This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 8100.00 1100.00 199.60 21100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 11100.00 1100.00 199.59 24100.00 1100.00 1100.00 1100.00 1
CHOSEN 280x42099.85 399.87 199.80 10799.99 4999.97 2199.97 25199.98 1698.96 32100.00 1100.00 199.96 499.42 270100.00 1100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 68100.00 1100.00 1100.00 1100.00 1
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 11100.00 1100.00 199.39 61100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 13100.00 1100.00 199.56 2799.99 98100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 14199.03 21100.00 1100.00 199.50 41100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 33100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12499.05 15100.00 1100.00 199.45 4999.99 98100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 126100.00 199.21 81100.00 1100.00 1100.00 199.99 110
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 14198.79 63100.00 1100.00 199.54 30100.00 1100.00 1100.00 1100.00 1
MSP-MVS99.81 1199.77 999.94 66100.00 199.86 82100.00 199.42 14198.87 47100.00 1100.00 199.65 1999.96 143100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 14199.01 26100.00 1100.00 199.33 63100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 14198.91 41100.00 1100.00 199.22 80100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS99.79 1499.73 1799.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 1100.00 199.16 85100.00 1100.00 1100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 15299.95 32100.00 199.42 14198.69 68100.00 1100.00 199.52 3699.99 98100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
PAPM99.78 1699.76 1299.85 9099.01 29699.95 32100.00 199.75 5299.37 399.99 111100.00 199.76 1299.60 228100.00 1100.00 1100.00 1
reproduce_model99.76 1899.69 2299.98 2399.96 9699.93 47100.00 199.42 14198.81 59100.00 1100.00 198.98 104100.00 1100.00 1100.00 1100.00 1
reproduce-ours99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 101100.00 1100.00 1100.00 1100.00 1
our_new_method99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 101100.00 1100.00 1100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11499.99 111100.00 199.72 14100.00 199.96 88100.00 1100.00 1
PAPR99.76 1899.68 2899.99 12100.00 199.96 24100.00 199.47 7998.16 100100.00 1100.00 199.51 37100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2399.67 3099.99 1299.99 4999.96 2499.73 31499.52 7299.06 13100.00 1100.00 198.80 126100.00 199.95 94100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.75 2399.68 2899.97 34100.00 199.91 5699.98 24599.47 7999.09 10100.00 1100.00 198.59 136100.00 199.95 94100.00 1100.00 1
HFP-MVS99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.31 68100.00 199.99 64100.00 1100.00 1
ACMMPR99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.29 74100.00 199.99 64100.00 1100.00 1
PAPM_NR99.74 2599.66 3399.99 12100.00 199.96 24100.00 199.47 7997.87 127100.00 1100.00 199.60 21100.00 1100.00 1100.00 1100.00 1
CDPH-MVS99.73 2899.64 3799.99 12100.00 199.97 21100.00 199.42 14198.02 112100.00 1100.00 199.32 6699.99 98100.00 1100.00 1100.00 1
MVS_030499.72 2999.65 3499.93 7099.99 4999.79 93100.00 199.91 3599.17 6100.00 1100.00 197.84 161100.00 1100.00 199.95 121100.00 1
region2R99.72 2999.64 3799.97 34100.00 199.90 63100.00 199.74 5597.86 128100.00 1100.00 199.19 83100.00 199.99 64100.00 1100.00 1
API-MVS99.72 2999.70 2199.79 11099.97 9099.37 15299.96 25799.94 2298.48 79100.00 1100.00 198.92 115100.00 1100.00 1100.00 1100.00 1
CNLPA99.72 2999.65 3499.91 7499.97 9099.72 101100.00 199.47 7998.43 8299.88 173100.00 199.14 88100.00 199.97 86100.00 1100.00 1
ZNCC-MVS99.71 3399.62 4499.97 3499.99 4999.90 63100.00 199.79 4597.97 11899.97 122100.00 198.97 106100.00 199.94 96100.00 1100.00 1
train_agg99.71 3399.63 4199.97 34100.00 199.95 32100.00 199.42 14197.70 140100.00 1100.00 199.51 3799.97 130100.00 1100.00 1100.00 1
MVS_111021_HR99.71 3399.63 4199.93 7099.95 10099.83 88100.00 1100.00 198.89 43100.00 1100.00 197.85 15999.95 156100.00 1100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3699.64 3799.87 84100.00 199.64 11299.98 24599.44 11698.35 9099.99 111100.00 199.04 9899.96 14399.98 76100.00 1100.00 1
MVS_111021_LR99.70 3699.65 3499.88 8399.96 9699.70 106100.00 199.97 1798.96 32100.00 1100.00 197.93 15499.95 15699.99 64100.00 1100.00 1
PLCcopyleft98.56 299.70 3699.74 1699.58 151100.00 198.79 201100.00 199.54 7198.58 7599.96 126100.00 199.59 24100.00 1100.00 1100.00 199.94 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SMA-MVScopyleft99.69 3999.59 4799.98 2399.99 4999.93 47100.00 199.43 12497.50 169100.00 1100.00 199.43 54100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EI-MVSNet-UG-set99.69 3999.63 4199.87 8499.99 4999.64 11299.95 26399.44 11698.35 90100.00 1100.00 198.98 10499.97 13099.98 76100.00 1100.00 1
PGM-MVS99.69 3999.61 4599.95 5499.99 4999.85 85100.00 199.58 6797.69 142100.00 1100.00 199.44 50100.00 199.79 123100.00 1100.00 1
mPP-MVS99.69 3999.60 4699.97 34100.00 199.91 56100.00 199.42 14197.91 124100.00 1100.00 199.04 98100.00 1100.00 1100.00 1100.00 1
SR-MVS99.68 4399.58 4999.98 23100.00 199.95 32100.00 199.64 6497.59 158100.00 1100.00 198.99 10199.99 98100.00 1100.00 1100.00 1
MTAPA99.68 4399.59 4799.97 3499.99 4999.91 56100.00 199.42 14198.32 9299.94 156100.00 198.65 132100.00 199.96 88100.00 1100.00 1
APD-MVScopyleft99.68 4399.58 4999.97 3499.99 4999.96 24100.00 199.42 14197.53 164100.00 1100.00 199.27 7799.97 130100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP99.67 4699.57 5299.97 3499.98 8699.92 53100.00 199.42 14197.83 129100.00 1100.00 198.89 118100.00 199.98 76100.00 1100.00 1
CP-MVS99.67 4699.58 4999.95 54100.00 199.84 87100.00 199.42 14197.77 135100.00 1100.00 199.07 92100.00 1100.00 1100.00 1100.00 1
SF-MVS99.66 4899.57 5299.95 5499.99 4999.85 85100.00 199.42 14197.67 143100.00 1100.00 199.05 9599.99 98100.00 1100.00 1100.00 1
APD-MVS_3200maxsize99.65 4999.55 5999.97 3499.99 4999.91 56100.00 199.48 7897.54 162100.00 1100.00 198.97 10699.99 9899.98 76100.00 1100.00 1
ACMMPcopyleft99.65 4999.57 5299.89 7999.99 4999.66 11099.75 30899.73 5698.16 10099.75 198100.00 198.90 117100.00 199.96 8899.88 134100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS99.64 5199.53 6299.95 54100.00 199.86 82100.00 199.79 4597.72 13899.95 154100.00 198.39 143100.00 199.96 8899.99 103100.00 1
PS-MVSNAJ99.64 5199.57 5299.85 9099.78 14999.81 9099.95 26399.42 14198.38 84100.00 1100.00 198.75 128100.00 199.88 10699.99 10399.74 243
F-COLMAP99.64 5199.64 3799.67 13499.99 4999.07 179100.00 199.44 11698.30 9399.90 168100.00 199.18 8499.99 9899.91 101100.00 199.94 136
fmvsm_l_conf0.5_n_a99.63 5499.55 5999.86 8799.83 12499.58 119100.00 199.36 21898.98 30100.00 1100.00 197.85 15999.99 98100.00 199.94 124100.00 1
fmvsm_l_conf0.5_n99.63 5499.56 5799.86 8799.81 13199.59 117100.00 199.36 21898.98 30100.00 1100.00 197.92 15599.99 98100.00 199.95 121100.00 1
MM99.63 5499.52 6499.94 6699.99 4999.82 89100.00 199.97 1799.11 8100.00 1100.00 196.65 211100.00 1100.00 199.97 116100.00 1
SR-MVS-dyc-post99.63 5499.52 6499.97 3499.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.65 13299.99 9899.99 64100.00 1100.00 1
DPM-MVS99.63 5499.51 66100.00 199.90 112100.00 1100.00 199.43 12499.00 27100.00 1100.00 199.58 26100.00 197.64 279100.00 1100.00 1
EPNet99.62 5999.69 2299.42 17199.99 4998.37 228100.00 199.89 3798.83 53100.00 1100.00 198.97 106100.00 199.90 10299.61 16299.89 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS99.62 5999.56 5799.82 9799.92 10899.45 142100.00 199.78 4798.92 3999.73 200100.00 197.70 168100.00 199.93 98100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVS-pluss99.61 6199.50 6799.97 3499.98 8699.92 53100.00 199.42 14197.53 16499.77 195100.00 198.77 127100.00 199.99 64100.00 199.99 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft99.61 6199.49 6999.98 2399.99 4999.94 41100.00 199.42 14197.82 13099.99 111100.00 198.20 146100.00 199.99 64100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + GP.99.61 6199.69 2299.35 18299.99 4998.06 253100.00 199.36 21899.83 2100.00 1100.00 198.95 11099.99 98100.00 199.11 173100.00 1
HPM-MVS_fast99.60 6499.49 6999.91 7499.99 4999.78 94100.00 199.42 14197.09 201100.00 1100.00 198.95 11099.96 14399.98 76100.00 1100.00 1
HPM-MVScopyleft99.59 6599.50 6799.89 79100.00 199.70 106100.00 199.42 14197.46 173100.00 1100.00 198.60 13599.96 14399.99 64100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvsany_test199.57 6699.48 7299.85 9099.86 11999.54 125100.00 199.36 21898.94 37100.00 1100.00 197.97 152100.00 199.88 10699.28 168100.00 1
