This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1797.98 4697.18 295.96 8299.33 1992.62 26100.00 198.99 1899.93 199.98 6
NCCC98.12 598.11 398.13 2299.76 694.46 4699.81 697.88 4896.54 698.84 1899.46 1092.55 2799.98 998.25 3499.93 199.94 18
DVP-MVS++98.18 298.09 598.44 1499.61 2495.38 2099.55 3397.68 7893.01 5699.23 899.45 1495.12 899.98 999.25 1499.92 399.97 7
PC_three_145294.60 2399.41 299.12 4195.50 799.96 2899.84 299.92 399.97 7
OPU-MVS99.49 499.64 1798.51 499.77 999.19 2895.12 899.97 2199.90 199.92 399.99 1
MSLP-MVS++97.50 1397.45 1497.63 3699.65 1693.21 7099.70 1798.13 3894.61 2297.78 4699.46 1089.85 4999.81 6697.97 3799.91 699.88 26
DPE-MVScopyleft98.11 698.00 698.44 1499.50 4295.39 1999.29 6897.72 6994.50 2498.64 2199.54 393.32 1999.97 2199.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1399.80 897.99 4597.05 399.41 299.59 292.89 25100.00 198.99 1899.90 799.96 10
test9_res98.60 2399.87 999.90 22
agg_prior297.84 4199.87 999.91 21
HPM-MVS++copyleft97.72 1097.59 1198.14 2199.53 4094.76 4099.19 7297.75 6495.66 1398.21 3199.29 2091.10 3399.99 597.68 4299.87 999.68 54
MG-MVS97.24 1696.83 2598.47 1399.79 595.71 1699.07 9499.06 994.45 2696.42 7698.70 8488.81 5999.74 7495.35 8799.86 1299.97 7
MSP-MVS97.77 998.18 296.53 8799.54 3690.14 12999.41 5597.70 7495.46 1798.60 2299.19 2895.71 499.49 9898.15 3599.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
train_agg97.20 1997.08 1897.57 4099.57 3393.17 7199.38 5897.66 8190.18 12098.39 2799.18 3190.94 3599.66 8098.58 2699.85 1399.88 26
MSC_two_6792asdad99.51 299.61 2498.60 297.69 7699.98 999.55 1099.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 7699.98 999.55 1099.83 1599.96 10
SMA-MVScopyleft97.24 1696.99 1998.00 2799.30 5494.20 5399.16 7897.65 8689.55 14099.22 1099.52 890.34 4699.99 598.32 3299.83 1599.82 31
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.97.44 1497.46 1397.39 4499.12 6593.49 6798.52 15297.50 11994.46 2598.99 1398.64 8791.58 3099.08 13498.49 2799.83 1599.60 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_241102_TWO97.72 6994.17 2999.23 899.54 393.14 2499.98 999.70 399.82 1999.99 1
DVP-MVScopyleft98.07 798.00 698.29 1799.66 1295.20 2899.72 1497.47 12493.95 3499.07 1199.46 1093.18 2299.97 2199.64 699.82 1999.69 53
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 5699.07 1199.46 1094.66 1499.97 2199.25 1499.82 1999.95 15
test_0728_SECOND98.77 799.66 1296.37 1299.72 1497.68 7899.98 999.64 699.82 1999.96 10
SED-MVS98.18 298.10 498.41 1699.63 1895.24 2399.77 997.72 6994.17 2999.30 699.54 393.32 1999.98 999.70 399.81 2399.99 1
IU-MVS99.63 1895.38 2097.73 6895.54 1599.54 199.69 599.81 2399.99 1
test_prior299.57 3191.43 9198.12 3598.97 5590.43 4398.33 3199.81 23
DPM-MVS97.86 897.25 1799.68 198.25 9399.10 199.76 1297.78 6196.61 598.15 3299.53 793.62 17100.00 191.79 14299.80 2699.94 18
APDe-MVS97.53 1197.47 1297.70 3499.58 3093.63 6299.56 3297.52 11493.59 4998.01 4199.12 4190.80 3999.55 9299.26 1399.79 2799.93 20
CDPH-MVS96.56 3396.18 3797.70 3499.59 2893.92 5899.13 8997.44 13089.02 15297.90 4499.22 2588.90 5899.49 9894.63 10599.79 2799.68 54
region2R96.30 4096.17 4096.70 7799.70 790.31 12599.46 4697.66 8190.55 11097.07 5999.07 4686.85 9399.97 2195.43 8599.74 2999.81 32
SD-MVS97.51 1297.40 1597.81 3299.01 7293.79 6199.33 6597.38 13793.73 4598.83 1999.02 5290.87 3899.88 4698.69 2199.74 2999.77 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS96.42 3696.26 3596.90 6599.69 890.96 11399.47 4297.81 5790.54 11196.88 6199.05 4987.57 7599.96 2895.65 7899.72 3199.78 37
ACMMPR96.28 4196.14 4496.73 7499.68 990.47 12399.47 4297.80 5890.54 11196.83 6699.03 5186.51 10499.95 3195.65 7899.72 3199.75 45
CP-MVS96.22 4296.15 4396.42 9299.67 1089.62 14699.70 1797.61 9490.07 12696.00 8199.16 3487.43 7899.92 3896.03 7499.72 3199.70 51
test1297.83 3199.33 5394.45 4797.55 10797.56 4788.60 6199.50 9799.71 3499.55 69
ZD-MVS99.67 1093.28 6997.61 9487.78 19197.41 5199.16 3490.15 4799.56 9198.35 3099.70 35
DeepC-MVS_fast93.52 297.16 2096.84 2498.13 2299.61 2494.45 4798.85 11697.64 8796.51 895.88 8599.39 1887.35 8499.99 596.61 6399.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft96.95 2496.72 2697.63 3699.51 4193.58 6399.16 7897.44 13090.08 12598.59 2399.07 4689.06 5599.42 10997.92 3899.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS97.22 1896.92 2098.12 2499.11 6694.88 3399.44 4997.45 12789.60 13698.70 2099.42 1790.42 4499.72 7598.47 2899.65 3899.77 42
HPM-MVScopyleft95.41 6595.22 6495.99 10899.29 5589.14 15099.17 7797.09 16587.28 20495.40 9598.48 9984.93 12799.38 11495.64 8299.65 3899.47 76
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test22298.32 9291.21 10198.08 20197.58 10283.74 26195.87 8699.02 5286.74 9699.64 4099.81 32
mPP-MVS95.90 5295.75 5496.38 9499.58 3089.41 14999.26 6997.41 13490.66 10594.82 10498.95 6186.15 11199.98 995.24 9099.64 4099.74 46
SteuartSystems-ACMMP97.25 1597.34 1697.01 5697.38 11991.46 9899.75 1397.66 8194.14 3398.13 3399.26 2192.16 2999.66 8097.91 3999.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS_fast94.89 7494.62 7395.70 11799.11 6688.44 17099.14 8697.11 16185.82 22895.69 9198.47 10083.46 14599.32 12193.16 12899.63 4399.35 84
9.1496.87 2299.34 5099.50 3997.49 12189.41 14398.59 2399.43 1689.78 5099.69 7798.69 2199.62 44
新几何197.40 4398.92 7792.51 8697.77 6385.52 23296.69 7199.06 4888.08 6999.89 4584.88 21899.62 4499.79 35
原ACMM196.18 9999.03 7190.08 13297.63 9188.98 15397.00 6098.97 5588.14 6899.71 7688.23 18299.62 4498.76 140
PHI-MVS96.65 3196.46 3197.21 5099.34 5091.77 9199.70 1798.05 4186.48 22198.05 3899.20 2789.33 5399.96 2898.38 2999.62 4499.90 22
DELS-MVS97.12 2196.60 2998.68 998.03 10296.57 1099.84 397.84 5196.36 995.20 9998.24 10888.17 6699.83 6096.11 7299.60 4899.64 60
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVScopyleft96.00 4695.82 5096.54 8699.47 4690.13 13199.36 6297.41 13490.64 10895.49 9498.95 6185.51 11999.98 996.00 7599.59 4999.52 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.09 4495.81 5296.95 6499.42 4791.19 10299.55 3397.53 11189.72 13195.86 8798.94 6486.59 10099.97 2195.13 9199.56 5099.68 54
MVS_111021_HR96.69 2996.69 2796.72 7698.58 8891.00 11299.14 8699.45 193.86 4095.15 10098.73 7888.48 6299.76 7297.23 5099.56 5099.40 80
