This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 2
LTVRE_ROB93.87 197.93 398.16 297.26 3098.81 2793.86 3599.07 298.98 997.01 1598.92 598.78 1695.22 4298.61 17696.85 499.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mamv498.21 297.86 399.26 198.24 7499.36 196.10 6399.32 298.75 299.58 298.70 2091.78 13199.88 198.60 199.67 2098.54 120
UniMVSNet_ETH3D97.13 997.72 495.35 8699.51 287.38 13797.70 897.54 12398.16 398.94 399.33 397.84 499.08 10090.73 14999.73 1399.59 14
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1197.41 1197.28 5898.46 3394.62 6698.84 13494.64 3799.53 3798.99 56
PS-CasMVS96.69 2497.43 694.49 13099.13 684.09 20996.61 3297.97 8697.91 698.64 1498.13 4395.24 4099.65 593.39 7799.84 399.72 4
DTE-MVSNet96.74 2197.43 694.67 11799.13 684.68 19896.51 3697.94 9298.14 498.67 1398.32 3795.04 5099.69 493.27 8299.82 799.62 12
ACMH88.36 1296.59 3197.43 694.07 14498.56 4185.33 19296.33 4998.30 3394.66 4998.72 998.30 3897.51 598.00 23694.87 3499.59 2798.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS96.69 2497.39 994.61 12099.16 484.50 19996.54 3498.05 7398.06 598.64 1498.25 4095.01 5399.65 592.95 9499.83 599.68 6
pmmvs696.80 1697.36 1095.15 10099.12 887.82 13296.68 2997.86 9596.10 3398.14 2899.28 597.94 398.21 21691.38 13899.69 1499.42 20
v7n96.82 1397.31 1195.33 8898.54 4686.81 15296.83 2298.07 6996.59 2398.46 1898.43 3592.91 10799.52 2096.25 1299.76 1099.65 10
reproduce_model97.35 597.24 1297.70 598.44 5895.08 1295.88 7498.50 1896.62 2298.27 2197.93 5794.57 6899.50 2295.57 2099.35 5998.52 123
UA-Net97.35 597.24 1297.69 698.22 7593.87 3498.42 698.19 4796.95 1695.46 14799.23 693.45 8799.57 1595.34 2999.89 299.63 11
reproduce-ours97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 133
our_new_method97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 133
Anonymous2023121196.60 2997.13 1695.00 10397.46 13286.35 16897.11 1898.24 4097.58 998.72 998.97 993.15 9999.15 9193.18 8599.74 1299.50 18
WR-MVS_H96.60 2997.05 1795.24 9499.02 1286.44 16496.78 2698.08 6697.42 1098.48 1797.86 6591.76 13499.63 894.23 4699.84 399.66 8
HPM-MVS_fast97.01 1096.89 1897.39 2599.12 893.92 3297.16 1498.17 5393.11 8096.48 9297.36 10096.92 699.34 6594.31 4499.38 5798.92 72
ACMH+88.43 1196.48 3496.82 1995.47 8398.54 4689.06 10495.65 8398.61 1596.10 3398.16 2797.52 8696.90 798.62 17590.30 16499.60 2598.72 96
CP-MVSNet96.19 4996.80 2094.38 13598.99 1683.82 21296.31 5297.53 12597.60 898.34 2097.52 8691.98 12799.63 893.08 9099.81 899.70 5
OurMVSNet-221017-096.80 1696.75 2196.96 3999.03 1191.85 6197.98 798.01 8194.15 5898.93 499.07 788.07 19599.57 1595.86 1599.69 1499.46 19
mvs_tets96.83 1296.71 2297.17 3198.83 2492.51 5296.58 3397.61 11787.57 21798.80 898.90 1196.50 999.59 1496.15 1399.47 4199.40 22
RE-MVS-def96.66 2398.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13095.40 3193.49 6798.84 13598.00 166
APD-MVS_3200maxsize96.82 1396.65 2497.32 2997.95 9693.82 3796.31 5298.25 3795.51 4196.99 7197.05 12995.63 2399.39 5293.31 7998.88 13098.75 91
APDe-MVScopyleft96.46 3596.64 2595.93 6497.68 11889.38 9896.90 2198.41 2392.52 8897.43 5097.92 6195.11 4799.50 2294.45 4099.30 7298.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVScopyleft96.81 1596.62 2697.36 2798.89 2093.53 4297.51 1098.44 2092.35 9395.95 11996.41 17096.71 899.42 3693.99 5299.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
COLMAP_ROBcopyleft91.06 596.75 2096.62 2697.13 3298.38 6194.31 2196.79 2598.32 3096.69 1996.86 7697.56 8195.48 2798.77 15190.11 17399.44 4898.31 140
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS-dyc-post96.84 1196.60 2897.56 1498.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13094.85 6099.42 3693.49 6798.84 13598.00 166
nrg03096.32 4496.55 2995.62 7897.83 10388.55 11895.77 7898.29 3692.68 8498.03 3097.91 6295.13 4598.95 12093.85 5599.49 4099.36 25
testf196.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24389.32 19099.23 8698.19 149
APD_test296.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24389.32 19099.23 8698.19 149
test_djsdf96.62 2796.49 3097.01 3698.55 4491.77 6397.15 1597.37 13488.98 18398.26 2498.86 1293.35 9299.60 1096.41 999.45 4599.66 8
SR-MVS96.70 2396.42 3397.54 1598.05 8694.69 1596.13 6298.07 6995.17 4396.82 7996.73 15395.09 4999.43 3592.99 9398.71 15598.50 124
anonymousdsp96.74 2196.42 3397.68 898.00 9294.03 2996.97 1997.61 11787.68 21598.45 1998.77 1794.20 7799.50 2296.70 699.40 5599.53 16
jajsoiax96.59 3196.42 3397.12 3398.76 3092.49 5396.44 4397.42 13286.96 22798.71 1198.72 1995.36 3499.56 1895.92 1499.45 4599.32 27
SED-MVS96.00 5596.41 3694.76 11298.51 4986.97 14895.21 10498.10 6391.95 10497.63 3897.25 11096.48 1099.35 6293.29 8099.29 7597.95 174
MTAPA96.65 2696.38 3797.47 1998.95 1894.05 2795.88 7497.62 11594.46 5496.29 10196.94 13693.56 8499.37 6094.29 4599.42 5098.99 56
DVP-MVS++95.93 5696.34 3894.70 11596.54 18286.66 15898.45 498.22 4493.26 7897.54 4397.36 10093.12 10099.38 5893.88 5398.68 15998.04 161
ACMMPcopyleft96.61 2896.34 3897.43 2298.61 3793.88 3396.95 2098.18 4992.26 9696.33 9796.84 14495.10 4899.40 4993.47 7099.33 6599.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SteuartSystems-ACMMP96.40 4196.30 4096.71 4498.63 3491.96 5995.70 8098.01 8193.34 7796.64 8796.57 16294.99 5499.36 6193.48 6999.34 6398.82 82
Skip Steuart: Steuart Systems R&D Blog.
ANet_high94.83 10496.28 4190.47 28196.65 17373.16 36094.33 13798.74 1496.39 2898.09 2998.93 1093.37 9198.70 16490.38 15999.68 1799.53 16
TranMVSNet+NR-MVSNet96.07 5396.26 4295.50 8298.26 7187.69 13493.75 15997.86 9595.96 3897.48 4897.14 12195.33 3699.44 3290.79 14799.76 1099.38 23
LPG-MVS_test96.38 4396.23 4396.84 4298.36 6692.13 5695.33 9898.25 3791.78 11797.07 6497.22 11496.38 1299.28 7892.07 11599.59 2799.11 44
test_040295.73 6696.22 4494.26 13898.19 7785.77 18293.24 17697.24 15096.88 1897.69 3697.77 7194.12 7899.13 9591.54 13499.29 7597.88 184
ZNCC-MVS96.42 3996.20 4597.07 3498.80 2992.79 5096.08 6598.16 5691.74 12195.34 15496.36 17895.68 2199.44 3294.41 4299.28 8098.97 62
DVP-MVScopyleft95.82 6296.18 4694.72 11498.51 4986.69 15695.20 10697.00 16691.85 11097.40 5497.35 10395.58 2499.34 6593.44 7399.31 7098.13 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
XVS96.49 3396.18 4697.44 2098.56 4193.99 3096.50 3797.95 8994.58 5094.38 19696.49 16494.56 6999.39 5293.57 6399.05 10698.93 68
HFP-MVS96.39 4296.17 4897.04 3598.51 4993.37 4396.30 5697.98 8492.35 9395.63 13796.47 16595.37 3299.27 8093.78 5799.14 9998.48 127
ACMMPR96.46 3596.14 4997.41 2498.60 3893.82 3796.30 5697.96 8792.35 9395.57 14096.61 16094.93 5899.41 4293.78 5799.15 9899.00 54
ACMMP_NAP96.21 4896.12 5096.49 5298.90 1991.42 6794.57 12998.03 7890.42 15796.37 9597.35 10395.68 2199.25 8194.44 4199.34 6398.80 85
test_fmvsmconf0.01_n95.90 5896.09 5195.31 9197.30 13989.21 10094.24 14098.76 1386.25 23497.56 4298.66 2195.73 1998.44 19797.35 398.99 11498.27 143
region2R96.41 4096.09 5197.38 2698.62 3593.81 3996.32 5197.96 8792.26 9695.28 15996.57 16295.02 5299.41 4293.63 6199.11 10198.94 66
CP-MVS96.44 3896.08 5397.54 1598.29 6894.62 1896.80 2498.08 6692.67 8695.08 17396.39 17594.77 6299.42 3693.17 8699.44 4898.58 118
ACMM88.83 996.30 4696.07 5496.97 3898.39 6092.95 4894.74 12198.03 7890.82 14597.15 6196.85 14296.25 1499.00 11293.10 8899.33 6598.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mPP-MVS96.46 3596.05 5597.69 698.62 3594.65 1796.45 4197.74 10892.59 8795.47 14596.68 15694.50 7199.42 3693.10 8899.26 8298.99 56
PS-MVSNAJss96.01 5496.04 5695.89 6998.82 2588.51 11995.57 8997.88 9388.72 18998.81 798.86 1290.77 15799.60 1095.43 2599.53 3799.57 15
TransMVSNet (Re)95.27 9196.04 5692.97 18898.37 6381.92 24195.07 11196.76 18793.97 6297.77 3498.57 2695.72 2097.90 24388.89 20799.23 8699.08 48
mmtdpeth95.82 6296.02 5895.23 9596.91 15788.62 11396.49 3999.26 495.07 4493.41 22499.29 490.25 17097.27 29294.49 3999.01 11399.80 3
GST-MVS96.24 4795.99 5997.00 3798.65 3392.71 5195.69 8298.01 8192.08 10295.74 13296.28 18495.22 4299.42 3693.17 8699.06 10398.88 77