BP-MVS199.56 6799.48 7299.79 11099.48 24599.61 114100.00 199.32 24097.34 18399.94 156100.00 199.74 1399.89 18099.75 13699.72 15199.87 191
test_fmvsmconf_n99.56 6799.46 7499.86 8799.68 16599.58 119100.00 199.31 24798.92 3999.88 173100.00 197.35 18799.99 9899.98 7699.99 103100.00 1
test_fmvsm_n_192099.55 6999.49 6999.73 12599.85 12099.19 171100.00 199.41 19098.87 47100.00 1100.00 197.34 188100.00 199.98 7699.90 131100.00 1
WTY-MVS99.54 7099.40 7699.95 5499.81 13199.93 47100.00 1100.00 197.98 11699.84 177100.00 198.94 11299.98 12399.86 11098.21 21499.94 136
test_yl99.51 7199.37 8199.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 6100.00 199.98 7697.75 24399.94 136
DCV-MVSNet99.51 7199.37 8199.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 6100.00 199.98 7697.75 24399.94 136
xiu_mvs_v2_base99.51 7199.41 7599.82 9799.70 16099.73 10099.92 27399.40 19498.15 102100.00 1100.00 198.50 140100.00 199.85 11299.13 17299.74 243
HY-MVS96.53 999.50 7499.35 8699.96 4599.81 13199.93 4799.64 326100.00 197.97 11899.84 17799.85 25298.94 11299.99 9899.86 11098.23 21399.95 131
PHI-MVS99.50 7499.39 7799.82 97100.00 199.45 142100.00 199.94 2296.38 260100.00 1100.00 198.18 147100.00 1100.00 1100.00 1100.00 1
CPTT-MVS99.49 7699.38 7899.85 90100.00 199.54 125100.00 199.42 14197.58 15999.98 117100.00 197.43 185100.00 199.99 64100.00 1100.00 1
MAR-MVS99.49 7699.36 8499.89 7999.97 9099.66 11099.74 30999.95 1997.89 125100.00 1100.00 196.71 210100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250699.48 7899.38 7899.75 12199.89 11499.51 13199.45 347100.00 198.38 8499.83 180100.00 198.86 11999.81 20599.25 20298.78 18199.94 136
PVSNet_Blended99.48 7899.36 8499.83 9599.98 8699.60 115100.00 1100.00 197.79 133100.00 1100.00 196.57 21399.99 98100.00 199.88 13499.90 162
test_fmvsmvis_n_192099.46 8099.37 8199.73 12598.88 31399.18 173100.00 199.26 28098.85 4999.79 192100.00 197.70 168100.00 199.98 7699.86 138100.00 1
sss99.45 8199.34 8899.80 10799.76 15299.50 133100.00 199.91 3597.72 13899.98 11799.94 23198.45 141100.00 199.53 18698.75 18499.89 168
AdaColmapbinary99.44 8299.26 9599.95 54100.00 199.86 8299.70 31999.99 1398.53 7699.90 168100.00 195.34 229100.00 199.92 99100.00 1100.00 1
balanced_conf0399.43 8399.28 9099.85 9099.68 16599.68 10899.97 25199.28 26397.03 20699.96 12699.97 20397.90 15699.93 17299.77 130100.00 199.94 136
thisisatest051599.42 8499.31 8999.74 12299.59 20599.55 122100.00 199.46 9496.65 24299.92 163100.00 199.44 5099.85 19599.09 21399.63 16199.81 215
CANet99.40 8599.24 10099.89 7999.99 4999.76 96100.00 199.73 5698.40 8399.78 194100.00 195.28 23099.96 143100.00 199.99 10399.96 125
GDP-MVS99.39 8699.26 9599.77 11899.53 22299.55 122100.00 199.11 33597.14 19799.96 126100.00 199.83 599.89 18098.47 24699.26 16999.87 191
MVSMamba_PlusPlus99.39 8699.25 9799.80 10799.68 16599.59 11799.99 21999.30 25196.66 24199.96 12699.97 20397.89 15799.92 17599.76 132100.00 199.90 162
114514_t99.39 8699.25 9799.81 10299.97 9099.48 140100.00 199.42 14195.53 293100.00 1100.00 198.37 14499.95 15699.97 86100.00 1100.00 1
alignmvs99.38 8999.21 10499.91 7499.73 15799.92 53100.00 199.51 7697.61 154100.00 1100.00 199.06 9399.93 17299.83 11697.12 25599.90 162
131499.38 8999.19 10899.96 4598.88 31399.89 7099.24 36899.93 3098.88 4498.79 265100.00 197.02 194100.00 1100.00 1100.00 1100.00 1
thisisatest053099.37 9199.27 9199.69 13199.59 20599.41 147100.00 199.46 9496.46 25399.90 168100.00 199.44 5099.85 19598.97 21799.58 16399.80 232
UBG99.36 9299.27 9199.63 14099.63 19099.01 188100.00 199.43 12496.99 209100.00 199.92 23699.69 1799.99 9899.74 13798.06 22299.88 181
xiu_mvs_v1_base_debu99.35 9399.21 10499.79 11099.67 17399.71 10299.78 29999.36 21898.13 104100.00 1100.00 197.00 198100.00 199.83 11699.07 17499.66 252
xiu_mvs_v1_base99.35 9399.21 10499.79 11099.67 17399.71 10299.78 29999.36 21898.13 104100.00 1100.00 197.00 198100.00 199.83 11699.07 17499.66 252
xiu_mvs_v1_base_debi99.35 9399.21 10499.79 11099.67 17399.71 10299.78 29999.36 21898.13 104100.00 1100.00 197.00 198100.00 199.83 11699.07 17499.66 252
ETV-MVS99.34 9699.24 10099.64 13999.58 21099.33 154100.00 199.25 28297.57 16099.96 126100.00 197.44 18499.79 20899.70 14999.65 15899.81 215
tttt051799.34 9699.23 10399.67 13499.57 21499.38 149100.00 199.46 9496.33 26599.89 171100.00 199.44 5099.84 19898.93 21999.46 16699.78 238
CS-MVS99.33 9899.27 9199.50 15999.99 4999.00 191100.00 199.13 32897.26 19199.96 126100.00 197.79 16499.64 22699.64 16699.67 15699.87 191
PVSNet_Blended_VisFu99.33 9899.18 11199.78 11599.82 12599.49 136100.00 199.95 1997.36 18099.63 206100.00 196.45 21799.95 15699.79 12399.65 15899.89 168
fmvsm_s_conf0.5_n_a99.32 10099.15 11399.81 10299.80 14299.47 141100.00 199.35 22998.22 95100.00 1100.00 195.21 23499.99 9899.96 8899.86 13899.98 112
HyFIR lowres test99.32 10099.24 10099.58 15199.95 10099.26 162100.00 199.99 1396.72 23499.29 23099.91 23999.49 4399.47 26199.74 13798.08 221100.00 1
SPE-MVS-test99.31 10299.27 9199.43 16999.99 4998.77 202100.00 199.19 30497.24 19299.96 126100.00 197.56 17699.70 22399.68 15799.81 14699.82 206
LS3D99.31 10299.13 11499.87 8499.99 4999.71 10299.55 33799.46 9497.32 18699.82 188100.00 196.85 20599.97 13099.14 208100.00 199.92 149
PVSNet94.91 1899.30 10499.25 9799.44 166100.00 198.32 234100.00 199.86 3898.04 111100.00 1100.00 196.10 220100.00 199.55 18199.73 150100.00 1
lupinMVS99.29 10599.16 11299.69 13199.45 25399.49 136100.00 199.15 31997.45 17499.97 122100.00 196.76 20699.76 21599.67 160100.00 199.81 215
CSCG99.28 10699.35 8699.05 20799.99 4997.15 298100.00 199.47 7997.44 17599.42 218100.00 197.83 163100.00 199.99 64100.00 1100.00 1
thres20099.27 10799.04 12299.96 4599.81 13199.90 63100.00 199.94 2297.31 18899.83 18099.96 21897.04 191100.00 199.62 17097.88 23299.98 112
OMC-MVS99.27 10799.38 7898.96 21599.95 10097.06 302100.00 199.40 19498.83 5399.88 173100.00 197.01 19599.86 18999.47 18999.84 14399.97 119
testing1199.26 10999.19 10899.46 16399.64 18898.61 213100.00 199.43 12496.94 21299.92 16399.94 23199.43 5499.97 13099.67 16097.79 24199.82 206
EIA-MVS99.26 10999.19 10899.45 16599.63 19098.75 203100.00 199.27 27396.93 21399.95 154100.00 197.47 18199.79 20899.74 13799.72 15199.82 206
tfpn200view999.26 10999.03 12399.96 4599.81 13199.89 70100.00 199.94 2297.23 19399.83 18099.96 21897.04 191100.00 199.59 17697.85 23499.98 112
thres40099.26 10999.03 12399.95 5499.81 13199.89 70100.00 199.94 2297.23 19399.83 18099.96 21897.04 191100.00 199.59 17697.85 23499.97 119
test_fmvsmconf0.1_n99.25 11399.05 12199.82 9798.92 30999.55 122100.00 199.23 29198.91 4199.75 19899.97 20394.79 24299.94 16899.94 9699.99 10399.97 119
thres100view90099.25 11399.01 12599.95 5499.81 13199.87 79100.00 199.94 2297.13 19999.83 18099.96 21897.01 195100.00 199.59 17697.85 23499.98 112
EPMVS99.25 11399.13 11499.60 14599.60 20199.20 17099.60 332100.00 196.93 21399.92 16399.36 32699.05 9599.71 22298.77 22898.94 17899.90 162
thres600view799.24 11699.00 12799.95 5499.81 13199.87 79100.00 199.94 2297.13 19999.83 18099.96 21897.01 195100.00 199.54 18497.77 24299.97 119
MVS99.22 11798.96 13399.98 2399.00 30099.95 3299.24 36899.94 2298.14 10398.88 255100.00 195.63 227100.00 199.85 112100.00 1100.00 1
fmvsm_s_conf0.5_n99.21 11899.01 12599.83 9599.84 12199.53 127100.00 199.38 20998.29 94100.00 1100.00 193.62 25799.99 9899.99 6499.93 12799.98 112
EC-MVSNet99.19 11999.09 11999.48 16299.42 25799.07 179100.00 199.21 30096.95 21199.96 126100.00 196.88 20499.48 25999.64 16699.79 14999.88 181
testing9199.18 12099.10 11799.41 17299.60 20198.43 220100.00 199.43 12496.76 22799.82 18899.92 23699.05 9599.98 12399.62 17097.67 24799.81 215
testing9999.18 12099.10 11799.41 17299.60 20198.43 220100.00 199.43 12496.76 22799.84 17799.92 23699.06 9399.98 12399.62 17097.67 24799.81 215
UWE-MVS99.18 12099.06 12099.51 15699.67 17398.80 200100.00 199.43 12496.80 22499.93 16299.86 24799.79 899.94 16897.78 27598.33 20699.80 232
ETVMVS99.16 12398.98 13099.69 13199.67 17399.56 121100.00 199.45 10296.36 26299.98 11799.95 22598.65 13299.64 22699.11 21297.63 25099.88 181
FE-MVS99.16 12398.99 12999.66 13799.65 18299.18 17399.58 33499.43 12495.24 30499.91 16699.59 30499.37 6299.97 13098.31 25399.81 14699.83 201
testing22299.14 12598.94 13899.73 12599.67 17399.51 131100.00 199.43 12496.90 21899.99 11199.90 24198.55 13899.86 18998.85 22397.18 25499.81 215
PMMVS99.12 12698.97 13299.58 15199.57 21498.98 193100.00 199.30 25197.14 19799.96 126100.00 196.53 21699.82 20299.70 14998.49 19099.94 136
jason99.11 12798.96 13399.59 14799.17 28099.31 157100.00 199.13 32897.38 17999.83 180100.00 195.54 22899.72 22199.57 18099.97 11699.74 243
jason: jason.