DeepPCF-MVS93.56 196.55 3497.84 1092.68 20498.71 8578.11 32399.70 1797.71 7398.18 197.36 5399.76 190.37 4599.94 3499.27 1299.54 5299.99 1
CPTT-MVS94.60 8694.43 7695.09 13399.66 1286.85 20599.44 4997.47 12483.22 27094.34 11298.96 5982.50 16599.55 9294.81 9999.50 5398.88 126
MP-MVS-pluss95.80 5595.30 6197.29 4698.95 7692.66 8198.59 14797.14 15788.95 15593.12 12999.25 2285.62 11699.94 3496.56 6599.48 5499.28 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP96.59 3296.18 3797.81 3298.82 8193.55 6498.88 11597.59 10090.66 10597.98 4299.14 3886.59 100100.00 196.47 6799.46 5599.89 25
PGM-MVS95.85 5395.65 5896.45 9099.50 4289.77 14398.22 18698.90 1289.19 14796.74 6998.95 6185.91 11599.92 3893.94 11399.46 5599.66 58
testdata95.26 13098.20 9587.28 19797.60 9685.21 23698.48 2699.15 3688.15 6798.72 14890.29 15899.45 5799.78 37
SR-MVS96.13 4396.16 4296.07 10499.42 4789.04 15298.59 14797.33 14190.44 11496.84 6499.12 4186.75 9599.41 11297.47 4599.44 5899.76 44
XVS96.47 3596.37 3396.77 7099.62 2290.66 12199.43 5297.58 10292.41 7196.86 6298.96 5987.37 8099.87 4995.65 7899.43 5999.78 37
X-MVStestdata90.69 17488.66 19696.77 7099.62 2290.66 12199.43 5297.58 10292.41 7196.86 6229.59 37887.37 8099.87 4995.65 7899.43 5999.78 37
MVS93.92 9992.28 12798.83 695.69 18296.82 796.22 27998.17 3384.89 24584.34 22498.61 9179.32 19599.83 6093.88 11599.43 5999.86 29
MTAPA96.09 4495.80 5396.96 6399.29 5591.19 10297.23 24297.45 12792.58 6594.39 11199.24 2486.43 10699.99 596.22 6999.40 6299.71 50
旧先验198.97 7392.90 8097.74 6599.15 3691.05 3499.33 6399.60 65
PAPM_NR95.43 6395.05 6996.57 8599.42 4790.14 12998.58 14997.51 11690.65 10792.44 13698.90 6687.77 7499.90 4390.88 15099.32 6499.68 54
SR-MVS-dyc-post95.75 5995.86 4995.41 12599.22 5987.26 20098.40 17097.21 14989.63 13496.67 7298.97 5586.73 9799.36 11696.62 6199.31 6599.60 65
RE-MVS-def95.70 5599.22 5987.26 20098.40 17097.21 14989.63 13496.67 7298.97 5585.24 12596.62 6199.31 6599.60 65
PAPM96.35 3795.94 4697.58 3894.10 23395.25 2298.93 11098.17 3394.26 2893.94 11898.72 8089.68 5197.88 18296.36 6899.29 6799.62 64
APD-MVS_3200maxsize95.64 6295.65 5895.62 11999.24 5887.80 18098.42 16597.22 14888.93 15796.64 7498.98 5485.49 12099.36 11696.68 6099.27 6899.70 51
3Dnovator87.35 1193.17 12691.77 14097.37 4595.41 19293.07 7498.82 11997.85 5091.53 8782.56 24397.58 13271.97 24699.82 6391.01 14899.23 6999.22 97
patch_mono-297.10 2297.97 894.49 15499.21 6183.73 26899.62 2798.25 2795.28 1899.38 498.91 6592.28 2899.94 3499.61 899.22 7099.78 37
dcpmvs_295.67 6196.18 3794.12 17098.82 8184.22 26197.37 23495.45 26790.70 10495.77 8998.63 8990.47 4298.68 15099.20 1699.22 7099.45 77
GST-MVS95.97 4995.66 5696.90 6599.49 4591.22 10099.45 4897.48 12289.69 13295.89 8498.72 8086.37 10799.95 3194.62 10699.22 7099.52 71
PS-MVSNAJ96.87 2696.40 3298.29 1797.35 12097.29 599.03 10097.11 16195.83 1198.97 1499.14 3882.48 16799.60 8998.60 2399.08 7398.00 173
MVS_111021_LR95.78 5695.94 4695.28 12998.19 9787.69 18198.80 12199.26 793.39 5195.04 10298.69 8584.09 13799.76 7296.96 5699.06 7498.38 158
PAPR96.35 3795.82 5097.94 2999.63 1894.19 5499.42 5497.55 10792.43 6893.82 12299.12 4187.30 8599.91 4094.02 11199.06 7499.74 46
114514_t94.06 9493.05 11197.06 5499.08 6992.26 8798.97 10897.01 17282.58 28392.57 13498.22 10980.68 18699.30 12289.34 17199.02 7699.63 62
API-MVS94.78 7894.18 8396.59 8299.21 6190.06 13698.80 12197.78 6183.59 26593.85 12099.21 2683.79 14099.97 2192.37 13899.00 7799.74 46
MVSFormer94.71 8394.08 8696.61 8195.05 21194.87 3497.77 21896.17 21486.84 21298.04 3998.52 9485.52 11795.99 28389.83 16198.97 7898.96 116
lupinMVS96.32 3995.94 4697.44 4295.05 21194.87 3499.86 296.50 19393.82 4398.04 3998.77 7485.52 11798.09 17096.98 5598.97 7899.37 82
3Dnovator+87.72 893.43 11591.84 13898.17 2095.73 18195.08 3098.92 11297.04 16891.42 9281.48 26897.60 13074.60 22099.79 6990.84 15198.97 7899.64 60
GG-mvs-BLEND96.98 6196.53 14894.81 3987.20 34797.74 6593.91 11996.40 17996.56 296.94 23195.08 9298.95 8199.20 98
CS-MVS-test95.98 4896.34 3494.90 14098.06 10187.66 18499.69 2396.10 21893.66 4698.35 3099.05 4986.28 10897.66 19996.96 5698.90 8299.37 82
gg-mvs-nofinetune90.00 18887.71 21096.89 6996.15 16794.69 4385.15 35397.74 6568.32 35392.97 13260.16 36696.10 396.84 23393.89 11498.87 8399.14 101
MAR-MVS94.43 9094.09 8595.45 12399.10 6887.47 19098.39 17497.79 6088.37 17494.02 11799.17 3378.64 20299.91 4092.48 13798.85 8498.96 116
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CSCG94.87 7594.71 7295.36 12699.54 3686.49 21099.34 6498.15 3682.71 28190.15 17399.25 2289.48 5299.86 5494.97 9798.82 8599.72 49
CHOSEN 280x42096.80 2896.85 2396.66 8097.85 10694.42 4994.76 30298.36 2492.50 6795.62 9397.52 13497.92 197.38 21798.31 3398.80 8698.20 169
CANet97.00 2396.49 3098.55 1098.86 8096.10 1499.83 497.52 11495.90 1097.21 5698.90 6682.66 16499.93 3798.71 2098.80 8699.63 62
test_vis1_n_192093.08 12893.42 10192.04 21696.31 15879.36 31299.83 496.06 22196.72 498.53 2598.10 11458.57 31499.91 4097.86 4098.79 8896.85 201
MVP-Stereo86.61 24485.83 23888.93 29288.70 32483.85 26796.07 28394.41 30782.15 29275.64 31491.96 26067.65 27596.45 25677.20 28698.72 8986.51 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
QAPM91.41 15989.49 17897.17 5295.66 18493.42 6898.60 14597.51 11680.92 30681.39 26997.41 14072.89 23999.87 4982.33 24998.68 9098.21 168
131493.44 11491.98 13597.84 3095.24 19594.38 5096.22 27997.92 4790.18 12082.28 25197.71 12577.63 20799.80 6891.94 14198.67 9199.34 86
CS-MVS95.75 5996.19 3694.40 15897.88 10586.22 22199.66 2496.12 21792.69 6498.07 3798.89 6887.09 8797.59 20596.71 5998.62 9299.39 81
DROMVSNet95.09 7195.17 6594.84 14395.42 19188.17 17299.48 4095.92 23391.47 8997.34 5498.36 10382.77 16097.41 21697.24 4998.58 9398.94 121
DeepC-MVS91.02 494.56 8993.92 9396.46 8997.16 12790.76 11798.39 17497.11 16193.92 3688.66 18698.33 10478.14 20499.85 5695.02 9498.57 9498.78 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft85.28 1490.75 17288.84 19196.48 8893.58 25193.51 6698.80 12197.41 13482.59 28278.62 29697.49 13668.00 27299.82 6384.52 22498.55 9596.11 214
EIA-MVS95.11 7095.27 6394.64 15196.34 15786.51 20999.59 2996.62 18292.51 6694.08 11698.64 8786.05 11298.24 16495.07 9398.50 9699.18 99
jason95.40 6694.86 7197.03 5592.91 26594.23 5299.70 1796.30 20493.56 5096.73 7098.52 9481.46 18297.91 17996.08 7398.47 9798.96 116
jason: jason.
