This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 2
UA-Net97.35 597.24 1297.69 698.22 7593.87 3498.42 698.19 4796.95 1695.46 14799.23 693.45 8799.57 1595.34 2999.89 299.63 11
PS-CasMVS96.69 2497.43 694.49 13099.13 684.09 20996.61 3297.97 8697.91 698.64 1498.13 4395.24 4099.65 593.39 7799.84 399.72 4
WR-MVS_H96.60 2997.05 1795.24 9499.02 1286.44 16496.78 2698.08 6697.42 1098.48 1797.86 6591.76 13499.63 894.23 4699.84 399.66 8
FC-MVSNet-test95.32 8495.88 6593.62 16698.49 5681.77 24295.90 7398.32 3093.93 6397.53 4597.56 8188.48 18899.40 4992.91 9599.83 599.68 6
PEN-MVS96.69 2497.39 994.61 12099.16 484.50 19996.54 3498.05 7398.06 598.64 1498.25 4095.01 5399.65 592.95 9499.83 599.68 6
DTE-MVSNet96.74 2197.43 694.67 11799.13 684.68 19896.51 3697.94 9298.14 498.67 1398.32 3795.04 5099.69 493.27 8299.82 799.62 12
CP-MVSNet96.19 4996.80 2094.38 13598.99 1683.82 21296.31 5297.53 12597.60 898.34 2097.52 8691.98 12799.63 893.08 9099.81 899.70 5
LTVRE_ROB93.87 197.93 398.16 297.26 3098.81 2793.86 3599.07 298.98 997.01 1598.92 598.78 1695.22 4298.61 17696.85 499.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n96.82 1397.31 1195.33 8898.54 4686.81 15296.83 2298.07 6996.59 2398.46 1898.43 3592.91 10799.52 2096.25 1299.76 1099.65 10
TranMVSNet+NR-MVSNet96.07 5396.26 4295.50 8298.26 7187.69 13493.75 15997.86 9595.96 3897.48 4897.14 12195.33 3699.44 3290.79 14799.76 1099.38 23
Anonymous2023121196.60 2997.13 1695.00 10397.46 13286.35 16897.11 1898.24 4097.58 998.72 998.97 993.15 9999.15 9193.18 8599.74 1299.50 18
UniMVSNet_ETH3D97.13 997.72 495.35 8699.51 287.38 13797.70 897.54 12398.16 398.94 399.33 397.84 499.08 10090.73 14999.73 1399.59 14
pmmvs696.80 1697.36 1095.15 10099.12 887.82 13296.68 2997.86 9596.10 3398.14 2899.28 597.94 398.21 21691.38 13899.69 1499.42 20
FIs94.90 10195.35 8993.55 16998.28 6981.76 24395.33 9898.14 5793.05 8297.07 6497.18 11887.65 20299.29 7491.72 12699.69 1499.61 13
OurMVSNet-221017-096.80 1696.75 2196.96 3999.03 1191.85 6197.98 798.01 8194.15 5898.93 499.07 788.07 19599.57 1595.86 1599.69 1499.46 19
Anonymous2024052192.86 17693.57 15790.74 27596.57 17975.50 34194.15 14495.60 23689.38 17495.90 12397.90 6480.39 28497.96 24092.60 10499.68 1798.75 91
ANet_high94.83 10496.28 4190.47 28196.65 17373.16 36094.33 13798.74 1496.39 2898.09 2998.93 1093.37 9198.70 16490.38 15999.68 1799.53 16
DeepC-MVS91.39 495.43 7795.33 9195.71 7697.67 11990.17 8493.86 15698.02 8087.35 21996.22 10797.99 5494.48 7399.05 10592.73 9999.68 1797.93 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mamv498.21 297.86 399.26 198.24 7499.36 196.10 6399.32 298.75 299.58 298.70 2091.78 13199.88 198.60 199.67 2098.54 120
NR-MVSNet95.28 8895.28 9495.26 9297.75 10987.21 14195.08 11097.37 13493.92 6597.65 3795.90 20390.10 17599.33 7090.11 17399.66 2199.26 30
Baseline_NR-MVSNet94.47 11995.09 10292.60 20898.50 5580.82 25792.08 22296.68 19193.82 6696.29 10198.56 2790.10 17597.75 26490.10 17599.66 2199.24 32
UniMVSNet (Re)95.32 8495.15 9895.80 7297.79 10788.91 10792.91 18698.07 6993.46 7496.31 9995.97 20290.14 17299.34 6592.11 11299.64 2399.16 38
WR-MVS93.49 15293.72 14992.80 19797.57 12580.03 26790.14 28695.68 23493.70 6896.62 8895.39 23387.21 21099.04 10887.50 23299.64 2399.33 26
MIMVSNet195.52 7395.45 8495.72 7599.14 589.02 10596.23 5996.87 17893.73 6797.87 3198.49 3190.73 16199.05 10586.43 25399.60 2599.10 47
ACMH+88.43 1196.48 3496.82 1995.47 8398.54 4689.06 10495.65 8398.61 1596.10 3398.16 2797.52 8696.90 798.62 17590.30 16499.60 2598.72 96
VPA-MVSNet95.14 9395.67 7793.58 16897.76 10883.15 22494.58 12897.58 12093.39 7597.05 6798.04 4993.25 9598.51 18989.75 18399.59 2799.08 48
LPG-MVS_test96.38 4396.23 4396.84 4298.36 6692.13 5695.33 9898.25 3791.78 11797.07 6497.22 11496.38 1299.28 7892.07 11599.59 2799.11 44
LGP-MVS_train96.84 4298.36 6692.13 5698.25 3791.78 11797.07 6497.22 11496.38 1299.28 7892.07 11599.59 2799.11 44
ACMH88.36 1296.59 3197.43 694.07 14498.56 4185.33 19296.33 4998.30 3394.66 4998.72 998.30 3897.51 598.00 23694.87 3499.59 2798.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet95.35 8295.21 9695.76 7397.69 11788.59 11692.26 21897.84 9894.91 4796.80 8095.78 21390.42 16699.41 4291.60 13099.58 3199.29 29
DU-MVS95.28 8895.12 10095.75 7497.75 10988.59 11692.58 19897.81 10193.99 6096.80 8095.90 20390.10 17599.41 4291.60 13099.58 3199.26 30
MM94.41 12294.14 13895.22 9795.84 24087.21 14194.31 13990.92 33794.48 5392.80 25297.52 8685.27 23899.49 2896.58 899.57 3398.97 62
ACMP88.15 1395.71 6795.43 8696.54 4998.17 7891.73 6494.24 14098.08 6689.46 17296.61 8996.47 16595.85 1899.12 9690.45 15699.56 3498.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1094.68 11195.27 9592.90 19396.57 17980.15 26194.65 12597.57 12190.68 14997.43 5098.00 5288.18 19299.15 9194.84 3599.55 3599.41 21
MVS_030492.88 17392.27 18994.69 11692.35 34086.03 17692.88 18889.68 34490.53 15391.52 28796.43 16882.52 26699.32 7195.01 3299.54 3698.71 99
PS-MVSNAJss96.01 5496.04 5695.89 6998.82 2588.51 11995.57 8997.88 9388.72 18998.81 798.86 1290.77 15799.60 1095.43 2599.53 3799.57 15
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1197.41 1197.28 5898.46 3394.62 6698.84 13494.64 3799.53 3798.99 56
IS-MVSNet94.49 11894.35 13094.92 10598.25 7386.46 16397.13 1794.31 27796.24 3196.28 10396.36 17882.88 25899.35 6288.19 21799.52 3998.96 64
nrg03096.32 4496.55 2995.62 7897.83 10388.55 11895.77 7898.29 3692.68 8498.03 3097.91 6295.13 4598.95 12093.85 5599.49 4099.36 25
MP-MVS-pluss96.08 5295.92 6396.57 4899.06 1091.21 6993.25 17598.32 3087.89 20896.86 7697.38 9695.55 2699.39 5295.47 2399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_tets96.83 1296.71 2297.17 3198.83 2492.51 5296.58 3397.61 11787.57 21798.80 898.90 1196.50 999.59 1496.15 1399.47 4199.40 22
v894.65 11295.29 9392.74 19896.65 17379.77 27694.59 12697.17 15491.86 10997.47 4997.93 5788.16 19399.08 10094.32 4399.47 4199.38 23
CLD-MVS91.82 20291.41 21293.04 18596.37 19483.65 21486.82 35797.29 14684.65 27092.27 27589.67 36692.20 12397.85 25383.95 28399.47 4197.62 209
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SPE-MVS-test95.32 8495.10 10195.96 6096.86 16190.75 7896.33 4999.20 593.99 6091.03 29793.73 29293.52 8699.55 1991.81 12399.45 4597.58 211
jajsoiax96.59 3196.42 3397.12 3398.76 3092.49 5396.44 4397.42 13286.96 22798.71 1198.72 1995.36 3499.56 1895.92 1499.45 4599.32 27
test_djsdf96.62 2796.49 3097.01 3698.55 4491.77 6397.15 1597.37 13488.98 18398.26 2498.86 1293.35 9299.60 1096.41 999.45 4599.66 8
CP-MVS96.44 3896.08 5397.54 1598.29 6894.62 1896.80 2498.08 6692.67 8695.08 17396.39 17594.77 6299.42 3693.17 8699.44 4898.58 118
COLMAP_ROBcopyleft91.06 596.75 2096.62 2697.13 3298.38 6194.31 2196.79 2598.32 3096.69 1996.86 7697.56 8195.48 2798.77 15190.11 17399.44 4898.31 140
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_0728_THIRD93.26 7897.40 5497.35 10394.69 6399.34 6593.88 5399.42 5098.89 75
MTAPA96.65 2696.38 3797.47 1998.95 1894.05 2795.88 7497.62 11594.46 5496.29 10196.94 13693.56 8499.37 6094.29 4599.42 5098.99 56
pm-mvs195.43 7795.94 6093.93 15198.38 6185.08 19595.46 9497.12 15991.84 11397.28 5898.46 3395.30 3897.71 26890.17 17199.42 5098.99 56
XVG-ACMP-BASELINE95.68 6895.34 9096.69 4598.40 5993.04 4594.54 13398.05 7390.45 15696.31 9996.76 14892.91 10798.72 15791.19 13999.42 5098.32 138
wuyk23d87.83 29690.79 22878.96 39690.46 38288.63 11292.72 19190.67 34091.65 12598.68 1297.64 7696.06 1577.53 41859.84 41299.41 5470.73 416
anonymousdsp96.74 2196.42 3397.68 898.00 9294.03 2996.97 1997.61 11787.68 21598.45 1998.77 1794.20 7799.50 2296.70 699.40 5599.53 16
SixPastTwentyTwo94.91 10095.21 9693.98 14698.52 4883.19 22395.93 7194.84 26494.86 4898.49 1698.74 1881.45 27599.60 1094.69 3699.39 5699.15 39
HPM-MVS_fast97.01 1096.89 1897.39 2599.12 893.92 3297.16 1498.17 5393.11 8096.48 9297.36 10096.92 699.34 6594.31 4499.38 5798.92 72
HPM-MVScopyleft96.81 1596.62 2697.36 2798.89 2093.53 4297.51 1098.44 2092.35 9395.95 11996.41 17096.71 899.42 3693.99 5299.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
reproduce_model97.35 597.24 1297.70 598.44 5895.08 1295.88 7498.50 1896.62 2298.27 2197.93 5794.57 6899.50 2295.57 2099.35 5998.52 123
SDMVSNet94.43 12195.02 10392.69 20097.93 9782.88 23091.92 23195.99 22793.65 7295.51 14298.63 2394.60 6796.48 32787.57 23199.35 5998.70 100
sd_testset93.94 14294.39 12692.61 20797.93 9783.24 22093.17 17995.04 25893.65 7295.51 14298.63 2394.49 7295.89 34681.72 30699.35 5998.70 100
KD-MVS_self_test94.10 13694.73 11592.19 21997.66 12079.49 28294.86 11897.12 15989.59 17196.87 7597.65 7590.40 16898.34 20689.08 20299.35 5998.75 91
ACMMP_NAP96.21 4896.12 5096.49 5298.90 1991.42 6794.57 12998.03 7890.42 15796.37 9597.35 10395.68 2199.25 8194.44 4199.34 6398.80 85
SteuartSystems-ACMMP96.40 4196.30 4096.71 4498.63 3491.96 5995.70 8098.01 8193.34 7796.64 8796.57 16294.99 5499.36 6193.48 6999.34 6398.82 82
Skip Steuart: Steuart Systems R&D Blog.