EPP-MVSNet99.10 12899.00 12799.40 17699.51 23598.68 20999.92 27399.43 12495.47 29999.65 205100.00 199.51 3799.76 21599.53 18698.00 22399.75 242
TESTMET0.1,199.08 12998.96 13399.44 16699.63 19099.38 149100.00 199.45 10295.53 29399.48 213100.00 199.71 1599.02 29096.84 30599.99 10399.91 151
IS-MVSNet99.08 12998.91 14299.59 14799.65 18299.38 14999.78 29999.24 28796.70 23699.51 211100.00 198.44 14299.52 25398.47 24698.39 19899.88 181
UA-Net99.06 13198.83 14899.74 12299.52 23099.40 14899.08 39399.45 10297.64 14799.83 180100.00 195.80 22399.94 16898.35 25199.80 14899.88 181
3Dnovator95.63 1499.06 13198.76 15599.96 4598.86 31799.90 6399.98 24599.93 3098.95 3598.49 284100.00 192.91 268100.00 199.71 146100.00 1100.00 1
mvsmamba99.05 13398.98 13099.27 19699.57 21498.10 249100.00 199.28 26395.92 27999.96 12699.97 20396.73 20999.89 18099.72 14299.65 15899.81 215
patch_mono-299.04 13499.79 696.81 33799.92 10890.47 387100.00 199.41 19098.95 35100.00 1100.00 199.78 9100.00 1100.00 1100.00 199.95 131
VNet99.04 13498.75 15699.90 7799.81 13199.75 9799.50 34399.47 7998.36 88100.00 199.99 18994.66 244100.00 199.90 10297.09 25699.96 125
sasdasda99.03 13698.73 15899.94 6699.75 15499.95 32100.00 199.30 25197.64 147100.00 1100.00 195.22 23299.97 13099.76 13296.90 26199.91 151
canonicalmvs99.03 13698.73 15899.94 6699.75 15499.95 32100.00 199.30 25197.64 147100.00 1100.00 195.22 23299.97 13099.76 13296.90 26199.91 151
test-LLR99.03 13698.91 14299.40 17699.40 26499.28 159100.00 199.45 10296.70 23699.42 21899.12 33899.31 6899.01 29196.82 30699.99 10399.91 151
PatchmatchNetpermissive99.03 13698.96 13399.26 19799.49 24398.33 23299.38 35599.45 10296.64 24399.96 12699.58 30699.49 4399.50 25797.63 28099.00 17799.93 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
3Dnovator+95.58 1599.03 13698.71 16299.96 4598.99 30399.89 70100.00 199.51 7698.96 3298.32 293100.00 192.78 270100.00 199.87 109100.00 1100.00 1
CANet_DTU99.02 14198.90 14599.41 17299.88 11698.71 207100.00 199.29 25798.84 51100.00 1100.00 194.02 252100.00 198.08 26299.96 11999.52 258
PatchMatch-RL99.02 14198.78 15399.74 12299.99 4999.29 158100.00 1100.00 198.38 8499.89 17199.81 26193.14 26699.99 9897.85 27399.98 11399.95 131
MGCFI-Net99.01 14398.70 16499.93 7099.74 15699.94 41100.00 199.29 25797.60 157100.00 1100.00 195.10 23699.96 14399.74 13796.85 26399.91 151
FA-MVS(test-final)99.00 14498.75 15699.73 12599.63 19099.43 14599.83 28999.43 12495.84 28599.52 21099.37 32597.84 16199.96 14397.63 28099.68 15499.79 235
CHOSEN 1792x268899.00 14498.91 14299.25 19899.90 11297.79 273100.00 199.99 1398.79 6398.28 296100.00 193.63 25699.95 15699.66 16499.95 121100.00 1
DeepC-MVS97.84 599.00 14498.80 15299.60 14599.93 10599.03 184100.00 199.40 19498.61 7499.33 228100.00 192.23 28099.95 15699.74 13799.96 11999.83 201
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline298.99 14798.93 14099.18 20299.26 27799.15 176100.00 199.46 9496.71 23596.79 352100.00 199.42 5799.25 28198.75 23099.94 12499.15 264
QAPM98.99 14798.66 16599.96 4599.01 29699.87 7999.88 28399.93 3097.99 11498.68 269100.00 193.17 264100.00 199.32 198100.00 1100.00 1
Vis-MVSNet (Re-imp)98.99 14798.89 14699.29 19199.64 18898.89 19799.98 24599.31 24796.74 23199.48 213100.00 198.11 14999.10 28698.39 24998.34 20399.89 168
tpmrst98.98 15098.93 14099.14 20499.61 19997.74 27499.52 34199.36 21896.05 27699.98 11799.64 29299.04 9899.86 18998.94 21898.19 21699.82 206
test-mter98.96 15198.82 14999.40 17699.40 26499.28 159100.00 199.45 10295.44 30399.42 21899.12 33899.70 1699.01 29196.82 30699.99 10399.91 151
diffmvspermissive98.96 15198.73 15899.63 14099.54 21999.16 175100.00 199.18 31197.33 18599.96 126100.00 194.60 24599.91 17799.66 16498.33 20699.82 206
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet98.96 15198.95 13799.01 21199.48 24598.36 23099.93 27199.37 21296.79 22599.31 22999.83 25599.77 1198.91 30298.07 26497.98 22499.77 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mamv498.95 15499.11 11698.46 24299.68 16595.67 32699.14 38699.27 27396.43 25499.94 15699.97 20397.79 16499.88 18799.77 130100.00 199.84 197
MVSFormer98.94 15598.82 14999.28 19499.45 25399.49 136100.00 199.13 32895.46 30099.97 122100.00 196.76 20698.59 33198.63 238100.00 199.74 243
MVS_Test98.93 15698.65 16699.77 11899.62 19799.50 13399.99 21999.19 30495.52 29599.96 12699.86 24796.54 21599.98 12398.65 23598.48 19199.82 206
baseline198.91 15798.61 17199.81 10299.71 15899.77 9599.78 29999.44 11697.51 16898.81 26399.99 18998.25 14599.76 21598.60 24195.41 27699.89 168
1112_ss98.91 15798.71 16299.51 15699.69 16198.75 20399.99 21999.15 31996.82 22298.84 260100.00 197.45 18299.89 18098.66 23397.75 24399.89 168
MSDG98.90 15998.63 16999.70 13099.92 10899.25 164100.00 199.37 21295.71 28799.40 224100.00 196.58 21299.95 15696.80 30899.94 12499.91 151
dcpmvs_298.87 16099.53 6296.90 33199.87 11890.88 38699.94 26899.07 34998.20 98100.00 1100.00 198.69 13199.86 189100.00 1100.00 199.95 131
DP-MVS98.86 16198.54 17799.81 10299.97 9099.45 14299.52 34199.40 19494.35 32898.36 289100.00 196.13 21999.97 13099.12 211100.00 1100.00 1
CostFormer98.84 16298.77 15499.04 20999.41 25997.58 27999.67 32499.35 22994.66 31799.96 12699.36 32699.28 7699.74 21899.41 19297.81 23899.81 215
Test_1112_low_res98.83 16398.60 17399.51 15699.69 16198.75 20399.99 21999.14 32496.81 22398.84 26099.06 34297.45 18299.89 18098.66 23397.75 24399.89 168
BH-w/o98.82 16498.81 15198.88 22099.62 19796.71 309100.00 199.28 26397.09 20198.81 263100.00 194.91 24099.96 14399.54 184100.00 199.96 125
mvs_anonymous98.80 16598.60 17399.38 18099.57 21499.24 166100.00 199.21 30095.87 28098.92 25299.82 25896.39 21899.03 28999.13 21098.50 18999.88 181
fmvsm_s_conf0.1_n98.77 16698.42 18799.82 9799.47 24999.52 130100.00 199.27 27397.53 164100.00 1100.00 189.73 31299.96 14399.84 11599.93 12799.97 119
TAMVS98.76 16798.73 15898.86 22199.44 25597.69 27599.57 33599.34 23596.57 24699.12 24099.81 26198.83 12399.16 28497.97 27097.91 23099.73 247
OpenMVScopyleft95.20 1798.76 16798.41 18899.78 11598.89 31299.81 9099.99 21999.76 4998.02 11298.02 311100.00 191.44 286100.00 199.63 16999.97 11699.55 256
RRT-MVS98.75 16998.52 18099.44 16699.65 18298.57 21699.90 27799.08 34496.51 25199.96 12699.95 22592.59 27699.96 14399.60 17499.45 16799.81 215
dp98.72 17098.61 17199.03 21099.53 22297.39 28599.45 34799.39 20795.62 29099.94 15699.52 31598.83 12399.82 20296.77 31198.42 19599.89 168
fmvsm_s_conf0.1_n_a98.71 17198.36 19599.78 11599.09 28699.42 146100.00 199.26 28097.42 177100.00 1100.00 189.78 31099.96 14399.82 12199.85 14199.97 119
PVSNet_BlendedMVS98.71 17198.62 17098.98 21499.98 8699.60 115100.00 1100.00 197.23 193100.00 199.03 34896.57 21399.99 98100.00 194.75 30097.35 369
ADS-MVSNet98.70 17398.51 18299.28 19499.51 23598.39 22599.24 36899.44 11695.52 29599.96 12699.70 27697.57 17499.58 23497.11 29798.54 18799.88 181
baseline98.69 17498.45 18699.41 17299.52 23098.67 210100.00 199.17 31697.03 20699.13 239100.00 193.17 26499.74 21899.70 14998.34 20399.81 215
PCF-MVS98.23 398.69 17498.37 19399.62 14299.78 14999.02 18699.23 37399.06 35796.43 25498.08 305100.00 194.72 24399.95 15698.16 26099.91 13099.90 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive98.65 17698.38 19199.46 16399.52 23098.74 206100.00 199.15 31996.91 21699.05 247100.00 192.75 27199.83 19999.70 14998.38 20099.81 215
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive98.64 17798.39 19099.40 17699.50 23998.60 214100.00 199.22 29496.85 22099.10 241100.00 192.75 27199.78 21299.71 14698.35 20299.81 215
