This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 495.96 10199.33 2292.62 27100.00 198.99 2599.93 199.98 6
NCCC98.12 598.11 398.13 2599.76 694.46 5399.81 1297.88 5896.54 1398.84 2499.46 1092.55 2899.98 998.25 5099.93 199.94 18
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9293.01 7499.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
PC_three_145294.60 3799.41 499.12 4995.50 799.96 2899.84 299.92 399.97 7
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3395.12 899.97 2199.90 199.92 399.99 1
MSLP-MVS++97.50 1797.45 1897.63 4199.65 1693.21 7999.70 2798.13 4294.61 3697.78 5899.46 1089.85 5999.81 7997.97 5499.91 699.88 26
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8297.72 8394.50 3898.64 3099.54 393.32 2099.97 2199.58 1199.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.46 198.38 198.72 1099.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 26100.00 198.99 2599.90 799.96 10
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5999.87 999.91 21
HPM-MVS++copyleft97.72 1297.59 1398.14 2499.53 4094.76 4599.19 9297.75 7895.66 2498.21 4299.29 2391.10 3699.99 597.68 6099.87 999.68 60
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11599.06 1094.45 4196.42 9498.70 9888.81 7399.74 9195.35 11499.86 1299.97 7
MSP-MVS97.77 1098.18 296.53 9999.54 3690.14 14899.41 6997.70 8895.46 2898.60 3199.19 3395.71 599.49 11598.15 5299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
train_agg97.20 2397.08 2397.57 4599.57 3393.17 8099.38 7297.66 9790.18 14498.39 3799.18 3690.94 3999.66 9798.58 3699.85 1399.88 26
MSC_two_6792asdad99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 6199.16 9897.65 10489.55 16699.22 1299.52 890.34 5399.99 598.32 4799.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.97.44 1897.46 1797.39 5299.12 6593.49 7498.52 17997.50 13894.46 3998.99 1798.64 10291.58 3399.08 15198.49 4099.83 1599.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_241102_TWO97.72 8394.17 4499.23 1099.54 393.14 2599.98 999.70 599.82 1999.99 1
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14393.95 4999.07 1599.46 1093.18 2399.97 2199.64 899.82 1999.69 58
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 7499.07 1599.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9299.98 999.64 899.82 1999.96 10
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8394.17 4499.30 899.54 393.32 2099.98 999.70 599.81 2399.99 1
IU-MVS99.63 1895.38 2497.73 8295.54 2699.54 399.69 799.81 2399.99 1
test_prior299.57 4291.43 11298.12 4698.97 6590.43 4998.33 4699.81 23
DPM-MVS97.86 897.25 2299.68 198.25 9899.10 199.76 2197.78 7596.61 1298.15 4399.53 793.62 17100.00 191.79 17399.80 2699.94 18
APDe-MVScopyleft97.53 1597.47 1697.70 3999.58 3093.63 6999.56 4397.52 13393.59 6498.01 5299.12 4990.80 4499.55 10999.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CDPH-MVS96.56 4496.18 5097.70 3999.59 2893.92 6599.13 10997.44 15089.02 17997.90 5599.22 3088.90 7299.49 11594.63 13399.79 2799.68 60
region2R96.30 5196.17 5396.70 8799.70 790.31 14299.46 5997.66 9790.55 13497.07 7399.07 5486.85 11199.97 2195.43 11299.74 2999.81 35
SD-MVS97.51 1697.40 1997.81 3699.01 7293.79 6899.33 8097.38 15793.73 6098.83 2599.02 6190.87 4399.88 5498.69 3099.74 2999.77 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVSMamba_PlusPlus95.73 7695.15 8497.44 4797.28 13994.35 5998.26 21296.75 21083.09 31097.84 5695.97 22489.59 6398.48 18297.86 5799.73 3199.49 85
balanced_conf0396.83 3296.51 3997.81 3697.60 12295.15 3498.40 19796.77 20993.00 7698.69 2896.19 21689.75 6198.76 16598.45 4299.72 3299.51 82
HFP-MVS96.42 4796.26 4796.90 7599.69 890.96 12899.47 5597.81 6990.54 13596.88 7799.05 5787.57 9299.96 2895.65 10499.72 3299.78 41
ACMMPR96.28 5296.14 5796.73 8499.68 990.47 14099.47 5597.80 7190.54 13596.83 8299.03 5986.51 12399.95 3295.65 10499.72 3299.75 49
CP-MVS96.22 5396.15 5696.42 10499.67 1089.62 16699.70 2797.61 11290.07 15096.00 10099.16 3987.43 9599.92 4196.03 9999.72 3299.70 55
test1297.83 3599.33 5394.45 5497.55 12597.56 5988.60 7699.50 11499.71 3699.55 77
ZD-MVS99.67 1093.28 7797.61 11287.78 22297.41 6399.16 3990.15 5699.56 10898.35 4599.70 37
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5498.85 13797.64 10596.51 1695.88 10499.39 1887.35 10199.99 596.61 8599.69 3899.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft96.95 2996.72 3597.63 4199.51 4193.58 7099.16 9897.44 15090.08 14998.59 3299.07 5489.06 6799.42 12697.92 5599.66 3999.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3899.44 6297.45 14689.60 16298.70 2799.42 1790.42 5099.72 9298.47 4199.65 4099.77 46
HPM-MVScopyleft95.41 8495.22 8295.99 12999.29 5589.14 17399.17 9797.09 18987.28 23695.40 11798.48 11884.93 15099.38 13195.64 10899.65 4099.47 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test22298.32 9691.21 11698.08 23297.58 12083.74 29895.87 10599.02 6186.74 11499.64 4299.81 35
mPP-MVS95.90 6795.75 6896.38 10799.58 3089.41 17099.26 8797.41 15490.66 12794.82 12698.95 7386.15 13199.98 995.24 11999.64 4299.74 50
SteuartSystems-ACMMP97.25 1997.34 2197.01 6697.38 13291.46 11399.75 2297.66 9794.14 4898.13 4499.26 2492.16 3299.66 9797.91 5699.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS_fast94.89 9694.62 9495.70 13999.11 6688.44 20199.14 10697.11 18585.82 26495.69 11298.47 11983.46 16899.32 13893.16 15999.63 4599.35 99
9.1496.87 2799.34 5099.50 5197.49 14089.41 17198.59 3299.43 1689.78 6099.69 9498.69 3099.62 46
新几何197.40 5198.92 8192.51 9897.77 7785.52 26996.69 8999.06 5688.08 8699.89 5384.88 25399.62 4699.79 38
原ACMM196.18 11799.03 7190.08 15197.63 10988.98 18097.00 7598.97 6588.14 8599.71 9388.23 21599.62 4698.76 158
PHI-MVS96.65 4096.46 4297.21 6099.34 5091.77 10699.70 2798.05 4686.48 25698.05 4999.20 3289.33 6599.96 2898.38 4399.62 4699.90 22
DELS-MVS97.12 2596.60 3898.68 1198.03 10896.57 1199.84 997.84 6296.36 1895.20 12198.24 12888.17 8299.83 7396.11 9799.60 5099.64 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVScopyleft96.00 5995.82 6396.54 9899.47 4690.13 15099.36 7697.41 15490.64 13095.49 11698.95 7385.51 14099.98 996.00 10099.59 5199.52 80
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.09 5695.81 6596.95 7499.42 4791.19 11799.55 4497.53 12989.72 15795.86 10698.94 7686.59 11999.97 2195.13 12099.56 5299.68 60
MVS_111021_HR96.69 3696.69 3696.72 8698.58 9291.00 12799.14 10699.45 193.86 5595.15 12298.73 9288.48 7799.76 8997.23 7099.56 5299.40 93
DeepPCF-MVS93.56 196.55 4597.84 1092.68 23898.71 8978.11 36099.70 2797.71 8798.18 197.36 6599.76 190.37 5299.94 3599.27 1699.54 5499.99 1
CPTT-MVS94.60 11194.43 9995.09 16399.66 1286.85 23699.44 6297.47 14383.22 30794.34 13898.96 7082.50 18999.55 10994.81 12899.50 5598.88 143
MP-MVS-pluss95.80 7095.30 7997.29 5598.95 7792.66 9398.59 17397.14 18188.95 18293.12 15899.25 2685.62 13799.94 3596.56 8799.48 5699.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP96.59 4196.18 5097.81 3698.82 8593.55 7198.88 13697.59 11890.66 12797.98 5399.14 4586.59 119100.00 196.47 8999.46 5799.89 25
PGM-MVS95.85 6895.65 7396.45 10299.50 4289.77 16398.22 21598.90 1389.19 17496.74 8798.95 7385.91 13599.92 4193.94 14299.46 5799.66 64
testdata95.26 15898.20 10187.28 22897.60 11485.21 27398.48 3599.15 4288.15 8498.72 16990.29 19099.45 5999.78 41
