This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 899.98 199.99 199.96 199.77 1100.00 199.81 5100.00 199.85 12
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 4299.90 299.86 1099.78 899.58 399.95 1799.00 4799.95 1999.78 20
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 1899.64 1199.84 1199.83 399.50 599.87 8999.36 2499.92 4299.64 50
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1699.11 5999.90 199.78 1699.63 1399.78 1599.67 2099.48 699.81 16399.30 2999.97 1299.77 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 1999.71 2199.27 4999.90 699.74 1299.68 299.97 499.55 1699.99 599.88 7
jajsoiax99.58 699.61 799.48 5199.87 1298.61 9299.28 3699.66 3299.09 7199.89 899.68 1899.53 499.97 499.50 1899.99 599.87 9
ANet_high99.57 799.67 599.28 8399.89 698.09 13399.14 5399.93 399.82 399.93 399.81 599.17 1299.94 2699.31 27100.00 199.82 14
v7n99.53 899.57 899.41 6099.88 998.54 10099.45 1099.61 3899.66 1099.68 2799.66 2298.44 4699.95 1799.73 1099.96 1599.75 29
test_djsdf99.52 999.51 999.53 3499.86 1498.74 8299.39 1699.56 5699.11 6199.70 2399.73 1499.00 1599.97 499.26 3099.98 999.89 6
anonymousdsp99.51 1099.47 1299.62 699.88 999.08 6399.34 1999.69 2498.93 8699.65 3299.72 1598.93 1999.95 1799.11 39100.00 199.82 14
UA-Net99.47 1199.40 1599.70 299.49 10099.29 1999.80 399.72 2099.82 399.04 12799.81 598.05 7699.96 1198.85 5599.99 599.86 11
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12999.20 4499.65 3399.48 2699.92 499.71 1698.07 7399.96 1199.53 17100.00 199.93 4
pm-mvs199.44 1399.48 1199.33 7699.80 2298.63 8999.29 3299.63 3499.30 4799.65 3299.60 3299.16 1499.82 15099.07 4199.83 7799.56 82
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 2298.58 9599.27 3899.57 4999.39 3699.75 1899.62 2899.17 1299.83 14099.06 4299.62 17299.66 45
DTE-MVSNet99.43 1599.35 1899.66 499.71 4499.30 1799.31 2699.51 7299.64 1199.56 3899.46 5598.23 5899.97 498.78 5899.93 3199.72 32
TDRefinement99.42 1699.38 1699.55 2399.76 3099.33 1699.68 599.71 2199.38 3799.53 4599.61 3098.64 3399.80 17098.24 9199.84 7099.52 103
PEN-MVS99.41 1799.34 2099.62 699.73 3699.14 5299.29 3299.54 6599.62 1699.56 3899.42 6398.16 6999.96 1198.78 5899.93 3199.77 22
nrg03099.40 1899.35 1899.54 2799.58 6599.13 5598.98 7199.48 8399.68 899.46 5599.26 8998.62 3699.73 22199.17 3899.92 4299.76 26
PS-CasMVS99.40 1899.33 2199.62 699.71 4499.10 6099.29 3299.53 6899.53 2399.46 5599.41 6698.23 5899.95 1798.89 5499.95 1999.81 16
MIMVSNet199.38 2099.32 2299.55 2399.86 1499.19 3799.41 1399.59 4099.59 1999.71 2199.57 3597.12 14299.90 5299.21 3599.87 6399.54 93
OurMVSNet-221017-099.37 2199.31 2399.53 3499.91 398.98 6599.63 699.58 4299.44 3199.78 1599.76 1096.39 18299.92 3999.44 2299.92 4299.68 41
Vis-MVSNetpermissive99.34 2299.36 1799.27 8699.73 3698.26 11899.17 4999.78 1699.11 6199.27 9299.48 5398.82 2499.95 1798.94 5099.93 3199.59 67
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS_H99.33 2399.22 2899.65 599.71 4499.24 2599.32 2299.55 6099.46 2999.50 5199.34 7797.30 13199.93 3198.90 5299.93 3199.77 22
VPA-MVSNet99.30 2499.30 2499.28 8399.49 10098.36 11499.00 6899.45 9499.63 1399.52 4799.44 6098.25 5699.88 7199.09 4099.84 7099.62 54
Anonymous2023121199.27 2599.27 2599.26 8899.29 14398.18 12699.49 899.51 7299.70 799.80 1399.68 1896.84 15799.83 14099.21 3599.91 4899.77 22
FC-MVSNet-test99.27 2599.25 2699.34 7299.77 2798.37 11199.30 3199.57 4999.61 1899.40 6799.50 4997.12 14299.85 11099.02 4699.94 2799.80 17
testf199.25 2799.16 3299.51 4399.89 699.63 398.71 8999.69 2498.90 8899.43 6099.35 7398.86 2199.67 24897.81 11799.81 8499.24 207
APD_test299.25 2799.16 3299.51 4399.89 699.63 398.71 8999.69 2498.90 8899.43 6099.35 7398.86 2199.67 24897.81 11799.81 8499.24 207
KD-MVS_self_test99.25 2799.18 2999.44 5799.63 6299.06 6498.69 9199.54 6599.31 4599.62 3699.53 4597.36 12999.86 9899.24 3499.71 13999.39 161
ACMH96.65 799.25 2799.24 2799.26 8899.72 4298.38 10999.07 6199.55 6098.30 11899.65 3299.45 5999.22 999.76 20598.44 8299.77 10999.64 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba99.24 3199.15 3799.49 4899.83 1998.85 7499.41 1399.55 6099.54 2299.40 6799.52 4795.86 20899.91 4799.32 2699.95 1999.70 38
CP-MVSNet99.21 3299.09 4299.56 2199.65 5798.96 7099.13 5499.34 13499.42 3499.33 8199.26 8997.01 15099.94 2698.74 6299.93 3199.79 18
TranMVSNet+NR-MVSNet99.17 3399.07 4599.46 5699.37 13198.87 7398.39 12899.42 10799.42 3499.36 7699.06 12498.38 4999.95 1798.34 8799.90 5599.57 78
FMVSNet199.17 3399.17 3099.17 9999.55 8098.24 12099.20 4499.44 9899.21 5299.43 6099.55 4097.82 9299.86 9898.42 8499.89 5999.41 149
test_vis3_rt99.14 3599.17 3099.07 11799.78 2598.38 10998.92 7599.94 197.80 15699.91 599.67 2097.15 14198.91 36199.76 899.56 19599.92 5
FIs99.14 3599.09 4299.29 8199.70 5098.28 11799.13 5499.52 7199.48 2699.24 10199.41 6696.79 16399.82 15098.69 6799.88 6099.76 26
XXY-MVS99.14 3599.15 3799.10 11199.76 3097.74 17298.85 8199.62 3598.48 11099.37 7499.49 5298.75 2799.86 9898.20 9499.80 9599.71 33
CS-MVS99.13 3899.10 4199.24 9399.06 19799.15 4799.36 1899.88 999.36 4198.21 22898.46 24798.68 3299.93 3199.03 4599.85 6698.64 299
CS-MVS-test99.13 3899.09 4299.26 8899.13 18298.97 6699.31 2699.88 999.44 3198.16 23198.51 23998.64 3399.93 3198.91 5199.85 6698.88 268
test_fmvs399.12 4099.41 1498.25 21599.76 3095.07 26599.05 6499.94 197.78 15899.82 1299.84 298.56 4099.71 22999.96 199.96 1599.97 1
casdiffmvs_mvgpermissive99.12 4099.16 3298.99 13199.43 11997.73 17498.00 16899.62 3599.22 5199.55 4099.22 9798.93 1999.75 21298.66 6999.81 8499.50 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RRT_MVS99.09 4298.94 5499.55 2399.87 1298.82 7899.48 998.16 30199.49 2599.59 3799.65 2494.79 24299.95 1799.45 2199.96 1599.88 7
DROMVSNet99.09 4299.05 4699.20 9799.28 14498.93 7199.24 4099.84 1299.08 7398.12 23698.37 25598.72 2999.90 5299.05 4399.77 10998.77 285
ACMH+96.62 999.08 4499.00 4999.33 7699.71 4498.83 7698.60 9999.58 4299.11 6199.53 4599.18 10498.81 2599.67 24896.71 19399.77 10999.50 108
bld_raw_dy_0_6499.07 4599.00 4999.29 8199.85 1698.18 12699.11 5799.40 11099.33 4399.38 7199.44 6095.21 22599.97 499.31 2799.98 999.73 31
GeoE99.05 4698.99 5299.25 9199.44 11498.35 11598.73 8699.56 5698.42 11198.91 15098.81 19398.94 1899.91 4798.35 8699.73 12799.49 112
Gipumacopyleft99.03 4799.16 3298.64 17099.94 298.51 10299.32 2299.75 1999.58 2198.60 19599.62 2898.22 6199.51 30897.70 12599.73 12797.89 330
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.01 4899.16 3298.57 18199.47 10996.31 22898.90 7699.47 8999.03 7799.52 4799.57 3596.93 15399.81 16399.60 1299.98 999.60 61
HPM-MVS_fast99.01 4898.82 6599.57 1699.71 4499.35 1299.00 6899.50 7497.33 19998.94 14798.86 18198.75 2799.82 15097.53 13299.71 13999.56 82
APDe-MVS98.99 5098.79 6899.60 1199.21 15899.15 4798.87 7899.48 8397.57 17399.35 7899.24 9497.83 8999.89 6297.88 11499.70 14499.75 29
EG-PatchMatch MVS98.99 5099.01 4898.94 13699.50 9397.47 18598.04 16299.59 4098.15 13699.40 6799.36 7298.58 3999.76 20598.78 5899.68 15299.59 67