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm298.64 17798.58 17598.81 22599.42 25797.12 29999.69 32199.37 21293.63 34599.94 15699.67 28498.96 10999.47 26198.62 24097.95 22899.83 201
BH-untuned98.64 17798.65 16698.60 23599.59 20596.17 316100.00 199.28 26396.67 24098.41 287100.00 194.52 24699.83 19999.41 192100.00 199.81 215
test_cas_vis1_n_192098.63 18098.25 19999.77 11899.69 16199.32 155100.00 199.31 24798.84 5199.96 126100.00 187.42 34099.99 9899.14 20899.86 138100.00 1
reproduce_monomvs98.61 18198.54 17798.82 22299.97 9099.28 159100.00 199.33 23798.51 7897.87 31999.24 33299.98 399.45 26699.02 21692.93 31797.74 310
test_fmvsmconf0.01_n98.60 18298.24 20299.67 13496.90 38599.21 16999.99 21999.04 36298.80 6099.57 20899.96 21890.12 30499.91 17799.89 10499.89 13299.90 162
tpmvs98.59 18398.38 19199.23 19999.69 16197.90 26599.31 36399.47 7994.52 32299.68 20499.28 33097.64 17199.89 18097.71 27798.17 21899.89 168
Effi-MVS+98.58 18498.24 20299.61 14399.60 20199.26 16297.85 40999.10 33896.22 27199.97 12299.89 24293.75 25499.77 21399.43 19098.34 20399.81 215
MVSTER98.58 18498.52 18098.77 22799.65 18299.68 108100.00 199.29 25795.63 28998.65 27099.80 26499.78 998.88 30898.59 24295.31 28097.73 317
CVMVSNet98.56 18698.47 18598.82 22299.11 28397.67 27699.74 30999.47 7997.57 16099.06 246100.00 195.72 22598.97 29798.21 25997.33 25399.83 201
kuosan98.55 18798.53 17998.62 23399.66 18096.16 317100.00 199.44 11693.93 33899.81 19199.98 19497.58 17299.81 20598.08 26298.28 20999.89 168
MonoMVSNet98.55 18798.64 16898.26 25898.21 34695.76 32499.94 26899.16 31796.23 26899.47 21699.24 33296.75 20899.22 28299.61 17399.17 17099.81 215
AllTest98.55 18798.40 18998.99 21299.93 10597.35 288100.00 199.40 19497.08 20399.09 24299.98 19493.37 26099.95 15696.94 30199.84 14399.68 250
DeepPCF-MVS98.03 498.54 19099.72 1994.98 36299.99 4984.94 401100.00 199.42 14199.98 1100.00 1100.00 198.11 149100.00 1100.00 1100.00 1100.00 1
EPNet_dtu98.53 19198.23 20599.43 16999.92 10899.01 18899.96 25799.47 7998.80 6099.96 12699.96 21898.56 13799.30 27887.78 39399.68 154100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
myMVS_eth3d98.52 19298.51 18298.53 23899.50 23997.98 258100.00 199.57 6896.23 26898.07 306100.00 199.09 9197.81 37896.17 31997.96 22699.82 206
Vis-MVSNetpermissive98.52 19298.25 19999.34 18399.68 16598.55 21799.68 32399.41 19097.34 18399.94 156100.00 190.38 30399.70 22399.03 21598.84 17999.76 241
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+-dtu98.51 19498.86 14797.47 30599.77 15194.21 357100.00 198.94 37397.61 15499.91 16698.75 36695.89 22199.51 25599.36 19499.48 16598.68 270
SDMVSNet98.49 19598.08 21399.73 12599.82 12599.53 12799.99 21999.45 10297.62 15099.38 22599.86 24790.06 30799.88 18799.92 9996.61 26699.79 235
BH-RMVSNet98.46 19698.08 21399.59 14799.61 19999.19 171100.00 199.28 26397.06 20598.95 251100.00 188.99 32299.82 20298.83 226100.00 199.77 239
testing398.44 19798.37 19398.65 23199.51 23598.32 234100.00 199.62 6696.43 25497.93 31599.99 18999.11 8997.81 37894.88 33997.80 23999.82 206
ECVR-MVScopyleft98.43 19898.14 20899.32 18899.89 11498.21 24299.46 345100.00 198.38 8499.47 216100.00 187.91 33399.80 20799.35 19598.78 18199.94 136
cascas98.43 19898.07 21599.50 15999.65 18299.02 186100.00 199.22 29494.21 33199.72 20199.98 19492.03 28399.93 17299.68 15798.12 21999.54 257
test111198.42 20098.12 20999.29 19199.88 11698.15 24499.46 345100.00 198.36 8899.42 218100.00 187.91 33399.79 20899.31 19998.78 18199.94 136
ab-mvs98.42 20098.02 21999.61 14399.71 15899.00 19199.10 39099.64 6496.70 23699.04 24899.81 26190.64 29799.98 12399.64 16697.93 22999.84 197
UGNet98.41 20298.11 21099.31 19099.54 21998.55 21799.18 376100.00 198.64 7399.79 19299.04 34587.61 338100.00 199.30 20099.89 13299.40 261
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+98.40 20398.02 21999.55 15599.63 19099.06 181100.00 199.15 31995.07 30699.42 21899.95 22593.26 26399.73 22097.44 28798.24 21299.87 191
Fast-Effi-MVS+-dtu98.38 20498.56 17697.82 29699.58 21094.44 354100.00 199.16 31796.75 22999.51 21199.63 29695.03 23899.60 22897.71 27799.67 15699.42 260
test_fmvs198.37 20598.04 21799.34 18399.84 12198.07 251100.00 199.00 36898.85 49100.00 1100.00 185.11 36199.96 14399.69 15699.88 134100.00 1
miper_enhance_ethall98.33 20698.27 19898.51 23999.66 18099.04 183100.00 199.22 29497.53 16498.51 28299.38 32499.49 4398.75 31898.02 26692.61 32097.76 277
SCA98.30 20797.98 22199.23 19999.41 25998.25 23999.99 21999.45 10296.91 21699.76 19799.58 30689.65 31499.54 24798.31 25398.79 18099.91 151
XVG-OURS98.30 20798.36 19598.13 27199.58 21095.91 320100.00 199.36 21898.69 6899.23 232100.00 191.20 28999.92 17599.34 19697.82 23798.56 273
dongtai98.29 20998.25 19998.42 24699.58 21095.86 322100.00 199.44 11693.46 35199.69 20399.97 20397.53 17799.51 25596.28 31898.27 21199.89 168
COLMAP_ROBcopyleft97.10 798.29 20998.17 20798.65 23199.94 10397.39 28599.30 36499.40 19495.64 28897.75 325100.00 192.69 27599.95 15698.89 22199.92 12998.62 272
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ADS-MVSNet298.28 21198.51 18297.62 30199.51 23595.03 33499.24 36899.41 19095.52 29599.96 12699.70 27697.57 17497.94 37597.11 29798.54 18799.88 181
XVG-OURS-SEG-HR98.27 21298.31 19798.14 26899.59 20595.92 319100.00 199.36 21898.48 7999.21 233100.00 189.27 31999.94 16899.76 13299.17 17098.56 273
tpm98.24 21398.22 20698.32 25499.13 28295.79 32399.53 34099.12 33495.20 30599.96 12699.36 32697.58 17299.28 28097.41 28996.67 26499.88 181
cl2298.23 21498.11 21098.58 23799.82 12599.01 188100.00 199.28 26396.92 21598.33 29299.21 33598.09 15198.97 29798.72 23192.61 32097.76 277
WBMVS98.19 21598.10 21298.47 24199.63 19099.03 184100.00 199.32 24095.46 30098.39 28899.40 32399.69 1798.61 32698.64 23692.39 32597.76 277
TR-MVS98.14 21697.74 22899.33 18699.59 20598.28 23799.27 36599.21 30096.42 25799.15 23899.94 23188.87 32599.79 20898.88 22298.29 20899.93 147
test0.0.03 198.12 21798.03 21898.39 24899.11 28398.07 251100.00 199.93 3096.70 23696.91 34899.95 22599.31 6898.19 35591.93 36698.44 19398.91 268
GeoE98.06 21897.65 23399.29 19199.47 24998.41 222100.00 199.19 30494.85 31198.88 255100.00 191.21 28899.59 23097.02 29998.19 21699.88 181
tpm cat198.05 21997.76 22798.92 21799.50 23997.10 30199.77 30499.30 25190.20 38699.72 20198.71 36797.71 16799.86 18996.75 31298.20 21599.81 215
PS-MVSNAJss98.03 22098.06 21697.94 29097.63 36697.33 29199.89 28199.23 29196.27 26798.03 30999.59 30498.75 12898.78 31398.52 24494.61 30397.70 331
CR-MVSNet98.02 22197.71 23198.93 21699.31 27198.86 19899.13 38799.00 36896.53 24999.96 12698.98 35296.94 20198.10 36591.18 37198.40 19699.84 197
EI-MVSNet97.98 22297.93 22298.16 26799.11 28397.84 27099.74 30999.29 25794.39 32798.65 270100.00 197.21 18998.88 30897.62 28395.31 28097.75 288
FIs97.95 22397.73 23098.62 23398.53 33199.24 166100.00 199.43 12496.74 23197.87 31999.82 25895.27 23198.89 30598.78 22793.07 31497.74 310
Anonymous20240521197.87 22497.53 23598.90 21899.81 13196.70 31099.35 35899.46 9492.98 36298.83 26299.99 18990.63 298100.00 199.70 14997.03 257100.00 1
FC-MVSNet-test97.84 22597.63 23498.45 24498.30 34199.05 182100.00 199.43 12496.63 24597.61 33199.82 25895.19 23598.57 33498.64 23693.05 31597.73 317
Patchmatch-test97.83 22697.42 23899.06 20599.08 28797.66 27798.66 40399.21 30093.65 34498.25 30099.58 30699.47 4799.57 23590.25 38198.59 18699.95 131
