This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 4098.93 10499.65 4699.72 1898.93 2699.95 2499.11 55100.00 199.82 27
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 4999.48 3399.92 899.71 1998.07 9399.96 1299.53 31100.00 199.93 10
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1299.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 22
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3799.31 42100.00 199.82 27
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21699.90 1199.33 5199.97 399.66 2999.71 399.96 1299.79 1299.99 599.96 7
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 17099.95 199.45 3799.98 299.75 1399.80 199.97 599.82 799.99 599.99 2
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8197.73 18097.93 19399.83 2299.22 6199.93 699.30 10199.42 1099.96 1299.85 599.99 599.29 219
UA-Net99.47 1399.40 2299.70 299.49 11599.29 2399.80 499.72 3599.82 599.04 14799.81 698.05 9699.96 1298.85 7499.99 599.86 21
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 4899.09 8699.89 1599.68 2299.53 799.97 599.50 3499.99 599.87 18
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3699.27 5899.90 1299.74 1599.68 499.97 599.55 3099.99 599.88 17
v1098.97 7099.11 5498.55 20699.44 12996.21 25298.90 8099.55 7798.73 11499.48 7099.60 4196.63 19499.83 16399.70 2199.99 599.61 78
fmvsm_s_conf0.1_n_a99.17 4499.30 3598.80 16399.75 3396.59 24297.97 19299.86 1598.22 15399.88 1799.71 1998.59 5099.84 14699.73 1899.98 1299.98 3
fmvsm_s_conf0.1_n99.16 4799.33 2998.64 18699.71 4596.10 25397.87 20499.85 1798.56 13199.90 1299.68 2298.69 4199.85 12899.72 2099.98 1299.97 4
fmvsm_s_conf0.5_n99.09 5799.26 4098.61 19499.55 9396.09 25697.74 22199.81 2598.55 13299.85 1999.55 5298.60 4999.84 14699.69 2399.98 1299.89 14
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 6998.10 13697.68 22799.84 2099.29 5699.92 899.57 4599.60 599.96 1299.74 1799.98 1299.89 14
test_fmvsmvis_n_192099.26 3599.49 1398.54 20999.66 6296.97 22298.00 18499.85 1799.24 6099.92 899.50 6299.39 1199.95 2499.89 399.98 1298.71 317
v899.01 6499.16 4898.57 20199.47 12496.31 25098.90 8099.47 10799.03 9499.52 6399.57 4596.93 17499.81 18799.60 2599.98 1299.60 79
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7399.11 7699.70 3699.73 1799.00 2299.97 599.26 4699.98 1299.89 14
fmvsm_s_conf0.5_n_a99.10 5699.20 4498.78 16999.55 9396.59 24297.79 21399.82 2498.21 15499.81 2499.53 5898.46 6099.84 14699.70 2199.97 1999.90 13
pmmvs-eth3d98.47 14998.34 15398.86 15599.30 15997.76 17697.16 27899.28 18895.54 31899.42 8399.19 12497.27 15599.63 29797.89 13499.97 1999.20 236
IterMVS-LS98.55 13898.70 9898.09 25099.48 12294.73 29997.22 27399.39 13698.97 10099.38 9199.31 10096.00 22099.93 4498.58 9399.97 1999.60 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 2999.63 2199.78 2799.67 2799.48 999.81 18799.30 4399.97 1999.77 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs5depth99.30 2999.59 998.44 22299.65 6395.35 27999.82 399.94 299.83 499.42 8399.94 298.13 9199.96 1299.63 2499.96 23100.00 1
fmvsm_l_conf0.5_n_a99.19 4399.27 3898.94 14499.65 6397.05 21897.80 21299.76 3198.70 11799.78 2799.11 14498.79 3499.95 2499.85 599.96 2399.83 24
fmvsm_l_conf0.5_n99.21 4199.28 3799.02 13499.64 6997.28 20497.82 20999.76 3198.73 11499.82 2199.09 15098.81 3299.95 2499.86 499.96 2399.83 24
MM98.22 18097.99 19498.91 15098.66 29996.97 22297.89 20094.44 39499.54 3098.95 16299.14 14193.50 29099.92 5399.80 1199.96 2399.85 22
test_fmvs399.12 5499.41 2198.25 24099.76 2995.07 29199.05 6499.94 297.78 18999.82 2199.84 398.56 5499.71 25599.96 199.96 2399.97 4
Anonymous2024052198.69 11198.87 7698.16 24899.77 2695.11 29099.08 5899.44 11899.34 5099.33 10099.55 5294.10 28299.94 3799.25 4899.96 2399.42 168