MS-PatchMatch86.75 24085.92 23789.22 28591.97 27582.47 28696.91 25396.14 21683.74 26177.73 30393.53 23458.19 31697.37 21976.75 29098.35 9887.84 333
DP-MVS Recon95.85 5395.15 6697.95 2899.87 294.38 5099.60 2897.48 12286.58 21894.42 11099.13 4087.36 8399.98 993.64 12098.33 9999.48 75
test_fmvs192.35 14192.94 11690.57 24997.19 12575.43 33199.55 3394.97 28795.20 1996.82 6797.57 13359.59 31299.84 5797.30 4898.29 10096.46 209
xiu_mvs_v2_base96.66 3096.17 4098.11 2597.11 13296.96 699.01 10397.04 16895.51 1698.86 1799.11 4582.19 17399.36 11698.59 2598.14 10198.00 173
BH-w/o92.32 14291.79 13993.91 17996.85 13986.18 22399.11 9195.74 25088.13 18184.81 21897.00 15977.26 20997.91 17989.16 17698.03 10297.64 180
test_fmvs1_n91.07 16591.41 14790.06 26394.10 23374.31 33599.18 7494.84 29194.81 2196.37 7797.46 13750.86 34299.82 6397.14 5197.90 10396.04 215
TAPA-MVS87.50 990.35 17889.05 18794.25 16698.48 9185.17 24898.42 16596.58 18882.44 28887.24 19898.53 9382.77 16098.84 14159.09 35697.88 10498.72 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CHOSEN 1792x268894.35 9193.82 9595.95 11097.40 11888.74 16498.41 16798.27 2692.18 7791.43 15196.40 17978.88 19799.81 6693.59 12197.81 10599.30 89
BH-untuned91.46 15890.84 15993.33 19096.51 15084.83 25498.84 11895.50 26486.44 22383.50 22996.70 17275.49 21697.77 19086.78 20097.81 10597.40 186
Vis-MVSNetpermissive92.64 13491.85 13795.03 13795.12 20488.23 17198.48 16096.81 17791.61 8592.16 14097.22 14871.58 25298.00 17885.85 21197.81 10598.88 126
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet96.82 2796.68 2897.25 4998.65 8693.10 7399.48 4098.76 1396.54 697.84 4598.22 10987.49 7799.66 8095.35 8797.78 10899.00 112
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended95.94 5195.66 5696.75 7298.77 8391.61 9599.88 198.04 4293.64 4894.21 11397.76 12183.50 14399.87 4997.41 4697.75 10998.79 136
test_vis1_n90.40 17790.27 16990.79 24591.55 28476.48 32799.12 9094.44 30394.31 2797.34 5496.95 16143.60 35399.42 10997.57 4497.60 11096.47 208
ETV-MVS96.00 4696.00 4596.00 10796.56 14791.05 11099.63 2696.61 18393.26 5497.39 5298.30 10686.62 9998.13 16798.07 3697.57 11198.82 133
PLCcopyleft91.07 394.23 9394.01 8794.87 14199.17 6387.49 18999.25 7096.55 19088.43 17291.26 15598.21 11185.92 11399.86 5489.77 16597.57 11197.24 191
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D90.19 18388.72 19494.59 15398.97 7386.33 21896.90 25496.60 18474.96 33484.06 22798.74 7775.78 21499.83 6074.93 30297.57 11197.62 183
AdaColmapbinary93.82 10393.06 11096.10 10399.88 189.07 15198.33 17897.55 10786.81 21490.39 17098.65 8675.09 21799.98 993.32 12697.53 11499.26 93
BH-RMVSNet91.25 16389.99 17295.03 13796.75 14388.55 16798.65 13794.95 28887.74 19487.74 19297.80 11968.27 26998.14 16680.53 26597.49 11598.41 155
CANet_DTU94.31 9293.35 10297.20 5197.03 13694.71 4298.62 14195.54 26295.61 1497.21 5698.47 10071.88 24799.84 5788.38 18097.46 11697.04 198
PatchMatch-RL91.47 15790.54 16694.26 16598.20 9586.36 21696.94 25297.14 15787.75 19388.98 18495.75 19271.80 24999.40 11380.92 26097.39 11797.02 199
UGNet91.91 15290.85 15895.10 13297.06 13488.69 16598.01 20598.24 2992.41 7192.39 13793.61 23160.52 30999.68 7888.14 18397.25 11896.92 200
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet87.13 1293.69 10692.83 11896.28 9797.99 10390.22 12899.38 5898.93 1191.42 9293.66 12397.68 12671.29 25499.64 8687.94 18797.20 11998.98 114
test250694.80 7794.21 8096.58 8396.41 15392.18 8998.01 20598.96 1090.82 10293.46 12597.28 14385.92 11398.45 15589.82 16397.19 12099.12 104
ECVR-MVScopyleft92.29 14391.33 14895.15 13196.41 15387.84 17998.10 19894.84 29190.82 10291.42 15397.28 14365.61 29098.49 15490.33 15797.19 12099.12 104
EI-MVSNet-Vis-set95.76 5895.63 6096.17 10199.14 6490.33 12498.49 15897.82 5491.92 8194.75 10598.88 6987.06 8999.48 10295.40 8697.17 12298.70 143
test111192.12 14891.19 15194.94 13996.15 16787.36 19498.12 19594.84 29190.85 10190.97 15897.26 14565.60 29198.37 15789.74 16697.14 12399.07 110
CNLPA93.64 11092.74 11996.36 9598.96 7590.01 13999.19 7295.89 24186.22 22489.40 18198.85 7080.66 18799.84 5788.57 17896.92 12499.24 94
xiu_mvs_v1_base_debu94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
xiu_mvs_v1_base94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
xiu_mvs_v1_base_debi94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
MVS_Test93.67 10992.67 12196.69 7896.72 14492.66 8197.22 24396.03 22287.69 19795.12 10194.03 21881.55 17998.28 16289.17 17596.46 12899.14 101
EI-MVSNet-UG-set95.43 6395.29 6295.86 11299.07 7089.87 14098.43 16497.80 5891.78 8394.11 11598.77 7486.25 11099.48 10294.95 9896.45 12998.22 167
TSAR-MVS + GP.96.95 2496.91 2197.07 5398.88 7991.62 9499.58 3096.54 19195.09 2096.84 6498.63 8991.16 3199.77 7199.04 1796.42 13099.81 32
PVSNet_Blended_VisFu94.67 8494.11 8496.34 9697.14 12991.10 10799.32 6697.43 13292.10 8091.53 15096.38 18283.29 14999.68 7893.42 12596.37 13198.25 165
Vis-MVSNet (Re-imp)93.26 12393.00 11594.06 17396.14 16986.71 20898.68 13396.70 18088.30 17689.71 18097.64 12985.43 12396.39 25888.06 18596.32 13299.08 108
EPMVS92.59 13791.59 14395.59 12197.22 12490.03 13791.78 32898.04 4290.42 11591.66 14590.65 28886.49 10597.46 21281.78 25596.31 13399.28 91
PMMVS93.62 11193.90 9492.79 20096.79 14281.40 29698.85 11696.81 17791.25 9596.82 6798.15 11377.02 21098.13 16793.15 12996.30 13498.83 132
TESTMET0.1,193.82 10393.26 10695.49 12295.21 19890.25 12699.15 8397.54 11089.18 14891.79 14294.87 20689.13 5497.63 20286.21 20496.29 13598.60 148
test-LLR93.11 12792.68 12094.40 15894.94 21687.27 19899.15 8397.25 14390.21 11891.57 14694.04 21684.89 12897.58 20685.94 20896.13 13698.36 161
test-mter93.27 12292.89 11794.40 15894.94 21687.27 19899.15 8397.25 14388.95 15591.57 14694.04 21688.03 7097.58 20685.94 20896.13 13698.36 161
Effi-MVS+93.87 10293.15 10996.02 10695.79 17890.76 11796.70 26495.78 24786.98 20995.71 9097.17 15279.58 19198.01 17794.57 10796.09 13899.31 88
mvs_anonymous92.50 13991.65 14295.06 13496.60 14689.64 14597.06 24896.44 19786.64 21784.14 22593.93 22282.49 16696.17 27691.47 14396.08 13999.35 84
IS-MVSNet93.00 12992.51 12494.49 15496.14 16987.36 19498.31 18195.70 25288.58 16590.17 17297.50 13583.02 15697.22 22087.06 19296.07 14098.90 125
PatchmatchNetpermissive92.05 15191.04 15495.06 13496.17 16689.04 15291.26 33597.26 14289.56 13990.64 16490.56 29488.35 6497.11 22379.53 26896.07 14099.03 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
F-COLMAP92.07 15091.75 14193.02 19598.16 9882.89 27998.79 12595.97 22586.54 22087.92 19197.80 11978.69 20199.65 8485.97 20695.93 14296.53 207
diffmvspermissive94.59 8794.19 8195.81 11395.54 18790.69 11998.70 13195.68 25491.61 8595.96 8297.81 11880.11 18898.06 17296.52 6695.76 14398.67 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPcopyleft94.67 8494.30 7795.79 11499.25 5788.13 17498.41 16798.67 2090.38 11691.43 15198.72 8082.22 17299.95 3193.83 11795.76 14399.29 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LCM-MVSNet-Re88.59 21488.61 19788.51 29695.53 18872.68 34396.85 25688.43 36288.45 16973.14 32790.63 28975.82 21394.38 32592.95 13095.71 14598.48 153
