This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12296.10 487.21 57
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NR-MVSNet73.62 11274.05 11072.33 15983.50 9143.71 28365.65 26777.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20795.63 891.93 8
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11395.62 994.88 5
TranMVSNet+NR-MVSNet76.13 8277.66 7471.56 16684.61 7842.57 29670.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20495.47 1091.35 13
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
Baseline_NR-MVSNet70.62 15973.19 12662.92 27276.97 18234.44 35568.84 21970.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
UniMVSNet (Re)75.00 9875.48 9673.56 12583.14 9647.92 24570.41 20181.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18895.25 1490.94 17
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31777.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13395.19 1595.07 3
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 32077.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 14195.15 1795.09 2
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31976.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13895.12 1895.01 4
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
UniMVSNet_NR-MVSNet74.90 10175.65 9372.64 15183.04 10245.79 26869.26 21478.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19694.98 2091.05 15
DU-MVS74.91 10075.57 9572.93 14283.50 9145.79 26869.47 21180.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19694.98 2091.93 8
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33777.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13494.68 3194.76 6
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13683.29 4880.34 13257.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
FC-MVSNet-test73.32 11874.78 10168.93 20979.21 14936.57 33971.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18494.56 3491.23 14
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
ACMH63.62 1477.50 7280.11 5469.68 19379.61 14056.28 17978.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
IU-MVS86.12 5360.90 14580.38 12945.49 28181.31 10175.64 4194.39 4184.65 103
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14883.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND76.57 8586.20 4860.57 15183.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
X-MVStestdata76.81 7774.79 10082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 39673.86 5286.31 1978.84 1994.03 5384.64 104
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
IS-MVSNet75.10 9575.42 9774.15 11579.23 14848.05 24379.43 8278.04 17470.09 4979.17 12488.02 12253.04 23183.60 8158.05 18393.76 5990.79 19
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 12193.61 6072.28 298
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
FIs72.56 13973.80 11468.84 21278.74 16037.74 33371.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 19093.36 6490.51 21
WR-MVS71.20 15272.48 14167.36 22984.98 7135.70 34764.43 28268.66 26265.05 8681.49 9986.43 15357.57 20676.48 20350.36 24493.32 6589.90 23
CLD-MVS72.88 13372.36 14474.43 11077.03 17954.30 19268.77 22483.43 7552.12 21676.79 15874.44 30869.54 8583.91 7555.88 19993.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 13380.58 6682.12 9153.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20882.60 9870.08 7792.80 7189.25 28
Anonymous2023121175.54 8977.19 7870.59 17577.67 17445.70 27174.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 18192.77 7289.30 27
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
CDPH-MVS77.33 7377.06 8078.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
EPP-MVSNet73.86 11073.38 12275.31 10178.19 16453.35 20080.45 6877.32 18365.11 8576.47 16886.80 13549.47 25283.77 7753.89 22192.72 7488.81 41
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
tt080576.12 8378.43 6869.20 20181.32 12641.37 30276.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12692.40 7787.17 60
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14592.40 7778.92 236
nrg03074.87 10375.99 9071.52 16774.90 21149.88 22874.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15292.34 7988.94 37
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Anonymous2024052163.55 24666.07 22055.99 31666.18 31844.04 28168.77 22468.80 26046.99 27072.57 22185.84 17039.87 30750.22 35053.40 22892.23 8173.71 285
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMP++91.96 83
v7n79.37 5680.41 5276.28 9078.67 16155.81 18379.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
VDDNet71.60 14973.13 12867.02 23486.29 4741.11 30469.97 20566.50 27268.72 5574.74 18791.70 2559.90 17875.81 20748.58 26091.72 8484.15 125
UniMVSNet_ETH3D76.74 7879.02 6169.92 19189.27 1943.81 28274.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21291.64 8689.08 32
wuyk23d61.97 26266.25 21749.12 34658.19 36660.77 15066.32 25852.97 35055.93 17090.62 586.91 13373.07 5735.98 39120.63 39591.63 8750.62 381
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
bld_raw_dy_0_6472.85 13472.76 13673.09 13485.08 7064.80 10878.72 9064.22 29351.92 22083.13 7790.26 7039.21 31269.91 27270.73 7391.60 8984.56 111
train_agg76.38 8076.55 8375.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
Gipumacopyleft69.55 17372.83 13459.70 29763.63 33653.97 19580.08 7875.93 19664.24 9473.49 20988.93 10257.89 20362.46 32159.75 17291.55 9162.67 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SixPastTwentyTwo75.77 8476.34 8574.06 11681.69 12254.84 18876.47 11675.49 20064.10 9587.73 1792.24 1750.45 24781.30 11867.41 9891.46 9286.04 73
test9_res72.12 6991.37 9377.40 254
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 10091.26 9583.50 138
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 11091.24 9687.61 52
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
KD-MVS_self_test66.38 21867.51 20262.97 27061.76 34334.39 35658.11 32775.30 20150.84 23677.12 14885.42 17356.84 21369.44 27551.07 23891.16 9885.08 92
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11791.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf175.66 8776.57 8172.95 13967.07 31067.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