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5599.66 1799.68 4099.66 2998.44 6199.95 2499.73 1899.96 2399.75 46
mmtdpeth99.30 2999.42 2098.92 14999.58 7696.89 22999.48 1099.92 799.92 298.26 25299.80 998.33 7099.91 6299.56 2999.95 3099.97 4
test250692.39 37591.89 37793.89 39199.38 14082.28 42199.32 2366.03 42799.08 8898.77 19599.57 4566.26 41799.84 14698.71 8699.95 3099.54 113
test111196.49 29996.82 27395.52 37199.42 13587.08 40599.22 4287.14 41999.11 7699.46 7599.58 4388.69 33899.86 11698.80 7699.95 3099.62 70
ECVR-MVScopyleft96.42 30196.61 28795.85 36399.38 14088.18 40199.22 4286.00 42199.08 8899.36 9599.57 4588.47 34399.82 17398.52 9999.95 3099.54 113
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 5999.90 399.86 1899.78 1099.58 699.95 2499.00 6499.95 3099.78 35
D2MVS97.84 21697.84 20897.83 26799.14 20094.74 29896.94 28798.88 27095.84 31098.89 17598.96 18594.40 27299.69 26397.55 15699.95 3099.05 260
PS-CasMVS99.40 2299.33 2999.62 999.71 4599.10 6499.29 3399.53 8499.53 3199.46 7599.41 8198.23 7799.95 2498.89 7299.95 3099.81 30
CHOSEN 1792x268897.49 23997.14 25498.54 20999.68 5696.09 25696.50 31099.62 5291.58 38498.84 18598.97 18292.36 30899.88 9196.76 21499.95 3099.67 59
MVS_030497.44 24497.01 26098.72 18096.42 41096.74 23797.20 27491.97 41098.46 13698.30 24698.79 22192.74 30499.91 6299.30 4399.94 3899.52 124
IterMVS-SCA-FT97.85 21598.18 17396.87 33299.27 16491.16 38195.53 36099.25 19799.10 8399.41 8599.35 8993.10 29599.96 1298.65 9099.94 3899.49 134
FC-MVSNet-test99.27 3399.25 4199.34 7599.77 2698.37 11399.30 3299.57 6699.61 2699.40 8899.50 6297.12 16399.85 12899.02 6399.94 3899.80 31
UGNet98.53 14298.45 13698.79 16697.94 35796.96 22499.08 5898.54 31099.10 8396.82 34699.47 6996.55 19799.84 14698.56 9899.94 3899.55 109
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS97.73 22198.11 18296.57 34299.24 17190.28 39095.52 36299.21 20698.86 10999.33 10099.33 9593.11 29499.94 3798.49 10099.94 3899.48 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_n_192098.40 15698.92 7196.81 33699.74 3590.76 38798.15 16099.91 998.33 14199.89 1599.55 5295.07 25399.88 9199.76 1599.93 4399.79 32
test_f98.67 11998.87 7698.05 25799.72 4295.59 26898.51 12399.81 2596.30 29499.78 2799.82 596.14 21398.63 40699.82 799.93 4399.95 8
CHOSEN 280x42095.51 32995.47 31895.65 36998.25 34088.27 40093.25 40798.88 27093.53 36294.65 39397.15 35786.17 35499.93 4497.41 16499.93 4398.73 316
CANet97.87 20997.76 21198.19 24597.75 36495.51 27396.76 29899.05 24197.74 19096.93 33598.21 29895.59 23999.89 7997.86 13999.93 4399.19 241
v114498.60 13098.66 10498.41 22599.36 14795.90 26197.58 24299.34 15797.51 21199.27 11299.15 13896.34 20899.80 19499.47 3699.93 4399.51 127
PEN-MVS99.41 2199.34 2899.62 999.73 3699.14 5699.29 3399.54 8199.62 2499.56 5399.42 7798.16 8899.96 1298.78 7899.93 4399.77 37
DTE-MVSNet99.43 1999.35 2699.66 799.71 4599.30 2199.31 2799.51 8899.64 1999.56 5399.46 7098.23 7799.97 598.78 7899.93 4399.72 48
CP-MVSNet99.21 4199.09 5799.56 2599.65 6398.96 7499.13 5599.34 15799.42 4299.33 10099.26 11097.01 17199.94 3798.74 8399.93 4399.79 32
WR-MVS_H99.33 2799.22 4399.65 899.71 4599.24 2999.32 2399.55 7799.46 3699.50 6999.34 9397.30 15299.93 4498.90 7099.93 4399.77 37
PVSNet_BlendedMVS97.55 23597.53 22997.60 28998.92 24393.77 33496.64 30499.43 12494.49 34297.62 29799.18 12896.82 18199.67 27594.73 30799.93 4399.36 197
Vis-MVSNetpermissive99.34 2699.36 2599.27 9099.73 3698.26 12099.17 5099.78 2999.11 7699.27 11299.48 6898.82 3199.95 2498.94 6899.93 4399.59 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SDMVSNet99.23 4099.32 3198.96 14199.68 5697.35 20098.84 8999.48 9999.69 1399.63 4999.68 2299.03 2199.96 1297.97 13199.92 5499.57 96