SR-MVS96.13 5596.16 5596.07 12399.42 4789.04 17698.59 17397.33 16490.44 13896.84 8099.12 4986.75 11399.41 12997.47 6399.44 6099.76 48
XVS96.47 4696.37 4496.77 8099.62 2290.66 13699.43 6697.58 12092.41 9196.86 7898.96 7087.37 9799.87 5895.65 10499.43 6199.78 41
X-MVStestdata90.69 20888.66 23196.77 8099.62 2290.66 13699.43 6697.58 12092.41 9196.86 7829.59 42487.37 9799.87 5895.65 10499.43 6199.78 41
MVS93.92 12892.28 15898.83 795.69 21096.82 896.22 31498.17 3684.89 28284.34 25998.61 10679.32 22799.83 7393.88 14499.43 6199.86 29
MTAPA96.09 5695.80 6696.96 7399.29 5591.19 11797.23 27697.45 14692.58 8594.39 13699.24 2886.43 12599.99 596.22 9299.40 6499.71 54
旧先验198.97 7392.90 9197.74 7999.15 4291.05 3899.33 6599.60 73
PAPM_NR95.43 8295.05 8996.57 9799.42 4790.14 14898.58 17597.51 13590.65 12992.44 16798.90 7987.77 9199.90 5090.88 18299.32 6699.68 60
SR-MVS-dyc-post95.75 7495.86 6295.41 15099.22 5987.26 23198.40 19797.21 17389.63 16096.67 9098.97 6586.73 11599.36 13396.62 8399.31 6799.60 73
RE-MVS-def95.70 6999.22 5987.26 23198.40 19797.21 17389.63 16096.67 9098.97 6585.24 14796.62 8399.31 6799.60 73
PAPM96.35 4895.94 5997.58 4394.10 27195.25 2698.93 13198.17 3694.26 4393.94 14598.72 9489.68 6297.88 21496.36 9099.29 6999.62 72
APD-MVS_3200maxsize95.64 7995.65 7395.62 14499.24 5887.80 21198.42 19297.22 17288.93 18496.64 9298.98 6485.49 14199.36 13396.68 8299.27 7099.70 55
reproduce-ours96.66 3796.80 3296.22 11398.95 7789.03 17898.62 16597.38 15793.42 6696.80 8599.36 1988.92 7099.80 8198.51 3899.26 7199.82 32
our_new_method96.66 3796.80 3296.22 11398.95 7789.03 17898.62 16597.38 15793.42 6696.80 8599.36 1988.92 7099.80 8198.51 3899.26 7199.82 32
3Dnovator87.35 1193.17 15691.77 17297.37 5395.41 22093.07 8398.82 14097.85 6191.53 10882.56 28097.58 15371.97 28199.82 7691.01 18099.23 7399.22 112
patch_mono-297.10 2697.97 894.49 18599.21 6183.73 30199.62 3898.25 3195.28 3099.38 698.91 7892.28 3199.94 3599.61 1099.22 7499.78 41
dcpmvs_295.67 7896.18 5094.12 20198.82 8584.22 29497.37 26995.45 30990.70 12695.77 10998.63 10490.47 4898.68 17199.20 2099.22 7499.45 89
GST-MVS95.97 6295.66 7196.90 7599.49 4591.22 11599.45 6197.48 14189.69 15895.89 10398.72 9486.37 12699.95 3294.62 13499.22 7499.52 80
reproduce_model96.57 4396.75 3496.02 12698.93 8088.46 20098.56 17697.34 16393.18 7296.96 7699.35 2188.69 7599.80 8198.53 3799.21 7799.79 38
test_fmvsmconf_n96.78 3596.84 2996.61 9295.99 20090.25 14399.90 398.13 4296.68 1198.42 3698.92 7785.34 14699.88 5499.12 2299.08 7899.70 55
PS-MVSNAJ96.87 3196.40 4398.29 1997.35 13497.29 599.03 12197.11 18595.83 2098.97 1999.14 4582.48 19199.60 10698.60 3399.08 7898.00 199
test_fmvsm_n_192097.08 2797.55 1495.67 14197.94 11089.61 16799.93 198.48 2397.08 599.08 1499.13 4788.17 8299.93 3999.11 2399.06 8097.47 212
MVS_111021_LR95.78 7195.94 5995.28 15798.19 10387.69 21298.80 14399.26 793.39 6895.04 12498.69 9984.09 16099.76 8996.96 7699.06 8098.38 178
PAPR96.35 4895.82 6397.94 3399.63 1894.19 6299.42 6897.55 12592.43 8893.82 14999.12 4987.30 10299.91 4694.02 14199.06 8099.74 50
114514_t94.06 12393.05 14297.06 6499.08 6992.26 10198.97 12997.01 19782.58 32292.57 16598.22 12980.68 21699.30 13989.34 20399.02 8399.63 70
API-MVS94.78 10394.18 10696.59 9499.21 6190.06 15598.80 14397.78 7583.59 30293.85 14799.21 3183.79 16399.97 2192.37 16899.00 8499.74 50
test_fmvsmconf0.1_n95.94 6595.79 6796.40 10692.42 30989.92 15999.79 1796.85 20496.53 1597.22 6898.67 10082.71 18799.84 6998.92 2798.98 8599.43 92
MVSFormer94.71 10894.08 10996.61 9295.05 24394.87 3997.77 24996.17 25186.84 24598.04 5098.52 11085.52 13895.99 31889.83 19398.97 8698.96 133
lupinMVS96.32 5095.94 5997.44 4795.05 24394.87 3999.86 596.50 22793.82 5898.04 5098.77 8885.52 13898.09 20196.98 7598.97 8699.37 96
3Dnovator+87.72 893.43 14491.84 16998.17 2395.73 20995.08 3598.92 13397.04 19291.42 11381.48 30497.60 15174.60 25499.79 8590.84 18398.97 8699.64 68
GG-mvs-BLEND96.98 7196.53 17194.81 4487.20 39297.74 7993.91 14696.40 20996.56 296.94 26795.08 12198.95 8999.20 113
test_cas_vis1_n_192093.86 13293.74 12594.22 19795.39 22286.08 25799.73 2396.07 25996.38 1797.19 7197.78 14165.46 33399.86 6396.71 8098.92 9096.73 233
MVS_030497.81 997.51 1598.74 998.97 7396.57 1199.91 298.17 3697.45 398.76 2698.97 6586.69 11699.96 2899.72 398.92 9099.69 58
SPE-MVS-test95.98 6196.34 4694.90 17098.06 10787.66 21599.69 3496.10 25593.66 6198.35 4099.05 5786.28 12797.66 23296.96 7698.90 9299.37 96
gg-mvs-nofinetune90.00 22387.71 24896.89 7996.15 19294.69 4985.15 39997.74 7968.32 39892.97 16160.16 41296.10 496.84 27093.89 14398.87 9399.14 117
MAR-MVS94.43 11794.09 10895.45 14899.10 6887.47 22198.39 20197.79 7388.37 20194.02 14499.17 3878.64 23599.91 4692.48 16798.85 9498.96 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CSCG94.87 10094.71 9395.36 15199.54 3686.49 24199.34 7998.15 4082.71 32090.15 20699.25 2689.48 6499.86 6394.97 12698.82 9599.72 53
MM97.76 1197.39 2098.86 598.30 9796.83 799.81 1299.13 997.66 298.29 4198.96 7085.84 13699.90 5099.72 398.80 9699.85 30
CHOSEN 280x42096.80 3496.85 2896.66 9197.85 11394.42 5694.76 34298.36 2892.50 8795.62 11497.52 15597.92 197.38 25098.31 4898.80 9698.20 193
CANet97.00 2896.49 4098.55 1298.86 8496.10 1699.83 1097.52 13395.90 1997.21 6998.90 7982.66 18899.93 3998.71 2998.80 9699.63 70
test_vis1_n_192093.08 15893.42 13292.04 25196.31 18379.36 34799.83 1096.06 26096.72 998.53 3498.10 13458.57 35899.91 4697.86 5798.79 9996.85 231
MVP-Stereo86.61 28185.83 27588.93 32688.70 36383.85 30096.07 31994.41 35082.15 33175.64 35391.96 29967.65 31496.45 29177.20 32198.72 10086.51 384
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
QAPM91.41 19089.49 21397.17 6295.66 21293.42 7598.60 17197.51 13580.92 34681.39 30597.41 16172.89 27499.87 5882.33 28498.68 10198.21 192
131493.44 14391.98 16697.84 3495.24 22594.38 5796.22 31497.92 5690.18 14482.28 28797.71 14677.63 24299.80 8191.94 17298.67 10299.34 101
fmvsm_l_conf0.5_n_a97.70 1397.80 1197.42 4997.59 12392.91 9099.86 598.04 4896.70 1099.58 299.26 2490.90 4199.94 3599.57 1298.66 10399.40 93
CS-MVS95.75 7496.19 4894.40 18997.88 11286.22 25199.66 3596.12 25492.69 8498.07 4898.89 8187.09 10597.59 23896.71 8098.62 10499.39 95
EC-MVSNet95.09 9295.17 8394.84 17395.42 21988.17 20399.48 5395.92 27491.47 11097.34 6698.36 12382.77 18397.41 24997.24 6998.58 10598.94 138
DeepC-MVS91.02 494.56 11493.92 11896.46 10197.16 14690.76 13298.39 20197.11 18593.92 5188.66 22098.33 12478.14 23999.85 6795.02 12398.57 10698.78 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft85.28 1490.75 20688.84 22696.48 10093.58 29093.51 7398.80 14397.41 15482.59 32178.62 33497.49 15768.00 31199.82 7684.52 25998.55 10796.11 249
fmvsm_l_conf0.5_n97.65 1497.72 1297.41 5097.51 12892.78 9299.85 898.05 4696.78 899.60 199.23 2990.42 5099.92 4199.55 1398.50 10899.55 77
EIA-MVS95.11 9195.27 8194.64 18296.34 18286.51 24099.59 4096.62 21692.51 8694.08 14298.64 10286.05 13298.24 19395.07 12298.50 10899.18 114
mamv491.41 19093.57 12884.91 36097.11 15058.11 40795.68 33395.93 27282.09 33289.78 21195.71 22990.09 5798.24 19397.26 6898.50 10898.38 178
jason95.40 8594.86 9297.03 6592.91 30394.23 6099.70 2796.30 23993.56 6596.73 8898.52 11081.46 20997.91 21196.08 9898.47 11198.96 133
jason: jason.
