This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
CHOSEN 280x42099.85 399.87 199.80 10399.99 4999.97 2199.97 24399.98 1698.96 32100.00 1100.00 199.96 499.42 257100.00 1100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 64100.00 1100.00 1100.00 1100.00 1
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 57100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 12100.00 1100.00 199.56 2399.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 13899.03 20100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12299.05 14100.00 1100.00 199.45 4599.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 121100.00 199.21 77100.00 1100.00 1100.00 199.99 109
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 13898.79 60100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 79100.00 199.42 13898.87 47100.00 1100.00 199.65 1599.96 138100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 13899.01 26100.00 1100.00 199.33 59100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 13898.91 41100.00 1100.00 199.22 76100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS99.79 1499.73 1799.98 23100.00 199.94 41100.00 199.75 5298.67 67100.00 1100.00 199.16 81100.00 1100.00 1100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14899.95 32100.00 199.42 13898.69 65100.00 1100.00 199.52 3299.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
PAPM99.78 1699.76 1299.85 8799.01 28499.95 32100.00 199.75 5299.37 399.99 105100.00 199.76 1199.60 217100.00 1100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11099.99 105100.00 199.72 12100.00 199.96 85100.00 1100.00 1
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 96100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 30199.52 7299.06 12100.00 1100.00 198.80 119100.00 199.95 91100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5399.98 23799.47 7999.09 9100.00 1100.00 198.59 129100.00 199.95 91100.00 1100.00 1
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 67100.00 199.76 4997.95 118100.00 1100.00 199.31 64100.00 199.99 61100.00 1100.00 1
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 67100.00 199.76 4997.95 118100.00 1100.00 199.29 70100.00 199.99 61100.00 1100.00 1
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 123100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 13898.02 108100.00 1100.00 199.32 6299.99 94100.00 1100.00 1100.00 1
region2R99.72 2699.64 3399.97 31100.00 199.90 60100.00 199.74 5597.86 124100.00 1100.00 199.19 79100.00 199.99 61100.00 1100.00 1
API-MVS99.72 2699.70 2199.79 10599.97 8999.37 14599.96 24899.94 2298.48 75100.00 1100.00 198.92 108100.00 1100.00 1100.00 1100.00 1
CNLPA99.72 2699.65 3199.91 7099.97 8999.72 97100.00 199.47 7998.43 7899.88 162100.00 199.14 84100.00 199.97 83100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 60100.00 199.79 4597.97 11499.97 116100.00 198.97 99100.00 199.94 93100.00 1100.00 1
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.97 125100.00 1100.00 1100.00 1
MVS_111021_HR99.71 2999.63 3799.93 6799.95 9699.83 85100.00 1100.00 198.89 43100.00 1100.00 197.85 15199.95 152100.00 1100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3299.64 3399.87 80100.00 199.64 10799.98 23799.44 11698.35 8699.99 105100.00 199.04 9499.96 13899.98 73100.00 1100.00 1
MVS_111021_LR99.70 3299.65 3199.88 7999.96 9499.70 102100.00 199.97 1798.96 32100.00 1100.00 197.93 14799.95 15299.99 61100.00 1100.00 1
PLCcopyleft98.56 299.70 3299.74 1699.58 145100.00 198.79 194100.00 199.54 7198.58 7299.96 121100.00 199.59 20100.00 1100.00 1100.00 199.94 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 45100.00 199.43 12297.50 166100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_030499.69 3599.63 3799.86 8399.96 9499.63 109100.00 199.92 3499.03 2099.97 116100.00 197.87 14999.96 138100.00 199.96 114100.00 1
EI-MVSNet-UG-set99.69 3599.63 3799.87 8099.99 4999.64 10799.95 25499.44 11698.35 86100.00 1100.00 198.98 9899.97 12599.98 73100.00 1100.00 1
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 82100.00 199.58 6797.69 139100.00 1100.00 199.44 46100.00 199.79 119100.00 1100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 53100.00 199.42 13897.91 120100.00 1100.00 199.04 94100.00 1100.00 1100.00 1100.00 1
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 155100.00 1100.00 198.99 9799.99 94100.00 1100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 53100.00 199.42 13898.32 8899.94 147100.00 198.65 125100.00 199.96 85100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 13897.53 161100.00 1100.00 199.27 7399.97 125100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8599.92 50100.00 199.42 13897.83 127100.00 1100.00 198.89 111100.00 199.98 73100.00 1100.00 1
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 84100.00 199.42 13897.77 132100.00 1100.00 199.07 88100.00 1100.00 1100.00 1100.00 1
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 82100.00 199.42 13897.67 140100.00 1100.00 199.05 9199.99 94100.00 1100.00 1100.00 1
APD-MVS_3200maxsize99.65 4699.55 5699.97 3199.99 4999.91 53100.00 199.48 7897.54 159100.00 1100.00 198.97 9999.99 9499.98 73100.00 1100.00 1
ACMMPcopyleft99.65 4699.57 4999.89 7599.99 4999.66 10599.75 29599.73 5698.16 9699.75 186100.00 198.90 110100.00 199.96 8599.88 129100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS99.64 4899.53 5999.95 51100.00 199.86 79100.00 199.79 4597.72 13599.95 145100.00 198.39 136100.00 199.96 8599.99 98100.00 1
PS-MVSNAJ99.64 4899.57 4999.85 8799.78 14599.81 8799.95 25499.42 13898.38 80100.00 1100.00 198.75 121100.00 199.88 10399.99 9899.74 231
F-COLMAP99.64 4899.64 3399.67 12799.99 4999.07 172100.00 199.44 11698.30 8999.90 157100.00 199.18 8099.99 9499.91 98100.00 199.94 135
fmvsm_l_conf0.5_n_a99.63 5199.55 5699.86 8399.83 12099.58 113100.00 199.36 21298.98 30100.00 1100.00 197.85 15199.99 94100.00 199.94 119100.00 1
fmvsm_l_conf0.5_n99.63 5199.56 5499.86 8399.81 12799.59 112100.00 199.36 21298.98 30100.00 1100.00 197.92 14899.99 94100.00 199.95 117100.00 1
MM99.63 5199.52 6199.94 6399.99 4999.82 86100.00 199.97 1799.11 7100.00 1100.00 196.65 197100.00 1100.00 199.97 111100.00 1
SR-MVS-dyc-post99.63 5199.52 6199.97 3199.99 4999.91 53100.00 199.42 13897.62 147100.00 1100.00 198.65 12599.99 9499.99 61100.00 1100.00 1
DPM-MVS99.63 5199.51 63100.00 199.90 108100.00 1100.00 199.43 12299.00 27100.00 1100.00 199.58 22100.00 197.64 268100.00 1100.00 1
EPNet99.62 5699.69 2299.42 16499.99 4998.37 221100.00 199.89 3798.83 53100.00 1100.00 198.97 99100.00 199.90 9999.61 15599.89 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS99.62 5699.56 5499.82 9399.92 10499.45 135100.00 199.78 4798.92 3999.73 188100.00 197.70 158100.00 199.93 95100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVS-pluss99.61 5899.50 6499.97 3199.98 8599.92 50100.00 199.42 13897.53 16199.77 183100.00 198.77 120100.00 199.99 61100.00 199.99 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft99.61 5899.49 6699.98 2399.99 4999.94 41100.00 199.42 13897.82 12899.99 105100.00 198.20 139100.00 199.99 61100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + GP.99.61 5899.69 2299.35 17599.99 4998.06 245100.00 199.36 21299.83 2100.00 1100.00 198.95 10399.99 94100.00 199.11 163100.00 1
HPM-MVS_fast99.60 6199.49 6699.91 7099.99 4999.78 90100.00 199.42 13897.09 196100.00 1100.00 198.95 10399.96 13899.98 73100.00 1100.00 1
HPM-MVScopyleft99.59 6299.50 6499.89 75100.00 199.70 102100.00 199.42 13897.46 170100.00 1100.00 198.60 12899.96 13899.99 61100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvsany_test199.57 6399.48 6999.85 8799.86 11599.54 118100.00 199.36 21298.94 37100.00 1100.00 197.97 145100.00 199.88 10399.28 160100.00 1
test_fmvsmconf_n99.56 6499.46 7099.86 8399.68 16199.58 113100.00 199.31 23898.92 3999.88 162100.00 197.35 17599.99 9499.98 7399.99 98100.00 1
