 10595.53 19791.10 11198.47 17794.66 31888.28 19486.83 21993.50 25687.00 9498.65 16684.69 23789.74 22598.80 142
HQP_MVS91.26 17490.95 16992.16 22893.84 26086.07 24399.02 11696.30 22093.38 6686.99 21496.52 19272.92 25297.75 21193.46 13886.17 24092.67 250
CVMVSNet90.30 19490.91 17088.46 31394.32 24473.58 35897.61 24597.59 11090.16 13788.43 20397.10 16876.83 22592.86 35282.64 26393.54 17898.93 129
UGNet91.91 16590.85 17195.10 14597.06 13988.69 17998.01 22098.24 3492.41 8592.39 15193.61 25260.52 33299.68 9288.14 19897.25 13096.92 210
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS92.23 15990.84 17296.42 9798.24 9491.08 11398.24 20096.22 22683.39 28994.74 11998.31 11861.12 33098.85 15494.45 12292.82 18399.32 93
BH-untuned91.46 17190.84 17293.33 20596.51 15784.83 27098.84 13395.50 28386.44 24283.50 24596.70 18875.49 23097.77 20586.78 21597.81 11597.40 194
IB-MVS89.43 692.12 16190.83 17495.98 11695.40 20290.78 12099.81 1198.06 4591.23 11085.63 22893.66 25190.63 4198.78 15691.22 16071.85 34498.36 168
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+91.72 16790.79 17594.49 16895.89 18487.40 20799.54 4995.70 27185.01 26489.28 19795.68 21277.75 22097.57 22583.22 25695.06 16698.51 158
CLD-MVS91.06 18090.71 17692.10 23094.05 25286.10 24099.55 4496.29 22394.16 4584.70 23597.17 16669.62 27797.82 20194.74 11586.08 24292.39 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu89.97 20490.68 17787.81 31795.15 21371.98 36497.87 22895.40 29091.92 9587.57 20791.44 29074.27 24096.84 25089.45 18393.10 18194.60 239
XVG-OURS-SEG-HR90.95 18290.66 17891.83 23595.18 21281.14 31995.92 30495.92 25288.40 18790.33 18597.85 12970.66 27299.38 12892.83 14888.83 22694.98 237
PatchMatch-RL91.47 17090.54 17994.26 17998.20 9586.36 23096.94 27097.14 16887.75 21088.98 19895.75 21171.80 26499.40 12780.92 27797.39 12897.02 207
XVG-OURS90.83 18490.49 18091.86 23495.23 20681.25 31695.79 31295.92 25288.96 16890.02 18998.03 12871.60 26699.35 13391.06 16287.78 23094.98 237
MDTV_nov1_ep1390.47 18196.14 17788.55 18191.34 35697.51 12789.58 15192.24 15290.50 31986.99 9597.61 22077.64 30092.34 192
test_vis1_n90.40 19190.27 18290.79 26191.55 30176.48 34699.12 10594.44 32294.31 4197.34 6396.95 17543.60 37699.42 12397.57 5797.60 12096.47 222
VDD-MVS91.24 17790.18 18394.45 17197.08 13885.84 25098.40 18596.10 23586.99 22393.36 13998.16 12554.27 35499.20 13896.59 7890.63 21998.31 171
FE-MVS91.38 17390.16 18495.05 14996.46 15987.53 20289.69 36697.84 5982.97 29692.18 15392.00 28084.07 14698.93 15380.71 27995.52 16198.68 151
BH-RMVSNet91.25 17689.99 18595.03 15096.75 15088.55 18198.65 15294.95 30787.74 21187.74 20697.80 13268.27 28598.14 18180.53 28297.49 12598.41 162
SDMVSNet91.09 17889.91 18694.65 16396.80 14790.54 12797.78 23297.81 6588.34 19085.73 22595.26 22166.44 30398.26 17794.25 12586.75 23495.14 234
FIs90.70 18789.87 18793.18 20792.29 28691.12 10998.17 20798.25 3289.11 16483.44 24694.82 22982.26 18296.17 29387.76 20382.76 27292.25 260
miper_enhance_ethall90.33 19389.70 18892.22 22597.12 13688.93 17298.35 19295.96 24588.60 17883.14 25392.33 27387.38 8296.18 29186.49 21777.89 29591.55 287
PCF-MVS89.78 591.26 17489.63 18996.16 10895.44 19991.58 10195.29 31796.10 23585.07 26182.75 25597.45 15278.28 21799.78 8480.60 28195.65 16097.12 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE90.60 19089.56 19093.72 20195.10 22085.43 25799.41 6894.94 30883.96 27987.21 21396.83 18474.37 23897.05 24380.50 28393.73 17798.67 152
AUN-MVS90.17 19889.50 19192.19 22796.21 17182.67 29997.76 23697.53 12188.05 19991.67 15896.15 20283.10 16297.47 22788.11 19966.91 36096.43 224
QAPM91.41 17289.49 19297.17 5695.66 19393.42 7098.60 16097.51 12780.92 32781.39 28797.41 15472.89 25499.87 5882.33 26698.68 9698.21 175
TR-MVS90.77 18589.44 19394.76 15896.31 16688.02 19197.92 22495.96 24585.52 25388.22 20497.23 16166.80 29998.09 18584.58 23992.38 19198.17 177
mvsmamba89.99 20389.42 19491.69 24290.64 31486.34 23198.40 18592.27 35591.01 11284.80 23494.93 22576.12 22696.51 26792.81 14983.84 26092.21 264
FC-MVSNet-test90.22 19689.40 19592.67 22191.78 29889.86 14997.89 22598.22 3588.81 17482.96 25494.66 23181.90 18895.96 30285.89 22582.52 27592.20 266
EI-MVSNet89.87 20589.38 19691.36 24794.32 24485.87 24897.61 24596.59 20185.10 25985.51 22997.10 16881.30 19696.56 26383.85 25383.03 27091.64 279