sd_testset99.28 3299.31 3399.19 10399.68 5698.06 14699.41 1499.30 17799.69 1399.63 4999.68 2299.25 1499.96 1297.25 17299.92 5499.57 96
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3199.64 1999.84 2099.83 499.50 899.87 10899.36 3999.92 5499.64 66
nrg03099.40 2299.35 2699.54 3099.58 7699.13 5998.98 7299.48 9999.68 1599.46 7599.26 11098.62 4799.73 24799.17 5499.92 5499.76 42
v119298.60 13098.66 10498.41 22599.27 16495.88 26297.52 24899.36 14697.41 22499.33 10099.20 12396.37 20699.82 17399.57 2799.92 5499.55 109
OurMVSNet-221017-099.37 2599.31 3399.53 3799.91 398.98 6999.63 799.58 5999.44 3999.78 2799.76 1296.39 20399.92 5399.44 3799.92 5499.68 56
DeepC-MVS97.60 498.97 7098.93 7099.10 11699.35 15197.98 15398.01 18399.46 11097.56 20699.54 5799.50 6298.97 2399.84 14698.06 12499.92 5499.49 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
patch_mono-298.51 14698.63 10898.17 24699.38 14094.78 29697.36 26099.69 4098.16 16498.49 23399.29 10397.06 16699.97 598.29 11099.91 6199.76 42
dcpmvs_298.78 9599.11 5497.78 27199.56 8993.67 33799.06 6299.86 1599.50 3299.66 4399.26 11097.21 16099.99 298.00 12999.91 6199.68 56
Anonymous2023121199.27 3399.27 3899.26 9299.29 16198.18 12899.49 999.51 8899.70 1299.80 2599.68 2296.84 17899.83 16399.21 5199.91 6199.77 37
v14419298.54 14098.57 11898.45 22099.21 17895.98 25997.63 23599.36 14697.15 25499.32 10699.18 12895.84 23299.84 14699.50 3499.91 6199.54 113
PVSNet_Blended_VisFu98.17 18798.15 17898.22 24399.73 3695.15 28797.36 26099.68 4594.45 34698.99 15399.27 10696.87 17799.94 3797.13 18199.91 6199.57 96
test_040298.76 9998.71 9598.93 14699.56 8998.14 13298.45 13399.34 15799.28 5798.95 16298.91 19498.34 6999.79 20795.63 28799.91 6198.86 296
test_fmvs298.70 10898.97 6897.89 26499.54 9894.05 31898.55 11499.92 796.78 27299.72 3299.78 1096.60 19599.67 27599.91 299.90 6799.94 9
v192192098.54 14098.60 11598.38 22899.20 18295.76 26797.56 24499.36 14697.23 24699.38 9199.17 13296.02 21899.84 14699.57 2799.90 6799.54 113
v2v48298.56 13498.62 11098.37 23099.42 13595.81 26597.58 24299.16 22397.90 18099.28 11099.01 17295.98 22599.79 20799.33 4199.90 6799.51 127
TranMVSNet+NR-MVSNet99.17 4499.07 6099.46 5899.37 14698.87 7798.39 13899.42 12799.42 4299.36 9599.06 15198.38 6499.95 2498.34 10799.90 6799.57 96
mamv499.44 1599.39 2399.58 1999.30 15999.74 299.04 6599.81 2599.77 799.82 2199.57 4597.82 11299.98 499.53 3199.89 7199.01 268
FMVSNet199.17 4499.17 4699.17 10499.55 9398.24 12299.20 4599.44 11899.21 6399.43 8099.55 5297.82 11299.86 11698.42 10499.89 7199.41 171
FIs99.14 4999.09 5799.29 8699.70 5298.28 11999.13 5599.52 8799.48 3399.24 12199.41 8196.79 18499.82 17398.69 8899.88 7399.76 42
v124098.55 13898.62 11098.32 23499.22 17695.58 27097.51 25099.45 11497.16 25299.45 7899.24 11596.12 21599.85 12899.60 2599.88 7399.55 109
TAMVS98.24 17998.05 18898.80 16399.07 21397.18 21397.88 20198.81 28696.66 27899.17 13199.21 12194.81 26299.77 22496.96 19599.88 7399.44 161
WBMVS95.18 33494.78 34096.37 34797.68 37389.74 39495.80 35298.73 29997.54 20998.30 24698.44 27770.06 40799.82 17396.62 22699.87 7699.54 113
test_fmvs1_n98.09 19198.28 16097.52 29999.68 5693.47 34198.63 10599.93 595.41 32599.68 4099.64 3491.88 31599.48 34999.82 799.87 7699.62 70
EU-MVSNet97.66 22798.50 12695.13 37899.63 7385.84 40898.35 14298.21 32598.23 15299.54 5799.46 7095.02 25499.68 27298.24 11199.87 7699.87 18
MIMVSNet199.38 2499.32 3199.55 2799.86 1499.19 4199.41 1499.59 5799.59 2799.71 3499.57 4597.12 16399.90 6899.21 5199.87 7699.54 113
test_cas_vis1_n_192098.33 16698.68 10197.27 31399.69 5492.29 36298.03 17899.85 1797.62 19899.96 499.62 3693.98 28399.74 24299.52 3399.86 8099.79 32