reproduce-ours97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 133
our_new_method97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 133
ACMMPcopyleft96.61 2896.34 3897.43 2298.61 3793.88 3396.95 2098.18 4992.26 9696.33 9796.84 14495.10 4899.40 4993.47 7099.33 6599.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM88.83 996.30 4696.07 5496.97 3898.39 6092.95 4894.74 12198.03 7890.82 14597.15 6196.85 14296.25 1499.00 11293.10 8899.33 6598.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111190.39 23690.61 23289.74 30198.04 8971.50 37295.59 8579.72 41189.41 17395.94 12098.14 4270.79 34398.81 14188.52 21499.32 6998.90 74
DVP-MVScopyleft95.82 6296.18 4694.72 11498.51 4986.69 15695.20 10697.00 16691.85 11097.40 5497.35 10395.58 2499.34 6593.44 7399.31 7098.13 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10798.55 4486.72 15595.20 10698.22 4499.38 5893.44 7399.31 7098.53 122
MSC_two_6792asdad95.90 6796.54 18289.57 9196.87 17899.41 4294.06 4999.30 7298.72 96
No_MVS95.90 6796.54 18289.57 9196.87 17899.41 4294.06 4999.30 7298.72 96
APDe-MVScopyleft96.46 3596.64 2595.93 6497.68 11889.38 9896.90 2198.41 2392.52 8897.43 5097.92 6195.11 4799.50 2294.45 4099.30 7298.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS96.00 5596.41 3694.76 11298.51 4986.97 14895.21 10498.10 6391.95 10497.63 3897.25 11096.48 1099.35 6293.29 8099.29 7597.95 174
IU-MVS98.51 4986.66 15896.83 18172.74 37795.83 12693.00 9299.29 7598.64 111
SMA-MVScopyleft95.77 6495.54 8196.47 5398.27 7091.19 7095.09 10997.79 10586.48 23097.42 5297.51 9094.47 7499.29 7493.55 6599.29 7598.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVScopyleft96.14 5095.68 7697.51 1798.81 2794.06 2596.10 6397.78 10692.73 8393.48 22296.72 15494.23 7699.42 3691.99 11799.29 7599.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_040295.73 6696.22 4494.26 13898.19 7785.77 18293.24 17697.24 15096.88 1897.69 3697.77 7194.12 7899.13 9591.54 13499.29 7597.88 184
ZNCC-MVS96.42 3996.20 4597.07 3498.80 2992.79 5096.08 6598.16 5691.74 12195.34 15496.36 17895.68 2199.44 3294.41 4299.28 8098.97 62
DPE-MVScopyleft95.89 5995.88 6595.92 6697.93 9789.83 8893.46 16998.30 3392.37 9197.75 3596.95 13595.14 4499.51 2191.74 12599.28 8098.41 132
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mPP-MVS96.46 3596.05 5597.69 698.62 3594.65 1796.45 4197.74 10892.59 8795.47 14596.68 15694.50 7199.42 3693.10 8899.26 8298.99 56
test_241102_TWO98.10 6391.95 10497.54 4397.25 11095.37 3299.35 6293.29 8099.25 8398.49 126
ACMMP++99.25 83
CSCG94.69 11094.75 11294.52 12797.55 12687.87 13095.01 11497.57 12192.68 8496.20 10993.44 30091.92 12898.78 14889.11 20199.24 8596.92 249
testf196.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24389.32 19099.23 8698.19 149
APD_test296.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24389.32 19099.23 8698.19 149
TransMVSNet (Re)95.27 9196.04 5692.97 18898.37 6381.92 24195.07 11196.76 18793.97 6297.77 3498.57 2695.72 2097.90 24388.89 20799.23 8699.08 48
EC-MVSNet95.44 7695.62 7894.89 10696.93 15687.69 13496.48 4099.14 793.93 6392.77 25494.52 26693.95 8199.49 2893.62 6299.22 8997.51 217
EGC-MVSNET80.97 36975.73 38696.67 4698.85 2394.55 1996.83 2296.60 1952.44 4235.32 42498.25 4092.24 12098.02 23391.85 12299.21 9097.45 220
PGM-MVS96.32 4495.94 6097.43 2298.59 4093.84 3695.33 9898.30 3391.40 13295.76 12996.87 14195.26 3999.45 3192.77 9699.21 9099.00 54
SD-MVS95.19 9295.73 7493.55 16996.62 17788.88 10994.67 12398.05 7391.26 13597.25 6096.40 17195.42 3094.36 37492.72 10099.19 9297.40 226
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Vis-MVSNet (Re-imp)90.42 23390.16 24191.20 25997.66 12077.32 31894.33 13787.66 36191.20 13792.99 24595.13 23975.40 32598.28 20977.86 34299.19 9297.99 169
test250685.42 33084.57 33387.96 33497.81 10566.53 39596.14 6156.35 42489.04 18193.55 22198.10 4442.88 42198.68 16888.09 22199.18 9498.67 104
ECVR-MVScopyleft90.12 24790.16 24190.00 29797.81 10572.68 36695.76 7978.54 41489.04 18195.36 15398.10 4470.51 34598.64 17487.10 23999.18 9498.67 104
tfpnnormal94.27 12894.87 10892.48 21297.71 11480.88 25694.55 13295.41 24993.70 6896.67 8697.72 7291.40 14098.18 22087.45 23399.18 9498.36 133
FMVSNet194.84 10395.13 9993.97 14797.60 12284.29 20295.99 6796.56 19992.38 9097.03 6898.53 2890.12 17398.98 11388.78 20999.16 9798.65 106
ACMMPR96.46 3596.14 4997.41 2498.60 3893.82 3796.30 5697.96 8792.35 9395.57 14096.61 16094.93 5899.41 4293.78 5799.15 9899.00 54
HFP-MVS96.39 4296.17 4897.04 3598.51 4993.37 4396.30 5697.98 8492.35 9395.63 13796.47 16595.37 3299.27 8093.78 5799.14 9998.48 127
VDD-MVS94.37 12394.37 12894.40 13497.49 12986.07 17593.97 15393.28 29894.49 5296.24 10597.78 6787.99 19898.79 14588.92 20599.14 9998.34 137
region2R96.41 4096.09 5197.38 2698.62 3593.81 3996.32 5197.96 8792.26 9695.28 15996.57 16295.02 5299.41 4293.63 6199.11 10198.94 66
Gipumacopyleft95.31 8795.80 7293.81 15897.99 9590.91 7496.42 4497.95 8996.69 1991.78 28498.85 1491.77 13295.49 35391.72 12699.08 10295.02 329
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
GST-MVS96.24 4795.99 5997.00 3798.65 3392.71 5195.69 8298.01 8192.08 10295.74 13296.28 18495.22 4299.42 3693.17 8699.06 10398.88 77
OPM-MVS95.61 7095.45 8496.08 5798.49 5691.00 7292.65 19697.33 14290.05 16296.77 8296.85 14295.04 5098.56 18392.77 9699.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPNet93.08 16693.76 14891.03 26398.60 3875.83 33991.51 24495.62 23591.84 11395.74 13297.10 12689.31 18398.32 20785.07 27299.06 10398.93 68
SF-MVS95.88 6095.88 6595.87 7098.12 8089.65 9095.58 8898.56 1791.84 11396.36 9696.68 15694.37 7599.32 7192.41 10899.05 10698.64 111
CS-MVS95.77 6495.58 8096.37 5496.84 16391.72 6596.73 2899.06 894.23 5692.48 26394.79 25593.56 8499.49 2893.47 7099.05 10697.89 183
XVS96.49 3396.18 4697.44 2098.56 4193.99 3096.50 3797.95 8994.58 5094.38 19696.49 16494.56 6999.39 5293.57 6399.05 10698.93 68
X-MVStestdata90.70 22588.45 27397.44 2098.56 4193.99 3096.50 3797.95 8994.58 5094.38 19626.89 42194.56 6999.39 5293.57 6399.05 10698.93 68
test20.0390.80 22290.85 22590.63 27895.63 25679.24 28789.81 29792.87 30489.90 16494.39 19596.40 17185.77 23195.27 36173.86 37399.05 10697.39 227
Anonymous2024052995.50 7495.83 6994.50 12897.33 13885.93 17895.19 10896.77 18696.64 2197.61 4198.05 4793.23 9698.79 14588.60 21399.04 11198.78 87
IterMVS-LS93.78 14694.28 13292.27 21696.27 20879.21 28991.87 23596.78 18491.77 11996.57 9197.07 12787.15 21198.74 15591.99 11799.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mmtdpeth95.82 6296.02 5895.23 9596.91 15788.62 11396.49 3999.26 495.07 4493.41 22499.29 490.25 17097.27 29294.49 3999.01 11399.80 3
test_fmvsmconf0.01_n95.90 5896.09 5195.31 9197.30 13989.21 10094.24 14098.76 1386.25 23497.56 4298.66 2195.73 1998.44 19797.35 398.99 11498.27 143
test_fmvsmconf0.1_n95.61 7095.72 7595.26 9296.85 16289.20 10193.51 16798.60 1685.68 24897.42 5298.30 3895.34 3598.39 19896.85 498.98 11598.19 149
cl____90.65 22790.56 23490.91 27091.85 35776.98 32486.75 35895.36 25185.53 25394.06 20594.89 24877.36 31097.98 23990.27 16698.98 11597.76 199
AllTest94.88 10294.51 12496.00 5898.02 9092.17 5495.26 10298.43 2190.48 15495.04 17496.74 15192.54 11697.86 25185.11 27098.98 11597.98 170
