This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
mamv490.28 188.75 194.85 193.34 196.17 182.69 5791.63 186.34 197.97 194.77 366.57 12095.38 187.74 197.72 193.00 7
LCM-MVSNet86.90 288.67 281.57 2591.50 263.30 12384.80 3587.77 1086.18 296.26 296.06 190.32 184.49 7268.08 9297.05 296.93 1
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 1287.95 1892.53 1479.37 1584.79 6974.51 5196.15 392.88 8
ACMP69.50 882.64 2983.38 3080.40 4186.50 4669.44 7182.30 5886.08 2466.80 6986.70 3489.99 7881.64 685.95 3574.35 5396.11 485.81 77
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+66.64 1081.20 4082.48 4377.35 8081.16 13162.39 12880.51 7287.80 873.02 3087.57 2491.08 4080.28 982.44 10464.82 12596.10 587.21 58
LPG-MVS_test83.47 2084.33 1680.90 3687.00 4070.41 6482.04 6186.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 71
LGP-MVS_train80.90 3687.00 4070.41 6486.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 71
ACMM69.25 982.11 3383.31 3178.49 6688.17 3773.96 3883.11 5384.52 6066.40 7387.45 2689.16 9681.02 880.52 14274.27 5495.73 880.98 206
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NR-MVSNet73.62 11674.05 11572.33 16283.50 9443.71 29165.65 27777.32 19064.32 9775.59 18487.08 13462.45 15581.34 12154.90 21695.63 991.93 9
WR-MVS_H80.22 5482.17 4574.39 11589.46 1542.69 30378.24 10182.24 9778.21 1389.57 1092.10 1968.05 10185.59 5066.04 11695.62 1094.88 5
TranMVSNet+NR-MVSNet76.13 8577.66 7971.56 17084.61 8142.57 30570.98 20078.29 17768.67 6183.04 7989.26 9072.99 6180.75 13855.58 21295.47 1191.35 12
COLMAP_ROBcopyleft72.78 383.75 1584.11 1982.68 1382.97 10674.39 3687.18 1188.18 778.98 886.11 4391.47 3479.70 1485.76 4566.91 11195.46 1287.89 49
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVS84.12 1284.55 1482.80 1189.42 1879.74 688.19 584.43 6171.96 4384.70 6490.56 5577.12 2886.18 2879.24 2195.36 1382.49 178
Baseline_NR-MVSNet70.62 16773.19 13262.92 28076.97 18534.44 36868.84 22870.88 25760.25 13379.50 12290.53 5661.82 16269.11 28654.67 22095.27 1485.22 87
UniMVSNet (Re)75.00 10275.48 9973.56 12983.14 9947.92 25170.41 20981.04 12363.67 10479.54 12186.37 16162.83 15081.82 11557.10 19595.25 1590.94 16
reproduce-ours84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 171
our_new_method84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 171
reproduce_model84.87 685.80 682.05 2385.52 6678.14 1387.69 685.36 3879.26 789.12 1292.10 1977.52 2585.92 3980.47 895.20 1882.10 186
PS-CasMVS80.41 5182.86 4073.07 13889.93 739.21 33077.15 11581.28 11579.74 690.87 592.73 1275.03 4684.93 6563.83 13795.19 1995.07 3
ACMMPcopyleft84.22 1084.84 1282.35 1889.23 2276.66 2687.65 785.89 2671.03 4785.85 4590.58 5478.77 1885.78 4479.37 1995.17 2084.62 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS80.46 5082.91 3873.11 13789.83 939.02 33377.06 11782.61 9380.04 590.60 792.85 1074.93 4785.21 6063.15 14595.15 2195.09 2
CP-MVSNet79.48 5881.65 4972.98 14189.66 1339.06 33276.76 11880.46 13578.91 990.32 891.70 2968.49 9684.89 6663.40 14295.12 2295.01 4
SteuartSystems-ACMMP83.07 2583.64 2681.35 3085.14 7271.00 5885.53 2984.78 4970.91 4885.64 4890.41 6275.55 4187.69 579.75 1195.08 2385.36 86
Skip Steuart: Steuart Systems R&D Blog.
UniMVSNet_NR-MVSNet74.90 10575.65 9672.64 15583.04 10445.79 27569.26 22378.81 16366.66 7181.74 9786.88 14163.26 14681.07 12956.21 20394.98 2491.05 14
DU-MVS74.91 10475.57 9872.93 14583.50 9445.79 27569.47 21980.14 14265.22 8681.74 9787.08 13461.82 16281.07 12956.21 20394.98 2491.93 9
MP-MVS-pluss82.54 3083.46 2979.76 4588.88 3168.44 8081.57 6486.33 1963.17 11285.38 5591.26 3776.33 3384.67 7183.30 294.96 2686.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft84.12 1284.63 1382.60 1488.21 3674.40 3585.24 3187.21 1470.69 5085.14 5790.42 6178.99 1786.62 1580.83 694.93 2786.79 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HPM-MVS_fast84.59 885.10 1083.06 588.60 3375.83 2786.27 2786.89 1673.69 2786.17 4091.70 2978.23 2185.20 6179.45 1694.91 2888.15 48
MSC_two_6792asdad79.02 5783.14 9967.03 9180.75 12686.24 2477.27 3794.85 2983.78 134
No_MVS79.02 5783.14 9967.03 9180.75 12686.24 2477.27 3794.85 2983.78 134
MP-MVScopyleft83.19 2283.54 2782.14 2090.54 579.00 986.42 2583.59 7771.31 4481.26 10390.96 4274.57 5084.69 7078.41 2594.78 3182.74 170
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.19 2283.87 2281.13 3491.16 378.16 1284.87 3380.63 13172.08 4184.93 5990.79 4874.65 4984.42 7580.98 594.75 3280.82 210
test_0728_THIRD74.03 2585.83 4690.41 6275.58 4085.69 4777.43 3494.74 3384.31 122
PGM-MVS83.07 2583.25 3482.54 1689.57 1477.21 2482.04 6185.40 3667.96 6484.91 6290.88 4575.59 3986.57 1678.16 2694.71 3483.82 132
DTE-MVSNet80.35 5282.89 3972.74 15289.84 837.34 35077.16 11481.81 10580.45 490.92 492.95 874.57 5086.12 3163.65 13894.68 3594.76 6
mPP-MVS84.01 1484.39 1582.88 790.65 481.38 487.08 1382.79 8772.41 3985.11 5890.85 4776.65 3184.89 6679.30 2094.63 3682.35 180
FC-MVSNet-test73.32 12374.78 10468.93 21579.21 15136.57 35271.82 18779.54 15357.63 15982.57 8890.38 6759.38 19178.99 16557.91 18994.56 3791.23 13
DeepC-MVS72.44 481.00 4480.83 5481.50 2686.70 4570.03 6882.06 6087.00 1559.89 13680.91 10990.53 5672.19 6488.56 273.67 5994.52 3885.92 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post84.75 785.26 983.21 486.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5079.20 1685.58 5178.11 2794.46 3984.89 95
RE-MVS-def85.50 786.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5081.38 778.11 2794.46 3984.89 95
UA-Net81.56 3782.28 4479.40 5288.91 2969.16 7684.67 3680.01 14475.34 1979.80 11994.91 269.79 8880.25 14672.63 6694.46 3988.78 42
ACMH63.62 1477.50 7680.11 5869.68 19779.61 14356.28 18078.81 9383.62 7663.41 11087.14 3390.23 7476.11 3573.32 24467.58 9894.44 4279.44 237
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS83.12 2483.68 2581.45 2889.14 2573.28 4686.32 2685.97 2567.39 6584.02 7190.39 6574.73 4886.46 1780.73 794.43 4384.60 110
SED-MVS81.78 3583.48 2876.67 8586.12 5461.06 14383.62 4684.72 5272.61 3587.38 2889.70 8377.48 2685.89 4275.29 4594.39 4483.08 159
IU-MVS86.12 5460.90 14780.38 13745.49 29581.31 10275.64 4494.39 4484.65 104
DVP-MVScopyleft81.15 4183.12 3675.24 10786.16 5260.78 14983.77 4480.58 13372.48 3785.83 4690.41 6278.57 1985.69 4775.86 4294.39 4479.24 239
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND76.57 8786.20 4960.57 15283.77 4485.49 3285.90 4075.86 4294.39 4483.25 153
SMA-MVScopyleft82.12 3282.68 4280.43 4088.90 3069.52 6985.12 3284.76 5063.53 10684.23 6991.47 3472.02 6787.16 879.74 1394.36 4884.61 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP82.33 3183.28 3279.46 5189.28 1969.09 7883.62 4684.98 4564.77 9483.97 7291.02 4175.53 4285.93 3882.00 394.36 4883.35 151
APD-MVS_3200maxsize83.57 1784.33 1681.31 3282.83 10973.53 4485.50 3087.45 1374.11 2386.45 3890.52 5880.02 1084.48 7377.73 3194.34 5085.93 75
APDe-MVScopyleft82.88 2784.14 1879.08 5584.80 7866.72 9486.54 2385.11 4272.00 4286.65 3591.75 2878.20 2287.04 1177.93 2994.32 5183.47 145
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR83.62 1683.93 2182.69 1289.78 1177.51 2287.01 1784.19 6870.23 5184.49 6690.67 5375.15 4486.37 2079.58 1494.26 5284.18 125
region2R83.54 1883.86 2382.58 1589.82 1077.53 1887.06 1684.23 6770.19 5383.86 7390.72 5275.20 4386.27 2379.41 1894.25 5383.95 130
HFP-MVS83.39 2184.03 2081.48 2789.25 2175.69 2887.01 1784.27 6470.23 5184.47 6790.43 6076.79 2985.94 3679.58 1494.23 5482.82 167
test_241102_TWO84.80 4872.61 3584.93 5989.70 8377.73 2485.89 4275.29 4594.22 5583.25 153
XVS83.51 1983.73 2482.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 8390.39 6573.86 5586.31 2178.84 2394.03 5684.64 105
X-MVStestdata76.81 8174.79 10382.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 839.95 42073.86 5586.31 2178.84 2394.03 5684.64 105
DPE-MVScopyleft82.00 3483.02 3778.95 6085.36 6967.25 8982.91 5484.98 4573.52 2885.43 5490.03 7776.37 3286.97 1374.56 5094.02 5882.62 175
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
GST-MVS82.79 2883.27 3381.34 3188.99 2773.29 4585.94 2885.13 4168.58 6284.14 7090.21 7573.37 5986.41 1879.09 2293.98 5984.30 124
9.1480.22 5780.68 13480.35 7787.69 1159.90 13583.00 8088.20 12074.57 5081.75 11773.75 5893.78 60