mvsmamba94.27 12093.91 11995.35 15296.42 17788.61 19597.77 24996.38 23491.17 11994.05 14395.27 23878.41 23797.96 21097.36 6698.40 11299.48 86
MS-PatchMatch86.75 27785.92 27489.22 31991.97 31682.47 32096.91 28796.14 25383.74 29877.73 34293.53 27158.19 36097.37 25276.75 32598.35 11387.84 372
test_fmvsmvis_n_192095.47 8195.40 7895.70 13994.33 26490.22 14699.70 2796.98 19996.80 792.75 16298.89 8182.46 19499.92 4198.36 4498.33 11496.97 229
DP-MVS Recon95.85 6895.15 8497.95 3299.87 294.38 5799.60 3997.48 14186.58 25194.42 13499.13 4787.36 10099.98 993.64 14998.33 11499.48 86
test_fmvsmconf0.01_n94.14 12293.51 13096.04 12486.79 38189.19 17199.28 8595.94 26995.70 2195.50 11598.49 11573.27 26999.79 8598.28 4998.32 11699.15 116
test_fmvs192.35 17192.94 14690.57 28397.19 14375.43 37299.55 4494.97 32995.20 3196.82 8397.57 15459.59 35699.84 6997.30 6798.29 11796.46 243
xiu_mvs_v2_base96.66 3796.17 5398.11 2897.11 15096.96 699.01 12497.04 19295.51 2798.86 2399.11 5382.19 19999.36 13398.59 3598.14 11898.00 199
BH-w/o92.32 17291.79 17193.91 21196.85 15986.18 25399.11 11295.74 29288.13 21084.81 25397.00 18477.26 24497.91 21189.16 20898.03 11997.64 206
BP-MVS196.59 4196.36 4597.29 5595.05 24394.72 4799.44 6297.45 14692.71 8396.41 9598.50 11294.11 1698.50 17795.61 10997.97 12098.66 166
test_fmvs1_n91.07 19991.41 17990.06 29794.10 27174.31 37699.18 9494.84 33394.81 3396.37 9697.46 15850.86 38999.82 7697.14 7197.90 12196.04 250
TAPA-MVS87.50 990.35 21389.05 22294.25 19698.48 9585.17 28098.42 19296.58 22282.44 32787.24 23398.53 10882.77 18398.84 16059.09 39897.88 12298.72 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CHOSEN 1792x268894.35 11893.82 12395.95 13197.40 13188.74 19398.41 19498.27 3092.18 9691.43 18496.40 20978.88 23099.81 7993.59 15097.81 12399.30 104
BH-untuned91.46 18990.84 19193.33 22296.51 17384.83 28798.84 13995.50 30686.44 25883.50 26496.70 20175.49 25097.77 22286.78 23297.81 12397.40 213
Vis-MVSNetpermissive92.64 16491.85 16895.03 16795.12 23688.23 20298.48 18796.81 20591.61 10592.16 17297.22 17071.58 28798.00 20985.85 24497.81 12398.88 143
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet96.82 3396.68 3797.25 5998.65 9093.10 8299.48 5398.76 1496.54 1397.84 5698.22 12987.49 9499.66 9795.35 11497.78 12699.00 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended95.94 6595.66 7196.75 8298.77 8791.61 11099.88 498.04 4893.64 6394.21 13997.76 14283.50 16699.87 5897.41 6497.75 12798.79 153
test_vis1_n90.40 21290.27 20290.79 27891.55 32676.48 36699.12 11194.44 34594.31 4297.34 6696.95 18643.60 40099.42 12697.57 6297.60 12896.47 242
ETV-MVS96.00 5996.00 5896.00 12896.56 16991.05 12599.63 3796.61 21793.26 7197.39 6498.30 12686.62 11898.13 19898.07 5397.57 12998.82 150
PLCcopyleft91.07 394.23 12194.01 11094.87 17199.17 6387.49 22099.25 8896.55 22488.43 19991.26 18898.21 13185.92 13399.86 6389.77 19797.57 12997.24 219
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D90.19 21888.72 22994.59 18498.97 7386.33 24896.90 28896.60 21874.96 37684.06 26298.74 9175.78 24899.83 7374.93 33697.57 12997.62 209
AdaColmapbinary93.82 13393.06 14196.10 12299.88 189.07 17598.33 20697.55 12586.81 24790.39 20398.65 10175.09 25199.98 993.32 15797.53 13299.26 108
BH-RMVSNet91.25 19689.99 20595.03 16796.75 16588.55 19798.65 16094.95 33087.74 22587.74 22797.80 13968.27 30798.14 19780.53 30097.49 13398.41 175
CANet_DTU94.31 11993.35 13497.20 6197.03 15594.71 4898.62 16595.54 30495.61 2597.21 6998.47 11971.88 28299.84 6988.38 21397.46 13497.04 226
fmvsm_s_conf0.5_n96.19 5496.49 4095.30 15697.37 13389.16 17299.86 598.47 2495.68 2398.87 2299.15 4282.44 19599.92 4199.14 2197.43 13596.83 232
PatchMatch-RL91.47 18890.54 19894.26 19598.20 10186.36 24796.94 28697.14 18187.75 22488.98 21895.75 22871.80 28499.40 13080.92 29597.39 13697.02 227
fmvsm_s_conf0.1_n95.56 8095.68 7095.20 15994.35 26389.10 17499.50 5197.67 9694.76 3598.68 2999.03 5981.13 21399.86 6398.63 3297.36 13796.63 235
UGNet91.91 18390.85 19095.10 16297.06 15388.69 19498.01 23598.24 3392.41 9192.39 16993.61 26860.52 35399.68 9588.14 21697.25 13896.92 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet87.13 1293.69 13692.83 14896.28 11297.99 10990.22 14699.38 7298.93 1291.42 11393.66 15197.68 14771.29 28999.64 10387.94 21997.20 13998.98 131
test250694.80 10294.21 10396.58 9596.41 17892.18 10298.01 23598.96 1190.82 12493.46 15497.28 16485.92 13398.45 18389.82 19597.19 14099.12 120
ECVR-MVScopyleft92.29 17391.33 18095.15 16196.41 17887.84 21098.10 22894.84 33390.82 12491.42 18697.28 16465.61 33098.49 18190.33 18997.19 14099.12 120
EI-MVSNet-Vis-set95.76 7395.63 7596.17 11999.14 6490.33 14198.49 18597.82 6691.92 10094.75 12898.88 8387.06 10799.48 11995.40 11397.17 14298.70 161
test111192.12 17891.19 18394.94 16996.15 19287.36 22598.12 22594.84 33390.85 12390.97 19197.26 16665.60 33198.37 18589.74 19897.14 14399.07 127
fmvsm_s_conf0.5_n_a95.97 6296.19 4895.31 15596.51 17389.01 18099.81 1298.39 2695.46 2899.19 1399.16 3981.44 21099.91 4698.83 2896.97 14497.01 228
RRT-MVS93.39 14692.64 15295.64 14296.11 19888.75 19297.40 26595.77 29089.46 16992.70 16495.42 23572.98 27198.81 16196.91 7896.97 14499.37 96
CNLPA93.64 14092.74 14996.36 10998.96 7690.01 15899.19 9295.89 28286.22 25989.40 21598.85 8480.66 21799.84 6988.57 21196.92 14699.24 109
fmvsm_s_conf0.1_n_a95.16 9095.15 8495.18 16092.06 31588.94 18499.29 8297.53 12994.46 3998.98 1898.99 6379.99 21999.85 6798.24 5196.86 14796.73 233
xiu_mvs_v1_base_debu94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
xiu_mvs_v1_base94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
xiu_mvs_v1_base_debi94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
GDP-MVS96.05 5895.63 7597.31 5495.37 22394.65 5099.36 7696.42 23292.14 9897.07 7398.53 10893.33 1998.50 17791.76 17496.66 15198.78 155
MVS_Test93.67 13992.67 15196.69 8896.72 16692.66 9397.22 27796.03 26187.69 22895.12 12394.03 25481.55 20598.28 19089.17 20796.46 15299.14 117
EI-MVSNet-UG-set95.43 8295.29 8095.86 13499.07 7089.87 16098.43 19197.80 7191.78 10294.11 14198.77 8886.25 12999.48 11994.95 12796.45 15398.22 191
TSAR-MVS + GP.96.95 2996.91 2697.07 6398.88 8391.62 10999.58 4196.54 22595.09 3296.84 8098.63 10491.16 3499.77 8899.04 2496.42 15499.81 35
PVSNet_Blended_VisFu94.67 10994.11 10796.34 11097.14 14791.10 12299.32 8197.43 15292.10 9991.53 18396.38 21283.29 17299.68 9593.42 15696.37 15598.25 187
Vis-MVSNet (Re-imp)93.26 15393.00 14594.06 20496.14 19486.71 23998.68 15696.70 21288.30 20589.71 21497.64 15085.43 14496.39 29388.06 21896.32 15699.08 125
EPMVS92.59 16791.59 17595.59 14697.22 14090.03 15691.78 37298.04 4890.42 13991.66 17890.65 33086.49 12497.46 24581.78 29096.31 15799.28 106
PMMVS93.62 14193.90 12092.79 23396.79 16481.40 32998.85 13796.81 20591.25 11796.82 8398.15 13377.02 24598.13 19893.15 16096.30 15898.83 149
TESTMET0.1,193.82 13393.26 13895.49 14795.21 22890.25 14399.15 10397.54 12889.18 17591.79 17494.87 24489.13 6697.63 23586.21 23796.29 15998.60 168
test-LLR93.11 15792.68 15094.40 18994.94 24987.27 22999.15 10397.25 16790.21 14291.57 17994.04 25284.89 15197.58 23985.94 24196.13 16098.36 182
test-mter93.27 15292.89 14794.40 18994.94 24987.27 22999.15 10397.25 16788.95 18291.57 17994.04 25288.03 8797.58 23985.94 24196.13 16098.36 182
Effi-MVS+93.87 13193.15 14096.02 12695.79 20690.76 13296.70 29895.78 28886.98 24295.71 11197.17 17579.58 22298.01 20894.57 13596.09 16299.31 103
mvs_anonymous92.50 16991.65 17495.06 16496.60 16889.64 16597.06 28296.44 23186.64 25084.14 26093.93 25982.49 19096.17 31291.47 17596.08 16399.35 99
IS-MVSNet93.00 15992.51 15594.49 18596.14 19487.36 22598.31 20995.70 29488.58 19290.17 20597.50 15683.02 17997.22 25587.06 22496.07 16498.90 142
PatchmatchNetpermissive92.05 18291.04 18695.06 16496.17 19189.04 17691.26 38097.26 16689.56 16590.64 19790.56 33688.35 7997.11 25979.53 30396.07 16499.03 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
F-COLMAP92.07 18191.75 17393.02 22798.16 10482.89 31398.79 14795.97 26486.54 25387.92 22597.80 13978.69 23499.65 10185.97 23995.93 16696.53 241