TestCases96.00 5898.02 9092.17 5498.43 2190.48 15495.04 17496.74 15192.54 11697.86 25185.11 27098.98 11597.98 170
Patchmtry90.11 24889.92 24790.66 27790.35 38377.00 32292.96 18492.81 30590.25 16094.74 18796.93 13767.11 35697.52 27785.17 26598.98 11597.46 219
DIV-MVS_self_test90.65 22790.56 23490.91 27091.85 35776.99 32386.75 35895.36 25185.52 25594.06 20594.89 24877.37 30997.99 23890.28 16598.97 12097.76 199
9.1494.81 10997.49 12994.11 14798.37 2687.56 21895.38 15096.03 19994.66 6499.08 10090.70 15098.97 120
D2MVS89.93 25489.60 25590.92 26894.03 30778.40 30288.69 32894.85 26378.96 33593.08 24195.09 24174.57 32796.94 31188.19 21798.96 12297.41 223
PHI-MVS94.34 12693.80 14695.95 6195.65 25491.67 6694.82 11997.86 9587.86 20993.04 24494.16 27791.58 13698.78 14890.27 16698.96 12297.41 223
test_fmvsmconf_n95.43 7795.50 8295.22 9796.48 18989.19 10293.23 17798.36 2785.61 25196.92 7498.02 5195.23 4198.38 20196.69 798.95 12498.09 157
mvs5depth95.28 8895.82 7193.66 16496.42 19283.08 22697.35 1299.28 396.44 2696.20 10999.65 284.10 24898.01 23494.06 4998.93 12599.87 1
ambc92.98 18796.88 15983.01 22895.92 7296.38 20996.41 9497.48 9288.26 19197.80 25689.96 17898.93 12598.12 156
balanced_conf0393.45 15494.17 13791.28 25495.81 24478.40 30296.20 6097.48 12988.56 19595.29 15897.20 11785.56 23799.21 8492.52 10698.91 12796.24 281
EPNet89.80 25888.25 28194.45 13283.91 41986.18 17293.87 15587.07 36791.16 13980.64 40894.72 25778.83 29298.89 12685.17 26598.89 12898.28 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet93.91 14393.68 15294.59 12498.08 8385.55 18897.44 1194.03 28394.22 5794.94 17896.19 19082.07 27099.57 1587.28 23798.89 12898.65 106
v119293.49 15293.78 14792.62 20696.16 21779.62 27891.83 23897.22 15286.07 23996.10 11596.38 17687.22 20999.02 11094.14 4898.88 13099.22 33
v114493.50 15193.81 14492.57 20996.28 20779.61 27991.86 23796.96 16986.95 22895.91 12296.32 18087.65 20298.96 11893.51 6698.88 13099.13 41
APD-MVS_3200maxsize96.82 1396.65 2497.32 2997.95 9693.82 3796.31 5298.25 3795.51 4196.99 7197.05 12995.63 2399.39 5293.31 7998.88 13098.75 91
APD-MVScopyleft95.00 9794.69 11695.93 6497.38 13490.88 7594.59 12697.81 10189.22 17995.46 14796.17 19393.42 9099.34 6589.30 19298.87 13397.56 214
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OMC-MVS94.22 13293.69 15195.81 7197.25 14091.27 6892.27 21797.40 13387.10 22694.56 19195.42 22993.74 8298.11 22586.62 24798.85 13498.06 158
SR-MVS-dyc-post96.84 1196.60 2897.56 1498.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13094.85 6099.42 3693.49 6798.84 13598.00 166
RE-MVS-def96.66 2398.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13095.40 3193.49 6798.84 13598.00 166
v14419293.20 16593.54 15992.16 22396.05 22778.26 30591.95 22797.14 15684.98 26595.96 11896.11 19587.08 21399.04 10893.79 5698.84 13599.17 37
v192192093.26 16093.61 15592.19 21996.04 23178.31 30491.88 23497.24 15085.17 25996.19 11296.19 19086.76 22199.05 10594.18 4798.84 13599.22 33
DP-MVS95.62 6995.84 6894.97 10497.16 14688.62 11394.54 13397.64 11396.94 1796.58 9097.32 10793.07 10398.72 15790.45 15698.84 13597.57 212
VDDNet94.03 13894.27 13493.31 18098.87 2182.36 23695.51 9391.78 32997.19 1396.32 9898.60 2584.24 24698.75 15287.09 24098.83 14098.81 84
CPTT-MVS94.74 10794.12 13996.60 4798.15 7993.01 4695.84 7697.66 11289.21 18093.28 23295.46 22688.89 18698.98 11389.80 18098.82 14197.80 195
ACMMP++_ref98.82 141
v2v48293.29 15893.63 15392.29 21596.35 19978.82 29791.77 24196.28 21188.45 19695.70 13696.26 18786.02 23098.90 12493.02 9198.81 14399.14 40
MVSMamba_PlusPlus94.82 10595.89 6491.62 24097.82 10478.88 29596.52 3597.60 11997.14 1494.23 19998.48 3287.01 21499.71 395.43 2598.80 14496.28 278
USDC89.02 27189.08 26088.84 31795.07 27574.50 34988.97 31996.39 20873.21 37393.27 23396.28 18482.16 26996.39 33177.55 34698.80 14495.62 312
tttt051789.81 25788.90 26792.55 21097.00 15179.73 27795.03 11383.65 39489.88 16595.30 15694.79 25553.64 40399.39 5291.99 11798.79 14698.54 120
PMVScopyleft87.21 1494.97 9895.33 9193.91 15298.97 1797.16 395.54 9295.85 23096.47 2593.40 22797.46 9395.31 3795.47 35486.18 25798.78 14789.11 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TinyColmap92.00 20192.76 17689.71 30295.62 25777.02 32190.72 26696.17 22087.70 21495.26 16096.29 18292.54 11696.45 32981.77 30498.77 14895.66 309
v124093.29 15893.71 15092.06 22696.01 23277.89 31091.81 23997.37 13485.12 26196.69 8596.40 17186.67 22299.07 10494.51 3898.76 14999.22 33
DeepPCF-MVS90.46 694.20 13393.56 15896.14 5595.96 23492.96 4789.48 30697.46 13085.14 26096.23 10695.42 22993.19 9798.08 22790.37 16098.76 14997.38 229
Anonymous2023120688.77 28088.29 27890.20 29196.31 20478.81 29889.56 30493.49 29574.26 36792.38 26995.58 22382.21 26795.43 35672.07 38298.75 15196.34 274
BP-MVS191.77 20491.10 22093.75 16096.42 19283.40 21794.10 14891.89 32791.27 13493.36 22894.85 25064.43 37499.29 7494.88 3398.74 15298.56 119
test_fmvsmvis_n_192095.08 9595.40 8894.13 14296.66 17287.75 13393.44 17198.49 1985.57 25298.27 2197.11 12494.11 7997.75 26496.26 1198.72 15396.89 251
casdiffmvs_mvgpermissive95.10 9495.62 7893.53 17296.25 21183.23 22192.66 19598.19 4793.06 8197.49 4797.15 12094.78 6198.71 16392.27 11098.72 15398.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS96.70 2396.42 3397.54 1598.05 8694.69 1596.13 6298.07 6995.17 4396.82 7996.73 15395.09 4999.43 3592.99 9398.71 15598.50 124
UGNet93.08 16692.50 18594.79 11193.87 31187.99 12895.07 11194.26 28090.64 15087.33 36297.67 7486.89 21998.49 19088.10 22098.71 15597.91 180
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS91.33 21691.16 21991.82 23196.27 20879.36 28495.01 11485.61 38196.04 3694.82 18397.06 12872.03 33998.46 19584.96 27398.70 15797.65 208
HPM-MVS++copyleft95.02 9694.39 12696.91 4197.88 10093.58 4194.09 14996.99 16891.05 14092.40 26895.22 23691.03 15399.25 8192.11 11298.69 15897.90 181
DVP-MVS++95.93 5696.34 3894.70 11596.54 18286.66 15898.45 498.22 4493.26 7897.54 4397.36 10093.12 10099.38 5893.88 5398.68 15998.04 161
PC_three_145275.31 36195.87 12595.75 21592.93 10696.34 33687.18 23898.68 15998.04 161
miper_lstm_enhance89.90 25589.80 25090.19 29291.37 36877.50 31583.82 39595.00 25984.84 26893.05 24394.96 24676.53 32195.20 36289.96 17898.67 16197.86 187
FMVSNet292.78 17892.73 17992.95 19095.40 26681.98 24094.18 14395.53 24488.63 19196.05 11697.37 9781.31 27798.81 14187.38 23698.67 16198.06 158
APD_test195.91 5795.42 8797.36 2798.82 2596.62 795.64 8497.64 11393.38 7695.89 12497.23 11293.35 9297.66 27188.20 21698.66 16397.79 196
DeepC-MVS_fast89.96 793.73 14793.44 16194.60 12396.14 22087.90 12993.36 17497.14 15685.53 25393.90 21395.45 22791.30 14398.59 18089.51 18698.62 16497.31 232
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS95.15 10096.84 16389.43 9595.21 10495.66 21893.12 10098.06 22886.28 25698.61 16597.95 174
114514_t90.51 23089.80 25092.63 20598.00 9282.24 23893.40 17297.29 14665.84 40789.40 32894.80 25486.99 21598.75 15283.88 28498.61 16596.89 251
SSC-MVS90.16 24592.96 17081.78 39097.88 10048.48 42290.75 26487.69 36096.02 3796.70 8497.63 7785.60 23697.80 25685.73 26198.60 16799.06 50