SF-MVS80.72 4781.80 4677.48 7782.03 11964.40 11583.41 5088.46 665.28 8584.29 6889.18 9473.73 5883.22 9276.01 4193.77 6184.81 102
IS-MVSNet75.10 9975.42 10074.15 11979.23 15048.05 24979.43 8678.04 18170.09 5479.17 12688.02 12553.04 24083.60 8358.05 18893.76 6290.79 18
PMVScopyleft70.70 681.70 3683.15 3577.36 7990.35 682.82 382.15 5979.22 15774.08 2487.16 3291.97 2184.80 276.97 20264.98 12393.61 6372.28 315
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SR-MVS84.51 985.27 882.25 1988.52 3477.71 1586.81 1985.25 4077.42 1786.15 4190.24 7381.69 585.94 3677.77 3093.58 6483.09 158
OPM-MVS80.99 4581.63 5079.07 5686.86 4469.39 7279.41 8884.00 7365.64 7785.54 5289.28 8976.32 3483.47 8874.03 5693.57 6584.35 121
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-ACMP-BASELINE80.54 4881.06 5278.98 5987.01 3972.91 4780.23 8085.56 3166.56 7285.64 4889.57 8569.12 9280.55 14172.51 6893.37 6683.48 144
FIs72.56 14373.80 11968.84 21878.74 16237.74 34671.02 19979.83 14656.12 17380.88 11189.45 8758.18 20078.28 18456.63 19793.36 6790.51 20
WR-MVS71.20 15972.48 14767.36 23684.98 7435.70 36064.43 29268.66 27365.05 9081.49 10086.43 16057.57 21276.48 20950.36 25493.32 6889.90 22
CLD-MVS72.88 13872.36 15074.43 11477.03 18254.30 19668.77 23383.43 7952.12 22776.79 16274.44 32269.54 9083.91 7955.88 20693.25 6985.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CPTT-MVS81.51 3881.76 4780.76 3889.20 2378.75 1086.48 2482.03 10168.80 5880.92 10888.52 11372.00 6882.39 10574.80 4793.04 7081.14 200
APD-MVScopyleft81.13 4281.73 4879.36 5384.47 8370.53 6383.85 4283.70 7569.43 5783.67 7588.96 10375.89 3786.41 1872.62 6792.95 7181.14 200
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS83.91 9069.36 7381.09 12158.91 14682.73 8789.11 9775.77 3886.63 1472.73 6592.93 72
OurMVSNet-221017-078.57 6678.53 7178.67 6380.48 13664.16 11680.24 7982.06 10061.89 12188.77 1693.32 557.15 21582.60 10370.08 8092.80 7389.25 28
Anonymous2023121175.54 9277.19 8370.59 17977.67 17645.70 27874.73 14880.19 14068.80 5882.95 8292.91 966.26 12276.76 20758.41 18692.77 7489.30 27
test_prior275.57 13658.92 14576.53 17286.78 14467.83 10569.81 8192.76 75
CDPH-MVS77.33 7777.06 8578.14 7184.21 8763.98 11876.07 13183.45 7854.20 20477.68 14787.18 13269.98 8585.37 5368.01 9492.72 7685.08 92
EPP-MVSNet73.86 11473.38 12775.31 10578.19 16653.35 20580.45 7377.32 19065.11 8976.47 17586.80 14249.47 26083.77 8153.89 23092.72 7688.81 41
OMC-MVS79.41 5978.79 6781.28 3380.62 13570.71 6280.91 6984.76 5062.54 11781.77 9586.65 15271.46 7183.53 8667.95 9692.44 7889.60 24
tt080576.12 8678.43 7269.20 20581.32 12841.37 31176.72 11977.64 18663.78 10382.06 9187.88 12679.78 1179.05 16364.33 12992.40 7987.17 61
DP-MVS78.44 7079.29 6475.90 9781.86 12265.33 10679.05 9184.63 5874.83 2280.41 11486.27 16371.68 6983.45 8962.45 14992.40 7978.92 244
nrg03074.87 10775.99 9471.52 17174.90 21749.88 23374.10 16082.58 9454.55 19683.50 7789.21 9271.51 7075.74 21561.24 15692.34 8188.94 37
SD-MVS80.28 5381.55 5176.47 9083.57 9367.83 8483.39 5185.35 3964.42 9686.14 4287.07 13674.02 5480.97 13377.70 3292.32 8280.62 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Anonymous2024052163.55 25666.07 23155.99 33166.18 33644.04 28968.77 23368.80 27146.99 28272.57 23185.84 17739.87 31750.22 37253.40 23792.23 8373.71 300
LTVRE_ROB75.46 184.22 1084.98 1181.94 2484.82 7675.40 2991.60 387.80 873.52 2888.90 1593.06 771.39 7381.53 11981.53 492.15 8488.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMP++91.96 85
v7n79.37 6080.41 5676.28 9278.67 16355.81 18579.22 9082.51 9570.72 4987.54 2592.44 1568.00 10381.34 12172.84 6491.72 8691.69 11
VDDNet71.60 15573.13 13467.02 24186.29 4841.11 31369.97 21366.50 28368.72 6074.74 19691.70 2959.90 18575.81 21348.58 27191.72 8684.15 127
UniMVSNet_ETH3D76.74 8279.02 6569.92 19589.27 2043.81 29074.47 15471.70 23772.33 4085.50 5393.65 477.98 2376.88 20554.60 22191.64 8889.08 32
wuyk23d61.97 27366.25 22849.12 36758.19 38860.77 15166.32 26852.97 36355.93 17790.62 686.91 14073.07 6035.98 41420.63 41791.63 8950.62 403
CNVR-MVS78.49 6878.59 7078.16 7085.86 6367.40 8878.12 10481.50 10963.92 10077.51 14886.56 15668.43 9884.82 6873.83 5791.61 9082.26 184
train_agg76.38 8476.55 8875.86 9885.47 6769.32 7476.42 12378.69 16854.00 20976.97 15386.74 14666.60 11881.10 12772.50 6991.56 9177.15 267
Gipumacopyleft69.55 18272.83 14159.70 30863.63 35553.97 19980.08 8275.93 20364.24 9873.49 22088.93 10457.89 21062.46 33459.75 17691.55 9262.67 382
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SixPastTwentyTwo75.77 8776.34 8974.06 12081.69 12454.84 19276.47 12075.49 20764.10 9987.73 2192.24 1850.45 25581.30 12367.41 10191.46 9386.04 73
test9_res72.12 7391.37 9477.40 262
3Dnovator+73.19 281.08 4380.48 5582.87 881.41 12772.03 4984.38 3886.23 2377.28 1880.65 11290.18 7659.80 18887.58 673.06 6291.34 9589.01 34
DeepPCF-MVS71.07 578.48 6977.14 8482.52 1784.39 8677.04 2576.35 12584.05 7156.66 16980.27 11685.31 18268.56 9587.03 1267.39 10391.26 9683.50 141
LS3D80.99 4580.85 5381.41 2978.37 16471.37 5487.45 885.87 2777.48 1681.98 9289.95 8069.14 9185.26 5766.15 11391.24 9787.61 53
HPM-MVS++copyleft79.89 5579.80 6180.18 4389.02 2678.44 1183.49 4980.18 14164.71 9578.11 14088.39 11665.46 13183.14 9377.64 3391.20 9878.94 243
KD-MVS_self_test66.38 22767.51 21362.97 27861.76 36334.39 36958.11 34175.30 20850.84 24677.12 15285.42 18056.84 22069.44 28351.07 24891.16 9985.08 92
test_djsdf78.88 6378.27 7380.70 3981.42 12671.24 5683.98 4075.72 20552.27 22587.37 3092.25 1768.04 10280.56 13972.28 7191.15 10090.32 21
DeepC-MVS_fast69.89 777.17 7876.33 9079.70 4883.90 9167.94 8280.06 8383.75 7456.73 16874.88 19585.32 18165.54 12987.79 365.61 12091.14 10183.35 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf175.66 9076.57 8672.95 14267.07 32767.62 8576.10 12980.68 12964.95 9186.58 3690.94 4371.20 7571.68 26760.46 16491.13 10279.56 233
APD_test275.66 9076.57 8672.95 14267.07 32767.62 8576.10 12980.68 12964.95 9186.58 3690.94 4371.20 7571.68 26760.46 16491.13 10279.56 233
ambc70.10 19177.74 17450.21 22474.28 15877.93 18479.26 12488.29 11954.11 23679.77 15364.43 12791.10 10480.30 224
原ACMM173.90 12285.90 6065.15 11081.67 10750.97 24474.25 20786.16 16861.60 16483.54 8556.75 19691.08 10573.00 305
114514_t73.40 12173.33 13173.64 12684.15 8957.11 17678.20 10280.02 14343.76 31072.55 23286.07 17364.00 14383.35 9160.14 17091.03 10680.45 221
HQP_MVS78.77 6478.78 6878.72 6285.18 7065.18 10882.74 5585.49 3265.45 8078.23 13789.11 9760.83 17786.15 2971.09 7490.94 10784.82 100
plane_prior585.49 3286.15 2971.09 7490.94 10784.82 100
agg_prior270.70 7790.93 10978.55 248
PHI-MVS74.92 10374.36 11076.61 8676.40 19662.32 12980.38 7583.15 8254.16 20673.23 22580.75 24762.19 15983.86 8068.02 9390.92 11083.65 138
AllTest77.66 7477.43 8078.35 6879.19 15270.81 5978.60 9588.64 465.37 8380.09 11788.17 12170.33 8178.43 17855.60 20990.90 11185.81 77
TestCases78.35 6879.19 15270.81 5988.64 465.37 8380.09 11788.17 12170.33 8178.43 17855.60 20990.90 11185.81 77
NCCC78.25 7178.04 7678.89 6185.61 6569.45 7079.80 8580.99 12465.77 7675.55 18586.25 16567.42 10685.42 5270.10 7990.88 11381.81 191
VPNet65.58 23467.56 21259.65 30979.72 14230.17 39060.27 32362.14 31354.19 20571.24 25386.63 15358.80 19667.62 29944.17 30790.87 11481.18 199
DVP-MVS++81.24 3982.74 4176.76 8483.14 9960.90 14791.64 185.49 3274.03 2584.93 5990.38 6766.82 11385.90 4077.43 3490.78 11583.49 142
PC_three_145246.98 28381.83 9486.28 16266.55 12184.47 7463.31 14490.78 11583.49 142
h-mvs3373.08 12871.61 16077.48 7783.89 9272.89 4870.47 20771.12 25454.28 20077.89 14183.41 20849.04 26480.98 13263.62 13990.77 11778.58 247
XVG-OURS79.51 5779.82 6078.58 6586.11 5774.96 3276.33 12784.95 4766.89 6782.75 8688.99 10266.82 11378.37 18174.80 4790.76 11882.40 179
PS-MVSNAJss77.54 7577.35 8278.13 7284.88 7566.37 9678.55 9679.59 15153.48 21686.29 3992.43 1662.39 15680.25 14667.90 9790.61 11987.77 50
anonymousdsp78.60 6577.80 7781.00 3578.01 17074.34 3780.09 8176.12 20050.51 24989.19 1190.88 4571.45 7277.78 19573.38 6090.60 12090.90 17
pmmvs671.82 15273.66 12266.31 24875.94 20542.01 30766.99 25972.53 23263.45 10876.43 17692.78 1172.95 6269.69 28251.41 24590.46 12187.22 57
test1276.51 8882.28 11660.94 14681.64 10873.60 21864.88 13785.19 6290.42 12283.38 149