COLMAP_ROBcopyleft96.50 1098.99 5098.85 6399.41 6099.58 6599.10 6098.74 8499.56 5699.09 7199.33 8199.19 10198.40 4899.72 22895.98 23999.76 12099.42 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.98 5398.86 6299.36 6499.82 2198.55 9797.47 22399.57 4999.37 3899.21 10499.61 3096.76 16699.83 14098.06 10299.83 7799.71 33
v1098.97 5499.11 3998.55 18699.44 11496.21 23098.90 7699.55 6098.73 9699.48 5299.60 3296.63 17399.83 14099.70 1199.99 599.61 60
DeepC-MVS97.60 498.97 5498.93 5599.10 11199.35 13697.98 14898.01 16799.46 9197.56 17599.54 4199.50 4998.97 1699.84 12698.06 10299.92 4299.49 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline98.96 5699.02 4798.76 16099.38 12597.26 19598.49 11699.50 7498.86 9199.19 10699.06 12498.23 5899.69 23698.71 6599.76 12099.33 187
casdiffmvspermissive98.95 5799.00 4998.81 15099.38 12597.33 19197.82 18599.57 4999.17 5999.35 7899.17 10898.35 5399.69 23698.46 8199.73 12799.41 149
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet98.95 5798.82 6599.36 6499.16 17598.72 8799.22 4199.20 18499.10 6899.72 1998.76 20196.38 18499.86 9898.00 10799.82 8099.50 108
Anonymous2024052998.93 5998.87 5999.12 10799.19 16598.22 12599.01 6698.99 23399.25 5099.54 4199.37 6997.04 14699.80 17097.89 11199.52 20799.35 180
DP-MVS98.93 5998.81 6799.28 8399.21 15898.45 10698.46 12199.33 13999.63 1399.48 5299.15 11497.23 13799.75 21297.17 14799.66 16399.63 53
SED-MVS98.91 6198.72 7499.49 4899.49 10099.17 3998.10 15499.31 14698.03 14099.66 2999.02 13698.36 5099.88 7196.91 16999.62 17299.41 149
ACMM96.08 1298.91 6198.73 7299.48 5199.55 8099.14 5298.07 15799.37 11997.62 16899.04 12798.96 15798.84 2399.79 18397.43 13699.65 16499.49 112
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++98.90 6398.70 7999.51 4398.43 29899.15 4799.43 1199.32 14198.17 13299.26 9699.02 13698.18 6599.88 7197.07 15799.45 22199.49 112
tfpnnormal98.90 6398.90 5898.91 14099.67 5597.82 16599.00 6899.44 9899.45 3099.51 5099.24 9498.20 6499.86 9895.92 24199.69 14799.04 239
MTAPA98.88 6598.64 8799.61 999.67 5599.36 1198.43 12499.20 18498.83 9598.89 15398.90 17196.98 15299.92 3997.16 14899.70 14499.56 82
mvsany_test398.87 6698.92 5698.74 16699.38 12596.94 21298.58 10299.10 21196.49 24699.96 299.81 598.18 6599.45 31998.97 4999.79 10099.83 13
VPNet98.87 6698.83 6499.01 12999.70 5097.62 18098.43 12499.35 12899.47 2899.28 9099.05 13196.72 16999.82 15098.09 10099.36 23299.59 67
UniMVSNet (Re)98.87 6698.71 7699.35 6999.24 15198.73 8597.73 19499.38 11598.93 8699.12 11298.73 20496.77 16499.86 9898.63 7199.80 9599.46 131
UniMVSNet_NR-MVSNet98.86 6998.68 8299.40 6299.17 17398.74 8297.68 19899.40 11099.14 6099.06 12098.59 23196.71 17099.93 3198.57 7499.77 10999.53 100
APD-MVS_3200maxsize98.84 7098.61 9499.53 3499.19 16599.27 2298.49 11699.33 13998.64 9899.03 13098.98 15297.89 8699.85 11096.54 20999.42 22599.46 131
APD_test198.83 7198.66 8499.34 7299.78 2599.47 698.42 12699.45 9498.28 12398.98 13499.19 10197.76 9599.58 28796.57 20199.55 19898.97 252
PM-MVS98.82 7298.72 7499.12 10799.64 6098.54 10097.98 17099.68 2997.62 16899.34 8099.18 10497.54 11499.77 20097.79 11999.74 12499.04 239
DU-MVS98.82 7298.63 8899.39 6399.16 17598.74 8297.54 21599.25 17398.84 9499.06 12098.76 20196.76 16699.93 3198.57 7499.77 10999.50 108
SR-MVS-dyc-post98.81 7498.55 9999.57 1699.20 16299.38 898.48 11999.30 15498.64 9898.95 14198.96 15797.49 12399.86 9896.56 20599.39 22899.45 135
3Dnovator98.27 298.81 7498.73 7299.05 12498.76 24897.81 16799.25 3999.30 15498.57 10798.55 20499.33 7997.95 8499.90 5297.16 14899.67 15899.44 139
HPM-MVScopyleft98.79 7698.53 10199.59 1599.65 5799.29 1999.16 5099.43 10496.74 23798.61 19398.38 25498.62 3699.87 8996.47 21399.67 15899.59 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP98.79 7698.54 10099.54 2799.73 3699.16 4398.23 13999.31 14697.92 14798.90 15198.90 17198.00 7999.88 7196.15 23299.72 13499.58 73
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_298.78 7899.11 3997.78 24799.56 7693.67 30899.06 6299.86 1199.50 2499.66 2999.26 8997.21 13999.99 298.00 10799.91 4899.68 41
V4298.78 7898.78 6998.76 16099.44 11497.04 20798.27 13699.19 18897.87 15199.25 10099.16 11096.84 15799.78 19499.21 3599.84 7099.46 131
test20.0398.78 7898.77 7098.78 15799.46 11097.20 20097.78 18799.24 17899.04 7699.41 6498.90 17197.65 10299.76 20597.70 12599.79 10099.39 161
DVP-MVScopyleft98.77 8198.52 10299.52 3999.50 9399.21 2898.02 16498.84 25797.97 14399.08 11899.02 13697.61 10899.88 7196.99 16399.63 16999.48 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_040298.76 8298.71 7698.93 13799.56 7698.14 13198.45 12399.34 13499.28 4898.95 14198.91 16898.34 5499.79 18395.63 25699.91 4898.86 270
ACMMP_NAP98.75 8398.48 11099.57 1699.58 6599.29 1997.82 18599.25 17396.94 22898.78 17299.12 11898.02 7799.84 12697.13 15399.67 15899.59 67
SixPastTwentyTwo98.75 8398.62 9099.16 10299.83 1997.96 15299.28 3698.20 29899.37 3899.70 2399.65 2492.65 28099.93 3199.04 4499.84 7099.60 61
ACMMPcopyleft98.75 8398.50 10599.52 3999.56 7699.16 4398.87 7899.37 11997.16 21998.82 16999.01 14597.71 9899.87 8996.29 22499.69 14799.54 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS98.72 8698.45 11599.53 3499.46 11099.21 2898.65 9399.34 13498.62 10297.54 27698.63 22597.50 12099.83 14096.79 18299.53 20499.56 82
SR-MVS98.71 8798.43 11899.57 1699.18 17299.35 1298.36 13099.29 16198.29 12198.88 15798.85 18497.53 11699.87 8996.14 23399.31 24099.48 122
HFP-MVS98.71 8798.44 11799.51 4399.49 10099.16 4398.52 10999.31 14697.47 18298.58 19998.50 24397.97 8399.85 11096.57 20199.59 18399.53 100
LPG-MVS_test98.71 8798.46 11499.47 5499.57 6998.97 6698.23 13999.48 8396.60 24299.10 11699.06 12498.71 3099.83 14095.58 25999.78 10599.62 54
test_fmvs298.70 9098.97 5397.89 24099.54 8394.05 29098.55 10599.92 596.78 23599.72 1999.78 896.60 17499.67 24899.91 299.90 5599.94 3
ACMMPR98.70 9098.42 12099.54 2799.52 8899.14 5298.52 10999.31 14697.47 18298.56 20298.54 23597.75 9699.88 7196.57 20199.59 18399.58 73
CP-MVS98.70 9098.42 12099.52 3999.36 13299.12 5798.72 8799.36 12397.54 17798.30 22398.40 25197.86 8899.89 6296.53 21099.72 13499.56 82
tt080598.69 9398.62 9098.90 14299.75 3499.30 1799.15 5296.97 33298.86 9198.87 16197.62 30898.63 3598.96 35899.41 2398.29 31698.45 307
Anonymous2024052198.69 9398.87 5998.16 22399.77 2795.11 26499.08 5899.44 9899.34 4299.33 8199.55 4094.10 25899.94 2699.25 3299.96 1599.42 146
region2R98.69 9398.40 12299.54 2799.53 8699.17 3998.52 10999.31 14697.46 18798.44 21498.51 23997.83 8999.88 7196.46 21499.58 18899.58 73
EI-MVSNet-UG-set98.69 9398.71 7698.62 17499.10 18696.37 22597.23 23898.87 24899.20 5499.19 10698.99 14897.30 13199.85 11098.77 6199.79 10099.65 49
3Dnovator+97.89 398.69 9398.51 10399.24 9398.81 24398.40 10799.02 6599.19 18898.99 8098.07 24099.28 8597.11 14499.84 12696.84 18099.32 23899.47 129
ZNCC-MVS98.68 9898.40 12299.54 2799.57 6999.21 2898.46 12199.29 16197.28 20598.11 23798.39 25298.00 7999.87 8996.86 17999.64 16699.55 89
EI-MVSNet-Vis-set98.68 9898.70 7998.63 17399.09 18996.40 22497.23 23898.86 25399.20 5499.18 11098.97 15497.29 13399.85 11098.72 6499.78 10599.64 50