patch_mono-292.46 18892.72 18091.71 23696.65 17378.91 29488.85 32397.17 15483.89 27892.45 26596.76 14889.86 17997.09 30490.24 16898.59 16899.12 43
dcpmvs_293.96 14195.01 10490.82 27397.60 12274.04 35593.68 16398.85 1089.80 16797.82 3297.01 13391.14 15199.21 8490.56 15398.59 16899.19 36
CDPH-MVS92.67 18291.83 20295.18 9996.94 15488.46 12190.70 26797.07 16277.38 34492.34 27395.08 24292.67 11498.88 12785.74 26098.57 17098.20 148
c3_l91.32 21791.42 21191.00 26692.29 34276.79 32787.52 34496.42 20785.76 24694.72 18993.89 28882.73 26298.16 22290.93 14698.55 17198.04 161
test_prior290.21 28389.33 17690.77 30094.81 25290.41 16788.21 21598.55 171
LCM-MVSNet-Re94.20 13394.58 12393.04 18595.91 23783.13 22593.79 15899.19 692.00 10398.84 698.04 4993.64 8399.02 11081.28 31198.54 17396.96 248
Patchmatch-RL test88.81 27988.52 27189.69 30395.33 27179.94 27086.22 37092.71 30978.46 33895.80 12794.18 27666.25 36495.33 35989.22 19898.53 17493.78 361
Anonymous20240521192.58 18492.50 18592.83 19696.55 18183.22 22292.43 20791.64 33194.10 5995.59 13996.64 15881.88 27497.50 27885.12 26998.52 17597.77 198
CNVR-MVS94.58 11594.29 13195.46 8496.94 15489.35 9991.81 23996.80 18389.66 16993.90 21395.44 22892.80 11198.72 15792.74 9898.52 17598.32 138
HQP_MVS94.26 12993.93 14295.23 9597.71 11488.12 12594.56 13097.81 10191.74 12193.31 22995.59 22086.93 21798.95 12089.26 19698.51 17798.60 116
plane_prior597.81 10198.95 12089.26 19698.51 17798.60 116
baseline94.26 12994.80 11092.64 20296.08 22580.99 25493.69 16298.04 7790.80 14694.89 18196.32 18093.19 9798.48 19491.68 12898.51 17798.43 131
test_fmvsm_n_192094.72 10894.74 11494.67 11796.30 20688.62 11393.19 17898.07 6985.63 25097.08 6397.35 10390.86 15497.66 27195.70 1698.48 18097.74 202
thisisatest053088.69 28387.52 29592.20 21896.33 20279.36 28492.81 18984.01 39386.44 23193.67 21892.68 32053.62 40499.25 8189.65 18598.45 18198.00 166
train_agg92.71 18191.83 20295.35 8696.45 19089.46 9390.60 27096.92 17379.37 32890.49 30594.39 26991.20 14798.88 12788.66 21298.43 18297.72 203
GeoE94.55 11694.68 11994.15 14097.23 14185.11 19494.14 14697.34 14188.71 19095.26 16095.50 22594.65 6599.12 9690.94 14598.40 18398.23 145
ZD-MVS97.23 14190.32 8297.54 12384.40 27394.78 18595.79 21092.76 11299.39 5288.72 21198.40 183
test9_res88.16 21998.40 18397.83 191
TSAR-MVS + GP.93.07 16892.41 18795.06 10295.82 24290.87 7690.97 25992.61 31388.04 20594.61 19093.79 29188.08 19497.81 25589.41 18998.39 18696.50 267
VNet92.67 18292.96 17091.79 23296.27 20880.15 26191.95 22794.98 26092.19 10094.52 19396.07 19787.43 20697.39 28784.83 27498.38 18797.83 191
GBi-Net93.21 16392.96 17093.97 14795.40 26684.29 20295.99 6796.56 19988.63 19195.10 17098.53 2881.31 27798.98 11386.74 24398.38 18798.65 106
test193.21 16392.96 17093.97 14795.40 26684.29 20295.99 6796.56 19988.63 19195.10 17098.53 2881.31 27798.98 11386.74 24398.38 18798.65 106
FMVSNet390.78 22390.32 24092.16 22393.03 32679.92 27192.54 19994.95 26186.17 23895.10 17096.01 20069.97 34798.75 15286.74 24398.38 18797.82 193
MVS_111021_HR93.63 14993.42 16294.26 13896.65 17386.96 15089.30 31396.23 21588.36 20093.57 22094.60 26393.45 8797.77 26190.23 16998.38 18798.03 164
agg_prior287.06 24198.36 19297.98 170
TSAR-MVS + MP.94.96 9994.75 11295.57 8098.86 2288.69 11096.37 4696.81 18285.23 25794.75 18697.12 12391.85 12999.40 4993.45 7298.33 19398.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
pmmvs-eth3d91.54 21190.73 23093.99 14595.76 24887.86 13190.83 26293.98 28778.23 34094.02 20896.22 18982.62 26596.83 31886.57 24898.33 19397.29 233
casdiffmvspermissive94.32 12794.80 11092.85 19596.05 22781.44 24892.35 21198.05 7391.53 12995.75 13196.80 14593.35 9298.49 19091.01 14498.32 19598.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+92.74 295.86 6195.77 7396.13 5696.81 16690.79 7796.30 5697.82 10096.13 3294.74 18797.23 11291.33 14199.16 9093.25 8398.30 19698.46 128
MVS_111021_LR93.66 14893.28 16594.80 11096.25 21190.95 7390.21 28395.43 24887.91 20693.74 21794.40 26892.88 10996.38 33290.39 15898.28 19797.07 241
CANet92.38 19191.99 19793.52 17493.82 31383.46 21691.14 25497.00 16689.81 16686.47 36694.04 28087.90 20099.21 8489.50 18798.27 19897.90 181
EI-MVSNet92.99 16993.26 16792.19 21992.12 34979.21 28992.32 21394.67 27391.77 11995.24 16395.85 20587.14 21298.49 19091.99 11798.26 19998.86 78
MVSTER89.32 26588.75 26991.03 26390.10 38676.62 32990.85 26194.67 27382.27 29995.24 16395.79 21061.09 39098.49 19090.49 15598.26 19997.97 173
MSLP-MVS++93.25 16293.88 14391.37 24896.34 20082.81 23193.11 18097.74 10889.37 17594.08 20395.29 23590.40 16896.35 33490.35 16198.25 20194.96 330
LF4IMVS92.72 18092.02 19694.84 10995.65 25491.99 5892.92 18596.60 19585.08 26392.44 26693.62 29586.80 22096.35 33486.81 24298.25 20196.18 284
EI-MVSNet-UG-set94.35 12594.27 13494.59 12492.46 33985.87 18092.42 20894.69 27193.67 7196.13 11395.84 20791.20 14798.86 13193.78 5798.23 20399.03 52
PM-MVS93.33 15792.67 18195.33 8896.58 17894.06 2592.26 21892.18 31985.92 24296.22 10796.61 16085.64 23595.99 34490.35 16198.23 20395.93 295
EI-MVSNet-Vis-set94.36 12494.28 13294.61 12092.55 33685.98 17792.44 20694.69 27193.70 6896.12 11495.81 20991.24 14498.86 13193.76 6098.22 20598.98 60
V4293.43 15593.58 15692.97 18895.34 27081.22 25192.67 19496.49 20487.25 22296.20 10996.37 17787.32 20898.85 13392.39 10998.21 20698.85 81
TAMVS90.16 24589.05 26193.49 17696.49 18786.37 16690.34 28092.55 31480.84 31592.99 24594.57 26581.94 27398.20 21773.51 37498.21 20695.90 298
K. test v393.37 15693.27 16693.66 16498.05 8682.62 23294.35 13686.62 36996.05 3597.51 4698.85 1476.59 32099.65 593.21 8498.20 20898.73 95
DELS-MVS92.05 20092.16 19191.72 23594.44 29680.13 26387.62 33897.25 14987.34 22092.22 27693.18 30889.54 18298.73 15689.67 18498.20 20896.30 276
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TAPA-MVS88.58 1092.49 18791.75 20494.73 11396.50 18689.69 8992.91 18697.68 11178.02 34192.79 25394.10 27890.85 15597.96 24084.76 27698.16 21096.54 262
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D96.11 5195.83 6996.95 4094.75 28694.20 2397.34 1397.98 8497.31 1295.32 15596.77 14693.08 10299.20 8791.79 12498.16 21097.44 222
GDP-MVS91.56 21090.83 22693.77 15996.34 20083.65 21493.66 16498.12 5987.32 22192.98 24794.71 25863.58 38099.30 7392.61 10398.14 21298.35 136
DP-MVS Recon92.31 19391.88 20093.60 16797.18 14586.87 15191.10 25697.37 13484.92 26692.08 28094.08 27988.59 18798.20 21783.50 28598.14 21295.73 304
EG-PatchMatch MVS94.54 11794.67 12094.14 14197.87 10286.50 16092.00 22696.74 18888.16 20496.93 7397.61 7893.04 10497.90 24391.60 13098.12 21498.03 164
PCF-MVS84.52 1789.12 26887.71 29293.34 17996.06 22685.84 18186.58 36597.31 14368.46 40093.61 21993.89 28887.51 20598.52 18867.85 39998.11 21595.66 309
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator92.54 394.80 10694.90 10694.47 13195.47 26487.06 14596.63 3197.28 14891.82 11694.34 19897.41 9490.60 16498.65 17392.47 10798.11 21597.70 204
WBMVS84.00 34483.48 34385.56 36592.71 33261.52 41283.82 39589.38 34679.56 32690.74 30193.20 30748.21 40897.28 29175.63 36398.10 21797.88 184
PMMVS281.31 36583.44 34474.92 39990.52 37946.49 42569.19 41585.23 38784.30 27587.95 35394.71 25876.95 31584.36 41664.07 40798.09 21893.89 359