cascas90.93 18389.33 19795.76 12295.69 19193.03 7898.99 12096.59 20180.49 32986.79 22094.45 23465.23 31398.60 16793.52 13792.18 19695.66 233
SCA90.64 18989.25 19894.83 15794.95 22788.83 17496.26 29497.21 16090.06 14190.03 18890.62 31166.61 30096.81 25283.16 25794.36 17198.84 136
ab-mvs91.05 18189.17 19996.69 8295.96 18391.72 9792.62 34397.23 15885.61 25289.74 19293.89 24568.55 28299.42 12391.09 16187.84 22998.92 131
OPM-MVS89.76 20689.15 20091.57 24490.53 31585.58 25598.11 21295.93 25192.88 7686.05 22396.47 19567.06 29897.87 19889.29 18986.08 24291.26 300
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
myMVS_eth3d88.68 23089.07 20187.50 32095.14 21479.74 32797.68 24196.66 19686.52 23882.63 25896.84 18285.22 13389.89 37269.43 34691.54 20892.87 246
PS-MVSNAJss89.54 21089.05 20291.00 25488.77 33984.36 27597.39 24995.97 24388.47 18081.88 27993.80 24782.48 17696.50 26889.34 18683.34 26992.15 267
TAPA-MVS87.50 990.35 19289.05 20294.25 18098.48 9185.17 26498.42 18096.58 20482.44 30987.24 21298.53 10582.77 16898.84 15559.09 37597.88 11498.72 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm89.67 20788.95 20491.82 23692.54 28381.43 31192.95 33895.92 25287.81 20790.50 18189.44 33484.99 13495.65 31583.67 25482.71 27398.38 165
nrg03090.23 19588.87 20594.32 17791.53 30293.54 6798.79 14095.89 26088.12 19884.55 23794.61 23278.80 21496.88 24992.35 15475.21 30992.53 252
OpenMVScopyleft85.28 1490.75 18688.84 20696.48 9393.58 26793.51 6898.80 13697.41 14582.59 30378.62 31597.49 15068.00 28999.82 7684.52 24198.55 10296.11 229
dp90.16 19988.83 20794.14 18496.38 16486.42 22691.57 35397.06 17884.76 26888.81 19990.19 32784.29 14397.43 23175.05 31791.35 21398.56 156
cl2289.57 20988.79 20891.91 23397.94 10487.62 19997.98 22296.51 20885.03 26282.37 26891.79 28383.65 14996.50 26885.96 22277.89 29591.61 284
LS3D90.19 19788.72 20994.59 16798.97 7386.33 23296.90 27296.60 20074.96 35484.06 24398.74 8875.78 22899.83 7374.93 31897.57 12197.62 190
GA-MVS90.10 20088.69 21094.33 17692.44 28487.97 19299.08 10896.26 22489.65 14786.92 21793.11 26468.09 28796.96 24582.54 26590.15 22198.05 178
X-MVStestdata90.69 18888.66 21196.77 7499.62 2290.66 12599.43 6597.58 11292.41 8596.86 7429.59 40087.37 8399.87 5895.65 9299.43 5999.78 38
test0.0.03 188.96 21688.61 21290.03 28491.09 30884.43 27498.97 12397.02 18390.21 13280.29 29696.31 20184.89 13691.93 36672.98 33485.70 24593.73 241
LCM-MVSNet-Re88.59 23188.61 21288.51 31295.53 19772.68 36296.85 27488.43 38188.45 18373.14 34690.63 31075.82 22794.38 34192.95 14595.71 15998.48 160
Fast-Effi-MVS+-dtu88.84 22188.59 21489.58 29593.44 27278.18 33998.65 15294.62 31988.46 18284.12 24295.37 22068.91 27996.52 26682.06 26991.70 20594.06 240
RRT_MVS88.91 21888.56 21589.93 28590.31 31881.61 30998.08 21696.38 21589.30 15882.41 26694.84 22873.15 25096.04 29990.38 17182.23 27792.15 267
UniMVSNet_NR-MVSNet89.60 20888.55 21692.75 21792.17 28990.07 14098.74 14398.15 4088.37 18883.21 24993.98 24282.86 16695.93 30486.95 21072.47 33892.25 260
VDDNet90.08 20188.54 21794.69 16294.41 24187.68 19698.21 20396.40 21476.21 34993.33 14097.75 13654.93 35298.77 15794.71 11790.96 21497.61 191
LPG-MVS_test88.86 22088.47 21890.06 28093.35 27480.95 32198.22 20195.94 24887.73 21283.17 25196.11 20466.28 30497.77 20590.19 17485.19 24791.46 290
UniMVSNet (Re)89.50 21188.32 21993.03 20992.21 28890.96 11798.90 12998.39 2789.13 16383.22 24892.03 27681.69 18996.34 28386.79 21472.53 33791.81 276
ACMP87.39 1088.71 22888.24 22090.12 27993.91 25881.06 32098.50 17195.67 27489.43 15680.37 29595.55 21365.67 30797.83 20090.55 17084.51 25191.47 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testing387.75 24388.22 22186.36 32894.66 23777.41 34499.52 5097.95 5486.05 24581.12 28896.69 18986.18 11589.31 37661.65 37090.12 22292.35 259
ACMM86.95 1388.77 22688.22 22190.43 27193.61 26681.34 31498.50 17195.92 25287.88 20683.85 24495.20 22367.20 29697.89 19686.90 21384.90 24992.06 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth88.94 21788.12 22391.40 24595.32 20486.93 21897.85 22995.55 28084.19 27481.97 27791.50 28984.16 14495.91 30784.69 23777.89 29591.36 295
dmvs_re88.69 22988.06 22490.59 26593.83 26278.68 33595.75 31396.18 23087.99 20284.48 23996.32 20067.52 29396.94 24784.98 23485.49 24696.14 228
sd_testset89.23 21288.05 22592.74 21896.80 14785.33 26095.85 31097.03 18188.34 19085.73 22595.26 22161.12 33097.76 21085.61 22786.75 23495.14 234