diffmvspermissive94.59 11294.19 10495.81 13595.54 21590.69 13498.70 15495.68 29691.61 10595.96 10197.81 13880.11 21898.06 20396.52 8895.76 16798.67 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPcopyleft94.67 10994.30 10095.79 13699.25 5788.13 20598.41 19498.67 2190.38 14091.43 18498.72 9482.22 19899.95 3293.83 14695.76 16799.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LCM-MVSNet-Re88.59 25188.61 23288.51 32995.53 21672.68 38596.85 29088.43 40588.45 19673.14 36890.63 33175.82 24794.38 36192.95 16195.71 16998.48 173
PCF-MVS89.78 591.26 19489.63 21096.16 12195.44 21891.58 11295.29 33796.10 25585.07 27782.75 27497.45 15978.28 23899.78 8780.60 29995.65 17097.12 221
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FE-MVS91.38 19290.16 20495.05 16696.46 17587.53 21989.69 38997.84 6282.97 31392.18 17192.00 29884.07 16198.93 15880.71 29795.52 17198.68 162
mvsany_test194.57 11395.09 8892.98 22895.84 20582.07 32398.76 14995.24 32292.87 8296.45 9398.71 9784.81 15399.15 14497.68 6095.49 17297.73 204
casdiffmvspermissive93.98 12793.43 13195.61 14595.07 24289.86 16198.80 14395.84 28790.98 12192.74 16397.66 14979.71 22198.10 20094.72 13195.37 17398.87 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive94.00 12593.33 13596.03 12595.22 22790.90 13099.09 11395.99 26290.58 13291.55 18297.37 16279.91 22098.06 20395.01 12495.22 17499.13 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline93.91 12993.30 13695.72 13895.10 24090.07 15297.48 26495.91 27991.03 12093.54 15397.68 14779.58 22298.02 20794.27 13895.14 17599.08 125
Fast-Effi-MVS+91.72 18590.79 19494.49 18595.89 20287.40 22499.54 4995.70 29485.01 28089.28 21795.68 23077.75 24197.57 24283.22 27495.06 17698.51 171
EPNet_dtu92.28 17492.15 16292.70 23797.29 13784.84 28698.64 16297.82 6692.91 8093.02 16097.02 18385.48 14395.70 33372.25 35794.89 17797.55 211
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UA-Net93.30 15092.62 15395.34 15396.27 18588.53 19995.88 32596.97 20090.90 12295.37 11897.07 17982.38 19699.10 15083.91 26994.86 17898.38 178
baseline294.04 12493.80 12494.74 17793.07 30290.25 14398.12 22598.16 3989.86 15486.53 24196.95 18695.56 698.05 20591.44 17694.53 17995.93 251
MVS-HIRNet79.01 34875.13 36190.66 28193.82 28681.69 32685.16 39893.75 36054.54 40874.17 36059.15 41457.46 36296.58 28163.74 38594.38 18093.72 262
SCA90.64 21089.25 21894.83 17494.95 24888.83 18896.26 31197.21 17390.06 15190.03 20790.62 33266.61 32296.81 27283.16 27594.36 18198.84 146
OMC-MVS93.90 13093.62 12794.73 17898.63 9187.00 23498.04 23496.56 22392.19 9592.46 16698.73 9279.49 22699.14 14892.16 17094.34 18298.03 198
DP-MVS88.75 24686.56 26595.34 15398.92 8187.45 22297.64 26093.52 36570.55 38981.49 30397.25 16874.43 25799.88 5471.14 36094.09 18398.67 163
sss94.85 10193.94 11797.58 4396.43 17694.09 6498.93 13199.16 889.50 16795.27 11997.85 13681.50 20799.65 10192.79 16594.02 18498.99 130
FA-MVS(test-final)92.22 17791.08 18595.64 14296.05 19988.98 18191.60 37597.25 16786.99 23991.84 17392.12 29283.03 17899.00 15486.91 22993.91 18598.93 139
UBG95.73 7695.41 7796.69 8896.97 15693.23 7899.13 10997.79 7391.28 11694.38 13796.78 19792.37 3098.56 17696.17 9493.84 18698.26 186
EPP-MVSNet93.75 13593.67 12694.01 20795.86 20485.70 26998.67 15897.66 9784.46 28791.36 18797.18 17491.16 3497.79 22092.93 16293.75 18798.53 170
GeoE90.60 21189.56 21193.72 21795.10 24085.43 27399.41 6994.94 33183.96 29587.21 23496.83 19674.37 25897.05 26380.50 30193.73 18898.67 163
CVMVSNet90.30 21590.91 18988.46 33094.32 26573.58 38097.61 26197.59 11890.16 14788.43 22397.10 17776.83 24692.86 37382.64 28193.54 18998.93 139
UWE-MVS93.18 15493.40 13392.50 24196.56 16983.55 30398.09 23197.84 6289.50 16791.72 17696.23 21591.08 3796.70 27686.28 23693.33 19097.26 218
thisisatest051594.75 10494.19 10496.43 10396.13 19792.64 9699.47 5597.60 11487.55 23193.17 15797.59 15294.71 1298.42 18488.28 21493.20 19198.24 190
JIA-IIPM85.97 29184.85 29189.33 31893.23 29973.68 37985.05 40097.13 18369.62 39491.56 18168.03 41088.03 8796.96 26577.89 31793.12 19297.34 215
Effi-MVS+-dtu89.97 22490.68 19687.81 33495.15 23371.98 38797.87 24395.40 31391.92 10087.57 22891.44 31074.27 26096.84 27089.45 20093.10 19394.60 259
HY-MVS88.56 795.29 8794.23 10298.48 1497.72 11596.41 1394.03 35198.74 1592.42 9095.65 11394.76 24686.52 12299.49 11595.29 11792.97 19499.53 79
LFMVS92.23 17690.84 19196.42 10498.24 10091.08 12498.24 21496.22 24583.39 30594.74 12998.31 12561.12 35198.85 15994.45 13692.82 19599.32 102
HyFIR lowres test93.68 13893.29 13794.87 17197.57 12588.04 20798.18 21998.47 2487.57 23091.24 18995.05 24285.49 14197.46 24593.22 15892.82 19599.10 123
CDS-MVSNet93.47 14293.04 14394.76 17594.75 25589.45 16998.82 14097.03 19487.91 21990.97 19196.48 20789.06 6796.36 29589.50 19992.81 19798.49 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS95.97 6295.11 8798.54 1397.62 11996.65 999.44 6298.74 1592.25 9495.21 12098.46 12186.56 12199.46 12195.00 12592.69 19899.50 84
test_yl95.27 8894.60 9597.28 5798.53 9392.98 8699.05 11998.70 1886.76 24894.65 13197.74 14487.78 8999.44 12295.57 11092.61 19999.44 90
DCV-MVSNet95.27 8894.60 9597.28 5798.53 9392.98 8699.05 11998.70 1886.76 24894.65 13197.74 14487.78 8999.44 12295.57 11092.61 19999.44 90
MSDG88.29 25586.37 26794.04 20696.90 15886.15 25596.52 30194.36 35177.89 36379.22 32996.95 18669.72 29699.59 10773.20 35192.58 20196.37 246
thisisatest053094.00 12593.52 12995.43 14995.76 20890.02 15798.99 12697.60 11486.58 25191.74 17597.36 16394.78 1198.34 18686.37 23592.48 20297.94 201
testing1195.33 8694.98 9196.37 10897.20 14192.31 9999.29 8297.68 9290.59 13194.43 13397.20 17190.79 4598.60 17495.25 11892.38 20398.18 194
TR-MVS90.77 20589.44 21494.76 17596.31 18388.02 20897.92 23995.96 26685.52 26988.22 22497.23 16966.80 32198.09 20184.58 25792.38 20398.17 195
MDTV_nov1_ep1390.47 20196.14 19488.55 19791.34 37997.51 13589.58 16392.24 17090.50 34086.99 11097.61 23777.64 31892.34 205
TAMVS92.62 16592.09 16494.20 19894.10 27187.68 21398.41 19496.97 20087.53 23289.74 21296.04 22284.77 15596.49 28888.97 20992.31 20698.42 174
ADS-MVSNet287.62 26786.88 26189.86 30396.21 18879.14 35087.15 39392.99 36883.01 31189.91 20987.27 37378.87 23192.80 37674.20 34392.27 20797.64 206
ADS-MVSNet88.99 23587.30 25494.07 20396.21 18887.56 21887.15 39396.78 20883.01 31189.91 20987.27 37378.87 23197.01 26474.20 34392.27 20797.64 206
ETVMVS94.50 11593.90 12096.31 11197.48 13092.98 8699.07 11597.86 6088.09 21294.40 13596.90 18988.35 7997.28 25490.72 18792.25 20998.66 166
cascas90.93 20389.33 21795.76 13795.69 21093.03 8598.99 12696.59 21980.49 34886.79 24094.45 24965.23 33498.60 17493.52 15192.18 21095.66 253
CR-MVSNet88.83 24287.38 25393.16 22593.47 29286.24 24984.97 40194.20 35488.92 18590.76 19586.88 37784.43 15694.82 35470.64 36192.17 21198.41 175
RPMNet85.07 30581.88 32494.64 18293.47 29286.24 24984.97 40197.21 17364.85 40590.76 19578.80 40380.95 21599.27 14053.76 40492.17 21198.41 175
DSMNet-mixed81.60 33581.43 32982.10 37584.36 39060.79 40393.63 35586.74 40879.00 35379.32 32887.15 37563.87 33989.78 39766.89 37791.92 21395.73 252
tttt051793.30 15093.01 14494.17 19995.57 21386.47 24298.51 18297.60 11485.99 26290.55 19897.19 17394.80 1098.31 18785.06 25091.86 21497.74 203
VNet95.08 9394.26 10197.55 4698.07 10693.88 6698.68 15698.73 1790.33 14197.16 7297.43 16079.19 22999.53 11296.91 7891.85 21599.24 109
tpmrst92.78 16192.16 16194.65 18096.27 18587.45 22291.83 37197.10 18889.10 17894.68 13090.69 32788.22 8197.73 23089.78 19691.80 21698.77 157
alignmvs95.77 7295.00 9098.06 2997.35 13495.68 2099.71 2697.50 13891.50 10996.16 9998.61 10686.28 12799.00 15496.19 9391.74 21799.51 82
CostFormer92.89 16092.48 15694.12 20194.99 24685.89 26492.89 36197.00 19886.98 24295.00 12590.78 32390.05 5897.51 24392.92 16391.73 21898.96 133
Fast-Effi-MVS+-dtu88.84 24088.59 23489.58 31293.44 29578.18 35898.65 16094.62 34288.46 19584.12 26195.37 23768.91 30196.52 28582.06 28791.70 21994.06 260