lessismore_v093.87 15498.05 8683.77 21380.32 40997.13 6297.91 6277.49 30599.11 9892.62 10298.08 21998.74 94
new-patchmatchnet88.97 27590.79 22883.50 38594.28 30055.83 42085.34 38093.56 29386.18 23795.47 14595.73 21683.10 25596.51 32685.40 26498.06 22098.16 152
plane_prior88.12 12593.01 18288.98 18398.06 220
PVSNet_BlendedMVS90.35 23989.96 24691.54 24494.81 28278.80 29990.14 28696.93 17179.43 32788.68 34295.06 24386.27 22798.15 22380.27 31998.04 22297.68 206
fmvsm_l_conf0.5_n_a93.59 15093.63 15393.49 17696.10 22385.66 18692.32 21396.57 19881.32 30995.63 13797.14 12190.19 17197.73 26795.37 2898.03 22397.07 241
CL-MVSNet_self_test90.04 25389.90 24890.47 28195.24 27277.81 31186.60 36492.62 31285.64 24993.25 23693.92 28683.84 24996.06 34179.93 32798.03 22397.53 216
FMVSNet587.82 29786.56 31691.62 24092.31 34179.81 27593.49 16894.81 26783.26 28391.36 29096.93 13752.77 40597.49 28076.07 35998.03 22397.55 215
原ACMM192.87 19496.91 15784.22 20597.01 16576.84 35189.64 32594.46 26788.00 19798.70 16481.53 30998.01 22695.70 307
fmvsm_l_conf0.5_n93.79 14593.81 14493.73 16296.16 21786.26 17092.46 20496.72 18981.69 30695.77 12897.11 12490.83 15697.82 25495.58 1997.99 22797.11 240
v14892.87 17593.29 16391.62 24096.25 21177.72 31391.28 25195.05 25789.69 16895.93 12196.04 19887.34 20798.38 20190.05 17697.99 22798.78 87
WB-MVS89.44 26392.15 19381.32 39197.73 11248.22 42389.73 29987.98 35895.24 4296.05 11696.99 13485.18 23996.95 31082.45 29897.97 22998.78 87
ITE_SJBPF95.95 6197.34 13793.36 4496.55 20291.93 10694.82 18395.39 23391.99 12697.08 30585.53 26397.96 23097.41 223
test1294.43 13395.95 23586.75 15496.24 21489.76 32389.79 18098.79 14597.95 23197.75 201
MCST-MVS92.91 17192.51 18494.10 14397.52 12785.72 18491.36 25097.13 15880.33 31792.91 25094.24 27391.23 14598.72 15789.99 17797.93 23297.86 187
CDS-MVSNet89.55 25988.22 28493.53 17295.37 26986.49 16189.26 31493.59 29179.76 32291.15 29592.31 32877.12 31198.38 20177.51 34797.92 23395.71 305
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
旧先验196.20 21484.17 20794.82 26595.57 22489.57 18197.89 23496.32 275
reproduce_monomvs87.13 31686.90 30887.84 33990.92 37468.15 38791.19 25393.75 28985.84 24394.21 20095.83 20842.99 41897.10 30389.46 18897.88 23598.26 144
alignmvs93.26 16092.85 17494.50 12895.70 25087.45 13693.45 17095.76 23191.58 12695.25 16292.42 32781.96 27298.72 15791.61 12997.87 23697.33 231
testgi90.38 23791.34 21487.50 34297.49 12971.54 37189.43 30895.16 25588.38 19894.54 19294.68 26092.88 10993.09 38571.60 38697.85 23797.88 184
fmvsm_s_conf0.1_n94.19 13594.41 12593.52 17497.22 14384.37 20093.73 16095.26 25384.45 27295.76 12998.00 5291.85 12997.21 29595.62 1797.82 23898.98 60
fmvsm_s_conf0.5_n94.00 14094.20 13693.42 17896.69 17084.37 20093.38 17395.13 25684.50 27195.40 14997.55 8591.77 13297.20 29695.59 1897.79 23998.69 103
新几何193.17 18497.16 14687.29 13894.43 27567.95 40191.29 29194.94 24786.97 21698.23 21581.06 31597.75 24093.98 357
ETV-MVS92.99 16992.74 17793.72 16395.86 23986.30 16992.33 21297.84 9891.70 12492.81 25186.17 39492.22 12199.19 8888.03 22497.73 24195.66 309
HQP3-MVS97.31 14397.73 241
HQP-MVS92.09 19991.49 21093.88 15396.36 19684.89 19691.37 24797.31 14387.16 22388.81 33593.40 30184.76 24398.60 17886.55 25097.73 24198.14 154
CANet_DTU89.85 25689.17 25991.87 22992.20 34680.02 26890.79 26395.87 22986.02 24082.53 39891.77 33880.01 28598.57 18285.66 26297.70 24497.01 246
NCCC94.08 13793.54 15995.70 7796.49 18789.90 8792.39 21096.91 17590.64 15092.33 27494.60 26390.58 16598.96 11890.21 17097.70 24498.23 145
Vis-MVSNetpermissive95.50 7495.48 8395.56 8198.11 8189.40 9795.35 9698.22 4492.36 9294.11 20198.07 4692.02 12599.44 3293.38 7897.67 24697.85 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MGCFI-Net94.44 12094.67 12093.75 16095.56 26085.47 18995.25 10398.24 4091.53 12995.04 17492.21 32994.94 5798.54 18691.56 13397.66 24797.24 235
AdaColmapbinary91.63 20891.36 21392.47 21395.56 26086.36 16792.24 22096.27 21288.88 18789.90 31992.69 31991.65 13598.32 20777.38 34997.64 24892.72 381
EPNet_dtu85.63 32884.37 33489.40 30786.30 41274.33 35191.64 24288.26 35284.84 26872.96 41789.85 35971.27 34297.69 26976.60 35497.62 24996.18 284
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS94.72 10894.12 13996.50 5198.00 9294.23 2291.48 24698.17 5390.72 14795.30 15696.47 16587.94 19996.98 30991.41 13797.61 25098.30 141
sasdasda94.59 11394.69 11694.30 13695.60 25887.03 14695.59 8598.24 4091.56 12795.21 16592.04 33494.95 5598.66 17091.45 13597.57 25197.20 237
canonicalmvs94.59 11394.69 11694.30 13695.60 25887.03 14695.59 8598.24 4091.56 12795.21 16592.04 33494.95 5598.66 17091.45 13597.57 25197.20 237
XXY-MVS92.58 18493.16 16890.84 27297.75 10979.84 27291.87 23596.22 21785.94 24195.53 14197.68 7392.69 11394.48 37083.21 28897.51 25398.21 147
FA-MVS(test-final)91.81 20391.85 20191.68 23894.95 27779.99 26996.00 6693.44 29687.80 21094.02 20897.29 10877.60 30498.45 19688.04 22397.49 25496.61 261
Effi-MVS+-dtu93.90 14492.60 18397.77 494.74 28796.67 694.00 15195.41 24989.94 16391.93 28392.13 33290.12 17398.97 11787.68 23097.48 25597.67 207
OpenMVScopyleft89.45 892.27 19692.13 19492.68 20194.53 29584.10 20895.70 8097.03 16482.44 29891.14 29696.42 16988.47 18998.38 20185.95 25897.47 25695.55 314
fmvsm_s_conf0.1_n_a94.26 12994.37 12893.95 15097.36 13685.72 18494.15 14495.44 24683.25 28495.51 14298.05 4792.54 11697.19 29895.55 2197.46 25798.94 66
ab-mvs92.40 19092.62 18291.74 23497.02 15081.65 24495.84 7695.50 24586.95 22892.95 24997.56 8190.70 16297.50 27879.63 33097.43 25896.06 289
fmvsm_s_conf0.5_n_a94.02 13994.08 14193.84 15696.72 16985.73 18393.65 16595.23 25483.30 28295.13 16897.56 8192.22 12197.17 29995.51 2297.41 25998.64 111
thisisatest051584.72 33782.99 34889.90 29892.96 32875.33 34284.36 38983.42 39577.37 34588.27 34886.65 38953.94 40298.72 15782.56 29597.40 26095.67 308
test22296.95 15385.27 19388.83 32493.61 29065.09 40990.74 30194.85 25084.62 24597.36 26193.91 358
API-MVS91.52 21291.61 20591.26 25594.16 30186.26 17094.66 12494.82 26591.17 13892.13 27991.08 34890.03 17897.06 30779.09 33797.35 26290.45 397
EIA-MVS92.35 19292.03 19593.30 18195.81 24483.97 21092.80 19098.17 5387.71 21389.79 32287.56 38491.17 15099.18 8987.97 22597.27 26396.77 257
testdata91.03 26396.87 16082.01 23994.28 27971.55 38292.46 26495.42 22985.65 23497.38 28982.64 29397.27 26393.70 364
N_pmnet88.90 27787.25 30093.83 15794.40 29893.81 3984.73 38487.09 36579.36 33093.26 23492.43 32679.29 29091.68 39177.50 34897.22 26596.00 291
testing383.66 34682.52 35187.08 34595.84 24065.84 40089.80 29877.17 41888.17 20390.84 29988.63 37630.95 42698.11 22584.05 28297.19 26697.28 234
ppachtmachnet_test88.61 28488.64 27088.50 32591.76 35970.99 37584.59 38792.98 30279.30 33292.38 26993.53 29979.57 28797.45 28286.50 25297.17 26797.07 241
CNLPA91.72 20691.20 21693.26 18296.17 21691.02 7191.14 25495.55 24390.16 16190.87 29893.56 29886.31 22694.40 37379.92 32997.12 26894.37 348
FE-MVS89.06 27088.29 27891.36 24994.78 28479.57 28096.77 2790.99 33584.87 26792.96 24896.29 18260.69 39298.80 14480.18 32297.11 26995.71 305
jason89.17 26788.32 27691.70 23795.73 24980.07 26488.10 33493.22 29971.98 38090.09 31392.79 31678.53 29798.56 18387.43 23497.06 27096.46 270
jason: jason.