tpmvs89.16 21387.76 22693.35 20497.19 13084.75 27190.58 36497.36 15081.99 31484.56 23689.31 33783.98 14798.17 18074.85 32090.00 22397.12 201
test_djsdf88.26 23687.73 22789.84 28888.05 34882.21 30397.77 23496.17 23186.84 22982.41 26691.95 28272.07 26095.99 30089.83 17684.50 25291.32 297
gg-mvs-nofinetune90.00 20287.71 22896.89 7396.15 17594.69 4585.15 37597.74 7468.32 37592.97 14560.16 38896.10 396.84 25093.89 12998.87 8899.14 108
VPA-MVSNet89.10 21487.66 22993.45 20392.56 28291.02 11597.97 22398.32 3086.92 22886.03 22492.01 27868.84 28197.10 24190.92 16475.34 30892.23 262
DU-MVS88.83 22387.51 23092.79 21591.46 30390.07 14098.71 14497.62 10388.87 17383.21 24993.68 24974.63 23295.93 30486.95 21072.47 33892.36 256
IterMVS-LS88.34 23387.44 23191.04 25394.10 24885.85 24998.10 21395.48 28485.12 25882.03 27691.21 29581.35 19595.63 31683.86 25275.73 30791.63 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS87.96 23887.39 23289.70 29291.84 29783.40 28798.31 19698.49 2388.04 20078.23 32190.26 32173.57 24496.79 25484.21 24483.53 26588.90 347
CR-MVSNet88.83 22387.38 23393.16 20893.47 26986.24 23384.97 37794.20 33088.92 17290.76 17686.88 35484.43 14194.82 33470.64 34192.17 19798.41 162
ADS-MVSNet88.99 21587.30 23494.07 18796.21 17187.56 20187.15 37096.78 19383.01 29489.91 19087.27 35078.87 21297.01 24474.20 32592.27 19497.64 187
tpm cat188.89 21987.27 23593.76 19895.79 18785.32 26190.76 36297.09 17676.14 35085.72 22788.59 34082.92 16598.04 19076.96 30491.43 21097.90 183
c3_l88.19 23787.23 23691.06 25294.97 22686.17 23897.72 23895.38 29183.43 28881.68 28491.37 29182.81 16795.72 31384.04 25073.70 32691.29 299
WR-MVS88.54 23287.22 23792.52 22291.93 29689.50 15698.56 16597.84 5986.99 22381.87 28093.81 24674.25 24195.92 30685.29 22974.43 31892.12 269
FMVSNet388.81 22587.08 23893.99 19296.52 15694.59 4798.08 21696.20 22785.85 24782.12 27291.60 28774.05 24295.40 32279.04 28980.24 28391.99 274
Anonymous20240521188.84 22187.03 23994.27 17898.14 9984.18 27898.44 17895.58 27976.79 34889.34 19696.88 18053.42 35799.54 10887.53 20687.12 23399.09 114
eth_miper_zixun_eth87.76 24287.00 24090.06 28094.67 23682.65 30097.02 26995.37 29284.19 27481.86 28291.58 28881.47 19295.90 30883.24 25573.61 32791.61 284
ADS-MVSNet287.62 24886.88 24189.86 28796.21 17179.14 33187.15 37092.99 34583.01 29489.91 19087.27 35078.87 21292.80 35574.20 32592.27 19497.64 187
DIV-MVS_self_test87.82 23986.81 24290.87 25994.87 23185.39 25997.81 23095.22 30482.92 30080.76 29191.31 29381.99 18595.81 31181.36 27375.04 31191.42 293
cl____87.82 23986.79 24390.89 25894.88 23085.43 25797.81 23095.24 29982.91 30180.71 29291.22 29481.97 18795.84 30981.34 27475.06 31091.40 294
bld_raw_dy_0_6487.82 23986.71 24491.15 25089.54 33085.61 25397.37 25289.16 37989.26 15983.42 24794.50 23365.79 30696.18 29188.00 20183.37 26791.67 278
VPNet88.30 23486.57 24593.49 20291.95 29491.35 10398.18 20597.20 16488.61 17784.52 23894.89 22662.21 32596.76 25589.34 18672.26 34192.36 256
DP-MVS88.75 22786.56 24695.34 13698.92 7787.45 20597.64 24493.52 34170.55 36681.49 28597.25 16074.43 23799.88 5471.14 34094.09 17398.67 152
jajsoiax87.35 25086.51 24789.87 28687.75 35381.74 30797.03 26795.98 24288.47 18080.15 29893.80 24761.47 32796.36 27789.44 18484.47 25491.50 288
MSDG88.29 23586.37 24894.04 19096.90 14386.15 23996.52 28594.36 32777.89 34479.22 31096.95 17569.72 27599.59 10473.20 33392.58 18996.37 226
TranMVSNet+NR-MVSNet87.75 24386.31 24992.07 23190.81 31188.56 18098.33 19397.18 16587.76 20981.87 28093.90 24472.45 25695.43 32083.13 25971.30 34892.23 262
mvs_tets87.09 25386.22 25089.71 29187.87 34981.39 31396.73 28195.90 25888.19 19679.99 30093.61 25259.96 33496.31 28589.40 18584.34 25591.43 292
miper_lstm_enhance86.90 25586.20 25189.00 30794.53 23981.19 31796.74 28095.24 29982.33 31080.15 29890.51 31881.99 18594.68 33880.71 27973.58 32891.12 303
pmmvs487.58 24986.17 25291.80 23789.58 32888.92 17397.25 25895.28 29582.54 30580.49 29493.17 26375.62 22996.05 29882.75 26278.90 29090.42 322
XXY-MVS87.75 24386.02 25392.95 21390.46 31689.70 15297.71 24095.90 25884.02 27680.95 28994.05 23667.51 29497.10 24185.16 23078.41 29292.04 273
NR-MVSNet87.74 24686.00 25492.96 21291.46 30390.68 12496.65 28397.42 14488.02 20173.42 34393.68 24977.31 22295.83 31084.26 24371.82 34592.36 256
MS-PatchMatch86.75 25885.92 25589.22 30291.97 29282.47 30296.91 27196.14 23383.74 28277.73 32293.53 25558.19 33997.37 23576.75 30798.35 10687.84 353