pm-mvs195.43 7795.94 6093.93 15198.38 6185.08 19595.46 9497.12 15991.84 11397.28 5898.46 3395.30 3897.71 26890.17 17199.42 5098.99 56
PGM-MVS96.32 4495.94 6097.43 2298.59 4093.84 3695.33 9898.30 3391.40 13295.76 12996.87 14195.26 3999.45 3192.77 9699.21 9099.00 54
tt080595.42 8095.93 6293.86 15598.75 3188.47 12097.68 994.29 27896.48 2495.38 15093.63 29494.89 5997.94 24295.38 2796.92 27895.17 320
MP-MVS-pluss96.08 5295.92 6396.57 4899.06 1091.21 6993.25 17598.32 3087.89 20896.86 7697.38 9695.55 2699.39 5295.47 2399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSMamba_PlusPlus94.82 10595.89 6491.62 24097.82 10478.88 29596.52 3597.60 11997.14 1494.23 19998.48 3287.01 21499.71 395.43 2598.80 14496.28 278
SF-MVS95.88 6095.88 6595.87 7098.12 8089.65 9095.58 8898.56 1791.84 11396.36 9696.68 15694.37 7599.32 7192.41 10899.05 10698.64 111
DPE-MVScopyleft95.89 5995.88 6595.92 6697.93 9789.83 8893.46 16998.30 3392.37 9197.75 3596.95 13595.14 4499.51 2191.74 12599.28 8098.41 132
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
FC-MVSNet-test95.32 8495.88 6593.62 16698.49 5681.77 24295.90 7398.32 3093.93 6397.53 4597.56 8188.48 18899.40 4992.91 9599.83 599.68 6
DP-MVS95.62 6995.84 6894.97 10497.16 14688.62 11394.54 13397.64 11396.94 1796.58 9097.32 10793.07 10398.72 15790.45 15698.84 13597.57 212
Anonymous2024052995.50 7495.83 6994.50 12897.33 13885.93 17895.19 10896.77 18696.64 2197.61 4198.05 4793.23 9698.79 14588.60 21399.04 11198.78 87
LS3D96.11 5195.83 6996.95 4094.75 28694.20 2397.34 1397.98 8497.31 1295.32 15596.77 14693.08 10299.20 8791.79 12498.16 21097.44 222
mvs5depth95.28 8895.82 7193.66 16496.42 19283.08 22697.35 1299.28 396.44 2696.20 10999.65 284.10 24898.01 23494.06 4998.93 12599.87 1
Gipumacopyleft95.31 8795.80 7293.81 15897.99 9590.91 7496.42 4497.95 8996.69 1991.78 28498.85 1491.77 13295.49 35391.72 12699.08 10295.02 329
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
3Dnovator+92.74 295.86 6195.77 7396.13 5696.81 16690.79 7796.30 5697.82 10096.13 3294.74 18797.23 11291.33 14199.16 9093.25 8398.30 19698.46 128
SD-MVS95.19 9295.73 7493.55 16996.62 17788.88 10994.67 12398.05 7391.26 13597.25 6096.40 17195.42 3094.36 37492.72 10099.19 9297.40 226
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf0.1_n95.61 7095.72 7595.26 9296.85 16289.20 10193.51 16798.60 1685.68 24897.42 5298.30 3895.34 3598.39 19896.85 498.98 11598.19 149
MP-MVScopyleft96.14 5095.68 7697.51 1798.81 2794.06 2596.10 6397.78 10692.73 8393.48 22296.72 15494.23 7699.42 3691.99 11799.29 7599.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VPA-MVSNet95.14 9395.67 7793.58 16897.76 10883.15 22494.58 12897.58 12093.39 7597.05 6798.04 4993.25 9598.51 18989.75 18399.59 2799.08 48
casdiffmvs_mvgpermissive95.10 9495.62 7893.53 17296.25 21183.23 22192.66 19598.19 4793.06 8197.49 4797.15 12094.78 6198.71 16392.27 11098.72 15398.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet95.44 7695.62 7894.89 10696.93 15687.69 13496.48 4099.14 793.93 6392.77 25494.52 26693.95 8199.49 2893.62 6299.22 8997.51 217
CS-MVS95.77 6495.58 8096.37 5496.84 16391.72 6596.73 2899.06 894.23 5692.48 26394.79 25593.56 8499.49 2893.47 7099.05 10697.89 183
SMA-MVScopyleft95.77 6495.54 8196.47 5398.27 7091.19 7095.09 10997.79 10586.48 23097.42 5297.51 9094.47 7499.29 7493.55 6599.29 7598.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsmconf_n95.43 7795.50 8295.22 9796.48 18989.19 10293.23 17798.36 2785.61 25196.92 7498.02 5195.23 4198.38 20196.69 798.95 12498.09 157
Vis-MVSNetpermissive95.50 7495.48 8395.56 8198.11 8189.40 9795.35 9698.22 4492.36 9294.11 20198.07 4692.02 12599.44 3293.38 7897.67 24697.85 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OPM-MVS95.61 7095.45 8496.08 5798.49 5691.00 7292.65 19697.33 14290.05 16296.77 8296.85 14295.04 5098.56 18392.77 9699.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MIMVSNet195.52 7395.45 8495.72 7599.14 589.02 10596.23 5996.87 17893.73 6797.87 3198.49 3190.73 16199.05 10586.43 25399.60 2599.10 47
ACMP88.15 1395.71 6795.43 8696.54 4998.17 7891.73 6494.24 14098.08 6689.46 17296.61 8996.47 16595.85 1899.12 9690.45 15699.56 3498.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD_test195.91 5795.42 8797.36 2798.82 2596.62 795.64 8497.64 11393.38 7695.89 12497.23 11293.35 9297.66 27188.20 21698.66 16397.79 196
test_fmvsmvis_n_192095.08 9595.40 8894.13 14296.66 17287.75 13393.44 17198.49 1985.57 25298.27 2197.11 12494.11 7997.75 26496.26 1198.72 15396.89 251
FIs94.90 10195.35 8993.55 16998.28 6981.76 24395.33 9898.14 5793.05 8297.07 6497.18 11887.65 20299.29 7491.72 12699.69 1499.61 13
XVG-ACMP-BASELINE95.68 6895.34 9096.69 4598.40 5993.04 4594.54 13398.05 7390.45 15696.31 9996.76 14892.91 10798.72 15791.19 13999.42 5098.32 138
DeepC-MVS91.39 495.43 7795.33 9195.71 7697.67 11990.17 8493.86 15698.02 8087.35 21996.22 10797.99 5494.48 7399.05 10592.73 9999.68 1797.93 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PMVScopyleft87.21 1494.97 9895.33 9193.91 15298.97 1797.16 395.54 9295.85 23096.47 2593.40 22797.46 9395.31 3795.47 35486.18 25798.78 14789.11 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v894.65 11295.29 9392.74 19896.65 17379.77 27694.59 12697.17 15491.86 10997.47 4997.93 5788.16 19399.08 10094.32 4399.47 4199.38 23
NR-MVSNet95.28 8895.28 9495.26 9297.75 10987.21 14195.08 11097.37 13493.92 6597.65 3795.90 20390.10 17599.33 7090.11 17399.66 2199.26 30
v1094.68 11195.27 9592.90 19396.57 17980.15 26194.65 12597.57 12190.68 14997.43 5098.00 5288.18 19299.15 9194.84 3599.55 3599.41 21
UniMVSNet_NR-MVSNet95.35 8295.21 9695.76 7397.69 11788.59 11692.26 21897.84 9894.91 4796.80 8095.78 21390.42 16699.41 4291.60 13099.58 3199.29 29
SixPastTwentyTwo94.91 10095.21 9693.98 14698.52 4883.19 22395.93 7194.84 26494.86 4898.49 1698.74 1881.45 27599.60 1094.69 3699.39 5699.15 39
UniMVSNet (Re)95.32 8495.15 9895.80 7297.79 10788.91 10792.91 18698.07 6993.46 7496.31 9995.97 20290.14 17299.34 6592.11 11299.64 2399.16 38
FMVSNet194.84 10395.13 9993.97 14797.60 12284.29 20295.99 6796.56 19992.38 9097.03 6898.53 2890.12 17398.98 11388.78 20999.16 9798.65 106
DU-MVS95.28 8895.12 10095.75 7497.75 10988.59 11692.58 19897.81 10193.99 6096.80 8095.90 20390.10 17599.41 4291.60 13099.58 3199.26 30
SPE-MVS-test95.32 8495.10 10195.96 6096.86 16190.75 7896.33 4999.20 593.99 6091.03 29793.73 29293.52 8699.55 1991.81 12399.45 4597.58 211
Baseline_NR-MVSNet94.47 11995.09 10292.60 20898.50 5580.82 25792.08 22296.68 19193.82 6696.29 10198.56 2790.10 17597.75 26490.10 17599.66 2199.24 32
SDMVSNet94.43 12195.02 10392.69 20097.93 9782.88 23091.92 23195.99 22793.65 7295.51 14298.63 2394.60 6796.48 32787.57 23199.35 5998.70 100
dcpmvs_293.96 14195.01 10490.82 27397.60 12274.04 35593.68 16398.85 1089.80 16797.82 3297.01 13391.14 15199.21 8490.56 15398.59 16899.19 36
XVG-OURS-SEG-HR95.38 8195.00 10596.51 5098.10 8294.07 2492.46 20498.13 5890.69 14893.75 21596.25 18898.03 297.02 30892.08 11495.55 31398.45 129
3Dnovator92.54 394.80 10694.90 10694.47 13195.47 26487.06 14596.63 3197.28 14891.82 11694.34 19897.41 9490.60 16498.65 17392.47 10798.11 21597.70 204
RPSCF95.58 7294.89 10797.62 997.58 12496.30 895.97 7097.53 12592.42 8993.41 22497.78 6791.21 14697.77 26191.06 14197.06 27098.80 85
tfpnnormal94.27 12894.87 10892.48 21297.71 11480.88 25694.55 13295.41 24993.70 6896.67 8697.72 7291.40 14098.18 22087.45 23399.18 9498.36 133
9.1494.81 10997.49 12994.11 14798.37 2687.56 21895.38 15096.03 19994.66 6499.08 10090.70 15098.97 120
casdiffmvspermissive94.32 12794.80 11092.85 19596.05 22781.44 24892.35 21198.05 7391.53 12995.75 13196.80 14593.35 9298.49 19091.01 14498.32 19598.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline94.26 12994.80 11092.64 20296.08 22580.99 25493.69 16298.04 7790.80 14694.89 18196.32 18093.19 9798.48 19491.68 12898.51 17798.43 131
TSAR-MVS + MP.94.96 9994.75 11295.57 8098.86 2288.69 11096.37 4696.81 18285.23 25794.75 18697.12 12391.85 12999.40 4993.45 7298.33 19398.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG94.69 11094.75 11294.52 12797.55 12687.87 13095.01 11497.57 12192.68 8496.20 10993.44 30091.92 12898.78 14889.11 20199.24 8596.92 249