CSCG98.68 9898.50 10599.20 9799.45 11398.63 8998.56 10499.57 4997.87 15198.85 16298.04 28397.66 10199.84 12696.72 19199.81 8499.13 229
test_f98.67 10198.87 5998.05 23299.72 4295.59 24498.51 11399.81 1496.30 25599.78 1599.82 496.14 19198.63 36699.82 399.93 3199.95 2
PGM-MVS98.66 10298.37 12899.55 2399.53 8699.18 3898.23 13999.49 8197.01 22698.69 18298.88 17898.00 7999.89 6295.87 24599.59 18399.58 73
GBi-Net98.65 10398.47 11299.17 9998.90 22598.24 12099.20 4499.44 9898.59 10498.95 14199.55 4094.14 25499.86 9897.77 12099.69 14799.41 149
test198.65 10398.47 11299.17 9998.90 22598.24 12099.20 4499.44 9898.59 10498.95 14199.55 4094.14 25499.86 9897.77 12099.69 14799.41 149
LCM-MVSNet-Re98.64 10598.48 11099.11 10998.85 23598.51 10298.49 11699.83 1398.37 11299.69 2599.46 5598.21 6399.92 3994.13 29599.30 24398.91 264
mPP-MVS98.64 10598.34 13299.54 2799.54 8399.17 3998.63 9599.24 17897.47 18298.09 23998.68 21397.62 10799.89 6296.22 22799.62 17299.57 78
TSAR-MVS + MP.98.63 10798.49 10999.06 12399.64 6097.90 15698.51 11398.94 23596.96 22799.24 10198.89 17797.83 8999.81 16396.88 17699.49 21799.48 122
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LS3D98.63 10798.38 12799.36 6497.25 35599.38 899.12 5699.32 14199.21 5298.44 21498.88 17897.31 13099.80 17096.58 19999.34 23698.92 261
RPSCF98.62 10998.36 12999.42 5899.65 5799.42 798.55 10599.57 4997.72 16298.90 15199.26 8996.12 19399.52 30495.72 25299.71 13999.32 189
GST-MVS98.61 11098.30 13799.52 3999.51 9099.20 3498.26 13799.25 17397.44 19098.67 18498.39 25297.68 9999.85 11096.00 23799.51 20999.52 103
v119298.60 11198.66 8498.41 20299.27 14695.88 23897.52 21799.36 12397.41 19299.33 8199.20 10096.37 18599.82 15099.57 1499.92 4299.55 89
v114498.60 11198.66 8498.41 20299.36 13295.90 23797.58 21199.34 13497.51 17899.27 9299.15 11496.34 18799.80 17099.47 2099.93 3199.51 105
DPE-MVScopyleft98.59 11398.26 14299.57 1699.27 14699.15 4797.01 25099.39 11397.67 16499.44 5998.99 14897.53 11699.89 6295.40 26399.68 15299.66 45
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 11498.23 14599.60 1199.69 5299.35 1297.16 24599.38 11594.87 29298.97 13898.99 14898.01 7899.88 7197.29 14299.70 14499.58 73
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS98.56 11598.32 13699.25 9199.41 12298.73 8597.13 24799.18 19297.10 22298.75 17898.92 16798.18 6599.65 26496.68 19599.56 19599.37 170
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS98.56 11598.39 12599.07 11799.13 18298.07 13998.59 10097.01 33099.59 1999.11 11399.27 8794.82 23799.79 18398.34 8799.63 16999.34 182
v2v48298.56 11598.62 9098.37 20699.42 12095.81 24197.58 21199.16 19997.90 14999.28 9099.01 14595.98 20299.79 18399.33 2599.90 5599.51 105
XVG-ACMP-BASELINE98.56 11598.34 13299.22 9699.54 8398.59 9497.71 19599.46 9197.25 20898.98 13498.99 14897.54 11499.84 12695.88 24299.74 12499.23 209
v124098.55 11998.62 9098.32 20999.22 15695.58 24597.51 21999.45 9497.16 21999.45 5899.24 9496.12 19399.85 11099.60 1299.88 6099.55 89
IterMVS-LS98.55 11998.70 7998.09 22599.48 10794.73 27397.22 24199.39 11398.97 8299.38 7199.31 8396.00 19899.93 3198.58 7299.97 1299.60 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419298.54 12198.57 9898.45 19899.21 15895.98 23597.63 20499.36 12397.15 22199.32 8799.18 10495.84 20999.84 12699.50 1899.91 4899.54 93
v192192098.54 12198.60 9598.38 20599.20 16295.76 24397.56 21399.36 12397.23 21499.38 7199.17 10896.02 19699.84 12699.57 1499.90 5599.54 93
SF-MVS98.53 12398.27 14199.32 7899.31 13998.75 8198.19 14399.41 10896.77 23698.83 16698.90 17197.80 9399.82 15095.68 25599.52 20799.38 168
XVG-OURS98.53 12398.34 13299.11 10999.50 9398.82 7895.97 29899.50 7497.30 20399.05 12598.98 15299.35 799.32 33695.72 25299.68 15299.18 221
UGNet98.53 12398.45 11598.79 15497.94 32696.96 21099.08 5898.54 28399.10 6896.82 31399.47 5496.55 17699.84 12698.56 7799.94 2799.55 89
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
patch_mono-298.51 12698.63 8898.17 22199.38 12594.78 27097.36 22999.69 2498.16 13598.49 21099.29 8497.06 14599.97 498.29 9099.91 4899.76 26
XVG-OURS-SEG-HR98.49 12798.28 13999.14 10599.49 10098.83 7696.54 27499.48 8397.32 20199.11 11398.61 22999.33 899.30 33996.23 22698.38 31399.28 199
FMVSNet298.49 12798.40 12298.75 16298.90 22597.14 20698.61 9899.13 20698.59 10499.19 10699.28 8594.14 25499.82 15097.97 10999.80 9599.29 198
pmmvs-eth3d98.47 12998.34 13298.86 14499.30 14297.76 17097.16 24599.28 16495.54 27499.42 6399.19 10197.27 13499.63 27097.89 11199.97 1299.20 214
MP-MVScopyleft98.46 13098.09 16099.54 2799.57 6999.22 2798.50 11599.19 18897.61 17097.58 27298.66 21897.40 12799.88 7194.72 27699.60 17999.54 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.45 13198.60 9598.00 23599.44 11494.98 26697.44 22599.06 21698.30 11899.32 8798.97 15496.65 17299.62 27298.37 8599.85 6699.39 161
AllTest98.44 13298.20 14799.16 10299.50 9398.55 9798.25 13899.58 4296.80 23398.88 15799.06 12497.65 10299.57 28994.45 28399.61 17799.37 170
VNet98.42 13398.30 13798.79 15498.79 24797.29 19398.23 13998.66 27799.31 4598.85 16298.80 19494.80 24099.78 19498.13 9699.13 26899.31 193
ab-mvs98.41 13498.36 12998.59 17899.19 16597.23 19699.32 2298.81 26297.66 16598.62 19199.40 6896.82 16099.80 17095.88 24299.51 20998.75 288
ACMP95.32 1598.41 13498.09 16099.36 6499.51 9098.79 8097.68 19899.38 11595.76 27198.81 17198.82 19198.36 5099.82 15094.75 27399.77 10999.48 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n_192098.40 13698.92 5696.81 30599.74 3590.76 34898.15 14899.91 698.33 11599.89 899.55 4095.07 23099.88 7199.76 899.93 3199.79 18
SMA-MVScopyleft98.40 13698.03 16799.51 4399.16 17599.21 2898.05 16099.22 18194.16 30898.98 13499.10 12197.52 11899.79 18396.45 21599.64 16699.53 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS98.40 13698.00 16999.61 999.57 6999.25 2498.57 10399.35 12897.55 17699.31 8997.71 30194.61 24599.88 7196.14 23399.19 26099.70 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.40 13698.68 8297.54 26998.96 21397.99 14597.88 17899.36 12398.20 12999.63 3599.04 13398.76 2695.33 37696.56 20599.74 12499.31 193
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EI-MVSNet98.40 13698.51 10398.04 23399.10 18694.73 27397.20 24298.87 24898.97 8299.06 12099.02 13696.00 19899.80 17098.58 7299.82 8099.60 61
WR-MVS98.40 13698.19 14999.03 12799.00 20697.65 17796.85 26098.94 23598.57 10798.89 15398.50 24395.60 21499.85 11097.54 13199.85 6699.59 67
new-patchmatchnet98.35 14298.74 7197.18 28699.24 15192.23 33296.42 28199.48 8398.30 11899.69 2599.53 4597.44 12599.82 15098.84 5699.77 10999.49 112
canonicalmvs98.34 14398.26 14298.58 17998.46 29597.82 16598.96 7299.46 9199.19 5897.46 28395.46 35798.59 3899.46 31898.08 10198.71 30198.46 305
testgi98.32 14498.39 12598.13 22499.57 6995.54 24697.78 18799.49 8197.37 19699.19 10697.65 30598.96 1799.49 31096.50 21298.99 28499.34 182
DeepPCF-MVS96.93 598.32 14498.01 16899.23 9598.39 30398.97 6695.03 33299.18 19296.88 23199.33 8198.78 19798.16 6999.28 34396.74 18899.62 17299.44 139