VDD-MVS70.81 16571.44 16468.91 21679.07 15746.51 26967.82 24670.83 25861.23 12474.07 21188.69 10859.86 18675.62 21651.11 24790.28 12384.61 108
mvs_tets78.93 6278.67 6979.72 4784.81 7773.93 3980.65 7176.50 19851.98 23087.40 2791.86 2676.09 3678.53 17368.58 8790.20 12486.69 66
EPNet69.10 18967.32 21674.46 11168.33 31161.27 14077.56 10763.57 30760.95 12756.62 37282.75 22151.53 24981.24 12454.36 22690.20 12480.88 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPA-MVSNet68.71 19670.37 17563.72 26776.13 20038.06 34464.10 29471.48 24256.60 17174.10 21088.31 11864.78 13969.72 28147.69 28290.15 12683.37 150
TAPA-MVS65.27 1275.16 9874.29 11177.77 7574.86 21868.08 8177.89 10584.04 7255.15 18476.19 18083.39 20966.91 11180.11 15060.04 17290.14 12785.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
jajsoiax78.51 6778.16 7579.59 4984.65 8073.83 4180.42 7476.12 20051.33 24087.19 3191.51 3373.79 5778.44 17768.27 9090.13 12886.49 68
Anonymous2024052972.56 14373.79 12068.86 21776.89 19045.21 28168.80 23277.25 19267.16 6676.89 15790.44 5965.95 12574.19 23750.75 25090.00 12987.18 60
AdaColmapbinary74.22 11074.56 10673.20 13481.95 12060.97 14579.43 8680.90 12565.57 7872.54 23381.76 23570.98 7885.26 5747.88 28090.00 12973.37 301
DP-MVS Recon73.57 11872.69 14376.23 9382.85 10863.39 12174.32 15582.96 8557.75 15470.35 26181.98 23164.34 14284.41 7649.69 25889.95 13180.89 208
test111164.62 24465.19 24062.93 27979.01 15829.91 39165.45 28054.41 35354.09 20771.47 25288.48 11437.02 33574.29 23646.83 28989.94 13284.58 111
plane_prior65.18 10880.06 8361.88 12289.91 133
cl____68.26 20568.26 20168.29 22564.98 34743.67 29265.89 27274.67 21350.04 25676.86 15982.42 22648.74 26875.38 21760.92 16189.81 13485.80 81
DIV-MVS_self_test68.27 20468.26 20168.29 22564.98 34743.67 29265.89 27274.67 21350.04 25676.86 15982.43 22548.74 26875.38 21760.94 16089.81 13485.81 77
OPU-MVS78.65 6483.44 9766.85 9383.62 4686.12 17066.82 11386.01 3461.72 15389.79 13683.08 159
LFMVS67.06 22067.89 20864.56 25978.02 16938.25 34170.81 20459.60 32465.18 8771.06 25586.56 15643.85 29275.22 22146.35 29289.63 13780.21 226
TSAR-MVS + GP.73.08 12871.60 16177.54 7678.99 15970.73 6174.96 14169.38 26760.73 13074.39 20578.44 28557.72 21182.78 10060.16 16889.60 13879.11 241
EC-MVSNet77.08 7977.39 8176.14 9576.86 19156.87 17880.32 7887.52 1263.45 10874.66 20084.52 19369.87 8784.94 6469.76 8289.59 13986.60 67
MIMVSNet166.57 22569.23 18658.59 31781.26 13037.73 34764.06 29557.62 32957.02 16378.40 13690.75 4962.65 15158.10 35441.77 32189.58 14079.95 228
mmtdpeth68.76 19470.55 17463.40 27367.06 32956.26 18168.73 23571.22 25255.47 18170.09 26688.64 11165.29 13456.89 35758.94 18289.50 14177.04 272
TransMVSNet (Re)69.62 18071.63 15963.57 26976.51 19435.93 35865.75 27671.29 24861.05 12675.02 19289.90 8165.88 12770.41 27949.79 25789.48 14284.38 120
ACMMP++_ref89.47 143
test250661.23 28060.85 28162.38 28478.80 16027.88 39967.33 25537.42 41554.23 20267.55 30088.68 10917.87 41874.39 23446.33 29389.41 14484.86 98
ECVR-MVScopyleft64.82 24165.22 23963.60 26878.80 16031.14 38566.97 26056.47 34354.23 20269.94 26988.68 10937.23 33474.81 22945.28 30389.41 14484.86 98
SPE-MVS-test74.89 10674.23 11276.86 8377.01 18462.94 12678.98 9284.61 5958.62 14770.17 26580.80 24666.74 11781.96 11361.74 15289.40 14685.69 82
PCF-MVS63.80 1372.70 14171.69 15775.72 9978.10 16760.01 15673.04 16781.50 10945.34 29879.66 12084.35 19665.15 13582.65 10248.70 26989.38 14784.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP3-MVS84.12 6989.16 148
HQP-MVS75.24 9775.01 10275.94 9682.37 11358.80 16877.32 11184.12 6959.08 14071.58 24585.96 17558.09 20485.30 5567.38 10589.16 14883.73 137
AUN-MVS70.22 17167.88 20977.22 8282.96 10771.61 5269.08 22671.39 24449.17 26571.70 24378.07 29237.62 33379.21 16161.81 15089.15 15080.82 210
v1075.69 8976.20 9174.16 11874.44 22848.69 24075.84 13582.93 8659.02 14485.92 4489.17 9558.56 19882.74 10170.73 7689.14 15191.05 14
MM78.15 7377.68 7879.55 5080.10 13965.47 10480.94 6878.74 16771.22 4572.40 23588.70 10760.51 17987.70 477.40 3689.13 15285.48 85
hse-mvs272.32 14770.66 17377.31 8183.10 10371.77 5169.19 22571.45 24354.28 20077.89 14178.26 28749.04 26479.23 16063.62 13989.13 15280.92 207
MCST-MVS73.42 12073.34 13073.63 12781.28 12959.17 16274.80 14683.13 8345.50 29372.84 22883.78 20565.15 13580.99 13164.54 12689.09 15480.73 214
MVS_030475.45 9374.66 10577.83 7475.58 20961.53 13678.29 9977.18 19363.15 11469.97 26887.20 13157.54 21387.05 1074.05 5588.96 15584.89 95
ITE_SJBPF80.35 4276.94 18673.60 4280.48 13466.87 6883.64 7686.18 16670.25 8379.90 15261.12 15988.95 15687.56 54
ANet_high67.08 21969.94 17858.51 31857.55 38927.09 40158.43 33876.80 19663.56 10582.40 8991.93 2359.82 18764.98 32550.10 25688.86 15783.46 146
test_040278.17 7279.48 6374.24 11783.50 9459.15 16372.52 17074.60 21575.34 1988.69 1791.81 2775.06 4582.37 10665.10 12188.68 15881.20 198
APD_test175.04 10175.38 10174.02 12169.89 29370.15 6676.46 12179.71 14765.50 7982.99 8188.60 11266.94 11072.35 25759.77 17588.54 15979.56 233
mvs5depth66.35 22967.98 20661.47 29362.43 35951.05 21569.38 22169.24 26956.74 16773.62 21789.06 10046.96 27758.63 35055.87 20788.49 16074.73 288
casdiffmvs_mvgpermissive75.26 9676.18 9272.52 15772.87 25849.47 23472.94 16884.71 5459.49 13880.90 11088.81 10670.07 8479.71 15467.40 10288.39 16188.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EGC-MVSNET64.77 24361.17 27775.60 10286.90 4374.47 3484.04 3968.62 2740.60 4221.13 42491.61 3265.32 13374.15 23864.01 13188.28 16278.17 253
IterMVS-LS73.01 13273.12 13572.66 15473.79 23949.90 22971.63 18978.44 17358.22 14980.51 11386.63 15358.15 20279.62 15562.51 14788.20 16388.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSLP-MVS++74.48 10975.78 9570.59 17984.66 7962.40 12778.65 9484.24 6660.55 13177.71 14681.98 23163.12 14777.64 19762.95 14688.14 16471.73 320
CL-MVSNet_self_test62.44 27163.40 26059.55 31072.34 26132.38 37756.39 34964.84 29751.21 24267.46 30181.01 24450.75 25363.51 33238.47 34288.12 16582.75 169
FMVSNet171.06 16072.48 14766.81 24277.65 17740.68 32071.96 18173.03 22461.14 12579.45 12390.36 7060.44 18075.20 22350.20 25588.05 16684.54 112
pm-mvs168.40 19969.85 18064.04 26573.10 25239.94 32764.61 29070.50 26055.52 18073.97 21489.33 8863.91 14468.38 29249.68 25988.02 16783.81 133
TinyColmap67.98 20669.28 18364.08 26367.98 31646.82 26670.04 21175.26 20953.05 21877.36 15086.79 14359.39 19072.59 25445.64 29888.01 16872.83 308
v875.07 10075.64 9773.35 13173.42 24347.46 26075.20 13881.45 11160.05 13485.64 4889.26 9058.08 20681.80 11669.71 8487.97 16990.79 18
BP-MVS171.60 15570.06 17776.20 9474.07 23555.22 19074.29 15773.44 22257.29 16173.87 21684.65 18832.57 35483.49 8772.43 7087.94 17089.89 23
tttt051769.46 18367.79 21174.46 11175.34 21052.72 20775.05 14063.27 31054.69 19178.87 13084.37 19526.63 38981.15 12563.95 13487.93 17189.51 25
new-patchmatchnet52.89 33855.76 32044.26 38759.94 3766.31 42737.36 41150.76 37341.10 33064.28 32179.82 26344.77 28648.43 38036.24 36187.61 17278.03 256
tfpnnormal66.48 22667.93 20762.16 28673.40 24436.65 35163.45 30064.99 29555.97 17572.82 22987.80 12757.06 21869.10 28748.31 27587.54 17380.72 215
Anonymous20240521166.02 23166.89 22463.43 27274.22 23138.14 34259.00 33166.13 28563.33 11169.76 27285.95 17651.88 24570.50 27644.23 30687.52 17481.64 195
c3_l69.82 17869.89 17969.61 19866.24 33443.48 29468.12 24379.61 15051.43 23677.72 14580.18 25854.61 23278.15 18963.62 13987.50 17587.20 59
v14419272.99 13473.06 13772.77 15074.58 22647.48 25971.90 18580.44 13651.57 23481.46 10184.11 19958.04 20882.12 11167.98 9587.47 17688.70 43
Patchmtry60.91 28263.01 26554.62 33866.10 33726.27 40767.47 25056.40 34454.05 20872.04 24186.66 15033.19 34960.17 34343.69 30887.45 17777.42 261
v192192072.96 13672.98 13972.89 14774.67 22247.58 25871.92 18480.69 12851.70 23381.69 9983.89 20256.58 22282.25 10968.34 8987.36 17888.82 40
CSCG74.12 11174.39 10873.33 13279.35 14761.66 13577.45 11081.98 10262.47 11979.06 12880.19 25761.83 16178.79 16959.83 17487.35 17979.54 236
MGCFI-Net71.70 15473.10 13667.49 23473.23 24743.08 29972.06 17782.43 9654.58 19475.97 18182.00 22972.42 6375.22 22157.84 19087.34 18084.18 125