CS-MVS99.13 5299.10 5699.24 9799.06 21899.15 5199.36 1999.88 1399.36 4998.21 25498.46 27598.68 4299.93 4499.03 6299.85 8198.64 326
SPE-MVS-test99.13 5299.09 5799.26 9299.13 20298.97 7099.31 2799.88 1399.44 3998.16 25898.51 26798.64 4499.93 4498.91 6999.85 8198.88 294
v14898.45 15198.60 11598.00 26099.44 12994.98 29297.44 25699.06 23898.30 14599.32 10698.97 18296.65 19399.62 30098.37 10599.85 8199.39 181
WR-MVS98.40 15698.19 17299.03 13299.00 22897.65 18496.85 29398.94 25798.57 12898.89 17598.50 27195.60 23899.85 12897.54 15899.85 8199.59 85
test_vis1_n98.31 16998.50 12697.73 28099.76 2994.17 31598.68 10299.91 996.31 29299.79 2699.57 4592.85 30299.42 36199.79 1299.84 8599.60 79
CANet_DTU97.26 25897.06 25797.84 26697.57 37594.65 30396.19 32998.79 28997.23 24695.14 38798.24 29593.22 29299.84 14697.34 16799.84 8599.04 264
V4298.78 9598.78 8698.76 17399.44 12997.04 21998.27 14799.19 21297.87 18299.25 12099.16 13496.84 17899.78 21899.21 5199.84 8599.46 153
VPA-MVSNet99.30 2999.30 3599.28 8799.49 11598.36 11699.00 6999.45 11499.63 2199.52 6399.44 7598.25 7599.88 9199.09 5799.84 8599.62 70
SixPastTwentyTwo98.75 10098.62 11099.16 10799.83 1897.96 15799.28 3798.20 32699.37 4699.70 3699.65 3392.65 30699.93 4499.04 6199.84 8599.60 79
HyFIR lowres test97.19 26596.60 28998.96 14199.62 7597.28 20495.17 37299.50 9094.21 35199.01 15198.32 29186.61 35099.99 297.10 18399.84 8599.60 79
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3699.38 4599.53 6199.61 3998.64 4499.80 19498.24 11199.84 8599.52 124
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5199.30 5599.65 4699.60 4199.16 2099.82 17399.07 5899.83 9299.56 102
Baseline_NR-MVSNet98.98 6998.86 7999.36 6699.82 1998.55 9997.47 25499.57 6699.37 4699.21 12499.61 3996.76 18799.83 16398.06 12499.83 9299.71 49
Patchmtry97.35 25196.97 26198.50 21697.31 39196.47 24598.18 15598.92 26398.95 10398.78 19299.37 8485.44 36299.85 12895.96 27199.83 9299.17 248
ppachtmachnet_test97.50 23697.74 21396.78 33898.70 28491.23 38094.55 39199.05 24196.36 28999.21 12498.79 22196.39 20399.78 21896.74 21699.82 9599.34 203
EI-MVSNet98.40 15698.51 12498.04 25899.10 20694.73 29997.20 27498.87 27298.97 10099.06 14099.02 16396.00 22099.80 19498.58 9399.82 9599.60 79
NR-MVSNet98.95 7398.82 8299.36 6699.16 19598.72 8999.22 4299.20 20899.10 8399.72 3298.76 22796.38 20599.86 11698.00 12999.82 9599.50 130
MVSTER96.86 28496.55 29197.79 27097.91 35994.21 31397.56 24498.87 27297.49 21499.06 14099.05 15880.72 38699.80 19498.44 10299.82 9599.37 190
reproduce_monomvs95.00 33995.25 32894.22 38697.51 38583.34 41897.86 20598.44 31598.51 13399.29 10999.30 10167.68 41399.56 32298.89 7299.81 9999.77 37
testf199.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 4098.90 10699.43 8099.35 8998.86 2899.67 27597.81 14099.81 9999.24 229
APD_test299.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 4098.90 10699.43 8099.35 8998.86 2899.67 27597.81 14099.81 9999.24 229
cl____97.02 27696.83 27297.58 29197.82 36294.04 32094.66 38699.16 22397.04 25798.63 21198.71 23388.68 34099.69 26397.00 18999.81 9999.00 272
DIV-MVS_self_test97.02 27696.84 27197.58 29197.82 36294.03 32194.66 38699.16 22397.04 25798.63 21198.71 23388.69 33899.69 26397.00 18999.81 9999.01 268
eth_miper_zixun_eth97.23 26297.25 24697.17 31898.00 35592.77 35294.71 38399.18 21697.27 23898.56 22498.74 22991.89 31499.69 26397.06 18799.81 9999.05 260
PMMVS298.07 19398.08 18698.04 25899.41 13794.59 30594.59 39099.40 13497.50 21298.82 18998.83 21396.83 18099.84 14697.50 16199.81 9999.71 49
K. test v398.00 19797.66 22199.03 13299.79 2297.56 18999.19 4992.47 40699.62 2499.52 6399.66 2989.61 33299.96 1299.25 4899.81 9999.56 102
casdiffmvs_mvgpermissive99.12 5499.16 4898.99 13799.43 13497.73 18098.00 18499.62 5299.22 6199.55 5699.22 12098.93 2699.75 23798.66 8999.81 9999.50 130