test_vis1_n98.31 14698.50 10597.73 25499.76 3094.17 28898.68 9299.91 696.31 25399.79 1499.57 3592.85 27799.42 32499.79 699.84 7099.60 61
MVS_111021_LR98.30 14798.12 15898.83 14799.16 17598.03 14396.09 29599.30 15497.58 17298.10 23898.24 26698.25 5699.34 33396.69 19499.65 16499.12 230
EPP-MVSNet98.30 14798.04 16699.07 11799.56 7697.83 16299.29 3298.07 30599.03 7798.59 19799.13 11792.16 28499.90 5296.87 17799.68 15299.49 112
DeepC-MVS_fast96.85 698.30 14798.15 15598.75 16298.61 27797.23 19697.76 19199.09 21397.31 20298.75 17898.66 21897.56 11299.64 26796.10 23699.55 19899.39 161
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS98.29 15097.95 17299.34 7298.44 29799.16 4398.12 15199.38 11596.01 26498.06 24198.43 24997.80 9399.67 24895.69 25499.58 18899.20 214
Fast-Effi-MVS+-dtu98.27 15198.09 16098.81 15098.43 29898.11 13297.61 20799.50 7498.64 9897.39 28897.52 31398.12 7299.95 1796.90 17498.71 30198.38 312
DELS-MVS98.27 15198.20 14798.48 19598.86 23396.70 22095.60 31599.20 18497.73 16098.45 21398.71 20797.50 12099.82 15098.21 9399.59 18398.93 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu98.26 15397.90 17899.35 6998.02 32399.49 598.02 16499.16 19998.29 12197.64 26797.99 28596.44 18199.95 1796.66 19698.93 29098.60 300
MVSFormer98.26 15398.43 11897.77 24898.88 23193.89 30299.39 1699.56 5699.11 6198.16 23198.13 27393.81 26199.97 499.26 3099.57 19299.43 143
MVS_111021_HR98.25 15598.08 16398.75 16299.09 18997.46 18695.97 29899.27 16797.60 17197.99 24698.25 26598.15 7199.38 33096.87 17799.57 19299.42 146
TAMVS98.24 15698.05 16598.80 15299.07 19397.18 20297.88 17898.81 26296.66 24199.17 11199.21 9894.81 23999.77 20096.96 16799.88 6099.44 139
diffmvspermissive98.22 15798.24 14498.17 22199.00 20695.44 25196.38 28399.58 4297.79 15798.53 20798.50 24396.76 16699.74 21797.95 11099.64 16699.34 182
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120698.21 15898.21 14698.20 21999.51 9095.43 25298.13 14999.32 14196.16 25898.93 14898.82 19196.00 19899.83 14097.32 14199.73 12799.36 176
VDDNet98.21 15897.95 17299.01 12999.58 6597.74 17299.01 6697.29 32599.67 998.97 13899.50 4990.45 29599.80 17097.88 11499.20 25799.48 122
IS-MVSNet98.19 16097.90 17899.08 11599.57 6997.97 14999.31 2698.32 29399.01 7998.98 13499.03 13591.59 28999.79 18395.49 26199.80 9599.48 122
MVS_Test98.18 16198.36 12997.67 25698.48 29394.73 27398.18 14499.02 22797.69 16398.04 24499.11 11997.22 13899.56 29298.57 7498.90 29298.71 291
TSAR-MVS + GP.98.18 16197.98 17098.77 15998.71 25797.88 15796.32 28698.66 27796.33 25199.23 10398.51 23997.48 12499.40 32697.16 14899.46 21999.02 242
CNVR-MVS98.17 16397.87 18099.07 11798.67 26998.24 12097.01 25098.93 23797.25 20897.62 26898.34 25997.27 13499.57 28996.42 21699.33 23799.39 161
PVSNet_Blended_VisFu98.17 16398.15 15598.22 21899.73 3695.15 26197.36 22999.68 2994.45 30298.99 13399.27 8796.87 15699.94 2697.13 15399.91 4899.57 78
HPM-MVS++copyleft98.10 16597.64 19799.48 5199.09 18999.13 5597.52 21798.75 27197.46 18796.90 30897.83 29696.01 19799.84 12695.82 24999.35 23499.46 131
APD-MVScopyleft98.10 16597.67 19299.42 5899.11 18498.93 7197.76 19199.28 16494.97 28998.72 18198.77 19997.04 14699.85 11093.79 30599.54 20099.49 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvs1_n98.09 16798.28 13997.52 27199.68 5393.47 31198.63 9599.93 395.41 28199.68 2799.64 2691.88 28899.48 31399.82 399.87 6399.62 54
MVP-Stereo98.08 16897.92 17698.57 18198.96 21396.79 21697.90 17799.18 19296.41 24998.46 21298.95 16195.93 20599.60 27996.51 21198.98 28699.31 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PMMVS298.07 16998.08 16398.04 23399.41 12294.59 27994.59 34699.40 11097.50 17998.82 16998.83 18896.83 15999.84 12697.50 13499.81 8499.71 33
ETV-MVS98.03 17097.86 18198.56 18598.69 26698.07 13997.51 21999.50 7498.10 13797.50 28095.51 35598.41 4799.88 7196.27 22599.24 25297.71 342
Effi-MVS+98.02 17197.82 18398.62 17498.53 28997.19 20197.33 23199.68 2997.30 20396.68 31697.46 31798.56 4099.80 17096.63 19798.20 31998.86 270
MSLP-MVS++98.02 17198.14 15797.64 26098.58 28295.19 26097.48 22199.23 18097.47 18297.90 25098.62 22797.04 14698.81 36497.55 12999.41 22698.94 259
EIA-MVS98.00 17397.74 18798.80 15298.72 25498.09 13398.05 16099.60 3997.39 19496.63 31895.55 35497.68 9999.80 17096.73 19099.27 24798.52 303
MCST-MVS98.00 17397.63 19899.10 11199.24 15198.17 12896.89 25998.73 27495.66 27297.92 24897.70 30397.17 14099.66 25996.18 23199.23 25399.47 129
K. test v398.00 17397.66 19599.03 12799.79 2497.56 18199.19 4892.47 36599.62 1699.52 4799.66 2289.61 30099.96 1199.25 3299.81 8499.56 82
HQP_MVS97.99 17697.67 19298.93 13799.19 16597.65 17797.77 18999.27 16798.20 12997.79 25997.98 28694.90 23399.70 23294.42 28599.51 20999.45 135
MDA-MVSNet-bldmvs97.94 17797.91 17798.06 23099.44 11494.96 26796.63 27299.15 20498.35 11398.83 16699.11 11994.31 25199.85 11096.60 19898.72 29999.37 170
Anonymous20240521197.90 17897.50 20599.08 11598.90 22598.25 11998.53 10896.16 34498.87 9099.11 11398.86 18190.40 29699.78 19497.36 13999.31 24099.19 219
LF4IMVS97.90 17897.69 19198.52 19099.17 17397.66 17697.19 24499.47 8996.31 25397.85 25598.20 27096.71 17099.52 30494.62 27799.72 13498.38 312
UnsupCasMVSNet_eth97.89 18097.60 20098.75 16299.31 13997.17 20397.62 20599.35 12898.72 9798.76 17798.68 21392.57 28199.74 21797.76 12495.60 36399.34 182
TinyColmap97.89 18097.98 17097.60 26298.86 23394.35 28396.21 29199.44 9897.45 18999.06 12098.88 17897.99 8299.28 34394.38 28999.58 18899.18 221
OMC-MVS97.88 18297.49 20699.04 12698.89 23098.63 8996.94 25499.25 17395.02 28798.53 20798.51 23997.27 13499.47 31693.50 31299.51 20999.01 243
CANet97.87 18397.76 18598.19 22097.75 33595.51 24896.76 26599.05 21997.74 15996.93 30298.21 26995.59 21599.89 6297.86 11699.93 3199.19 219
xiu_mvs_v1_base_debu97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
xiu_mvs_v1_base97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
xiu_mvs_v1_base_debi97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
NCCC97.86 18497.47 20999.05 12498.61 27798.07 13996.98 25298.90 24397.63 16797.04 29997.93 29195.99 20199.66 25995.31 26498.82 29599.43 143
PMVScopyleft91.26 2097.86 18497.94 17497.65 25899.71 4497.94 15498.52 10998.68 27698.99 8097.52 27899.35 7397.41 12698.18 37091.59 33999.67 15896.82 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
IterMVS-SCA-FT97.85 18998.18 15096.87 30199.27 14691.16 34795.53 31799.25 17399.10 6899.41 6499.35 7393.10 27099.96 1198.65 7099.94 2799.49 112
D2MVS97.84 19097.84 18297.83 24399.14 18094.74 27296.94 25498.88 24695.84 26998.89 15398.96 15794.40 24999.69 23697.55 12999.95 1999.05 235
CPTT-MVS97.84 19097.36 21499.27 8699.31 13998.46 10598.29 13499.27 16794.90 29197.83 25698.37 25594.90 23399.84 12693.85 30499.54 20099.51 105
mvs_anonymous97.83 19298.16 15496.87 30198.18 31591.89 33497.31 23298.90 24397.37 19698.83 16699.46 5596.28 18899.79 18398.90 5298.16 32398.95 255
h-mvs3397.77 19397.33 21899.10 11199.21 15897.84 16198.35 13198.57 28299.11 6198.58 19999.02 13688.65 30999.96 1198.11 9796.34 35699.49 112