test_fmvsm_n_192094.72 10894.74 11494.67 11796.30 20688.62 11393.19 17898.07 6985.63 25097.08 6397.35 10390.86 15497.66 27195.70 1698.48 18097.74 202
KD-MVS_self_test94.10 13694.73 11592.19 21997.66 12079.49 28294.86 11897.12 15989.59 17196.87 7597.65 7590.40 16898.34 20689.08 20299.35 5998.75 91
sasdasda94.59 11394.69 11694.30 13695.60 25887.03 14695.59 8598.24 4091.56 12795.21 16592.04 33494.95 5598.66 17091.45 13597.57 25197.20 237
canonicalmvs94.59 11394.69 11694.30 13695.60 25887.03 14695.59 8598.24 4091.56 12795.21 16592.04 33494.95 5598.66 17091.45 13597.57 25197.20 237
APD-MVScopyleft95.00 9794.69 11695.93 6497.38 13490.88 7594.59 12697.81 10189.22 17995.46 14796.17 19393.42 9099.34 6589.30 19298.87 13397.56 214
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GeoE94.55 11694.68 11994.15 14097.23 14185.11 19494.14 14697.34 14188.71 19095.26 16095.50 22594.65 6599.12 9690.94 14598.40 18398.23 145
MGCFI-Net94.44 12094.67 12093.75 16095.56 26085.47 18995.25 10398.24 4091.53 12995.04 17492.21 32994.94 5798.54 18691.56 13397.66 24797.24 235
EG-PatchMatch MVS94.54 11794.67 12094.14 14197.87 10286.50 16092.00 22696.74 18888.16 20496.93 7397.61 7893.04 10497.90 24391.60 13098.12 21498.03 164
MSP-MVS95.34 8394.63 12297.48 1898.67 3294.05 2796.41 4598.18 4991.26 13595.12 16995.15 23786.60 22499.50 2293.43 7696.81 28298.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LCM-MVSNet-Re94.20 13394.58 12393.04 18595.91 23783.13 22593.79 15899.19 692.00 10398.84 698.04 4993.64 8399.02 11081.28 31198.54 17396.96 248
AllTest94.88 10294.51 12496.00 5898.02 9092.17 5495.26 10298.43 2190.48 15495.04 17496.74 15192.54 11697.86 25185.11 27098.98 11597.98 170
fmvsm_s_conf0.1_n94.19 13594.41 12593.52 17497.22 14384.37 20093.73 16095.26 25384.45 27295.76 12998.00 5291.85 12997.21 29595.62 1797.82 23898.98 60
sd_testset93.94 14294.39 12692.61 20797.93 9783.24 22093.17 17995.04 25893.65 7295.51 14298.63 2394.49 7295.89 34681.72 30699.35 5998.70 100
HPM-MVS++copyleft95.02 9694.39 12696.91 4197.88 10093.58 4194.09 14996.99 16891.05 14092.40 26895.22 23691.03 15399.25 8192.11 11298.69 15897.90 181
fmvsm_s_conf0.1_n_a94.26 12994.37 12893.95 15097.36 13685.72 18494.15 14495.44 24683.25 28495.51 14298.05 4792.54 11697.19 29895.55 2197.46 25798.94 66
VDD-MVS94.37 12394.37 12894.40 13497.49 12986.07 17593.97 15393.28 29894.49 5296.24 10597.78 6787.99 19898.79 14588.92 20599.14 9998.34 137
IS-MVSNet94.49 11894.35 13094.92 10598.25 7386.46 16397.13 1794.31 27796.24 3196.28 10396.36 17882.88 25899.35 6288.19 21799.52 3998.96 64
CNVR-MVS94.58 11594.29 13195.46 8496.94 15489.35 9991.81 23996.80 18389.66 16993.90 21395.44 22892.80 11198.72 15792.74 9898.52 17598.32 138
EI-MVSNet-Vis-set94.36 12494.28 13294.61 12092.55 33685.98 17792.44 20694.69 27193.70 6896.12 11495.81 20991.24 14498.86 13193.76 6098.22 20598.98 60
IterMVS-LS93.78 14694.28 13292.27 21696.27 20879.21 28991.87 23596.78 18491.77 11996.57 9197.07 12787.15 21198.74 15591.99 11799.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet-UG-set94.35 12594.27 13494.59 12492.46 33985.87 18092.42 20894.69 27193.67 7196.13 11395.84 20791.20 14798.86 13193.78 5798.23 20399.03 52
VDDNet94.03 13894.27 13493.31 18098.87 2182.36 23695.51 9391.78 32997.19 1396.32 9898.60 2584.24 24698.75 15287.09 24098.83 14098.81 84
fmvsm_s_conf0.5_n94.00 14094.20 13693.42 17896.69 17084.37 20093.38 17395.13 25684.50 27195.40 14997.55 8591.77 13297.20 29695.59 1897.79 23998.69 103
balanced_conf0393.45 15494.17 13791.28 25495.81 24478.40 30296.20 6097.48 12988.56 19595.29 15897.20 11785.56 23799.21 8492.52 10698.91 12796.24 281
MM94.41 12294.14 13895.22 9795.84 24087.21 14194.31 13990.92 33794.48 5392.80 25297.52 8685.27 23899.49 2896.58 899.57 3398.97 62
XVG-OURS94.72 10894.12 13996.50 5198.00 9294.23 2291.48 24698.17 5390.72 14795.30 15696.47 16587.94 19996.98 30991.41 13797.61 25098.30 141
CPTT-MVS94.74 10794.12 13996.60 4798.15 7993.01 4695.84 7697.66 11289.21 18093.28 23295.46 22688.89 18698.98 11389.80 18098.82 14197.80 195
fmvsm_s_conf0.5_n_a94.02 13994.08 14193.84 15696.72 16985.73 18393.65 16595.23 25483.30 28295.13 16897.56 8192.22 12197.17 29995.51 2297.41 25998.64 111
HQP_MVS94.26 12993.93 14295.23 9597.71 11488.12 12594.56 13097.81 10191.74 12193.31 22995.59 22086.93 21798.95 12089.26 19698.51 17798.60 116
MSLP-MVS++93.25 16293.88 14391.37 24896.34 20082.81 23193.11 18097.74 10889.37 17594.08 20395.29 23590.40 16896.35 33490.35 16198.25 20194.96 330
fmvsm_l_conf0.5_n93.79 14593.81 14493.73 16296.16 21786.26 17092.46 20496.72 18981.69 30695.77 12897.11 12490.83 15697.82 25495.58 1997.99 22797.11 240
v114493.50 15193.81 14492.57 20996.28 20779.61 27991.86 23796.96 16986.95 22895.91 12296.32 18087.65 20298.96 11893.51 6698.88 13099.13 41
PHI-MVS94.34 12693.80 14695.95 6195.65 25491.67 6694.82 11997.86 9587.86 20993.04 24494.16 27791.58 13698.78 14890.27 16698.96 12297.41 223
v119293.49 15293.78 14792.62 20696.16 21779.62 27891.83 23897.22 15286.07 23996.10 11596.38 17687.22 20999.02 11094.14 4898.88 13099.22 33
VPNet93.08 16693.76 14891.03 26398.60 3875.83 33991.51 24495.62 23591.84 11395.74 13297.10 12689.31 18398.32 20785.07 27299.06 10398.93 68
WR-MVS93.49 15293.72 14992.80 19797.57 12580.03 26790.14 28695.68 23493.70 6896.62 8895.39 23387.21 21099.04 10887.50 23299.64 2399.33 26
v124093.29 15893.71 15092.06 22696.01 23277.89 31091.81 23997.37 13485.12 26196.69 8596.40 17186.67 22299.07 10494.51 3898.76 14999.22 33
OMC-MVS94.22 13293.69 15195.81 7197.25 14091.27 6892.27 21797.40 13387.10 22694.56 19195.42 22993.74 8298.11 22586.62 24798.85 13498.06 158
EPP-MVSNet93.91 14393.68 15294.59 12498.08 8385.55 18897.44 1194.03 28394.22 5794.94 17896.19 19082.07 27099.57 1587.28 23798.89 12898.65 106
fmvsm_l_conf0.5_n_a93.59 15093.63 15393.49 17696.10 22385.66 18692.32 21396.57 19881.32 30995.63 13797.14 12190.19 17197.73 26795.37 2898.03 22397.07 241
v2v48293.29 15893.63 15392.29 21596.35 19978.82 29791.77 24196.28 21188.45 19695.70 13696.26 18786.02 23098.90 12493.02 9198.81 14399.14 40
v192192093.26 16093.61 15592.19 21996.04 23178.31 30491.88 23497.24 15085.17 25996.19 11296.19 19086.76 22199.05 10594.18 4798.84 13599.22 33
V4293.43 15593.58 15692.97 18895.34 27081.22 25192.67 19496.49 20487.25 22296.20 10996.37 17787.32 20898.85 13392.39 10998.21 20698.85 81
Anonymous2024052192.86 17693.57 15790.74 27596.57 17975.50 34194.15 14495.60 23689.38 17495.90 12397.90 6480.39 28497.96 24092.60 10499.68 1798.75 91
DeepPCF-MVS90.46 694.20 13393.56 15896.14 5595.96 23492.96 4789.48 30697.46 13085.14 26096.23 10695.42 22993.19 9798.08 22790.37 16098.76 14997.38 229
v14419293.20 16593.54 15992.16 22396.05 22778.26 30591.95 22797.14 15684.98 26595.96 11896.11 19587.08 21399.04 10893.79 5698.84 13599.17 37
NCCC94.08 13793.54 15995.70 7796.49 18789.90 8792.39 21096.91 17590.64 15092.33 27494.60 26390.58 16598.96 11890.21 17097.70 24498.23 145
DeepC-MVS_fast89.96 793.73 14793.44 16194.60 12396.14 22087.90 12993.36 17497.14 15685.53 25393.90 21395.45 22791.30 14398.59 18089.51 18698.62 16497.31 232
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR93.63 14993.42 16294.26 13896.65 17386.96 15089.30 31396.23 21588.36 20093.57 22094.60 26393.45 8797.77 26190.23 16998.38 18798.03 164
v14892.87 17593.29 16391.62 24096.25 21177.72 31391.28 25195.05 25789.69 16895.93 12196.04 19887.34 20798.38 20190.05 17697.99 22798.78 87
MVS_Test92.57 18693.29 16390.40 28493.53 31775.85 33792.52 20096.96 16988.73 18892.35 27196.70 15590.77 15798.37 20592.53 10595.49 31596.99 247
MVS_111021_LR93.66 14893.28 16594.80 11096.25 21190.95 7390.21 28395.43 24887.91 20693.74 21794.40 26892.88 10996.38 33290.39 15898.28 19797.07 241
K. test v393.37 15693.27 16693.66 16498.05 8682.62 23294.35 13686.62 36996.05 3597.51 4698.85 1476.59 32099.65 593.21 8498.20 20898.73 95
EI-MVSNet92.99 16993.26 16792.19 21992.12 34979.21 28992.32 21394.67 27391.77 11995.24 16395.85 20587.14 21298.49 19091.99 11798.26 19998.86 78