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet97.69 22497.35 24198.69 18298.73 27597.02 22196.92 29198.75 29695.89 30998.59 21998.67 24192.08 31399.74 24296.72 21999.81 9999.32 210
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG98.68 11698.50 12699.20 10199.45 12898.63 9198.56 11399.57 6697.87 18298.85 18398.04 31297.66 12299.84 14696.72 21999.81 9999.13 253
miper_lstm_enhance97.18 26697.16 25197.25 31598.16 34692.85 35095.15 37499.31 16997.25 24098.74 20098.78 22390.07 32999.78 21897.19 17499.80 11099.11 255
UniMVSNet (Re)98.87 8298.71 9599.35 7299.24 17198.73 8797.73 22399.38 13898.93 10499.12 13298.73 23096.77 18599.86 11698.63 9299.80 11099.46 153
FMVSNet298.49 14798.40 14398.75 17598.90 24797.14 21798.61 10899.13 22998.59 12499.19 12699.28 10494.14 27899.82 17397.97 13199.80 11099.29 219
XXY-MVS99.14 4999.15 5399.10 11699.76 2997.74 17898.85 8799.62 5298.48 13599.37 9399.49 6798.75 3699.86 11698.20 11499.80 11099.71 49
IS-MVSNet98.19 18497.90 20499.08 12099.57 8197.97 15499.31 2798.32 32199.01 9698.98 15499.03 16291.59 31799.79 20795.49 29299.80 11099.48 144
mvsany_test398.87 8298.92 7198.74 17999.38 14096.94 22698.58 11199.10 23396.49 28499.96 499.81 698.18 8499.45 35698.97 6699.79 11599.83 24
EI-MVSNet-UG-set98.69 11198.71 9598.62 19199.10 20696.37 24797.23 27098.87 27299.20 6599.19 12698.99 17697.30 15299.85 12898.77 8199.79 11599.65 65
pmmvs497.58 23397.28 24498.51 21298.84 25996.93 22795.40 36798.52 31293.60 36198.61 21598.65 24695.10 25299.60 30796.97 19499.79 11598.99 273
test20.0398.78 9598.77 8798.78 16999.46 12597.20 21197.78 21499.24 20299.04 9399.41 8598.90 19797.65 12399.76 23097.70 14999.79 11599.39 181
Vis-MVSNet (Re-imp)97.46 24197.16 25198.34 23399.55 9396.10 25398.94 7798.44 31598.32 14398.16 25898.62 25388.76 33799.73 24793.88 33599.79 11599.18 244
BP-MVS197.40 24896.97 26198.71 18199.07 21396.81 23298.34 14497.18 35498.58 12798.17 25598.61 25584.01 37399.94 3798.97 6699.78 12099.37 190
MVSMamba_PlusPlus98.83 8798.98 6798.36 23199.32 15596.58 24498.90 8099.41 13199.75 898.72 20199.50 6296.17 21299.94 3799.27 4599.78 12098.57 333
EI-MVSNet-Vis-set98.68 11698.70 9898.63 19099.09 20996.40 24697.23 27098.86 27799.20 6599.18 13098.97 18297.29 15499.85 12898.72 8599.78 12099.64 66
LPG-MVS_test98.71 10498.46 13599.47 5699.57 8198.97 7098.23 15099.48 9996.60 27999.10 13699.06 15198.71 3999.83 16395.58 29099.78 12099.62 70
LGP-MVS_train99.47 5699.57 8198.97 7099.48 9996.60 27999.10 13699.06 15198.71 3999.83 16395.58 29099.78 12099.62 70
CLD-MVS97.49 23997.16 25198.48 21799.07 21397.03 22094.71 38399.21 20694.46 34498.06 26897.16 35697.57 13299.48 34994.46 31599.78 12098.95 280
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs197.72 22297.94 20097.07 32398.66 29992.39 35997.68 22799.81 2595.20 32999.54 5799.44 7591.56 31899.41 36299.78 1499.77 12699.40 180
balanced_conf0398.63 12598.72 9298.38 22898.66 29996.68 24198.90 8099.42 12798.99 9798.97 15899.19 12495.81 23399.85 12898.77 8199.77 12698.60 329
new-patchmatchnet98.35 16298.74 8897.18 31699.24 17192.23 36496.42 31599.48 9998.30 14599.69 3899.53 5897.44 14699.82 17398.84 7599.77 12699.49 134
Patchmatch-RL test97.26 25897.02 25997.99 26199.52 10395.53 27296.13 33399.71 3697.47 21599.27 11299.16 13484.30 37199.62 30097.89 13499.77 12698.81 303
UniMVSNet_NR-MVSNet98.86 8598.68 10199.40 6499.17 19398.74 8497.68 22799.40 13499.14 7499.06 14098.59 25896.71 19199.93 4498.57 9599.77 12699.53 121
DU-MVS98.82 8998.63 10899.39 6599.16 19598.74 8497.54 24699.25 19798.84 11299.06 14098.76 22796.76 18799.93 4498.57 9599.77 12699.50 130