APD_test275.66 8776.57 8172.95 13967.07 31067.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
ambc70.10 18777.74 17250.21 21974.28 15277.93 17779.26 12388.29 11654.11 22779.77 14864.43 12491.10 10380.30 216
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18991.08 10473.00 289
114514_t73.40 11673.33 12573.64 12384.15 8657.11 17578.20 9880.02 13643.76 29572.55 22286.07 16664.00 13683.35 8760.14 16691.03 10580.45 214
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
agg_prior270.70 7590.93 10878.55 240
PHI-MVS74.92 9974.36 10676.61 8476.40 19162.32 12680.38 7083.15 7754.16 19573.23 21480.75 23662.19 15283.86 7668.02 9090.92 10983.65 136
AllTest77.66 7077.43 7578.35 6679.19 15070.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
VPNet65.58 22467.56 20159.65 29879.72 13930.17 37460.27 31362.14 30254.19 19471.24 24286.63 14658.80 18967.62 29144.17 29590.87 11381.18 192
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14591.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
PC_three_145246.98 27181.83 9386.28 15566.55 11584.47 7163.31 14090.78 11483.49 139
h-mvs3373.08 12371.61 15477.48 7483.89 8972.89 4470.47 19971.12 24554.28 18977.89 13783.41 19749.04 25580.98 12763.62 13590.77 11678.58 239
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
PS-MVSNAJss77.54 7177.35 7778.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
pmmvs671.82 14773.66 11766.31 24175.94 20042.01 29866.99 24972.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 12087.22 56
test1276.51 8682.28 11460.94 14481.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
VDD-MVS70.81 15771.44 15868.91 21079.07 15546.51 26267.82 23670.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23790.28 12284.61 107
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
EPNet69.10 18067.32 20574.46 10768.33 29461.27 13877.56 10363.57 29760.95 12256.62 35382.75 21251.53 24081.24 11954.36 21790.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPA-MVSNet68.71 18570.37 16763.72 26076.13 19538.06 33164.10 28471.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 27190.15 12583.37 147
TAPA-MVS65.27 1275.16 9474.29 10777.77 7274.86 21268.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16890.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
Anonymous2024052972.56 13973.79 11568.86 21176.89 18745.21 27368.80 22377.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 24090.00 12887.18 59
AdaColmapbinary74.22 10674.56 10273.20 13081.95 11860.97 14379.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26990.00 12873.37 286
DP-MVS Recon73.57 11372.69 13776.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24889.95 13080.89 201
test111164.62 23465.19 23062.93 27179.01 15629.91 37565.45 27054.41 34154.09 19671.47 24188.48 11137.02 32574.29 22846.83 27889.94 13184.58 110
plane_prior65.18 10480.06 7961.88 11789.91 132
cl____68.26 19568.26 19168.29 21964.98 32843.67 28465.89 26274.67 20650.04 24676.86 15582.42 21748.74 25975.38 21160.92 15889.81 13385.80 80
DIV-MVS_self_test68.27 19468.26 19168.29 21964.98 32843.67 28465.89 26274.67 20650.04 24676.86 15582.43 21648.74 25975.38 21160.94 15789.81 13385.81 76
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14989.79 13583.08 156
MVS_030476.32 8175.96 9177.42 7679.33 14560.86 14780.18 7674.88 20566.93 6269.11 26588.95 10157.84 20486.12 2976.63 3789.77 13685.28 86
LFMVS67.06 21167.89 19764.56 25278.02 16738.25 32870.81 19659.60 31365.18 8371.06 24486.56 14943.85 28275.22 21446.35 28089.63 13780.21 218
TSAR-MVS + GP.73.08 12371.60 15577.54 7378.99 15770.73 5774.96 13769.38 25760.73 12474.39 19678.44 27357.72 20582.78 9560.16 16589.60 13879.11 233
EC-MVSNet77.08 7677.39 7676.14 9276.86 18856.87 17780.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
MIMVSNet166.57 21669.23 17658.59 30581.26 12837.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 33841.77 30889.58 14079.95 220
TransMVSNet (Re)69.62 17171.63 15363.57 26276.51 19035.93 34565.75 26671.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24789.48 14184.38 119
ACMMP++_ref89.47 142
test250661.23 26960.85 27062.38 27678.80 15827.88 38167.33 24537.42 39354.23 19167.55 28888.68 10717.87 39774.39 22646.33 28189.41 14384.86 97
ECVR-MVScopyleft64.82 23165.22 22963.60 26178.80 15831.14 37166.97 25056.47 33254.23 19169.94 25688.68 10737.23 32474.81 22145.28 29189.41 14384.86 97
CS-MVS-test74.89 10274.23 10876.86 8177.01 18162.94 12378.98 8884.61 5558.62 14170.17 25480.80 23566.74 11281.96 10861.74 14889.40 14585.69 81
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15573.04 16081.50 10145.34 28379.66 11984.35 18665.15 12882.65 9748.70 25889.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP3-MVS84.12 6589.16 147
HQP-MVS75.24 9375.01 9975.94 9382.37 11158.80 16777.32 10784.12 6559.08 13471.58 23485.96 16858.09 19785.30 5367.38 10289.16 14783.73 135
AUN-MVS70.22 16267.88 19877.22 8082.96 10571.61 4869.08 21771.39 23649.17 25371.70 23278.07 28037.62 32379.21 15661.81 14689.15 14980.82 203
v1075.69 8676.20 8774.16 11474.44 22248.69 23475.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
MM79.55 4865.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
hse-mvs272.32 14370.66 16677.31 7983.10 10171.77 4769.19 21671.45 23554.28 18977.89 13778.26 27549.04 25579.23 15563.62 13589.13 15180.92 200
MCST-MVS73.42 11573.34 12473.63 12481.28 12759.17 16174.80 14283.13 7845.50 27972.84 21883.78 19465.15 12880.99 12664.54 12389.09 15380.73 207
iter_conf0567.34 20865.62 22472.50 15469.82 27647.06 25872.19 16776.86 18745.32 28472.86 21782.85 21020.53 39283.73 7861.13 15589.02 15486.70 65
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15688.95 15587.56 53
ANet_high67.08 21069.94 16958.51 30657.55 36727.09 38258.43 32576.80 18963.56 10182.40 8891.93 2059.82 18064.98 31250.10 24688.86 15683.46 143
test_040278.17 6979.48 5974.24 11383.50 9159.15 16272.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11988.68 15781.20 191
APD_test175.04 9775.38 9874.02 11769.89 27570.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 17188.54 15879.56 225