XXY-MVS92.58 18493.16 16890.84 27297.75 10979.84 27291.87 23596.22 21785.94 24195.53 14197.68 7392.69 11394.48 37083.21 28897.51 25398.21 147
RRT-MVS92.28 19493.01 16990.07 29394.06 30673.01 36295.36 9597.88 9392.24 9895.16 16797.52 8678.51 29899.29 7490.55 15495.83 30897.92 179
SSC-MVS90.16 24592.96 17081.78 39097.88 10048.48 42290.75 26487.69 36096.02 3796.70 8497.63 7785.60 23697.80 25685.73 26198.60 16799.06 50
VNet92.67 18292.96 17091.79 23296.27 20880.15 26191.95 22794.98 26092.19 10094.52 19396.07 19787.43 20697.39 28784.83 27498.38 18797.83 191
GBi-Net93.21 16392.96 17093.97 14795.40 26684.29 20295.99 6796.56 19988.63 19195.10 17098.53 2881.31 27798.98 11386.74 24398.38 18798.65 106
test193.21 16392.96 17093.97 14795.40 26684.29 20295.99 6796.56 19988.63 19195.10 17098.53 2881.31 27798.98 11386.74 24398.38 18798.65 106
alignmvs93.26 16092.85 17494.50 12895.70 25087.45 13693.45 17095.76 23191.58 12695.25 16292.42 32781.96 27298.72 15791.61 12997.87 23697.33 231
QAPM92.88 17392.77 17593.22 18395.82 24283.31 21896.45 4197.35 14083.91 27793.75 21596.77 14689.25 18498.88 12784.56 27897.02 27297.49 218
TinyColmap92.00 20192.76 17689.71 30295.62 25777.02 32190.72 26696.17 22087.70 21495.26 16096.29 18292.54 11696.45 32981.77 30498.77 14895.66 309
ETV-MVS92.99 16992.74 17793.72 16395.86 23986.30 16992.33 21297.84 9891.70 12492.81 25186.17 39492.22 12199.19 8888.03 22497.73 24195.66 309
Effi-MVS+92.79 17792.74 17792.94 19195.10 27483.30 21994.00 15197.53 12591.36 13389.35 32990.65 35794.01 8098.66 17087.40 23595.30 32296.88 253
FMVSNet292.78 17892.73 17992.95 19095.40 26681.98 24094.18 14395.53 24488.63 19196.05 11697.37 9781.31 27798.81 14187.38 23698.67 16198.06 158
patch_mono-292.46 18892.72 18091.71 23696.65 17378.91 29488.85 32397.17 15483.89 27892.45 26596.76 14889.86 17997.09 30490.24 16898.59 16899.12 43
PM-MVS93.33 15792.67 18195.33 8896.58 17894.06 2592.26 21892.18 31985.92 24296.22 10796.61 16085.64 23595.99 34490.35 16198.23 20395.93 295
ab-mvs92.40 19092.62 18291.74 23497.02 15081.65 24495.84 7695.50 24586.95 22892.95 24997.56 8190.70 16297.50 27879.63 33097.43 25896.06 289
Effi-MVS+-dtu93.90 14492.60 18397.77 494.74 28796.67 694.00 15195.41 24989.94 16391.93 28392.13 33290.12 17398.97 11787.68 23097.48 25597.67 207
MCST-MVS92.91 17192.51 18494.10 14397.52 12785.72 18491.36 25097.13 15880.33 31792.91 25094.24 27391.23 14598.72 15789.99 17797.93 23297.86 187
Anonymous20240521192.58 18492.50 18592.83 19696.55 18183.22 22292.43 20791.64 33194.10 5995.59 13996.64 15881.88 27497.50 27885.12 26998.52 17597.77 198
UGNet93.08 16692.50 18594.79 11193.87 31187.99 12895.07 11194.26 28090.64 15087.33 36297.67 7486.89 21998.49 19088.10 22098.71 15597.91 180
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.93.07 16892.41 18795.06 10295.82 24290.87 7690.97 25992.61 31388.04 20594.61 19093.79 29188.08 19497.81 25589.41 18998.39 18696.50 267
test_fmvs392.42 18992.40 18892.46 21493.80 31487.28 13993.86 15697.05 16376.86 35096.25 10498.66 2182.87 25991.26 39395.44 2496.83 28198.82 82
MVS_030492.88 17392.27 18994.69 11692.35 34086.03 17692.88 18889.68 34490.53 15391.52 28796.43 16882.52 26699.32 7195.01 3299.54 3698.71 99
MVSFormer92.18 19892.23 19092.04 22794.74 28780.06 26597.15 1597.37 13488.98 18388.83 33392.79 31677.02 31399.60 1096.41 996.75 28596.46 270
Fast-Effi-MVS+-dtu92.77 17992.16 19194.58 12694.66 29288.25 12392.05 22396.65 19389.62 17090.08 31491.23 34592.56 11598.60 17886.30 25596.27 29896.90 250
DELS-MVS92.05 20092.16 19191.72 23594.44 29680.13 26387.62 33897.25 14987.34 22092.22 27693.18 30889.54 18298.73 15689.67 18498.20 20896.30 276
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WB-MVS89.44 26392.15 19381.32 39197.73 11248.22 42389.73 29987.98 35895.24 4296.05 11696.99 13485.18 23996.95 31082.45 29897.97 22998.78 87
OpenMVScopyleft89.45 892.27 19692.13 19492.68 20194.53 29584.10 20895.70 8097.03 16482.44 29891.14 29696.42 16988.47 18998.38 20185.95 25897.47 25695.55 314
EIA-MVS92.35 19292.03 19593.30 18195.81 24483.97 21092.80 19098.17 5387.71 21389.79 32287.56 38491.17 15099.18 8987.97 22597.27 26396.77 257
LF4IMVS92.72 18092.02 19694.84 10995.65 25491.99 5892.92 18596.60 19585.08 26392.44 26693.62 29586.80 22096.35 33486.81 24298.25 20196.18 284
h-mvs3392.89 17291.99 19795.58 7996.97 15290.55 8093.94 15494.01 28689.23 17793.95 21096.19 19076.88 31699.14 9391.02 14295.71 31097.04 245
CANet92.38 19191.99 19793.52 17493.82 31383.46 21691.14 25497.00 16689.81 16686.47 36694.04 28087.90 20099.21 8489.50 18798.27 19897.90 181
diffmvspermissive91.74 20591.93 19991.15 26193.06 32478.17 30688.77 32697.51 12886.28 23392.42 26793.96 28588.04 19697.46 28190.69 15196.67 28897.82 193
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DP-MVS Recon92.31 19391.88 20093.60 16797.18 14586.87 15191.10 25697.37 13484.92 26692.08 28094.08 27988.59 18798.20 21783.50 28598.14 21295.73 304
FA-MVS(test-final)91.81 20391.85 20191.68 23894.95 27779.99 26996.00 6693.44 29687.80 21094.02 20897.29 10877.60 30498.45 19688.04 22397.49 25496.61 261
train_agg92.71 18191.83 20295.35 8696.45 19089.46 9390.60 27096.92 17379.37 32890.49 30594.39 26991.20 14798.88 12788.66 21298.43 18297.72 203
CDPH-MVS92.67 18291.83 20295.18 9996.94 15488.46 12190.70 26797.07 16277.38 34492.34 27395.08 24292.67 11498.88 12785.74 26098.57 17098.20 148
TAPA-MVS88.58 1092.49 18791.75 20494.73 11396.50 18689.69 8992.91 18697.68 11178.02 34192.79 25394.10 27890.85 15597.96 24084.76 27698.16 21096.54 262
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
API-MVS91.52 21291.61 20591.26 25594.16 30186.26 17094.66 12494.82 26591.17 13892.13 27991.08 34890.03 17897.06 30779.09 33797.35 26290.45 397
IterMVS-SCA-FT91.65 20791.55 20691.94 22893.89 31079.22 28887.56 34193.51 29491.53 12995.37 15296.62 15978.65 29498.90 12491.89 12194.95 33197.70 204
xiu_mvs_v1_base_debu91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
xiu_mvs_v1_base91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
xiu_mvs_v1_base_debi91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
HQP-MVS92.09 19991.49 21093.88 15396.36 19684.89 19691.37 24797.31 14387.16 22388.81 33593.40 30184.76 24398.60 17886.55 25097.73 24198.14 154
c3_l91.32 21791.42 21191.00 26692.29 34276.79 32787.52 34496.42 20785.76 24694.72 18993.89 28882.73 26298.16 22290.93 14698.55 17198.04 161
CLD-MVS91.82 20291.41 21293.04 18596.37 19483.65 21486.82 35797.29 14684.65 27092.27 27589.67 36692.20 12397.85 25383.95 28399.47 4197.62 209
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AdaColmapbinary91.63 20891.36 21392.47 21395.56 26086.36 16792.24 22096.27 21288.88 18789.90 31992.69 31991.65 13598.32 20777.38 34997.64 24892.72 381
testgi90.38 23791.34 21487.50 34297.49 12971.54 37189.43 30895.16 25588.38 19894.54 19294.68 26092.88 10993.09 38571.60 38697.85 23797.88 184
mvs_anonymous90.37 23891.30 21587.58 34192.17 34868.00 38889.84 29694.73 27083.82 27993.22 23897.40 9587.54 20497.40 28687.94 22695.05 32997.34 230
hse-mvs292.24 19791.20 21695.38 8596.16 21790.65 7992.52 20092.01 32689.23 17793.95 21092.99 31176.88 31698.69 16691.02 14296.03 30196.81 255
PVSNet_Blended_VisFu91.63 20891.20 21692.94 19197.73 11283.95 21192.14 22197.46 13078.85 33792.35 27194.98 24584.16 24799.08 10086.36 25496.77 28495.79 302
CNLPA91.72 20691.20 21693.26 18296.17 21691.02 7191.14 25495.55 24390.16 16190.87 29893.56 29886.31 22694.40 37379.92 32997.12 26894.37 348
LFMVS91.33 21691.16 21991.82 23196.27 20879.36 28495.01 11485.61 38196.04 3694.82 18397.06 12872.03 33998.46 19584.96 27398.70 15797.65 208
BP-MVS191.77 20491.10 22093.75 16096.42 19283.40 21794.10 14891.89 32791.27 13493.36 22894.85 25064.43 37499.29 7494.88 3398.74 15298.56 119
F-COLMAP92.28 19491.06 22195.95 6197.52 12791.90 6093.53 16697.18 15383.98 27688.70 34194.04 28088.41 19098.55 18580.17 32395.99 30397.39 227
BH-untuned90.68 22690.90 22290.05 29695.98 23379.57 28090.04 28994.94 26287.91 20694.07 20493.00 31087.76 20197.78 26079.19 33695.17 32692.80 380
MDA-MVSNet-bldmvs91.04 21990.88 22391.55 24394.68 29180.16 26085.49 37892.14 32290.41 15894.93 17995.79 21085.10 24096.93 31385.15 26794.19 35297.57 212