test_fmvsm_n_192099.55 6599.49 6699.73 11899.85 11699.19 164100.00 199.41 18498.87 47100.00 1100.00 197.34 176100.00 199.98 7399.90 126100.00 1
WTY-MVS99.54 6699.40 7299.95 5199.81 12799.93 45100.00 1100.00 197.98 11299.84 166100.00 198.94 10599.98 11899.86 10798.21 20299.94 135
test_yl99.51 6799.37 7799.95 5199.82 12199.90 60100.00 199.47 7997.48 168100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
DCV-MVSNet99.51 6799.37 7799.95 5199.82 12199.90 60100.00 199.47 7997.48 168100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
xiu_mvs_v2_base99.51 6799.41 7199.82 9399.70 15699.73 9699.92 26199.40 18898.15 98100.00 1100.00 198.50 133100.00 199.85 10999.13 16299.74 231
HY-MVS96.53 999.50 7099.35 8299.96 4299.81 12799.93 4599.64 313100.00 197.97 11499.84 16699.85 24498.94 10599.99 9499.86 10798.23 20199.95 130
PHI-MVS99.50 7099.39 7399.82 93100.00 199.45 135100.00 199.94 2296.38 252100.00 1100.00 198.18 140100.00 1100.00 1100.00 1100.00 1
CPTT-MVS99.49 7299.38 7499.85 87100.00 199.54 118100.00 199.42 13897.58 15699.98 111100.00 197.43 173100.00 199.99 61100.00 1100.00 1
MAR-MVS99.49 7299.36 8099.89 7599.97 8999.66 10599.74 29699.95 1997.89 121100.00 1100.00 196.71 196100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250699.48 7499.38 7499.75 11499.89 11099.51 12499.45 334100.00 198.38 8099.83 169100.00 198.86 11299.81 19599.25 19398.78 17199.94 135
PVSNet_Blended99.48 7499.36 8099.83 9199.98 8599.60 110100.00 1100.00 197.79 130100.00 1100.00 196.57 19999.99 94100.00 199.88 12999.90 160
test_fmvsmvis_n_192099.46 7699.37 7799.73 11898.88 30199.18 166100.00 199.26 26898.85 4999.79 180100.00 197.70 158100.00 199.98 7399.86 133100.00 1
sss99.45 7799.34 8499.80 10399.76 14899.50 126100.00 199.91 3697.72 13599.98 11199.94 22498.45 134100.00 199.53 17698.75 17499.89 165
AdaColmapbinary99.44 7899.26 8999.95 51100.00 199.86 7999.70 30699.99 1398.53 7399.90 157100.00 195.34 217100.00 199.92 96100.00 1100.00 1
thisisatest051599.42 7999.31 8599.74 11599.59 19799.55 116100.00 199.46 9496.65 23599.92 152100.00 199.44 4699.85 18699.09 20599.63 15499.81 206
CANet99.40 8099.24 9299.89 7599.99 4999.76 92100.00 199.73 5698.40 7999.78 182100.00 195.28 21899.96 138100.00 199.99 9899.96 124
114514_t99.39 8199.25 9099.81 9899.97 8999.48 133100.00 199.42 13895.53 283100.00 1100.00 198.37 13799.95 15299.97 83100.00 1100.00 1
alignmvs99.38 8299.21 9699.91 7099.73 15399.92 50100.00 199.51 7697.61 151100.00 1100.00 199.06 8999.93 16899.83 11397.12 24299.90 160
131499.38 8299.19 10099.96 4298.88 30199.89 6799.24 35599.93 3098.88 4498.79 254100.00 197.02 182100.00 1100.00 1100.00 1100.00 1
thisisatest053099.37 8499.27 8699.69 12499.59 19799.41 140100.00 199.46 9496.46 24599.90 157100.00 199.44 4699.85 18698.97 20899.58 15699.80 220
xiu_mvs_v1_base_debu99.35 8599.21 9699.79 10599.67 16699.71 9899.78 28699.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 240
xiu_mvs_v1_base99.35 8599.21 9699.79 10599.67 16699.71 9899.78 28699.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 240
xiu_mvs_v1_base_debi99.35 8599.21 9699.79 10599.67 16699.71 9899.78 28699.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 240
ETV-MVS99.34 8899.24 9299.64 13399.58 20299.33 147100.00 199.25 27097.57 15799.96 121100.00 197.44 17299.79 19799.70 14199.65 15299.81 206
tttt051799.34 8899.23 9599.67 12799.57 20599.38 142100.00 199.46 9496.33 25699.89 160100.00 199.44 4699.84 18898.93 21099.46 15999.78 226
CS-MVS99.33 9099.27 8699.50 15399.99 4999.00 183100.00 199.13 31797.26 18799.96 121100.00 197.79 15599.64 21599.64 15899.67 15099.87 185
PVSNet_Blended_VisFu99.33 9099.18 10399.78 10999.82 12199.49 129100.00 199.95 1997.36 17799.63 193100.00 196.45 20399.95 15299.79 11999.65 15299.89 165
fmvsm_s_conf0.5_n_a99.32 9299.15 10599.81 9899.80 13899.47 134100.00 199.35 22398.22 91100.00 1100.00 195.21 22299.99 9499.96 8599.86 13399.98 111
HyFIR lowres test99.32 9299.24 9299.58 14599.95 9699.26 154100.00 199.99 1396.72 22799.29 21699.91 23199.49 3999.47 24999.74 12998.08 209100.00 1
CS-MVS-test99.31 9499.27 8699.43 16299.99 4998.77 195100.00 199.19 29497.24 18899.96 121100.00 197.56 16599.70 21299.68 14999.81 14199.82 197
LS3D99.31 9499.13 10699.87 8099.99 4999.71 9899.55 32499.46 9497.32 18299.82 177100.00 196.85 19399.97 12599.14 200100.00 199.92 147
PVSNet94.91 1899.30 9699.25 9099.44 160100.00 198.32 227100.00 199.86 3898.04 107100.00 1100.00 196.10 206100.00 199.55 17199.73 145100.00 1
lupinMVS99.29 9799.16 10499.69 12499.45 24199.49 129100.00 199.15 30897.45 17199.97 116100.00 196.76 19499.76 20499.67 152100.00 199.81 206
CSCG99.28 9899.35 8299.05 19999.99 4997.15 289100.00 199.47 7997.44 17299.42 204100.00 197.83 154100.00 199.99 61100.00 1100.00 1
thres20099.27 9999.04 11399.96 4299.81 12799.90 60100.00 199.94 2297.31 18499.83 16999.96 21197.04 179100.00 199.62 16297.88 21999.98 111
OMC-MVS99.27 9999.38 7498.96 20799.95 9697.06 293100.00 199.40 18898.83 5399.88 162100.00 197.01 18399.86 18099.47 17999.84 13899.97 118
testing1199.26 10199.19 10099.46 15799.64 18298.61 206100.00 199.43 12296.94 20599.92 15299.94 22499.43 5099.97 12599.67 15297.79 22899.82 197
EIA-MVS99.26 10199.19 10099.45 15999.63 18498.75 196100.00 199.27 26296.93 20699.95 145100.00 197.47 16999.79 19799.74 12999.72 14699.82 197
tfpn200view999.26 10199.03 11499.96 4299.81 12799.89 67100.00 199.94 2297.23 18999.83 16999.96 21197.04 179100.00 199.59 16697.85 22199.98 111
thres40099.26 10199.03 11499.95 5199.81 12799.89 67100.00 199.94 2297.23 18999.83 16999.96 21197.04 179100.00 199.59 16697.85 22199.97 118
test_fmvsmconf0.1_n99.25 10599.05 11299.82 9398.92 29799.55 116100.00 199.23 27998.91 4199.75 18699.97 19994.79 23099.94 16499.94 9399.99 9899.97 118
thres100view90099.25 10599.01 11699.95 5199.81 12799.87 76100.00 199.94 2297.13 19499.83 16999.96 21197.01 183100.00 199.59 16697.85 22199.98 111
EPMVS99.25 10599.13 10699.60 13999.60 19399.20 16399.60 319100.00 196.93 20699.92 15299.36 31699.05 9199.71 21198.77 22098.94 16899.90 160
thres600view799.24 10899.00 11899.95 5199.81 12799.87 76100.00 199.94 2297.13 19499.83 16999.96 21197.01 183100.00 199.54 17497.77 22999.97 118
MVS99.22 10998.96 12399.98 2399.00 28899.95 3299.24 35599.94 2298.14 9998.88 244100.00 195.63 215100.00 199.85 109100.00 1100.00 1
fmvsm_s_conf0.5_n99.21 11099.01 11699.83 9199.84 11799.53 120100.00 199.38 20398.29 90100.00 1100.00 193.62 24499.99 9499.99 6199.93 12299.98 111
EC-MVSNet99.19 11199.09 11099.48 15699.42 24599.07 172100.00 199.21 29096.95 20499.96 121100.00 196.88 19299.48 24799.64 15899.79 14499.88 176
testing9199.18 11299.10 10899.41 16599.60 19398.43 213100.00 199.43 12296.76 22099.82 17799.92 22999.05 9199.98 11899.62 16297.67 23499.81 206
testing9999.18 11299.10 10899.41 16599.60 19398.43 213100.00 199.43 12296.76 22099.84 16699.92 22999.06 8999.98 11899.62 16297.67 23499.81 206
UWE-MVS99.18 11299.06 11199.51 15099.67 16698.80 193100.00 199.43 12296.80 21799.93 15199.86 23999.79 799.94 16497.78 26498.33 19699.80 220
ETVMVS99.16 11598.98 12199.69 12499.67 16699.56 115100.00 199.45 10296.36 25399.98 11199.95 21998.65 12599.64 21599.11 20497.63 23799.88 176
FE-MVS99.16 11598.99 12099.66 13099.65 17699.18 16699.58 32199.43 12295.24 29399.91 15599.59 29699.37 5899.97 12598.31 24399.81 14199.83 192
testing22299.14 11798.94 12899.73 11899.67 16699.51 124100.00 199.43 12296.90 21199.99 10599.90 23398.55 13199.86 18098.85 21597.18 24199.81 206
PMMVS99.12 11898.97 12299.58 14599.57 20598.98 185100.00 199.30 24297.14 19399.96 121100.00 196.53 20299.82 19299.70 14198.49 18099.94 135
jason99.11 11998.96 12399.59 14199.17 26899.31 150100.00 199.13 31797.38 17699.83 169100.00 195.54 21699.72 21099.57 17099.97 11199.74 231
jason: jason.