PatchT85.44 30183.19 31192.22 24493.13 30183.00 30983.80 40796.37 23570.62 38890.55 19879.63 40284.81 15394.87 35258.18 40091.59 22098.79 153
testing22294.48 11694.00 11195.95 13197.30 13692.27 10098.82 14097.92 5689.20 17394.82 12697.26 16687.13 10497.32 25391.95 17191.56 22198.25 187
tpm291.77 18491.09 18493.82 21494.83 25385.56 27292.51 36697.16 18084.00 29393.83 14890.66 32987.54 9397.17 25687.73 22191.55 22298.72 159
testing9994.88 9894.45 9796.17 11997.20 14191.91 10499.20 9197.66 9789.95 15293.68 15097.06 18090.28 5498.50 17793.52 15191.54 22398.12 196
Syy-MVS84.10 32184.53 29982.83 37295.14 23465.71 39997.68 25796.66 21486.52 25482.63 27796.84 19468.15 30889.89 39545.62 41091.54 22392.87 267
myMVS_eth3d88.68 25089.07 22187.50 33895.14 23479.74 34597.68 25796.66 21486.52 25482.63 27796.84 19485.22 14889.89 39569.43 36691.54 22392.87 267
testing9194.88 9894.44 9896.21 11597.19 14391.90 10599.23 8997.66 9789.91 15393.66 15197.05 18290.21 5598.50 17793.52 15191.53 22698.25 187
WB-MVSnew88.69 24888.34 23889.77 30794.30 26985.99 26298.14 22297.31 16587.15 23887.85 22696.07 22169.91 29395.52 33772.83 35491.47 22787.80 374
tpm cat188.89 23887.27 25593.76 21595.79 20685.32 27790.76 38597.09 18976.14 37185.72 24788.59 36282.92 18098.04 20676.96 32291.43 22897.90 202
sasdasda95.02 9493.96 11598.20 2197.53 12695.92 1798.71 15196.19 24891.78 10295.86 10698.49 11579.53 22499.03 15296.12 9591.42 22999.66 64
canonicalmvs95.02 9493.96 11598.20 2197.53 12695.92 1798.71 15196.19 24891.78 10295.86 10698.49 11579.53 22499.03 15296.12 9591.42 22999.66 64
Patchmatch-test86.25 28884.06 30592.82 23294.42 26182.88 31482.88 40894.23 35371.58 38579.39 32790.62 33289.00 6996.42 29263.03 38891.37 23199.16 115
dp90.16 22088.83 22794.14 20096.38 18186.42 24391.57 37697.06 19184.76 28488.81 21990.19 34884.29 15897.43 24875.05 33591.35 23298.56 169
MGCFI-Net94.89 9693.84 12298.06 2997.49 12995.55 2198.64 16296.10 25591.60 10795.75 11098.46 12179.31 22898.98 15695.95 10191.24 23399.65 67
VDDNet90.08 22288.54 23694.69 17994.41 26287.68 21398.21 21796.40 23376.21 37093.33 15697.75 14354.93 37498.77 16394.71 13290.96 23497.61 210
thres20093.69 13692.59 15496.97 7297.76 11494.74 4699.35 7899.36 289.23 17291.21 19096.97 18583.42 16998.77 16385.08 24990.96 23497.39 214
thres100view90093.34 14992.15 16296.90 7597.62 11994.84 4199.06 11899.36 287.96 21790.47 20196.78 19783.29 17298.75 16684.11 26590.69 23697.12 221
tfpn200view993.43 14492.27 15996.90 7597.68 11794.84 4199.18 9499.36 288.45 19690.79 19396.90 18983.31 17098.75 16684.11 26590.69 23697.12 221
thres40093.39 14692.27 15996.73 8497.68 11794.84 4199.18 9499.36 288.45 19690.79 19396.90 18983.31 17098.75 16684.11 26590.69 23696.61 236
VDD-MVS91.24 19790.18 20394.45 18897.08 15285.84 26798.40 19796.10 25586.99 23993.36 15598.16 13254.27 37699.20 14196.59 8690.63 23998.31 185
thres600view793.18 15492.00 16596.75 8297.62 11994.92 3699.07 11599.36 287.96 21790.47 20196.78 19783.29 17298.71 17082.93 27990.47 24096.61 236
GA-MVS90.10 22188.69 23094.33 19292.44 30887.97 20999.08 11496.26 24389.65 15986.92 23793.11 28068.09 30996.96 26582.54 28390.15 24198.05 197
testing387.75 26288.22 24186.36 34794.66 25877.41 36399.52 5097.95 5486.05 26181.12 30696.69 20286.18 13089.31 39961.65 39290.12 24292.35 278
tpmvs89.16 23387.76 24693.35 22197.19 14384.75 28890.58 38797.36 16181.99 33384.56 25589.31 35983.98 16298.17 19674.85 33890.00 24397.12 221
1112_ss92.71 16291.55 17696.20 11695.56 21491.12 12098.48 18794.69 34088.29 20686.89 23898.50 11287.02 10898.66 17284.75 25489.77 24498.81 151
Test_1112_low_res92.27 17590.97 18796.18 11795.53 21691.10 12298.47 18994.66 34188.28 20786.83 23993.50 27287.00 10998.65 17384.69 25589.74 24598.80 152
XVG-OURS-SEG-HR90.95 20290.66 19791.83 25495.18 23281.14 33695.92 32295.92 27488.40 20090.33 20497.85 13670.66 29299.38 13192.83 16488.83 24694.98 257
COLMAP_ROBcopyleft82.69 1884.54 31282.82 31489.70 30996.72 16678.85 35195.89 32392.83 37171.55 38677.54 34495.89 22659.40 35799.14 14867.26 37588.26 24791.11 322
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 31381.83 32592.42 24291.73 32487.36 22585.52 39694.42 34981.40 33981.91 29687.58 36751.92 38392.81 37573.84 34688.15 24897.08 225
ab-mvs91.05 20189.17 21996.69 8895.96 20191.72 10892.62 36597.23 17185.61 26889.74 21293.89 26168.55 30499.42 12691.09 17887.84 24998.92 141
XVG-OURS90.83 20490.49 19991.86 25395.23 22681.25 33395.79 33095.92 27488.96 18190.02 20898.03 13571.60 28699.35 13691.06 17987.78 25094.98 257
AllTest84.97 30683.12 31290.52 28696.82 16078.84 35295.89 32392.17 37877.96 36175.94 34995.50 23255.48 36899.18 14271.15 35887.14 25193.55 263
TestCases90.52 28696.82 16078.84 35292.17 37877.96 36175.94 34995.50 23255.48 36899.18 14271.15 35887.14 25193.55 263
Anonymous20240521188.84 24087.03 25994.27 19498.14 10584.18 29598.44 19095.58 30276.79 36889.34 21696.88 19253.42 38099.54 11187.53 22387.12 25399.09 124
SDMVSNet91.09 19889.91 20694.65 18096.80 16290.54 13997.78 24797.81 6988.34 20385.73 24595.26 23966.44 32598.26 19194.25 13986.75 25495.14 254
sd_testset89.23 23288.05 24592.74 23696.80 16285.33 27695.85 32897.03 19488.34 20385.73 24595.26 23961.12 35197.76 22785.61 24586.75 25495.14 254
test_vis1_rt81.31 33780.05 34085.11 35791.29 33170.66 39198.98 12877.39 42085.76 26668.80 38382.40 39136.56 40799.44 12292.67 16686.55 25685.24 395
HQP3-MVS96.37 23586.29 257
HQP-MVS91.50 18791.23 18292.29 24393.95 27686.39 24599.16 9896.37 23593.92 5187.57 22896.67 20373.34 26697.77 22293.82 14786.29 25792.72 269
plane_prior86.07 25999.14 10693.81 5986.26 259
HQP_MVS91.26 19490.95 18892.16 24793.84 28386.07 25999.02 12296.30 23993.38 6986.99 23596.52 20572.92 27297.75 22893.46 15486.17 26092.67 271
plane_prior596.30 23997.75 22893.46 15486.17 26092.67 271
OPM-MVS89.76 22689.15 22091.57 26290.53 33985.58 27198.11 22795.93 27292.88 8186.05 24296.47 20867.06 32097.87 21589.29 20686.08 26291.26 317
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF85.33 30285.55 28084.67 36394.63 25962.28 40293.73 35393.76 35974.38 37985.23 25297.06 18064.09 33798.31 18780.98 29386.08 26293.41 265
CLD-MVS91.06 20090.71 19592.10 24994.05 27586.10 25699.55 4496.29 24294.16 4684.70 25497.17 17569.62 29897.82 21894.74 13086.08 26292.39 274
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test0.0.03 188.96 23688.61 23290.03 30191.09 33384.43 29198.97 12997.02 19690.21 14280.29 31596.31 21484.89 15191.93 38772.98 35285.70 26593.73 261
dmvs_re88.69 24888.06 24490.59 28293.83 28578.68 35495.75 33196.18 25087.99 21684.48 25896.32 21367.52 31596.94 26784.98 25285.49 26696.14 248
LPG-MVS_test88.86 23988.47 23790.06 29793.35 29780.95 33898.22 21595.94 26987.73 22683.17 26996.11 21966.28 32697.77 22290.19 19185.19 26791.46 307
LGP-MVS_train90.06 29793.35 29780.95 33895.94 26987.73 22683.17 26996.11 21966.28 32697.77 22290.19 19185.19 26791.46 307
ACMM86.95 1388.77 24588.22 24190.43 28893.61 28981.34 33198.50 18395.92 27487.88 22083.85 26395.20 24167.20 31897.89 21386.90 23084.90 26992.06 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CMPMVSbinary58.40 2180.48 34080.11 33981.59 37885.10 38859.56 40594.14 35095.95 26868.54 39760.71 40193.31 27455.35 37197.87 21583.06 27884.85 27087.33 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMP87.39 1088.71 24788.24 24090.12 29693.91 28181.06 33798.50 18395.67 29789.43 17080.37 31495.55 23165.67 32897.83 21790.55 18884.51 27191.47 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf88.26 25687.73 24789.84 30488.05 37082.21 32197.77 24996.17 25186.84 24582.41 28591.95 30072.07 28095.99 31889.83 19384.50 27291.32 314
jajsoiax87.35 26986.51 26689.87 30287.75 37581.74 32597.03 28395.98 26388.47 19380.15 31793.80 26361.47 34896.36 29589.44 20184.47 27391.50 305
mvs_tets87.09 27286.22 26989.71 30887.87 37181.39 33096.73 29795.90 28088.19 20979.99 31993.61 26859.96 35596.31 30389.40 20284.34 27491.43 309
test_fmvs285.10 30485.45 28284.02 36689.85 34765.63 40098.49 18592.59 37390.45 13785.43 25193.32 27343.94 39896.59 28090.81 18484.19 27589.85 354