test_vis1_rt97.75 19497.72 19097.83 24398.81 24396.35 22697.30 23399.69 2494.61 29697.87 25298.05 28296.26 18998.32 36998.74 6298.18 32098.82 273
IterMVS97.73 19598.11 15996.57 30999.24 15190.28 34995.52 31999.21 18298.86 9199.33 8199.33 7993.11 26999.94 2698.49 8099.94 2799.48 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvs197.72 19697.94 17497.07 29298.66 27492.39 32897.68 19899.81 1495.20 28599.54 4199.44 6091.56 29099.41 32599.78 799.77 10999.40 158
MSDG97.71 19797.52 20498.28 21498.91 22496.82 21594.42 34999.37 11997.65 16698.37 22298.29 26497.40 12799.33 33594.09 29699.22 25498.68 297
CDS-MVSNet97.69 19897.35 21598.69 16798.73 25297.02 20996.92 25898.75 27195.89 26898.59 19798.67 21592.08 28699.74 21796.72 19199.81 8499.32 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch97.68 19997.75 18697.45 27698.23 31393.78 30597.29 23498.84 25796.10 26098.64 18898.65 22096.04 19599.36 33196.84 18099.14 26699.20 214
Fast-Effi-MVS+97.67 20097.38 21298.57 18198.71 25797.43 18897.23 23899.45 9494.82 29396.13 33096.51 33798.52 4299.91 4796.19 22998.83 29498.37 314
EU-MVSNet97.66 20198.50 10595.13 33799.63 6285.84 36598.35 13198.21 29798.23 12599.54 4199.46 5595.02 23199.68 24598.24 9199.87 6399.87 9
MVS_030497.64 20297.35 21598.52 19097.87 33196.69 22198.59 10098.05 30797.44 19093.74 36598.85 18493.69 26599.88 7198.11 9799.81 8498.98 248
pmmvs597.64 20297.49 20698.08 22899.14 18095.12 26396.70 26999.05 21993.77 31598.62 19198.83 18893.23 26699.75 21298.33 8999.76 12099.36 176
N_pmnet97.63 20497.17 22498.99 13199.27 14697.86 15995.98 29793.41 36295.25 28399.47 5498.90 17195.63 21399.85 11096.91 16999.73 12799.27 200
mvsany_test197.60 20597.54 20297.77 24897.72 33695.35 25495.36 32497.13 32894.13 30999.71 2199.33 7997.93 8599.30 33997.60 12898.94 28998.67 298
YYNet197.60 20597.67 19297.39 28099.04 20193.04 31895.27 32598.38 29297.25 20898.92 14998.95 16195.48 22099.73 22196.99 16398.74 29799.41 149
MDA-MVSNet_test_wron97.60 20597.66 19597.41 27999.04 20193.09 31495.27 32598.42 28997.26 20798.88 15798.95 16195.43 22199.73 22197.02 16098.72 29999.41 149
pmmvs497.58 20897.28 21998.51 19298.84 23696.93 21395.40 32398.52 28593.60 31798.61 19398.65 22095.10 22999.60 27996.97 16699.79 10098.99 247
PVSNet_BlendedMVS97.55 20997.53 20397.60 26298.92 22193.77 30696.64 27199.43 10494.49 29897.62 26899.18 10496.82 16099.67 24894.73 27499.93 3199.36 176
ppachtmachnet_test97.50 21097.74 18796.78 30798.70 26191.23 34694.55 34799.05 21996.36 25099.21 10498.79 19696.39 18299.78 19496.74 18899.82 8099.34 182
FMVSNet397.50 21097.24 22198.29 21398.08 32195.83 24097.86 18298.91 24297.89 15098.95 14198.95 16187.06 31599.81 16397.77 12099.69 14799.23 209
CHOSEN 1792x268897.49 21297.14 22898.54 18999.68 5396.09 23396.50 27699.62 3591.58 34098.84 16598.97 15492.36 28299.88 7196.76 18699.95 1999.67 44
CLD-MVS97.49 21297.16 22598.48 19599.07 19397.03 20894.71 33999.21 18294.46 30098.06 24197.16 32797.57 11199.48 31394.46 28299.78 10598.95 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs297.46 21497.07 22998.64 17098.73 25297.33 19197.45 22497.64 31899.11 6198.58 19997.98 28688.65 30999.79 18398.11 9797.39 34098.81 277
Vis-MVSNet (Re-imp)97.46 21497.16 22598.34 20899.55 8096.10 23198.94 7398.44 28898.32 11798.16 23198.62 22788.76 30599.73 22193.88 30299.79 10099.18 221
jason97.45 21697.35 21597.76 25199.24 15193.93 29895.86 30698.42 28994.24 30698.50 20998.13 27394.82 23799.91 4797.22 14599.73 12799.43 143
jason: jason.
CL-MVSNet_self_test97.44 21797.22 22298.08 22898.57 28495.78 24294.30 35298.79 26596.58 24498.60 19598.19 27194.74 24499.64 26796.41 21798.84 29398.82 273
DSMNet-mixed97.42 21897.60 20096.87 30199.15 17991.46 33898.54 10799.12 20792.87 32897.58 27299.63 2796.21 19099.90 5295.74 25199.54 20099.27 200
USDC97.41 21997.40 21097.44 27798.94 21593.67 30895.17 32899.53 6894.03 31298.97 13899.10 12195.29 22399.34 33395.84 24899.73 12799.30 196
our_test_397.39 22097.73 18996.34 31398.70 26189.78 35194.61 34598.97 23496.50 24599.04 12798.85 18495.98 20299.84 12697.26 14499.67 15899.41 149
c3_l97.36 22197.37 21397.31 28198.09 32093.25 31395.01 33399.16 19997.05 22398.77 17598.72 20692.88 27599.64 26796.93 16899.76 12099.05 235
alignmvs97.35 22296.88 23998.78 15798.54 28798.09 13397.71 19597.69 31599.20 5497.59 27195.90 34988.12 31499.55 29598.18 9598.96 28798.70 293
Patchmtry97.35 22296.97 23398.50 19497.31 35496.47 22398.18 14498.92 24098.95 8598.78 17299.37 6985.44 33099.85 11095.96 24099.83 7799.17 225
DP-MVS Recon97.33 22496.92 23698.57 18199.09 18997.99 14596.79 26299.35 12893.18 32297.71 26398.07 28195.00 23299.31 33793.97 29899.13 26898.42 311
QAPM97.31 22596.81 24698.82 14898.80 24697.49 18499.06 6299.19 18890.22 35297.69 26599.16 11096.91 15499.90 5290.89 35099.41 22699.07 233
UnsupCasMVSNet_bld97.30 22696.92 23698.45 19899.28 14496.78 21996.20 29299.27 16795.42 27898.28 22598.30 26393.16 26899.71 22994.99 26897.37 34198.87 269
F-COLMAP97.30 22696.68 25399.14 10599.19 16598.39 10897.27 23799.30 15492.93 32696.62 31998.00 28495.73 21199.68 24592.62 32898.46 31299.35 180
1112_ss97.29 22896.86 24098.58 17999.34 13896.32 22796.75 26699.58 4293.14 32396.89 30997.48 31592.11 28599.86 9896.91 16999.54 20099.57 78
CANet_DTU97.26 22997.06 23097.84 24297.57 34394.65 27796.19 29398.79 26597.23 21495.14 35198.24 26693.22 26799.84 12697.34 14099.84 7099.04 239
Patchmatch-RL test97.26 22997.02 23297.99 23699.52 8895.53 24796.13 29499.71 2197.47 18299.27 9299.16 11084.30 33999.62 27297.89 11199.77 10998.81 277
CDPH-MVS97.26 22996.66 25699.07 11799.00 20698.15 12996.03 29699.01 23091.21 34697.79 25997.85 29596.89 15599.69 23692.75 32599.38 23199.39 161
PatchMatch-RL97.24 23296.78 24798.61 17699.03 20497.83 16296.36 28499.06 21693.49 32097.36 29097.78 29795.75 21099.49 31093.44 31398.77 29698.52 303
eth_miper_zixun_eth97.23 23397.25 22097.17 28798.00 32492.77 32294.71 33999.18 19297.27 20698.56 20298.74 20391.89 28799.69 23697.06 15999.81 8499.05 235
sss97.21 23496.93 23498.06 23098.83 23895.22 25996.75 26698.48 28794.49 29897.27 29197.90 29292.77 27899.80 17096.57 20199.32 23899.16 228
LFMVS97.20 23596.72 25098.64 17098.72 25496.95 21198.93 7494.14 36099.74 698.78 17299.01 14584.45 33699.73 22197.44 13599.27 24799.25 204
HyFIR lowres test97.19 23696.60 26198.96 13499.62 6497.28 19495.17 32899.50 7494.21 30799.01 13198.32 26286.61 31899.99 297.10 15599.84 7099.60 61
miper_lstm_enhance97.18 23797.16 22597.25 28598.16 31692.85 32095.15 33099.31 14697.25 20898.74 18098.78 19790.07 29799.78 19497.19 14699.80 9599.11 231
CNLPA97.17 23896.71 25198.55 18698.56 28598.05 14296.33 28598.93 23796.91 23097.06 29897.39 32094.38 25099.45 31991.66 33699.18 26298.14 321
xiu_mvs_v2_base97.16 23997.49 20696.17 31898.54 28792.46 32695.45 32198.84 25797.25 20897.48 28296.49 33898.31 5599.90 5296.34 22198.68 30496.15 364
AdaColmapbinary97.14 24096.71 25198.46 19798.34 30597.80 16896.95 25398.93 23795.58 27396.92 30397.66 30495.87 20799.53 30090.97 34799.14 26698.04 325