EPP-MVSNet99.10 12099.00 11899.40 16999.51 22498.68 20299.92 26199.43 12295.47 28999.65 192100.00 199.51 3399.76 20499.53 17698.00 21099.75 230
TESTMET0.1,199.08 12198.96 12399.44 16099.63 18499.38 142100.00 199.45 10295.53 28399.48 200100.00 199.71 1399.02 27696.84 29399.99 9899.91 149
IS-MVSNet99.08 12198.91 13299.59 14199.65 17699.38 14299.78 28699.24 27596.70 22999.51 198100.00 198.44 13599.52 24298.47 23798.39 18899.88 176
UA-Net99.06 12398.83 13899.74 11599.52 21999.40 14199.08 37999.45 10297.64 14499.83 169100.00 195.80 21099.94 16498.35 24199.80 14399.88 176
3Dnovator95.63 1499.06 12398.76 14699.96 4298.86 30599.90 6099.98 23799.93 3098.95 3598.49 273100.00 192.91 255100.00 199.71 138100.00 1100.00 1
patch_mono-299.04 12599.79 696.81 32499.92 10490.47 372100.00 199.41 18498.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 130
VNet99.04 12598.75 14799.90 7399.81 12799.75 9399.50 33099.47 7998.36 84100.00 199.99 18694.66 232100.00 199.90 9997.09 24399.96 124
sasdasda99.03 12798.73 14999.94 6399.75 15099.95 32100.00 199.30 24297.64 144100.00 1100.00 195.22 22099.97 12599.76 12696.90 24899.91 149
canonicalmvs99.03 12798.73 14999.94 6399.75 15099.95 32100.00 199.30 24297.64 144100.00 1100.00 195.22 22099.97 12599.76 12696.90 24899.91 149
test-LLR99.03 12798.91 13299.40 16999.40 25299.28 152100.00 199.45 10296.70 22999.42 20499.12 32599.31 6499.01 27796.82 29499.99 9899.91 149
PatchmatchNetpermissive99.03 12798.96 12399.26 18999.49 23298.33 22599.38 34299.45 10296.64 23699.96 12199.58 29899.49 3999.50 24597.63 26999.00 16799.93 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
3Dnovator+95.58 1599.03 12798.71 15399.96 4298.99 29199.89 67100.00 199.51 7698.96 3298.32 281100.00 192.78 257100.00 199.87 106100.00 1100.00 1
CANet_DTU99.02 13298.90 13599.41 16599.88 11298.71 200100.00 199.29 24798.84 51100.00 1100.00 194.02 239100.00 198.08 25299.96 11499.52 246
PatchMatch-RL99.02 13298.78 14399.74 11599.99 4999.29 151100.00 1100.00 198.38 8099.89 16099.81 25393.14 25399.99 9497.85 26299.98 10899.95 130
MGCFI-Net99.01 13498.70 15599.93 6799.74 15299.94 41100.00 199.29 24797.60 154100.00 1100.00 195.10 22499.96 13899.74 12996.85 25099.91 149
FA-MVS(test-final)99.00 13598.75 14799.73 11899.63 18499.43 13899.83 27699.43 12295.84 27499.52 19799.37 31597.84 15399.96 13897.63 26999.68 14899.79 223
CHOSEN 1792x268899.00 13598.91 13299.25 19099.90 10897.79 265100.00 199.99 1398.79 6098.28 284100.00 193.63 24399.95 15299.66 15699.95 117100.00 1
DeepC-MVS97.84 599.00 13598.80 14299.60 13999.93 10199.03 178100.00 199.40 18898.61 7199.33 214100.00 192.23 26699.95 15299.74 12999.96 11499.83 192
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline298.99 13898.93 13099.18 19499.26 26599.15 169100.00 199.46 9496.71 22896.79 340100.00 199.42 5399.25 26898.75 22299.94 11999.15 252
QAPM98.99 13898.66 15699.96 4299.01 28499.87 7699.88 27099.93 3097.99 11098.68 258100.00 193.17 251100.00 199.32 188100.00 1100.00 1
Vis-MVSNet (Re-imp)98.99 13898.89 13699.29 18499.64 18298.89 19099.98 23799.31 23896.74 22499.48 200100.00 198.11 14299.10 27298.39 23998.34 19399.89 165
tpmrst98.98 14198.93 13099.14 19699.61 19197.74 26699.52 32899.36 21296.05 26699.98 11199.64 28499.04 9499.86 18098.94 20998.19 20499.82 197
test-mter98.96 14298.82 13999.40 16999.40 25299.28 152100.00 199.45 10295.44 29299.42 20499.12 32599.70 1499.01 27796.82 29499.99 9899.91 149
diffmvspermissive98.96 14298.73 14999.63 13499.54 20999.16 168100.00 199.18 30197.33 18199.96 121100.00 194.60 23399.91 17199.66 15698.33 19699.82 197
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet98.96 14298.95 12799.01 20399.48 23498.36 22399.93 26099.37 20696.79 21899.31 21599.83 24799.77 1098.91 28698.07 25397.98 21199.77 227
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSFormer98.94 14598.82 13999.28 18799.45 24199.49 129100.00 199.13 31795.46 29099.97 116100.00 196.76 19498.59 31698.63 229100.00 199.74 231
MVS_Test98.93 14698.65 15799.77 11299.62 18999.50 12699.99 21399.19 29495.52 28599.96 12199.86 23996.54 20199.98 11898.65 22798.48 18199.82 197
baseline198.91 14798.61 16199.81 9899.71 15499.77 9199.78 28699.44 11697.51 16598.81 25299.99 18698.25 13899.76 20498.60 23295.41 26399.89 165
1112_ss98.91 14798.71 15399.51 15099.69 15798.75 19699.99 21399.15 30896.82 21598.84 249100.00 197.45 17099.89 17498.66 22597.75 23099.89 165
MSDG98.90 14998.63 15999.70 12399.92 10499.25 156100.00 199.37 20695.71 27799.40 210100.00 196.58 19899.95 15296.80 29699.94 11999.91 149
dcpmvs_298.87 15099.53 5996.90 31899.87 11490.88 37199.94 25899.07 33698.20 94100.00 1100.00 198.69 12499.86 180100.00 1100.00 199.95 130
DP-MVS98.86 15198.54 16799.81 9899.97 8999.45 13599.52 32899.40 18894.35 31798.36 277100.00 196.13 20599.97 12599.12 203100.00 1100.00 1
CostFormer98.84 15298.77 14499.04 20199.41 24797.58 27199.67 31199.35 22394.66 30699.96 12199.36 31699.28 7299.74 20799.41 18297.81 22599.81 206
Test_1112_low_res98.83 15398.60 16399.51 15099.69 15798.75 19699.99 21399.14 31396.81 21698.84 24999.06 32997.45 17099.89 17498.66 22597.75 23099.89 165
BH-w/o98.82 15498.81 14198.88 21299.62 18996.71 301100.00 199.28 25497.09 19698.81 252100.00 194.91 22899.96 13899.54 174100.00 199.96 124
mvs_anonymous98.80 15598.60 16399.38 17399.57 20599.24 158100.00 199.21 29095.87 26998.92 24099.82 25096.39 20499.03 27599.13 20298.50 17999.88 176
fmvsm_s_conf0.1_n98.77 15698.42 17499.82 9399.47 23799.52 123100.00 199.27 26297.53 161100.00 1100.00 189.73 29899.96 13899.84 11299.93 12299.97 118
TAMVS98.76 15798.73 14998.86 21399.44 24397.69 26799.57 32299.34 22996.57 23999.12 22699.81 25398.83 11699.16 27097.97 25997.91 21799.73 235
OpenMVScopyleft95.20 1798.76 15798.41 17599.78 10998.89 30099.81 8799.99 21399.76 4998.02 10898.02 299100.00 191.44 272100.00 199.63 16199.97 11199.55 244
iter_conf0598.73 15998.77 14498.60 22599.65 17699.22 161100.00 199.22 28296.68 23398.98 23799.97 19999.99 398.84 29499.29 19195.11 28297.75 275
dp98.72 16098.61 16199.03 20299.53 21297.39 27799.45 33499.39 20195.62 28099.94 14799.52 30698.83 11699.82 19296.77 29998.42 18599.89 165
fmvsm_s_conf0.1_n_a98.71 16198.36 18299.78 10999.09 27499.42 139100.00 199.26 26897.42 174100.00 1100.00 189.78 29699.96 13899.82 11899.85 13699.97 118
PVSNet_BlendedMVS98.71 16198.62 16098.98 20699.98 8599.60 110100.00 1100.00 197.23 189100.00 199.03 33496.57 19999.99 94100.00 194.75 29097.35 358
ADS-MVSNet98.70 16398.51 16999.28 18799.51 22498.39 21899.24 35599.44 11695.52 28599.96 12199.70 26897.57 16399.58 22397.11 28598.54 17799.88 176
baseline98.69 16498.45 17399.41 16599.52 21998.67 203100.00 199.17 30697.03 20199.13 225100.00 193.17 25199.74 20799.70 14198.34 19399.81 206
PCF-MVS98.23 398.69 16498.37 18099.62 13699.78 14599.02 17999.23 36099.06 34496.43 24698.08 293100.00 194.72 23199.95 15298.16 25099.91 12599.90 160
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive98.65 16698.38 17899.46 15799.52 21998.74 199100.00 199.15 30896.91 20999.05 233100.00 192.75 25899.83 18999.70 14198.38 19099.81 206
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive98.64 16798.39 17799.40 16999.50 22898.60 207100.00 199.22 28296.85 21399.10 227100.00 192.75 25899.78 20199.71 13898.35 19299.81 206