Anonymous2024052987.66 26685.58 27993.92 21097.59 12385.01 28398.13 22397.13 18366.69 40388.47 22296.01 22355.09 37299.51 11387.00 22684.12 27697.23 220
anonymousdsp86.69 27885.75 27789.53 31386.46 38382.94 31096.39 30595.71 29383.97 29479.63 32490.70 32668.85 30295.94 32186.01 23884.02 27789.72 356
XVG-ACMP-BASELINE85.86 29384.95 28988.57 32889.90 34577.12 36494.30 34695.60 30187.40 23482.12 29092.99 28353.42 38097.66 23285.02 25183.83 27890.92 326
ACMMP++83.83 278
ET-MVSNet_ETH3D92.56 16891.45 17895.88 13396.39 18094.13 6399.46 5996.97 20092.18 9666.94 39298.29 12794.65 1494.28 36294.34 13783.82 28099.24 109
MonoMVSNet90.69 20889.78 20893.45 21991.78 32284.97 28596.51 30294.44 34590.56 13385.96 24490.97 31978.61 23696.27 30895.35 11483.79 28199.11 122
EG-PatchMatch MVS79.92 34277.59 34886.90 34487.06 38077.90 36296.20 31694.06 35674.61 37766.53 39488.76 36140.40 40596.20 31067.02 37683.66 28286.61 382
D2MVS87.96 25887.39 25289.70 30991.84 32183.40 30598.31 20998.49 2288.04 21478.23 34090.26 34273.57 26496.79 27484.21 26283.53 28388.90 366
UniMVSNet_ETH3D85.65 30083.79 30891.21 26690.41 34180.75 34195.36 33595.78 28878.76 35781.83 30194.33 25049.86 39196.66 27784.30 26083.52 28496.22 247
PVSNet_BlendedMVS93.36 14893.20 13993.84 21398.77 8791.61 11099.47 5598.04 4891.44 11194.21 13992.63 28883.50 16699.87 5897.41 6483.37 28590.05 350
PS-MVSNAJss89.54 23089.05 22291.00 27188.77 36184.36 29297.39 26695.97 26488.47 19381.88 29793.80 26382.48 19196.50 28689.34 20383.34 28692.15 286
EI-MVSNet89.87 22589.38 21691.36 26594.32 26585.87 26597.61 26196.59 21985.10 27585.51 24997.10 17781.30 21296.56 28283.85 27183.03 28791.64 296
MVSTER92.71 16292.32 15793.86 21297.29 13792.95 8999.01 12496.59 21990.09 14885.51 24994.00 25694.61 1596.56 28290.77 18683.03 28792.08 289
FIs90.70 20789.87 20793.18 22492.29 31091.12 12098.17 22198.25 3189.11 17783.44 26594.82 24582.26 19796.17 31287.76 22082.76 28992.25 279
tpm89.67 22788.95 22491.82 25592.54 30781.43 32892.95 36095.92 27487.81 22190.50 20089.44 35684.99 14995.65 33483.67 27282.71 29098.38 178
ACMMP++_ref82.64 291
FC-MVSNet-test90.22 21789.40 21592.67 23991.78 32289.86 16197.89 24098.22 3488.81 18782.96 27394.66 24781.90 20395.96 32085.89 24382.52 29292.20 284
ITE_SJBPF87.93 33292.26 31176.44 36793.47 36687.67 22979.95 32095.49 23456.50 36597.38 25075.24 33482.33 29389.98 352
OpenMVS_ROBcopyleft73.86 2077.99 35675.06 36286.77 34583.81 39377.94 36196.38 30691.53 39067.54 40068.38 38587.13 37643.94 39896.08 31655.03 40381.83 29486.29 386
LTVRE_ROB81.71 1984.59 31182.72 31990.18 29492.89 30483.18 30893.15 35894.74 33778.99 35475.14 35692.69 28665.64 32997.63 23569.46 36581.82 29589.74 355
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC84.74 30782.93 31390.16 29591.73 32483.54 30495.00 34093.30 36788.77 18873.19 36793.30 27553.62 37997.65 23475.88 33181.54 29689.30 361
ACMH83.09 1784.60 31082.61 32190.57 28393.18 30082.94 31096.27 30994.92 33281.01 34472.61 37493.61 26856.54 36497.79 22074.31 34181.07 29790.99 324
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080586.50 28484.79 29391.63 26191.97 31681.49 32796.49 30397.38 15782.24 32982.44 28295.82 22751.22 38698.25 19284.55 25880.96 29895.13 256
GBi-Net86.67 27984.96 28791.80 25695.11 23788.81 18996.77 29295.25 31982.94 31482.12 29090.25 34362.89 34394.97 34979.04 30780.24 29991.62 298
test186.67 27984.96 28791.80 25695.11 23788.81 18996.77 29295.25 31982.94 31482.12 29090.25 34362.89 34394.97 34979.04 30780.24 29991.62 298
FMVSNet388.81 24487.08 25893.99 20896.52 17294.59 5298.08 23296.20 24685.85 26382.12 29091.60 30774.05 26295.40 34279.04 30780.24 29991.99 292
baseline192.61 16691.28 18196.58 9597.05 15494.63 5197.72 25496.20 24689.82 15588.56 22196.85 19386.85 11197.82 21888.42 21280.10 30297.30 216
testgi82.29 33081.00 33386.17 34987.24 37874.84 37597.39 26691.62 38888.63 18975.85 35295.42 23546.07 39791.55 38866.87 37879.94 30392.12 287
test_040278.81 35076.33 35586.26 34891.18 33278.44 35795.88 32591.34 39268.55 39670.51 37889.91 35152.65 38294.99 34847.14 40979.78 30485.34 394
FMVSNet286.90 27484.79 29393.24 22395.11 23792.54 9797.67 25995.86 28682.94 31480.55 31191.17 31662.89 34395.29 34477.23 31979.71 30591.90 293
pmmvs487.58 26886.17 27191.80 25689.58 35188.92 18797.25 27495.28 31882.54 32380.49 31293.17 27975.62 24996.05 31782.75 28078.90 30690.42 341
ACMH+83.78 1584.21 31782.56 32389.15 32193.73 28879.16 34996.43 30494.28 35281.09 34374.00 36194.03 25454.58 37597.67 23176.10 32978.81 30790.63 338
XXY-MVS87.75 26286.02 27292.95 23190.46 34089.70 16497.71 25695.90 28084.02 29280.95 30794.05 25167.51 31697.10 26185.16 24878.41 30892.04 291
pmmvs585.87 29284.40 30390.30 29388.53 36584.23 29398.60 17193.71 36181.53 33880.29 31592.02 29564.51 33695.52 33782.04 28878.34 30991.15 320
LF4IMVS81.94 33381.17 33284.25 36587.23 37968.87 39793.35 35791.93 38383.35 30675.40 35493.00 28249.25 39496.65 27878.88 31078.11 31087.22 380
WBMVS91.35 19390.49 19993.94 20996.97 15693.40 7699.27 8696.71 21187.40 23483.10 27291.76 30492.38 2996.23 30988.95 21077.89 31192.17 285
cl2289.57 22988.79 22891.91 25297.94 11087.62 21697.98 23796.51 22685.03 27882.37 28691.79 30183.65 16496.50 28685.96 24077.89 31191.61 301
miper_ehance_all_eth88.94 23788.12 24391.40 26395.32 22486.93 23597.85 24495.55 30384.19 29081.97 29591.50 30984.16 15995.91 32584.69 25577.89 31191.36 312
miper_enhance_ethall90.33 21489.70 20992.22 24497.12 14988.93 18698.35 20595.96 26688.60 19183.14 27192.33 29187.38 9696.18 31186.49 23477.89 31191.55 304
TinyColmap80.42 34177.94 34687.85 33392.09 31478.58 35593.74 35289.94 39874.99 37569.77 38091.78 30246.09 39697.58 23965.17 38377.89 31187.38 376
FMVSNet183.94 32281.32 33191.80 25691.94 31988.81 18996.77 29295.25 31977.98 35978.25 33990.25 34350.37 39094.97 34973.27 35077.81 31691.62 298
OurMVSNet-221017-084.13 32083.59 30985.77 35487.81 37270.24 39294.89 34193.65 36386.08 26076.53 34593.28 27661.41 34996.14 31480.95 29477.69 31790.93 325
IterMVS85.81 29584.67 29689.22 31993.51 29183.67 30296.32 30894.80 33685.09 27678.69 33290.17 34966.57 32493.17 37279.48 30577.42 31890.81 328
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 29884.64 29789.00 32493.46 29482.90 31296.27 30994.70 33985.02 27978.62 33490.35 34166.61 32293.33 36979.38 30677.36 31990.76 332
our_test_384.47 31482.80 31589.50 31489.01 35883.90 29997.03 28394.56 34381.33 34075.36 35590.52 33871.69 28594.54 36068.81 36976.84 32090.07 348
dmvs_testset77.17 35978.99 34471.71 38887.25 37738.55 42591.44 37781.76 41685.77 26569.49 38195.94 22569.71 29784.37 40852.71 40676.82 32192.21 283
EU-MVSNet84.19 31884.42 30283.52 37088.64 36467.37 39896.04 32095.76 29185.29 27278.44 33793.18 27870.67 29191.48 38975.79 33275.98 32291.70 295
Anonymous2023120680.76 33979.42 34384.79 36284.78 38972.98 38296.53 30092.97 36979.56 35274.33 35888.83 36061.27 35092.15 38460.59 39475.92 32389.24 363
IterMVS-LS88.34 25387.44 25191.04 27094.10 27185.85 26698.10 22895.48 30785.12 27482.03 29491.21 31581.35 21195.63 33583.86 27075.73 32491.63 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
kuosan84.40 31683.34 31087.60 33695.87 20379.21 34892.39 36796.87 20376.12 37273.79 36293.98 25781.51 20690.63 39164.13 38475.42 32592.95 266
VPA-MVSNet89.10 23487.66 24993.45 21992.56 30691.02 12697.97 23898.32 2986.92 24486.03 24392.01 29668.84 30397.10 26190.92 18175.34 32692.23 281
nrg03090.23 21688.87 22594.32 19391.53 32793.54 7298.79 14795.89 28288.12 21184.55 25694.61 24878.80 23396.88 26992.35 16975.21 32792.53 273
cl____87.82 25986.79 26390.89 27594.88 25185.43 27397.81 24595.24 32282.91 31880.71 31091.22 31481.97 20295.84 32781.34 29275.06 32891.40 311
DIV-MVS_self_test87.82 25986.81 26290.87 27694.87 25285.39 27597.81 24595.22 32782.92 31780.76 30991.31 31381.99 20095.81 32981.36 29175.04 32991.42 310
v119286.32 28784.71 29591.17 26789.53 35386.40 24498.13 22395.44 31182.52 32482.42 28490.62 33271.58 28796.33 30277.23 31974.88 33090.79 330
v124085.77 29784.11 30490.73 28089.26 35785.15 28197.88 24295.23 32681.89 33682.16 28990.55 33769.60 29996.31 30375.59 33374.87 33190.72 335