iter_conf_final97.10 24196.65 25898.45 19898.53 28996.08 23498.30 13399.11 20998.10 13798.85 16298.95 16179.38 36099.87 8998.68 6899.91 4899.40 158
train_agg97.10 24196.45 26699.07 11798.71 25798.08 13795.96 30099.03 22491.64 33895.85 33697.53 31196.47 17999.76 20593.67 30699.16 26399.36 176
OpenMVScopyleft96.65 797.09 24396.68 25398.32 20998.32 30697.16 20498.86 8099.37 11989.48 35696.29 32999.15 11496.56 17599.90 5292.90 31999.20 25797.89 330
PS-MVSNAJ97.08 24497.39 21196.16 32098.56 28592.46 32695.24 32798.85 25697.25 20897.49 28195.99 34798.07 7399.90 5296.37 21898.67 30596.12 365
miper_ehance_all_eth97.06 24597.03 23197.16 28997.83 33293.06 31594.66 34299.09 21395.99 26598.69 18298.45 24892.73 27999.61 27896.79 18299.03 27898.82 273
lupinMVS97.06 24596.86 24097.65 25898.88 23193.89 30295.48 32097.97 30893.53 31898.16 23197.58 30993.81 26199.91 4796.77 18599.57 19299.17 225
API-MVS97.04 24796.91 23897.42 27897.88 33098.23 12498.18 14498.50 28697.57 17397.39 28896.75 33496.77 16499.15 35290.16 35399.02 28194.88 370
cl____97.02 24896.83 24397.58 26497.82 33394.04 29294.66 34299.16 19997.04 22498.63 18998.71 20788.68 30899.69 23697.00 16199.81 8499.00 246
DIV-MVS_self_test97.02 24896.84 24297.58 26497.82 33394.03 29394.66 34299.16 19997.04 22498.63 18998.71 20788.69 30699.69 23697.00 16199.81 8499.01 243
RPMNet97.02 24896.93 23497.30 28297.71 33894.22 28498.11 15299.30 15499.37 3896.91 30599.34 7786.72 31799.87 8997.53 13297.36 34397.81 335
HQP-MVS97.00 25196.49 26598.55 18698.67 26996.79 21696.29 28799.04 22296.05 26195.55 34296.84 33293.84 25999.54 29892.82 32299.26 25099.32 189
FA-MVS(test-final)96.99 25296.82 24497.50 27398.70 26194.78 27099.34 1996.99 33195.07 28698.48 21199.33 7988.41 31299.65 26496.13 23598.92 29198.07 324
new_pmnet96.99 25296.76 24897.67 25698.72 25494.89 26895.95 30298.20 29892.62 33198.55 20498.54 23594.88 23699.52 30493.96 29999.44 22498.59 302
Test_1112_low_res96.99 25296.55 26398.31 21199.35 13695.47 25095.84 30999.53 6891.51 34296.80 31498.48 24691.36 29199.83 14096.58 19999.53 20499.62 54
PVSNet_Blended96.88 25596.68 25397.47 27598.92 22193.77 30694.71 33999.43 10490.98 34897.62 26897.36 32396.82 16099.67 24894.73 27499.56 19598.98 248
MVSTER96.86 25696.55 26397.79 24697.91 32894.21 28697.56 21398.87 24897.49 18199.06 12099.05 13180.72 35299.80 17098.44 8299.82 8099.37 170
BH-untuned96.83 25796.75 24997.08 29098.74 25193.33 31296.71 26898.26 29596.72 23898.44 21497.37 32295.20 22699.47 31691.89 33497.43 33998.44 309
BH-RMVSNet96.83 25796.58 26297.58 26498.47 29494.05 29096.67 27097.36 32196.70 24097.87 25297.98 28695.14 22899.44 32190.47 35298.58 31099.25 204
PAPM_NR96.82 25996.32 26998.30 21299.07 19396.69 22197.48 22198.76 26895.81 27096.61 32096.47 34094.12 25799.17 35090.82 35197.78 33399.06 234
MG-MVS96.77 26096.61 25997.26 28498.31 30793.06 31595.93 30398.12 30496.45 24897.92 24898.73 20493.77 26399.39 32891.19 34699.04 27799.33 187
test_yl96.69 26196.29 27097.90 23898.28 30895.24 25797.29 23497.36 32198.21 12698.17 22997.86 29386.27 32099.55 29594.87 27198.32 31498.89 265
DCV-MVSNet96.69 26196.29 27097.90 23898.28 30895.24 25797.29 23497.36 32198.21 12698.17 22997.86 29386.27 32099.55 29594.87 27198.32 31498.89 265
WTY-MVS96.67 26396.27 27297.87 24198.81 24394.61 27896.77 26497.92 31094.94 29097.12 29497.74 30091.11 29299.82 15093.89 30198.15 32499.18 221
PatchT96.65 26496.35 26797.54 26997.40 35195.32 25597.98 17096.64 34099.33 4396.89 30999.42 6384.32 33899.81 16397.69 12797.49 33697.48 348
TAPA-MVS96.21 1196.63 26595.95 27698.65 16998.93 21798.09 13396.93 25699.28 16483.58 36998.13 23597.78 29796.13 19299.40 32693.52 31099.29 24598.45 307
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet96.62 26696.25 27397.71 25599.04 20194.66 27699.16 5096.92 33697.23 21497.87 25299.10 12186.11 32499.65 26491.65 33799.21 25698.82 273
Patchmatch-test96.55 26796.34 26897.17 28798.35 30493.06 31598.40 12797.79 31197.33 19998.41 21798.67 21583.68 34399.69 23695.16 26699.31 24098.77 285
iter_conf0596.54 26896.07 27497.92 23797.90 32994.50 28097.87 18199.14 20597.73 16098.89 15398.95 16175.75 37099.87 8998.50 7999.92 4299.40 158
PMMVS96.51 26995.98 27598.09 22597.53 34695.84 23994.92 33598.84 25791.58 34096.05 33495.58 35395.68 21299.66 25995.59 25898.09 32798.76 287
PLCcopyleft94.65 1696.51 26995.73 28098.85 14598.75 25097.91 15596.42 28199.06 21690.94 34995.59 33997.38 32194.41 24899.59 28390.93 34898.04 33199.05 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t96.50 27195.77 27898.69 16799.48 10797.43 18897.84 18499.55 6081.42 37196.51 32398.58 23295.53 21699.67 24893.41 31499.58 18898.98 248
test111196.49 27296.82 24495.52 33199.42 12087.08 36299.22 4187.14 37599.11 6199.46 5599.58 3488.69 30699.86 9898.80 5799.95 1999.62 54
MAR-MVS96.47 27395.70 28198.79 15497.92 32799.12 5798.28 13598.60 28192.16 33695.54 34596.17 34594.77 24399.52 30489.62 35598.23 31797.72 341
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ECVR-MVScopyleft96.42 27496.61 25995.85 32399.38 12588.18 35899.22 4186.00 37799.08 7399.36 7699.57 3588.47 31199.82 15098.52 7899.95 1999.54 93
SCA96.41 27596.66 25695.67 32798.24 31188.35 35695.85 30896.88 33796.11 25997.67 26698.67 21593.10 27099.85 11094.16 29199.22 25498.81 277
DPM-MVS96.32 27695.59 28698.51 19298.76 24897.21 19994.54 34898.26 29591.94 33796.37 32797.25 32593.06 27299.43 32291.42 34298.74 29798.89 265
CMPMVSbinary75.91 2396.29 27795.44 29098.84 14696.25 37098.69 8897.02 24999.12 20788.90 35997.83 25698.86 18189.51 30198.90 36291.92 33399.51 20998.92 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet96.28 27895.95 27697.28 28397.71 33894.22 28498.11 15298.92 24092.31 33496.91 30599.37 6985.44 33099.81 16397.39 13897.36 34397.81 335
CVMVSNet96.25 27997.21 22393.38 35399.10 18680.56 37997.20 24298.19 30096.94 22899.00 13299.02 13689.50 30299.80 17096.36 22099.59 18399.78 20
AUN-MVS96.24 28095.45 28998.60 17798.70 26197.22 19897.38 22797.65 31695.95 26695.53 34697.96 29082.11 35199.79 18396.31 22297.44 33898.80 282
EPNet96.14 28195.44 29098.25 21590.76 38095.50 24997.92 17494.65 35398.97 8292.98 36698.85 18489.12 30499.87 8995.99 23899.68 15299.39 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d96.06 28297.62 19991.38 35698.65 27698.57 9698.85 8196.95 33496.86 23299.90 699.16 11099.18 1198.40 36889.23 35699.77 10977.18 374
miper_enhance_ethall96.01 28395.74 27996.81 30596.41 36892.27 33193.69 36198.89 24591.14 34798.30 22397.35 32490.58 29499.58 28796.31 22299.03 27898.60 300
FMVSNet596.01 28395.20 29898.41 20297.53 34696.10 23198.74 8499.50 7497.22 21798.03 24599.04 13369.80 37499.88 7197.27 14399.71 13999.25 204
baseline195.96 28595.44 29097.52 27198.51 29293.99 29698.39 12896.09 34698.21 12698.40 22197.76 29986.88 31699.63 27095.42 26289.27 37498.95 255
HY-MVS95.94 1395.90 28695.35 29497.55 26897.95 32594.79 26998.81 8396.94 33592.28 33595.17 35098.57 23389.90 29999.75 21291.20 34597.33 34598.10 322