v119273.40 12173.42 12573.32 13374.65 22548.67 24172.21 17481.73 10652.76 22181.85 9384.56 19157.12 21682.24 11068.58 8787.33 18189.06 33
LCM-MVSNet-Re69.10 18971.57 16261.70 28970.37 28534.30 37061.45 31279.62 14856.81 16589.59 988.16 12368.44 9772.94 24742.30 31587.33 18177.85 260
sasdasda72.29 14873.38 12769.04 20974.23 22947.37 26173.93 16283.18 8054.36 19876.61 16781.64 23772.03 6575.34 21957.12 19387.28 18384.40 118
canonicalmvs72.29 14873.38 12769.04 20974.23 22947.37 26173.93 16283.18 8054.36 19876.61 16781.64 23772.03 6575.34 21957.12 19387.28 18384.40 118
baseline73.10 12773.96 11770.51 18171.46 26946.39 27272.08 17684.40 6255.95 17676.62 16686.46 15967.20 10778.03 19064.22 13087.27 18587.11 62
test_fmvsmconf0.01_n73.91 11273.64 12374.71 10869.79 29766.25 9775.90 13379.90 14546.03 28976.48 17485.02 18567.96 10473.97 23974.47 5287.22 18683.90 131
alignmvs70.54 16871.00 16869.15 20773.50 24148.04 25069.85 21679.62 14853.94 21276.54 17182.00 22959.00 19474.68 23057.32 19287.21 18784.72 103
F-COLMAP75.29 9573.99 11679.18 5481.73 12371.90 5081.86 6382.98 8459.86 13772.27 23684.00 20064.56 14083.07 9651.48 24387.19 18882.56 177
TSAR-MVS + MP.79.05 6178.81 6679.74 4688.94 2867.52 8786.61 2281.38 11351.71 23277.15 15191.42 3665.49 13087.20 779.44 1787.17 18984.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v124073.06 13073.14 13372.84 14974.74 22147.27 26471.88 18681.11 11951.80 23182.28 9084.21 19756.22 22682.34 10768.82 8687.17 18988.91 38
GDP-MVS70.84 16469.24 18575.62 10176.44 19555.65 18774.62 15382.78 8949.63 25972.10 24083.79 20431.86 36282.84 9964.93 12487.01 19188.39 47
test_fmvsmconf0.1_n73.26 12572.82 14274.56 11069.10 30366.18 9974.65 15279.34 15545.58 29275.54 18683.91 20167.19 10873.88 24273.26 6186.86 19283.63 139
v114473.29 12473.39 12673.01 13974.12 23448.11 24772.01 17981.08 12253.83 21381.77 9584.68 18758.07 20781.91 11468.10 9186.86 19288.99 36
casdiffmvspermissive73.06 13073.84 11870.72 17771.32 27046.71 26870.93 20184.26 6555.62 17977.46 14987.10 13367.09 10977.81 19363.95 13486.83 19487.64 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)62.74 26863.21 26361.34 29672.19 26231.56 38267.31 25653.87 35553.60 21569.88 27083.37 21140.52 31370.98 27241.40 32386.78 19581.48 197
CS-MVS76.51 8376.00 9378.06 7377.02 18364.77 11280.78 7082.66 9260.39 13274.15 20883.30 21569.65 8982.07 11269.27 8586.75 19687.36 56
K. test v373.67 11573.61 12473.87 12379.78 14155.62 18974.69 15062.04 31766.16 7584.76 6393.23 649.47 26080.97 13365.66 11986.67 19785.02 94
test_fmvsmconf_n72.91 13772.40 14974.46 11168.62 30766.12 10074.21 15978.80 16545.64 29174.62 20183.25 21766.80 11673.86 24372.97 6386.66 19883.39 148
thisisatest053067.05 22165.16 24172.73 15373.10 25250.55 21971.26 19763.91 30550.22 25374.46 20480.75 24726.81 38880.25 14659.43 17886.50 19987.37 55
lessismore_v072.75 15179.60 14456.83 17957.37 33283.80 7489.01 10147.45 27578.74 17064.39 12886.49 20082.69 173
MVSMamba_PlusPlus76.88 8078.21 7472.88 14880.83 13248.71 23983.28 5282.79 8772.78 3179.17 12691.94 2256.47 22483.95 7870.51 7886.15 20185.99 74
MVS_111021_HR72.98 13572.97 14072.99 14080.82 13365.47 10468.81 23072.77 22957.67 15675.76 18282.38 22771.01 7777.17 20061.38 15586.15 20176.32 275
LF4IMVS67.50 21267.31 21768.08 22858.86 38361.93 13171.43 19175.90 20444.67 30472.42 23480.20 25657.16 21470.44 27758.99 18186.12 20371.88 318
FMVSNet267.48 21368.21 20365.29 25473.14 24938.94 33468.81 23071.21 25354.81 18676.73 16386.48 15848.63 27074.60 23147.98 27986.11 20482.35 180
EPNet_dtu58.93 29958.52 29760.16 30767.91 31747.70 25769.97 21358.02 32849.73 25847.28 40573.02 33638.14 32762.34 33536.57 35885.99 20570.43 334
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS-SEG-HR79.62 5679.99 5978.49 6686.46 4774.79 3377.15 11585.39 3766.73 7080.39 11588.85 10574.43 5378.33 18374.73 4985.79 20682.35 180
balanced_conf0373.59 11774.06 11472.17 16577.48 17947.72 25681.43 6582.20 9854.38 19779.19 12587.68 12854.41 23383.57 8463.98 13385.78 20785.22 87
API-MVS70.97 16371.51 16369.37 20075.20 21255.94 18380.99 6776.84 19562.48 11871.24 25377.51 29761.51 16680.96 13652.04 23985.76 20871.22 326
v2v48272.55 14572.58 14572.43 15972.92 25746.72 26771.41 19279.13 15855.27 18281.17 10585.25 18355.41 22881.13 12667.25 10985.46 20989.43 26
GBi-Net68.30 20168.79 19266.81 24273.14 24940.68 32071.96 18173.03 22454.81 18674.72 19790.36 7048.63 27075.20 22347.12 28485.37 21084.54 112
test168.30 20168.79 19266.81 24273.14 24940.68 32071.96 18173.03 22454.81 18674.72 19790.36 7048.63 27075.20 22347.12 28485.37 21084.54 112
FMVSNet365.00 24065.16 24164.52 26069.47 29937.56 34966.63 26570.38 26151.55 23574.72 19783.27 21637.89 33174.44 23347.12 28485.37 21081.57 196
CNLPA73.44 11973.03 13874.66 10978.27 16575.29 3075.99 13278.49 17265.39 8275.67 18383.22 22061.23 17066.77 31353.70 23285.33 21381.92 190
Effi-MVS+-dtu75.43 9472.28 15184.91 377.05 18183.58 278.47 9777.70 18557.68 15574.89 19478.13 29164.80 13884.26 7756.46 20185.32 21486.88 63
UGNet70.20 17269.05 18873.65 12576.24 19863.64 11975.87 13472.53 23261.48 12360.93 34886.14 16952.37 24377.12 20150.67 25185.21 21580.17 227
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VNet64.01 25565.15 24360.57 30373.28 24635.61 36157.60 34367.08 28054.61 19366.76 30683.37 21156.28 22566.87 30942.19 31785.20 21679.23 240
TAMVS65.31 23663.75 25569.97 19482.23 11759.76 15866.78 26463.37 30945.20 29969.79 27179.37 27247.42 27672.17 25834.48 37085.15 21777.99 258
test_yl65.11 23765.09 24565.18 25570.59 27840.86 31663.22 30572.79 22757.91 15268.88 28579.07 27942.85 29974.89 22745.50 30084.97 21879.81 229
DCV-MVSNet65.11 23765.09 24565.18 25570.59 27840.86 31663.22 30572.79 22757.91 15268.88 28579.07 27942.85 29974.89 22745.50 30084.97 21879.81 229
USDC62.80 26663.10 26461.89 28765.19 34343.30 29767.42 25174.20 21835.80 37072.25 23784.48 19445.67 28071.95 26337.95 34684.97 21870.42 335
ETV-MVS72.72 14072.16 15374.38 11676.90 18955.95 18273.34 16584.67 5562.04 12072.19 23970.81 34965.90 12685.24 5958.64 18384.96 22181.95 189
DPM-MVS69.98 17569.22 18772.26 16382.69 11158.82 16770.53 20681.23 11747.79 27764.16 32280.21 25551.32 25183.12 9460.14 17084.95 22274.83 287
SDMVSNet66.36 22867.85 21061.88 28873.04 25546.14 27458.54 33671.36 24551.42 23768.93 28382.72 22265.62 12862.22 33754.41 22484.67 22377.28 263
sd_testset63.55 25665.38 23758.07 32073.04 25538.83 33657.41 34465.44 29251.42 23768.93 28382.72 22263.76 14558.11 35341.05 32584.67 22377.28 263
eth_miper_zixun_eth69.42 18468.73 19671.50 17267.99 31546.42 27067.58 24878.81 16350.72 24778.13 13980.34 25450.15 25780.34 14460.18 16784.65 22587.74 51
miper_lstm_enhance61.97 27361.63 27362.98 27760.04 37245.74 27747.53 38970.95 25544.04 30673.06 22678.84 28239.72 31860.33 34255.82 20884.64 22682.88 164
cl2267.14 21866.51 22669.03 21163.20 35643.46 29566.88 26376.25 19949.22 26474.48 20377.88 29345.49 28277.40 19960.64 16384.59 22786.24 69
miper_ehance_all_eth68.36 20068.16 20568.98 21265.14 34643.34 29667.07 25878.92 16249.11 26676.21 17977.72 29453.48 23877.92 19261.16 15884.59 22785.68 83
miper_enhance_ethall65.86 23265.05 24868.28 22761.62 36542.62 30464.74 28777.97 18242.52 32073.42 22272.79 33749.66 25877.68 19658.12 18784.59 22784.54 112
CDS-MVSNet64.33 25162.66 26869.35 20280.44 13758.28 17265.26 28265.66 28944.36 30567.30 30375.54 31043.27 29571.77 26437.68 34784.44 23078.01 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet73.00 13371.84 15576.48 8975.82 20661.28 13974.81 14480.37 13863.17 11262.43 33880.50 25161.10 17485.16 6364.00 13284.34 23183.01 162
PLCcopyleft62.01 1671.79 15370.28 17676.33 9180.31 13868.63 7978.18 10381.24 11654.57 19567.09 30580.63 24959.44 18981.74 11846.91 28784.17 23278.63 245
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_BlendedMVS65.38 23564.30 24968.61 22169.81 29449.36 23565.60 27978.96 16045.50 29359.98 35178.61 28351.82 24678.20 18644.30 30484.11 23378.27 251
cascas64.59 24562.77 26770.05 19275.27 21150.02 22661.79 31171.61 23842.46 32163.68 32968.89 37049.33 26280.35 14347.82 28184.05 23479.78 231
MSP-MVS80.49 4979.67 6282.96 689.70 1277.46 2387.16 1285.10 4364.94 9381.05 10688.38 11757.10 21787.10 979.75 1183.87 23584.31 122