casdiffmvs_mvgpermissive75.26 9276.18 8872.52 15372.87 24949.47 22972.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9988.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EGC-MVSNET64.77 23361.17 26675.60 9886.90 4274.47 3084.04 3568.62 2630.60 3981.13 40091.61 2865.32 12774.15 23064.01 12888.28 16078.17 245
IterMVS-LS73.01 12773.12 12972.66 15073.79 23149.90 22471.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14388.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSLP-MVS++74.48 10575.78 9270.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14288.14 16271.73 303
CL-MVSNet_self_test62.44 26063.40 24959.55 29972.34 25232.38 36456.39 33464.84 28651.21 23267.46 28981.01 23350.75 24463.51 31938.47 32988.12 16382.75 166
FMVSNet171.06 15372.48 14166.81 23577.65 17540.68 30871.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24588.05 16484.54 112
pm-mvs168.40 18969.85 17164.04 25873.10 24339.94 31464.61 28070.50 25055.52 17373.97 20589.33 8663.91 13768.38 28449.68 24988.02 16583.81 131
TinyColmap67.98 19669.28 17464.08 25667.98 29946.82 25970.04 20375.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28688.01 16672.83 291
v875.07 9675.64 9473.35 12773.42 23547.46 25375.20 13581.45 10360.05 12885.64 4589.26 8858.08 19981.80 11169.71 8187.97 16790.79 19
tttt051769.46 17467.79 20074.46 10775.34 20452.72 20275.05 13663.27 29954.69 18378.87 12784.37 18526.63 37681.15 12063.95 13087.93 16889.51 25
new-patchmatchnet52.89 31755.76 30844.26 36559.94 3566.31 40337.36 38750.76 35741.10 31364.28 30879.82 25244.77 27648.43 35836.24 34687.61 16978.03 248
tfpnnormal66.48 21767.93 19662.16 27873.40 23636.65 33863.45 29064.99 28455.97 16872.82 21987.80 12457.06 21169.10 27948.31 26487.54 17080.72 208
Anonymous20240521166.02 22166.89 21363.43 26574.22 22438.14 32959.00 31966.13 27463.33 10769.76 26085.95 16951.88 23670.50 26844.23 29487.52 17181.64 188
c3_l69.82 16969.89 17069.61 19466.24 31643.48 28668.12 23379.61 14351.43 22677.72 14180.18 24754.61 22478.15 18363.62 13587.50 17287.20 58
v14419272.99 12973.06 13072.77 14674.58 22047.48 25271.90 17780.44 12851.57 22481.46 10084.11 18958.04 20182.12 10667.98 9287.47 17388.70 43
Patchmtry60.91 27163.01 25454.62 32166.10 31926.27 38567.47 24056.40 33354.05 19772.04 23086.66 14333.19 33860.17 32943.69 29687.45 17477.42 253
v192192072.96 13172.98 13272.89 14474.67 21647.58 25171.92 17680.69 12051.70 22381.69 9883.89 19256.58 21582.25 10468.34 8687.36 17588.82 40
CSCG74.12 10774.39 10473.33 12879.35 14461.66 13277.45 10681.98 9462.47 11479.06 12580.19 24661.83 15478.79 16459.83 17087.35 17679.54 228
v119273.40 11673.42 12073.32 12974.65 21948.67 23572.21 16681.73 9852.76 21181.85 9284.56 18257.12 20982.24 10568.58 8487.33 17789.06 33
LCM-MVSNet-Re69.10 18071.57 15661.70 28170.37 27134.30 35761.45 30279.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30387.33 17777.85 252
canonicalmvs72.29 14473.38 12269.04 20474.23 22347.37 25473.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18787.28 17984.40 118
baseline73.10 12273.96 11270.51 17771.46 25846.39 26572.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12787.27 18087.11 61
test_fmvsmconf0.01_n73.91 10873.64 11874.71 10469.79 28066.25 9375.90 13079.90 13846.03 27676.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
alignmvs70.54 16071.00 16269.15 20373.50 23348.04 24469.85 20879.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18687.21 18284.72 102
F-COLMAP75.29 9173.99 11179.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23487.19 18382.56 172
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v124073.06 12573.14 12772.84 14574.74 21547.27 25671.88 17881.11 11151.80 22182.28 8984.21 18756.22 21882.34 10268.82 8387.17 18488.91 38
test_fmvsmconf0.1_n73.26 12072.82 13574.56 10669.10 28666.18 9574.65 14879.34 14845.58 27875.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
v114473.29 11973.39 12173.01 13674.12 22748.11 24172.01 17181.08 11453.83 20281.77 9484.68 18058.07 20081.91 10968.10 8886.86 18688.99 36
casdiffmvspermissive73.06 12573.84 11370.72 17371.32 25946.71 26170.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)62.74 25763.21 25261.34 28672.19 25331.56 36867.31 24653.87 34253.60 20469.88 25883.37 20040.52 30370.98 26441.40 31086.78 18981.48 190
CS-MVS76.51 7976.00 8978.06 7177.02 18064.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
K. test v373.67 11173.61 11973.87 11979.78 13855.62 18674.69 14662.04 30666.16 7184.76 6093.23 549.47 25280.97 12865.66 11686.67 19185.02 94
test_fmvsmconf_n72.91 13272.40 14374.46 10768.62 29066.12 9674.21 15378.80 15845.64 27774.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
thisisatest053067.05 21265.16 23172.73 14973.10 24350.55 21471.26 18963.91 29550.22 24374.46 19580.75 23626.81 37580.25 14159.43 17486.50 19387.37 54
lessismore_v072.75 14779.60 14156.83 17857.37 32183.80 7289.01 9847.45 26678.74 16564.39 12586.49 19482.69 168
iter_conf_final68.69 18667.00 21173.76 12173.68 23252.33 20575.96 12973.54 21350.56 23969.90 25782.85 21024.76 38583.73 7865.40 11886.33 19585.22 87
MVS_111021_HR72.98 13072.97 13372.99 13780.82 13065.47 10068.81 22172.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 15186.15 19676.32 264
LF4IMVS67.50 20267.31 20668.08 22258.86 36261.93 12871.43 18375.90 19744.67 28972.42 22480.20 24557.16 20770.44 26958.99 17786.12 19771.88 301
FMVSNet267.48 20368.21 19365.29 24773.14 24038.94 32168.81 22171.21 24454.81 17876.73 15986.48 15148.63 26174.60 22347.98 26886.11 19882.35 175
EPNet_dtu58.93 28758.52 28660.16 29667.91 30047.70 25069.97 20558.02 31749.73 24847.28 38273.02 32238.14 31762.34 32236.57 34385.99 19970.43 315
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 18180.99 6176.84 18862.48 11371.24 24277.51 28561.51 15980.96 13152.04 23085.76 20171.22 308
v2v48272.55 14172.58 13972.43 15672.92 24846.72 26071.41 18479.13 15155.27 17481.17 10485.25 17655.41 22081.13 12167.25 10685.46 20289.43 26
GBi-Net68.30 19168.79 18266.81 23573.14 24040.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26175.20 21547.12 27385.37 20384.54 112