sd_testset97.81 22797.48 23698.79 22699.82 12596.80 30799.32 36099.45 10297.62 15099.38 22599.86 24785.56 35999.77 21399.72 14296.61 26699.79 235
miper_ehance_all_eth97.81 22797.66 23298.23 26099.49 24398.37 22899.99 21999.11 33594.78 31298.25 30099.21 33598.18 14798.57 33497.35 29392.61 32097.76 277
test_vis1_n_192097.77 22997.24 25099.34 18399.79 14698.04 255100.00 199.25 28298.88 44100.00 1100.00 177.52 392100.00 199.88 10699.85 141100.00 1
HQP-MVS97.73 23097.85 22497.39 30799.07 28894.82 338100.00 199.40 19499.04 1699.17 23499.97 20388.61 32899.57 23599.79 12395.58 27097.77 275
GA-MVS97.72 23197.27 24899.06 20599.24 27897.93 264100.00 199.24 28795.80 28698.99 25099.64 29289.77 31199.36 27395.12 33697.62 25199.89 168
HQP_MVS97.71 23297.82 22697.37 30899.00 30094.80 341100.00 199.40 19499.00 2799.08 24499.97 20388.58 33099.55 24499.79 12395.57 27497.76 277
nrg03097.64 23397.27 24898.75 22898.34 33699.53 127100.00 199.22 29496.21 27298.27 29899.95 22594.40 24798.98 29599.23 20589.78 35897.75 288
TAPA-MVS96.40 1097.64 23397.37 24298.45 24499.94 10395.70 325100.00 199.40 19497.65 14599.53 209100.00 199.31 6899.66 22580.48 408100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS97.64 23397.74 22897.36 30999.01 29694.76 346100.00 199.34 23599.30 499.00 24999.97 20387.49 33999.57 23599.96 8895.58 27097.75 288
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
D2MVS97.63 23697.83 22597.05 32298.83 32094.60 350100.00 199.82 4096.89 21998.28 29699.03 34894.05 25099.47 26198.58 24394.97 29897.09 375
c3_l97.58 23797.42 23898.06 27899.48 24598.16 24399.96 25799.10 33894.54 32198.13 30499.20 33797.87 15898.25 35397.28 29491.20 34697.75 288
IterMVS-LS97.56 23897.44 23797.92 29399.38 26897.90 26599.89 28199.10 33894.41 32698.32 29399.54 31497.21 18998.11 36297.50 28591.62 33897.75 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_djsdf97.55 23997.38 24198.07 27497.50 37497.99 257100.00 199.13 32895.46 30098.47 28599.85 25292.01 28498.59 33198.63 23895.36 27897.62 352
dmvs_re97.54 24097.88 22396.54 34299.55 21890.35 38899.86 28599.46 9497.00 20899.41 223100.00 190.78 29699.30 27899.60 17495.24 28599.96 125
cl____97.54 24097.32 24498.18 26499.47 24998.14 246100.00 199.10 33894.16 33497.60 33299.63 29697.52 17898.65 32496.47 31391.97 33397.76 277
IB-MVS96.24 1297.54 24096.95 25599.33 18699.67 17398.10 249100.00 199.47 7997.42 17799.26 23199.69 27998.83 12399.89 18099.43 19078.77 405100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DIV-MVS_self_test97.52 24397.35 24398.05 28299.46 25298.11 247100.00 199.10 33894.21 33197.62 33099.63 29697.65 17098.29 35096.47 31391.98 33297.76 277
eth_miper_zixun_eth97.47 24497.28 24698.06 27899.41 25997.94 26399.62 33099.08 34494.46 32598.19 30399.56 31196.91 20398.50 33996.78 30991.49 34197.74 310
test_fmvs1_n97.43 24596.86 25899.15 20399.68 16597.48 28299.99 21998.98 37198.82 55100.00 1100.00 174.85 39999.96 14399.67 16099.70 153100.00 1
LFMVS97.42 24696.62 26799.81 10299.80 14299.50 13399.16 38299.56 7094.48 324100.00 1100.00 179.35 387100.00 199.89 10497.37 25299.94 136
miper_lstm_enhance97.40 24797.28 24697.75 29899.48 24597.52 280100.00 199.07 34994.08 33598.01 31299.61 30297.38 18697.98 37396.44 31691.47 34397.76 277
RPSCF97.37 24898.24 20294.76 36599.80 14284.57 40299.99 21999.05 35994.95 30999.82 188100.00 194.03 251100.00 198.15 26198.38 20099.70 248
ACMM97.17 697.37 24897.40 24097.29 31499.01 29694.64 349100.00 199.25 28298.07 11098.44 28699.98 19487.38 34199.55 24499.25 20295.19 28897.69 335
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test97.31 25097.32 24497.28 31598.85 31894.60 350100.00 199.37 21297.35 18198.85 25899.98 19486.66 34799.56 23999.55 18195.26 28297.70 331
FMVSNet397.30 25196.95 25598.37 25099.65 18299.25 16499.71 31799.28 26394.23 32998.53 27998.91 35993.30 26298.11 36295.31 33293.60 30897.73 317
UniMVSNet (Re)97.29 25296.85 25998.59 23698.49 33299.13 177100.00 199.42 14196.52 25098.24 30298.90 36094.93 23998.89 30597.54 28487.61 37797.75 288
OPM-MVS97.21 25397.18 25397.32 31298.08 35294.66 347100.00 199.28 26398.65 7298.92 25299.98 19486.03 35599.56 23998.28 25795.41 27697.72 323
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP97.00 897.19 25497.16 25497.27 31798.97 30594.58 353100.00 199.32 24097.97 11897.45 33699.98 19485.79 35799.56 23999.70 14995.24 28597.67 341
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs497.17 25596.80 26098.27 25697.68 36598.64 212100.00 199.18 31194.22 33098.55 27799.71 27393.67 25598.47 34295.66 32692.57 32397.71 330
anonymousdsp97.16 25696.88 25798.00 28697.08 38498.06 25399.81 29399.15 31994.58 31997.84 32199.62 30090.49 30098.60 32997.98 26795.32 27997.33 370
UniMVSNet_NR-MVSNet97.16 25696.80 26098.22 26198.38 33598.41 222100.00 199.45 10296.14 27497.76 32299.64 29295.05 23798.50 33997.98 26786.84 38197.75 288
XXY-MVS97.14 25896.63 26698.67 23098.65 32598.92 19699.54 33999.29 25795.57 29297.63 32899.83 25587.79 33799.35 27598.39 24992.95 31697.75 288
WR-MVS97.09 25996.64 26598.46 24298.43 33399.09 17899.97 25199.33 23795.62 29097.76 32299.67 28491.17 29098.56 33698.49 24589.28 36497.74 310
JIA-IIPM97.09 25996.34 28199.36 18198.88 31398.59 21599.81 29399.43 12484.81 40399.96 12690.34 41398.55 13899.52 25397.00 30098.28 20999.98 112
jajsoiax97.07 26196.79 26297.89 29497.28 38297.12 29999.95 26399.19 30496.55 24797.31 33999.69 27987.35 34398.91 30298.70 23295.12 29397.66 342
MIMVSNet97.06 26296.73 26398.05 28299.38 26896.64 31298.47 40599.35 22993.41 35299.48 21398.53 37489.66 31397.70 38494.16 34898.11 22099.80 232
X-MVStestdata97.04 26396.06 29299.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 166.97 42499.16 85100.00 1100.00 1100.00 1100.00 1
h-mvs3397.03 26496.53 27098.51 23999.79 14695.90 32199.45 34799.45 10298.21 96100.00 199.78 26797.49 17999.99 9899.72 14274.92 40799.65 255
VPA-MVSNet97.03 26496.43 27698.82 22298.64 32699.32 15599.38 35599.47 7996.73 23398.91 25498.94 35787.00 34599.40 27199.23 20589.59 35997.76 277
WB-MVSnew97.02 26697.24 25096.37 34699.44 25597.36 287100.00 199.43 12496.12 27599.35 22799.89 24293.60 25898.42 34588.91 39298.39 19893.33 407
mvs_tets97.00 26796.69 26497.94 29097.41 38197.27 29399.60 33299.18 31196.51 25197.35 33899.69 27986.53 34998.91 30298.84 22495.09 29497.65 346
gg-mvs-nofinetune96.95 26896.10 29099.50 15999.41 25999.36 15399.07 39599.52 7283.69 40599.96 12683.60 421100.00 199.20 28399.68 15799.99 10399.96 125
Anonymous2024052996.93 26996.22 28699.05 20799.79 14697.30 29299.16 38299.47 7988.51 39298.69 268100.00 183.50 372100.00 199.83 11697.02 25899.83 201
DU-MVS96.93 26996.49 27398.22 26198.31 33998.41 222100.00 199.37 21296.41 25897.76 32299.65 28892.14 28198.50 33997.98 26786.84 38197.75 288
Patchmtry96.81 27196.37 27998.14 26899.31 27198.55 21798.91 39899.00 36890.45 38297.92 31698.98 35296.94 20198.12 36094.27 34591.53 34097.75 288
hse-mvs296.79 27296.38 27898.04 28499.68 16595.54 32899.81 29399.42 14198.21 96100.00 199.80 26497.49 17999.46 26599.72 14273.27 41099.12 265
ACMH96.25 1196.77 27396.62 26797.21 31898.96 30694.43 35599.64 32699.33 23797.43 17696.55 35799.97 20383.52 37199.54 24799.07 21495.13 29297.66 342
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS96.76 27496.46 27597.63 29999.41 25996.89 30499.99 21999.13 32894.74 31597.59 33399.66 28689.63 31698.28 35195.71 32492.31 32797.72 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet96.73 27596.25 28498.18 26498.21 34698.67 21099.77 30499.32 24095.06 30797.20 34299.65 28890.10 30598.19 35598.06 26588.90 36897.66 342