PCF-MVS89.78 591.26 16189.63 17596.16 10295.44 19091.58 9795.29 29896.10 21885.07 24082.75 23997.45 13878.28 20399.78 7080.60 26495.65 14697.12 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FE-MVS91.38 16090.16 17195.05 13696.46 15187.53 18889.69 34497.84 5182.97 27592.18 13992.00 25984.07 13898.93 13980.71 26295.52 14798.68 144
mvsany_test194.57 8895.09 6892.98 19695.84 17782.07 28998.76 12795.24 28092.87 6396.45 7598.71 8384.81 13099.15 12797.68 4295.49 14897.73 178
casdiffmvspermissive93.98 9893.43 10095.61 12095.07 21089.86 14198.80 12195.84 24690.98 9992.74 13397.66 12879.71 19098.10 16994.72 10295.37 14998.87 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive94.00 9693.33 10396.03 10595.22 19790.90 11599.09 9295.99 22390.58 10991.55 14997.37 14179.91 18998.06 17295.01 9595.22 15099.13 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline93.91 10093.30 10495.72 11695.10 20890.07 13397.48 23095.91 23891.03 9793.54 12497.68 12679.58 19198.02 17694.27 11095.14 15199.08 108
Fast-Effi-MVS+91.72 15490.79 16294.49 15495.89 17587.40 19399.54 3895.70 25285.01 24389.28 18395.68 19377.75 20697.57 20983.22 23995.06 15298.51 151
EPNet_dtu92.28 14492.15 13192.70 20397.29 12284.84 25398.64 13997.82 5492.91 6193.02 13197.02 15885.48 12295.70 29772.25 32194.89 15397.55 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UA-Net93.30 12092.62 12295.34 12796.27 16088.53 16995.88 28996.97 17490.90 10095.37 9697.07 15682.38 17099.10 13383.91 23494.86 15498.38 158
baseline294.04 9593.80 9694.74 14793.07 26390.25 12698.12 19598.16 3589.86 12886.53 20996.95 16195.56 698.05 17491.44 14494.53 15595.93 216
MVS-HIRNet79.01 30775.13 31890.66 24893.82 24781.69 29285.16 35293.75 31754.54 36274.17 32059.15 36857.46 31896.58 24563.74 34594.38 15693.72 225
SCA90.64 17589.25 18494.83 14494.95 21588.83 16096.26 27697.21 14990.06 12790.03 17490.62 29066.61 28296.81 23583.16 24094.36 15798.84 129
OMC-MVS93.90 10193.62 9894.73 14898.63 8787.00 20398.04 20496.56 18992.19 7692.46 13598.73 7879.49 19499.14 13192.16 14094.34 15898.03 172
DP-MVS88.75 21286.56 22895.34 12798.92 7787.45 19197.64 22693.52 32270.55 34581.49 26797.25 14674.43 22399.88 4671.14 32494.09 15998.67 145
sss94.85 7693.94 9297.58 3896.43 15294.09 5798.93 11099.16 889.50 14195.27 9797.85 11681.50 18099.65 8492.79 13594.02 16098.99 113
FA-MVS(test-final)92.22 14791.08 15395.64 11896.05 17388.98 15491.60 33197.25 14386.99 20691.84 14192.12 25383.03 15599.00 13686.91 19793.91 16198.93 122
EPP-MVSNet93.75 10593.67 9794.01 17695.86 17685.70 23798.67 13597.66 8184.46 25091.36 15497.18 15191.16 3197.79 18892.93 13193.75 16298.53 150
GeoE90.60 17689.56 17693.72 18695.10 20885.43 24299.41 5594.94 28983.96 25887.21 19996.83 16874.37 22497.05 22780.50 26693.73 16398.67 145
CVMVSNet90.30 18090.91 15788.46 29794.32 22973.58 33997.61 22797.59 10090.16 12388.43 18997.10 15476.83 21192.86 33682.64 24693.54 16498.93 122
thisisatest051594.75 7994.19 8196.43 9196.13 17292.64 8499.47 4297.60 9687.55 20093.17 12897.59 13194.71 1398.42 15688.28 18193.20 16598.24 166
JIA-IIPM85.97 25484.85 25489.33 28493.23 26073.68 33885.05 35497.13 15969.62 34991.56 14868.03 36488.03 7096.96 22977.89 28293.12 16697.34 188
Effi-MVS+-dtu89.97 19090.68 16487.81 30195.15 20371.98 34597.87 21395.40 27191.92 8187.57 19391.44 26974.27 22696.84 23389.45 16893.10 16794.60 222
HY-MVS88.56 795.29 6794.23 7998.48 1297.72 10896.41 1194.03 31098.74 1492.42 7095.65 9294.76 20986.52 10399.49 9895.29 8992.97 16899.53 70
LFMVS92.23 14690.84 15996.42 9298.24 9491.08 10998.24 18596.22 21083.39 26894.74 10698.31 10561.12 30898.85 14094.45 10892.82 16999.32 87
HyFIR lowres test93.68 10893.29 10594.87 14197.57 11688.04 17698.18 19098.47 2287.57 19991.24 15695.05 20385.49 12097.46 21293.22 12792.82 16999.10 106
CDS-MVSNet93.47 11393.04 11294.76 14594.75 22289.45 14898.82 11997.03 17087.91 18890.97 15896.48 17789.06 5596.36 26089.50 16792.81 17198.49 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS95.97 4995.11 6798.54 1197.62 11296.65 899.44 4998.74 1492.25 7595.21 9898.46 10286.56 10299.46 10495.00 9692.69 17299.50 74
test_yl95.27 6894.60 7497.28 4798.53 8992.98 7799.05 9798.70 1786.76 21594.65 10897.74 12387.78 7299.44 10595.57 8392.61 17399.44 78
DCV-MVSNet95.27 6894.60 7497.28 4798.53 8992.98 7799.05 9798.70 1786.76 21594.65 10897.74 12387.78 7299.44 10595.57 8392.61 17399.44 78
MSDG88.29 21886.37 23094.04 17596.90 13886.15 22596.52 26794.36 30877.89 32479.22 29196.95 16169.72 26099.59 9073.20 31792.58 17596.37 212
thisisatest053094.00 9693.52 9995.43 12495.76 18090.02 13898.99 10597.60 9686.58 21891.74 14397.36 14294.78 1298.34 15886.37 20392.48 17697.94 175
TR-MVS90.77 17189.44 17994.76 14596.31 15888.02 17797.92 20995.96 22785.52 23288.22 19097.23 14766.80 28198.09 17084.58 22292.38 17798.17 170
MDTV_nov1_ep1390.47 16896.14 16988.55 16791.34 33497.51 11689.58 13792.24 13890.50 29886.99 9297.61 20477.64 28392.34 178
TAMVS92.62 13592.09 13394.20 16794.10 23387.68 18298.41 16796.97 17487.53 20189.74 17896.04 18884.77 13296.49 25388.97 17792.31 17998.42 154
ADS-MVSNet287.62 23086.88 22389.86 27096.21 16379.14 31487.15 34892.99 32683.01 27389.91 17687.27 32978.87 19892.80 33974.20 30992.27 18097.64 180
ADS-MVSNet88.99 20087.30 21694.07 17296.21 16387.56 18787.15 34896.78 17983.01 27389.91 17687.27 32978.87 19897.01 22874.20 30992.27 18097.64 180
cascas90.93 16989.33 18395.76 11595.69 18293.03 7698.99 10596.59 18580.49 30886.79 20794.45 21365.23 29398.60 15393.52 12292.18 18295.66 218
CR-MVSNet88.83 20887.38 21593.16 19393.47 25386.24 21984.97 35594.20 31188.92 15890.76 16286.88 33384.43 13394.82 31770.64 32592.17 18398.41 155
RPMNet85.07 26881.88 28594.64 15193.47 25386.24 21984.97 35597.21 14964.85 36090.76 16278.80 35780.95 18599.27 12353.76 36292.17 18398.41 155
DSMNet-mixed81.60 29681.43 29082.10 33284.36 34860.79 36093.63 31486.74 36579.00 31479.32 29087.15 33163.87 29889.78 35666.89 33891.92 18595.73 217
tttt051793.30 12093.01 11494.17 16895.57 18586.47 21198.51 15597.60 9685.99 22690.55 16597.19 15094.80 1198.31 15985.06 21691.86 18697.74 177
VNet95.08 7294.26 7897.55 4198.07 10093.88 5998.68 13398.73 1690.33 11797.16 5897.43 13979.19 19699.53 9596.91 5891.85 18799.24 94
tpmrst92.78 13192.16 13094.65 15096.27 16087.45 19191.83 32797.10 16489.10 15194.68 10790.69 28588.22 6597.73 19789.78 16491.80 18898.77 139
alignmvs95.77 5795.00 7098.06 2697.35 12095.68 1799.71 1697.50 11991.50 8896.16 8098.61 9186.28 10899.00 13696.19 7091.74 18999.51 73
CostFormer92.89 13092.48 12594.12 17094.99 21385.89 23292.89 31997.00 17386.98 20995.00 10390.78 28190.05 4897.51 21092.92 13291.73 19098.96 116
Fast-Effi-MVS+-dtu88.84 20688.59 19989.58 27893.44 25678.18 32198.65 13794.62 30088.46 16884.12 22695.37 20168.91 26396.52 24982.06 25291.70 19194.06 223
PatchT85.44 26483.19 27292.22 20993.13 26283.00 27583.80 36196.37 20070.62 34490.55 16579.63 35684.81 13094.87 31558.18 35891.59 19298.79 136
tpm291.77 15391.09 15293.82 18294.83 22085.56 24192.51 32497.16 15684.00 25693.83 12190.66 28787.54 7697.17 22187.73 18991.55 19398.72 141
tpm cat188.89 20487.27 21793.76 18395.79 17885.32 24590.76 34097.09 16576.14 33085.72 21288.59 31982.92 15798.04 17576.96 28791.43 19497.90 176
canonicalmvs95.02 7393.96 9198.20 1997.53 11795.92 1598.71 12996.19 21391.78 8395.86 8798.49 9879.53 19399.03 13596.12 7191.42 19599.66 58