Fast-Effi-MVS+91.28 21890.86 22492.53 21195.45 26582.53 23389.25 31696.52 20385.00 26489.91 31888.55 37892.94 10598.84 13484.72 27795.44 31796.22 282
test20.0390.80 22290.85 22590.63 27895.63 25679.24 28789.81 29792.87 30489.90 16494.39 19596.40 17185.77 23195.27 36173.86 37399.05 10697.39 227
GDP-MVS91.56 21090.83 22693.77 15996.34 20083.65 21493.66 16498.12 5987.32 22192.98 24794.71 25863.58 38099.30 7392.61 10398.14 21298.35 136
PAPM_NR91.03 22090.81 22791.68 23896.73 16881.10 25393.72 16196.35 21088.19 20288.77 33992.12 33385.09 24197.25 29382.40 29993.90 35796.68 260
new-patchmatchnet88.97 27590.79 22883.50 38594.28 30055.83 42085.34 38093.56 29386.18 23795.47 14595.73 21683.10 25596.51 32685.40 26498.06 22098.16 152
wuyk23d87.83 29690.79 22878.96 39690.46 38288.63 11292.72 19190.67 34091.65 12598.68 1297.64 7696.06 1577.53 41859.84 41299.41 5470.73 416
pmmvs-eth3d91.54 21190.73 23093.99 14595.76 24887.86 13190.83 26293.98 28778.23 34094.02 20896.22 18982.62 26596.83 31886.57 24898.33 19397.29 233
MSDG90.82 22190.67 23191.26 25594.16 30183.08 22686.63 36296.19 21890.60 15291.94 28291.89 33689.16 18595.75 34880.96 31694.51 34294.95 331
test111190.39 23690.61 23289.74 30198.04 8971.50 37295.59 8579.72 41189.41 17395.94 12098.14 4270.79 34398.81 14188.52 21499.32 6998.90 74
eth_miper_zixun_eth90.72 22490.61 23291.05 26292.04 35276.84 32686.91 35396.67 19285.21 25894.41 19493.92 28679.53 28898.26 21389.76 18297.02 27298.06 158
cl____90.65 22790.56 23490.91 27091.85 35776.98 32486.75 35895.36 25185.53 25394.06 20594.89 24877.36 31097.98 23990.27 16698.98 11597.76 199
DIV-MVS_self_test90.65 22790.56 23490.91 27091.85 35776.99 32386.75 35895.36 25185.52 25594.06 20594.89 24877.37 30997.99 23890.28 16598.97 12097.76 199
BH-RMVSNet90.47 23290.44 23690.56 28095.21 27378.65 30189.15 31793.94 28888.21 20192.74 25594.22 27486.38 22597.88 24778.67 33995.39 31995.14 323
miper_ehance_all_eth90.48 23190.42 23790.69 27691.62 36476.57 33086.83 35696.18 21983.38 28194.06 20592.66 32182.20 26898.04 22989.79 18197.02 27297.45 220
test_fmvs290.62 22990.40 23891.29 25391.93 35685.46 19092.70 19396.48 20574.44 36594.91 18097.59 7975.52 32490.57 39693.44 7396.56 29097.84 190
UnsupCasMVSNet_eth90.33 24090.34 23990.28 28694.64 29380.24 25989.69 30195.88 22885.77 24593.94 21295.69 21781.99 27192.98 38684.21 28191.30 38997.62 209
FMVSNet390.78 22390.32 24092.16 22393.03 32679.92 27192.54 19994.95 26186.17 23895.10 17096.01 20069.97 34798.75 15286.74 24398.38 18797.82 193
ECVR-MVScopyleft90.12 24790.16 24190.00 29797.81 10572.68 36695.76 7978.54 41489.04 18195.36 15398.10 4470.51 34598.64 17487.10 23999.18 9498.67 104
IterMVS90.18 24490.16 24190.21 29093.15 32275.98 33687.56 34192.97 30386.43 23294.09 20296.40 17178.32 29997.43 28387.87 22794.69 33997.23 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)90.42 23390.16 24191.20 25997.66 12077.32 31894.33 13787.66 36191.20 13792.99 24595.13 23975.40 32598.28 20977.86 34299.19 9297.99 169
RPMNet90.31 24290.14 24490.81 27491.01 37278.93 29192.52 20098.12 5991.91 10789.10 33096.89 14068.84 34999.41 4290.17 17192.70 37894.08 352
test_vis3_rt90.40 23490.03 24591.52 24592.58 33488.95 10690.38 27897.72 11073.30 37297.79 3397.51 9077.05 31287.10 41089.03 20394.89 33298.50 124
PVSNet_BlendedMVS90.35 23989.96 24691.54 24494.81 28278.80 29990.14 28696.93 17179.43 32788.68 34295.06 24386.27 22798.15 22380.27 31998.04 22297.68 206
Patchmtry90.11 24889.92 24790.66 27790.35 38377.00 32292.96 18492.81 30590.25 16094.74 18796.93 13767.11 35697.52 27785.17 26598.98 11597.46 219
CL-MVSNet_self_test90.04 25389.90 24890.47 28195.24 27277.81 31186.60 36492.62 31285.64 24993.25 23693.92 28683.84 24996.06 34179.93 32798.03 22397.53 216
test_vis1_n_192089.45 26289.85 24988.28 32993.59 31676.71 32890.67 26897.78 10679.67 32490.30 31196.11 19576.62 31992.17 38990.31 16393.57 36295.96 293
miper_lstm_enhance89.90 25589.80 25090.19 29291.37 36877.50 31583.82 39595.00 25984.84 26893.05 24394.96 24676.53 32195.20 36289.96 17898.67 16197.86 187
114514_t90.51 23089.80 25092.63 20598.00 9282.24 23893.40 17297.29 14665.84 40789.40 32894.80 25486.99 21598.75 15283.88 28498.61 16596.89 251
MG-MVS89.54 26089.80 25088.76 31894.88 27872.47 36889.60 30292.44 31685.82 24489.48 32695.98 20182.85 26097.74 26681.87 30395.27 32396.08 288
test_yl90.11 24889.73 25391.26 25594.09 30479.82 27390.44 27492.65 31090.90 14193.19 23993.30 30373.90 32998.03 23082.23 30096.87 27995.93 295
DCV-MVSNet90.11 24889.73 25391.26 25594.09 30479.82 27390.44 27492.65 31090.90 14193.19 23993.30 30373.90 32998.03 23082.23 30096.87 27995.93 295
D2MVS89.93 25489.60 25590.92 26894.03 30778.40 30288.69 32894.85 26378.96 33593.08 24195.09 24174.57 32796.94 31188.19 21798.96 12297.41 223
mvsmamba90.24 24389.43 25692.64 20295.52 26282.36 23696.64 3092.29 31781.77 30492.14 27896.28 18470.59 34499.10 9984.44 28095.22 32596.47 269
MonoMVSNet88.46 28689.28 25785.98 36290.52 37970.07 38195.31 10194.81 26788.38 19893.47 22396.13 19473.21 33295.07 36382.61 29489.12 39892.81 379
xiu_mvs_v2_base89.00 27489.19 25888.46 32794.86 28074.63 34686.97 35195.60 23680.88 31387.83 35488.62 37791.04 15298.81 14182.51 29794.38 34491.93 387
CANet_DTU89.85 25689.17 25991.87 22992.20 34680.02 26890.79 26395.87 22986.02 24082.53 39891.77 33880.01 28598.57 18285.66 26297.70 24497.01 246
USDC89.02 27189.08 26088.84 31795.07 27574.50 34988.97 31996.39 20873.21 37393.27 23396.28 18482.16 26996.39 33177.55 34698.80 14495.62 312
TAMVS90.16 24589.05 26193.49 17696.49 18786.37 16690.34 28092.55 31480.84 31592.99 24594.57 26581.94 27398.20 21773.51 37498.21 20695.90 298
OpenMVS_ROBcopyleft85.12 1689.52 26189.05 26190.92 26894.58 29481.21 25291.10 25693.41 29777.03 34993.41 22493.99 28483.23 25497.80 25679.93 32794.80 33693.74 363
test_vis1_n89.01 27389.01 26389.03 31392.57 33582.46 23592.62 19796.06 22273.02 37590.40 30895.77 21474.86 32689.68 40290.78 14894.98 33094.95 331
PS-MVSNAJ88.86 27888.99 26488.48 32694.88 27874.71 34486.69 36095.60 23680.88 31387.83 35487.37 38790.77 15798.82 13682.52 29694.37 34591.93 387
MVP-Stereo90.07 25188.92 26593.54 17196.31 20486.49 16190.93 26095.59 24079.80 32091.48 28895.59 22080.79 28197.39 28778.57 34091.19 39096.76 258
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PLCcopyleft85.34 1590.40 23488.92 26594.85 10896.53 18590.02 8591.58 24396.48 20580.16 31886.14 36892.18 33085.73 23298.25 21476.87 35294.61 34196.30 276
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051789.81 25788.90 26792.55 21097.00 15179.73 27795.03 11383.65 39489.88 16595.30 15694.79 25553.64 40399.39 5291.99 11798.79 14698.54 120
MAR-MVS90.32 24188.87 26894.66 11994.82 28191.85 6194.22 14294.75 26980.91 31287.52 36088.07 38286.63 22397.87 25076.67 35396.21 29994.25 351
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER89.32 26588.75 26991.03 26390.10 38676.62 32990.85 26194.67 27382.27 29995.24 16395.79 21061.09 39098.49 19090.49 15598.26 19997.97 173
ppachtmachnet_test88.61 28488.64 27088.50 32591.76 35970.99 37584.59 38792.98 30279.30 33292.38 26993.53 29979.57 28797.45 28286.50 25297.17 26797.07 241
Patchmatch-RL test88.81 27988.52 27189.69 30395.33 27179.94 27086.22 37092.71 30978.46 33895.80 12794.18 27666.25 36495.33 35989.22 19898.53 17493.78 361
cl2289.02 27188.50 27290.59 27989.76 38876.45 33186.62 36394.03 28382.98 29192.65 25792.49 32272.05 33897.53 27688.93 20497.02 27297.78 197
X-MVStestdata90.70 22588.45 27397.44 2098.56 4193.99 3096.50 3797.95 8994.58 5094.38 19626.89 42194.56 6999.39 5293.57 6399.05 10698.93 68
DPM-MVS89.35 26488.40 27492.18 22296.13 22284.20 20686.96 35296.15 22175.40 35987.36 36191.55 34383.30 25398.01 23482.17 30296.62 28994.32 350
test_fmvs1_n88.73 28288.38 27589.76 30092.06 35182.53 23392.30 21696.59 19771.14 38592.58 26095.41 23268.55 35089.57 40491.12 14095.66 31197.18 239
jason89.17 26788.32 27691.70 23795.73 24980.07 26488.10 33493.22 29971.98 38090.09 31392.79 31678.53 29798.56 18387.43 23497.06 27096.46 270
jason: jason.