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test20.0355.74 31557.51 30750.42 35859.89 37732.09 37950.63 37949.01 38050.11 25465.07 31683.23 21845.61 28148.11 38130.22 38783.82 23671.07 330
D2MVS62.58 27061.05 27967.20 23863.85 35247.92 25156.29 35069.58 26639.32 34570.07 26778.19 28934.93 34372.68 24953.44 23583.74 23781.00 205
MVS_111021_LR72.10 15071.82 15672.95 14279.53 14573.90 4070.45 20866.64 28256.87 16476.81 16181.76 23568.78 9371.76 26561.81 15083.74 23773.18 303
patch_mono-262.73 26964.08 25258.68 31670.36 28655.87 18460.84 31864.11 30441.23 32964.04 32378.22 28860.00 18348.80 37654.17 22883.71 23971.37 323
dcpmvs_271.02 16272.65 14466.16 24976.06 20450.49 22071.97 18079.36 15450.34 25082.81 8583.63 20664.38 14167.27 30461.54 15483.71 23980.71 216
test_fmvsmvis_n_192072.36 14672.49 14671.96 16671.29 27164.06 11772.79 16981.82 10440.23 34181.25 10481.04 24370.62 8068.69 28969.74 8383.60 24183.14 157
thres600view761.82 27561.38 27663.12 27571.81 26634.93 36564.64 28856.99 33754.78 19070.33 26279.74 26432.07 35972.42 25638.61 34083.46 24282.02 187
旧先验184.55 8260.36 15463.69 30687.05 13754.65 23183.34 24369.66 341
新几何169.99 19388.37 3571.34 5562.08 31543.85 30774.99 19386.11 17152.85 24170.57 27550.99 24983.23 24468.05 353
Vis-MVSNetpermissive74.85 10874.56 10675.72 9981.63 12564.64 11376.35 12579.06 15962.85 11573.33 22388.41 11562.54 15479.59 15763.94 13682.92 24582.94 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D63.32 25960.69 28371.20 17570.15 29155.66 18665.02 28564.32 30243.28 31968.99 27972.05 34225.46 39578.19 18854.16 22982.80 24679.74 232
DELS-MVS68.83 19268.31 19970.38 18270.55 28248.31 24363.78 29882.13 9954.00 20968.96 28075.17 31558.95 19580.06 15158.55 18482.74 24782.76 168
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CMPMVSbinary48.73 2061.54 27960.89 28063.52 27061.08 36751.55 21268.07 24468.00 27733.88 37965.87 30981.25 24037.91 33067.71 29749.32 26482.60 24871.31 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test60.26 28959.61 29062.20 28567.70 31944.33 28758.18 34060.96 32040.75 33765.80 31072.57 33841.23 30663.92 32946.87 28882.42 24978.33 249
v14869.38 18669.39 18269.36 20169.14 30244.56 28568.83 22972.70 23054.79 18978.59 13284.12 19854.69 23076.74 20859.40 17982.20 25086.79 64
thisisatest051560.48 28757.86 30468.34 22467.25 32346.42 27060.58 32162.14 31340.82 33563.58 33169.12 36526.28 39178.34 18248.83 26782.13 25180.26 225
OpenMVScopyleft62.51 1568.76 19468.75 19468.78 21970.56 28053.91 20078.29 9977.35 18948.85 26870.22 26383.52 20752.65 24276.93 20355.31 21381.99 25275.49 280
MAR-MVS67.72 21066.16 22972.40 16074.45 22764.99 11174.87 14277.50 18848.67 26965.78 31168.58 37457.01 21977.79 19446.68 29081.92 25374.42 294
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous2023120654.13 32655.82 31949.04 36870.89 27235.96 35751.73 37650.87 37234.86 37262.49 33779.22 27442.52 30244.29 39727.95 39881.88 25466.88 359
FE-MVS68.29 20366.96 22372.26 16374.16 23354.24 19777.55 10873.42 22357.65 15872.66 23084.91 18632.02 36181.49 12048.43 27381.85 25581.04 202
GeoE73.14 12673.77 12171.26 17478.09 16852.64 20874.32 15579.56 15256.32 17276.35 17883.36 21370.76 7977.96 19163.32 14381.84 25683.18 156
FA-MVS(test-final)71.27 15871.06 16771.92 16773.96 23652.32 21076.45 12276.12 20059.07 14374.04 21386.18 16652.18 24479.43 15959.75 17681.76 25784.03 128
thres100view90061.17 28161.09 27861.39 29472.14 26335.01 36465.42 28156.99 33755.23 18370.71 25879.90 26232.07 35972.09 25935.61 36581.73 25877.08 269
tfpn200view960.35 28859.97 28761.51 29170.78 27435.35 36263.27 30357.47 33053.00 21968.31 29277.09 30032.45 35672.09 25935.61 36581.73 25877.08 269
thres40060.77 28559.97 28763.15 27470.78 27435.35 36263.27 30357.47 33053.00 21968.31 29277.09 30032.45 35672.09 25935.61 36581.73 25882.02 187
MG-MVS70.47 16971.34 16567.85 23079.26 14940.42 32474.67 15175.15 21158.41 14868.74 28988.14 12456.08 22783.69 8259.90 17381.71 26179.43 238
PAPM_NR73.91 11274.16 11373.16 13581.90 12153.50 20381.28 6681.40 11266.17 7473.30 22483.31 21459.96 18483.10 9558.45 18581.66 26282.87 165
FMVSNet555.08 32255.54 32153.71 34065.80 33833.50 37456.22 35152.50 36543.72 31261.06 34583.38 21025.46 39554.87 36230.11 38881.64 26372.75 309
PAPR69.20 18768.66 19770.82 17675.15 21447.77 25475.31 13781.11 11949.62 26166.33 30779.27 27361.53 16582.96 9748.12 27781.50 26481.74 194
testdata64.13 26285.87 6263.34 12261.80 31847.83 27676.42 17786.60 15548.83 26762.31 33654.46 22381.26 26566.74 362
3Dnovator65.95 1171.50 15771.22 16672.34 16173.16 24863.09 12478.37 9878.32 17557.67 15672.22 23884.61 19054.77 22978.47 17560.82 16281.07 26675.45 281
testing358.28 30358.38 30058.00 32177.45 18026.12 40860.78 31943.00 40156.02 17470.18 26475.76 30713.27 42667.24 30548.02 27880.89 26780.65 217
RPSCF75.76 8874.37 10979.93 4474.81 21977.53 1877.53 10979.30 15659.44 13978.88 12989.80 8271.26 7473.09 24657.45 19180.89 26789.17 31
EG-PatchMatch MVS70.70 16670.88 16970.16 18982.64 11258.80 16871.48 19073.64 22054.98 18576.55 17081.77 23461.10 17478.94 16654.87 21780.84 26972.74 310
V4271.06 16070.83 17071.72 16867.25 32347.14 26565.94 27180.35 13951.35 23983.40 7883.23 21859.25 19278.80 16865.91 11780.81 27089.23 29
ttmdpeth56.40 31155.45 32259.25 31155.63 39940.69 31958.94 33349.72 37736.22 36665.39 31286.97 13823.16 40456.69 35842.30 31580.74 27180.36 223
test22287.30 3869.15 7767.85 24559.59 32541.06 33173.05 22785.72 17948.03 27380.65 27266.92 358
BH-untuned69.39 18569.46 18169.18 20677.96 17156.88 17768.47 24077.53 18756.77 16677.79 14479.63 26660.30 18280.20 14946.04 29580.65 27270.47 333
pmmvs-eth3d64.41 25063.27 26267.82 23275.81 20760.18 15569.49 21862.05 31638.81 35174.13 20982.23 22843.76 29368.65 29042.53 31480.63 27474.63 289
EI-MVSNet-Vis-set72.78 13971.87 15475.54 10374.77 22059.02 16672.24 17371.56 24063.92 10078.59 13271.59 34466.22 12378.60 17267.58 9880.32 27589.00 35
diffmvspermissive67.42 21667.50 21467.20 23862.26 36145.21 28164.87 28677.04 19448.21 27171.74 24279.70 26558.40 19971.17 27164.99 12280.27 27685.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVStest155.38 31954.97 32656.58 32843.72 42140.07 32659.13 32947.09 38834.83 37376.53 17284.65 18813.55 42553.30 36755.04 21580.23 27776.38 274
EI-MVSNet-UG-set72.63 14271.68 15875.47 10474.67 22258.64 17172.02 17871.50 24163.53 10678.58 13471.39 34865.98 12478.53 17367.30 10880.18 27889.23 29
MDA-MVSNet-bldmvs62.34 27261.73 27064.16 26161.64 36449.90 22948.11 38757.24 33553.31 21780.95 10779.39 27149.00 26661.55 33945.92 29680.05 27981.03 203
reproduce_monomvs58.94 29858.14 30261.35 29559.70 37940.98 31560.24 32463.51 30845.85 29068.95 28175.31 31418.27 41665.82 31851.47 24479.97 28077.26 266
IB-MVS49.67 1859.69 29356.96 31067.90 22968.19 31350.30 22361.42 31365.18 29447.57 27955.83 37667.15 38323.77 40179.60 15643.56 31079.97 28073.79 299
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WBMVS53.38 33254.14 33251.11 35570.16 29026.66 40350.52 38151.64 37039.32 34563.08 33577.16 29923.53 40255.56 35931.99 38079.88 28271.11 329
Patchmatch-RL test59.95 29159.12 29262.44 28372.46 26054.61 19559.63 32747.51 38641.05 33274.58 20274.30 32431.06 37165.31 32251.61 24279.85 28367.39 355
EI-MVSNet69.61 18169.01 19071.41 17373.94 23749.90 22971.31 19571.32 24658.22 14975.40 18970.44 35158.16 20175.85 21162.51 14779.81 28488.48 44
MVSTER63.29 26061.60 27468.36 22359.77 37846.21 27360.62 32071.32 24641.83 32475.40 18979.12 27730.25 37775.85 21156.30 20279.81 28483.03 161
ab-mvs64.11 25365.13 24461.05 29871.99 26438.03 34567.59 24768.79 27249.08 26765.32 31486.26 16458.02 20966.85 31139.33 33379.79 28678.27 251
PVSNet_Blended_VisFu70.04 17368.88 19173.53 13082.71 11063.62 12074.81 14481.95 10348.53 27067.16 30479.18 27651.42 25078.38 18054.39 22579.72 28778.60 246
thres20057.55 30757.02 30959.17 31267.89 31834.93 36558.91 33457.25 33450.24 25264.01 32471.46 34632.49 35571.39 26931.31 38379.57 28871.19 328
testgi54.00 33056.86 31145.45 38158.20 38725.81 40949.05 38349.50 37945.43 29667.84 29581.17 24151.81 24843.20 40129.30 39279.41 28967.34 357
jason64.47 24862.84 26669.34 20376.91 18759.20 15967.15 25765.67 28835.29 37165.16 31576.74 30344.67 28770.68 27354.74 21979.28 29078.14 254
jason: jason.