test168.30 19168.79 18266.81 23573.14 24040.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26175.20 21547.12 27385.37 20384.54 112
FMVSNet365.00 23065.16 23164.52 25369.47 28237.56 33666.63 25570.38 25151.55 22574.72 18883.27 20537.89 32174.44 22547.12 27385.37 20381.57 189
CNLPA73.44 11473.03 13174.66 10578.27 16375.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30553.70 22385.33 20681.92 184
Effi-MVS+-dtu75.43 9072.28 14584.91 277.05 17883.58 178.47 9477.70 17857.68 14974.89 18578.13 27964.80 13184.26 7456.46 19485.32 20786.88 62
UGNet70.20 16369.05 17873.65 12276.24 19363.64 11675.87 13172.53 22461.48 11860.93 33386.14 16252.37 23477.12 19550.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VNet64.01 24565.15 23360.57 29273.28 23835.61 34857.60 32967.08 26954.61 18566.76 29483.37 20056.28 21766.87 30142.19 30485.20 20979.23 232
TAMVS65.31 22663.75 24569.97 19082.23 11559.76 15766.78 25463.37 29845.20 28569.79 25979.37 26047.42 26772.17 25034.48 35585.15 21077.99 250
test_yl65.11 22765.09 23565.18 24870.59 26640.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 28974.89 21945.50 28884.97 21179.81 221
DCV-MVSNet65.11 22765.09 23565.18 24870.59 26640.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 28974.89 21945.50 28884.97 21179.81 221
USDC62.80 25663.10 25361.89 27965.19 32443.30 28967.42 24174.20 21035.80 34872.25 22784.48 18445.67 27071.95 25537.95 33384.97 21170.42 316
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 18073.34 15884.67 5162.04 11572.19 22970.81 33465.90 12085.24 5658.64 17884.96 21481.95 183
DPM-MVS69.98 16669.22 17772.26 16082.69 10958.82 16670.53 19881.23 10947.79 26564.16 30980.21 24451.32 24283.12 9060.14 16684.95 21574.83 276
SDMVSNet66.36 21967.85 19961.88 28073.04 24646.14 26758.54 32371.36 23751.42 22768.93 27182.72 21365.62 12262.22 32454.41 21584.67 21677.28 255
sd_testset63.55 24665.38 22758.07 30873.04 24638.83 32357.41 33065.44 28151.42 22768.93 27182.72 21363.76 13858.11 33741.05 31284.67 21677.28 255
eth_miper_zixun_eth69.42 17568.73 18671.50 16867.99 29846.42 26367.58 23878.81 15650.72 23778.13 13580.34 24350.15 24980.34 13960.18 16484.65 21887.74 50
miper_lstm_enhance61.97 26261.63 26262.98 26960.04 35245.74 27047.53 36770.95 24644.04 29173.06 21578.84 27039.72 30860.33 32855.82 20084.64 21982.88 161
cl2267.14 20966.51 21569.03 20563.20 33743.46 28766.88 25376.25 19249.22 25274.48 19477.88 28145.49 27277.40 19360.64 16084.59 22086.24 69
miper_ehance_all_eth68.36 19068.16 19568.98 20665.14 32743.34 28867.07 24878.92 15549.11 25476.21 17277.72 28253.48 22977.92 18661.16 15484.59 22085.68 82
miper_enhance_ethall65.86 22265.05 23868.28 22161.62 34542.62 29564.74 27777.97 17542.52 30473.42 21172.79 32349.66 25077.68 19058.12 18284.59 22084.54 112
CDS-MVSNet64.33 24162.66 25769.35 19880.44 13458.28 17165.26 27265.66 27844.36 29067.30 29175.54 29743.27 28571.77 25637.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet73.00 12871.84 14976.48 8775.82 20161.28 13774.81 14080.37 13063.17 10862.43 32380.50 24061.10 16785.16 6064.00 12984.34 22483.01 159
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29380.63 23859.44 18281.74 11346.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_BlendedMVS65.38 22564.30 23968.61 21569.81 27749.36 23065.60 26978.96 15345.50 27959.98 33678.61 27151.82 23778.20 18044.30 29284.11 22678.27 243
cascas64.59 23562.77 25670.05 18875.27 20550.02 22161.79 30171.61 23042.46 30563.68 31668.89 35149.33 25480.35 13847.82 27084.05 22779.78 223
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 21087.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test20.0355.74 30257.51 29550.42 33759.89 35732.09 36650.63 35949.01 36150.11 24465.07 30383.23 20745.61 27148.11 35930.22 37083.82 22971.07 311
D2MVS62.58 25961.05 26867.20 23163.85 33347.92 24556.29 33569.58 25639.32 32870.07 25578.19 27734.93 33272.68 24153.44 22683.74 23081.00 198
MVS_111021_LR72.10 14571.82 15072.95 13979.53 14273.90 3670.45 20066.64 27156.87 15876.81 15781.76 22568.78 8871.76 25761.81 14683.74 23073.18 288
patch_mono-262.73 25864.08 24258.68 30470.36 27255.87 18260.84 30864.11 29441.23 31264.04 31078.22 27660.00 17648.80 35454.17 21983.71 23271.37 305
dcpmvs_271.02 15572.65 13866.16 24276.06 19950.49 21571.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29661.54 15083.71 23280.71 209
test_fmvsmvis_n_192072.36 14272.49 14071.96 16271.29 26064.06 11472.79 16281.82 9640.23 32481.25 10381.04 23270.62 7568.69 28169.74 8083.60 23483.14 154
thres600view761.82 26461.38 26563.12 26771.81 25634.93 35264.64 27856.99 32654.78 18270.33 25179.74 25332.07 34772.42 24838.61 32783.46 23582.02 181
旧先验184.55 7960.36 15363.69 29687.05 13154.65 22383.34 23669.66 321
新几何169.99 18988.37 3471.34 5162.08 30443.85 29274.99 18486.11 16452.85 23270.57 26750.99 23983.23 23768.05 332
Vis-MVSNetpermissive74.85 10474.56 10275.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13282.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D63.32 24960.69 27271.20 17170.15 27455.66 18465.02 27564.32 29143.28 30368.99 26872.05 32825.46 38278.19 18254.16 22082.80 23979.74 224
DELS-MVS68.83 18268.31 18970.38 17870.55 27048.31 23763.78 28882.13 9054.00 19868.96 26975.17 30158.95 18880.06 14658.55 17982.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CMPMVSbinary48.73 2061.54 26860.89 26963.52 26361.08 34751.55 20868.07 23468.00 26633.88 35665.87 29781.25 22937.91 32067.71 28949.32 25382.60 24171.31 307
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test60.26 27859.61 27962.20 27767.70 30244.33 27958.18 32660.96 30940.75 32065.80 29872.57 32441.23 29663.92 31646.87 27782.42 24278.33 241
v14869.38 17769.39 17369.36 19769.14 28544.56 27768.83 22072.70 22254.79 18178.59 12884.12 18854.69 22276.74 20259.40 17582.20 24386.79 63
thisisatest051560.48 27657.86 29268.34 21867.25 30646.42 26360.58 31162.14 30240.82 31863.58 31869.12 34726.28 37878.34 17648.83 25682.13 24480.26 217
OpenMVScopyleft62.51 1568.76 18468.75 18468.78 21370.56 26853.91 19678.29 9677.35 18248.85 25670.22 25283.52 19652.65 23376.93 19755.31 20581.99 24575.49 269