MVP-Stereo86.61 26285.83 25688.93 30988.70 34183.85 28396.07 30194.41 32682.15 31375.64 33391.96 28167.65 29296.45 27377.20 30398.72 9586.51 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v2v48287.27 25285.76 25791.78 24189.59 32787.58 20098.56 16595.54 28184.53 27082.51 26291.78 28473.11 25196.47 27182.07 26874.14 32491.30 298
anonymousdsp86.69 25985.75 25889.53 29686.46 36182.94 29296.39 28895.71 27083.97 27879.63 30590.70 30568.85 28095.94 30386.01 22084.02 25989.72 337
V4287.00 25485.68 25990.98 25589.91 32186.08 24198.32 19595.61 27783.67 28582.72 25690.67 30774.00 24396.53 26581.94 27174.28 32190.32 324
Anonymous2024052987.66 24785.58 26093.92 19397.59 11685.01 26798.13 20897.13 17066.69 38088.47 20296.01 20755.09 35199.51 11087.00 20984.12 25897.23 200
RPSCF85.33 28385.55 26184.67 34094.63 23862.28 37993.73 33193.76 33574.38 35785.23 23297.06 17164.09 31698.31 17380.98 27586.08 24293.41 245
WR-MVS_H86.53 26485.49 26289.66 29491.04 30983.31 28997.53 24798.20 3684.95 26579.64 30490.90 30078.01 21995.33 32376.29 31072.81 33490.35 323
test_fmvs285.10 28585.45 26384.02 34389.85 32465.63 37798.49 17392.59 35190.45 12785.43 23193.32 25743.94 37496.59 25990.81 16784.19 25789.85 335
CP-MVSNet86.54 26385.45 26389.79 29091.02 31082.78 29897.38 25197.56 11685.37 25579.53 30793.03 26571.86 26395.25 32579.92 28473.43 33291.34 296
v114486.83 25785.31 26591.40 24589.75 32587.21 21698.31 19695.45 28683.22 29182.70 25790.78 30273.36 24596.36 27779.49 28674.69 31590.63 319
PVSNet_083.28 1687.31 25185.16 26693.74 20094.78 23384.59 27298.91 12898.69 2189.81 14478.59 31793.23 26161.95 32699.34 13494.75 11455.72 38197.30 197
v14886.38 26785.06 26790.37 27589.47 33384.10 27998.52 16795.48 28483.80 28180.93 29090.22 32574.60 23496.31 28580.92 27771.55 34690.69 317
GBi-Net86.67 26084.96 26891.80 23795.11 21788.81 17596.77 27695.25 29682.94 29782.12 27290.25 32262.89 32294.97 32979.04 28980.24 28391.62 281
test186.67 26084.96 26891.80 23795.11 21788.81 17596.77 27695.25 29682.94 29782.12 27290.25 32262.89 32294.97 32979.04 28980.24 28391.62 281
XVG-ACMP-BASELINE85.86 27484.95 27088.57 31189.90 32277.12 34594.30 32595.60 27887.40 22082.12 27292.99 26753.42 35797.66 21585.02 23383.83 26190.92 308
v14419286.40 26684.89 27190.91 25689.48 33285.59 25498.21 20395.43 28982.45 30882.62 26090.58 31472.79 25596.36 27778.45 29674.04 32590.79 312
JIA-IIPM85.97 27284.85 27289.33 30193.23 27673.68 35785.05 37697.13 17069.62 37191.56 16268.03 38688.03 7396.96 24577.89 29993.12 18097.34 196
Baseline_NR-MVSNet85.83 27584.82 27388.87 31088.73 34083.34 28898.63 15591.66 36480.41 33282.44 26391.35 29274.63 23295.42 32184.13 24671.39 34787.84 353
tt080586.50 26584.79 27491.63 24391.97 29281.49 31096.49 28697.38 14882.24 31182.44 26395.82 21051.22 36298.25 17884.55 24080.96 28295.13 236
FMVSNet286.90 25584.79 27493.24 20695.11 21792.54 8997.67 24395.86 26482.94 29780.55 29391.17 29662.89 32295.29 32477.23 30179.71 28991.90 275
v119286.32 26884.71 27691.17 24989.53 33186.40 22798.13 20895.44 28882.52 30682.42 26590.62 31171.58 26796.33 28477.23 30174.88 31290.79 312
IterMVS85.81 27684.67 27789.22 30293.51 26883.67 28596.32 29194.80 31385.09 26078.69 31390.17 32866.57 30293.17 35179.48 28777.42 30190.81 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 27984.64 27889.00 30793.46 27182.90 29496.27 29294.70 31685.02 26378.62 31590.35 32066.61 30093.33 34879.38 28877.36 30290.76 314
PS-CasMVS85.81 27684.58 27989.49 29990.77 31282.11 30497.20 26297.36 15084.83 26779.12 31292.84 26867.42 29595.16 32778.39 29773.25 33391.21 301
Syy-MVS84.10 30184.53 28082.83 34895.14 21465.71 37697.68 24196.66 19686.52 23882.63 25896.84 18268.15 28689.89 37245.62 38691.54 20892.87 246
v886.11 27084.45 28191.10 25189.99 32086.85 21997.24 25995.36 29381.99 31479.89 30289.86 33074.53 23696.39 27578.83 29372.32 34090.05 331
v192192086.02 27184.44 28290.77 26289.32 33485.20 26298.10 21395.35 29482.19 31282.25 27090.71 30470.73 27096.30 28876.85 30674.49 31790.80 311
EU-MVSNet84.19 29884.42 28383.52 34688.64 34267.37 37596.04 30295.76 26885.29 25678.44 31893.18 26270.67 27191.48 36875.79 31475.98 30591.70 277
pmmvs585.87 27384.40 28490.30 27688.53 34384.23 27698.60 16093.71 33781.53 31980.29 29692.02 27764.51 31595.52 31882.04 27078.34 29391.15 302
v124085.77 27884.11 28590.73 26389.26 33585.15 26597.88 22795.23 30381.89 31782.16 27190.55 31669.60 27896.31 28575.59 31574.87 31390.72 316