EC-MVSNet99.09 5799.05 6199.20 10199.28 16298.93 7599.24 4199.84 2099.08 8898.12 26398.37 28498.72 3899.90 6899.05 6099.77 12698.77 311
ACMMP++_ref99.77 126
wuyk23d96.06 31097.62 22591.38 40098.65 30398.57 9898.85 8796.95 36396.86 26899.90 1299.16 13499.18 1798.40 40889.23 39799.77 12677.18 420
ACMP95.32 1598.41 15498.09 18399.36 6699.51 10598.79 8297.68 22799.38 13895.76 31298.81 19198.82 21698.36 6599.82 17394.75 30699.77 12699.48 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+96.62 999.08 6199.00 6499.33 8099.71 4598.83 7998.60 10999.58 5999.11 7699.53 6199.18 12898.81 3299.67 27596.71 22199.77 12699.50 130
ACMH96.65 799.25 3699.24 4299.26 9299.72 4298.38 11199.07 6199.55 7798.30 14599.65 4699.45 7499.22 1599.76 23098.44 10299.77 12699.64 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
c3_l97.36 25097.37 23997.31 31098.09 35193.25 34395.01 37799.16 22397.05 25698.77 19598.72 23292.88 30099.64 29496.93 19699.76 13899.05 260
pmmvs597.64 22897.49 23298.08 25399.14 20095.12 28996.70 30299.05 24193.77 35998.62 21398.83 21393.23 29199.75 23798.33 10999.76 13899.36 197
baseline98.96 7299.02 6298.76 17399.38 14097.26 20698.49 12699.50 9098.86 10999.19 12699.06 15198.23 7799.69 26398.71 8699.76 13899.33 208
COLMAP_ROBcopyleft96.50 1098.99 6698.85 8099.41 6299.58 7699.10 6498.74 9299.56 7399.09 8699.33 10099.19 12498.40 6399.72 25495.98 27099.76 13899.42 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SD-MVS98.40 15698.68 10197.54 29798.96 23597.99 15097.88 20199.36 14698.20 15899.63 4999.04 16098.76 3595.33 42096.56 23599.74 14299.31 214
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS98.82 8998.72 9299.12 11299.64 6998.54 10297.98 18999.68 4597.62 19899.34 9999.18 12897.54 13599.77 22497.79 14299.74 14299.04 264
XVG-ACMP-BASELINE98.56 13498.34 15399.22 10099.54 9898.59 9697.71 22499.46 11097.25 24098.98 15498.99 17697.54 13599.84 14695.88 27399.74 14299.23 231
reproduce_model99.15 4898.97 6899.67 499.33 15499.44 1098.15 16099.47 10799.12 7599.52 6399.32 9998.31 7199.90 6897.78 14399.73 14599.66 60
GeoE99.05 6298.99 6699.25 9599.44 12998.35 11798.73 9699.56 7398.42 13798.91 17298.81 21898.94 2599.91 6298.35 10699.73 14599.49 134
Anonymous2023120698.21 18298.21 16998.20 24499.51 10595.43 27798.13 16299.32 16496.16 29798.93 17098.82 21696.00 22099.83 16397.32 16899.73 14599.36 197
casdiffmvspermissive98.95 7399.00 6498.81 16199.38 14097.33 20197.82 20999.57 6699.17 7299.35 9799.17 13298.35 6899.69 26398.46 10199.73 14599.41 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason97.45 24397.35 24197.76 27599.24 17193.93 32695.86 34898.42 31794.24 35098.50 23298.13 30294.82 26099.91 6297.22 17399.73 14599.43 165
jason: jason.
N_pmnet97.63 22997.17 25098.99 13799.27 16497.86 16495.98 33893.41 40395.25 32799.47 7498.90 19795.63 23799.85 12896.91 19799.73 14599.27 222
USDC97.41 24797.40 23697.44 30698.94 23793.67 33795.17 37299.53 8494.03 35698.97 15899.10 14795.29 24799.34 37295.84 27999.73 14599.30 217
Gipumacopyleft99.03 6399.16 4898.64 18699.94 298.51 10499.32 2399.75 3499.58 2998.60 21799.62 3698.22 8099.51 34297.70 14999.73 14597.89 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EGC-MVSNET85.24 38580.54 38899.34 7599.77 2699.20 3899.08 5899.29 18512.08 42320.84 42499.42 7797.55 13499.85 12897.08 18499.72 15398.96 279
lessismore_v098.97 14099.73 3697.53 19186.71 42099.37 9399.52 6189.93 33099.92 5398.99 6599.72 15399.44 161
CP-MVS98.70 10898.42 14199.52 4299.36 14799.12 6198.72 9799.36 14697.54 20998.30 24698.40 28097.86 10899.89 7996.53 24099.72 15399.56 102
SteuartSystems-ACMMP98.79 9398.54 12199.54 3099.73 3699.16 4798.23 15099.31 16997.92 17898.90 17398.90 19798.00 9999.88 9196.15 26399.72 15399.58 91
Skip Steuart: Steuart Systems R&D Blog.