RPSCF95.58 7294.89 10797.62 997.58 12496.30 895.97 7097.53 12592.42 8993.41 22497.78 6791.21 14697.77 26191.06 14197.06 27098.80 85
cl2289.02 27188.50 27290.59 27989.76 38876.45 33186.62 36394.03 28382.98 29192.65 25792.49 32272.05 33897.53 27688.93 20497.02 27297.78 197
miper_ehance_all_eth90.48 23190.42 23790.69 27691.62 36476.57 33086.83 35696.18 21983.38 28194.06 20592.66 32182.20 26898.04 22989.79 18197.02 27297.45 220
miper_enhance_ethall88.42 28787.87 29090.07 29388.67 40175.52 34085.10 38195.59 24075.68 35592.49 26289.45 36978.96 29197.88 24787.86 22897.02 27296.81 255
eth_miper_zixun_eth90.72 22490.61 23291.05 26292.04 35276.84 32686.91 35396.67 19285.21 25894.41 19493.92 28679.53 28898.26 21389.76 18297.02 27298.06 158
QAPM92.88 17392.77 17593.22 18395.82 24283.31 21896.45 4197.35 14083.91 27793.75 21596.77 14689.25 18498.88 12784.56 27897.02 27297.49 218
thres600view787.66 30087.10 30689.36 30896.05 22773.17 35992.72 19185.31 38491.89 10893.29 23190.97 34963.42 38198.39 19873.23 37696.99 27796.51 264
tt080595.42 8095.93 6293.86 15598.75 3188.47 12097.68 994.29 27896.48 2495.38 15093.63 29494.89 5997.94 24295.38 2796.92 27895.17 320
test_yl90.11 24889.73 25391.26 25594.09 30479.82 27390.44 27492.65 31090.90 14193.19 23993.30 30373.90 32998.03 23082.23 30096.87 27995.93 295
DCV-MVSNet90.11 24889.73 25391.26 25594.09 30479.82 27390.44 27492.65 31090.90 14193.19 23993.30 30373.90 32998.03 23082.23 30096.87 27995.93 295
test_fmvs392.42 18992.40 18892.46 21493.80 31487.28 13993.86 15697.05 16376.86 35096.25 10498.66 2182.87 25991.26 39395.44 2496.83 28198.82 82
MSP-MVS95.34 8394.63 12297.48 1898.67 3294.05 2796.41 4598.18 4991.26 13595.12 16995.15 23786.60 22499.50 2293.43 7696.81 28298.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
pmmvs587.87 29587.14 30390.07 29393.26 32176.97 32588.89 32192.18 31973.71 37088.36 34693.89 28876.86 31896.73 32180.32 31896.81 28296.51 264
PVSNet_Blended_VisFu91.63 20891.20 21692.94 19197.73 11283.95 21192.14 22197.46 13078.85 33792.35 27194.98 24584.16 24799.08 10086.36 25496.77 28495.79 302
MVSFormer92.18 19892.23 19092.04 22794.74 28780.06 26597.15 1597.37 13488.98 18388.83 33392.79 31677.02 31399.60 1096.41 996.75 28596.46 270
lupinMVS88.34 28987.31 29791.45 24694.74 28780.06 26587.23 34692.27 31871.10 38688.83 33391.15 34677.02 31398.53 18786.67 24696.75 28595.76 303
ttmdpeth86.91 32186.57 31587.91 33789.68 39074.24 35391.49 24587.09 36579.84 31989.46 32797.86 6565.42 36891.04 39481.57 30896.74 28798.44 130
diffmvspermissive91.74 20591.93 19991.15 26193.06 32478.17 30688.77 32697.51 12886.28 23392.42 26793.96 28588.04 19697.46 28190.69 15196.67 28897.82 193
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS89.35 26488.40 27492.18 22296.13 22284.20 20686.96 35296.15 22175.40 35987.36 36191.55 34383.30 25398.01 23482.17 30296.62 28994.32 350
test_fmvs290.62 22990.40 23891.29 25391.93 35685.46 19092.70 19396.48 20574.44 36594.91 18097.59 7975.52 32490.57 39693.44 7396.56 29097.84 190
thres100view90087.35 30986.89 30988.72 31996.14 22073.09 36193.00 18385.31 38492.13 10193.26 23490.96 35063.42 38198.28 20971.27 38896.54 29194.79 338
tfpn200view987.05 31886.52 31888.67 32095.77 24672.94 36391.89 23286.00 37490.84 14392.61 25889.80 36163.93 37798.28 20971.27 38896.54 29194.79 338
thres40087.20 31386.52 31889.24 31295.77 24672.94 36391.89 23286.00 37490.84 14392.61 25889.80 36163.93 37798.28 20971.27 38896.54 29196.51 264
CMPMVSbinary68.83 2287.28 31085.67 32692.09 22588.77 40085.42 19190.31 28194.38 27670.02 39488.00 35193.30 30373.78 33194.03 37875.96 36196.54 29196.83 254
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UWE-MVS80.29 37579.10 37683.87 38291.97 35559.56 41686.50 36777.43 41775.40 35987.79 35688.10 38144.08 41696.90 31564.23 40696.36 29595.14 323
pmmvs488.95 27687.70 29392.70 19994.30 29985.60 18787.22 34792.16 32174.62 36489.75 32494.19 27577.97 30296.41 33082.71 29296.36 29596.09 287
MVStest184.79 33684.06 33886.98 34777.73 42474.76 34391.08 25885.63 37977.70 34296.86 7697.97 5541.05 42388.24 40892.22 11196.28 29797.94 176
Fast-Effi-MVS+-dtu92.77 17992.16 19194.58 12694.66 29288.25 12392.05 22396.65 19389.62 17090.08 31491.23 34592.56 11598.60 17886.30 25596.27 29896.90 250
MAR-MVS90.32 24188.87 26894.66 11994.82 28191.85 6194.22 14294.75 26980.91 31287.52 36088.07 38286.63 22397.87 25076.67 35396.21 29994.25 351
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS90.05 25288.30 27795.32 9096.09 22490.52 8192.42 20892.05 32582.08 30288.45 34592.86 31365.76 36698.69 16688.91 20696.07 30096.75 259
hse-mvs292.24 19791.20 21695.38 8596.16 21790.65 7992.52 20092.01 32689.23 17793.95 21092.99 31176.88 31698.69 16691.02 14296.03 30196.81 255
PVSNet_Blended88.74 28188.16 28790.46 28394.81 28278.80 29986.64 36196.93 17174.67 36388.68 34289.18 37386.27 22798.15 22380.27 31996.00 30294.44 347
F-COLMAP92.28 19491.06 22195.95 6197.52 12791.90 6093.53 16697.18 15383.98 27688.70 34194.04 28088.41 19098.55 18580.17 32395.99 30397.39 227
xiu_mvs_v1_base_debu91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
xiu_mvs_v1_base91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
xiu_mvs_v1_base_debi91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
thres20085.85 32785.18 32887.88 33894.44 29672.52 36789.08 31886.21 37188.57 19491.44 28988.40 37964.22 37598.00 23668.35 39795.88 30793.12 373
RRT-MVS92.28 19493.01 16990.07 29394.06 30673.01 36295.36 9597.88 9392.24 9895.16 16797.52 8678.51 29899.29 7490.55 15495.83 30897.92 179
Patchmatch-test86.10 32686.01 32386.38 35990.63 37774.22 35489.57 30386.69 36885.73 24789.81 32192.83 31465.24 37191.04 39477.82 34595.78 30993.88 360
h-mvs3392.89 17291.99 19795.58 7996.97 15290.55 8093.94 15494.01 28689.23 17793.95 21096.19 19076.88 31699.14 9391.02 14295.71 31097.04 245
test_fmvs1_n88.73 28288.38 27589.76 30092.06 35182.53 23392.30 21696.59 19771.14 38592.58 26095.41 23268.55 35089.57 40491.12 14095.66 31197.18 239
cascas87.02 31986.28 32289.25 31191.56 36676.45 33184.33 39096.78 18471.01 38786.89 36585.91 39581.35 27696.94 31183.09 28995.60 31294.35 349
XVG-OURS-SEG-HR95.38 8195.00 10596.51 5098.10 8294.07 2492.46 20498.13 5890.69 14893.75 21596.25 18898.03 297.02 30892.08 11495.55 31398.45 129
DSMNet-mixed82.21 35881.56 35784.16 38089.57 39370.00 38290.65 26977.66 41654.99 41883.30 39297.57 8077.89 30390.50 39866.86 40295.54 31491.97 386
MVS_Test92.57 18693.29 16390.40 28493.53 31775.85 33792.52 20096.96 16988.73 18892.35 27196.70 15590.77 15798.37 20592.53 10595.49 31596.99 247
MIMVSNet87.13 31686.54 31788.89 31696.05 22776.11 33494.39 13588.51 35081.37 30888.27 34896.75 15072.38 33695.52 35165.71 40495.47 31695.03 328
Fast-Effi-MVS+91.28 21890.86 22492.53 21195.45 26582.53 23389.25 31696.52 20385.00 26489.91 31888.55 37892.94 10598.84 13484.72 27795.44 31796.22 282
ET-MVSNet_ETH3D86.15 32584.27 33691.79 23293.04 32581.28 24987.17 34986.14 37279.57 32583.65 38788.66 37557.10 39698.18 22087.74 22995.40 31895.90 298
BH-RMVSNet90.47 23290.44 23690.56 28095.21 27378.65 30189.15 31793.94 28888.21 20192.74 25594.22 27486.38 22597.88 24778.67 33995.39 31995.14 323
CHOSEN 1792x268887.19 31485.92 32591.00 26697.13 14879.41 28384.51 38895.60 23664.14 41090.07 31594.81 25278.26 30097.14 30273.34 37595.38 32096.46 270
test_fmvs187.59 30387.27 29988.54 32388.32 40281.26 25090.43 27795.72 23370.55 39191.70 28594.63 26168.13 35189.42 40590.59 15295.34 32194.94 333
Effi-MVS+92.79 17792.74 17792.94 19195.10 27483.30 21994.00 15197.53 12591.36 13389.35 32990.65 35794.01 8098.66 17087.40 23595.30 32296.88 253
MG-MVS89.54 26089.80 25088.76 31894.88 27872.47 36889.60 30292.44 31685.82 24489.48 32695.98 20182.85 26097.74 26681.87 30395.27 32396.08 288
HyFIR lowres test87.19 31485.51 32792.24 21797.12 14980.51 25885.03 38296.06 22266.11 40691.66 28692.98 31270.12 34699.14 9375.29 36495.23 32497.07 241
mvsmamba90.24 24389.43 25692.64 20295.52 26282.36 23696.64 3092.29 31781.77 30492.14 27896.28 18470.59 34499.10 9984.44 28095.22 32596.47 269
BH-untuned90.68 22690.90 22290.05 29695.98 23379.57 28090.04 28994.94 26287.91 20694.07 20493.00 31087.76 20197.78 26079.19 33695.17 32692.80 380
pmmvs380.83 37078.96 37886.45 35687.23 40877.48 31684.87 38382.31 39963.83 41185.03 37689.50 36849.66 40693.10 38473.12 37895.10 32788.78 402