test_fmvsm_n_192069.63 17968.45 19873.16 13570.56 28065.86 10270.26 21078.35 17437.69 35874.29 20678.89 28161.10 17468.10 29565.87 11879.07 29185.53 84
Fast-Effi-MVS+-dtu70.00 17468.74 19573.77 12473.47 24264.53 11471.36 19378.14 18055.81 17868.84 28774.71 31965.36 13275.75 21452.00 24079.00 29281.03 203
EU-MVSNet60.82 28360.80 28260.86 30168.37 30941.16 31272.27 17268.27 27626.96 40269.08 27775.71 30832.09 35867.44 30255.59 21178.90 29373.97 296
MVS_Test69.84 17770.71 17267.24 23767.49 32143.25 29869.87 21581.22 11852.69 22271.57 24886.68 14962.09 16074.51 23266.05 11578.74 29483.96 129
Fast-Effi-MVS+68.81 19368.30 20070.35 18474.66 22448.61 24266.06 27078.32 17550.62 24871.48 25175.54 31068.75 9479.59 15750.55 25378.73 29582.86 166
MVSFormer69.93 17669.03 18972.63 15674.93 21559.19 16083.98 4075.72 20552.27 22563.53 33276.74 30343.19 29680.56 13972.28 7178.67 29678.14 254
lupinMVS63.36 25861.49 27568.97 21374.93 21559.19 16065.80 27564.52 30134.68 37763.53 33274.25 32543.19 29670.62 27453.88 23178.67 29677.10 268
mvsmamba68.87 19167.30 21873.57 12876.58 19353.70 20284.43 3774.25 21745.38 29776.63 16584.55 19235.85 34085.27 5649.54 26178.49 29881.75 193
Effi-MVS+72.10 15072.28 15171.58 16974.21 23250.33 22274.72 14982.73 9062.62 11670.77 25776.83 30269.96 8680.97 13360.20 16678.43 29983.45 147
CANet_DTU64.04 25463.83 25464.66 25868.39 30842.97 30173.45 16474.50 21652.05 22954.78 38175.44 31343.99 29170.42 27853.49 23478.41 30080.59 219
xiu_mvs_v1_base_debu67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
xiu_mvs_v1_base67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
xiu_mvs_v1_base_debi67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
fmvsm_l_conf0.5_n67.48 21366.88 22569.28 20467.41 32262.04 13070.69 20569.85 26439.46 34469.59 27381.09 24258.15 20268.73 28867.51 10078.16 30477.07 271
BH-RMVSNet68.69 19768.20 20470.14 19076.40 19653.90 20164.62 28973.48 22158.01 15173.91 21581.78 23359.09 19378.22 18548.59 27077.96 30578.31 250
RRT-MVS70.33 17070.73 17169.14 20871.93 26545.24 28075.10 13975.08 21260.85 12978.62 13187.36 13049.54 25978.64 17160.16 16877.90 30683.55 140
IterMVS-SCA-FT67.68 21166.07 23172.49 15873.34 24558.20 17363.80 29765.55 29148.10 27276.91 15682.64 22445.20 28378.84 16761.20 15777.89 30780.44 222
PVSNet_Blended62.90 26561.64 27266.69 24569.81 29449.36 23561.23 31578.96 16042.04 32259.98 35168.86 37151.82 24678.20 18644.30 30477.77 30872.52 311
fmvsm_l_conf0.5_n_a66.66 22365.97 23368.72 22067.09 32561.38 13870.03 21269.15 27038.59 35268.41 29080.36 25356.56 22368.32 29366.10 11477.45 30976.46 273
UWE-MVS52.94 33752.70 34053.65 34173.56 24027.49 40057.30 34549.57 37838.56 35362.79 33671.42 34719.49 41360.41 34124.33 41177.33 31073.06 304
testing22253.37 33352.50 34355.98 33270.51 28329.68 39256.20 35251.85 36846.19 28756.76 37068.94 36819.18 41465.39 32125.87 40576.98 31172.87 307
MSDG67.47 21567.48 21567.46 23570.70 27654.69 19466.90 26278.17 17860.88 12870.41 26074.76 31761.22 17273.18 24547.38 28376.87 31274.49 292
testing9155.74 31555.29 32557.08 32470.63 27730.85 38754.94 36256.31 34650.34 25057.08 36670.10 35824.50 39965.86 31736.98 35576.75 31374.53 291
E-PMN45.17 37145.36 37444.60 38550.07 41342.75 30238.66 40842.29 40646.39 28639.55 41651.15 41226.00 39245.37 39037.68 34776.41 31445.69 409
PM-MVS64.49 24763.61 25767.14 24076.68 19275.15 3168.49 23942.85 40251.17 24377.85 14380.51 25045.76 27966.31 31652.83 23876.35 31559.96 391
EIA-MVS68.59 19867.16 21972.90 14675.18 21355.64 18869.39 22081.29 11452.44 22464.53 31870.69 35060.33 18182.30 10854.27 22776.31 31680.75 213
BH-w/o64.81 24264.29 25066.36 24776.08 20354.71 19365.61 27875.23 21050.10 25571.05 25671.86 34354.33 23479.02 16438.20 34476.14 31765.36 368
testing9955.16 32154.56 33056.98 32670.13 29230.58 38954.55 36554.11 35449.53 26256.76 37070.14 35722.76 40665.79 31936.99 35476.04 31874.57 290
MVS60.62 28659.97 28762.58 28268.13 31447.28 26368.59 23673.96 21932.19 38659.94 35368.86 37150.48 25477.64 19741.85 32075.74 31962.83 380
TR-MVS64.59 24563.54 25867.73 23375.75 20850.83 21863.39 30170.29 26249.33 26371.55 24974.55 32050.94 25278.46 17640.43 32975.69 32073.89 298
mvs_anonymous65.08 23965.49 23663.83 26663.79 35337.60 34866.52 26769.82 26543.44 31573.46 22186.08 17258.79 19771.75 26651.90 24175.63 32182.15 185
QAPM69.18 18869.26 18468.94 21471.61 26752.58 20980.37 7678.79 16649.63 25973.51 21985.14 18453.66 23779.12 16255.11 21475.54 32275.11 286
IterMVS63.12 26262.48 26965.02 25766.34 33352.86 20663.81 29662.25 31246.57 28571.51 25080.40 25244.60 28866.82 31251.38 24675.47 32375.38 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test63.01 26360.47 28470.61 17883.04 10454.10 19859.93 32672.24 23633.67 38269.00 27875.63 30938.69 32576.93 20336.60 35775.45 32480.81 212
EMVS44.61 37544.45 38045.10 38448.91 41643.00 30037.92 40941.10 41246.75 28438.00 41848.43 41526.42 39046.27 38537.11 35375.38 32546.03 408
MIMVSNet54.39 32556.12 31749.20 36572.57 25930.91 38659.98 32548.43 38341.66 32555.94 37583.86 20341.19 30850.42 37126.05 40275.38 32566.27 363
our_test_356.46 31056.51 31356.30 32967.70 31939.66 32955.36 35852.34 36740.57 34063.85 32669.91 36140.04 31658.22 35243.49 31175.29 32771.03 331
pmmvs460.78 28459.04 29366.00 25173.06 25457.67 17564.53 29160.22 32236.91 36465.96 30877.27 29839.66 31968.54 29138.87 33774.89 32871.80 319
fmvsm_s_conf0.1_n_a67.37 21766.36 22770.37 18370.86 27361.17 14174.00 16157.18 33640.77 33668.83 28880.88 24563.11 14867.61 30066.94 11074.72 32982.33 183
GA-MVS62.91 26461.66 27166.66 24667.09 32544.49 28661.18 31669.36 26851.33 24069.33 27674.47 32136.83 33674.94 22650.60 25274.72 32980.57 220
KD-MVS_2432*160052.05 34551.58 34853.44 34352.11 41031.20 38344.88 39764.83 29841.53 32664.37 31970.03 35915.61 42264.20 32636.25 35974.61 33164.93 373
miper_refine_blended52.05 34551.58 34853.44 34352.11 41031.20 38344.88 39764.83 29841.53 32664.37 31970.03 35915.61 42264.20 32636.25 35974.61 33164.93 373
fmvsm_s_conf0.5_n_a67.00 22265.95 23470.17 18869.72 29861.16 14273.34 16556.83 33940.96 33368.36 29180.08 26062.84 14967.57 30166.90 11274.50 33381.78 192
fmvsm_s_conf0.1_n66.60 22465.54 23569.77 19668.99 30459.15 16372.12 17556.74 34140.72 33868.25 29480.14 25961.18 17366.92 30767.34 10774.40 33483.23 155
pmmvs552.49 34252.58 34252.21 34954.99 40232.38 37755.45 35753.84 35632.15 38855.49 37874.81 31638.08 32857.37 35634.02 37274.40 33466.88 359
PatchT53.35 33456.47 31443.99 38864.19 35117.46 41959.15 32843.10 40052.11 22854.74 38286.95 13929.97 38049.98 37343.62 30974.40 33464.53 377
fmvsm_s_conf0.5_n66.34 23065.27 23869.57 19968.20 31259.14 16571.66 18856.48 34240.92 33467.78 29679.46 26861.23 17066.90 30867.39 10374.32 33782.66 174
SSC-MVS61.79 27666.08 23048.89 36976.91 18710.00 42653.56 36947.37 38768.20 6376.56 16989.21 9254.13 23557.59 35554.75 21874.07 33879.08 242
xiu_mvs_v2_base64.43 24963.96 25365.85 25377.72 17551.32 21463.63 29972.31 23545.06 30261.70 33969.66 36262.56 15273.93 24149.06 26673.91 33972.31 314
PS-MVSNAJ64.27 25263.73 25665.90 25277.82 17351.42 21363.33 30272.33 23445.09 30161.60 34068.04 37662.39 15673.95 24049.07 26573.87 34072.34 313
OpenMVS_ROBcopyleft54.93 1763.23 26163.28 26163.07 27669.81 29445.34 27968.52 23867.14 27943.74 31170.61 25979.22 27447.90 27472.66 25048.75 26873.84 34171.21 327