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm298.64 16798.58 16598.81 21699.42 24597.12 29099.69 30899.37 20693.63 33399.94 14799.67 27698.96 10299.47 24998.62 23197.95 21599.83 192
BH-untuned98.64 16798.65 15798.60 22599.59 19796.17 307100.00 199.28 25496.67 23498.41 276100.00 194.52 23499.83 18999.41 182100.00 199.81 206
test_cas_vis1_n_192098.63 17098.25 18699.77 11299.69 15799.32 148100.00 199.31 23898.84 5199.96 121100.00 187.42 32699.99 9499.14 20099.86 133100.00 1
test_fmvsmconf0.01_n98.60 17198.24 18899.67 12796.90 37199.21 16299.99 21399.04 34998.80 5799.57 19599.96 21190.12 29099.91 17199.89 10199.89 12799.90 160
tpmvs98.59 17298.38 17899.23 19199.69 15797.90 25799.31 35099.47 7994.52 31199.68 19199.28 32097.64 16199.89 17497.71 26698.17 20699.89 165
Effi-MVS+98.58 17398.24 18899.61 13799.60 19399.26 15497.85 39599.10 32696.22 26199.97 11699.89 23493.75 24199.77 20299.43 18098.34 19399.81 206
MVSTER98.58 17398.52 16898.77 21899.65 17699.68 104100.00 199.29 24795.63 27998.65 25999.80 25699.78 898.88 29298.59 23395.31 26897.73 304
CVMVSNet98.56 17598.47 17298.82 21499.11 27197.67 26899.74 29699.47 7997.57 15799.06 232100.00 195.72 21298.97 28298.21 24997.33 24099.83 192
AllTest98.55 17698.40 17698.99 20499.93 10197.35 280100.00 199.40 18897.08 19899.09 22899.98 19193.37 24799.95 15296.94 28999.84 13899.68 238
DeepPCF-MVS98.03 498.54 17799.72 1994.98 34799.99 4984.94 386100.00 199.42 13899.98 1100.00 1100.00 198.11 142100.00 1100.00 1100.00 1100.00 1
EPNet_dtu98.53 17898.23 19199.43 16299.92 10499.01 18199.96 24899.47 7998.80 5799.96 12199.96 21198.56 13099.30 26587.78 37899.68 148100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
myMVS_eth3d98.52 17998.51 16998.53 22999.50 22897.98 250100.00 199.57 6896.23 25998.07 294100.00 199.09 8797.81 36396.17 30697.96 21399.82 197
Vis-MVSNetpermissive98.52 17998.25 18699.34 17699.68 16198.55 20999.68 31099.41 18497.34 18099.94 147100.00 190.38 28999.70 21299.03 20798.84 16999.76 229
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+-dtu98.51 18198.86 13797.47 29499.77 14794.21 344100.00 198.94 36097.61 15199.91 15598.75 35295.89 20899.51 24499.36 18499.48 15898.68 258
SDMVSNet98.49 18298.08 19899.73 11899.82 12199.53 12099.99 21399.45 10297.62 14799.38 21199.86 23990.06 29399.88 17899.92 9696.61 25399.79 223
BH-RMVSNet98.46 18398.08 19899.59 14199.61 19199.19 164100.00 199.28 25497.06 20098.95 238100.00 188.99 30899.82 19298.83 218100.00 199.77 227
testing398.44 18498.37 18098.65 22299.51 22498.32 227100.00 199.62 6696.43 24697.93 30499.99 18699.11 8597.81 36394.88 32697.80 22699.82 197
ECVR-MVScopyleft98.43 18598.14 19499.32 18199.89 11098.21 23599.46 332100.00 198.38 8099.47 203100.00 187.91 31999.80 19699.35 18598.78 17199.94 135
cascas98.43 18598.07 20099.50 15399.65 17699.02 179100.00 199.22 28294.21 32099.72 18999.98 19192.03 26999.93 16899.68 14998.12 20799.54 245
test111198.42 18798.12 19599.29 18499.88 11298.15 23799.46 332100.00 198.36 8499.42 204100.00 187.91 31999.79 19799.31 18998.78 17199.94 135
ab-mvs98.42 18798.02 20599.61 13799.71 15499.00 18399.10 37699.64 6496.70 22999.04 23499.81 25390.64 28399.98 11899.64 15897.93 21699.84 189
UGNet98.41 18998.11 19699.31 18399.54 20998.55 20999.18 363100.00 198.64 7099.79 18099.04 33287.61 324100.00 199.30 19099.89 12799.40 249
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+98.40 19098.02 20599.55 14999.63 18499.06 174100.00 199.15 30895.07 29599.42 20499.95 21993.26 25099.73 20997.44 27598.24 20099.87 185
Fast-Effi-MVS+-dtu98.38 19198.56 16697.82 28499.58 20294.44 341100.00 199.16 30796.75 22299.51 19899.63 28895.03 22699.60 21797.71 26699.67 15099.42 248
test_fmvs198.37 19298.04 20399.34 17699.84 11798.07 243100.00 199.00 35598.85 49100.00 1100.00 185.11 34699.96 13899.69 14899.88 129100.00 1
miper_enhance_ethall98.33 19398.27 18598.51 23099.66 17599.04 177100.00 199.22 28297.53 16198.51 27199.38 31499.49 3998.75 30398.02 25592.61 31097.76 265
SCA98.30 19497.98 20799.23 19199.41 24798.25 23299.99 21399.45 10296.91 20999.76 18599.58 29889.65 30099.54 23698.31 24398.79 17099.91 149
XVG-OURS98.30 19498.36 18298.13 25999.58 20295.91 310100.00 199.36 21298.69 6599.23 218100.00 191.20 27599.92 17099.34 18697.82 22498.56 261
COLMAP_ROBcopyleft97.10 798.29 19698.17 19398.65 22299.94 9997.39 27799.30 35199.40 18895.64 27897.75 313100.00 192.69 26299.95 15298.89 21299.92 12498.62 260
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ADS-MVSNet298.28 19798.51 16997.62 29099.51 22495.03 32199.24 35599.41 18495.52 28599.96 12199.70 26897.57 16397.94 36097.11 28598.54 17799.88 176
XVG-OURS-SEG-HR98.27 19898.31 18498.14 25699.59 19795.92 309100.00 199.36 21298.48 7599.21 219100.00 189.27 30599.94 16499.76 12699.17 16198.56 261
tpm98.24 19998.22 19298.32 24299.13 27095.79 31299.53 32799.12 32395.20 29499.96 12199.36 31697.58 16299.28 26797.41 27796.67 25199.88 176
cl2298.23 20098.11 19698.58 22899.82 12199.01 181100.00 199.28 25496.92 20898.33 28099.21 32298.09 14498.97 28298.72 22392.61 31097.76 265
iter_conf05_1198.21 20197.74 21599.65 13299.67 16699.06 174100.00 198.87 36697.84 12699.96 121100.00 183.57 35699.88 17899.72 133100.00 1100.00 1
TR-MVS98.14 20297.74 21599.33 17999.59 19798.28 23099.27 35299.21 29096.42 24899.15 22499.94 22488.87 31199.79 19798.88 21398.29 19899.93 145
mvsmamba98.13 20398.06 20198.32 24298.22 33298.50 212100.00 199.22 28296.41 24998.91 24299.96 21195.69 21398.73 30599.19 19994.95 28997.73 304
test0.0.03 198.12 20498.03 20498.39 23699.11 27198.07 243100.00 199.93 3096.70 22996.91 33699.95 21999.31 6498.19 34091.93 35298.44 18398.91 256
GeoE98.06 20597.65 22199.29 18499.47 23798.41 215100.00 199.19 29494.85 30098.88 244100.00 191.21 27499.59 21997.02 28798.19 20499.88 176
tpm cat198.05 20697.76 21398.92 20999.50 22897.10 29299.77 29199.30 24290.20 37299.72 18998.71 35397.71 15799.86 18096.75 30098.20 20399.81 206
PS-MVSNAJss98.03 20798.06 20197.94 27897.63 35297.33 28399.89 26899.23 27996.27 25898.03 29799.59 29698.75 12198.78 29898.52 23594.61 29397.70 320
CR-MVSNet98.02 20897.71 21998.93 20899.31 25998.86 19199.13 37399.00 35596.53 24299.96 12198.98 33896.94 18998.10 35091.18 35798.40 18699.84 189
EI-MVSNet97.98 20997.93 20898.16 25599.11 27197.84 26299.74 29699.29 24794.39 31698.65 259100.00 197.21 17798.88 29297.62 27195.31 26897.75 275
FIs97.95 21097.73 21898.62 22498.53 31799.24 158100.00 199.43 12296.74 22497.87 30899.82 25095.27 21998.89 28998.78 21993.07 30597.74 298
Anonymous20240521197.87 21197.53 22398.90 21099.81 12796.70 30299.35 34599.46 9492.98 34898.83 25199.99 18690.63 284100.00 199.70 14197.03 244100.00 1
FC-MVSNet-test97.84 21297.63 22298.45 23398.30 32799.05 176100.00 199.43 12296.63 23897.61 31999.82 25095.19 22398.57 31998.64 22893.05 30697.73 304
Patchmatch-test97.83 21397.42 22699.06 19799.08 27597.66 26998.66 38999.21 29093.65 33298.25 28899.58 29899.47 4399.57 22490.25 36698.59 17699.95 130
sd_testset97.81 21497.48 22498.79 21799.82 12196.80 29999.32 34799.45 10297.62 14799.38 21199.86 23985.56 34499.77 20299.72 13396.61 25399.79 223
miper_ehance_all_eth97.81 21497.66 22098.23 24899.49 23298.37 22199.99 21399.11 32494.78 30198.25 28899.21 32298.18 14098.57 31997.35 28192.61 31097.76 265