Patchmatch-test86.25 26984.06 28692.82 21494.42 24082.88 29682.88 38494.23 32971.58 36279.39 30890.62 31189.00 5996.42 27463.03 36691.37 21299.16 106
v1085.73 27984.01 28790.87 25990.03 31986.73 22197.20 26295.22 30481.25 32279.85 30389.75 33173.30 24896.28 28976.87 30572.64 33689.61 339
PEN-MVS85.21 28483.93 28889.07 30689.89 32381.31 31597.09 26597.24 15784.45 27278.66 31492.68 27068.44 28494.87 33275.98 31270.92 34991.04 305
UniMVSNet_ETH3D85.65 28183.79 28991.21 24890.41 31780.75 32395.36 31695.78 26678.76 33881.83 28394.33 23549.86 36796.66 25684.30 24283.52 26696.22 227
OurMVSNet-221017-084.13 30083.59 29085.77 33387.81 35070.24 36994.89 32093.65 33986.08 24476.53 32593.28 26061.41 32896.14 29580.95 27677.69 30090.93 307
PatchT85.44 28283.19 29192.22 22593.13 27883.00 29183.80 38396.37 21670.62 36590.55 17979.63 37884.81 13894.87 33258.18 37791.59 20698.79 143
AllTest84.97 28783.12 29290.52 26996.82 14578.84 33395.89 30592.17 35777.96 34275.94 32995.50 21455.48 34799.18 13971.15 33887.14 23193.55 243
USDC84.74 28882.93 29390.16 27891.73 29983.54 28695.00 31993.30 34488.77 17573.19 34593.30 25953.62 35697.65 21775.88 31381.54 28089.30 342
COLMAP_ROBcopyleft82.69 1884.54 29382.82 29489.70 29296.72 15178.85 33295.89 30592.83 34971.55 36377.54 32495.89 20959.40 33699.14 14567.26 35488.26 22791.11 304
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
our_test_384.47 29582.80 29589.50 29789.01 33683.90 28297.03 26794.56 32081.33 32175.36 33590.52 31771.69 26594.54 34068.81 34876.84 30390.07 329
DTE-MVSNet84.14 29982.80 29588.14 31488.95 33879.87 32696.81 27596.24 22583.50 28777.60 32392.52 27267.89 29194.24 34372.64 33669.05 35290.32 324
pm-mvs184.68 29082.78 29790.40 27289.58 32885.18 26397.31 25494.73 31581.93 31676.05 32892.01 27865.48 31196.11 29678.75 29469.14 35189.91 334
v7n84.42 29682.75 29889.43 30088.15 34681.86 30696.75 27995.67 27480.53 32878.38 31989.43 33569.89 27396.35 28273.83 32972.13 34290.07 329
LTVRE_ROB81.71 1984.59 29282.72 29990.18 27792.89 28183.18 29093.15 33694.74 31478.99 33575.14 33692.69 26965.64 30897.63 21869.46 34581.82 27989.74 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023121184.72 28982.65 30090.91 25697.71 11084.55 27397.28 25696.67 19566.88 37979.18 31190.87 30158.47 33896.60 25882.61 26474.20 32291.59 286
ACMH83.09 1784.60 29182.61 30190.57 26693.18 27782.94 29296.27 29294.92 30981.01 32572.61 35293.61 25256.54 34397.79 20374.31 32381.07 28190.99 306
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+83.78 1584.21 29782.56 30289.15 30493.73 26579.16 33096.43 28794.28 32881.09 32474.00 34094.03 23954.58 35397.67 21476.10 31178.81 29190.63 319
RPMNet85.07 28681.88 30394.64 16593.47 26986.24 23384.97 37797.21 16064.85 38290.76 17678.80 37980.95 19899.27 13753.76 38192.17 19798.41 162
MIMVSNet84.48 29481.83 30492.42 22391.73 29987.36 20885.52 37394.42 32581.40 32081.91 27887.58 34451.92 36092.81 35473.84 32888.15 22897.08 205
Patchmtry83.61 30581.64 30589.50 29793.36 27382.84 29784.10 38094.20 33069.47 37279.57 30686.88 35484.43 14194.78 33568.48 35074.30 32090.88 309
SixPastTwentyTwo82.63 30881.58 30685.79 33288.12 34771.01 36795.17 31892.54 35284.33 27372.93 35092.08 27560.41 33395.61 31774.47 32274.15 32390.75 315
ppachtmachnet_test83.63 30481.57 30789.80 28989.01 33685.09 26697.13 26494.50 32178.84 33676.14 32791.00 29869.78 27494.61 33963.40 36474.36 31989.71 338
DSMNet-mixed81.60 31481.43 30882.10 35184.36 36760.79 38093.63 33386.74 38479.00 33479.32 30987.15 35263.87 31889.78 37466.89 35691.92 19995.73 232
tfpnnormal83.65 30381.35 30990.56 26891.37 30588.06 18997.29 25597.87 5778.51 33976.20 32690.91 29964.78 31496.47 27161.71 36973.50 32987.13 361
FMVSNet183.94 30281.32 31091.80 23791.94 29588.81 17596.77 27695.25 29677.98 34078.25 32090.25 32250.37 36694.97 32973.27 33277.81 29991.62 281
LF4IMVS81.94 31281.17 31184.25 34287.23 35768.87 37493.35 33591.93 36283.35 29075.40 33493.00 26649.25 37096.65 25778.88 29278.11 29487.22 360
testgi82.29 30981.00 31286.17 33087.24 35674.84 35397.39 24991.62 36588.63 17675.85 33295.42 21746.07 37391.55 36766.87 35779.94 28792.12 269
FMVSNet582.29 30980.54 31387.52 31993.79 26484.01 28093.73 33192.47 35376.92 34774.27 33886.15 35863.69 32089.24 37769.07 34774.79 31489.29 343
KD-MVS_2432*160082.98 30680.52 31490.38 27394.32 24488.98 16792.87 34095.87 26280.46 33073.79 34187.49 34782.76 17093.29 34970.56 34246.53 39088.87 348