ETVMVS50.32 35549.87 36351.68 35170.30 28826.66 40352.33 37543.93 39743.54 31454.91 38067.95 37720.01 41260.17 34322.47 41373.40 34268.22 350
test_fmvs356.78 30955.99 31859.12 31353.96 40848.09 24858.76 33566.22 28427.54 40076.66 16468.69 37325.32 39751.31 36953.42 23673.38 34377.97 259
MDTV_nov1_ep1354.05 33465.54 34129.30 39459.00 33155.22 34735.96 36952.44 38975.98 30630.77 37459.62 34538.21 34373.33 344
PAPM61.79 27660.37 28566.05 25076.09 20141.87 30869.30 22276.79 19740.64 33953.80 38679.62 26744.38 28982.92 9829.64 39173.11 34573.36 302
WB-MVS60.04 29064.19 25147.59 37276.09 20110.22 42552.44 37446.74 38965.17 8874.07 21187.48 12953.48 23855.28 36149.36 26372.84 34677.28 263
testing1153.13 33552.26 34555.75 33370.44 28431.73 38154.75 36352.40 36644.81 30352.36 39168.40 37521.83 40765.74 32032.64 37972.73 34769.78 339
Patchmatch-test47.93 36349.96 36241.84 39157.42 39024.26 41148.75 38441.49 40939.30 34756.79 36973.48 33130.48 37633.87 41529.29 39372.61 34867.39 355
gg-mvs-nofinetune55.75 31456.75 31252.72 34762.87 35728.04 39868.92 22741.36 41071.09 4650.80 39692.63 1320.74 40966.86 31029.97 38972.41 34963.25 379
Syy-MVS54.13 32655.45 32250.18 35968.77 30523.59 41255.02 35944.55 39543.80 30858.05 36364.07 38946.22 27858.83 34846.16 29472.36 35068.12 351
myMVS_eth3d50.36 35450.52 35949.88 36068.77 30522.69 41455.02 35944.55 39543.80 30858.05 36364.07 38914.16 42458.83 34833.90 37472.36 35068.12 351
test_vis3_rt51.94 34751.04 35354.65 33746.32 41950.13 22544.34 39978.17 17823.62 41368.95 28162.81 39321.41 40838.52 41241.49 32272.22 35275.30 285
test-LLR50.43 35350.69 35849.64 36360.76 36841.87 30853.18 37045.48 39343.41 31649.41 40160.47 40229.22 38344.73 39442.09 31872.14 35362.33 386
test-mter48.56 36248.20 36749.64 36360.76 36841.87 30853.18 37045.48 39331.91 39149.41 40160.47 40218.34 41544.73 39442.09 31872.14 35362.33 386
1112_ss59.48 29458.99 29460.96 30077.84 17242.39 30661.42 31368.45 27537.96 35659.93 35467.46 37945.11 28565.07 32440.89 32771.81 35575.41 282
WB-MVSnew53.94 33154.76 32851.49 35371.53 26828.05 39758.22 33950.36 37437.94 35759.16 35870.17 35649.21 26351.94 36824.49 40971.80 35674.47 293
UBG49.18 36049.35 36448.66 37070.36 28626.56 40550.53 38045.61 39237.43 36053.37 38765.97 38423.03 40554.20 36526.29 40071.54 35765.20 370
N_pmnet52.06 34451.11 35254.92 33559.64 38071.03 5737.42 41061.62 31933.68 38157.12 36572.10 33937.94 32931.03 41629.13 39771.35 35862.70 381
XXY-MVS55.19 32057.40 30848.56 37164.45 35034.84 36751.54 37753.59 35738.99 35063.79 32879.43 26956.59 22145.57 38736.92 35671.29 35965.25 369
MDA-MVSNet_test_wron52.57 34153.49 33749.81 36254.24 40436.47 35340.48 40546.58 39038.13 35475.47 18873.32 33341.05 31143.85 39940.98 32671.20 36069.10 348
YYNet152.58 34053.50 33549.85 36154.15 40536.45 35440.53 40446.55 39138.09 35575.52 18773.31 33441.08 31043.88 39841.10 32471.14 36169.21 346
HY-MVS49.31 1957.96 30557.59 30659.10 31466.85 33036.17 35565.13 28465.39 29339.24 34854.69 38378.14 29044.28 29067.18 30633.75 37570.79 36273.95 297
Test_1112_low_res58.78 30058.69 29659.04 31579.41 14638.13 34357.62 34266.98 28134.74 37559.62 35777.56 29642.92 29863.65 33138.66 33970.73 36375.35 284
pmmvs346.71 36645.09 37651.55 35256.76 39348.25 24455.78 35639.53 41424.13 41250.35 39963.40 39115.90 42151.08 37029.29 39370.69 36455.33 400
test_fmvs254.80 32354.11 33356.88 32751.76 41249.95 22856.70 34865.80 28726.22 40569.42 27465.25 38731.82 36349.98 37349.63 26070.36 36570.71 332
SCA58.57 30258.04 30360.17 30670.17 28941.07 31465.19 28353.38 36143.34 31861.00 34773.48 33145.20 28369.38 28440.34 33070.31 36670.05 336
CR-MVSNet58.96 29758.49 29860.36 30566.37 33148.24 24570.93 20156.40 34432.87 38561.35 34286.66 15033.19 34963.22 33348.50 27270.17 36769.62 342
RPMNet65.77 23365.08 24767.84 23166.37 33148.24 24570.93 20186.27 2054.66 19261.35 34286.77 14533.29 34885.67 4955.93 20570.17 36769.62 342
test0.0.03 147.72 36448.31 36645.93 37955.53 40029.39 39346.40 39341.21 41143.41 31655.81 37767.65 37829.22 38343.77 40025.73 40669.87 36964.62 375
PVSNet43.83 2151.56 34851.17 35152.73 34668.34 31038.27 34048.22 38653.56 35936.41 36554.29 38464.94 38834.60 34454.20 36530.34 38669.87 36965.71 366
tpm256.12 31254.64 32960.55 30466.24 33436.01 35668.14 24256.77 34033.60 38358.25 36275.52 31230.25 37774.33 23533.27 37669.76 37171.32 324
CostFormer57.35 30856.14 31660.97 29963.76 35438.43 33867.50 24960.22 32237.14 36359.12 35976.34 30532.78 35271.99 26239.12 33669.27 37272.47 312
MonoMVSNet62.75 26763.42 25960.73 30265.60 34040.77 31872.49 17170.56 25952.49 22375.07 19179.42 27039.52 32169.97 28046.59 29169.06 37371.44 322
baseline157.82 30658.36 30156.19 33069.17 30130.76 38862.94 30755.21 34846.04 28863.83 32778.47 28441.20 30763.68 33039.44 33268.99 37474.13 295
PatchMatch-RL58.68 30157.72 30561.57 29076.21 19973.59 4361.83 31049.00 38147.30 28161.08 34468.97 36750.16 25659.01 34736.06 36468.84 37552.10 401
CVMVSNet59.21 29658.44 29961.51 29173.94 23747.76 25571.31 19564.56 30026.91 40460.34 35070.44 35136.24 33967.65 29853.57 23368.66 37669.12 347
dmvs_re49.91 35850.77 35747.34 37359.98 37338.86 33553.18 37053.58 35839.75 34355.06 37961.58 39836.42 33844.40 39629.15 39668.23 37758.75 394
TESTMET0.1,145.17 37144.93 37745.89 38056.02 39638.31 33953.18 37041.94 40827.85 39944.86 41156.47 40717.93 41741.50 40738.08 34568.06 37857.85 395
test_fmvs1_n52.70 33952.01 34654.76 33653.83 40950.36 22155.80 35565.90 28624.96 40965.39 31260.64 40127.69 38648.46 37845.88 29767.99 37965.46 367
PMMVS237.74 38340.87 38328.36 40042.41 4235.35 42824.61 41527.75 42032.15 38847.85 40470.27 35435.85 34029.51 41819.08 41867.85 38050.22 404
131459.83 29258.86 29562.74 28165.71 33944.78 28468.59 23672.63 23133.54 38461.05 34667.29 38243.62 29471.26 27049.49 26267.84 38172.19 316
CHOSEN 1792x268858.09 30456.30 31563.45 27179.95 14050.93 21754.07 36765.59 29028.56 39861.53 34174.33 32341.09 30966.52 31533.91 37367.69 38272.92 306
test_fmvs151.51 34950.86 35653.48 34249.72 41549.35 23754.11 36664.96 29624.64 41163.66 33059.61 40428.33 38548.45 37945.38 30267.30 38362.66 383
tpm50.60 35252.42 34445.14 38365.18 34426.29 40660.30 32243.50 39837.41 36157.01 36779.09 27830.20 37942.32 40232.77 37866.36 38466.81 361
FPMVS59.43 29560.07 28657.51 32377.62 17871.52 5362.33 30950.92 37157.40 16069.40 27580.00 26139.14 32361.92 33837.47 35066.36 38439.09 414
GG-mvs-BLEND52.24 34860.64 37029.21 39569.73 21742.41 40345.47 40852.33 41120.43 41068.16 29425.52 40765.42 38659.36 393
tpmvs55.84 31355.45 32257.01 32560.33 37133.20 37565.89 27259.29 32647.52 28056.04 37473.60 33031.05 37268.06 29640.64 32864.64 38769.77 340
WTY-MVS49.39 35950.31 36146.62 37761.22 36632.00 38046.61 39249.77 37633.87 38054.12 38569.55 36441.96 30345.40 38931.28 38464.42 38862.47 384
baseline255.57 31852.74 33964.05 26465.26 34244.11 28862.38 30854.43 35239.03 34951.21 39467.35 38133.66 34772.45 25537.14 35264.22 38975.60 279
test_vis1_n51.27 35050.41 36053.83 33956.99 39150.01 22756.75 34760.53 32125.68 40759.74 35657.86 40529.40 38247.41 38343.10 31263.66 39064.08 378
MS-PatchMatch55.59 31754.89 32757.68 32269.18 30049.05 23861.00 31762.93 31135.98 36858.36 36168.93 36936.71 33766.59 31437.62 34963.30 39157.39 397