AUN-MVS90.05 25288.30 27795.32 9096.09 22490.52 8192.42 20892.05 32582.08 30288.45 34592.86 31365.76 36698.69 16688.91 20696.07 30096.75 259
FE-MVS89.06 27088.29 27891.36 24994.78 28479.57 28096.77 2790.99 33584.87 26792.96 24896.29 18260.69 39298.80 14480.18 32297.11 26995.71 305
Anonymous2023120688.77 28088.29 27890.20 29196.31 20478.81 29889.56 30493.49 29574.26 36792.38 26995.58 22382.21 26795.43 35672.07 38298.75 15196.34 274
test_cas_vis1_n_192088.25 29088.27 28088.20 33192.19 34778.92 29389.45 30795.44 24675.29 36293.23 23795.65 21971.58 34090.23 40088.05 22293.55 36495.44 316
EPNet89.80 25888.25 28194.45 13283.91 41986.18 17293.87 15587.07 36791.16 13980.64 40894.72 25778.83 29298.89 12685.17 26598.89 12898.28 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
YYNet188.17 29188.24 28287.93 33592.21 34573.62 35780.75 40588.77 34882.51 29794.99 17795.11 24082.70 26393.70 37983.33 28693.83 35896.48 268
MDA-MVSNet_test_wron88.16 29288.23 28387.93 33592.22 34473.71 35680.71 40688.84 34782.52 29694.88 18295.14 23882.70 26393.61 38083.28 28793.80 35996.46 270
CDS-MVSNet89.55 25988.22 28493.53 17295.37 26986.49 16189.26 31493.59 29179.76 32291.15 29592.31 32877.12 31198.38 20177.51 34797.92 23395.71 305
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsany_test389.11 26988.21 28591.83 23091.30 36990.25 8388.09 33578.76 41276.37 35396.43 9398.39 3683.79 25090.43 39986.57 24894.20 35094.80 337
PatchT87.51 30588.17 28685.55 36690.64 37666.91 39292.02 22586.09 37392.20 9989.05 33297.16 11964.15 37696.37 33389.21 19992.98 37693.37 371
PVSNet_Blended88.74 28188.16 28790.46 28394.81 28278.80 29986.64 36196.93 17174.67 36388.68 34289.18 37386.27 22798.15 22380.27 31996.00 30294.44 347
UnsupCasMVSNet_bld88.50 28588.03 28889.90 29895.52 26278.88 29587.39 34594.02 28579.32 33193.06 24294.02 28280.72 28294.27 37575.16 36593.08 37496.54 262
PatchMatch-RL89.18 26688.02 28992.64 20295.90 23892.87 4988.67 33091.06 33480.34 31690.03 31691.67 34083.34 25294.42 37276.35 35794.84 33590.64 396
miper_enhance_ethall88.42 28787.87 29090.07 29388.67 40175.52 34085.10 38195.59 24075.68 35592.49 26289.45 36978.96 29197.88 24787.86 22897.02 27296.81 255
MS-PatchMatch88.05 29387.75 29188.95 31493.28 31977.93 30887.88 33792.49 31575.42 35892.57 26193.59 29780.44 28394.24 37781.28 31192.75 37794.69 343
PCF-MVS84.52 1789.12 26887.71 29293.34 17996.06 22685.84 18186.58 36597.31 14368.46 40093.61 21993.89 28887.51 20598.52 18867.85 39998.11 21595.66 309
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
pmmvs488.95 27687.70 29392.70 19994.30 29985.60 18787.22 34792.16 32174.62 36489.75 32494.19 27577.97 30296.41 33082.71 29296.36 29596.09 287
our_test_387.55 30487.59 29487.44 34391.76 35970.48 37683.83 39490.55 34179.79 32192.06 28192.17 33178.63 29695.63 34984.77 27594.73 33796.22 282
thisisatest053088.69 28387.52 29592.20 21896.33 20279.36 28492.81 18984.01 39386.44 23193.67 21892.68 32053.62 40499.25 8189.65 18598.45 18198.00 166
1112_ss88.42 28787.41 29691.45 24696.69 17080.99 25489.72 30096.72 18973.37 37187.00 36490.69 35577.38 30898.20 21781.38 31093.72 36095.15 322
baseline187.62 30287.31 29788.54 32394.71 29074.27 35293.10 18188.20 35486.20 23692.18 27793.04 30973.21 33295.52 35179.32 33485.82 40695.83 300
lupinMVS88.34 28987.31 29791.45 24694.74 28780.06 26587.23 34692.27 31871.10 38688.83 33391.15 34677.02 31398.53 18786.67 24696.75 28595.76 303
test_fmvs187.59 30387.27 29988.54 32388.32 40281.26 25090.43 27795.72 23370.55 39191.70 28594.63 26168.13 35189.42 40590.59 15295.34 32194.94 333
N_pmnet88.90 27787.25 30093.83 15794.40 29893.81 3984.73 38487.09 36579.36 33093.26 23492.43 32679.29 29091.68 39177.50 34897.22 26596.00 291
SCA87.43 30787.21 30188.10 33392.01 35371.98 37089.43 30888.11 35682.26 30088.71 34092.83 31478.65 29497.59 27479.61 33193.30 36894.75 340
TR-MVS87.70 29887.17 30289.27 31094.11 30379.26 28688.69 32891.86 32881.94 30390.69 30389.79 36382.82 26197.42 28472.65 38091.98 38691.14 393
pmmvs587.87 29587.14 30390.07 29393.26 32176.97 32588.89 32192.18 31973.71 37088.36 34693.89 28876.86 31896.73 32180.32 31896.81 28296.51 264
test_f86.65 32387.13 30485.19 37090.28 38486.11 17486.52 36691.66 33069.76 39595.73 13497.21 11669.51 34881.28 41789.15 20094.40 34388.17 403
CR-MVSNet87.89 29487.12 30590.22 28991.01 37278.93 29192.52 20092.81 30573.08 37489.10 33096.93 13767.11 35697.64 27388.80 20892.70 37894.08 352
thres600view787.66 30087.10 30689.36 30896.05 22773.17 35992.72 19185.31 38491.89 10893.29 23190.97 34963.42 38198.39 19873.23 37696.99 27796.51 264
BH-w/o87.21 31287.02 30787.79 34094.77 28577.27 31987.90 33693.21 30181.74 30589.99 31788.39 38083.47 25196.93 31371.29 38792.43 38289.15 398
reproduce_monomvs87.13 31686.90 30887.84 33990.92 37468.15 38791.19 25393.75 28985.84 24394.21 20095.83 20842.99 41897.10 30389.46 18897.88 23598.26 144
thres100view90087.35 30986.89 30988.72 31996.14 22073.09 36193.00 18385.31 38492.13 10193.26 23490.96 35063.42 38198.28 20971.27 38896.54 29194.79 338
GA-MVS87.70 29886.82 31090.31 28593.27 32077.22 32084.72 38692.79 30785.11 26289.82 32090.07 35866.80 35997.76 26384.56 27894.27 34895.96 293
sss87.23 31186.82 31088.46 32793.96 30877.94 30786.84 35592.78 30877.59 34387.61 35991.83 33778.75 29391.92 39077.84 34394.20 35095.52 315
PAPR87.65 30186.77 31290.27 28792.85 33177.38 31788.56 33196.23 21576.82 35284.98 37789.75 36586.08 22997.16 30172.33 38193.35 36796.26 280
EU-MVSNet87.39 30886.71 31389.44 30593.40 31876.11 33494.93 11790.00 34357.17 41695.71 13597.37 9764.77 37397.68 27092.67 10194.37 34594.52 345
Test_1112_low_res87.50 30686.58 31490.25 28896.80 16777.75 31287.53 34396.25 21369.73 39686.47 36693.61 29675.67 32397.88 24779.95 32593.20 37095.11 326
ttmdpeth86.91 32186.57 31587.91 33789.68 39074.24 35391.49 24587.09 36579.84 31989.46 32797.86 6565.42 36891.04 39481.57 30896.74 28798.44 130
FMVSNet587.82 29786.56 31691.62 24092.31 34179.81 27593.49 16894.81 26783.26 28391.36 29096.93 13752.77 40597.49 28076.07 35998.03 22397.55 215
MIMVSNet87.13 31686.54 31788.89 31696.05 22776.11 33494.39 13588.51 35081.37 30888.27 34896.75 15072.38 33695.52 35165.71 40495.47 31695.03 328
tfpn200view987.05 31886.52 31888.67 32095.77 24672.94 36391.89 23286.00 37490.84 14392.61 25889.80 36163.93 37798.28 20971.27 38896.54 29194.79 338
thres40087.20 31386.52 31889.24 31295.77 24672.94 36391.89 23286.00 37490.84 14392.61 25889.80 36163.93 37798.28 20971.27 38896.54 29196.51 264
WTY-MVS86.93 32086.50 32088.24 33094.96 27674.64 34587.19 34892.07 32478.29 33988.32 34791.59 34278.06 30194.27 37574.88 36693.15 37295.80 301
131486.46 32486.33 32186.87 35191.65 36374.54 34791.94 22994.10 28274.28 36684.78 37987.33 38883.03 25795.00 36478.72 33891.16 39191.06 394
cascas87.02 31986.28 32289.25 31191.56 36676.45 33184.33 39096.78 18471.01 38786.89 36585.91 39581.35 27696.94 31183.09 28995.60 31294.35 349
Patchmatch-test86.10 32686.01 32386.38 35990.63 37774.22 35489.57 30386.69 36885.73 24789.81 32192.83 31465.24 37191.04 39477.82 34595.78 30993.88 360
HY-MVS82.50 1886.81 32285.93 32489.47 30493.63 31577.93 30894.02 15091.58 33275.68 35583.64 38893.64 29377.40 30797.42 28471.70 38592.07 38593.05 376
CHOSEN 1792x268887.19 31485.92 32591.00 26697.13 14879.41 28384.51 38895.60 23664.14 41090.07 31594.81 25278.26 30097.14 30273.34 37595.38 32096.46 270
CMPMVSbinary68.83 2287.28 31085.67 32692.09 22588.77 40085.42 19190.31 28194.38 27670.02 39488.00 35193.30 30373.78 33194.03 37875.96 36196.54 29196.83 254