MAR-MVS67.72 20066.16 21872.40 15774.45 22164.99 10774.87 13877.50 18148.67 25765.78 29968.58 35557.01 21277.79 18846.68 27981.92 24674.42 279
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous2023120654.13 31055.82 30749.04 34770.89 26135.96 34451.73 35650.87 35634.86 35062.49 32279.22 26242.52 29244.29 37527.95 38181.88 24766.88 338
FE-MVS68.29 19366.96 21272.26 16074.16 22654.24 19377.55 10473.42 21557.65 15272.66 22084.91 17932.02 34981.49 11548.43 26281.85 24881.04 195
GeoE73.14 12173.77 11671.26 17078.09 16652.64 20374.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13981.84 24983.18 153
FA-MVS(test-final)71.27 15171.06 16171.92 16373.96 22852.32 20676.45 11876.12 19359.07 13774.04 20486.18 15952.18 23579.43 15459.75 17281.76 25084.03 126
thres100view90061.17 27061.09 26761.39 28572.14 25435.01 35165.42 27156.99 32655.23 17570.71 24779.90 25132.07 34772.09 25135.61 35081.73 25177.08 260
tfpn200view960.35 27759.97 27661.51 28370.78 26335.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34472.09 25135.61 35081.73 25177.08 260
thres40060.77 27459.97 27663.15 26670.78 26335.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34472.09 25135.61 35081.73 25182.02 181
MG-MVS70.47 16171.34 15967.85 22479.26 14740.42 31274.67 14775.15 20458.41 14268.74 27788.14 12156.08 21983.69 8059.90 16981.71 25479.43 230
PAPM_NR73.91 10874.16 10973.16 13181.90 11953.50 19881.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 18081.66 25582.87 162
FMVSNet555.08 30655.54 30953.71 32365.80 32033.50 36156.22 33652.50 35243.72 29761.06 33083.38 19925.46 38254.87 34330.11 37181.64 25672.75 292
PAPR69.20 17868.66 18770.82 17275.15 20847.77 24875.31 13481.11 11149.62 25066.33 29579.27 26161.53 15882.96 9348.12 26681.50 25781.74 187
testdata64.13 25585.87 5963.34 11961.80 30747.83 26476.42 17086.60 14848.83 25862.31 32354.46 21481.26 25866.74 341
3Dnovator65.95 1171.50 15071.22 16072.34 15873.16 23963.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 22178.47 16960.82 15981.07 25975.45 270
testing358.28 29158.38 28958.00 30977.45 17726.12 38660.78 30943.00 37956.02 16770.18 25375.76 29413.27 40467.24 29748.02 26780.89 26080.65 210
RPSCF75.76 8574.37 10579.93 4074.81 21377.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18580.89 26089.17 31
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 11058.80 16771.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20880.84 26272.74 293
V4271.06 15370.83 16471.72 16467.25 30647.14 25765.94 26180.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11480.81 26389.23 29
test22287.30 3769.15 7367.85 23559.59 31441.06 31473.05 21685.72 17248.03 26480.65 26466.92 337
BH-untuned69.39 17669.46 17269.18 20277.96 16956.88 17668.47 23077.53 18056.77 16077.79 14079.63 25560.30 17580.20 14446.04 28380.65 26470.47 314
pmmvs-eth3d64.41 24063.27 25167.82 22675.81 20260.18 15469.49 21062.05 30538.81 33374.13 20082.23 21943.76 28368.65 28242.53 30280.63 26674.63 277
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16572.24 16571.56 23263.92 9678.59 12871.59 33066.22 11778.60 16667.58 9580.32 26789.00 35
diffmvspermissive67.42 20667.50 20367.20 23162.26 34145.21 27364.87 27677.04 18648.21 25971.74 23179.70 25458.40 19271.17 26364.99 12080.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 17072.02 17071.50 23363.53 10278.58 13071.39 33365.98 11878.53 16767.30 10580.18 26989.23 29
MDA-MVSNet-bldmvs62.34 26161.73 25964.16 25461.64 34449.90 22448.11 36557.24 32453.31 20780.95 10679.39 25949.00 25761.55 32645.92 28480.05 27081.03 196
IB-MVS49.67 1859.69 28256.96 29867.90 22368.19 29650.30 21861.42 30365.18 28347.57 26755.83 35767.15 36223.77 38879.60 15143.56 29879.97 27173.79 284
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Patchmatch-RL test59.95 28059.12 28162.44 27572.46 25154.61 19159.63 31647.51 36741.05 31574.58 19374.30 31031.06 35865.31 30951.61 23379.85 27267.39 334
EI-MVSNet69.61 17269.01 18071.41 16973.94 22949.90 22471.31 18771.32 23858.22 14375.40 18170.44 33658.16 19475.85 20562.51 14379.81 27388.48 44
MVSTER63.29 25061.60 26368.36 21759.77 35846.21 26660.62 31071.32 23841.83 30775.40 18179.12 26530.25 36475.85 20556.30 19579.81 27383.03 158
ab-mvs64.11 24365.13 23461.05 28871.99 25538.03 33267.59 23768.79 26149.08 25565.32 30186.26 15758.02 20266.85 30339.33 32079.79 27578.27 243
PVSNet_Blended_VisFu70.04 16468.88 18173.53 12682.71 10863.62 11774.81 14081.95 9548.53 25867.16 29279.18 26451.42 24178.38 17454.39 21679.72 27678.60 238
thres20057.55 29557.02 29759.17 30067.89 30134.93 35258.91 32157.25 32350.24 24264.01 31171.46 33232.49 34371.39 26131.31 36679.57 27771.19 310
testgi54.00 31456.86 29945.45 35958.20 36525.81 38749.05 36149.50 36045.43 28267.84 28381.17 23051.81 23943.20 37929.30 37579.41 27867.34 336
jason64.47 23862.84 25569.34 19976.91 18459.20 15867.15 24765.67 27735.29 34965.16 30276.74 29044.67 27770.68 26554.74 21079.28 27978.14 246
jason: jason.
test_fmvsm_n_192069.63 17068.45 18873.16 13170.56 26865.86 9870.26 20278.35 16737.69 33874.29 19778.89 26961.10 16768.10 28765.87 11579.07 28085.53 83
Fast-Effi-MVS+-dtu70.00 16568.74 18573.77 12073.47 23464.53 11171.36 18578.14 17355.81 17168.84 27574.71 30565.36 12675.75 20852.00 23179.00 28181.03 196
EU-MVSNet60.82 27260.80 27160.86 29168.37 29241.16 30372.27 16468.27 26526.96 37969.08 26675.71 29532.09 34667.44 29455.59 20378.90 28273.97 281
MVS_Test69.84 16870.71 16567.24 23067.49 30443.25 29069.87 20781.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11278.74 28383.96 127
Fast-Effi-MVS+68.81 18368.30 19070.35 18074.66 21848.61 23666.06 26078.32 16850.62 23871.48 24075.54 29768.75 8979.59 15250.55 24378.73 28482.86 163
MVSFormer69.93 16769.03 17972.63 15274.93 20959.19 15983.98 3675.72 19852.27 21463.53 31976.74 29043.19 28680.56 13472.28 6778.67 28578.14 246
lupinMVS63.36 24861.49 26468.97 20774.93 20959.19 15965.80 26564.52 29034.68 35463.53 31974.25 31143.19 28670.62 26653.88 22278.67 28577.10 259
Effi-MVS+72.10 14572.28 14571.58 16574.21 22550.33 21774.72 14582.73 8362.62 11170.77 24676.83 28969.96 8180.97 12860.20 16378.43 28783.45 144