test_cas_vis1_n_192050.90 35150.92 35550.83 35754.12 40747.80 25351.44 37854.61 35126.95 40363.95 32560.85 39937.86 33244.97 39245.53 29962.97 39259.72 392
test_vis1_n_192052.96 33653.50 33551.32 35459.15 38144.90 28356.13 35364.29 30330.56 39659.87 35560.68 40040.16 31547.47 38248.25 27662.46 39361.58 388
test_f43.79 37745.63 37238.24 39842.29 42438.58 33734.76 41347.68 38522.22 41667.34 30263.15 39231.82 36330.60 41739.19 33562.28 39445.53 410
sss47.59 36548.32 36545.40 38256.73 39433.96 37145.17 39548.51 38232.11 39052.37 39065.79 38540.39 31441.91 40531.85 38161.97 39560.35 390
test_vis1_rt46.70 36745.24 37551.06 35644.58 42051.04 21639.91 40667.56 27821.84 41751.94 39250.79 41333.83 34639.77 40935.25 36861.50 39662.38 385
PMMVS44.69 37343.95 38146.92 37550.05 41453.47 20448.08 38842.40 40422.36 41544.01 41453.05 41042.60 30145.49 38831.69 38261.36 39741.79 412
UnsupCasMVSNet_bld50.01 35751.03 35446.95 37458.61 38432.64 37648.31 38553.27 36234.27 37860.47 34971.53 34541.40 30547.07 38430.68 38560.78 39861.13 389
MVP-Stereo61.56 27859.22 29168.58 22279.28 14860.44 15369.20 22471.57 23943.58 31356.42 37378.37 28639.57 32076.46 21034.86 36960.16 39968.86 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DSMNet-mixed43.18 37944.66 37938.75 39654.75 40328.88 39657.06 34627.42 42113.47 41947.27 40677.67 29538.83 32439.29 41125.32 40860.12 40048.08 405
UnsupCasMVSNet_eth52.26 34353.29 33849.16 36655.08 40133.67 37350.03 38258.79 32737.67 35963.43 33474.75 31841.82 30445.83 38638.59 34159.42 40167.98 354
tpm cat154.02 32952.63 34158.19 31964.85 34939.86 32866.26 26957.28 33332.16 38756.90 36870.39 35332.75 35365.30 32334.29 37158.79 40269.41 344
CHOSEN 280x42041.62 38039.89 38546.80 37661.81 36251.59 21133.56 41435.74 41727.48 40137.64 41953.53 40823.24 40342.09 40327.39 39958.64 40346.72 407
tpmrst50.15 35651.38 35046.45 37856.05 39524.77 41064.40 29349.98 37536.14 36753.32 38869.59 36335.16 34248.69 37739.24 33458.51 40465.89 364
PatchmatchNetpermissive54.60 32454.27 33155.59 33465.17 34539.08 33166.92 26151.80 36939.89 34258.39 36073.12 33531.69 36558.33 35143.01 31358.38 40569.38 345
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet45.53 36947.29 36940.24 39462.29 36026.82 40256.02 35437.41 41629.74 39743.69 41581.27 23933.96 34555.48 36024.46 41056.79 40638.43 415
ADS-MVSNet248.76 36147.25 37053.29 34555.90 39740.54 32347.34 39054.99 35031.41 39350.48 39772.06 34031.23 36854.26 36425.93 40355.93 40765.07 371
ADS-MVSNet44.62 37445.58 37341.73 39255.90 39720.83 41747.34 39039.94 41331.41 39350.48 39772.06 34031.23 36839.31 41025.93 40355.93 40765.07 371
EPMVS45.74 36846.53 37143.39 38954.14 40622.33 41655.02 35935.00 41834.69 37651.09 39570.20 35525.92 39342.04 40437.19 35155.50 40965.78 365
JIA-IIPM54.03 32851.62 34761.25 29759.14 38255.21 19159.10 33047.72 38450.85 24550.31 40085.81 17820.10 41163.97 32836.16 36255.41 41064.55 376
dmvs_testset45.26 37047.51 36838.49 39759.96 37514.71 42158.50 33743.39 39941.30 32851.79 39356.48 40639.44 32249.91 37521.42 41555.35 41150.85 402
new_pmnet37.55 38439.80 38630.79 39956.83 39216.46 42039.35 40730.65 41925.59 40845.26 40961.60 39724.54 39828.02 41921.60 41452.80 41247.90 406
dp44.09 37644.88 37841.72 39358.53 38623.18 41354.70 36442.38 40534.80 37444.25 41365.61 38624.48 40044.80 39329.77 39049.42 41357.18 398
mvsany_test343.76 37841.01 38252.01 35048.09 41757.74 17442.47 40123.85 42423.30 41464.80 31762.17 39627.12 38740.59 40829.17 39548.11 41457.69 396
MVEpermissive27.91 2336.69 38535.64 38839.84 39543.37 42235.85 35919.49 41624.61 42224.68 41039.05 41762.63 39538.67 32627.10 42021.04 41647.25 41556.56 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mvsany_test137.88 38235.74 38744.28 38647.28 41849.90 22936.54 41224.37 42319.56 41845.76 40753.46 40932.99 35137.97 41326.17 40135.52 41644.99 411
PVSNet_036.71 2241.12 38140.78 38442.14 39059.97 37440.13 32540.97 40342.24 40730.81 39544.86 41149.41 41440.70 31245.12 39123.15 41234.96 41741.16 413
tmp_tt11.98 39014.73 3933.72 4052.28 4284.62 42919.44 41714.50 4260.47 42321.55 4219.58 42125.78 3944.57 42411.61 42127.37 4181.96 420
test_method19.26 38819.12 39219.71 4029.09 4271.91 4307.79 41853.44 3601.42 42110.27 42335.80 41717.42 41925.11 42112.44 42024.38 41932.10 416
dongtai31.66 38632.98 38927.71 40158.58 38512.61 42345.02 39614.24 42741.90 32347.93 40343.91 41610.65 42741.81 40614.06 41920.53 42028.72 417
kuosan22.02 38723.52 39117.54 40341.56 42511.24 42441.99 40213.39 42826.13 40628.87 42030.75 4189.72 42821.94 4224.77 42314.49 42119.43 418
DeepMVS_CXcopyleft11.83 40415.51 42613.86 42211.25 4295.76 42020.85 42226.46 41917.06 4209.22 4239.69 42213.82 42212.42 419
test1234.43 3935.78 3960.39 4070.97 4290.28 43146.33 3940.45 4300.31 4240.62 4251.50 4240.61 4300.11 4260.56 4240.63 4230.77 422
testmvs4.06 3945.28 3970.41 4060.64 4300.16 43242.54 4000.31 4310.26 4250.50 4261.40 4250.77 4290.17 4250.56 4240.55 4240.90 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k17.71 38923.62 3900.00 4080.00 4310.00 4330.00 41970.17 2630.00 4260.00 42774.25 32568.16 1000.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.20 3926.93 3950.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42662.39 1560.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re5.62 3917.50 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42767.46 3790.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS22.69 41436.10 363
FOURS189.19 2477.84 1491.64 189.11 384.05 391.57 3
test_one_060185.84 6461.45 13785.63 3075.27 2185.62 5190.38 6776.72 30
eth-test20.00 431
eth-test0.00 431
test_241102_ONE86.12 5461.06 14384.72 5272.64 3487.38 2889.47 8677.48 2685.74 46
save fliter87.00 4067.23 9079.24 8977.94 18356.65 170
test072686.16 5260.78 14983.81 4385.10 4372.48 3785.27 5689.96 7978.57 19
GSMVS70.05 336
test_part285.90 6066.44 9584.61 65
sam_mvs131.41 36670.05 336
sam_mvs31.21 370
MTGPAbinary80.63 131
test_post166.63 2652.08 42230.66 37559.33 34640.34 330
test_post1.99 42330.91 37354.76 363
patchmatchnet-post68.99 36631.32 36769.38 284
MTMP84.83 3419.26 425
gm-plane-assit62.51 35833.91 37237.25 36262.71 39472.74 24838.70 338
TEST985.47 6769.32 7476.42 12378.69 16853.73 21476.97 15386.74 14666.84 11281.10 127
test_885.09 7367.89 8376.26 12878.66 17054.00 20976.89 15786.72 14866.60 11880.89 137
agg_prior84.44 8566.02 10178.62 17176.95 15580.34 144
test_prior470.14 6777.57 106
test_prior75.27 10682.15 11859.85 15784.33 6383.39 9082.58 176
旧先验271.17 19845.11 30078.54 13561.28 34059.19 180
新几何271.33 194
无先验74.82 14370.94 25647.75 27876.85 20654.47 22272.09 317
原ACMM274.78 147
testdata267.30 30348.34 274
segment_acmp68.30 99
testdata168.34 24157.24 162
plane_prior785.18 7066.21 98
plane_prior684.18 8865.31 10760.83 177
plane_prior489.11 97
plane_prior365.67 10363.82 10278.23 137
plane_prior282.74 5565.45 80
plane_prior184.46 84
n20.00 432
nn0.00 432
door-mid55.02 349
test1182.71 91
door52.91 364
HQP5-MVS58.80 168
HQP-NCC82.37 11377.32 11159.08 14071.58 245
ACMP_Plane82.37 11377.32 11159.08 14071.58 245
BP-MVS67.38 105
HQP4-MVS71.59 24485.31 5483.74 136
HQP2-MVS58.09 204
NP-MVS83.34 9863.07 12585.97 174
MDTV_nov1_ep13_2view18.41 41853.74 36831.57 39244.89 41029.90 38132.93 37771.48 321
Test By Simon62.56 152