GA-MVS95.86 28795.32 29597.49 27498.60 27994.15 28993.83 35997.93 30995.49 27696.68 31697.42 31983.21 34499.30 33996.22 22798.55 31199.01 243
OpenMVS_ROBcopyleft95.38 1495.84 28895.18 29997.81 24598.41 30297.15 20597.37 22898.62 28083.86 36898.65 18798.37 25594.29 25299.68 24588.41 35798.62 30896.60 359
cl2295.79 28995.39 29396.98 29596.77 36392.79 32194.40 35098.53 28494.59 29797.89 25198.17 27282.82 34899.24 34596.37 21899.03 27898.92 261
131495.74 29095.60 28596.17 31897.53 34692.75 32398.07 15798.31 29491.22 34594.25 35796.68 33595.53 21699.03 35491.64 33897.18 34696.74 357
PVSNet93.40 1795.67 29195.70 28195.57 33098.83 23888.57 35492.50 36697.72 31392.69 33096.49 32696.44 34193.72 26499.43 32293.61 30799.28 24698.71 291
FE-MVS95.66 29294.95 30497.77 24898.53 28995.28 25699.40 1596.09 34693.11 32497.96 24799.26 8979.10 36299.77 20092.40 33198.71 30198.27 316
tttt051795.64 29394.98 30297.64 26099.36 13293.81 30498.72 8790.47 37198.08 13998.67 18498.34 25973.88 37299.92 3997.77 12099.51 20999.20 214
PatchmatchNetpermissive95.58 29495.67 28395.30 33697.34 35387.32 36197.65 20396.65 33995.30 28297.07 29798.69 21184.77 33399.75 21294.97 26998.64 30698.83 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS95.55 29595.12 30096.86 30497.54 34593.94 29796.49 27796.53 34194.36 30597.03 30096.61 33694.26 25399.16 35186.91 36196.31 35797.47 349
JIA-IIPM95.52 29695.03 30197.00 29396.85 36194.03 29396.93 25695.82 34999.20 5494.63 35599.71 1683.09 34599.60 27994.42 28594.64 36797.36 350
CHOSEN 280x42095.51 29795.47 28795.65 32998.25 31088.27 35793.25 36398.88 24693.53 31894.65 35497.15 32886.17 32299.93 3197.41 13799.93 3198.73 290
ADS-MVSNet295.43 29894.98 30296.76 30898.14 31791.74 33597.92 17497.76 31290.23 35096.51 32398.91 16885.61 32799.85 11092.88 32096.90 34998.69 294
PAPR95.29 29994.47 30897.75 25297.50 35095.14 26294.89 33698.71 27591.39 34495.35 34995.48 35694.57 24699.14 35384.95 36497.37 34198.97 252
thisisatest053095.27 30094.45 30997.74 25399.19 16594.37 28297.86 18290.20 37297.17 21898.22 22797.65 30573.53 37399.90 5296.90 17499.35 23498.95 255
ADS-MVSNet95.24 30194.93 30596.18 31798.14 31790.10 35097.92 17497.32 32490.23 35096.51 32398.91 16885.61 32799.74 21792.88 32096.90 34998.69 294
BH-w/o95.13 30294.89 30695.86 32298.20 31491.31 34295.65 31397.37 32093.64 31696.52 32295.70 35293.04 27399.02 35588.10 35895.82 36297.24 351
tpmrst95.07 30395.46 28893.91 34697.11 35784.36 37297.62 20596.96 33394.98 28896.35 32898.80 19485.46 32999.59 28395.60 25796.23 35897.79 338
pmmvs395.03 30494.40 31096.93 29797.70 34092.53 32595.08 33197.71 31488.57 36097.71 26398.08 28079.39 35999.82 15096.19 22999.11 27298.43 310
tpmvs95.02 30595.25 29694.33 34296.39 36985.87 36498.08 15696.83 33895.46 27795.51 34798.69 21185.91 32599.53 30094.16 29196.23 35897.58 346
EPNet_dtu94.93 30694.78 30795.38 33593.58 37787.68 36096.78 26395.69 35197.35 19889.14 37398.09 27988.15 31399.49 31094.95 27099.30 24398.98 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas94.79 30794.33 31396.15 32196.02 37392.36 33092.34 36899.26 17285.34 36795.08 35294.96 36492.96 27498.53 36794.41 28898.59 30997.56 347
tpm94.67 30894.34 31295.66 32897.68 34288.42 35597.88 17894.90 35294.46 30096.03 33598.56 23478.66 36399.79 18395.88 24295.01 36698.78 284
test0.0.03 194.51 30993.69 31896.99 29496.05 37193.61 31094.97 33493.49 36196.17 25697.57 27494.88 36582.30 34999.01 35793.60 30894.17 37098.37 314
thres600view794.45 31093.83 31696.29 31499.06 19791.53 33797.99 16994.24 35898.34 11497.44 28595.01 36179.84 35599.67 24884.33 36598.23 31797.66 343
PCF-MVS92.86 1894.36 31193.00 32898.42 20198.70 26197.56 18193.16 36499.11 20979.59 37297.55 27597.43 31892.19 28399.73 22179.85 37399.45 22197.97 329
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata94.32 31292.59 33099.53 3499.46 11099.21 2898.65 9399.34 13498.62 10297.54 27645.85 37597.50 12099.83 14096.79 18299.53 20499.56 82
MVS-HIRNet94.32 31295.62 28490.42 35798.46 29575.36 38096.29 28789.13 37495.25 28395.38 34899.75 1192.88 27599.19 34994.07 29799.39 22896.72 358
ET-MVSNet_ETH3D94.30 31493.21 32497.58 26498.14 31794.47 28194.78 33893.24 36494.72 29489.56 37295.87 35078.57 36599.81 16396.91 16997.11 34898.46 305
thres100view90094.19 31593.67 31995.75 32699.06 19791.35 34198.03 16394.24 35898.33 11597.40 28794.98 36379.84 35599.62 27283.05 36798.08 32896.29 360
E-PMN94.17 31694.37 31193.58 35096.86 36085.71 36790.11 37097.07 32998.17 13297.82 25897.19 32684.62 33598.94 35989.77 35497.68 33596.09 366
thres40094.14 31793.44 32196.24 31698.93 21791.44 33997.60 20894.29 35697.94 14597.10 29594.31 36979.67 35799.62 27283.05 36798.08 32897.66 343
thisisatest051594.12 31893.16 32596.97 29698.60 27992.90 31993.77 36090.61 37094.10 31096.91 30595.87 35074.99 37199.80 17094.52 28099.12 27198.20 318
tfpn200view994.03 31993.44 32195.78 32598.93 21791.44 33997.60 20894.29 35697.94 14597.10 29594.31 36979.67 35799.62 27283.05 36798.08 32896.29 360
CostFormer93.97 32093.78 31794.51 34197.53 34685.83 36697.98 17095.96 34889.29 35894.99 35398.63 22578.63 36499.62 27294.54 27996.50 35498.09 323
test-LLR93.90 32193.85 31594.04 34496.53 36584.62 37094.05 35692.39 36696.17 25694.12 35995.07 35982.30 34999.67 24895.87 24598.18 32097.82 333
EMVS93.83 32294.02 31493.23 35496.83 36284.96 36889.77 37196.32 34397.92 14797.43 28696.36 34486.17 32298.93 36087.68 35997.73 33495.81 367
baseline293.73 32392.83 32996.42 31297.70 34091.28 34496.84 26189.77 37393.96 31492.44 36795.93 34879.14 36199.77 20092.94 31896.76 35398.21 317
thres20093.72 32493.14 32695.46 33498.66 27491.29 34396.61 27394.63 35497.39 19496.83 31293.71 37179.88 35499.56 29282.40 37098.13 32595.54 369
EPMVS93.72 32493.27 32395.09 33896.04 37287.76 35998.13 14985.01 37894.69 29596.92 30398.64 22378.47 36799.31 33795.04 26796.46 35598.20 318
dp93.47 32693.59 32093.13 35596.64 36481.62 37897.66 20196.42 34292.80 32996.11 33198.64 22378.55 36699.59 28393.31 31592.18 37398.16 320
FPMVS93.44 32792.23 33297.08 29099.25 15097.86 15995.61 31497.16 32792.90 32793.76 36498.65 22075.94 36995.66 37479.30 37497.49 33697.73 340
tpm cat193.29 32893.13 32793.75 34897.39 35284.74 36997.39 22697.65 31683.39 37094.16 35898.41 25082.86 34799.39 32891.56 34095.35 36597.14 352
MVS93.19 32992.09 33396.50 31196.91 35994.03 29398.07 15798.06 30668.01 37394.56 35696.48 33995.96 20499.30 33983.84 36696.89 35196.17 362
tpm293.09 33092.58 33194.62 34097.56 34486.53 36397.66 20195.79 35086.15 36594.07 36198.23 26875.95 36899.53 30090.91 34996.86 35297.81 335
KD-MVS_2432*160092.87 33191.99 33495.51 33291.37 37889.27 35294.07 35498.14 30295.42 27897.25 29296.44 34167.86 37699.24 34591.28 34396.08 36098.02 326
miper_refine_blended92.87 33191.99 33495.51 33291.37 37889.27 35294.07 35498.14 30295.42 27897.25 29296.44 34167.86 37699.24 34591.28 34396.08 36098.02 326
MVEpermissive83.40 2292.50 33391.92 33694.25 34398.83 23891.64 33692.71 36583.52 37995.92 26786.46 37695.46 35795.20 22695.40 37580.51 37298.64 30695.73 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250692.39 33491.89 33793.89 34799.38 12582.28 37699.32 2266.03 38399.08 7398.77 17599.57 3566.26 38099.84 12698.71 6599.95 1999.54 93