FMVSNet582.29 33080.54 33587.52 33793.79 28784.01 29793.73 35392.47 37576.92 36674.27 35986.15 38163.69 34189.24 40069.07 36874.79 33289.29 362
v114486.83 27685.31 28491.40 26389.75 34887.21 23398.31 20995.45 30983.22 30782.70 27690.78 32373.36 26596.36 29579.49 30474.69 33390.63 338
Anonymous2024052178.63 35276.90 35383.82 36782.82 39672.86 38395.72 33293.57 36473.55 38372.17 37584.79 38449.69 39292.51 38065.29 38274.50 33486.09 387
v192192086.02 29084.44 30190.77 27989.32 35685.20 27898.10 22895.35 31782.19 33082.25 28890.71 32570.73 29096.30 30676.85 32474.49 33590.80 329
WR-MVS88.54 25287.22 25792.52 24091.93 32089.50 16898.56 17697.84 6286.99 23981.87 29893.81 26274.25 26195.92 32485.29 24774.43 33692.12 287
ppachtmachnet_test83.63 32581.57 32889.80 30589.01 35885.09 28297.13 28094.50 34478.84 35576.14 34791.00 31869.78 29594.61 35963.40 38674.36 33789.71 357
Patchmtry83.61 32681.64 32689.50 31493.36 29682.84 31584.10 40494.20 35469.47 39579.57 32586.88 37784.43 15694.78 35568.48 37174.30 33890.88 327
V4287.00 27385.68 27890.98 27289.91 34486.08 25798.32 20895.61 30083.67 30182.72 27590.67 32874.00 26396.53 28481.94 28974.28 33990.32 343
Anonymous2023121184.72 30882.65 32090.91 27397.71 11684.55 29097.28 27296.67 21366.88 40279.18 33090.87 32258.47 35996.60 27982.61 28274.20 34091.59 303
SixPastTwentyTwo82.63 32981.58 32785.79 35388.12 36971.01 39095.17 33892.54 37484.33 28972.93 37292.08 29360.41 35495.61 33674.47 34074.15 34190.75 333
v2v48287.27 27185.76 27691.78 26089.59 35087.58 21798.56 17695.54 30484.53 28682.51 28191.78 30273.11 27096.47 28982.07 28674.14 34291.30 315
v14419286.40 28584.89 29090.91 27389.48 35485.59 27098.21 21795.43 31282.45 32682.62 27990.58 33572.79 27596.36 29578.45 31474.04 34390.79 330
c3_l88.19 25787.23 25691.06 26994.97 24786.17 25497.72 25495.38 31483.43 30481.68 30291.37 31182.81 18295.72 33284.04 26873.70 34491.29 316
reproduce_monomvs92.11 18091.82 17092.98 22898.25 9890.55 13898.38 20397.93 5594.81 3380.46 31392.37 29096.46 397.17 25694.06 14073.61 34591.23 318
eth_miper_zixun_eth87.76 26187.00 26090.06 29794.67 25782.65 31897.02 28595.37 31584.19 29081.86 30091.58 30881.47 20895.90 32683.24 27373.61 34591.61 301
miper_lstm_enhance86.90 27486.20 27089.00 32494.53 26081.19 33496.74 29695.24 32282.33 32880.15 31790.51 33981.99 20094.68 35880.71 29773.58 34791.12 321
tfpnnormal83.65 32481.35 33090.56 28591.37 33088.06 20697.29 27197.87 5978.51 35876.20 34690.91 32064.78 33596.47 28961.71 39173.50 34887.13 381
N_pmnet70.19 37069.87 37271.12 39088.24 36730.63 42995.85 32828.70 42870.18 39168.73 38486.55 37964.04 33893.81 36553.12 40573.46 34988.94 365
EGC-MVSNET60.70 37755.37 38176.72 38286.35 38471.08 38889.96 38884.44 4130.38 4251.50 42684.09 38637.30 40688.10 40340.85 41473.44 35070.97 410
CP-MVSNet86.54 28285.45 28289.79 30691.02 33582.78 31697.38 26897.56 12485.37 27179.53 32693.03 28171.86 28395.25 34579.92 30273.43 35191.34 313
PS-CasMVS85.81 29584.58 29889.49 31690.77 33782.11 32297.20 27897.36 16184.83 28379.12 33192.84 28467.42 31795.16 34778.39 31573.25 35291.21 319
WR-MVS_H86.53 28385.49 28189.66 31191.04 33483.31 30797.53 26398.20 3584.95 28179.64 32390.90 32178.01 24095.33 34376.29 32872.81 35390.35 342
FPMVS61.57 37560.32 37865.34 39560.14 42242.44 42391.02 38389.72 40044.15 41142.63 41480.93 39719.02 41680.59 41442.50 41172.76 35473.00 408
v1085.73 29884.01 30690.87 27690.03 34286.73 23897.20 27895.22 32781.25 34179.85 32289.75 35373.30 26896.28 30776.87 32372.64 35589.61 358
UniMVSNet (Re)89.50 23188.32 23993.03 22692.21 31290.96 12898.90 13598.39 2689.13 17683.22 26692.03 29481.69 20496.34 30186.79 23172.53 35691.81 294
UniMVSNet_NR-MVSNet89.60 22888.55 23592.75 23592.17 31390.07 15298.74 15098.15 4088.37 20183.21 26793.98 25782.86 18195.93 32286.95 22772.47 35792.25 279
DU-MVS88.83 24287.51 25092.79 23391.46 32890.07 15298.71 15197.62 11188.87 18683.21 26793.68 26574.63 25295.93 32286.95 22772.47 35792.36 275
v886.11 28984.45 30091.10 26889.99 34386.85 23697.24 27595.36 31681.99 33379.89 32189.86 35274.53 25696.39 29378.83 31172.32 35990.05 350
VPNet88.30 25486.57 26493.49 21891.95 31891.35 11498.18 21997.20 17788.61 19084.52 25794.89 24362.21 34696.76 27589.34 20372.26 36092.36 275
v7n84.42 31582.75 31889.43 31788.15 36881.86 32496.75 29595.67 29780.53 34778.38 33889.43 35769.89 29496.35 30073.83 34772.13 36190.07 348
new_pmnet76.02 36173.71 36582.95 37183.88 39272.85 38491.26 38092.26 37770.44 39062.60 39981.37 39547.64 39592.32 38261.85 39072.10 36283.68 400
IB-MVS89.43 692.12 17890.83 19395.98 13095.40 22190.78 13199.81 1298.06 4591.23 11885.63 24893.66 26790.63 4698.78 16291.22 17771.85 36398.36 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
NR-MVSNet87.74 26586.00 27392.96 23091.46 32890.68 13596.65 29997.42 15388.02 21573.42 36593.68 26577.31 24395.83 32884.26 26171.82 36492.36 275
v14886.38 28685.06 28690.37 29289.47 35584.10 29698.52 17995.48 30783.80 29780.93 30890.22 34674.60 25496.31 30380.92 29571.55 36590.69 336
Baseline_NR-MVSNet85.83 29484.82 29288.87 32788.73 36283.34 30698.63 16491.66 38680.41 35182.44 28291.35 31274.63 25295.42 34184.13 26471.39 36687.84 372
TranMVSNet+NR-MVSNet87.75 26286.31 26892.07 25090.81 33688.56 19698.33 20697.18 17887.76 22381.87 29893.90 26072.45 27695.43 34083.13 27771.30 36792.23 281
PEN-MVS85.21 30383.93 30789.07 32389.89 34681.31 33297.09 28197.24 17084.45 28878.66 33392.68 28768.44 30694.87 35275.98 33070.92 36891.04 323
MIMVSNet175.92 36273.30 36783.81 36881.29 40075.57 37192.26 36892.05 38173.09 38467.48 39186.18 38040.87 40487.64 40455.78 40270.68 36988.21 370
dongtai81.36 33680.61 33483.62 36994.25 27073.32 38195.15 33996.81 20573.56 38269.79 37992.81 28581.00 21486.80 40652.08 40770.06 37090.75 333
pm-mvs184.68 30982.78 31790.40 28989.58 35185.18 27997.31 27094.73 33881.93 33576.05 34892.01 29665.48 33296.11 31578.75 31269.14 37189.91 353
DTE-MVSNet84.14 31982.80 31588.14 33188.95 36079.87 34496.81 29196.24 24483.50 30377.60 34392.52 28967.89 31394.24 36372.64 35569.05 37290.32 343
test20.0378.51 35377.48 34981.62 37783.07 39571.03 38996.11 31892.83 37181.66 33769.31 38289.68 35457.53 36187.29 40558.65 39968.47 37386.53 383
h-mvs3392.47 17091.95 16794.05 20597.13 14885.01 28398.36 20498.08 4493.85 5696.27 9796.73 20083.19 17599.43 12595.81 10268.09 37497.70 205
K. test v381.04 33879.77 34184.83 36187.41 37670.23 39395.60 33493.93 35883.70 30067.51 39089.35 35855.76 36693.58 36876.67 32668.03 37590.67 337
test_fmvs375.09 36475.19 36074.81 38577.45 40854.08 41195.93 32190.64 39582.51 32573.29 36681.19 39622.29 41486.29 40785.50 24667.89 37684.06 398
MDA-MVSNet_test_wron79.65 34677.05 35187.45 33987.79 37480.13 34296.25 31294.44 34573.87 38051.80 40887.47 37268.04 31092.12 38566.02 37967.79 37790.09 346
YYNet179.64 34777.04 35287.43 34087.80 37379.98 34396.23 31394.44 34573.83 38151.83 40787.53 36867.96 31292.07 38666.00 38067.75 37890.23 345
APD_test168.93 37266.98 37574.77 38680.62 40253.15 41387.97 39185.01 41153.76 40959.26 40287.52 36925.19 41289.95 39456.20 40167.33 37981.19 404
AUN-MVS90.17 21989.50 21292.19 24696.21 18882.67 31797.76 25297.53 12988.05 21391.67 17796.15 21783.10 17797.47 24488.11 21766.91 38096.43 244
hse-mvs291.67 18691.51 17792.15 24896.22 18782.61 31997.74 25397.53 12993.85 5696.27 9796.15 21783.19 17597.44 24795.81 10266.86 38196.40 245
pmmvs679.90 34377.31 35087.67 33584.17 39178.13 35995.86 32793.68 36267.94 39972.67 37389.62 35550.98 38895.75 33074.80 33966.04 38289.14 364
test_f71.94 36970.82 37075.30 38472.77 41353.28 41291.62 37489.66 40175.44 37464.47 39778.31 40420.48 41589.56 39878.63 31366.02 38383.05 403
Gipumacopyleft54.77 38252.22 38662.40 39986.50 38259.37 40650.20 41790.35 39736.52 41541.20 41649.49 41718.33 41881.29 41032.10 41665.34 38446.54 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft76.08 38390.74 33851.65 41690.84 39486.47 25757.89 40487.98 36435.88 40892.60 37765.77 38165.06 38583.97 399