miper_refine_blended82.98 30680.52 31490.38 27394.32 24488.98 16792.87 34095.87 26280.46 33073.79 34187.49 34782.76 17093.29 34970.56 34246.53 39088.87 348
Patchmatch-RL test81.90 31380.13 31687.23 32380.71 37770.12 37184.07 38188.19 38283.16 29370.57 35482.18 36987.18 8992.59 35782.28 26762.78 36898.98 121
CMPMVSbinary58.40 2180.48 31880.11 31781.59 35485.10 36559.56 38294.14 32895.95 24768.54 37460.71 37893.31 25855.35 35097.87 19883.06 26084.85 25087.33 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_rt81.31 31580.05 31885.11 33591.29 30670.66 36898.98 12277.39 39685.76 25068.80 36082.40 36736.56 38399.44 11992.67 15186.55 23685.24 371
K. test v381.04 31679.77 31984.83 33887.41 35470.23 37095.60 31593.93 33483.70 28467.51 36789.35 33655.76 34593.58 34776.67 30868.03 35590.67 318
TransMVSNet (Re)81.97 31179.61 32089.08 30589.70 32684.01 28097.26 25791.85 36378.84 33673.07 34991.62 28667.17 29795.21 32667.50 35359.46 37588.02 352
Anonymous2023120680.76 31779.42 32184.79 33984.78 36672.98 35996.53 28492.97 34679.56 33374.33 33788.83 33861.27 32992.15 36360.59 37275.92 30689.24 344
dmvs_testset77.17 33578.99 32271.71 36487.25 35538.55 40191.44 35481.76 39285.77 24969.49 35895.94 20869.71 27684.37 38452.71 38376.82 30492.21 264
CL-MVSNet_self_test79.89 32278.34 32384.54 34181.56 37575.01 35196.88 27395.62 27681.10 32375.86 33185.81 35968.49 28390.26 37063.21 36556.51 37988.35 350
TinyColmap80.42 31977.94 32487.85 31692.09 29078.58 33693.74 33089.94 37474.99 35369.77 35791.78 28446.09 37297.58 22265.17 36277.89 29587.38 356
EG-PatchMatch MVS79.92 32077.59 32586.90 32587.06 35877.90 34396.20 29994.06 33274.61 35566.53 37188.76 33940.40 38196.20 29067.02 35583.66 26486.61 362
test20.0378.51 33077.48 32681.62 35383.07 37171.03 36696.11 30092.83 34981.66 31869.31 35989.68 33257.53 34087.29 38258.65 37668.47 35386.53 363
pmmvs679.90 32177.31 32787.67 31884.17 36878.13 34095.86 30993.68 33867.94 37672.67 35189.62 33350.98 36495.75 31274.80 32166.04 36289.14 345
MDA-MVSNet_test_wron79.65 32377.05 32887.45 32187.79 35280.13 32496.25 29594.44 32273.87 35851.80 38487.47 34968.04 28892.12 36466.02 35867.79 35790.09 327
YYNet179.64 32477.04 32987.43 32287.80 35179.98 32596.23 29694.44 32273.83 35951.83 38387.53 34567.96 29092.07 36566.00 35967.75 35890.23 326
Anonymous2024052178.63 32976.90 33083.82 34482.82 37272.86 36095.72 31493.57 34073.55 36072.17 35384.79 36149.69 36892.51 35965.29 36174.50 31686.09 366
UnsupCasMVSNet_eth78.90 32676.67 33185.58 33482.81 37374.94 35291.98 34796.31 21984.64 26965.84 37387.71 34351.33 36192.23 36272.89 33556.50 38089.56 340
test_040278.81 32776.33 33286.26 32991.18 30778.44 33895.88 30791.34 36868.55 37370.51 35689.91 32952.65 35994.99 32847.14 38579.78 28885.34 370
pmmvs-eth3d78.71 32876.16 33386.38 32780.25 37981.19 31794.17 32792.13 35977.97 34166.90 37082.31 36855.76 34592.56 35873.63 33162.31 37185.38 368
KD-MVS_self_test77.47 33475.88 33482.24 34981.59 37468.93 37392.83 34294.02 33377.03 34673.14 34683.39 36455.44 34990.42 36967.95 35157.53 37887.38 356
TDRefinement78.01 33175.31 33586.10 33170.06 39073.84 35693.59 33491.58 36674.51 35673.08 34891.04 29749.63 36997.12 23874.88 31959.47 37487.33 358
test_fmvs375.09 33975.19 33674.81 36177.45 38354.08 38795.93 30390.64 37182.51 30773.29 34481.19 37222.29 39086.29 38385.50 22867.89 35684.06 374
MVS-HIRNet79.01 32575.13 33790.66 26493.82 26381.69 30885.16 37493.75 33654.54 38474.17 33959.15 39057.46 34196.58 26263.74 36394.38 17093.72 242
OpenMVS_ROBcopyleft73.86 2077.99 33275.06 33886.77 32683.81 37077.94 34296.38 28991.53 36767.54 37768.38 36287.13 35343.94 37496.08 29755.03 38081.83 27886.29 365
MDA-MVSNet-bldmvs77.82 33374.75 33987.03 32488.33 34478.52 33796.34 29092.85 34875.57 35148.87 38687.89 34257.32 34292.49 36060.79 37164.80 36690.08 328
mvsany_test375.85 33874.52 34079.83 35673.53 38760.64 38191.73 35087.87 38383.91 28070.55 35582.52 36631.12 38593.66 34586.66 21662.83 36785.19 372
new_pmnet76.02 33673.71 34182.95 34783.88 36972.85 36191.26 35792.26 35670.44 36762.60 37681.37 37147.64 37192.32 36161.85 36872.10 34383.68 376
MIMVSNet175.92 33773.30 34283.81 34581.29 37675.57 34992.26 34592.05 36073.09 36167.48 36886.18 35740.87 38087.64 38155.78 37970.68 35088.21 351