CANet_DTU64.04 24463.83 24464.66 25168.39 29142.97 29273.45 15774.50 20952.05 21854.78 36175.44 30043.99 28170.42 27053.49 22578.41 28880.59 212
xiu_mvs_v1_base_debu67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
fmvsm_l_conf0.5_n67.48 20366.88 21469.28 20067.41 30562.04 12770.69 19769.85 25439.46 32769.59 26181.09 23158.15 19568.73 28067.51 9778.16 29277.07 262
BH-RMVSNet68.69 18668.20 19470.14 18676.40 19153.90 19764.62 27973.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25977.96 29378.31 242
IterMVS-SCA-FT67.68 20166.07 22072.49 15573.34 23758.20 17263.80 28765.55 28048.10 26076.91 15282.64 21545.20 27378.84 16261.20 15377.89 29480.44 215
PVSNet_Blended62.90 25561.64 26166.69 23869.81 27749.36 23061.23 30578.96 15342.04 30659.98 33668.86 35251.82 23778.20 18044.30 29277.77 29572.52 294
fmvsm_l_conf0.5_n_a66.66 21465.97 22268.72 21467.09 30861.38 13570.03 20469.15 25938.59 33468.41 27880.36 24256.56 21668.32 28566.10 11177.45 29676.46 263
MSDG67.47 20567.48 20467.46 22870.70 26554.69 19066.90 25278.17 17160.88 12370.41 24974.76 30361.22 16573.18 23747.38 27276.87 29774.49 278
E-PMN45.17 34845.36 35144.60 36350.07 39042.75 29338.66 38442.29 38446.39 27439.55 39351.15 39026.00 37945.37 36837.68 33476.41 29845.69 387
PM-MVS64.49 23763.61 24767.14 23376.68 18975.15 2768.49 22942.85 38051.17 23377.85 13980.51 23945.76 26966.31 30852.83 22976.35 29959.96 369
EIA-MVS68.59 18867.16 20772.90 14375.18 20755.64 18569.39 21281.29 10652.44 21364.53 30570.69 33560.33 17482.30 10354.27 21876.31 30080.75 206
BH-w/o64.81 23264.29 24066.36 24076.08 19854.71 18965.61 26875.23 20350.10 24571.05 24571.86 32954.33 22579.02 15938.20 33176.14 30165.36 347
MVS60.62 27559.97 27662.58 27468.13 29747.28 25568.59 22673.96 21132.19 36359.94 33868.86 35250.48 24677.64 19141.85 30775.74 30262.83 358
TR-MVS64.59 23563.54 24867.73 22775.75 20350.83 21363.39 29170.29 25249.33 25171.55 23874.55 30650.94 24378.46 17040.43 31675.69 30373.89 283
mvs_anonymous65.08 22965.49 22663.83 25963.79 33437.60 33566.52 25769.82 25543.44 29973.46 21086.08 16558.79 19071.75 25851.90 23275.63 30482.15 180
QAPM69.18 17969.26 17568.94 20871.61 25752.58 20480.37 7178.79 15949.63 24973.51 20885.14 17753.66 22879.12 15755.11 20675.54 30575.11 275
IterMVS63.12 25262.48 25865.02 25066.34 31552.86 20163.81 28662.25 30146.57 27371.51 23980.40 24144.60 27866.82 30451.38 23675.47 30675.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test63.01 25360.47 27370.61 17483.04 10254.10 19459.93 31572.24 22833.67 35969.00 26775.63 29638.69 31576.93 19736.60 34275.45 30780.81 205
EMVS44.61 35244.45 35745.10 36248.91 39343.00 29137.92 38541.10 39046.75 27238.00 39548.43 39326.42 37746.27 36337.11 34075.38 30846.03 386
MIMVSNet54.39 30956.12 30549.20 34472.57 25030.91 37259.98 31448.43 36441.66 30855.94 35683.86 19341.19 29850.42 34926.05 38475.38 30866.27 342
our_test_356.46 29856.51 30156.30 31467.70 30239.66 31655.36 34252.34 35340.57 32363.85 31369.91 34340.04 30658.22 33643.49 29975.29 31071.03 312
pmmvs460.78 27359.04 28266.00 24473.06 24557.67 17464.53 28160.22 31136.91 34365.96 29677.27 28639.66 30968.54 28338.87 32474.89 31171.80 302
fmvsm_s_conf0.1_n_a67.37 20766.36 21670.37 17970.86 26261.17 13974.00 15557.18 32540.77 31968.83 27680.88 23463.11 14167.61 29266.94 10774.72 31282.33 178
GA-MVS62.91 25461.66 26066.66 23967.09 30844.49 27861.18 30669.36 25851.33 23069.33 26474.47 30736.83 32674.94 21850.60 24274.72 31280.57 213
KD-MVS_2432*160052.05 32451.58 32753.44 32552.11 38731.20 36944.88 37464.83 28741.53 30964.37 30670.03 34115.61 40164.20 31336.25 34474.61 31464.93 351
miper_refine_blended52.05 32451.58 32753.44 32552.11 38731.20 36944.88 37464.83 28741.53 30964.37 30670.03 34115.61 40164.20 31336.25 34474.61 31464.93 351
fmvsm_s_conf0.5_n_a67.00 21365.95 22370.17 18469.72 28161.16 14073.34 15856.83 32840.96 31668.36 27980.08 24962.84 14267.57 29366.90 10974.50 31681.78 186
fmvsm_s_conf0.1_n66.60 21565.54 22569.77 19268.99 28759.15 16272.12 16856.74 33040.72 32168.25 28280.14 24861.18 16666.92 29967.34 10474.40 31783.23 152
pmmvs552.49 32152.58 32352.21 33154.99 37932.38 36455.45 34153.84 34332.15 36555.49 35974.81 30238.08 31857.37 34034.02 35774.40 31766.88 338
PatchT53.35 31556.47 30243.99 36664.19 33217.46 39759.15 31743.10 37852.11 21754.74 36286.95 13229.97 36749.98 35143.62 29774.40 31764.53 355
fmvsm_s_conf0.5_n66.34 22065.27 22869.57 19568.20 29559.14 16471.66 18056.48 33140.92 31767.78 28479.46 25761.23 16366.90 30067.39 10074.32 32082.66 169
SSC-MVS61.79 26566.08 21948.89 34876.91 18410.00 40253.56 35047.37 36868.20 5876.56 16389.21 9054.13 22657.59 33954.75 20974.07 32179.08 234
xiu_mvs_v2_base64.43 23963.96 24365.85 24677.72 17351.32 21063.63 28972.31 22745.06 28861.70 32469.66 34462.56 14573.93 23349.06 25573.91 32272.31 297
PS-MVSNAJ64.27 24263.73 24665.90 24577.82 17151.42 20963.33 29272.33 22645.09 28761.60 32568.04 35662.39 14973.95 23249.07 25473.87 32372.34 296
OpenMVS_ROBcopyleft54.93 1763.23 25163.28 25063.07 26869.81 27745.34 27268.52 22867.14 26843.74 29670.61 24879.22 26247.90 26572.66 24248.75 25773.84 32471.21 309
test_fmvs356.78 29755.99 30659.12 30153.96 38548.09 24258.76 32266.22 27327.54 37776.66 16068.69 35425.32 38451.31 34753.42 22773.38 32577.97 251
MDTV_nov1_ep1354.05 31665.54 32229.30 37759.00 31955.22 33535.96 34752.44 36875.98 29330.77 36159.62 33038.21 33073.33 326
PAPM61.79 26560.37 27466.05 24376.09 19641.87 29969.30 21376.79 19040.64 32253.80 36679.62 25644.38 27982.92 9429.64 37473.11 32773.36 287
WB-MVS60.04 27964.19 24147.59 35076.09 19610.22 40152.44 35546.74 36965.17 8474.07 20287.48 12553.48 22955.28 34249.36 25272.84 32877.28 255
Patchmatch-test47.93 34049.96 34141.84 36957.42 36824.26 38948.75 36241.49 38739.30 32956.79 35273.48 31730.48 36333.87 39229.29 37672.61 32967.39 334
gg-mvs-nofinetune55.75 30156.75 30052.72 32962.87 33828.04 38068.92 21841.36 38871.09 4150.80 37492.63 1220.74 39166.86 30229.97 37272.41 33063.25 357
Syy-MVS54.13 31055.45 31050.18 33868.77 28823.59 39055.02 34344.55 37443.80 29358.05 34764.07 36746.22 26858.83 33346.16 28272.36 33168.12 330