WR-MVS_H96.73 27596.32 28397.95 28998.26 34397.88 26799.72 31699.43 12495.06 30796.99 34598.68 36993.02 26798.53 33797.43 28888.33 37397.43 365
IterMVS-SCA-FT96.72 27796.42 27797.62 30199.40 26496.83 30699.99 21999.14 32494.65 31897.55 33499.72 27189.65 31498.31 34995.62 32892.05 33097.73 317
v2v48296.70 27896.18 28798.27 25698.04 35398.39 225100.00 199.13 32894.19 33398.58 27599.08 34190.48 30198.67 32295.69 32590.44 35497.75 288
test_vis1_n96.69 27995.81 30399.32 18899.14 28197.98 25899.97 25198.98 37198.45 81100.00 1100.00 166.44 41099.99 9899.78 12999.57 164100.00 1
V4296.65 28096.16 28998.11 27398.17 35098.23 24099.99 21999.09 34393.97 33698.74 26799.05 34491.09 29198.82 31195.46 33089.90 35697.27 371
EU-MVSNet96.63 28196.53 27096.94 32997.59 37096.87 30599.76 30699.47 7996.35 26396.85 35099.78 26792.57 27796.27 39895.33 33191.08 34797.68 337
NR-MVSNet96.63 28196.04 29398.38 24998.31 33998.98 19399.22 37599.35 22995.87 28094.43 38099.65 28892.73 27398.40 34696.78 30988.05 37497.75 288
XVG-ACMP-BASELINE96.60 28396.52 27296.84 33598.41 33493.29 36799.99 21999.32 24097.76 13798.51 28299.29 32981.95 37899.54 24798.40 24895.03 29597.68 337
VDD-MVS96.58 28495.99 29598.34 25299.52 23095.33 32999.18 37699.38 20996.64 24399.77 195100.00 172.51 404100.00 1100.00 196.94 26099.70 248
tt080596.52 28596.23 28597.40 30699.30 27493.55 36299.32 36099.45 10296.75 22997.88 31899.99 18979.99 38599.59 23097.39 29195.98 26999.06 267
LCM-MVSNet-Re96.52 28597.21 25294.44 36699.27 27585.80 39999.85 28796.61 41695.98 27792.75 38998.48 37693.97 25397.55 38599.58 17998.43 19499.98 112
our_test_396.51 28796.35 28096.98 32797.61 36895.05 33399.98 24599.01 36794.68 31696.77 35499.06 34295.87 22298.14 35891.81 36792.37 32697.75 288
MVP-Stereo96.51 28796.48 27496.60 34195.65 39694.25 35698.84 40098.16 39295.85 28495.23 37199.04 34592.54 27899.13 28592.98 35999.98 11396.43 388
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v114496.51 28795.97 29798.13 27197.98 35698.04 25599.99 21999.08 34493.51 34998.62 27398.98 35290.98 29598.62 32593.79 35290.79 35097.74 310
ACMH+96.20 1396.49 29096.33 28297.00 32599.06 29293.80 36099.81 29399.31 24797.32 18695.89 36899.97 20382.62 37699.54 24798.34 25294.63 30297.65 346
TranMVSNet+NR-MVSNet96.45 29196.01 29497.79 29798.00 35597.62 278100.00 199.35 22995.98 27797.31 33999.64 29290.09 30698.00 37296.89 30486.80 38497.75 288
ET-MVSNet_ETH3D96.41 29295.48 32399.20 20199.81 13199.75 97100.00 199.02 36597.30 19078.33 413100.00 197.73 16697.94 37599.70 14987.41 37899.92 149
VPNet96.41 29295.76 30898.33 25398.61 32798.30 23699.48 34499.45 10296.98 21098.87 25799.88 24481.57 37998.93 30099.22 20787.82 37697.76 277
PVSNet_093.57 1996.41 29295.74 30998.41 24799.84 12195.22 331100.00 1100.00 198.08 10997.55 33499.78 26784.40 364100.00 1100.00 181.99 397100.00 1
v14419296.40 29595.81 30398.17 26697.89 35998.11 24799.99 21999.06 35793.39 35398.75 26699.09 34090.43 30298.66 32393.10 35890.55 35397.75 288
VDDNet96.39 29695.55 31898.90 21899.27 27597.45 28399.15 38499.92 3491.28 37599.98 117100.00 173.55 400100.00 199.85 11296.98 25999.24 262
tfpnnormal96.36 29795.69 31498.37 25098.55 32998.71 20799.69 32199.45 10293.16 36096.69 35699.71 27388.44 33298.99 29494.17 34691.38 34497.41 366
v896.35 29895.73 31098.21 26398.11 35198.23 24099.94 26899.07 34992.66 36898.29 29599.00 35191.46 28598.77 31694.17 34688.83 37097.62 352
PS-CasMVS96.34 29995.78 30798.03 28598.18 34998.27 23899.71 31799.32 24094.75 31396.82 35199.65 28886.98 34698.15 35797.74 27688.85 36997.66 342
LTVRE_ROB95.29 1696.32 30096.10 29096.99 32698.55 32993.88 35999.45 34799.28 26394.50 32396.46 35899.52 31584.86 36299.48 25997.26 29595.03 29597.59 356
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023121196.29 30195.70 31198.07 27499.80 14297.49 28199.15 38499.40 19489.11 38997.75 32599.45 32088.93 32498.98 29598.26 25889.47 36197.73 317
v14896.29 30195.84 30297.63 29997.74 36396.53 314100.00 199.07 34993.52 34898.01 31299.42 32291.22 28798.60 32996.37 31787.22 38097.75 288
AUN-MVS96.26 30395.67 31598.06 27899.68 16595.60 32799.82 29299.42 14196.78 22699.88 17399.80 26494.84 24199.47 26197.48 28673.29 40999.12 265
ttmdpeth96.24 30495.88 30097.32 31297.80 36196.61 31399.95 26398.77 38497.80 13293.42 38599.28 33086.42 35099.01 29197.63 28091.84 33596.33 390
FMVSNet296.22 30595.60 31798.06 27899.53 22298.33 23299.45 34799.27 27393.71 34098.03 30998.84 36284.23 36698.10 36593.97 35093.40 31197.73 317
LF4IMVS96.19 30696.18 28796.23 34998.26 34392.09 377100.00 197.89 40397.82 13097.94 31499.87 24582.71 37599.38 27297.41 28993.71 30797.20 372
v119296.18 30795.49 32198.26 25898.01 35498.15 24499.99 21999.08 34493.36 35498.54 27898.97 35589.47 31798.89 30591.15 37290.82 34997.75 288
testgi96.18 30795.93 29896.93 33098.98 30494.20 358100.00 199.07 34997.16 19696.06 36599.86 24784.08 36997.79 38190.38 38097.80 23998.81 269
Syy-MVS96.17 30996.57 26995.00 36099.50 23987.37 397100.00 199.57 6896.23 26898.07 306100.00 192.41 27997.81 37885.34 39897.96 22699.82 206
ppachtmachnet_test96.17 30995.89 29997.02 32497.61 36895.24 33099.99 21999.24 28793.31 35696.71 35599.62 30094.34 24898.07 36789.87 38292.30 32897.75 288
v192192096.16 31195.50 31998.14 26897.88 36097.96 26199.99 21999.07 34993.33 35598.60 27499.24 33289.37 31898.71 32091.28 37090.74 35197.75 288
Baseline_NR-MVSNet96.16 31195.70 31197.56 30498.28 34296.79 308100.00 197.86 40491.93 37297.63 32899.47 31992.14 28198.35 34897.13 29686.83 38397.54 359
v1096.14 31395.50 31998.07 27498.19 34897.96 26199.83 28999.07 34992.10 37198.07 30698.94 35791.07 29298.61 32692.41 36589.82 35797.63 350
OurMVSNet-221017-096.14 31395.98 29696.62 34097.49 37693.44 36499.92 27398.16 39295.86 28297.65 32799.95 22585.71 35898.78 31394.93 33894.18 30697.64 349
GBi-Net96.07 31595.80 30596.89 33299.53 22294.87 33599.18 37699.27 27393.71 34098.53 27998.81 36384.23 36698.07 36795.31 33293.60 30897.72 323
test196.07 31595.80 30596.89 33299.53 22294.87 33599.18 37699.27 27393.71 34098.53 27998.81 36384.23 36698.07 36795.31 33293.60 30897.72 323
v7n96.06 31795.42 32797.99 28897.58 37197.35 28899.86 28599.11 33592.81 36797.91 31799.49 31790.99 29498.92 30192.51 36288.49 37297.70 331
PEN-MVS96.01 31895.48 32397.58 30397.74 36397.26 29499.90 27799.29 25794.55 32096.79 35299.55 31287.38 34197.84 37796.92 30387.24 37997.65 346
v124095.96 31995.25 32898.07 27497.91 35897.87 26999.96 25799.07 34993.24 35898.64 27298.96 35688.98 32398.61 32689.58 38690.92 34897.75 288
pmmvs595.94 32095.61 31696.95 32897.42 37994.66 347100.00 198.08 39693.60 34697.05 34499.43 32187.02 34498.46 34395.76 32292.12 32997.72 323
PatchT95.90 32194.95 33598.75 22899.03 29498.39 22599.08 39399.32 24085.52 40199.96 12694.99 40597.94 15398.05 37180.20 40998.47 19299.81 215
USDC95.90 32195.70 31196.50 34398.60 32892.56 375100.00 198.30 39097.77 13596.92 34699.94 23181.25 38299.45 26693.54 35594.96 29997.49 362
pm-mvs195.76 32395.01 33398.00 28698.23 34597.45 28399.24 36899.04 36293.13 36195.93 36799.72 27186.28 35198.84 31095.62 32887.92 37597.72 323
SixPastTwentyTwo95.71 32495.49 32196.38 34597.42 37993.01 36899.84 28898.23 39194.75 31395.98 36699.97 20385.35 36098.43 34494.71 34093.17 31397.69 335
MS-PatchMatch95.66 32595.87 30195.05 35897.80 36189.25 39198.88 39999.30 25196.35 26396.86 34999.01 35081.35 38199.43 26893.30 35799.98 11396.46 387