testing22280.54 37378.53 38186.58 35492.54 33868.60 38686.24 36982.72 39883.78 28082.68 39784.24 40439.25 42495.94 34560.25 41195.09 32895.20 319
mvs_anonymous90.37 23891.30 21587.58 34192.17 34868.00 38889.84 29694.73 27083.82 27993.22 23897.40 9587.54 20497.40 28687.94 22695.05 32997.34 230
test_vis1_n89.01 27389.01 26389.03 31392.57 33582.46 23592.62 19796.06 22273.02 37590.40 30895.77 21474.86 32689.68 40290.78 14894.98 33094.95 331
IterMVS-SCA-FT91.65 20791.55 20691.94 22893.89 31079.22 28887.56 34193.51 29491.53 12995.37 15296.62 15978.65 29498.90 12491.89 12194.95 33197.70 204
test_vis3_rt90.40 23490.03 24591.52 24592.58 33488.95 10690.38 27897.72 11073.30 37297.79 3397.51 9077.05 31287.10 41089.03 20394.89 33298.50 124
test-LLR83.58 34783.17 34684.79 37489.68 39066.86 39383.08 39784.52 39083.07 28982.85 39484.78 40262.86 38493.49 38182.85 29094.86 33394.03 355
test-mter81.21 36780.01 37484.79 37489.68 39066.86 39383.08 39784.52 39073.85 36982.85 39484.78 40243.66 41793.49 38182.85 29094.86 33394.03 355
PatchMatch-RL89.18 26688.02 28992.64 20295.90 23892.87 4988.67 33091.06 33480.34 31690.03 31691.67 34083.34 25294.42 37276.35 35794.84 33590.64 396
OpenMVS_ROBcopyleft85.12 1689.52 26189.05 26190.92 26894.58 29481.21 25291.10 25693.41 29777.03 34993.41 22493.99 28483.23 25497.80 25679.93 32794.80 33693.74 363
our_test_387.55 30487.59 29487.44 34391.76 35970.48 37683.83 39490.55 34179.79 32192.06 28192.17 33178.63 29695.63 34984.77 27594.73 33796.22 282
CHOSEN 280x42080.04 37777.97 38486.23 36190.13 38574.53 34872.87 41389.59 34566.38 40576.29 41485.32 40056.96 39795.36 35769.49 39694.72 33888.79 401
IterMVS90.18 24490.16 24190.21 29093.15 32275.98 33687.56 34192.97 30386.43 23294.09 20296.40 17178.32 29997.43 28387.87 22794.69 33997.23 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EMVS80.35 37480.28 37280.54 39384.73 41869.07 38472.54 41480.73 40787.80 21081.66 40481.73 41062.89 38389.84 40175.79 36294.65 34082.71 412
PLCcopyleft85.34 1590.40 23488.92 26594.85 10896.53 18590.02 8591.58 24396.48 20580.16 31886.14 36892.18 33085.73 23298.25 21476.87 35294.61 34196.30 276
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG90.82 22190.67 23191.26 25594.16 30183.08 22686.63 36296.19 21890.60 15291.94 28291.89 33689.16 18595.75 34880.96 31694.51 34294.95 331
test_f86.65 32387.13 30485.19 37090.28 38486.11 17486.52 36691.66 33069.76 39595.73 13497.21 11669.51 34881.28 41789.15 20094.40 34388.17 403
xiu_mvs_v2_base89.00 27489.19 25888.46 32794.86 28074.63 34686.97 35195.60 23680.88 31387.83 35488.62 37791.04 15298.81 14182.51 29794.38 34491.93 387
PS-MVSNAJ88.86 27888.99 26488.48 32694.88 27874.71 34486.69 36095.60 23680.88 31387.83 35487.37 38790.77 15798.82 13682.52 29694.37 34591.93 387
EU-MVSNet87.39 30886.71 31389.44 30593.40 31876.11 33494.93 11790.00 34357.17 41695.71 13597.37 9764.77 37397.68 27092.67 10194.37 34594.52 345
E-PMN80.72 37180.86 36580.29 39485.11 41668.77 38572.96 41281.97 40087.76 21283.25 39383.01 40962.22 38789.17 40677.15 35194.31 34782.93 411
GA-MVS87.70 29886.82 31090.31 28593.27 32077.22 32084.72 38692.79 30785.11 26289.82 32090.07 35866.80 35997.76 26384.56 27894.27 34895.96 293
ETVMVS79.85 37877.94 38585.59 36492.97 32766.20 39886.13 37180.99 40681.41 30783.52 39083.89 40541.81 42294.98 36756.47 41594.25 34995.61 313
mvsany_test389.11 26988.21 28591.83 23091.30 36990.25 8388.09 33578.76 41276.37 35396.43 9398.39 3683.79 25090.43 39986.57 24894.20 35094.80 337
sss87.23 31186.82 31088.46 32793.96 30877.94 30786.84 35592.78 30877.59 34387.61 35991.83 33778.75 29391.92 39077.84 34394.20 35095.52 315
MDA-MVSNet-bldmvs91.04 21990.88 22391.55 24394.68 29180.16 26085.49 37892.14 32290.41 15894.93 17995.79 21085.10 24096.93 31385.15 26794.19 35297.57 212
Syy-MVS84.81 33584.93 32984.42 37791.71 36163.36 41085.89 37381.49 40281.03 31085.13 37481.64 41177.44 30695.00 36485.94 25994.12 35394.91 334
myMVS_eth3d79.62 37978.26 38283.72 38391.71 36161.25 41485.89 37381.49 40281.03 31085.13 37481.64 41132.12 42595.00 36471.17 39194.12 35394.91 334
WB-MVSnew84.20 34283.89 34185.16 37191.62 36466.15 39988.44 33381.00 40576.23 35487.98 35287.77 38384.98 24293.35 38362.85 41094.10 35595.98 292
testing9183.56 34882.45 35286.91 35092.92 32967.29 38986.33 36888.07 35786.22 23584.26 38385.76 39648.15 40997.17 29976.27 35894.08 35696.27 279
PAPM_NR91.03 22090.81 22791.68 23896.73 16881.10 25393.72 16196.35 21088.19 20288.77 33992.12 33385.09 24197.25 29382.40 29993.90 35796.68 260
YYNet188.17 29188.24 28287.93 33592.21 34573.62 35780.75 40588.77 34882.51 29794.99 17795.11 24082.70 26393.70 37983.33 28693.83 35896.48 268
MDA-MVSNet_test_wron88.16 29288.23 28387.93 33592.22 34473.71 35680.71 40688.84 34782.52 29694.88 18295.14 23882.70 26393.61 38083.28 28793.80 35996.46 270
1112_ss88.42 28787.41 29691.45 24696.69 17080.99 25489.72 30096.72 18973.37 37187.00 36490.69 35577.38 30898.20 21781.38 31093.72 36095.15 322
PVSNet76.22 2082.89 35482.37 35384.48 37693.96 30864.38 40778.60 40888.61 34971.50 38384.43 38286.36 39374.27 32894.60 36969.87 39593.69 36194.46 346
test_vis1_n_192089.45 26289.85 24988.28 32993.59 31676.71 32890.67 26897.78 10679.67 32490.30 31196.11 19576.62 31992.17 38990.31 16393.57 36295.96 293
testing9982.94 35381.72 35686.59 35392.55 33666.53 39586.08 37285.70 37785.47 25683.95 38585.70 39745.87 41197.07 30676.58 35593.56 36396.17 286
test_cas_vis1_n_192088.25 29088.27 28088.20 33192.19 34778.92 29389.45 30795.44 24675.29 36293.23 23795.65 21971.58 34090.23 40088.05 22293.55 36495.44 316
UBG80.28 37678.94 37984.31 37992.86 33061.77 41183.87 39383.31 39777.33 34682.78 39683.72 40647.60 41096.06 34165.47 40593.48 36595.11 326
TESTMET0.1,179.09 38178.04 38382.25 38887.52 40664.03 40883.08 39780.62 40870.28 39380.16 40983.22 40844.13 41590.56 39779.95 32593.36 36692.15 385
PAPR87.65 30186.77 31290.27 28792.85 33177.38 31788.56 33196.23 21576.82 35284.98 37789.75 36586.08 22997.16 30172.33 38193.35 36796.26 280
SCA87.43 30787.21 30188.10 33392.01 35371.98 37089.43 30888.11 35682.26 30088.71 34092.83 31478.65 29497.59 27479.61 33193.30 36894.75 340
testing1181.98 36280.52 36986.38 35992.69 33367.13 39085.79 37584.80 38982.16 30181.19 40785.41 39945.24 41296.88 31674.14 37193.24 36995.14 323
Test_1112_low_res87.50 30686.58 31490.25 28896.80 16777.75 31287.53 34396.25 21369.73 39686.47 36693.61 29675.67 32397.88 24779.95 32593.20 37095.11 326
MDTV_nov1_ep1383.88 34289.42 39561.52 41288.74 32787.41 36273.99 36884.96 37894.01 28365.25 37095.53 35078.02 34193.16 371
WTY-MVS86.93 32086.50 32088.24 33094.96 27674.64 34587.19 34892.07 32478.29 33988.32 34791.59 34278.06 30194.27 37574.88 36693.15 37295.80 301
PMMVS83.00 35281.11 36188.66 32183.81 42086.44 16482.24 40185.65 37861.75 41482.07 40085.64 39879.75 28691.59 39275.99 36093.09 37387.94 404
UnsupCasMVSNet_bld88.50 28588.03 28889.90 29895.52 26278.88 29587.39 34594.02 28579.32 33193.06 24294.02 28280.72 28294.27 37575.16 36593.08 37496.54 262
MVS84.98 33484.30 33587.01 34691.03 37177.69 31491.94 22994.16 28159.36 41584.23 38487.50 38685.66 23396.80 31971.79 38393.05 37586.54 407
PatchT87.51 30588.17 28685.55 36690.64 37666.91 39292.02 22586.09 37392.20 9989.05 33297.16 11964.15 37696.37 33389.21 19992.98 37693.37 371
MS-PatchMatch88.05 29387.75 29188.95 31493.28 31977.93 30887.88 33792.49 31575.42 35892.57 26193.59 29780.44 28394.24 37781.28 31192.75 37794.69 343
CR-MVSNet87.89 29487.12 30590.22 28991.01 37278.93 29192.52 20092.81 30573.08 37489.10 33096.93 13767.11 35697.64 27388.80 20892.70 37894.08 352
RPMNet90.31 24290.14 24490.81 27491.01 37278.93 29192.52 20098.12 5991.91 10789.10 33096.89 14068.84 34999.41 4290.17 17192.70 37894.08 352
KD-MVS_2432*160082.17 35980.75 36686.42 35782.04 42170.09 37981.75 40290.80 33882.56 29490.37 30989.30 37042.90 41996.11 33974.47 36892.55 38093.06 374
miper_refine_blended82.17 35980.75 36686.42 35782.04 42170.09 37981.75 40290.80 33882.56 29490.37 30989.30 37042.90 41996.11 33974.47 36892.55 38093.06 374
BH-w/o87.21 31287.02 30787.79 34094.77 28577.27 31987.90 33693.21 30181.74 30589.99 31788.39 38083.47 25196.93 31371.29 38792.43 38289.15 398
IB-MVS77.21 1983.11 35081.05 36289.29 30991.15 37075.85 33785.66 37786.00 37479.70 32382.02 40286.61 39048.26 40798.39 19877.84 34392.22 38393.63 366