myMVS_eth3d50.36 33350.52 33849.88 33968.77 28822.69 39255.02 34344.55 37443.80 29358.05 34764.07 36714.16 40358.83 33333.90 35972.36 33168.12 330
test_vis3_rt51.94 32651.04 33254.65 32046.32 39650.13 22044.34 37678.17 17123.62 38968.95 27062.81 37121.41 39038.52 38941.49 30972.22 33375.30 274
test-LLR50.43 33250.69 33749.64 34260.76 34841.87 29953.18 35145.48 37243.41 30049.41 37960.47 38029.22 37044.73 37242.09 30572.14 33462.33 364
test-mter48.56 33948.20 34449.64 34260.76 34841.87 29953.18 35145.48 37231.91 36849.41 37960.47 38018.34 39544.73 37242.09 30572.14 33462.33 364
1112_ss59.48 28358.99 28360.96 29077.84 17042.39 29761.42 30368.45 26437.96 33759.93 33967.46 35845.11 27565.07 31140.89 31471.81 33675.41 271
N_pmnet52.06 32351.11 33154.92 31859.64 35971.03 5337.42 38661.62 30833.68 35857.12 34972.10 32537.94 31931.03 39329.13 38071.35 33762.70 359
XXY-MVS55.19 30557.40 29648.56 34964.45 33134.84 35451.54 35753.59 34438.99 33263.79 31579.43 25856.59 21445.57 36536.92 34171.29 33865.25 348
MDA-MVSNet_test_wron52.57 32053.49 31949.81 34154.24 38136.47 34040.48 38146.58 37038.13 33575.47 18073.32 31941.05 30143.85 37740.98 31371.20 33969.10 328
YYNet152.58 31953.50 31749.85 34054.15 38236.45 34140.53 38046.55 37138.09 33675.52 17973.31 32041.08 30043.88 37641.10 31171.14 34069.21 326
HY-MVS49.31 1957.96 29357.59 29459.10 30266.85 31236.17 34265.13 27465.39 28239.24 33054.69 36378.14 27844.28 28067.18 29833.75 36070.79 34173.95 282
Test_1112_low_res58.78 28858.69 28559.04 30379.41 14338.13 33057.62 32866.98 27034.74 35259.62 34277.56 28442.92 28863.65 31838.66 32670.73 34275.35 273
pmmvs346.71 34345.09 35351.55 33356.76 37148.25 23855.78 34039.53 39224.13 38850.35 37763.40 36915.90 40051.08 34829.29 37670.69 34355.33 378
test_fmvs254.80 30754.11 31556.88 31351.76 38949.95 22356.70 33365.80 27626.22 38269.42 26265.25 36531.82 35049.98 35149.63 25070.36 34470.71 313
SCA58.57 29058.04 29160.17 29570.17 27341.07 30565.19 27353.38 34843.34 30261.00 33273.48 31745.20 27369.38 27640.34 31770.31 34570.05 317
CR-MVSNet58.96 28658.49 28760.36 29466.37 31348.24 23970.93 19356.40 33332.87 36261.35 32786.66 14333.19 33863.22 32048.50 26170.17 34669.62 322
RPMNet65.77 22365.08 23767.84 22566.37 31348.24 23970.93 19386.27 1954.66 18461.35 32786.77 13833.29 33785.67 4755.93 19870.17 34669.62 322
test0.0.03 147.72 34148.31 34345.93 35755.53 37729.39 37646.40 37141.21 38943.41 30055.81 35867.65 35729.22 37043.77 37825.73 38769.87 34864.62 353
PVSNet43.83 2151.56 32751.17 33052.73 32868.34 29338.27 32748.22 36453.56 34636.41 34454.29 36464.94 36634.60 33354.20 34630.34 36969.87 34865.71 345
tpm256.12 29954.64 31360.55 29366.24 31636.01 34368.14 23256.77 32933.60 36058.25 34675.52 29930.25 36474.33 22733.27 36169.76 35071.32 306
CostFormer57.35 29656.14 30460.97 28963.76 33538.43 32567.50 23960.22 31137.14 34259.12 34376.34 29232.78 34171.99 25439.12 32369.27 35172.47 295
baseline157.82 29458.36 29056.19 31569.17 28430.76 37362.94 29755.21 33646.04 27563.83 31478.47 27241.20 29763.68 31739.44 31968.99 35274.13 280
PatchMatch-RL58.68 28957.72 29361.57 28276.21 19473.59 3961.83 30049.00 36247.30 26961.08 32968.97 34950.16 24859.01 33236.06 34968.84 35352.10 379
CVMVSNet59.21 28558.44 28861.51 28373.94 22947.76 24971.31 18764.56 28926.91 38160.34 33570.44 33636.24 32967.65 29053.57 22468.66 35469.12 327
dmvs_re49.91 33650.77 33647.34 35159.98 35338.86 32253.18 35153.58 34539.75 32655.06 36061.58 37636.42 32844.40 37429.15 37968.23 35558.75 372
TESTMET0.1,145.17 34844.93 35445.89 35856.02 37438.31 32653.18 35141.94 38627.85 37644.86 38856.47 38517.93 39641.50 38438.08 33268.06 35657.85 373
test_fmvs1_n52.70 31852.01 32554.76 31953.83 38650.36 21655.80 33965.90 27524.96 38565.39 30060.64 37927.69 37348.46 35645.88 28567.99 35765.46 346
PMMVS237.74 36040.87 36028.36 37842.41 3995.35 40424.61 39127.75 39832.15 36547.85 38170.27 33935.85 33029.51 39519.08 39667.85 35850.22 382
131459.83 28158.86 28462.74 27365.71 32144.78 27668.59 22672.63 22333.54 36161.05 33167.29 36143.62 28471.26 26249.49 25167.84 35972.19 299
CHOSEN 1792x268858.09 29256.30 30363.45 26479.95 13750.93 21254.07 34865.59 27928.56 37561.53 32674.33 30941.09 29966.52 30733.91 35867.69 36072.92 290
test_fmvs151.51 32850.86 33553.48 32449.72 39249.35 23254.11 34764.96 28524.64 38763.66 31759.61 38228.33 37248.45 35745.38 29067.30 36162.66 361
tpm50.60 33152.42 32445.14 36165.18 32526.29 38460.30 31243.50 37637.41 34057.01 35079.09 26630.20 36642.32 38032.77 36366.36 36266.81 340
FPMVS59.43 28460.07 27557.51 31177.62 17671.52 4962.33 29950.92 35557.40 15569.40 26380.00 25039.14 31361.92 32537.47 33766.36 36239.09 392
GG-mvs-BLEND52.24 33060.64 35029.21 37869.73 20942.41 38145.47 38552.33 38920.43 39368.16 28625.52 38865.42 36459.36 371
tpmvs55.84 30055.45 31057.01 31260.33 35133.20 36265.89 26259.29 31547.52 26856.04 35573.60 31631.05 35968.06 28840.64 31564.64 36569.77 320
WTY-MVS49.39 33750.31 34046.62 35561.22 34632.00 36746.61 37049.77 35933.87 35754.12 36569.55 34641.96 29345.40 36731.28 36764.42 36662.47 362
baseline255.57 30452.74 32164.05 25765.26 32344.11 28062.38 29854.43 34039.03 33151.21 37267.35 36033.66 33672.45 24737.14 33964.22 36775.60 268
test_vis1_n51.27 32950.41 33953.83 32256.99 36950.01 22256.75 33260.53 31025.68 38359.74 34157.86 38329.40 36947.41 36143.10 30063.66 36864.08 356
MS-PatchMatch55.59 30354.89 31257.68 31069.18 28349.05 23361.00 30762.93 30035.98 34658.36 34568.93 35036.71 32766.59 30637.62 33663.30 36957.39 375
test_cas_vis1_n_192050.90 33050.92 33450.83 33654.12 38447.80 24751.44 35854.61 33926.95 38063.95 31260.85 37737.86 32244.97 37045.53 28762.97 37059.72 370
test_vis1_n_192052.96 31653.50 31751.32 33459.15 36044.90 27556.13 33764.29 29230.56 37359.87 34060.68 37840.16 30547.47 36048.25 26562.46 37161.58 366
test_f43.79 35445.63 34938.24 37642.29 40038.58 32434.76 38947.68 36622.22 39267.34 29063.15 37031.82 35030.60 39439.19 32262.28 37245.53 388
sss47.59 34248.32 34245.40 36056.73 37233.96 35845.17 37348.51 36332.11 36752.37 36965.79 36340.39 30441.91 38331.85 36461.97 37360.35 368