DTE-MVSNet95.52 32694.99 33497.08 32197.49 37696.45 315100.00 199.25 28293.82 33996.17 36399.57 31087.81 33697.18 38694.57 34186.26 38797.62 352
TinyColmap95.50 32795.12 33296.64 33998.69 32493.00 36999.40 35397.75 40696.40 25996.14 36499.87 24579.47 38699.50 25793.62 35494.72 30197.40 367
K. test v395.46 32895.14 33196.40 34497.53 37393.40 36599.99 21999.23 29195.49 29892.70 39099.73 27084.26 36598.12 36093.94 35193.38 31297.68 337
FMVSNet595.32 32995.43 32694.99 36199.39 26792.99 37099.25 36799.24 28790.45 38297.44 33798.45 37795.78 22494.39 40787.02 39491.88 33497.59 356
UniMVSNet_ETH3D95.28 33094.41 33697.89 29498.91 31095.14 33299.13 38799.35 22992.11 37097.17 34399.66 28670.28 40799.36 27397.88 27295.18 28999.16 263
RPMNet95.26 33193.82 34099.56 15499.31 27198.86 19899.13 38799.42 14179.82 41099.96 12695.13 40395.69 22699.98 12377.54 41398.40 19699.84 197
DSMNet-mixed95.18 33295.21 33095.08 35796.03 39190.21 38999.65 32593.64 42292.91 36398.34 29197.40 39390.05 30895.51 40491.02 37397.86 23399.51 259
test_fmvs295.17 33395.23 32995.01 35998.95 30888.99 39399.99 21997.77 40597.79 13398.58 27599.70 27673.36 40199.34 27695.88 32195.03 29596.70 383
TransMVSNet (Re)94.78 33493.72 34197.93 29298.34 33697.88 26799.23 37397.98 40191.60 37394.55 37799.71 27387.89 33598.36 34789.30 38884.92 38897.56 358
mmtdpeth94.58 33594.18 33795.81 35498.82 32291.09 38599.99 21998.61 38796.38 260100.00 197.23 39476.52 39599.85 19599.82 12180.22 40196.48 386
FMVSNet194.45 33693.63 34396.89 33298.87 31694.87 33599.18 37699.27 27390.95 37997.31 33998.81 36372.89 40398.07 36792.61 36092.81 31897.72 323
test_040294.35 33793.70 34296.32 34797.92 35793.60 36199.61 33198.85 38088.19 39594.68 37699.48 31880.01 38498.58 33389.39 38795.15 29196.77 381
MVStest194.27 33893.30 34797.19 31998.83 32097.18 29799.93 27198.79 38386.80 39884.88 41099.04 34594.32 24998.25 35390.55 37786.57 38596.12 393
UnsupCasMVSNet_eth94.25 33993.89 33995.34 35697.63 36692.13 37699.73 31499.36 21894.88 31092.78 38798.63 37182.72 37496.53 39494.57 34184.73 38997.36 368
KD-MVS_2432*160094.15 34093.08 34997.35 31099.53 22297.83 27199.63 32899.19 30492.88 36496.29 36097.68 39098.84 12196.70 39089.73 38363.92 41497.53 360
miper_refine_blended94.15 34093.08 34997.35 31099.53 22297.83 27199.63 32899.19 30492.88 36496.29 36097.68 39098.84 12196.70 39089.73 38363.92 41497.53 360
MVS-HIRNet94.12 34292.73 35698.29 25599.33 27095.95 31899.38 35599.19 30474.54 41398.26 29986.34 41786.07 35399.06 28891.60 36999.87 13799.85 196
new_pmnet94.11 34393.47 34596.04 35296.60 38892.82 37199.97 25198.91 37690.21 38595.26 37098.05 38885.89 35698.14 35884.28 40092.01 33197.16 373
mvs5depth93.81 34493.00 35196.23 34994.25 40493.33 36697.43 41198.07 39793.47 35094.15 38299.58 30677.52 39298.97 29793.64 35388.92 36796.39 389
pmmvs693.64 34592.87 35395.94 35397.47 37891.41 38298.92 39799.02 36587.84 39695.01 37399.61 30277.24 39498.77 31694.33 34486.41 38697.63 350
Patchmatch-RL test93.49 34693.63 34393.05 37791.78 40883.41 40398.21 40796.95 41391.58 37491.05 39297.64 39299.40 6095.83 40294.11 34981.95 39899.91 151
Anonymous2023120693.45 34793.17 34894.30 36995.00 40189.69 39099.98 24598.43 38993.30 35794.50 37998.59 37290.52 29995.73 40377.46 41490.73 35297.48 364
Anonymous2024052193.29 34892.76 35594.90 36495.64 39791.27 38399.97 25198.82 38187.04 39794.71 37598.19 38383.86 37096.80 38984.04 40192.56 32496.64 384
dmvs_testset93.27 34995.48 32386.65 38998.74 32368.42 41899.92 27398.91 37696.19 27393.28 386100.00 191.06 29391.67 41489.64 38591.54 33999.86 195
test20.0393.11 35092.85 35493.88 37495.19 40091.83 378100.00 198.87 37993.68 34392.76 38898.88 36189.20 32092.71 41277.88 41289.19 36597.09 375
test_vis1_rt93.10 35192.93 35293.58 37599.63 19085.07 40099.99 21993.71 42197.49 17090.96 39397.10 39560.40 41299.95 15699.24 20497.90 23195.72 397
APD_test193.07 35294.14 33889.85 38399.18 27972.49 41199.76 30698.90 37892.86 36696.35 35999.94 23175.56 39799.91 17786.73 39597.98 22497.15 374
EG-PatchMatch MVS92.94 35392.49 35794.29 37095.87 39387.07 39899.07 39598.11 39593.19 35988.98 39998.66 37070.89 40599.08 28792.43 36495.21 28796.72 382
MDA-MVSNet_test_wron92.61 35491.09 36297.19 31996.71 38797.26 294100.00 199.14 32488.61 39167.90 41998.32 38289.03 32196.57 39390.47 37989.59 35997.74 310
YYNet192.44 35590.92 36397.03 32396.20 38997.06 30299.99 21999.14 32488.21 39467.93 41898.43 37988.63 32796.28 39790.64 37489.08 36697.74 310
MIMVSNet191.96 35691.20 35994.23 37194.94 40291.69 38099.34 35999.22 29488.23 39394.18 38198.45 37775.52 39893.41 41179.37 41091.49 34197.60 355
TDRefinement91.93 35790.48 36596.27 34881.60 42192.65 37499.10 39097.61 40993.96 33793.77 38399.85 25280.03 38399.53 25297.82 27470.59 41196.63 385
OpenMVS_ROBcopyleft88.34 2091.89 35891.12 36094.19 37295.55 39887.63 39699.26 36698.03 39886.61 40090.65 39796.82 39770.14 40898.78 31386.54 39696.50 26896.15 391
N_pmnet91.88 35993.37 34687.40 38897.24 38366.33 42199.90 27791.05 42489.77 38895.65 36998.58 37390.05 30898.11 36285.39 39792.72 31997.75 288
pmmvs-eth3d91.73 36090.67 36494.92 36391.63 41092.71 37399.90 27798.54 38891.19 37688.08 40195.50 40179.31 38896.13 39990.55 37781.32 40095.91 396
MDA-MVSNet-bldmvs91.65 36189.94 36996.79 33896.72 38696.70 31099.42 35298.94 37388.89 39066.97 42198.37 38081.43 38095.91 40189.24 38989.46 36297.75 288
KD-MVS_self_test91.16 36290.09 36794.35 36894.44 40391.27 38399.74 30999.08 34490.82 38094.53 37894.91 40686.11 35294.78 40682.67 40368.52 41296.99 377
CL-MVSNet_self_test91.07 36390.35 36693.24 37693.27 40589.16 39299.55 33799.25 28292.34 36995.23 37197.05 39688.86 32693.59 41080.67 40766.95 41396.96 378
test_method91.04 36491.10 36190.85 38098.34 33677.63 407100.00 198.93 37576.69 41196.25 36298.52 37570.44 40697.98 37389.02 39191.74 33696.92 379
CMPMVSbinary66.12 2290.65 36592.04 35886.46 39096.18 39066.87 42098.03 40899.38 20983.38 40685.49 40799.55 31277.59 39198.80 31294.44 34394.31 30593.72 405
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs390.62 36689.36 37294.40 36790.53 41591.49 381100.00 196.73 41484.21 40493.65 38496.65 39882.56 37794.83 40582.28 40477.62 40696.89 380
new-patchmatchnet90.30 36789.46 37192.84 37890.77 41388.55 39599.83 28998.80 38290.07 38787.86 40295.00 40478.77 38994.30 40884.86 39979.15 40395.68 399
UnsupCasMVSNet_bld89.50 36888.00 37493.99 37395.30 39988.86 39498.52 40499.28 26385.50 40287.80 40394.11 40761.63 41196.96 38890.63 37579.26 40296.15 391
mvsany_test389.36 36988.96 37390.56 38191.95 40778.97 40699.74 30996.59 41796.84 22189.25 39896.07 39952.59 41497.11 38795.17 33582.44 39695.58 400
PM-MVS88.39 37087.41 37591.31 37991.73 40982.02 40599.79 29896.62 41591.06 37890.71 39695.73 40048.60 41695.96 40090.56 37681.91 39995.97 395
WB-MVS88.24 37190.09 36782.68 39691.56 41169.51 416100.00 198.73 38590.72 38187.29 40498.12 38492.87 26985.01 41862.19 41989.34 36393.54 406
SSC-MVS87.61 37289.47 37082.04 39790.63 41468.77 41799.99 21998.66 38690.34 38486.70 40598.08 38592.72 27484.12 41959.41 42288.71 37193.22 410
test_fmvs387.19 37387.02 37687.71 38792.69 40676.64 40899.96 25797.27 41093.55 34790.82 39594.03 40838.00 42292.19 41393.49 35683.35 39594.32 402
test_f86.87 37486.06 37789.28 38491.45 41276.37 40999.87 28497.11 41191.10 37788.46 40093.05 41038.31 42196.66 39291.77 36883.46 39494.82 401