test_vis1_n_192097.77 21697.24 23899.34 17699.79 14298.04 247100.00 199.25 27098.88 44100.00 1100.00 177.52 379100.00 199.88 10399.85 136100.00 1
RRT_MVS97.77 21697.76 21397.78 28697.89 34597.06 293100.00 199.29 24795.74 27698.00 30299.97 19995.94 20798.55 32298.87 21494.18 29697.72 311
HQP-MVS97.73 21897.85 21097.39 29699.07 27694.82 325100.00 199.40 18899.04 1599.17 22099.97 19988.61 31499.57 22499.79 11995.58 25797.77 263
GA-MVS97.72 21997.27 23699.06 19799.24 26697.93 256100.00 199.24 27595.80 27598.99 23699.64 28489.77 29799.36 26095.12 32397.62 23899.89 165
HQP_MVS97.71 22097.82 21297.37 29799.00 28894.80 328100.00 199.40 18899.00 2799.08 23099.97 19988.58 31699.55 23399.79 11995.57 26197.76 265
bld_raw_dy_0_6497.64 22196.98 24399.63 13499.67 16698.94 188100.00 197.98 38597.85 12598.93 239100.00 183.23 36099.96 13899.72 13395.41 263100.00 1
nrg03097.64 22197.27 23698.75 21998.34 32299.53 120100.00 199.22 28296.21 26298.27 28699.95 21994.40 23598.98 28099.23 19689.78 34697.75 275
TAPA-MVS96.40 1097.64 22197.37 23098.45 23399.94 9995.70 313100.00 199.40 18897.65 14299.53 196100.00 199.31 6499.66 21480.48 393100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS97.64 22197.74 21597.36 29899.01 28494.76 333100.00 199.34 22999.30 499.00 23599.97 19987.49 32599.57 22499.96 8595.58 25797.75 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
D2MVS97.63 22597.83 21197.05 30998.83 30894.60 337100.00 199.82 4096.89 21298.28 28499.03 33494.05 23799.47 24998.58 23494.97 28797.09 364
c3_l97.58 22697.42 22698.06 26699.48 23498.16 23699.96 24899.10 32694.54 31098.13 29299.20 32497.87 14998.25 33997.28 28291.20 33497.75 275
IterMVS-LS97.56 22797.44 22597.92 28199.38 25697.90 25799.89 26899.10 32694.41 31598.32 28199.54 30597.21 17798.11 34797.50 27391.62 32697.75 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_djsdf97.55 22897.38 22998.07 26297.50 36097.99 249100.00 199.13 31795.46 29098.47 27499.85 24492.01 27098.59 31698.63 22995.36 26697.62 341
dmvs_re97.54 22997.88 20996.54 32999.55 20890.35 37399.86 27299.46 9497.00 20299.41 209100.00 190.78 28299.30 26599.60 16595.24 27399.96 124
cl____97.54 22997.32 23298.18 25299.47 23798.14 239100.00 199.10 32694.16 32397.60 32099.63 28897.52 16698.65 31096.47 30191.97 32297.76 265
IB-MVS96.24 1297.54 22996.95 24499.33 17999.67 16698.10 242100.00 199.47 7997.42 17499.26 21799.69 27198.83 11699.89 17499.43 18078.77 390100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DIV-MVS_self_test97.52 23297.35 23198.05 27099.46 24098.11 240100.00 199.10 32694.21 32097.62 31899.63 28897.65 16098.29 33696.47 30191.98 32197.76 265
eth_miper_zixun_eth97.47 23397.28 23498.06 26699.41 24797.94 25599.62 31799.08 33294.46 31498.19 29199.56 30296.91 19198.50 32596.78 29791.49 32997.74 298
test_fmvs1_n97.43 23496.86 24799.15 19599.68 16197.48 27499.99 21398.98 35898.82 55100.00 1100.00 174.85 38499.96 13899.67 15299.70 147100.00 1
LFMVS97.42 23596.62 25699.81 9899.80 13899.50 12699.16 36999.56 7094.48 313100.00 1100.00 179.35 374100.00 199.89 10197.37 23999.94 135
miper_lstm_enhance97.40 23697.28 23497.75 28799.48 23497.52 272100.00 199.07 33694.08 32498.01 30099.61 29497.38 17497.98 35896.44 30491.47 33197.76 265
RPSCF97.37 23798.24 18894.76 35099.80 13884.57 38799.99 21399.05 34694.95 29899.82 177100.00 194.03 238100.00 198.15 25198.38 19099.70 236
ACMM97.17 697.37 23797.40 22897.29 30299.01 28494.64 336100.00 199.25 27098.07 10698.44 27599.98 19187.38 32799.55 23399.25 19395.19 27697.69 324
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test97.31 23997.32 23297.28 30398.85 30694.60 337100.00 199.37 20697.35 17898.85 24799.98 19186.66 33399.56 22899.55 17195.26 27097.70 320
FMVSNet397.30 24096.95 24498.37 23899.65 17699.25 15699.71 30499.28 25494.23 31898.53 26898.91 34593.30 24998.11 34795.31 31993.60 29997.73 304
UniMVSNet (Re)97.29 24196.85 24898.59 22798.49 31899.13 170100.00 199.42 13896.52 24398.24 29098.90 34694.93 22798.89 28997.54 27287.61 36497.75 275
OPM-MVS97.21 24297.18 24197.32 30198.08 33894.66 334100.00 199.28 25498.65 6998.92 24099.98 19186.03 34099.56 22898.28 24795.41 26397.72 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP97.00 897.19 24397.16 24297.27 30598.97 29394.58 340100.00 199.32 23397.97 11497.45 32499.98 19185.79 34299.56 22899.70 14195.24 27397.67 330
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs497.17 24496.80 24998.27 24597.68 35198.64 205100.00 199.18 30194.22 31998.55 26699.71 26593.67 24298.47 32895.66 31392.57 31397.71 319
anonymousdsp97.16 24596.88 24698.00 27497.08 37098.06 24599.81 28099.15 30894.58 30897.84 30999.62 29290.49 28698.60 31497.98 25695.32 26797.33 359
UniMVSNet_NR-MVSNet97.16 24596.80 24998.22 24998.38 32198.41 215100.00 199.45 10296.14 26497.76 31099.64 28495.05 22598.50 32597.98 25686.84 36897.75 275
XXY-MVS97.14 24796.63 25598.67 22198.65 31198.92 18999.54 32699.29 24795.57 28297.63 31699.83 24787.79 32399.35 26298.39 23992.95 30797.75 275
WR-MVS97.09 24896.64 25498.46 23298.43 31999.09 17199.97 24399.33 23195.62 28097.76 31099.67 27691.17 27698.56 32198.49 23689.28 35297.74 298
JIA-IIPM97.09 24896.34 27099.36 17498.88 30198.59 20899.81 28099.43 12284.81 38899.96 12190.34 39898.55 13199.52 24297.00 28898.28 19999.98 111
jajsoiax97.07 25096.79 25197.89 28297.28 36897.12 29099.95 25499.19 29496.55 24097.31 32799.69 27187.35 32998.91 28698.70 22495.12 28197.66 331
MIMVSNet97.06 25196.73 25298.05 27099.38 25696.64 30498.47 39199.35 22393.41 33899.48 20098.53 36089.66 29997.70 36994.16 33598.11 20899.80 220
X-MVStestdata97.04 25296.06 28199.98 23100.00 199.94 41100.00 199.75 5298.67 67100.00 166.97 40999.16 81100.00 1100.00 1100.00 1100.00 1
h-mvs3397.03 25396.53 25998.51 23099.79 14295.90 31199.45 33499.45 10298.21 92100.00 199.78 25997.49 16799.99 9499.72 13374.92 39299.65 243
VPA-MVSNet97.03 25396.43 26598.82 21498.64 31299.32 14899.38 34299.47 7996.73 22698.91 24298.94 34387.00 33199.40 25899.23 19689.59 34797.76 265
WB-MVSnew97.02 25597.24 23896.37 33399.44 24397.36 279100.00 199.43 12296.12 26599.35 21399.89 23493.60 24598.42 33188.91 37798.39 18893.33 392
mvs_tets97.00 25696.69 25397.94 27897.41 36797.27 28599.60 31999.18 30196.51 24497.35 32699.69 27186.53 33598.91 28698.84 21695.09 28397.65 335
gg-mvs-nofinetune96.95 25796.10 27999.50 15399.41 24799.36 14699.07 38199.52 7283.69 39099.96 12183.60 406100.00 199.20 26999.68 14999.99 9899.96 124
Anonymous2024052996.93 25896.22 27599.05 19999.79 14297.30 28499.16 36999.47 7988.51 37898.69 257100.00 183.50 358100.00 199.83 11397.02 24599.83 192
DU-MVS96.93 25896.49 26298.22 24998.31 32598.41 215100.00 199.37 20696.41 24997.76 31099.65 28092.14 26798.50 32597.98 25686.84 36897.75 275
Patchmtry96.81 26096.37 26898.14 25699.31 25998.55 20998.91 38499.00 35590.45 36897.92 30598.98 33896.94 18998.12 34594.27 33291.53 32897.75 275
hse-mvs296.79 26196.38 26798.04 27299.68 16195.54 31599.81 28099.42 13898.21 92100.00 199.80 25697.49 16799.46 25399.72 13373.27 39599.12 253
ACMH96.25 1196.77 26296.62 25697.21 30698.96 29494.43 34299.64 31399.33 23197.43 17396.55 34599.97 19983.52 35799.54 23699.07 20695.13 28097.66 331