LF4IMVS97.90 20397.69 21798.52 21199.17 19397.66 18397.19 27799.47 10796.31 29297.85 28498.20 29996.71 19199.52 33794.62 31099.72 15398.38 350
reproduce-ours99.09 5798.90 7399.67 499.27 16499.49 698.00 18499.42 12799.05 9199.48 7099.27 10698.29 7399.89 7997.61 15399.71 15899.62 70
our_new_method99.09 5798.90 7399.67 499.27 16499.49 698.00 18499.42 12799.05 9199.48 7099.27 10698.29 7399.89 7997.61 15399.71 15899.62 70
KD-MVS_self_test99.25 3699.18 4599.44 5999.63 7399.06 6898.69 10199.54 8199.31 5399.62 5299.53 5897.36 15099.86 11699.24 5099.71 15899.39 181
test_0728_THIRD98.17 16199.08 13899.02 16397.89 10699.88 9197.07 18599.71 15899.70 54
HPM-MVS_fast99.01 6498.82 8299.57 2099.71 4599.35 1699.00 6999.50 9097.33 23198.94 16998.86 20798.75 3699.82 17397.53 15999.71 15899.56 102
FMVSNet596.01 31295.20 33198.41 22597.53 38096.10 25398.74 9299.50 9097.22 24998.03 27299.04 16069.80 40899.88 9197.27 17099.71 15899.25 226
RPSCF98.62 12898.36 15099.42 6099.65 6399.42 1198.55 11499.57 6697.72 19298.90 17399.26 11096.12 21599.52 33795.72 28399.71 15899.32 210
MP-MVS-pluss98.57 13398.23 16899.60 1499.69 5499.35 1697.16 27899.38 13894.87 33698.97 15898.99 17698.01 9899.88 9197.29 16999.70 16599.58 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA98.88 8198.64 10799.61 1299.67 6099.36 1598.43 13499.20 20898.83 11398.89 17598.90 19796.98 17399.92 5397.16 17699.70 16599.56 102
APDe-MVScopyleft98.99 6698.79 8599.60 1499.21 17899.15 5198.87 8499.48 9997.57 20499.35 9799.24 11597.83 10999.89 7997.88 13799.70 16599.75 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
tfpnnormal98.90 7998.90 7398.91 15099.67 6097.82 17099.00 6999.44 11899.45 3799.51 6899.24 11598.20 8399.86 11695.92 27299.69 16899.04 264
GBi-Net98.65 12198.47 13399.17 10498.90 24798.24 12299.20 4599.44 11898.59 12498.95 16299.55 5294.14 27899.86 11697.77 14499.69 16899.41 171
test198.65 12198.47 13399.17 10498.90 24798.24 12299.20 4599.44 11898.59 12498.95 16299.55 5294.14 27899.86 11697.77 14499.69 16899.41 171
FMVSNet397.50 23697.24 24798.29 23898.08 35295.83 26497.86 20598.91 26597.89 18198.95 16298.95 18987.06 34799.81 18797.77 14499.69 16899.23 231
ACMMPcopyleft98.75 10098.50 12699.52 4299.56 8999.16 4798.87 8499.37 14297.16 25298.82 18999.01 17297.71 11999.87 10896.29 25599.69 16899.54 113
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft98.59 13298.26 16499.57 2099.27 16499.15 5197.01 28399.39 13697.67 19499.44 7998.99 17697.53 13799.89 7995.40 29499.68 17399.66 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-OURS98.53 14298.34 15399.11 11499.50 10898.82 8195.97 33999.50 9097.30 23599.05 14598.98 18099.35 1299.32 37595.72 28399.68 17399.18 244
EPNet96.14 30995.44 32198.25 24090.76 42595.50 27497.92 19694.65 39298.97 10092.98 40898.85 21089.12 33699.87 10895.99 26999.68 17399.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS98.99 6699.01 6398.94 14499.50 10897.47 19398.04 17799.59 5798.15 16599.40 8899.36 8898.58 5399.76 23098.78 7899.68 17399.59 85
ACMMP++99.68 173
EPP-MVSNet98.30 17098.04 18999.07 12299.56 8997.83 16799.29 3398.07 33299.03 9498.59 21999.13 14292.16 31199.90 6896.87 20599.68 17399.49 134
our_test_397.39 24997.73 21596.34 34898.70 28489.78 39394.61 38998.97 25696.50 28399.04 14798.85 21095.98 22599.84 14697.26 17199.67 17999.41 171
ACMMP_NAP98.75 10098.48 13199.57 2099.58 7699.29 2397.82 20999.25 19796.94 26398.78 19299.12 14398.02 9799.84 14697.13 18199.67 17999.59 85
HPM-MVScopyleft98.79 9398.53 12299.59 1899.65 6399.29 2399.16 5199.43 12496.74 27498.61 21598.38 28398.62 4799.87 10896.47 24399.67 17999.59 85
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator98.27 298.81 9198.73 9099.05 12998.76 27197.81 17399.25 4099.30 17798.57 12898.55 22699.33 9597.95 10499.90 6897.16 17699.67 17999.44 161
PMVScopyleft91.26 2097.86 21097.94 20097.65 28499.71 4597.94 15998.52 11898.68 30298.99 9797.52 30799.35 8997.41 14798.18 41191.59 37699.67 17996.82 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DP-MVS98.93 7598.81 8499.28 8799.21 17898.45 10898.46 13199.33 16299.63 2199.48 7099.15 13897.23 15899.75 23797.17 17599.66 18499.63 69
MVS_111021_LR98.30 17098.12 18198.83 15899.16 19598.03 14896.09 33599.30 17797.58 20398.10 26598.24 29598.25 7599.34 37296.69 22299.65 18599.12 254
ACMM96.08 1298.91 7798.73 9099.48 5399.55 9399.14 5698.07 17299.37 14297.62 19899.04 14798.96 18598.84 3099.79 20797.43 16399.65 18599.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS98.68 11698.40 14399.54 3099.57 8199.21 3298.46 13199.29 18597.28 23798.11 26498.39 28198.00 9999.87 10896.86 20799.64 18799.55 109