Gipumacopyleft84.73 37583.50 38088.40 38697.50 37482.21 40488.87 41599.05 35965.81 41585.71 40690.49 41253.70 41396.31 39678.64 41191.74 33686.67 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf184.40 37684.79 37883.23 39495.71 39458.71 42798.79 40197.75 40681.58 40784.94 40898.07 38645.33 41897.73 38277.09 41583.85 39193.24 408
APD_test284.40 37684.79 37883.23 39495.71 39458.71 42798.79 40197.75 40681.58 40784.94 40898.07 38645.33 41897.73 38277.09 41583.85 39193.24 408
testmvs80.17 37881.95 38174.80 40158.54 42859.58 426100.00 187.14 42776.09 41299.61 207100.00 167.06 40974.19 42498.84 22450.30 41890.64 413
test_vis3_rt79.61 37978.19 38483.86 39388.68 41669.56 41599.81 29382.19 42986.78 39968.57 41784.51 42025.06 42698.26 35289.18 39078.94 40483.75 417
EGC-MVSNET79.46 38074.04 38895.72 35596.00 39292.73 37299.09 39299.04 3625.08 42516.72 42598.71 36773.03 40298.74 31982.05 40596.64 26595.69 398
test12379.44 38179.23 38380.05 39980.03 42271.72 412100.00 177.93 43062.52 41694.81 37499.69 27978.21 39074.53 42392.57 36127.33 42393.90 403
PMMVS279.15 38277.28 38584.76 39282.34 42072.66 41099.70 31995.11 42071.68 41484.78 41190.87 41132.05 42489.99 41575.53 41763.45 41691.64 411
LCM-MVSNet79.01 38376.93 38685.27 39178.28 42368.01 41996.57 41298.03 39855.10 41982.03 41293.27 40931.99 42593.95 40982.72 40274.37 40893.84 404
FPMVS77.92 38479.45 38273.34 40376.87 42446.81 43098.24 40699.05 35959.89 41873.55 41498.34 38136.81 42386.55 41680.96 40691.35 34586.65 415
tmp_tt75.80 38574.26 38780.43 39852.91 43053.67 42987.42 41797.98 40161.80 41767.04 420100.00 176.43 39696.40 39596.47 31328.26 42291.23 412
E-PMN70.72 38670.06 38972.69 40483.92 41965.48 42399.95 26392.72 42349.88 42172.30 41586.26 41847.17 41777.43 42153.83 42344.49 41975.17 421
EMVS69.88 38769.09 39072.24 40584.70 41865.82 42299.96 25787.08 42849.82 42271.51 41684.74 41949.30 41575.32 42250.97 42443.71 42075.59 420
MVEpermissive68.59 2167.22 38864.68 39274.84 40074.67 42662.32 42595.84 41390.87 42550.98 42058.72 42281.05 42212.20 43078.95 42061.06 42156.75 41783.24 418
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high66.05 38963.44 39373.88 40261.14 42763.45 42495.68 41487.18 42679.93 40947.35 42380.68 42322.35 42772.33 42561.24 42035.42 42185.88 416
PMVScopyleft60.66 2365.98 39065.05 39168.75 40655.06 42938.40 43188.19 41696.98 41248.30 42344.82 42488.52 41512.22 42986.49 41767.58 41883.79 39381.35 419
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d28.28 39129.73 39523.92 40775.89 42532.61 43266.50 41812.88 43116.09 42414.59 42616.59 42512.35 42832.36 42639.36 42513.36 4246.79 422
cdsmvs_eth3d_5k24.41 39232.55 3940.00 4080.00 4310.00 4330.00 41999.39 2070.00 4260.00 427100.00 193.55 2590.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.33 39311.11 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas8.24 39410.99 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 42798.75 1280.00 4270.00 4260.00 4250.00 423
test_blank0.07 3950.09 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.79 4260.00 4310.00 4270.00 4260.00 4250.00 423
mmdepth0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS97.98 25895.74 323
FOURS1100.00 199.97 21100.00 199.42 14198.52 77100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 60100.00 1100.00 199.54 30100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 14198.72 67100.00 1100.00 199.60 21
eth-test20.00 431
eth-test0.00 431
ZD-MVS100.00 199.98 1799.80 4397.31 188100.00 1100.00 199.32 6699.99 98100.00 1100.00 1
RE-MVS-def99.55 5999.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.94 11299.99 64100.00 1100.00 1
IU-MVS100.00 199.99 599.42 14199.12 7100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 30100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 14199.03 21100.00 1100.00 199.56 27100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 14199.03 21100.00 1100.00 199.50 41100.00 1
9.1499.57 5299.99 49100.00 199.42 14197.54 162100.00 1100.00 199.15 8799.99 98100.00 1100.00 1
save fliter99.99 4999.93 47100.00 199.42 14198.93 38
test_0728_THIRD98.79 63100.00 1100.00 199.61 20100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
test0726100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 33
GSMVS99.91 151
test_part2100.00 199.99 5100.00 1
sam_mvs199.29 7499.91 151
sam_mvs99.33 63
ambc88.45 38586.84 41770.76 41497.79 41098.02 40090.91 39495.14 40238.69 42098.51 33894.97 33784.23 39096.09 394
MTGPAbinary99.42 141
test_post199.32 36088.24 41699.33 6399.59 23098.31 253
test_post89.05 41499.49 4399.59 230
patchmatchnet-post97.79 38999.41 5999.54 247
GG-mvs-BLEND99.59 14799.54 21999.49 13699.17 38199.52 7299.96 12699.68 283100.00 199.33 27799.71 14699.99 10399.96 125
MTMP100.00 199.18 311
gm-plane-assit99.52 23097.26 29495.86 282100.00 199.43 26898.76 229
test9_res100.00 1100.00 1100.00 1
TEST9100.00 199.95 32100.00 199.42 14197.65 145100.00 1100.00 199.53 3399.97 130
test_8100.00 199.91 56100.00 199.42 14197.70 140100.00 1100.00 199.51 3799.98 123
agg_prior2100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7799.42 141100.00 199.97 130
TestCases98.99 21299.93 10597.35 28899.40 19497.08 20399.09 24299.98 19493.37 26099.95 15696.94 30199.84 14399.68 250
test_prior499.93 47100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 47100.00 1100.00 1
test_prior99.90 77100.00 199.75 9799.73 5699.97 130100.00 1
旧先验2100.00 198.11 108100.00 1100.00 199.67 160
新几何2100.00 1
新几何199.99 12100.00 199.96 2499.81 4297.89 125100.00 1100.00 199.20 82100.00 197.91 271100.00 1100.00 1
旧先验199.99 4999.88 7799.82 40100.00 199.27 77100.00 1100.00 1
无先验100.00 199.80 4397.98 116100.00 199.33 197100.00 1
原ACMM2100.00 1
原ACMM199.93 70100.00 199.80 9299.66 6398.18 99100.00 1100.00 199.43 54100.00 199.50 188100.00 1100.00 1
test22299.99 4999.90 63100.00 199.69 6297.66 144100.00 1100.00 199.30 73100.00 1100.00 1
testdata2100.00 197.36 292
segment_acmp99.55 29
testdata99.66 13799.99 4998.97 19599.73 5697.96 121100.00 1100.00 199.42 57100.00 199.28 201100.00 1100.00 1
testdata1100.00 198.77 66
test1299.95 5499.99 4999.89 7099.42 141100.00 199.24 7999.97 130100.00 1100.00 1
plane_prior799.00 30094.78 345
plane_prior699.06 29294.80 34188.58 330
plane_prior599.40 19499.55 24499.79 12395.57 27497.76 277
plane_prior499.97 203
plane_prior394.79 34499.03 2199.08 244
plane_prior2100.00 199.00 27
plane_prior199.02 295
plane_prior94.80 341100.00 199.03 2195.58 270
n20.00 432
nn0.00 432
door-mid96.32 418
lessismore_v096.05 35197.55 37291.80 37999.22 29491.87 39199.91 23983.50 37298.68 32192.48 36390.42 35597.68 337
LGP-MVS_train97.28 31598.85 31894.60 35099.37 21297.35 18198.85 25899.98 19486.66 34799.56 23999.55 18195.26 28297.70 331
test1199.42 141
door96.13 419
HQP5-MVS94.82 338
HQP-NCC99.07 288100.00 199.04 1699.17 234
ACMP_Plane99.07 288100.00 199.04 1699.17 234
BP-MVS99.79 123
HQP4-MVS99.17 23499.57 23597.77 275
HQP3-MVS99.40 19495.58 270
HQP2-MVS88.61 328
NP-MVS99.07 28894.81 34099.97 203
MDTV_nov1_ep13_2view99.24 16699.56 33696.31 26699.96 12698.86 11998.92 22099.89 168
MDTV_nov1_ep1398.94 13899.53 22298.36 23099.39 35499.46 9496.54 24899.99 11199.63 29698.92 11599.86 18998.30 25698.71 185
ACMMP++_ref94.58 304
ACMMP++95.17 290
Test By Simon99.10 90
ITE_SJBPF96.84 33598.96 30693.49 36398.12 39498.12 10798.35 29099.97 20384.45 36399.56 23995.63 32795.25 28497.49 362
DeepMVS_CXcopyleft89.98 38298.90 31171.46 41399.18 31197.61 15496.92 34699.83 25586.07 35399.83 19996.02 32097.65 24998.65 271