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS96.76 26396.46 26497.63 28899.41 24796.89 29699.99 21399.13 31794.74 30497.59 32199.66 27889.63 30298.28 33795.71 31192.31 31697.72 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet96.73 26496.25 27398.18 25298.21 33398.67 20399.77 29199.32 23395.06 29697.20 33099.65 28090.10 29198.19 34098.06 25488.90 35597.66 331
WR-MVS_H96.73 26496.32 27297.95 27798.26 32997.88 25999.72 30399.43 12295.06 29696.99 33398.68 35593.02 25498.53 32397.43 27688.33 36097.43 354
IterMVS-SCA-FT96.72 26696.42 26697.62 29099.40 25296.83 29899.99 21399.14 31394.65 30797.55 32299.72 26389.65 30098.31 33595.62 31592.05 31997.73 304
v2v48296.70 26796.18 27698.27 24598.04 33998.39 218100.00 199.13 31794.19 32298.58 26499.08 32890.48 28798.67 30895.69 31290.44 34297.75 275
test_vis1_n96.69 26895.81 29199.32 18199.14 26997.98 25099.97 24398.98 35898.45 77100.00 1100.00 166.44 39599.99 9499.78 12599.57 157100.00 1
V4296.65 26996.16 27898.11 26198.17 33698.23 23399.99 21399.09 33193.97 32598.74 25699.05 33191.09 27798.82 29695.46 31789.90 34497.27 360
EU-MVSNet96.63 27096.53 25996.94 31697.59 35696.87 29799.76 29399.47 7996.35 25496.85 33899.78 25992.57 26396.27 38395.33 31891.08 33597.68 326
NR-MVSNet96.63 27096.04 28298.38 23798.31 32598.98 18599.22 36299.35 22395.87 26994.43 36899.65 28092.73 26098.40 33296.78 29788.05 36197.75 275
XVG-ACMP-BASELINE96.60 27296.52 26196.84 32298.41 32093.29 35399.99 21399.32 23397.76 13498.51 27199.29 31981.95 36599.54 23698.40 23895.03 28497.68 326
VDD-MVS96.58 27395.99 28498.34 24099.52 21995.33 31699.18 36399.38 20396.64 23699.77 183100.00 172.51 389100.00 1100.00 196.94 24799.70 236
tt080596.52 27496.23 27497.40 29599.30 26293.55 34999.32 34799.45 10296.75 22297.88 30799.99 18679.99 37299.59 21997.39 27995.98 25699.06 255
LCM-MVSNet-Re96.52 27497.21 24094.44 35199.27 26385.80 38499.85 27496.61 40195.98 26792.75 37598.48 36293.97 24097.55 37099.58 16998.43 18499.98 111
our_test_396.51 27696.35 26996.98 31497.61 35495.05 32099.98 23799.01 35494.68 30596.77 34299.06 32995.87 20998.14 34391.81 35392.37 31597.75 275
MVP-Stereo96.51 27696.48 26396.60 32895.65 38294.25 34398.84 38698.16 37795.85 27395.23 35999.04 33292.54 26499.13 27192.98 34599.98 10896.43 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v114496.51 27695.97 28698.13 25997.98 34298.04 24799.99 21399.08 33293.51 33798.62 26298.98 33890.98 28198.62 31193.79 33990.79 33897.74 298
ACMH+96.20 1396.49 27996.33 27197.00 31299.06 28093.80 34799.81 28099.31 23897.32 18295.89 35699.97 19982.62 36399.54 23698.34 24294.63 29297.65 335
TranMVSNet+NR-MVSNet96.45 28096.01 28397.79 28598.00 34197.62 270100.00 199.35 22395.98 26797.31 32799.64 28490.09 29298.00 35796.89 29286.80 37197.75 275
ET-MVSNet_ETH3D96.41 28195.48 31199.20 19399.81 12799.75 93100.00 199.02 35297.30 18678.33 398100.00 197.73 15697.94 36099.70 14187.41 36599.92 147
VPNet96.41 28195.76 29698.33 24198.61 31398.30 22999.48 33199.45 10296.98 20398.87 24699.88 23681.57 36698.93 28499.22 19887.82 36397.76 265
PVSNet_093.57 1996.41 28195.74 29798.41 23599.84 11795.22 318100.00 1100.00 198.08 10597.55 32299.78 25984.40 349100.00 1100.00 181.99 383100.00 1
v14419296.40 28495.81 29198.17 25497.89 34598.11 24099.99 21399.06 34493.39 33998.75 25599.09 32790.43 28898.66 30993.10 34490.55 34197.75 275
VDDNet96.39 28595.55 30698.90 21099.27 26397.45 27599.15 37199.92 3491.28 36199.98 111100.00 173.55 385100.00 199.85 10996.98 24699.24 250
tfpnnormal96.36 28695.69 30298.37 23898.55 31598.71 20099.69 30899.45 10293.16 34696.69 34499.71 26588.44 31898.99 27994.17 33391.38 33297.41 355
v896.35 28795.73 29898.21 25198.11 33798.23 23399.94 25899.07 33692.66 35498.29 28399.00 33791.46 27198.77 30194.17 33388.83 35797.62 341
PS-CasMVS96.34 28895.78 29598.03 27398.18 33598.27 23199.71 30499.32 23394.75 30296.82 33999.65 28086.98 33298.15 34297.74 26588.85 35697.66 331
LTVRE_ROB95.29 1696.32 28996.10 27996.99 31398.55 31593.88 34699.45 33499.28 25494.50 31296.46 34699.52 30684.86 34799.48 24797.26 28395.03 28497.59 345
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023121196.29 29095.70 29998.07 26299.80 13897.49 27399.15 37199.40 18889.11 37597.75 31399.45 31188.93 31098.98 28098.26 24889.47 34997.73 304
v14896.29 29095.84 29097.63 28897.74 34996.53 305100.00 199.07 33693.52 33698.01 30099.42 31391.22 27398.60 31496.37 30587.22 36797.75 275
AUN-MVS96.26 29295.67 30398.06 26699.68 16195.60 31499.82 27999.42 13896.78 21999.88 16299.80 25694.84 22999.47 24997.48 27473.29 39499.12 253
FMVSNet296.22 29395.60 30598.06 26699.53 21298.33 22599.45 33499.27 26293.71 32898.03 29798.84 34884.23 35198.10 35093.97 33793.40 30297.73 304
LF4IMVS96.19 29496.18 27696.23 33698.26 32992.09 363100.00 197.89 38897.82 12897.94 30399.87 23782.71 36299.38 25997.41 27793.71 29897.20 361
v119296.18 29595.49 30998.26 24798.01 34098.15 23799.99 21399.08 33293.36 34098.54 26798.97 34189.47 30398.89 28991.15 35890.82 33797.75 275
testgi96.18 29595.93 28796.93 31798.98 29294.20 345100.00 199.07 33697.16 19296.06 35399.86 23984.08 35497.79 36690.38 36597.80 22698.81 257
Syy-MVS96.17 29796.57 25895.00 34599.50 22887.37 382100.00 199.57 6896.23 25998.07 294100.00 192.41 26597.81 36385.34 38397.96 21399.82 197
ppachtmachnet_test96.17 29795.89 28897.02 31197.61 35495.24 31799.99 21399.24 27593.31 34296.71 34399.62 29294.34 23698.07 35289.87 36792.30 31797.75 275
v192192096.16 29995.50 30798.14 25697.88 34797.96 25399.99 21399.07 33693.33 34198.60 26399.24 32189.37 30498.71 30691.28 35690.74 33997.75 275
Baseline_NR-MVSNet96.16 29995.70 29997.56 29398.28 32896.79 300100.00 197.86 38991.93 35897.63 31699.47 31092.14 26798.35 33497.13 28486.83 37097.54 348
v1096.14 30195.50 30798.07 26298.19 33497.96 25399.83 27699.07 33692.10 35798.07 29498.94 34391.07 27898.61 31292.41 35189.82 34597.63 339
OurMVSNet-221017-096.14 30195.98 28596.62 32797.49 36293.44 35199.92 26198.16 37795.86 27197.65 31599.95 21985.71 34398.78 29894.93 32594.18 29697.64 338
GBi-Net96.07 30395.80 29396.89 31999.53 21294.87 32299.18 36399.27 26293.71 32898.53 26898.81 34984.23 35198.07 35295.31 31993.60 29997.72 311
test196.07 30395.80 29396.89 31999.53 21294.87 32299.18 36399.27 26293.71 32898.53 26898.81 34984.23 35198.07 35295.31 31993.60 29997.72 311
v7n96.06 30595.42 31597.99 27697.58 35797.35 28099.86 27299.11 32492.81 35397.91 30699.49 30890.99 28098.92 28592.51 34888.49 35997.70 320
PEN-MVS96.01 30695.48 31197.58 29297.74 34997.26 28699.90 26599.29 24794.55 30996.79 34099.55 30387.38 32797.84 36296.92 29187.24 36697.65 335
v124095.96 30795.25 31698.07 26297.91 34497.87 26199.96 24899.07 33693.24 34498.64 26198.96 34288.98 30998.61 31289.58 37190.92 33697.75 275
pmmvs595.94 30895.61 30496.95 31597.42 36594.66 334100.00 198.08 38193.60 33497.05 33299.43 31287.02 33098.46 32995.76 30992.12 31897.72 311
PatchT95.90 30994.95 32398.75 21999.03 28298.39 21899.08 37999.32 23385.52 38699.96 12194.99 39097.94 14698.05 35680.20 39498.47 18299.81 206
USDC95.90 30995.70 29996.50 33098.60 31492.56 361100.00 198.30 37597.77 13296.92 33499.94 22481.25 36999.45 25493.54 34194.96 28897.49 351
pm-mvs195.76 31195.01 32198.00 27498.23 33197.45 27599.24 35599.04 34993.13 34795.93 35599.72 26386.28 33698.84 29495.62 31587.92 36297.72 311
SixPastTwentyTwo95.71 31295.49 30996.38 33297.42 36593.01 35499.84 27598.23 37694.75 30295.98 35499.97 19985.35 34598.43 33094.71 32793.17 30497.69 324