Patchmatch-test86.25 25184.06 26792.82 19994.42 22782.88 28082.88 36294.23 31071.58 34279.39 28990.62 29089.00 5796.42 25763.03 34891.37 19699.16 100
dp90.16 18588.83 19294.14 16996.38 15686.42 21291.57 33297.06 16784.76 24788.81 18590.19 30684.29 13597.43 21575.05 30191.35 19798.56 149
VDDNet90.08 18788.54 20294.69 14994.41 22887.68 18298.21 18896.40 19876.21 32993.33 12797.75 12254.93 32998.77 14394.71 10390.96 19897.61 184
thres20093.69 10692.59 12396.97 6297.76 10794.74 4199.35 6399.36 289.23 14691.21 15796.97 16083.42 14698.77 14385.08 21590.96 19897.39 187
thres100view90093.34 11992.15 13196.90 6597.62 11294.84 3699.06 9699.36 287.96 18690.47 16896.78 16983.29 14998.75 14584.11 23090.69 20097.12 193
tfpn200view993.43 11592.27 12896.90 6597.68 11094.84 3699.18 7499.36 288.45 16990.79 16096.90 16483.31 14798.75 14584.11 23090.69 20097.12 193
thres40093.39 11792.27 12896.73 7497.68 11094.84 3699.18 7499.36 288.45 16990.79 16096.90 16483.31 14798.75 14584.11 23090.69 20096.61 202
VDD-MVS91.24 16490.18 17094.45 15797.08 13385.84 23598.40 17096.10 21886.99 20693.36 12698.16 11254.27 33199.20 12496.59 6490.63 20398.31 164
thres600view793.18 12592.00 13496.75 7297.62 11294.92 3199.07 9499.36 287.96 18690.47 16896.78 16983.29 14998.71 14982.93 24490.47 20496.61 202
GA-MVS90.10 18688.69 19594.33 16292.44 26987.97 17899.08 9396.26 20889.65 13386.92 20393.11 24368.09 27096.96 22982.54 24890.15 20598.05 171
tpmvs89.16 19887.76 20893.35 18997.19 12584.75 25590.58 34297.36 13981.99 29384.56 22189.31 31683.98 13998.17 16574.85 30490.00 20697.12 193
1112_ss92.71 13291.55 14496.20 9895.56 18691.12 10598.48 16094.69 29888.29 17786.89 20498.50 9687.02 9098.66 15184.75 21989.77 20798.81 134
Test_1112_low_res92.27 14590.97 15596.18 9995.53 18891.10 10798.47 16294.66 29988.28 17886.83 20693.50 23587.00 9198.65 15284.69 22089.74 20898.80 135
XVG-OURS-SEG-HR90.95 16890.66 16591.83 21995.18 20281.14 30395.92 28695.92 23388.40 17390.33 17197.85 11670.66 25799.38 11492.83 13388.83 20994.98 220
COLMAP_ROBcopyleft82.69 1884.54 27582.82 27589.70 27596.72 14478.85 31595.89 28792.83 33071.55 34377.54 30595.89 19059.40 31399.14 13167.26 33688.26 21091.11 283
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 27681.83 28692.42 20791.73 28287.36 19485.52 35194.42 30681.40 29981.91 26087.58 32351.92 33792.81 33873.84 31288.15 21197.08 197
ab-mvs91.05 16789.17 18596.69 7895.96 17491.72 9392.62 32397.23 14785.61 23189.74 17893.89 22468.55 26699.42 10991.09 14687.84 21298.92 124
XVG-OURS90.83 17090.49 16791.86 21895.23 19681.25 30095.79 29495.92 23388.96 15490.02 17598.03 11571.60 25199.35 11991.06 14787.78 21394.98 220
AllTest84.97 26983.12 27390.52 25296.82 14078.84 31695.89 28792.17 33877.96 32275.94 31095.50 19555.48 32499.18 12571.15 32287.14 21493.55 226
TestCases90.52 25296.82 14078.84 31692.17 33877.96 32275.94 31095.50 19555.48 32499.18 12571.15 32287.14 21493.55 226
Anonymous20240521188.84 20687.03 22194.27 16498.14 9984.18 26298.44 16395.58 26076.79 32889.34 18296.88 16653.42 33499.54 9487.53 19187.12 21699.09 107
MVS_030484.13 28282.66 28188.52 29593.07 26380.15 30895.81 29398.21 3179.27 31386.85 20586.40 33641.33 35794.69 32176.36 29386.69 21790.73 295
test_vis1_rt81.31 29780.05 30085.11 31791.29 28970.66 34998.98 10777.39 37485.76 22968.80 34082.40 34736.56 36199.44 10592.67 13686.55 21885.24 351
HQP3-MVS96.37 20086.29 219
HQP-MVS91.50 15691.23 15092.29 20893.95 23886.39 21499.16 7896.37 20093.92 3687.57 19396.67 17373.34 23297.77 19093.82 11886.29 21992.72 229
plane_prior86.07 22899.14 8693.81 4486.26 221
HQP_MVS91.26 16190.95 15692.16 21293.84 24586.07 22899.02 10196.30 20493.38 5286.99 20096.52 17572.92 23797.75 19593.46 12386.17 22292.67 231
plane_prior596.30 20497.75 19593.46 12386.17 22292.67 231
OPM-MVS89.76 19289.15 18691.57 22890.53 29885.58 24098.11 19795.93 23292.88 6286.05 21096.47 17867.06 28097.87 18389.29 17486.08 22491.26 279
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF85.33 26585.55 24384.67 32294.63 22562.28 35993.73 31293.76 31674.38 33785.23 21797.06 15764.09 29698.31 15980.98 25886.08 22493.41 228
CLD-MVS91.06 16690.71 16392.10 21494.05 23786.10 22699.55 3396.29 20794.16 3184.70 22097.17 15269.62 26197.82 18694.74 10186.08 22492.39 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test0.0.03 188.96 20188.61 19790.03 26791.09 29184.43 25898.97 10897.02 17190.21 11880.29 27796.31 18384.89 12891.93 35072.98 31885.70 22793.73 224
LPG-MVS_test88.86 20588.47 20390.06 26393.35 25880.95 30598.22 18695.94 23087.73 19583.17 23596.11 18666.28 28597.77 19090.19 15985.19 22891.46 269
LGP-MVS_train90.06 26393.35 25880.95 30595.94 23087.73 19583.17 23596.11 18666.28 28597.77 19090.19 15985.19 22891.46 269
ACMM86.95 1388.77 21188.22 20690.43 25493.61 25081.34 29898.50 15695.92 23387.88 18983.85 22895.20 20267.20 27897.89 18186.90 19884.90 23092.06 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CMPMVSbinary58.40 2180.48 30080.11 29981.59 33585.10 34659.56 36294.14 30995.95 22968.54 35260.71 35893.31 23755.35 32797.87 18383.06 24384.85 23187.33 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMP87.39 1088.71 21388.24 20590.12 26293.91 24381.06 30498.50 15695.67 25589.43 14280.37 27695.55 19465.67 28897.83 18590.55 15584.51 23291.47 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf88.26 21987.73 20989.84 27188.05 33182.21 28797.77 21896.17 21486.84 21282.41 24891.95 26172.07 24595.99 28389.83 16184.50 23391.32 276
iter_conf_final93.22 12493.04 11293.76 18397.03 13692.22 8899.05 9793.31 32492.11 7986.93 20295.42 19895.01 1096.59 24293.98 11284.48 23492.46 234
jajsoiax87.35 23286.51 22989.87 26987.75 33681.74 29197.03 24995.98 22488.47 16680.15 27993.80 22661.47 30596.36 26089.44 16984.47 23591.50 267
mvs_tets87.09 23586.22 23289.71 27487.87 33281.39 29796.73 26395.90 23988.19 18079.99 28193.61 23159.96 31196.31 26889.40 17084.34 23691.43 271
iter_conf0593.48 11293.18 10894.39 16197.15 12894.17 5599.30 6792.97 32792.38 7486.70 20895.42 19895.67 596.59 24294.67 10484.32 23792.39 235
test_fmvs285.10 26785.45 24584.02 32589.85 30765.63 35798.49 15892.59 33290.45 11385.43 21693.32 23643.94 35196.59 24290.81 15284.19 23889.85 315
Anonymous2024052987.66 22985.58 24293.92 17897.59 11585.01 25198.13 19397.13 15966.69 35888.47 18896.01 18955.09 32899.51 9687.00 19484.12 23997.23 192
anonymousdsp86.69 24185.75 24089.53 27986.46 34282.94 27696.39 27095.71 25183.97 25779.63 28690.70 28468.85 26495.94 28686.01 20584.02 24089.72 317
mvsmamba89.99 18989.42 18091.69 22690.64 29786.34 21798.40 17092.27 33691.01 9884.80 21994.93 20476.12 21296.51 25092.81 13483.84 24192.21 244
XVG-ACMP-BASELINE85.86 25684.95 25288.57 29489.90 30577.12 32694.30 30695.60 25987.40 20382.12 25492.99 24653.42 33497.66 19985.02 21783.83 24290.92 287
ACMMP++83.83 242
ET-MVSNet_ETH3D92.56 13891.45 14695.88 11196.39 15594.13 5699.46 4696.97 17492.18 7766.94 34998.29 10794.65 1594.28 32694.34 10983.82 24499.24 94
EG-PatchMatch MVS79.92 30277.59 30686.90 30887.06 34077.90 32596.20 28194.06 31374.61 33566.53 35188.76 31840.40 35996.20 27367.02 33783.66 24586.61 342
D2MVS87.96 22187.39 21489.70 27591.84 28083.40 27198.31 18198.49 2188.04 18478.23 30290.26 30073.57 23096.79 23784.21 22783.53 24688.90 327