MDA-MVSNet-bldmvs77.82 35774.75 36387.03 34288.33 36678.52 35696.34 30792.85 37075.57 37348.87 41087.89 36557.32 36392.49 38160.79 39364.80 38690.08 347
mvsany_test375.85 36374.52 36479.83 38073.53 41260.64 40491.73 37387.87 40783.91 29670.55 37782.52 39031.12 40993.66 36686.66 23362.83 38785.19 396
Patchmatch-RL test81.90 33480.13 33887.23 34180.71 40170.12 39484.07 40588.19 40683.16 30970.57 37682.18 39387.18 10392.59 37882.28 28562.78 38898.98 131
lessismore_v085.08 35885.59 38769.28 39590.56 39667.68 38990.21 34754.21 37795.46 33973.88 34562.64 38990.50 340
PM-MVS74.88 36572.85 36880.98 37978.98 40664.75 40190.81 38485.77 40980.95 34568.23 38782.81 38929.08 41192.84 37476.54 32762.46 39085.36 393
pmmvs-eth3d78.71 35176.16 35686.38 34680.25 40481.19 33494.17 34992.13 38077.97 36066.90 39382.31 39255.76 36692.56 37973.63 34962.31 39185.38 392
ttmdpeth79.80 34577.91 34785.47 35683.34 39475.75 36995.32 33691.45 39176.84 36774.81 35791.71 30553.98 37894.13 36472.42 35661.29 39286.51 384
mvs5depth78.17 35475.56 35885.97 35180.43 40376.44 36785.46 39789.24 40376.39 36978.17 34188.26 36351.73 38495.73 33169.31 36761.09 39385.73 389
ambc79.60 38172.76 41456.61 40876.20 41292.01 38268.25 38680.23 40023.34 41394.73 35673.78 34860.81 39487.48 375
test_method70.10 37168.66 37474.41 38786.30 38555.84 40994.47 34389.82 39935.18 41666.15 39584.75 38530.54 41077.96 41770.40 36460.33 39589.44 360
TDRefinement78.01 35575.31 35986.10 35070.06 41573.84 37893.59 35691.58 38974.51 37873.08 37091.04 31749.63 39397.12 25874.88 33759.47 39687.33 378
TransMVSNet (Re)81.97 33279.61 34289.08 32289.70 34984.01 29797.26 27391.85 38478.84 35573.07 37191.62 30667.17 31995.21 34667.50 37459.46 39788.02 371
PMVScopyleft41.42 2345.67 38542.50 38855.17 40134.28 42732.37 42766.24 41578.71 41930.72 41722.04 42259.59 4134.59 42677.85 41827.49 41758.84 39855.29 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt61.29 37658.75 37968.92 39267.41 41652.84 41491.18 38259.23 42766.96 40141.96 41558.44 41511.37 42394.72 35774.25 34257.97 39959.20 414
KD-MVS_self_test77.47 35875.88 35782.24 37381.59 39868.93 39692.83 36494.02 35777.03 36573.14 36883.39 38755.44 37090.42 39267.95 37257.53 40087.38 376
CL-MVSNet_self_test79.89 34478.34 34584.54 36481.56 39975.01 37396.88 28995.62 29981.10 34275.86 35185.81 38268.49 30590.26 39363.21 38756.51 40188.35 369
UnsupCasMVSNet_eth78.90 34976.67 35485.58 35582.81 39774.94 37491.98 37096.31 23884.64 28565.84 39687.71 36651.33 38592.23 38372.89 35356.50 40289.56 359
PVSNet_083.28 1687.31 27085.16 28593.74 21694.78 25484.59 28998.91 13498.69 2089.81 15678.59 33693.23 27761.95 34799.34 13794.75 12955.72 40397.30 216
new-patchmatchnet74.80 36672.40 36981.99 37678.36 40772.20 38694.44 34492.36 37677.06 36463.47 39879.98 40151.04 38788.85 40160.53 39554.35 40484.92 397
pmmvs372.86 36869.76 37382.17 37473.86 41174.19 37794.20 34889.01 40464.23 40667.72 38880.91 39941.48 40288.65 40262.40 38954.02 40583.68 400
mmtdpeth83.69 32382.59 32286.99 34392.82 30576.98 36596.16 31791.63 38782.89 31992.41 16882.90 38854.95 37398.19 19596.27 9153.27 40685.81 388
testf156.38 38053.73 38364.31 39764.84 41745.11 41880.50 41075.94 42238.87 41242.74 41275.07 40511.26 42481.19 41141.11 41253.27 40666.63 411
APD_test256.38 38053.73 38364.31 39764.84 41745.11 41880.50 41075.94 42238.87 41242.74 41275.07 40511.26 42481.19 41141.11 41253.27 40666.63 411
LCM-MVSNet60.07 37856.37 38071.18 38954.81 42448.67 41782.17 40989.48 40237.95 41449.13 40969.12 40813.75 42281.76 40959.28 39651.63 40983.10 402
UnsupCasMVSNet_bld73.85 36770.14 37184.99 35979.44 40575.73 37088.53 39095.24 32270.12 39261.94 40074.81 40741.41 40393.62 36768.65 37051.13 41085.62 390
WB-MVS66.44 37366.29 37666.89 39374.84 40944.93 42093.00 35984.09 41471.15 38755.82 40581.63 39463.79 34080.31 41521.85 41950.47 41175.43 406
MVStest176.56 36073.43 36685.96 35286.30 38580.88 34094.26 34791.74 38561.98 40758.53 40389.96 35069.30 30091.47 39059.26 39749.56 41285.52 391
SSC-MVS65.42 37465.20 37766.06 39473.96 41043.83 42192.08 36983.54 41569.77 39354.73 40680.92 39863.30 34279.92 41620.48 42048.02 41374.44 407
KD-MVS_2432*160082.98 32780.52 33690.38 29094.32 26588.98 18192.87 36295.87 28480.46 34973.79 36287.49 37082.76 18593.29 37070.56 36246.53 41488.87 367
miper_refine_blended82.98 32780.52 33690.38 29094.32 26588.98 18192.87 36295.87 28480.46 34973.79 36287.49 37082.76 18593.29 37070.56 36246.53 41488.87 367
PMMVS258.97 37955.07 38270.69 39162.72 41955.37 41085.97 39580.52 41749.48 41045.94 41168.31 40915.73 42080.78 41349.79 40837.12 41675.91 405
MVEpermissive44.00 2241.70 38637.64 39153.90 40249.46 42543.37 42265.09 41666.66 42426.19 42025.77 42148.53 4183.58 42863.35 42126.15 41827.28 41754.97 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 38740.93 38941.29 40361.97 42033.83 42684.00 40665.17 42527.17 41827.56 41846.72 41917.63 41960.41 42219.32 42118.82 41829.61 418
ANet_high50.71 38446.17 38764.33 39644.27 42652.30 41576.13 41378.73 41864.95 40427.37 41955.23 41614.61 42167.74 41936.01 41518.23 41972.95 409
EMVS39.96 38839.88 39040.18 40459.57 42332.12 42884.79 40364.57 42626.27 41926.14 42044.18 42218.73 41759.29 42317.03 42217.67 42029.12 419
tmp_tt53.66 38352.86 38556.05 40032.75 42841.97 42473.42 41476.12 42121.91 42139.68 41796.39 21142.59 40165.10 42078.00 31614.92 42161.08 413
wuyk23d16.71 39116.73 39516.65 40560.15 42125.22 43041.24 4185.17 4296.56 4225.48 4253.61 4253.64 42722.72 42415.20 4239.52 4221.99 422
testmvs18.81 39023.05 3936.10 4074.48 4292.29 43297.78 2473.00 4303.27 42318.60 42362.71 4111.53 4302.49 42614.26 4241.80 42313.50 421
test12316.58 39219.47 3947.91 4063.59 4305.37 43194.32 3451.39 4312.49 42413.98 42444.60 4212.91 4292.65 42511.35 4250.57 42415.70 420
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k22.52 38930.03 3920.00 4080.00 4310.00 4330.00 41997.17 1790.00 4260.00 42798.77 8874.35 2590.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.87 3949.16 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42682.48 1910.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.21 39310.94 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42798.50 1120.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS79.74 34567.75 373
FOURS199.50 4288.94 18499.55 4497.47 14391.32 11598.12 46
test_one_060199.59 2894.89 3797.64 10593.14 7398.93 2199.45 1493.45 18
eth-test20.00 431
eth-test0.00 431
test_241102_ONE99.63 1895.24 2797.72 8394.16 4699.30 899.49 993.32 2099.98 9
save fliter99.34 5093.85 6799.65 3697.63 10995.69 22
test072699.66 1295.20 3299.77 1897.70 8893.95 4999.35 799.54 393.18 23
GSMVS98.84 146
test_part299.54 3695.42 2298.13 44
sam_mvs188.39 7898.84 146
sam_mvs87.08 106
MTGPAbinary97.45 146
test_post190.74 38641.37 42385.38 14596.36 29583.16 275
test_post46.00 42087.37 9797.11 259
patchmatchnet-post84.86 38388.73 7496.81 272
MTMP99.21 9091.09 393
gm-plane-assit94.69 25688.14 20488.22 20897.20 17198.29 18990.79 185
TEST999.57 3393.17 8099.38 7297.66 9789.57 16498.39 3799.18 3690.88 4299.66 97
test_899.55 3593.07 8399.37 7597.64 10590.18 14498.36 3999.19 3390.94 3999.64 103
agg_prior99.54 3692.66 9397.64 10597.98 5399.61 105
test_prior492.00 10399.41 69
test_prior97.01 6699.58 3091.77 10697.57 12399.49 11599.79 38
旧先验298.67 15885.75 26798.96 2098.97 15793.84 145
新几何298.26 212
无先验98.52 17997.82 6687.20 23799.90 5087.64 22299.85 30
原ACMM298.69 155
testdata299.88 5484.16 263
segment_acmp90.56 47
testdata197.89 24092.43 88
plane_prior793.84 28385.73 268
plane_prior693.92 28086.02 26172.92 272
plane_prior496.52 205
plane_prior385.91 26393.65 6286.99 235
plane_prior299.02 12293.38 69
plane_prior193.90 282
n20.00 432
nn0.00 432
door-mid84.90 412
test1197.68 92
door85.30 410
HQP5-MVS86.39 245
HQP-NCC93.95 27699.16 9893.92 5187.57 228
ACMP_Plane93.95 27699.16 9893.92 5187.57 228
BP-MVS93.82 147
HQP4-MVS87.57 22897.77 22292.72 269
HQP2-MVS73.34 266
NP-MVS93.94 27986.22 25196.67 203
MDTV_nov1_ep13_2view91.17 11991.38 37887.45 23393.08 15986.67 11787.02 22598.95 137
Test By Simon83.62 165