MS-PatchMatch95.66 31395.87 28995.05 34397.80 34889.25 37698.88 38599.30 24296.35 25496.86 33799.01 33681.35 36899.43 25593.30 34399.98 10896.46 375
DTE-MVSNet95.52 31494.99 32297.08 30897.49 36296.45 306100.00 199.25 27093.82 32796.17 35199.57 30187.81 32297.18 37194.57 32886.26 37397.62 341
TinyColmap95.50 31595.12 32096.64 32698.69 31093.00 35599.40 34097.75 39196.40 25196.14 35299.87 23779.47 37399.50 24593.62 34094.72 29197.40 356
K. test v395.46 31695.14 31996.40 33197.53 35993.40 35299.99 21399.23 27995.49 28892.70 37699.73 26284.26 35098.12 34593.94 33893.38 30397.68 326
FMVSNet595.32 31795.43 31494.99 34699.39 25592.99 35699.25 35499.24 27590.45 36897.44 32598.45 36395.78 21194.39 39287.02 37991.88 32397.59 345
UniMVSNet_ETH3D95.28 31894.41 32497.89 28298.91 29895.14 31999.13 37399.35 22392.11 35697.17 33199.66 27870.28 39299.36 26097.88 26195.18 27799.16 251
RPMNet95.26 31993.82 32799.56 14899.31 25998.86 19199.13 37399.42 13879.82 39599.96 12195.13 38895.69 21399.98 11877.54 39898.40 18699.84 189
DSMNet-mixed95.18 32095.21 31895.08 34296.03 37790.21 37499.65 31293.64 40792.91 34998.34 27997.40 37990.05 29495.51 38991.02 35997.86 22099.51 247
test_fmvs295.17 32195.23 31795.01 34498.95 29688.99 37899.99 21397.77 39097.79 13098.58 26499.70 26873.36 38699.34 26395.88 30895.03 28496.70 372
TransMVSNet (Re)94.78 32293.72 32897.93 28098.34 32297.88 25999.23 36097.98 38591.60 35994.55 36599.71 26587.89 32198.36 33389.30 37384.92 37497.56 347
FMVSNet194.45 32393.63 33096.89 31998.87 30494.87 32299.18 36399.27 26290.95 36597.31 32798.81 34972.89 38898.07 35292.61 34692.81 30897.72 311
test_040294.35 32493.70 32996.32 33497.92 34393.60 34899.61 31898.85 36888.19 38194.68 36499.48 30980.01 37198.58 31889.39 37295.15 27996.77 370
UnsupCasMVSNet_eth94.25 32593.89 32695.34 34197.63 35292.13 36299.73 30199.36 21294.88 29992.78 37398.63 35782.72 36196.53 37994.57 32884.73 37597.36 357
KD-MVS_2432*160094.15 32693.08 33597.35 29999.53 21297.83 26399.63 31599.19 29492.88 35096.29 34897.68 37698.84 11496.70 37589.73 36863.92 39997.53 349
miper_refine_blended94.15 32693.08 33597.35 29999.53 21297.83 26399.63 31599.19 29492.88 35096.29 34897.68 37698.84 11496.70 37589.73 36863.92 39997.53 349
MVS-HIRNet94.12 32892.73 34198.29 24499.33 25895.95 30899.38 34299.19 29474.54 39898.26 28786.34 40286.07 33899.06 27491.60 35599.87 13299.85 188
new_pmnet94.11 32993.47 33296.04 33896.60 37492.82 35799.97 24398.91 36390.21 37195.26 35898.05 37485.89 34198.14 34384.28 38592.01 32097.16 362
pmmvs693.64 33092.87 33895.94 33997.47 36491.41 36898.92 38399.02 35287.84 38295.01 36199.61 29477.24 38098.77 30194.33 33186.41 37297.63 339
Patchmatch-RL test93.49 33193.63 33093.05 36291.78 39383.41 38898.21 39396.95 39891.58 36091.05 37897.64 37899.40 5695.83 38794.11 33681.95 38499.91 149
Anonymous2023120693.45 33293.17 33494.30 35495.00 38789.69 37599.98 23798.43 37493.30 34394.50 36798.59 35890.52 28595.73 38877.46 39990.73 34097.48 353
Anonymous2024052193.29 33392.76 34094.90 34995.64 38391.27 36999.97 24398.82 36987.04 38394.71 36398.19 36983.86 35596.80 37484.04 38692.56 31496.64 373
dmvs_testset93.27 33495.48 31186.65 37498.74 30968.42 40399.92 26198.91 36396.19 26393.28 372100.00 191.06 27991.67 39989.64 37091.54 32799.86 187
test20.0393.11 33592.85 33993.88 35995.19 38691.83 364100.00 198.87 36693.68 33192.76 37498.88 34789.20 30692.71 39777.88 39789.19 35397.09 364
test_vis1_rt93.10 33692.93 33793.58 36099.63 18485.07 38599.99 21393.71 40697.49 16790.96 37997.10 38060.40 39799.95 15299.24 19597.90 21895.72 382
APD_test193.07 33794.14 32589.85 36899.18 26772.49 39699.76 29398.90 36592.86 35296.35 34799.94 22475.56 38299.91 17186.73 38097.98 21197.15 363
EG-PatchMatch MVS92.94 33892.49 34294.29 35595.87 37987.07 38399.07 38198.11 38093.19 34588.98 38598.66 35670.89 39099.08 27392.43 35095.21 27596.72 371
MDA-MVSNet_test_wron92.61 33991.09 34797.19 30796.71 37397.26 286100.00 199.14 31388.61 37767.90 40498.32 36889.03 30796.57 37890.47 36489.59 34797.74 298
YYNet192.44 34090.92 34897.03 31096.20 37597.06 29399.99 21399.14 31388.21 38067.93 40398.43 36588.63 31396.28 38290.64 36089.08 35497.74 298
MIMVSNet191.96 34191.20 34494.23 35694.94 38891.69 36699.34 34699.22 28288.23 37994.18 36998.45 36375.52 38393.41 39679.37 39591.49 32997.60 344
TDRefinement91.93 34290.48 35096.27 33581.60 40692.65 36099.10 37697.61 39493.96 32693.77 37099.85 24480.03 37099.53 24197.82 26370.59 39696.63 374
OpenMVS_ROBcopyleft88.34 2091.89 34391.12 34594.19 35795.55 38487.63 38199.26 35398.03 38286.61 38590.65 38396.82 38270.14 39398.78 29886.54 38196.50 25596.15 377
N_pmnet91.88 34493.37 33387.40 37397.24 36966.33 40699.90 26591.05 40989.77 37495.65 35798.58 35990.05 29498.11 34785.39 38292.72 30997.75 275
pmmvs-eth3d91.73 34590.67 34994.92 34891.63 39592.71 35999.90 26598.54 37391.19 36288.08 38795.50 38679.31 37596.13 38490.55 36381.32 38695.91 381
MDA-MVSNet-bldmvs91.65 34689.94 35496.79 32596.72 37296.70 30299.42 33998.94 36088.89 37666.97 40698.37 36681.43 36795.91 38689.24 37489.46 35097.75 275
KD-MVS_self_test91.16 34790.09 35294.35 35394.44 38991.27 36999.74 29699.08 33290.82 36694.53 36694.91 39186.11 33794.78 39182.67 38868.52 39796.99 366
CL-MVSNet_self_test91.07 34890.35 35193.24 36193.27 39089.16 37799.55 32499.25 27092.34 35595.23 35997.05 38188.86 31293.59 39580.67 39266.95 39896.96 367
test_method91.04 34991.10 34690.85 36598.34 32277.63 392100.00 198.93 36276.69 39696.25 35098.52 36170.44 39197.98 35889.02 37691.74 32496.92 368
CMPMVSbinary66.12 2290.65 35092.04 34386.46 37596.18 37666.87 40598.03 39499.38 20383.38 39185.49 39399.55 30377.59 37898.80 29794.44 33094.31 29593.72 390
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs390.62 35189.36 35794.40 35290.53 40091.49 367100.00 196.73 39984.21 38993.65 37196.65 38382.56 36494.83 39082.28 38977.62 39196.89 369
new-patchmatchnet90.30 35289.46 35692.84 36390.77 39888.55 38099.83 27698.80 37090.07 37387.86 38895.00 38978.77 37694.30 39384.86 38479.15 38895.68 384
UnsupCasMVSNet_bld89.50 35388.00 35993.99 35895.30 38588.86 37998.52 39099.28 25485.50 38787.80 38994.11 39261.63 39696.96 37390.63 36179.26 38796.15 377
mvsany_test389.36 35488.96 35890.56 36691.95 39278.97 39199.74 29696.59 40296.84 21489.25 38496.07 38452.59 39997.11 37295.17 32282.44 38295.58 385
PM-MVS88.39 35587.41 36091.31 36491.73 39482.02 39099.79 28596.62 40091.06 36490.71 38295.73 38548.60 40195.96 38590.56 36281.91 38595.97 380
WB-MVS88.24 35690.09 35282.68 38191.56 39669.51 401100.00 198.73 37190.72 36787.29 39098.12 37092.87 25685.01 40362.19 40489.34 35193.54 391
SSC-MVS87.61 35789.47 35582.04 38290.63 39968.77 40299.99 21398.66 37290.34 37086.70 39198.08 37192.72 26184.12 40459.41 40788.71 35893.22 395
test_fmvs387.19 35887.02 36187.71 37292.69 39176.64 39399.96 24897.27 39593.55 33590.82 38194.03 39338.00 40792.19 39893.49 34283.35 38194.32 387
test_f86.87 35986.06 36289.28 36991.45 39776.37 39499.87 27197.11 39691.10 36388.46 38693.05 39538.31 40696.66 37791.77 35483.46 38094.82 386