UniMVSNet_ETH3D85.65 26383.79 27091.21 23290.41 30080.75 30795.36 29795.78 24778.76 31881.83 26594.33 21449.86 34496.66 23984.30 22583.52 24796.22 213
bld_raw_dy_0_6487.82 22286.71 22691.15 23489.54 31385.61 23897.37 23489.16 36089.26 14583.42 23194.50 21265.79 28796.18 27488.00 18683.37 24891.67 257
PVSNet_BlendedMVS93.36 11893.20 10793.84 18198.77 8391.61 9599.47 4298.04 4291.44 9094.21 11392.63 25083.50 14399.87 4997.41 4683.37 24890.05 311
PS-MVSNAJss89.54 19689.05 18791.00 23888.77 32284.36 25997.39 23195.97 22588.47 16681.88 26193.80 22682.48 16796.50 25189.34 17183.34 25092.15 246
EI-MVSNet89.87 19189.38 18291.36 23194.32 22985.87 23397.61 22796.59 18585.10 23885.51 21497.10 15481.30 18496.56 24683.85 23683.03 25191.64 258
MVSTER92.71 13292.32 12693.86 18097.29 12292.95 7999.01 10396.59 18590.09 12485.51 21494.00 22094.61 1696.56 24690.77 15483.03 25192.08 250
FIs90.70 17389.87 17393.18 19292.29 27091.12 10598.17 19298.25 2789.11 15083.44 23094.82 20882.26 17196.17 27687.76 18882.76 25392.25 240
tpm89.67 19388.95 18991.82 22092.54 26881.43 29592.95 31895.92 23387.81 19090.50 16789.44 31384.99 12695.65 29883.67 23782.71 25498.38 158
ACMMP++_ref82.64 255
FC-MVSNet-test90.22 18289.40 18192.67 20591.78 28189.86 14197.89 21098.22 3088.81 16082.96 23894.66 21081.90 17795.96 28585.89 21082.52 25692.20 245
ITE_SJBPF87.93 29992.26 27176.44 32893.47 32387.67 19879.95 28295.49 19756.50 32197.38 21775.24 30082.33 25789.98 313
RRT_MVS88.91 20388.56 20089.93 26890.31 30181.61 29398.08 20196.38 19989.30 14482.41 24894.84 20773.15 23596.04 28290.38 15682.23 25892.15 246
OpenMVS_ROBcopyleft73.86 2077.99 31475.06 31986.77 30983.81 35177.94 32496.38 27191.53 34867.54 35568.38 34287.13 33243.94 35196.08 28055.03 36181.83 25986.29 345
LTVRE_ROB81.71 1984.59 27482.72 28090.18 26092.89 26683.18 27493.15 31794.74 29578.99 31575.14 31792.69 24865.64 28997.63 20269.46 32981.82 26089.74 316
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC84.74 27082.93 27490.16 26191.73 28283.54 27095.00 30093.30 32588.77 16173.19 32693.30 23853.62 33397.65 20175.88 29781.54 26189.30 322
ACMH83.09 1784.60 27382.61 28390.57 24993.18 26182.94 27696.27 27494.92 29081.01 30472.61 33393.61 23156.54 32097.79 18874.31 30781.07 26290.99 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080586.50 24784.79 25691.63 22791.97 27581.49 29496.49 26897.38 13782.24 29082.44 24595.82 19151.22 33998.25 16384.55 22380.96 26395.13 219
GBi-Net86.67 24284.96 25091.80 22195.11 20588.81 16196.77 25895.25 27782.94 27682.12 25490.25 30162.89 30094.97 31279.04 27280.24 26491.62 260
test186.67 24284.96 25091.80 22195.11 20588.81 16196.77 25895.25 27782.94 27682.12 25490.25 30162.89 30094.97 31279.04 27280.24 26491.62 260
FMVSNet388.81 21087.08 22093.99 17796.52 14994.59 4598.08 20196.20 21185.85 22782.12 25491.60 26674.05 22895.40 30579.04 27280.24 26491.99 253
baseline192.61 13691.28 14996.58 8397.05 13594.63 4497.72 22296.20 21189.82 12988.56 18796.85 16786.85 9397.82 18688.42 17980.10 26797.30 189
testgi82.29 29181.00 29486.17 31287.24 33874.84 33497.39 23191.62 34688.63 16275.85 31395.42 19846.07 35091.55 35166.87 33979.94 26892.12 248
test_040278.81 30976.33 31386.26 31191.18 29078.44 32095.88 28991.34 34968.55 35170.51 33789.91 30852.65 33694.99 31147.14 36579.78 26985.34 350
FMVSNet286.90 23784.79 25693.24 19195.11 20592.54 8597.67 22595.86 24582.94 27680.55 27491.17 27562.89 30095.29 30777.23 28479.71 27091.90 254
pmmvs487.58 23186.17 23491.80 22189.58 31188.92 15997.25 24095.28 27682.54 28480.49 27593.17 24275.62 21596.05 28182.75 24578.90 27190.42 302
ACMH+83.78 1584.21 27982.56 28489.15 28793.73 24979.16 31396.43 26994.28 30981.09 30374.00 32194.03 21854.58 33097.67 19876.10 29578.81 27290.63 299
XXY-MVS87.75 22686.02 23592.95 19890.46 29989.70 14497.71 22495.90 23984.02 25580.95 27094.05 21567.51 27697.10 22585.16 21478.41 27392.04 252
pmmvs585.87 25584.40 26590.30 25988.53 32684.23 26098.60 14593.71 31881.53 29880.29 27792.02 25664.51 29595.52 30182.04 25378.34 27491.15 281
LF4IMVS81.94 29481.17 29384.25 32487.23 33968.87 35593.35 31691.93 34383.35 26975.40 31593.00 24549.25 34796.65 24078.88 27578.11 27587.22 340
cl2289.57 19588.79 19391.91 21797.94 10487.62 18597.98 20796.51 19285.03 24182.37 25091.79 26283.65 14196.50 25185.96 20777.89 27691.61 263
miper_ehance_all_eth88.94 20288.12 20791.40 22995.32 19486.93 20497.85 21495.55 26184.19 25381.97 25991.50 26884.16 13695.91 29084.69 22077.89 27691.36 274
miper_enhance_ethall90.33 17989.70 17492.22 20997.12 13188.93 15898.35 17795.96 22788.60 16483.14 23792.33 25287.38 7996.18 27486.49 20277.89 27691.55 266
TinyColmap80.42 30177.94 30587.85 30092.09 27478.58 31893.74 31189.94 35574.99 33369.77 33891.78 26346.09 34997.58 20665.17 34477.89 27687.38 336
FMVSNet183.94 28481.32 29291.80 22191.94 27888.81 16196.77 25895.25 27777.98 32078.25 30190.25 30150.37 34394.97 31273.27 31677.81 28091.62 260
OurMVSNet-221017-084.13 28283.59 27185.77 31587.81 33370.24 35094.89 30193.65 32086.08 22576.53 30693.28 23961.41 30696.14 27880.95 25977.69 28190.93 286
IterMVS85.81 25884.67 25989.22 28593.51 25283.67 26996.32 27394.80 29485.09 23978.69 29490.17 30766.57 28493.17 33579.48 27077.42 28290.81 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 26184.64 26089.00 29093.46 25582.90 27896.27 27494.70 29785.02 24278.62 29690.35 29966.61 28293.33 33279.38 27177.36 28390.76 293
our_test_384.47 27782.80 27689.50 28089.01 31983.90 26697.03 24994.56 30181.33 30075.36 31690.52 29671.69 25094.54 32468.81 33176.84 28490.07 309
EU-MVSNet84.19 28084.42 26483.52 32888.64 32567.37 35696.04 28495.76 24985.29 23578.44 29993.18 24170.67 25691.48 35275.79 29875.98 28591.70 256
Anonymous2023120680.76 29979.42 30384.79 32184.78 34772.98 34096.53 26692.97 32779.56 31274.33 31888.83 31761.27 30792.15 34760.59 35375.92 28689.24 324
IterMVS-LS88.34 21687.44 21391.04 23794.10 23385.85 23498.10 19895.48 26585.12 23782.03 25891.21 27481.35 18395.63 29983.86 23575.73 28791.63 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet89.10 19987.66 21193.45 18892.56 26791.02 11197.97 20898.32 2586.92 21186.03 21192.01 25768.84 26597.10 22590.92 14975.34 28892.23 242
nrg03090.23 18188.87 19094.32 16391.53 28593.54 6598.79 12595.89 24188.12 18284.55 22294.61 21178.80 20096.88 23292.35 13975.21 28992.53 233
cl____87.82 22286.79 22590.89 24294.88 21885.43 24297.81 21595.24 28082.91 28080.71 27391.22 27381.97 17695.84 29281.34 25775.06 29091.40 273
DIV-MVS_self_test87.82 22286.81 22490.87 24394.87 21985.39 24497.81 21595.22 28582.92 27980.76 27291.31 27281.99 17495.81 29481.36 25675.04 29191.42 272
v119286.32 25084.71 25891.17 23389.53 31486.40 21398.13 19395.44 26982.52 28582.42 24790.62 29071.58 25296.33 26777.23 28474.88 29290.79 291
v124085.77 26084.11 26690.73 24789.26 31885.15 24997.88 21295.23 28481.89 29682.16 25390.55 29569.60 26296.31 26875.59 29974.87 29390.72 296
FMVSNet582.29 29180.54 29587.52 30393.79 24884.01 26493.73 31292.47 33476.92 32774.27 31986.15 33863.69 29989.24 35869.07 33074.79 29489.29 323
v114486.83 23985.31 24791.40 22989.75 30887.21 20298.31 18195.45 26783.22 27082.70 24190.78 28173.36 23196.36 26079.49 26974.69 29590.63 299