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 36181.02 36385.34 36887.46 40771.04 37394.74 12167.56 42196.44 2679.43 41198.99 845.24 41296.15 33767.18 40192.17 38488.85 400
HY-MVS82.50 1886.81 32285.93 32489.47 30493.63 31577.93 30894.02 15091.58 33275.68 35583.64 38893.64 29377.40 30797.42 28471.70 38592.07 38593.05 376
TR-MVS87.70 29887.17 30289.27 31094.11 30379.26 28688.69 32891.86 32881.94 30390.69 30389.79 36382.82 26197.42 28472.65 38091.98 38691.14 393
new_pmnet81.22 36681.01 36481.86 38990.92 37470.15 37884.03 39180.25 41070.83 38885.97 36989.78 36467.93 35584.65 41567.44 40091.90 38790.78 395
FPMVS84.50 33983.28 34588.16 33296.32 20394.49 2085.76 37685.47 38283.09 28885.20 37394.26 27263.79 37986.58 41263.72 40891.88 38883.40 410
UnsupCasMVSNet_eth90.33 24090.34 23990.28 28694.64 29380.24 25989.69 30195.88 22885.77 24593.94 21295.69 21781.99 27192.98 38684.21 28191.30 38997.62 209
MVP-Stereo90.07 25188.92 26593.54 17196.31 20486.49 16190.93 26095.59 24079.80 32091.48 28895.59 22080.79 28197.39 28778.57 34091.19 39096.76 258
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131486.46 32486.33 32186.87 35191.65 36374.54 34791.94 22994.10 28274.28 36684.78 37987.33 38883.03 25795.00 36478.72 33891.16 39191.06 394
tpm84.38 34084.08 33785.30 36990.47 38163.43 40989.34 31185.63 37977.24 34887.62 35895.03 24461.00 39197.30 29079.26 33591.09 39295.16 321
dmvs_re84.69 33883.94 34086.95 34992.24 34382.93 22989.51 30587.37 36384.38 27485.37 37185.08 40172.44 33586.59 41168.05 39891.03 39391.33 391
CVMVSNet85.16 33284.72 33086.48 35592.12 34970.19 37792.32 21388.17 35556.15 41790.64 30495.85 20567.97 35496.69 32288.78 20990.52 39492.56 382
test0.0.03 182.48 35681.47 36085.48 36789.70 38973.57 35884.73 38481.64 40183.07 28988.13 35086.61 39062.86 38489.10 40766.24 40390.29 39593.77 362
baseline283.38 34981.54 35988.90 31591.38 36772.84 36588.78 32581.22 40478.97 33479.82 41087.56 38461.73 38897.80 25674.30 37090.05 39696.05 290
test_vis1_rt85.58 32984.58 33288.60 32287.97 40386.76 15385.45 37993.59 29166.43 40487.64 35789.20 37279.33 28985.38 41481.59 30789.98 39793.66 365
MonoMVSNet88.46 28689.28 25785.98 36290.52 37970.07 38195.31 10194.81 26788.38 19893.47 22396.13 19473.21 33295.07 36382.61 29489.12 39892.81 379
PAPM81.91 36380.11 37387.31 34493.87 31172.32 36984.02 39293.22 29969.47 39776.13 41589.84 36072.15 33797.23 29453.27 41789.02 39992.37 384
MVS-HIRNet78.83 38280.60 36873.51 40093.07 32347.37 42487.10 35078.00 41568.94 39877.53 41397.26 10971.45 34194.62 36863.28 40988.74 40078.55 415
tpm281.46 36480.35 37184.80 37389.90 38765.14 40390.44 27485.36 38365.82 40882.05 40192.44 32557.94 39596.69 32270.71 39288.49 40192.56 382
CostFormer83.09 35182.21 35485.73 36389.27 39667.01 39190.35 27986.47 37070.42 39283.52 39093.23 30661.18 38996.85 31777.21 35088.26 40293.34 372
GG-mvs-BLEND83.24 38685.06 41771.03 37494.99 11665.55 42274.09 41675.51 41644.57 41494.46 37159.57 41387.54 40384.24 409
PatchmatchNetpermissive85.22 33184.64 33186.98 34789.51 39469.83 38390.52 27287.34 36478.87 33687.22 36392.74 31866.91 35896.53 32481.77 30486.88 40494.58 344
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mvsany_test183.91 34582.93 34986.84 35286.18 41385.93 17881.11 40475.03 41970.80 39088.57 34494.63 26183.08 25687.38 40980.39 31786.57 40587.21 405
baseline187.62 30287.31 29788.54 32394.71 29074.27 35293.10 18188.20 35486.20 23692.18 27793.04 30973.21 33295.52 35179.32 33485.82 40695.83 300
tpmvs84.22 34183.97 33984.94 37287.09 40965.18 40291.21 25288.35 35182.87 29285.21 37290.96 35065.24 37196.75 32079.60 33385.25 40792.90 378
ADS-MVSNet284.01 34382.20 35589.41 30689.04 39776.37 33387.57 33990.98 33672.71 37884.46 38092.45 32368.08 35296.48 32770.58 39383.97 40895.38 317
ADS-MVSNet82.25 35781.55 35884.34 37889.04 39765.30 40187.57 33985.13 38872.71 37884.46 38092.45 32368.08 35292.33 38870.58 39383.97 40895.38 317
JIA-IIPM85.08 33383.04 34791.19 26087.56 40586.14 17389.40 31084.44 39288.98 18382.20 39997.95 5656.82 39896.15 33776.55 35683.45 41091.30 392
MVEpermissive59.87 2373.86 38572.65 38877.47 39787.00 41174.35 35061.37 41760.93 42367.27 40269.69 41886.49 39281.24 28072.33 42056.45 41683.45 41085.74 408
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset78.23 38378.99 37775.94 39891.99 35455.34 42188.86 32278.70 41382.69 29381.64 40579.46 41375.93 32285.74 41348.78 41982.85 41286.76 406
EPMVS81.17 36880.37 37083.58 38485.58 41565.08 40490.31 28171.34 42077.31 34785.80 37091.30 34459.38 39392.70 38779.99 32482.34 41392.96 377
tpmrst82.85 35582.93 34982.64 38787.65 40458.99 41890.14 28687.90 35975.54 35783.93 38691.63 34166.79 36195.36 35781.21 31381.54 41493.57 370
tpm cat180.61 37279.46 37584.07 38188.78 39965.06 40589.26 31488.23 35362.27 41381.90 40389.66 36762.70 38695.29 36071.72 38480.60 41591.86 389
dp79.28 38078.62 38081.24 39285.97 41456.45 41986.91 35385.26 38672.97 37681.45 40689.17 37456.01 40095.45 35573.19 37776.68 41691.82 390
DeepMVS_CXcopyleft53.83 40270.38 42564.56 40648.52 42633.01 42065.50 42074.21 41756.19 39946.64 42338.45 42170.07 41750.30 418
tmp_tt37.97 38944.33 39118.88 40511.80 42821.54 42963.51 41645.66 4274.23 42251.34 42150.48 42059.08 39422.11 42444.50 42068.35 41813.00 420
PVSNet_070.34 2174.58 38472.96 38779.47 39590.63 37766.24 39773.26 41183.40 39663.67 41278.02 41278.35 41572.53 33489.59 40356.68 41460.05 41982.57 413
test_method50.44 38748.94 39054.93 40139.68 42712.38 43028.59 41890.09 3426.82 42141.10 42378.41 41454.41 40170.69 42150.12 41851.26 42081.72 414
dongtai53.72 38653.79 38953.51 40379.69 42336.70 42777.18 40932.53 42971.69 38168.63 41960.79 41826.65 42773.11 41930.67 42236.29 42150.73 417
kuosan43.63 38844.25 39241.78 40466.04 42634.37 42875.56 41032.62 42853.25 41950.46 42251.18 41925.28 42849.13 42213.44 42330.41 42241.84 419
test1239.49 39112.01 3941.91 4062.87 4291.30 43182.38 4001.34 4311.36 4242.84 4256.56 4232.45 4290.97 4252.73 4245.56 4233.47 421
testmvs9.02 39211.42 3951.81 4072.77 4301.13 43279.44 4071.90 4301.18 4252.65 4266.80 4221.95 4300.87 4262.62 4253.45 4243.44 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k23.35 39031.13 3930.00 4080.00 4310.00 4330.00 41995.58 2420.00 4260.00 42791.15 34693.43 890.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.56 39310.09 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42690.77 1570.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.56 39310.08 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42790.69 3550.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS61.25 41474.55 367
FOURS199.21 394.68 1698.45 498.81 1197.73 798.27 21
test_one_060198.26 7187.14 14398.18 4994.25 5596.99 7197.36 10095.13 45
eth-test20.00 431
eth-test0.00 431
test_241102_ONE98.51 4986.97 14898.10 6391.85 11097.63 3897.03 13096.48 1098.95 120
save fliter97.46 13288.05 12792.04 22497.08 16187.63 216
test072698.51 4986.69 15695.34 9798.18 4991.85 11097.63 3897.37 9795.58 24
GSMVS94.75 340
test_part298.21 7689.41 9696.72 83
sam_mvs166.64 36294.75 340
sam_mvs66.41 363
MTGPAbinary97.62 115
test_post190.21 2835.85 42565.36 36996.00 34379.61 331
test_post6.07 42465.74 36795.84 347
patchmatchnet-post91.71 33966.22 36597.59 274
MTMP94.82 11954.62 425
gm-plane-assit87.08 41059.33 41771.22 38483.58 40797.20 29673.95 372
TEST996.45 19089.46 9390.60 27096.92 17379.09 33390.49 30594.39 26991.31 14298.88 127
test_896.37 19489.14 10390.51 27396.89 17679.37 32890.42 30794.36 27191.20 14798.82 136
agg_prior96.20 21488.89 10896.88 17790.21 31298.78 148
test_prior489.91 8690.74 265
test_prior94.61 12095.95 23587.23 14097.36 13998.68 16897.93 177
旧先验290.00 29168.65 39992.71 25696.52 32585.15 267
新几何290.02 290
无先验89.94 29295.75 23270.81 38998.59 18081.17 31494.81 336
原ACMM289.34 311
testdata298.03 23080.24 321
segment_acmp92.14 124
testdata188.96 32088.44 197
plane_prior797.71 11488.68 111
plane_prior697.21 14488.23 12486.93 217
plane_prior495.59 220
plane_prior388.43 12290.35 15993.31 229
plane_prior294.56 13091.74 121
plane_prior197.38 134
n20.00 432
nn0.00 432
door-mid92.13 323
test1196.65 193
door91.26 333
HQP5-MVS84.89 196
HQP-NCC96.36 19691.37 24787.16 22388.81 335
ACMP_Plane96.36 19691.37 24787.16 22388.81 335
BP-MVS86.55 250
HQP4-MVS88.81 33598.61 17698.15 153
HQP2-MVS84.76 243
NP-MVS96.82 16587.10 14493.40 301
MDTV_nov1_ep13_2view42.48 42688.45 33267.22 40383.56 38966.80 35972.86 37994.06 354
Test By Simon90.61 163