Gipumacopyleft84.73 36083.50 36588.40 37197.50 36082.21 38988.87 40099.05 34665.81 40085.71 39290.49 39753.70 39896.31 38178.64 39691.74 32486.67 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf184.40 36184.79 36383.23 37995.71 38058.71 41298.79 38797.75 39181.58 39284.94 39498.07 37245.33 40397.73 36777.09 40083.85 37793.24 393
APD_test284.40 36184.79 36383.23 37995.71 38058.71 41298.79 38797.75 39181.58 39284.94 39498.07 37245.33 40397.73 36777.09 40083.85 37793.24 393
testmvs80.17 36381.95 36674.80 38658.54 41359.58 411100.00 187.14 41276.09 39799.61 194100.00 167.06 39474.19 40998.84 21650.30 40390.64 398
test_vis3_rt79.61 36478.19 36983.86 37888.68 40169.56 40099.81 28082.19 41486.78 38468.57 40284.51 40525.06 41198.26 33889.18 37578.94 38983.75 402
EGC-MVSNET79.46 36574.04 37395.72 34096.00 37892.73 35899.09 37899.04 3495.08 41016.72 41098.71 35373.03 38798.74 30482.05 39096.64 25295.69 383
test12379.44 36679.23 36880.05 38480.03 40771.72 397100.00 177.93 41562.52 40194.81 36299.69 27178.21 37774.53 40892.57 34727.33 40893.90 388
PMMVS279.15 36777.28 37084.76 37782.34 40572.66 39599.70 30695.11 40571.68 39984.78 39690.87 39632.05 40989.99 40075.53 40263.45 40191.64 396
LCM-MVSNet79.01 36876.93 37185.27 37678.28 40868.01 40496.57 39798.03 38255.10 40482.03 39793.27 39431.99 41093.95 39482.72 38774.37 39393.84 389
FPMVS77.92 36979.45 36773.34 38876.87 40946.81 41598.24 39299.05 34659.89 40373.55 39998.34 36736.81 40886.55 40180.96 39191.35 33386.65 400
tmp_tt75.80 37074.26 37280.43 38352.91 41553.67 41487.42 40297.98 38561.80 40267.04 405100.00 176.43 38196.40 38096.47 30128.26 40791.23 397
E-PMN70.72 37170.06 37472.69 38983.92 40465.48 40899.95 25492.72 40849.88 40672.30 40086.26 40347.17 40277.43 40653.83 40844.49 40475.17 406
EMVS69.88 37269.09 37572.24 39084.70 40365.82 40799.96 24887.08 41349.82 40771.51 40184.74 40449.30 40075.32 40750.97 40943.71 40575.59 405
MVEpermissive68.59 2167.22 37364.68 37774.84 38574.67 41162.32 41095.84 39890.87 41050.98 40558.72 40781.05 40712.20 41578.95 40561.06 40656.75 40283.24 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high66.05 37463.44 37873.88 38761.14 41263.45 40995.68 39987.18 41179.93 39447.35 40880.68 40822.35 41272.33 41061.24 40535.42 40685.88 401
PMVScopyleft60.66 2365.98 37565.05 37668.75 39155.06 41438.40 41688.19 40196.98 39748.30 40844.82 40988.52 40012.22 41486.49 40267.58 40383.79 37981.35 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d28.28 37629.73 38023.92 39275.89 41032.61 41766.50 40312.88 41616.09 40914.59 41116.59 41012.35 41332.36 41139.36 41013.36 4096.79 407
cdsmvs_eth3d_5k24.41 37732.55 3790.00 3930.00 4160.00 4180.00 40499.39 2010.00 4110.00 412100.00 193.55 2460.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.33 37811.11 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas8.24 37910.99 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 41298.75 1210.00 4120.00 4110.00 4100.00 408
test_blank0.07 3800.09 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.79 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.01 3810.02 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.14 4120.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS97.98 25095.74 310
FOURS1100.00 199.97 21100.00 199.42 13898.52 74100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 57100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 13898.72 64100.00 1100.00 199.60 17
eth-test20.00 416
eth-test0.00 416
ZD-MVS100.00 199.98 1799.80 4397.31 184100.00 1100.00 199.32 6299.99 94100.00 1100.00 1
RE-MVS-def99.55 5699.99 4999.91 53100.00 199.42 13897.62 147100.00 1100.00 198.94 10599.99 61100.00 1100.00 1
IU-MVS100.00 199.99 599.42 13899.12 6100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 13899.03 20100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 13899.03 20100.00 1100.00 199.50 37100.00 1
9.1499.57 4999.99 49100.00 199.42 13897.54 159100.00 1100.00 199.15 8399.99 94100.00 1100.00 1
save fliter99.99 4999.93 45100.00 199.42 13898.93 38
test_0728_THIRD98.79 60100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
test0726100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29
GSMVS99.91 149
test_part2100.00 199.99 5100.00 1
sam_mvs199.29 7099.91 149
sam_mvs99.33 59
ambc88.45 37086.84 40270.76 39997.79 39698.02 38490.91 38095.14 38738.69 40598.51 32494.97 32484.23 37696.09 379
MTGPAbinary99.42 138
test_post199.32 34788.24 40199.33 5999.59 21998.31 243
test_post89.05 39999.49 3999.59 219
patchmatchnet-post97.79 37599.41 5599.54 236
GG-mvs-BLEND99.59 14199.54 20999.49 12999.17 36899.52 7299.96 12199.68 275100.00 199.33 26499.71 13899.99 9899.96 124
MTMP100.00 199.18 301
gm-plane-assit99.52 21997.26 28695.86 271100.00 199.43 25598.76 221
test9_res100.00 1100.00 1100.00 1
TEST9100.00 199.95 32100.00 199.42 13897.65 142100.00 1100.00 199.53 2999.97 125
test_8100.00 199.91 53100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.98 118
agg_prior2100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7499.42 138100.00 199.97 125
TestCases98.99 20499.93 10197.35 28099.40 18897.08 19899.09 22899.98 19193.37 24799.95 15296.94 28999.84 13899.68 238
test_prior499.93 45100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 43100.00 1100.00 1
test_prior99.90 73100.00 199.75 9399.73 5699.97 125100.00 1
旧先验2100.00 198.11 104100.00 1100.00 199.67 152
新几何2100.00 1
新几何199.99 12100.00 199.96 2499.81 4297.89 121100.00 1100.00 199.20 78100.00 197.91 260100.00 1100.00 1
旧先验199.99 4999.88 7499.82 40100.00 199.27 73100.00 1100.00 1
无先验100.00 199.80 4397.98 112100.00 199.33 187100.00 1
原ACMM2100.00 1
原ACMM199.93 67100.00 199.80 8999.66 6398.18 95100.00 1100.00 199.43 50100.00 199.50 178100.00 1100.00 1
test22299.99 4999.90 60100.00 199.69 6297.66 141100.00 1100.00 199.30 69100.00 1100.00 1
testdata2100.00 197.36 280
segment_acmp99.55 25
testdata99.66 13099.99 4998.97 18799.73 5697.96 117100.00 1100.00 199.42 53100.00 199.28 192100.00 1100.00 1
testdata1100.00 198.77 63
test1299.95 5199.99 4999.89 6799.42 138100.00 199.24 7599.97 125100.00 1100.00 1
plane_prior799.00 28894.78 332
plane_prior699.06 28094.80 32888.58 316
plane_prior599.40 18899.55 23399.79 11995.57 26197.76 265
plane_prior499.97 199
plane_prior394.79 33199.03 2099.08 230
plane_prior2100.00 199.00 27
plane_prior199.02 283
plane_prior94.80 328100.00 199.03 2095.58 257
n20.00 417
nn0.00 417
door-mid96.32 403
lessismore_v096.05 33797.55 35891.80 36599.22 28291.87 37799.91 23183.50 35898.68 30792.48 34990.42 34397.68 326
LGP-MVS_train97.28 30398.85 30694.60 33799.37 20697.35 17898.85 24799.98 19186.66 33399.56 22899.55 17195.26 27097.70 320
test1199.42 138
door96.13 404
HQP5-MVS94.82 325
HQP-NCC99.07 276100.00 199.04 1599.17 220
ACMP_Plane99.07 276100.00 199.04 1599.17 220
BP-MVS99.79 119
HQP4-MVS99.17 22099.57 22497.77 263
HQP3-MVS99.40 18895.58 257
HQP2-MVS88.61 314
NP-MVS99.07 27694.81 32799.97 199
MDTV_nov1_ep13_2view99.24 15899.56 32396.31 25799.96 12198.86 11298.92 21199.89 165
MDTV_nov1_ep1398.94 12899.53 21298.36 22399.39 34199.46 9496.54 24199.99 10599.63 28898.92 10899.86 18098.30 24698.71 175
ACMMP++_ref94.58 294
ACMMP++95.17 278
Test By Simon99.10 86
ITE_SJBPF96.84 32298.96 29493.49 35098.12 37998.12 10398.35 27899.97 19984.45 34899.56 22895.63 31495.25 27297.49 351
DeepMVS_CXcopyleft89.98 36798.90 29971.46 39899.18 30197.61 15196.92 33499.83 24786.07 33899.83 18996.02 30797.65 23698.65 259