Anonymous2024052178.63 31176.90 31183.82 32682.82 35372.86 34195.72 29593.57 32173.55 34072.17 33484.79 34149.69 34592.51 34365.29 34374.50 29686.09 346
v192192086.02 25384.44 26390.77 24689.32 31785.20 24698.10 19895.35 27582.19 29182.25 25290.71 28370.73 25596.30 27176.85 28974.49 29790.80 290
WR-MVS88.54 21587.22 21992.52 20691.93 27989.50 14798.56 15097.84 5186.99 20681.87 26293.81 22574.25 22795.92 28985.29 21374.43 29892.12 248
ppachtmachnet_test83.63 28681.57 28989.80 27289.01 31985.09 25097.13 24694.50 30278.84 31676.14 30891.00 27769.78 25994.61 32363.40 34674.36 29989.71 318
Patchmtry83.61 28781.64 28789.50 28093.36 25782.84 28184.10 35894.20 31169.47 35079.57 28786.88 33384.43 13394.78 31868.48 33374.30 30090.88 288
V4287.00 23685.68 24190.98 23989.91 30486.08 22798.32 18095.61 25883.67 26482.72 24090.67 28674.00 22996.53 24881.94 25474.28 30190.32 304
Anonymous2023121184.72 27182.65 28290.91 24097.71 10984.55 25797.28 23896.67 18166.88 35779.18 29290.87 28058.47 31596.60 24182.61 24774.20 30291.59 265
SixPastTwentyTwo82.63 29081.58 28885.79 31488.12 33071.01 34895.17 29992.54 33384.33 25272.93 33192.08 25460.41 31095.61 30074.47 30674.15 30390.75 294
v2v48287.27 23485.76 23991.78 22589.59 31087.58 18698.56 15095.54 26284.53 24982.51 24491.78 26373.11 23696.47 25482.07 25174.14 30491.30 277
v14419286.40 24884.89 25390.91 24089.48 31585.59 23998.21 18895.43 27082.45 28782.62 24290.58 29372.79 24096.36 26078.45 27974.04 30590.79 291
c3_l88.19 22087.23 21891.06 23694.97 21486.17 22497.72 22295.38 27283.43 26781.68 26691.37 27082.81 15995.72 29684.04 23373.70 30691.29 278
eth_miper_zixun_eth87.76 22587.00 22290.06 26394.67 22482.65 28497.02 25195.37 27384.19 25381.86 26491.58 26781.47 18195.90 29183.24 23873.61 30791.61 263
miper_lstm_enhance86.90 23786.20 23389.00 29094.53 22681.19 30196.74 26295.24 28082.33 28980.15 27990.51 29781.99 17494.68 32280.71 26273.58 30891.12 282
tfpnnormal83.65 28581.35 29190.56 25191.37 28888.06 17597.29 23797.87 4978.51 31976.20 30790.91 27864.78 29496.47 25461.71 35173.50 30987.13 341
N_pmnet70.19 32669.87 32871.12 34688.24 32830.63 38295.85 29228.70 38270.18 34768.73 34186.55 33564.04 29793.81 32853.12 36373.46 31088.94 326
EGC-MVSNET60.70 33155.37 33576.72 33986.35 34371.08 34689.96 34384.44 3700.38 3791.50 38084.09 34337.30 36088.10 36140.85 36973.44 31170.97 364
CP-MVSNet86.54 24585.45 24589.79 27391.02 29382.78 28297.38 23397.56 10685.37 23479.53 28893.03 24471.86 24895.25 30879.92 26773.43 31291.34 275
PS-CasMVS85.81 25884.58 26189.49 28290.77 29582.11 28897.20 24497.36 13984.83 24679.12 29392.84 24767.42 27795.16 31078.39 28073.25 31391.21 280
WR-MVS_H86.53 24685.49 24489.66 27791.04 29283.31 27397.53 22998.20 3284.95 24479.64 28590.90 27978.01 20595.33 30676.29 29472.81 31490.35 303
FPMVS61.57 32960.32 33265.34 34960.14 37642.44 37791.02 33889.72 35744.15 36542.63 36880.93 35219.02 37080.59 37042.50 36672.76 31573.00 362
v1085.73 26184.01 26890.87 24390.03 30286.73 20797.20 24495.22 28581.25 30179.85 28489.75 31073.30 23496.28 27276.87 28872.64 31689.61 319
UniMVSNet (Re)89.50 19788.32 20493.03 19492.21 27290.96 11398.90 11498.39 2389.13 14983.22 23292.03 25581.69 17896.34 26686.79 19972.53 31791.81 255
UniMVSNet_NR-MVSNet89.60 19488.55 20192.75 20292.17 27390.07 13398.74 12898.15 3688.37 17483.21 23393.98 22182.86 15895.93 28786.95 19572.47 31892.25 240
DU-MVS88.83 20887.51 21292.79 20091.46 28690.07 13398.71 12997.62 9388.87 15983.21 23393.68 22874.63 21895.93 28786.95 19572.47 31892.36 237
v886.11 25284.45 26291.10 23589.99 30386.85 20597.24 24195.36 27481.99 29379.89 28389.86 30974.53 22296.39 25878.83 27672.32 32090.05 311
VPNet88.30 21786.57 22793.49 18791.95 27791.35 9998.18 19097.20 15388.61 16384.52 22394.89 20562.21 30396.76 23889.34 17172.26 32192.36 237
v7n84.42 27882.75 27989.43 28388.15 32981.86 29096.75 26195.67 25580.53 30778.38 30089.43 31469.89 25896.35 26573.83 31372.13 32290.07 309
new_pmnet76.02 31773.71 32282.95 32983.88 35072.85 34291.26 33592.26 33770.44 34662.60 35681.37 35047.64 34892.32 34561.85 35072.10 32383.68 356
IB-MVS89.43 692.12 14890.83 16195.98 10995.40 19390.78 11699.81 698.06 4091.23 9685.63 21393.66 23090.63 4098.78 14291.22 14571.85 32498.36 161
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
NR-MVSNet87.74 22886.00 23692.96 19791.46 28690.68 12096.65 26597.42 13388.02 18573.42 32493.68 22877.31 20895.83 29384.26 22671.82 32592.36 237
v14886.38 24985.06 24990.37 25889.47 31684.10 26398.52 15295.48 26583.80 26080.93 27190.22 30474.60 22096.31 26880.92 26071.55 32690.69 297
Baseline_NR-MVSNet85.83 25784.82 25588.87 29388.73 32383.34 27298.63 14091.66 34580.41 31182.44 24591.35 27174.63 21895.42 30484.13 22971.39 32787.84 333
TranMVSNet+NR-MVSNet87.75 22686.31 23192.07 21590.81 29488.56 16698.33 17897.18 15487.76 19281.87 26293.90 22372.45 24195.43 30383.13 24271.30 32892.23 242
PEN-MVS85.21 26683.93 26989.07 28989.89 30681.31 29997.09 24797.24 14684.45 25178.66 29592.68 24968.44 26894.87 31575.98 29670.92 32991.04 284
MIMVSNet175.92 31873.30 32383.81 32781.29 35775.57 33092.26 32592.05 34173.09 34167.48 34886.18 33740.87 35887.64 36255.78 36070.68 33088.21 331
pm-mvs184.68 27282.78 27890.40 25589.58 31185.18 24797.31 23694.73 29681.93 29576.05 30992.01 25765.48 29296.11 27978.75 27769.14 33189.91 314
DTE-MVSNet84.14 28182.80 27688.14 29888.95 32179.87 31196.81 25796.24 20983.50 26677.60 30492.52 25167.89 27494.24 32772.64 32069.05 33290.32 304
test20.0378.51 31277.48 30781.62 33483.07 35271.03 34796.11 28292.83 33081.66 29769.31 33989.68 31157.53 31787.29 36358.65 35768.47 33386.53 343
h-mvs3392.47 14091.95 13694.05 17497.13 13085.01 25198.36 17698.08 3993.85 4196.27 7896.73 17183.19 15299.43 10895.81 7668.09 33497.70 179
K. test v381.04 29879.77 30184.83 32087.41 33770.23 35195.60 29693.93 31583.70 26367.51 34789.35 31555.76 32293.58 33176.67 29168.03 33590.67 298
test_fmvs375.09 32075.19 31774.81 34277.45 36454.08 36795.93 28590.64 35282.51 28673.29 32581.19 35122.29 36886.29 36485.50 21267.89 33684.06 354
MDA-MVSNet_test_wron79.65 30577.05 30987.45 30487.79 33580.13 30996.25 27794.44 30373.87 33851.80 36287.47 32868.04 27192.12 34866.02 34067.79 33790.09 307
YYNet179.64 30677.04 31087.43 30587.80 33479.98 31096.23 27894.44 30373.83 33951.83 36187.53 32467.96 27392.07 34966.00 34167.75 33890.23 306
APD_test168.93 32866.98 33174.77 34380.62 35953.15 36987.97 34685.01 36853.76 36359.26 35987.52 32525.19 36689.95 35556.20 35967.33 33981.19 360
AUN-MVS90.17 18489.50 17792.19 21196.21 16382.67 28397.76 22097.53 11188.05 18391.67 14496.15 18483.10 15497.47 21188.11 18466.91 34096.43 210
hse-mvs291.67 15591.51 14592.15 21396.22 16282.61 28597.74 22197.53 11193.85 4196.27 7896.15 18483.19 15297.44 21495.81 7666.86 34196.40 211
pmmvs679.90 30377.31 30887.67 30284.17 34978.13 32295.86 29193.68 31967.94 35472.67 33289.62 31250.98 34195.75 29574.80 30566.04 34289.14 325
test_f71.94 32570.82 32675.30 34172.77 36753.28 36891.62 33089.66 35875.44 33264.47 35478.31 35820.48 36989.56 35778.63 27866.02 34383.05 359
Gipumacopyleft54.77 33652.22 34062.40 35386.50 34159.37 36350.20 37190.35 35436.52 36941.20 37049.49 37118.33 37281.29 36632.10 37165.34 34446.54 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft76.08 34090.74 29651.65 37290.84 35186.47 22257.89 36087.98 32035.88 36292.60 34065.77 34265.06 34583.97 355