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
HyFIR lowres test87.19 31485.51 32792.24 21797.12 14980.51 25885.03 38296.06 22266.11 40691.66 28692.98 31270.12 34699.14 9375.29 36495.23 32497.07 241
thres20085.85 32785.18 32887.88 33894.44 29672.52 36789.08 31886.21 37188.57 19491.44 28988.40 37964.22 37598.00 23668.35 39795.88 30793.12 373
Syy-MVS84.81 33584.93 32984.42 37791.71 36163.36 41085.89 37381.49 40281.03 31085.13 37481.64 41177.44 30695.00 36485.94 25994.12 35394.91 334
CVMVSNet85.16 33284.72 33086.48 35592.12 34970.19 37792.32 21388.17 35556.15 41790.64 30495.85 20567.97 35496.69 32288.78 20990.52 39492.56 382
PatchmatchNetpermissive85.22 33184.64 33186.98 34789.51 39469.83 38390.52 27287.34 36478.87 33687.22 36392.74 31866.91 35896.53 32481.77 30486.88 40494.58 344
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_rt85.58 32984.58 33288.60 32287.97 40386.76 15385.45 37993.59 29166.43 40487.64 35789.20 37279.33 28985.38 41481.59 30789.98 39793.66 365
test250685.42 33084.57 33387.96 33497.81 10566.53 39596.14 6156.35 42489.04 18193.55 22198.10 4442.88 42198.68 16888.09 22199.18 9498.67 104
EPNet_dtu85.63 32884.37 33489.40 30786.30 41274.33 35191.64 24288.26 35284.84 26872.96 41789.85 35971.27 34297.69 26976.60 35497.62 24996.18 284
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS84.98 33484.30 33587.01 34691.03 37177.69 31491.94 22994.16 28159.36 41584.23 38487.50 38685.66 23396.80 31971.79 38393.05 37586.54 407
ET-MVSNet_ETH3D86.15 32584.27 33691.79 23293.04 32581.28 24987.17 34986.14 37279.57 32583.65 38788.66 37557.10 39698.18 22087.74 22995.40 31895.90 298
tpm84.38 34084.08 33785.30 36990.47 38163.43 40989.34 31185.63 37977.24 34887.62 35895.03 24461.00 39197.30 29079.26 33591.09 39295.16 321
MVStest184.79 33684.06 33886.98 34777.73 42474.76 34391.08 25885.63 37977.70 34296.86 7697.97 5541.05 42388.24 40892.22 11196.28 29797.94 176
tpmvs84.22 34183.97 33984.94 37287.09 40965.18 40291.21 25288.35 35182.87 29285.21 37290.96 35065.24 37196.75 32079.60 33385.25 40792.90 378
dmvs_re84.69 33883.94 34086.95 34992.24 34382.93 22989.51 30587.37 36384.38 27485.37 37185.08 40172.44 33586.59 41168.05 39891.03 39391.33 391
WB-MVSnew84.20 34283.89 34185.16 37191.62 36466.15 39988.44 33381.00 40576.23 35487.98 35287.77 38384.98 24293.35 38362.85 41094.10 35595.98 292
MDTV_nov1_ep1383.88 34289.42 39561.52 41288.74 32787.41 36273.99 36884.96 37894.01 28365.25 37095.53 35078.02 34193.16 371
WBMVS84.00 34483.48 34385.56 36592.71 33261.52 41283.82 39589.38 34679.56 32690.74 30193.20 30748.21 40897.28 29175.63 36398.10 21797.88 184
PMMVS281.31 36583.44 34474.92 39990.52 37946.49 42569.19 41585.23 38784.30 27587.95 35394.71 25876.95 31584.36 41664.07 40798.09 21893.89 359
FPMVS84.50 33983.28 34588.16 33296.32 20394.49 2085.76 37685.47 38283.09 28885.20 37394.26 27263.79 37986.58 41263.72 40891.88 38883.40 410
test-LLR83.58 34783.17 34684.79 37489.68 39066.86 39383.08 39784.52 39083.07 28982.85 39484.78 40262.86 38493.49 38182.85 29094.86 33394.03 355
JIA-IIPM85.08 33383.04 34791.19 26087.56 40586.14 17389.40 31084.44 39288.98 18382.20 39997.95 5656.82 39896.15 33776.55 35683.45 41091.30 392
thisisatest051584.72 33782.99 34889.90 29892.96 32875.33 34284.36 38983.42 39577.37 34588.27 34886.65 38953.94 40298.72 15782.56 29597.40 26095.67 308
mvsany_test183.91 34582.93 34986.84 35286.18 41385.93 17881.11 40475.03 41970.80 39088.57 34494.63 26183.08 25687.38 40980.39 31786.57 40587.21 405
tpmrst82.85 35582.93 34982.64 38787.65 40458.99 41890.14 28687.90 35975.54 35783.93 38691.63 34166.79 36195.36 35781.21 31381.54 41493.57 370
testing383.66 34682.52 35187.08 34595.84 24065.84 40089.80 29877.17 41888.17 20390.84 29988.63 37630.95 42698.11 22584.05 28297.19 26697.28 234
testing9183.56 34882.45 35286.91 35092.92 32967.29 38986.33 36888.07 35786.22 23584.26 38385.76 39648.15 40997.17 29976.27 35894.08 35696.27 279
PVSNet76.22 2082.89 35482.37 35384.48 37693.96 30864.38 40778.60 40888.61 34971.50 38384.43 38286.36 39374.27 32894.60 36969.87 39593.69 36194.46 346
CostFormer83.09 35182.21 35485.73 36389.27 39667.01 39190.35 27986.47 37070.42 39283.52 39093.23 30661.18 38996.85 31777.21 35088.26 40293.34 372
ADS-MVSNet284.01 34382.20 35589.41 30689.04 39776.37 33387.57 33990.98 33672.71 37884.46 38092.45 32368.08 35296.48 32770.58 39383.97 40895.38 317
testing9982.94 35381.72 35686.59 35392.55 33666.53 39586.08 37285.70 37785.47 25683.95 38585.70 39745.87 41197.07 30676.58 35593.56 36396.17 286
DSMNet-mixed82.21 35881.56 35784.16 38089.57 39370.00 38290.65 26977.66 41654.99 41883.30 39297.57 8077.89 30390.50 39866.86 40295.54 31491.97 386
ADS-MVSNet82.25 35781.55 35884.34 37889.04 39765.30 40187.57 33985.13 38872.71 37884.46 38092.45 32368.08 35292.33 38870.58 39383.97 40895.38 317
baseline283.38 34981.54 35988.90 31591.38 36772.84 36588.78 32581.22 40478.97 33479.82 41087.56 38461.73 38897.80 25674.30 37090.05 39696.05 290
test0.0.03 182.48 35681.47 36085.48 36789.70 38973.57 35884.73 38481.64 40183.07 28988.13 35086.61 39062.86 38489.10 40766.24 40390.29 39593.77 362
PMMVS83.00 35281.11 36188.66 32183.81 42086.44 16482.24 40185.65 37861.75 41482.07 40085.64 39879.75 28691.59 39275.99 36093.09 37387.94 404
IB-MVS77.21 1983.11 35081.05 36289.29 30991.15 37075.85 33785.66 37786.00 37479.70 32382.02 40286.61 39048.26 40798.39 19877.84 34392.22 38393.63 366
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 36181.02 36385.34 36887.46 40771.04 37394.74 12167.56 42196.44 2679.43 41198.99 845.24 41296.15 33767.18 40192.17 38488.85 400
new_pmnet81.22 36681.01 36481.86 38990.92 37470.15 37884.03 39180.25 41070.83 38885.97 36989.78 36467.93 35584.65 41567.44 40091.90 38790.78 395
E-PMN80.72 37180.86 36580.29 39485.11 41668.77 38572.96 41281.97 40087.76 21283.25 39383.01 40962.22 38789.17 40677.15 35194.31 34782.93 411
KD-MVS_2432*160082.17 35980.75 36686.42 35782.04 42170.09 37981.75 40290.80 33882.56 29490.37 30989.30 37042.90 41996.11 33974.47 36892.55 38093.06 374
miper_refine_blended82.17 35980.75 36686.42 35782.04 42170.09 37981.75 40290.80 33882.56 29490.37 30989.30 37042.90 41996.11 33974.47 36892.55 38093.06 374
MVS-HIRNet78.83 38280.60 36873.51 40093.07 32347.37 42487.10 35078.00 41568.94 39877.53 41397.26 10971.45 34194.62 36863.28 40988.74 40078.55 415
testing1181.98 36280.52 36986.38 35992.69 33367.13 39085.79 37584.80 38982.16 30181.19 40785.41 39945.24 41296.88 31674.14 37193.24 36995.14 323
EPMVS81.17 36880.37 37083.58 38485.58 41565.08 40490.31 28171.34 42077.31 34785.80 37091.30 34459.38 39392.70 38779.99 32482.34 41392.96 377
tpm281.46 36480.35 37184.80 37389.90 38765.14 40390.44 27485.36 38365.82 40882.05 40192.44 32557.94 39596.69 32270.71 39288.49 40192.56 382
EMVS80.35 37480.28 37280.54 39384.73 41869.07 38472.54 41480.73 40787.80 21081.66 40481.73 41062.89 38389.84 40175.79 36294.65 34082.71 412
PAPM81.91 36380.11 37387.31 34493.87 31172.32 36984.02 39293.22 29969.47 39776.13 41589.84 36072.15 33797.23 29453.27 41789.02 39992.37 384
test-mter81.21 36780.01 37484.79 37489.68 39066.86 39383.08 39784.52 39073.85 36982.85 39484.78 40243.66 41793.49 38182.85 29094.86 33394.03 355
tpm cat180.61 37279.46 37584.07 38188.78 39965.06 40589.26 31488.23 35362.27 41381.90 40389.66 36762.70 38695.29 36071.72 38480.60 41591.86 389
UWE-MVS80.29 37579.10 37683.87 38291.97 35559.56 41686.50 36777.43 41775.40 35987.79 35688.10 38144.08 41696.90 31564.23 40696.36 29595.14 323