PM-MVS74.88 34072.85 34380.98 35578.98 38164.75 37890.81 36185.77 38580.95 32668.23 36482.81 36529.08 38792.84 35376.54 30962.46 37085.36 369
new-patchmatchnet74.80 34172.40 34481.99 35278.36 38272.20 36394.44 32392.36 35477.06 34563.47 37579.98 37751.04 36388.85 37860.53 37354.35 38284.92 373
test_f71.94 34470.82 34575.30 36072.77 38853.28 38891.62 35189.66 37775.44 35264.47 37478.31 38020.48 39189.56 37578.63 29566.02 36383.05 379
UnsupCasMVSNet_bld73.85 34270.14 34684.99 33779.44 38075.73 34888.53 36795.24 29970.12 36961.94 37774.81 38341.41 37993.62 34668.65 34951.13 38785.62 367
N_pmnet70.19 34569.87 34771.12 36688.24 34530.63 40595.85 31028.70 40470.18 36868.73 36186.55 35664.04 31793.81 34453.12 38273.46 33088.94 346
pmmvs372.86 34369.76 34882.17 35073.86 38674.19 35594.20 32689.01 38064.23 38367.72 36580.91 37541.48 37888.65 37962.40 36754.02 38383.68 376
test_method70.10 34668.66 34974.41 36386.30 36355.84 38594.47 32289.82 37535.18 39266.15 37284.75 36230.54 38677.96 39370.40 34460.33 37389.44 341
APD_test168.93 34766.98 35074.77 36280.62 37853.15 38987.97 36885.01 38753.76 38559.26 37987.52 34625.19 38889.95 37156.20 37867.33 35981.19 380
WB-MVS66.44 34866.29 35166.89 36974.84 38444.93 39693.00 33784.09 39071.15 36455.82 38181.63 37063.79 31980.31 39121.85 39550.47 38875.43 382
SSC-MVS65.42 34965.20 35266.06 37073.96 38543.83 39792.08 34683.54 39169.77 37054.73 38280.92 37463.30 32179.92 39220.48 39648.02 38974.44 383
FPMVS61.57 35060.32 35365.34 37160.14 39742.44 39991.02 36089.72 37644.15 38742.63 39080.93 37319.02 39280.59 39042.50 38772.76 33573.00 384
test_vis3_rt61.29 35158.75 35468.92 36867.41 39152.84 39091.18 35959.23 40366.96 37841.96 39158.44 39111.37 39994.72 33774.25 32457.97 37759.20 390
LCM-MVSNet60.07 35356.37 35571.18 36554.81 39948.67 39382.17 38589.48 37837.95 39049.13 38569.12 38413.75 39881.76 38559.28 37451.63 38683.10 378
EGC-MVSNET60.70 35255.37 35676.72 35886.35 36271.08 36589.96 36584.44 3890.38 4011.50 40284.09 36337.30 38288.10 38040.85 39073.44 33170.97 386
PMMVS258.97 35455.07 35770.69 36762.72 39455.37 38685.97 37280.52 39349.48 38645.94 38768.31 38515.73 39680.78 38949.79 38437.12 39275.91 381
testf156.38 35553.73 35864.31 37364.84 39245.11 39480.50 38675.94 39838.87 38842.74 38875.07 38111.26 40081.19 38741.11 38853.27 38466.63 387
APD_test256.38 35553.73 35864.31 37364.84 39245.11 39480.50 38675.94 39838.87 38842.74 38875.07 38111.26 40081.19 38741.11 38853.27 38466.63 387
tmp_tt53.66 35852.86 36056.05 37632.75 40341.97 40073.42 39076.12 39721.91 39739.68 39396.39 19842.59 37765.10 39678.00 29814.92 39761.08 389
Gipumacopyleft54.77 35752.22 36162.40 37586.50 36059.37 38350.20 39390.35 37336.52 39141.20 39249.49 39318.33 39481.29 38632.10 39265.34 36446.54 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high50.71 35946.17 36264.33 37244.27 40152.30 39176.13 38978.73 39464.95 38127.37 39555.23 39214.61 39767.74 39536.01 39118.23 39572.95 385
PMVScopyleft41.42 2345.67 36042.50 36355.17 37734.28 40232.37 40366.24 39178.71 39530.72 39322.04 39859.59 3894.59 40277.85 39427.49 39358.84 37655.29 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN41.02 36240.93 36441.29 37961.97 39533.83 40284.00 38265.17 40127.17 39427.56 39446.72 39517.63 39560.41 39819.32 39718.82 39429.61 394
EMVS39.96 36339.88 36540.18 38059.57 39832.12 40484.79 37964.57 40226.27 39526.14 39644.18 39818.73 39359.29 39917.03 39817.67 39629.12 395
MVEpermissive44.00 2241.70 36137.64 36653.90 37849.46 40043.37 39865.09 39266.66 40026.19 39625.77 39748.53 3943.58 40463.35 39726.15 39427.28 39354.97 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k22.52 36430.03 3670.00 3840.00 4060.00 4090.00 39597.17 1660.00 4020.00 40398.77 8574.35 2390.00 4030.00 4020.00 4010.00 399
testmvs18.81 36523.05 3686.10 3834.48 4042.29 40897.78 2323.00 4063.27 39918.60 39962.71 3871.53 4062.49 40214.26 4001.80 39913.50 397
test12316.58 36719.47 3697.91 3823.59 4055.37 40794.32 3241.39 4072.49 40013.98 40044.60 3972.91 4052.65 40111.35 4010.57 40015.70 396
wuyk23d16.71 36616.73 37016.65 38160.15 39625.22 40641.24 3945.17 4056.56 3985.48 4013.61 4013.64 40322.72 40015.20 3999.52 3981.99 398
ab-mvs-re8.21 36810.94 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40398.50 1080.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.87 3699.16 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40282.48 1760.00 4030.00 4020.00 4010.00 399