gg-mvs-nofinetune92.37 33591.20 34095.85 32395.80 37492.38 32999.31 2681.84 38099.75 591.83 36999.74 1268.29 37599.02 35587.15 36097.12 34796.16 363
test-mter92.33 33691.76 33994.04 34496.53 36584.62 37094.05 35692.39 36694.00 31394.12 35995.07 35965.63 38299.67 24895.87 24598.18 32097.82 333
IB-MVS91.63 1992.24 33790.90 34196.27 31597.22 35691.24 34594.36 35193.33 36392.37 33392.24 36894.58 36866.20 38199.89 6293.16 31794.63 36897.66 343
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,192.19 33891.77 33893.46 35196.48 36782.80 37594.05 35691.52 36994.45 30294.00 36294.88 36566.65 37999.56 29295.78 25098.11 32698.02 326
PAPM91.88 33990.34 34296.51 31098.06 32292.56 32492.44 36797.17 32686.35 36490.38 37196.01 34686.61 31899.21 34870.65 37695.43 36497.75 339
PVSNet_089.98 2191.15 34090.30 34393.70 34997.72 33684.34 37390.24 36997.42 31990.20 35393.79 36393.09 37290.90 29398.89 36386.57 36272.76 37697.87 332
EGC-MVSNET85.24 34180.54 34499.34 7299.77 2799.20 3499.08 5899.29 16112.08 37720.84 37899.42 6397.55 11399.85 11097.08 15699.72 13498.96 254
test_method79.78 34279.50 34580.62 35880.21 38145.76 38370.82 37298.41 29131.08 37680.89 37797.71 30184.85 33297.37 37291.51 34180.03 37598.75 288
tmp_tt78.77 34378.73 34678.90 35958.45 38274.76 38294.20 35378.26 38239.16 37586.71 37592.82 37380.50 35375.19 37886.16 36392.29 37286.74 373
cdsmvs_eth3d_5k24.66 34432.88 3470.00 3620.00 3850.00 3860.00 37399.10 2110.00 3800.00 38197.58 30999.21 100.00 3810.00 3790.00 3790.00 377
testmvs17.12 34520.53 3486.87 36112.05 3834.20 38593.62 3626.73 3844.62 37910.41 37924.33 3768.28 3843.56 3809.69 37815.07 37712.86 376
test12317.04 34620.11 3497.82 36010.25 3844.91 38494.80 3374.47 3854.93 37810.00 38024.28 3779.69 3833.64 37910.14 37712.43 37814.92 375
pcd_1.5k_mvsjas8.17 34710.90 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38098.07 730.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.12 34810.83 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38197.48 3150.00 3850.00 3810.00 3790.00 3790.00 377
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.73 3699.67 299.43 1199.54 6599.43 3399.26 96
MSC_two_6792asdad99.32 7898.43 29898.37 11198.86 25399.89 6297.14 15199.60 17999.71 33
PC_three_145293.27 32199.40 6798.54 23598.22 6197.00 37395.17 26599.45 22199.49 112
No_MVS99.32 7898.43 29898.37 11198.86 25399.89 6297.14 15199.60 17999.71 33
test_one_060199.39 12499.20 3499.31 14698.49 10998.66 18699.02 13697.64 105
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.01 20598.84 7599.07 21594.10 31098.05 24398.12 27596.36 18699.86 9892.70 32799.19 260
RE-MVS-def98.58 9799.20 16299.38 898.48 11999.30 15498.64 9898.95 14198.96 15797.75 9696.56 20599.39 22899.45 135
IU-MVS99.49 10099.15 4798.87 24892.97 32599.41 6496.76 18699.62 17299.66 45
OPU-MVS98.82 14898.59 28198.30 11698.10 15498.52 23898.18 6598.75 36594.62 27799.48 21899.41 149
test_241102_TWO99.30 15498.03 14099.26 9699.02 13697.51 11999.88 7196.91 16999.60 17999.66 45
test_241102_ONE99.49 10099.17 3999.31 14697.98 14299.66 2998.90 17198.36 5099.48 313
9.1497.78 18499.07 19397.53 21699.32 14195.53 27598.54 20698.70 21097.58 11099.76 20594.32 29099.46 219
save fliter99.11 18497.97 14996.53 27599.02 22798.24 124
test_0728_THIRD98.17 13299.08 11899.02 13697.89 8699.88 7197.07 15799.71 13999.70 38
test_0728_SECOND99.60 1199.50 9399.23 2698.02 16499.32 14199.88 7196.99 16399.63 16999.68 41
test072699.50 9399.21 2898.17 14799.35 12897.97 14399.26 9699.06 12497.61 108
GSMVS98.81 277
test_part299.36 13299.10 6099.05 125
sam_mvs184.74 33498.81 277
sam_mvs84.29 340
ambc98.24 21798.82 24195.97 23698.62 9799.00 23299.27 9299.21 9896.99 15199.50 30996.55 20899.50 21699.26 203
MTGPAbinary99.20 184
test_post197.59 21020.48 37983.07 34699.66 25994.16 291
test_post21.25 37883.86 34299.70 232
patchmatchnet-post98.77 19984.37 33799.85 110
GG-mvs-BLEND94.76 33994.54 37692.13 33399.31 2680.47 38188.73 37491.01 37467.59 37898.16 37182.30 37194.53 36993.98 371
MTMP97.93 17391.91 368
gm-plane-assit94.83 37581.97 37788.07 36294.99 36299.60 27991.76 335
test9_res93.28 31699.15 26599.38 168
TEST998.71 25798.08 13795.96 30099.03 22491.40 34395.85 33697.53 31196.52 17799.76 205
test_898.67 26998.01 14495.91 30599.02 22791.64 33895.79 33897.50 31496.47 17999.76 205
agg_prior292.50 33099.16 26399.37 170
agg_prior98.68 26897.99 14599.01 23095.59 33999.77 200
TestCases99.16 10299.50 9398.55 9799.58 4296.80 23398.88 15799.06 12497.65 10299.57 28994.45 28399.61 17799.37 170
test_prior497.97 14995.86 306
test_prior295.74 31196.48 24796.11 33197.63 30795.92 20694.16 29199.20 257
test_prior98.95 13598.69 26697.95 15399.03 22499.59 28399.30 196
旧先验295.76 31088.56 36197.52 27899.66 25994.48 281
新几何295.93 303
新几何198.91 14098.94 21597.76 17098.76 26887.58 36396.75 31598.10 27794.80 24099.78 19492.73 32699.00 28399.20 214
旧先验198.82 24197.45 18798.76 26898.34 25995.50 21999.01 28299.23 209
无先验95.74 31198.74 27389.38 35799.73 22192.38 33299.22 213
原ACMM295.53 317
原ACMM198.35 20798.90 22596.25 22998.83 26192.48 33296.07 33398.10 27795.39 22299.71 22992.61 32998.99 28499.08 232
test22298.92 22196.93 21395.54 31698.78 26785.72 36696.86 31198.11 27694.43 24799.10 27399.23 209
testdata299.79 18392.80 324
segment_acmp97.02 149
testdata98.09 22598.93 21795.40 25398.80 26490.08 35497.45 28498.37 25595.26 22499.70 23293.58 30998.95 28899.17 225
testdata195.44 32296.32 252
test1298.93 13798.58 28297.83 16298.66 27796.53 32195.51 21899.69 23699.13 26899.27 200
plane_prior799.19 16597.87 158
plane_prior698.99 20997.70 17594.90 233
plane_prior599.27 16799.70 23294.42 28599.51 20999.45 135
plane_prior497.98 286
plane_prior397.78 16997.41 19297.79 259
plane_prior297.77 18998.20 129
plane_prior199.05 200
plane_prior97.65 17797.07 24896.72 23899.36 232
n20.00 386
nn0.00 386
door-mid99.57 49
lessismore_v098.97 13399.73 3697.53 18386.71 37699.37 7499.52 4789.93 29899.92 3998.99 4899.72 13499.44 139
LGP-MVS_train99.47 5499.57 6998.97 6699.48 8396.60 24299.10 11699.06 12498.71 3099.83 14095.58 25999.78 10599.62 54
test1198.87 248
door99.41 108
HQP5-MVS96.79 216
HQP-NCC98.67 26996.29 28796.05 26195.55 342
ACMP_Plane98.67 26996.29 28796.05 26195.55 342
BP-MVS92.82 322
HQP4-MVS95.56 34199.54 29899.32 189
HQP3-MVS99.04 22299.26 250
HQP2-MVS93.84 259
NP-MVS98.84 23697.39 19096.84 332
MDTV_nov1_ep13_2view74.92 38197.69 19790.06 35597.75 26285.78 32693.52 31098.69 294
MDTV_nov1_ep1395.22 29797.06 35883.20 37497.74 19396.16 34494.37 30496.99 30198.83 18883.95 34199.53 30093.90 30097.95 332
ACMMP++_ref99.77 109
ACMMP++99.68 152
Test By Simon96.52 177
ITE_SJBPF98.87 14399.22 15698.48 10499.35 12897.50 17998.28 22598.60 23097.64 10599.35 33293.86 30399.27 24798.79 283
DeepMVS_CXcopyleft93.44 35298.24 31194.21 28694.34 35564.28 37491.34 37094.87 36789.45 30392.77 37777.54 37593.14 37193.35 372