dmvs_testset78.23 38378.99 37775.94 39891.99 35455.34 42188.86 32278.70 41382.69 29381.64 40579.46 41375.93 32285.74 41348.78 41982.85 41286.76 406
pmmvs380.83 37078.96 37886.45 35687.23 40877.48 31684.87 38382.31 39963.83 41185.03 37689.50 36849.66 40693.10 38473.12 37895.10 32788.78 402
UBG80.28 37678.94 37984.31 37992.86 33061.77 41183.87 39383.31 39777.33 34682.78 39683.72 40647.60 41096.06 34165.47 40593.48 36595.11 326
dp79.28 38078.62 38081.24 39285.97 41456.45 41986.91 35385.26 38672.97 37681.45 40689.17 37456.01 40095.45 35573.19 37776.68 41691.82 390
testing22280.54 37378.53 38186.58 35492.54 33868.60 38686.24 36982.72 39883.78 28082.68 39784.24 40439.25 42495.94 34560.25 41195.09 32895.20 319
myMVS_eth3d79.62 37978.26 38283.72 38391.71 36161.25 41485.89 37381.49 40281.03 31085.13 37481.64 41132.12 42595.00 36471.17 39194.12 35394.91 334
TESTMET0.1,179.09 38178.04 38382.25 38887.52 40664.03 40883.08 39780.62 40870.28 39380.16 40983.22 40844.13 41590.56 39779.95 32593.36 36692.15 385
CHOSEN 280x42080.04 37777.97 38486.23 36190.13 38574.53 34872.87 41389.59 34566.38 40576.29 41485.32 40056.96 39795.36 35769.49 39694.72 33888.79 401
ETVMVS79.85 37877.94 38585.59 36492.97 32766.20 39886.13 37180.99 40681.41 30783.52 39083.89 40541.81 42294.98 36756.47 41594.25 34995.61 313
EGC-MVSNET80.97 36975.73 38696.67 4698.85 2394.55 1996.83 2296.60 1952.44 4235.32 42498.25 4092.24 12098.02 23391.85 12299.21 9097.45 220
PVSNet_070.34 2174.58 38472.96 38779.47 39590.63 37766.24 39773.26 41183.40 39663.67 41278.02 41278.35 41572.53 33489.59 40356.68 41460.05 41982.57 413
MVEpermissive59.87 2373.86 38572.65 38877.47 39787.00 41174.35 35061.37 41760.93 42367.27 40269.69 41886.49 39281.24 28072.33 42056.45 41683.45 41085.74 408
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai53.72 38653.79 38953.51 40379.69 42336.70 42777.18 40932.53 42971.69 38168.63 41960.79 41826.65 42773.11 41930.67 42236.29 42150.73 417
test_method50.44 38748.94 39054.93 40139.68 42712.38 43028.59 41890.09 3426.82 42141.10 42378.41 41454.41 40170.69 42150.12 41851.26 42081.72 414
tmp_tt37.97 38944.33 39118.88 40511.80 42821.54 42963.51 41645.66 4274.23 42251.34 42150.48 42059.08 39422.11 42444.50 42068.35 41813.00 420
kuosan43.63 38844.25 39241.78 40466.04 42634.37 42875.56 41032.62 42853.25 41950.46 42251.18 41925.28 42849.13 42213.44 42330.41 42241.84 419
cdsmvs_eth3d_5k23.35 39031.13 3930.00 4080.00 4310.00 4330.00 41995.58 2420.00 4260.00 42791.15 34693.43 890.00 4270.00 4260.00 4250.00 423
test1239.49 39112.01 3941.91 4062.87 4291.30 43182.38 4001.34 4311.36 4242.84 4256.56 4232.45 4290.97 4252.73 4245.56 4233.47 421
testmvs9.02 39211.42 3951.81 4072.77 4301.13 43279.44 4071.90 4301.18 4252.65 4266.80 4221.95 4300.87 4262.62 4253.45 4243.44 422
pcd_1.5k_mvsjas7.56 39310.09 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42690.77 1570.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.56 39310.08 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42790.69 3550.00 4310.00 4270.00 4260.00 4250.00 423
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS61.25 41474.55 367
FOURS199.21 394.68 1698.45 498.81 1197.73 798.27 21
MSC_two_6792asdad95.90 6796.54 18289.57 9196.87 17899.41 4294.06 4999.30 7298.72 96
PC_three_145275.31 36195.87 12595.75 21592.93 10696.34 33687.18 23898.68 15998.04 161
No_MVS95.90 6796.54 18289.57 9196.87 17899.41 4294.06 4999.30 7298.72 96
test_one_060198.26 7187.14 14398.18 4994.25 5596.99 7197.36 10095.13 45
eth-test20.00 431
eth-test0.00 431
ZD-MVS97.23 14190.32 8297.54 12384.40 27394.78 18595.79 21092.76 11299.39 5288.72 21198.40 183
IU-MVS98.51 4986.66 15896.83 18172.74 37795.83 12693.00 9299.29 7598.64 111
OPU-MVS95.15 10096.84 16389.43 9595.21 10495.66 21893.12 10098.06 22886.28 25698.61 16597.95 174
test_241102_TWO98.10 6391.95 10497.54 4397.25 11095.37 3299.35 6293.29 8099.25 8398.49 126
test_241102_ONE98.51 4986.97 14898.10 6391.85 11097.63 3897.03 13096.48 1098.95 120
save fliter97.46 13288.05 12792.04 22497.08 16187.63 216
test_0728_THIRD93.26 7897.40 5497.35 10394.69 6399.34 6593.88 5399.42 5098.89 75
test_0728_SECOND94.88 10798.55 4486.72 15595.20 10698.22 4499.38 5893.44 7399.31 7098.53 122
test072698.51 4986.69 15695.34 9798.18 4991.85 11097.63 3897.37 9795.58 24
GSMVS94.75 340
test_part298.21 7689.41 9696.72 83
sam_mvs166.64 36294.75 340
sam_mvs66.41 363
ambc92.98 18796.88 15983.01 22895.92 7296.38 20996.41 9497.48 9288.26 19197.80 25689.96 17898.93 12598.12 156
MTGPAbinary97.62 115
test_post190.21 2835.85 42565.36 36996.00 34379.61 331
test_post6.07 42465.74 36795.84 347
patchmatchnet-post91.71 33966.22 36597.59 274
GG-mvs-BLEND83.24 38685.06 41771.03 37494.99 11665.55 42274.09 41675.51 41644.57 41494.46 37159.57 41387.54 40384.24 409
MTMP94.82 11954.62 425
gm-plane-assit87.08 41059.33 41771.22 38483.58 40797.20 29673.95 372
test9_res88.16 21998.40 18397.83 191
TEST996.45 19089.46 9390.60 27096.92 17379.09 33390.49 30594.39 26991.31 14298.88 127
test_896.37 19489.14 10390.51 27396.89 17679.37 32890.42 30794.36 27191.20 14798.82 136
agg_prior287.06 24198.36 19297.98 170
agg_prior96.20 21488.89 10896.88 17790.21 31298.78 148
TestCases96.00 5898.02 9092.17 5498.43 2190.48 15495.04 17496.74 15192.54 11697.86 25185.11 27098.98 11597.98 170
test_prior489.91 8690.74 265
test_prior290.21 28389.33 17690.77 30094.81 25290.41 16788.21 21598.55 171
test_prior94.61 12095.95 23587.23 14097.36 13998.68 16897.93 177
旧先验290.00 29168.65 39992.71 25696.52 32585.15 267
新几何290.02 290
新几何193.17 18497.16 14687.29 13894.43 27567.95 40191.29 29194.94 24786.97 21698.23 21581.06 31597.75 24093.98 357
旧先验196.20 21484.17 20794.82 26595.57 22489.57 18197.89 23496.32 275
无先验89.94 29295.75 23270.81 38998.59 18081.17 31494.81 336
原ACMM289.34 311
原ACMM192.87 19496.91 15784.22 20597.01 16576.84 35189.64 32594.46 26788.00 19798.70 16481.53 30998.01 22695.70 307
test22296.95 15385.27 19388.83 32493.61 29065.09 40990.74 30194.85 25084.62 24597.36 26193.91 358
testdata298.03 23080.24 321
segment_acmp92.14 124
testdata91.03 26396.87 16082.01 23994.28 27971.55 38292.46 26495.42 22985.65 23497.38 28982.64 29397.27 26393.70 364
testdata188.96 32088.44 197
test1294.43 13395.95 23586.75 15496.24 21489.76 32389.79 18098.79 14597.95 23197.75 201
plane_prior797.71 11488.68 111
plane_prior697.21 14488.23 12486.93 217
plane_prior597.81 10198.95 12089.26 19698.51 17798.60 116
plane_prior495.59 220
plane_prior388.43 12290.35 15993.31 229
plane_prior294.56 13091.74 121
plane_prior197.38 134
plane_prior88.12 12593.01 18288.98 18398.06 220
n20.00 432
nn0.00 432
door-mid92.13 323
lessismore_v093.87 15498.05 8683.77 21380.32 40997.13 6297.91 6277.49 30599.11 9892.62 10298.08 21998.74 94
LGP-MVS_train96.84 4298.36 6692.13 5698.25 3791.78 11797.07 6497.22 11496.38 1299.28 7892.07 11599.59 2799.11 44
test1196.65 193
door91.26 333
HQP5-MVS84.89 196
HQP-NCC96.36 19691.37 24787.16 22388.81 335
ACMP_Plane96.36 19691.37 24787.16 22388.81 335
BP-MVS86.55 250
HQP4-MVS88.81 33598.61 17698.15 153
HQP3-MVS97.31 14397.73 241
HQP2-MVS84.76 243
NP-MVS96.82 16587.10 14493.40 301
MDTV_nov1_ep13_2view42.48 42688.45 33267.22 40383.56 38966.80 35972.86 37994.06 354
ACMMP++_ref98.82 141
ACMMP++99.25 83
Test By Simon90.61 163
ITE_SJBPF95.95 6197.34 13793.36 4496.55 20291.93 10694.82 18395.39 23391.99 12697.08 30585.53 26397.96 23097.41 223
DeepMVS_CXcopyleft53.83 40270.38 42564.56 40648.52 42633.01 42065.50 42074.21 41756.19 39946.64 42338.45 42170.07 41750.30 418