test_vis1_rt46.70 34445.24 35251.06 33544.58 39751.04 21139.91 38267.56 26721.84 39351.94 37050.79 39133.83 33539.77 38635.25 35361.50 37462.38 363
PMMVS44.69 35043.95 35846.92 35350.05 39153.47 19948.08 36642.40 38222.36 39144.01 39153.05 38842.60 29145.49 36631.69 36561.36 37541.79 390
UnsupCasMVSNet_bld50.01 33551.03 33346.95 35258.61 36332.64 36348.31 36353.27 34934.27 35560.47 33471.53 33141.40 29547.07 36230.68 36860.78 37661.13 367
MVP-Stereo61.56 26759.22 28068.58 21679.28 14660.44 15269.20 21571.57 23143.58 29856.42 35478.37 27439.57 31076.46 20434.86 35460.16 37768.86 329
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DSMNet-mixed43.18 35644.66 35638.75 37454.75 38028.88 37957.06 33127.42 39913.47 39547.27 38377.67 28338.83 31439.29 38825.32 38960.12 37848.08 383
UnsupCasMVSNet_eth52.26 32253.29 32049.16 34555.08 37833.67 36050.03 36058.79 31637.67 33963.43 32174.75 30441.82 29445.83 36438.59 32859.42 37967.98 333
tpm cat154.02 31352.63 32258.19 30764.85 33039.86 31566.26 25957.28 32232.16 36456.90 35170.39 33832.75 34265.30 31034.29 35658.79 38069.41 324
CHOSEN 280x42041.62 35739.89 36246.80 35461.81 34251.59 20733.56 39035.74 39527.48 37837.64 39653.53 38623.24 38942.09 38127.39 38258.64 38146.72 385
tpmrst50.15 33451.38 32946.45 35656.05 37324.77 38864.40 28349.98 35836.14 34553.32 36769.59 34535.16 33148.69 35539.24 32158.51 38265.89 343
PatchmatchNetpermissive54.60 30854.27 31455.59 31765.17 32639.08 31866.92 25151.80 35439.89 32558.39 34473.12 32131.69 35258.33 33543.01 30158.38 38369.38 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet45.53 34647.29 34640.24 37262.29 34026.82 38356.02 33837.41 39429.74 37443.69 39281.27 22833.96 33455.48 34124.46 39056.79 38438.43 393
ADS-MVSNet248.76 33847.25 34753.29 32755.90 37540.54 31147.34 36854.99 33831.41 37050.48 37572.06 32631.23 35554.26 34525.93 38555.93 38565.07 349
ADS-MVSNet44.62 35145.58 35041.73 37055.90 37520.83 39547.34 36839.94 39131.41 37050.48 37572.06 32631.23 35539.31 38725.93 38555.93 38565.07 349
EPMVS45.74 34546.53 34843.39 36754.14 38322.33 39455.02 34335.00 39634.69 35351.09 37370.20 34025.92 38042.04 38237.19 33855.50 38765.78 344
JIA-IIPM54.03 31251.62 32661.25 28759.14 36155.21 18759.10 31847.72 36550.85 23550.31 37885.81 17120.10 39463.97 31536.16 34755.41 38864.55 354
dmvs_testset45.26 34747.51 34538.49 37559.96 35514.71 39958.50 32443.39 37741.30 31151.79 37156.48 38439.44 31149.91 35321.42 39355.35 38950.85 380
new_pmnet37.55 36139.80 36330.79 37756.83 37016.46 39839.35 38330.65 39725.59 38445.26 38661.60 37524.54 38628.02 39621.60 39252.80 39047.90 384
dp44.09 35344.88 35541.72 37158.53 36423.18 39154.70 34642.38 38334.80 35144.25 39065.61 36424.48 38744.80 37129.77 37349.42 39157.18 376
mvsany_test343.76 35541.01 35952.01 33248.09 39457.74 17342.47 37823.85 40223.30 39064.80 30462.17 37427.12 37440.59 38529.17 37848.11 39257.69 374
MVEpermissive27.91 2336.69 36235.64 36539.84 37343.37 39835.85 34619.49 39224.61 40024.68 38639.05 39462.63 37338.67 31627.10 39721.04 39447.25 39356.56 377
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mvsany_test137.88 35935.74 36444.28 36447.28 39549.90 22436.54 38824.37 40119.56 39445.76 38453.46 38732.99 34037.97 39026.17 38335.52 39444.99 389
PVSNet_036.71 2241.12 35840.78 36142.14 36859.97 35440.13 31340.97 37942.24 38530.81 37244.86 38849.41 39240.70 30245.12 36923.15 39134.96 39541.16 391
tmp_tt11.98 36514.73 3683.72 3812.28 4034.62 40519.44 39314.50 4040.47 39921.55 3979.58 39725.78 3814.57 40011.61 39827.37 3961.96 396
test_method19.26 36319.12 36719.71 3799.09 4021.91 4067.79 39453.44 3471.42 39710.27 39935.80 39417.42 39825.11 39812.44 39724.38 39732.10 394
DeepMVS_CXcopyleft11.83 38015.51 40113.86 40011.25 4055.76 39620.85 39826.46 39517.06 3999.22 3999.69 39913.82 39812.42 395
test1234.43 3685.78 3710.39 3830.97 4040.28 40746.33 3720.45 4060.31 4000.62 4011.50 4000.61 4060.11 4020.56 4000.63 3990.77 398
testmvs4.06 3695.28 3720.41 3820.64 4050.16 40842.54 3770.31 4070.26 4010.50 4021.40 4010.77 4050.17 4010.56 4000.55 4000.90 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k17.71 36423.62 3660.00 3840.00 4060.00 4090.00 39570.17 2530.00 4020.00 40374.25 31168.16 950.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.20 3676.93 3700.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40262.39 1490.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re5.62 3667.50 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40367.46 3580.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS22.69 39236.10 348
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
test_one_060185.84 6161.45 13485.63 2775.27 1785.62 4890.38 6476.72 27
eth-test20.00 406
eth-test0.00 406
test_241102_ONE86.12 5361.06 14184.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
test072686.16 5160.78 14883.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
GSMVS70.05 317
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 35370.05 317
sam_mvs31.21 357
MTGPAbinary80.63 123
test_post166.63 2552.08 39830.66 36259.33 33140.34 317
test_post1.99 39930.91 36054.76 344
patchmatchnet-post68.99 34831.32 35469.38 276
MTMP84.83 3119.26 403
gm-plane-assit62.51 33933.91 35937.25 34162.71 37272.74 24038.70 325
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
test_prior470.14 6377.57 102
test_prior75.27 10282.15 11659.85 15684.33 5983.39 8682.58 171
旧先验271.17 19045.11 28678.54 13161.28 32759.19 176
新几何271.33 186
无先验74.82 13970.94 24747.75 26676.85 20054.47 21372.09 300
原ACMM274.78 143
testdata267.30 29548.34 263
segment_acmp68.30 94
testdata168.34 23157.24 156
plane_prior785.18 6666.21 94
plane_prior684.18 8565.31 10360.83 170
plane_prior489.11 95
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 81
n20.00 408
nn0.00 408
door-mid55.02 337
test1182.71 84
door52.91 351
HQP5-MVS58.80 167
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
BP-MVS67.38 102
HQP4-MVS71.59 23385.31 5283.74 134
HQP2-MVS58.09 197
NP-MVS83.34 9563.07 12285.97 167
MDTV_nov1_ep13_2view18.41 39653.74 34931.57 36944.89 38729.90 36832.93 36271.48 304
Test By Simon62.56 145