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
MM98.86 596.83 799.81 1199.13 997.66 298.29 3998.96 6685.84 12199.90 5099.72 398.80 9199.85 30
WAC-MVS79.74 32767.75 352
FOURS199.50 4288.94 17099.55 4497.47 13591.32 10898.12 44
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8599.98 999.55 1299.83 1599.96 10
PC_three_145294.60 3699.41 499.12 4695.50 799.96 2899.84 299.92 399.97 7
No_MVS99.51 299.61 2498.60 297.69 8599.98 999.55 1299.83 1599.96 10
test_one_060199.59 2894.89 3497.64 9793.14 6998.93 2199.45 1493.45 18
eth-test20.00 406
eth-test0.00 406
ZD-MVS99.67 1093.28 7197.61 10487.78 20897.41 6099.16 3690.15 4999.56 10598.35 4199.70 35
IU-MVS99.63 1895.38 2297.73 7795.54 2699.54 399.69 699.81 2399.99 1
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 899.97 2199.90 199.92 399.99 1
test_241102_TWO97.72 7894.17 4399.23 1099.54 393.14 2499.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2597.72 7894.16 4599.30 899.49 993.32 1999.98 9
save fliter99.34 5093.85 6299.65 3597.63 10195.69 22
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1499.97 2199.25 1899.82 1999.95 15
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 8799.98 999.64 799.82 1999.96 10
test072699.66 1295.20 3099.77 1797.70 8393.95 4899.35 799.54 393.18 22
GSMVS98.84 136
test_part299.54 3695.42 2098.13 42
sam_mvs188.39 6598.84 136
sam_mvs87.08 91
ambc79.60 35772.76 38956.61 38476.20 38892.01 36168.25 36380.23 37623.34 38994.73 33673.78 33060.81 37287.48 355
MTGPAbinary97.45 138
test_post190.74 36341.37 39985.38 13096.36 27783.16 257
test_post46.00 39687.37 8397.11 239
patchmatchnet-post84.86 36088.73 6296.81 252
GG-mvs-BLEND96.98 6596.53 15594.81 4187.20 36997.74 7493.91 13296.40 19696.56 296.94 24795.08 10698.95 8499.20 104
MTMP99.21 8691.09 369
gm-plane-assit94.69 23588.14 18788.22 19597.20 16398.29 17590.79 168
test9_res98.60 3399.87 999.90 22
TEST999.57 3393.17 7399.38 7197.66 9189.57 15298.39 3599.18 3390.88 3899.66 94
test_899.55 3593.07 7699.37 7497.64 9790.18 13498.36 3799.19 3090.94 3599.64 100
agg_prior297.84 5499.87 999.91 21
agg_prior99.54 3692.66 8597.64 9797.98 5199.61 102
TestCases90.52 26996.82 14578.84 33392.17 35777.96 34275.94 32995.50 21455.48 34799.18 13971.15 33887.14 23193.55 243
test_prior492.00 9499.41 68
test_prior299.57 4291.43 10598.12 4498.97 6290.43 4498.33 4299.81 23
test_prior97.01 6099.58 3091.77 9597.57 11599.49 11299.79 36
旧先验298.67 15085.75 25198.96 2098.97 15293.84 131
新几何298.26 199
新几何197.40 4798.92 7792.51 9097.77 7285.52 25396.69 8399.06 5388.08 7299.89 5384.88 23599.62 4499.79 36
旧先验198.97 7392.90 8397.74 7499.15 3991.05 3499.33 6399.60 67
无先验98.52 16797.82 6287.20 22299.90 5087.64 20599.85 30
原ACMM298.69 147
原ACMM196.18 10599.03 7190.08 13997.63 10188.98 16797.00 7298.97 6288.14 7199.71 9088.23 19799.62 4498.76 147
test22298.32 9291.21 10598.08 21697.58 11283.74 28295.87 9899.02 5886.74 10099.64 4099.81 33
testdata299.88 5484.16 245
segment_acmp90.56 42
testdata95.26 14198.20 9587.28 21197.60 10685.21 25798.48 3399.15 3988.15 7098.72 16290.29 17399.45 5799.78 38
testdata197.89 22592.43 82
test1297.83 3399.33 5394.45 4997.55 11797.56 5688.60 6399.50 11199.71 3499.55 72
plane_prior793.84 26085.73 251
plane_prior693.92 25786.02 24572.92 252
plane_prior596.30 22097.75 21193.46 13886.17 24092.67 250
plane_prior496.52 192
plane_prior385.91 24693.65 6186.99 214
plane_prior299.02 11693.38 66
plane_prior193.90 259
plane_prior86.07 24399.14 10193.81 5886.26 239
n20.00 408
nn0.00 408
door-mid84.90 388
lessismore_v085.08 33685.59 36469.28 37290.56 37267.68 36690.21 32654.21 35595.46 31973.88 32762.64 36990.50 321
LGP-MVS_train90.06 28093.35 27480.95 32195.94 24887.73 21283.17 25196.11 20466.28 30497.77 20590.19 17485.19 24791.46 290
test1197.68 87
door85.30 386
HQP5-MVS86.39 228
HQP-NCC93.95 25399.16 9393.92 5087.57 207
ACMP_Plane93.95 25399.16 9393.92 5087.57 207
BP-MVS93.82 133
HQP4-MVS87.57 20797.77 20592.72 248
HQP3-MVS96.37 21686.29 237
HQP2-MVS73.34 246
NP-MVS93.94 25686.22 23596.67 190
MDTV_nov1_ep13_2view91.17 10891.38 35587.45 21993.08 14386.67 10287.02 20898.95 127
ACMMP++_ref82.64 274
ACMMP++83.83 261
Test By Simon83.62 150
ITE_SJBPF87.93 31592.26 28776.44 34793.47 34287.67 21579.95 30195.49 21656.50 34497.38 23375.24 31682.33 27689.98 333
DeepMVS_CXcopyleft76.08 35990.74 31351.65 39290.84 37086.47 24157.89 38087.98 34135.88 38492.60 35665.77 36065.06 36583.97 375