MDA-MVSNet-bldmvs77.82 31574.75 32087.03 30788.33 32778.52 31996.34 27292.85 32975.57 33148.87 36487.89 32157.32 31992.49 34460.79 35264.80 34690.08 308
mvsany_test375.85 31974.52 32179.83 33773.53 36660.64 36191.73 32987.87 36483.91 25970.55 33682.52 34631.12 36393.66 32986.66 20162.83 34785.19 352
Patchmatch-RL test81.90 29580.13 29887.23 30680.71 35870.12 35284.07 35988.19 36383.16 27270.57 33582.18 34987.18 8692.59 34182.28 25062.78 34898.98 114
lessismore_v085.08 31885.59 34569.28 35390.56 35367.68 34690.21 30554.21 33295.46 30273.88 31162.64 34990.50 301
PM-MVS74.88 32172.85 32480.98 33678.98 36264.75 35890.81 33985.77 36680.95 30568.23 34482.81 34529.08 36592.84 33776.54 29262.46 35085.36 349
pmmvs-eth3d78.71 31076.16 31486.38 31080.25 36081.19 30194.17 30892.13 34077.97 32166.90 35082.31 34855.76 32292.56 34273.63 31562.31 35185.38 348
ambc79.60 33872.76 36856.61 36476.20 36692.01 34268.25 34380.23 35423.34 36794.73 31973.78 31460.81 35287.48 335
test_method70.10 32768.66 33074.41 34486.30 34455.84 36594.47 30389.82 35635.18 37066.15 35284.75 34230.54 36477.96 37170.40 32860.33 35389.44 321
TDRefinement78.01 31375.31 31686.10 31370.06 36973.84 33793.59 31591.58 34774.51 33673.08 32991.04 27649.63 34697.12 22274.88 30359.47 35487.33 338
TransMVSNet (Re)81.97 29379.61 30289.08 28889.70 30984.01 26497.26 23991.85 34478.84 31673.07 33091.62 26567.17 27995.21 30967.50 33559.46 35588.02 332
PMVScopyleft41.42 2345.67 33942.50 34255.17 35534.28 38132.37 38066.24 36978.71 37330.72 37122.04 37659.59 3674.59 38077.85 37227.49 37258.84 35655.29 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt61.29 33058.75 33368.92 34867.41 37052.84 37091.18 33759.23 38166.96 35641.96 36958.44 36911.37 37794.72 32074.25 30857.97 35759.20 368
KD-MVS_self_test77.47 31675.88 31582.24 33081.59 35568.93 35492.83 32294.02 31477.03 32673.14 32783.39 34455.44 32690.42 35367.95 33457.53 35887.38 336
CL-MVSNet_self_test79.89 30478.34 30484.54 32381.56 35675.01 33296.88 25595.62 25781.10 30275.86 31285.81 33968.49 26790.26 35463.21 34756.51 35988.35 330
UnsupCasMVSNet_eth78.90 30876.67 31285.58 31682.81 35474.94 33391.98 32696.31 20384.64 24865.84 35387.71 32251.33 33892.23 34672.89 31956.50 36089.56 320
PVSNet_083.28 1687.31 23385.16 24893.74 18594.78 22184.59 25698.91 11398.69 1989.81 13078.59 29893.23 24061.95 30499.34 12094.75 10055.72 36197.30 189
new-patchmatchnet74.80 32272.40 32581.99 33378.36 36372.20 34494.44 30492.36 33577.06 32563.47 35579.98 35551.04 34088.85 35960.53 35454.35 36284.92 353
pmmvs372.86 32469.76 32982.17 33173.86 36574.19 33694.20 30789.01 36164.23 36167.72 34580.91 35341.48 35588.65 36062.40 34954.02 36383.68 356
testf156.38 33453.73 33764.31 35164.84 37145.11 37480.50 36475.94 37638.87 36642.74 36675.07 35911.26 37881.19 36741.11 36753.27 36466.63 365
APD_test256.38 33453.73 33764.31 35164.84 37145.11 37480.50 36475.94 37638.87 36642.74 36675.07 35911.26 37881.19 36741.11 36753.27 36466.63 365
LCM-MVSNet60.07 33256.37 33471.18 34554.81 37848.67 37382.17 36389.48 35937.95 36849.13 36369.12 36213.75 37681.76 36559.28 35551.63 36683.10 358
UnsupCasMVSNet_bld73.85 32370.14 32784.99 31979.44 36175.73 32988.53 34595.24 28070.12 34861.94 35774.81 36141.41 35693.62 33068.65 33251.13 36785.62 347
KD-MVS_2432*160082.98 28880.52 29690.38 25694.32 22988.98 15492.87 32095.87 24380.46 30973.79 32287.49 32682.76 16293.29 33370.56 32646.53 36888.87 328
miper_refine_blended82.98 28880.52 29690.38 25694.32 22988.98 15492.87 32095.87 24380.46 30973.79 32287.49 32682.76 16293.29 33370.56 32646.53 36888.87 328
PMMVS258.97 33355.07 33670.69 34762.72 37355.37 36685.97 35080.52 37149.48 36445.94 36568.31 36315.73 37480.78 36949.79 36437.12 37075.91 361
MVEpermissive44.00 2241.70 34037.64 34553.90 35649.46 37943.37 37665.09 37066.66 37826.19 37425.77 37548.53 3723.58 38263.35 37526.15 37327.28 37154.97 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 34140.93 34341.29 35761.97 37433.83 37984.00 36065.17 37927.17 37227.56 37246.72 37317.63 37360.41 37619.32 37418.82 37229.61 372
ANet_high50.71 33846.17 34164.33 35044.27 38052.30 37176.13 36778.73 37264.95 35927.37 37355.23 37014.61 37567.74 37336.01 37018.23 37372.95 363
EMVS39.96 34239.88 34440.18 35859.57 37732.12 38184.79 35764.57 38026.27 37326.14 37444.18 37618.73 37159.29 37717.03 37517.67 37429.12 373
tmp_tt53.66 33752.86 33956.05 35432.75 38241.97 37873.42 36876.12 37521.91 37539.68 37196.39 18142.59 35465.10 37478.00 28114.92 37561.08 367
wuyk23d16.71 34516.73 34916.65 35960.15 37525.22 38341.24 3725.17 3836.56 3765.48 3793.61 3793.64 38122.72 37815.20 3769.52 3761.99 376
testmvs18.81 34423.05 3476.10 3614.48 3832.29 38597.78 2173.00 3843.27 37718.60 37762.71 3651.53 3842.49 38014.26 3771.80 37713.50 375
test12316.58 34619.47 3487.91 3603.59 3845.37 38494.32 3051.39 3852.49 37813.98 37844.60 3752.91 3832.65 37911.35 3780.57 37815.70 374
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k22.52 34330.03 3460.00 3620.00 3850.00 3860.00 37397.17 1550.00 3800.00 38198.77 7474.35 2250.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.87 3489.16 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38082.48 1670.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.21 34710.94 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38198.50 960.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.50 4288.94 15799.55 3397.47 12491.32 9498.12 35
test_one_060199.59 2894.89 3297.64 8793.14 5598.93 1699.45 1493.45 18
eth-test20.00 385
eth-test0.00 385
test_241102_ONE99.63 1895.24 2397.72 6994.16 3199.30 699.49 993.32 1999.98 9
save fliter99.34 5093.85 6099.65 2597.63 9195.69 12
test072699.66 1295.20 2899.77 997.70 7493.95 3499.35 599.54 393.18 22
GSMVS98.84 129
test_part299.54 3695.42 1898.13 33
sam_mvs188.39 6398.84 129
sam_mvs87.08 88
MTGPAbinary97.45 127
test_post190.74 34141.37 37785.38 12496.36 26083.16 240
test_post46.00 37487.37 8097.11 223
patchmatchnet-post84.86 34088.73 6096.81 235
MTMP99.21 7191.09 350
gm-plane-assit94.69 22388.14 17388.22 17997.20 14998.29 16190.79 153
TEST999.57 3393.17 7199.38 5897.66 8189.57 13898.39 2799.18 3190.88 3799.66 80
test_899.55 3593.07 7499.37 6197.64 8790.18 12098.36 2999.19 2890.94 3599.64 86
agg_prior99.54 3692.66 8197.64 8797.98 4299.61 88
test_prior492.00 9099.41 55
test_prior97.01 5699.58 3091.77 9197.57 10599.49 9899.79 35
旧先验298.67 13585.75 23098.96 1598.97 13893.84 116
新几何298.26 184
无先验98.52 15297.82 5487.20 20599.90 4387.64 19099.85 30
原ACMM298.69 132
testdata299.88 4684.16 228
segment_acmp90.56 41
testdata197.89 21092.43 68
plane_prior793.84 24585.73 236
plane_prior693.92 24286.02 23072.92 237
plane_prior496.52 175
plane_prior385.91 23193.65 4786.99 200
plane_prior299.02 10193.38 52
plane_prior193.90 244
n20.00 386
nn0.00 386
door-mid84.90 369
test1197.68 78
door85.30 367
HQP5-MVS86.39 214
HQP-NCC93.95 23899.16 7893.92 3687.57 193
ACMP_Plane93.95 23899.16 7893.92 3687.57 193
BP-MVS93.82 118
HQP4-MVS87.57 19397.77 19092.72 229
HQP2-MVS73.34 232
NP-MVS93.94 24186.22 22196.67 173
MDTV_nov1_ep13_2view91.17 10491.38 33387.45 20293.08 13086.67 9887.02 19398.95 120
Test By Simon83.62 142