SMA-MVScopyleft98.40 15698.03 19099.51 4699.16 19599.21 3298.05 17599.22 20594.16 35298.98 15499.10 14797.52 13999.79 20796.45 24599.64 18799.53 121
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
diffmvspermissive98.22 18098.24 16798.17 24699.00 22895.44 27696.38 31799.58 5997.79 18898.53 22998.50 27196.76 18799.74 24297.95 13399.64 18799.34 203
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DVP-MVScopyleft98.77 9898.52 12399.52 4299.50 10899.21 3298.02 18098.84 28197.97 17299.08 13899.02 16397.61 12999.88 9196.99 19199.63 19099.48 144
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1499.50 10899.23 3098.02 18099.32 16499.88 9196.99 19199.63 19099.68 56
VDD-MVS98.56 13498.39 14699.07 12299.13 20298.07 14398.59 11097.01 35999.59 2799.11 13399.27 10694.82 26099.79 20798.34 10799.63 19099.34 203
SED-MVS98.91 7798.72 9299.49 5199.49 11599.17 4398.10 16899.31 16998.03 16899.66 4399.02 16398.36 6599.88 9196.91 19799.62 19399.41 171
IU-MVS99.49 11599.15 5198.87 27292.97 36999.41 8596.76 21499.62 19399.66 60
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6699.39 4499.75 3199.62 3699.17 1899.83 16399.06 5999.62 19399.66 60
mPP-MVS98.64 12398.34 15399.54 3099.54 9899.17 4398.63 10599.24 20297.47 21598.09 26698.68 23997.62 12899.89 7996.22 25899.62 19399.57 96
DeepPCF-MVS96.93 598.32 16798.01 19299.23 9998.39 33398.97 7095.03 37699.18 21696.88 26699.33 10098.78 22398.16 8899.28 38296.74 21699.62 19399.44 161
AllTest98.44 15298.20 17099.16 10799.50 10898.55 9998.25 14999.58 5996.80 27098.88 17899.06 15197.65 12399.57 31994.45 31699.61 19899.37 190
TestCases99.16 10799.50 10898.55 9999.58 5996.80 27098.88 17899.06 15197.65 12399.57 31994.45 31699.61 19899.37 190
MSC_two_6792asdad99.32 8298.43 32898.37 11398.86 27799.89 7997.14 17999.60 20099.71 49
No_MVS99.32 8298.43 32898.37 11398.86 27799.89 7997.14 17999.60 20099.71 49
test_241102_TWO99.30 17798.03 16899.26 11699.02 16397.51 14099.88 9196.91 19799.60 20099.66 60
MP-MVScopyleft98.46 15098.09 18399.54 3099.57 8199.22 3198.50 12599.19 21297.61 20197.58 30198.66 24497.40 14899.88 9194.72 30999.60 20099.54 113
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS98.71 10498.44 13899.51 4699.49 11599.16 4798.52 11899.31 16997.47 21598.58 22198.50 27197.97 10399.85 12896.57 23199.59 20499.53 121
CVMVSNet96.25 30697.21 24993.38 39799.10 20680.56 42497.20 27498.19 32896.94 26399.00 15299.02 16389.50 33499.80 19496.36 25199.59 20499.78 35
ACMMPR98.70 10898.42 14199.54 3099.52 10399.14 5698.52 11899.31 16997.47 21598.56 22498.54 26297.75 11799.88 9196.57 23199.59 20499.58 91
PGM-MVS98.66 12098.37 14999.55 2799.53 10199.18 4298.23 15099.49 9797.01 26098.69 20398.88 20498.00 9999.89 7995.87 27699.59 20499.58 91
DELS-MVS98.27 17498.20 17098.48 21798.86 25596.70 23995.60 35899.20 20897.73 19198.45 23698.71 23397.50 14199.82 17398.21 11399.59 20498.93 285
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 11198.40 14399.54 3099.53 10199.17 4398.52 11899.31 16997.46 22098.44 23798.51 26797.83 10999.88 9196.46 24499.58 20999.58 91
114514_t96.50 29895.77 30698.69 18299.48 12297.43 19797.84 20899.55 7781.42 41696.51 35898.58 25995.53 24099.67 27593.41 34899.58 20998.98 274
PHI-MVS98.29 17397.95 19899.34 7598.44 32799.16 4798.12 16599.38 13896.01 30498.06 26898.43 27897.80 11499.67 27595.69 28599.58 20999.20 236
TinyColmap97.89 20597.98 19597.60 28998.86 25594.35 31096.21 32799.44 11897.45 22299.06 14098.88 20497.99 10299.28 38294.38 32299.58 20999.18 244
MVSFormer98.26 17698.43 13997.77 27298.88 25393.89 33099.39 1799.56 7399.11 7698.16 25898.13 30293.81 28699.97 599.26 4699.57 21399.43 165
lupinMVS97.06 27396.86 26997.65 28498.88 25393.89 33095.48 36397.97 33493.53 36298.16 25897.58 33893.81 28699.91 6296.77 21399.57 21399.17 248
MVS_111021_HR98.25 17898.08 18698.75 17599.09 20997.46 19495.97 33999.27 19197.60 20297.99 27498.25 29498.15 9099.38 36796.87 20599.57 21399.42 168
GDP-MVS97.50 23697.11 25598.67 18499.02 22696.85 23098.16 15999.71 3698.32 14398.52 23198.54 26283.39 37799.95 2498.79 7799.56 21699.19 241
test_vis3_rt99.14 4999.17 4699.07 12299.78 2398.38 11198.92 7999.94 297.80 18799.91 1199.67 2797.15 16298.91 40099.76 1599.56 21699.92 11
OPM-MVS98.56 13498.32 15799.25 9599.41 13798.73 8797.13 28099.18 21697.10 25598.75 19898.92 19398.18 8499.65 29196.68 22399.56 21699.37 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_Blended96.88 28396.68 28297.47 30498.92 24393.77 33494.71 38399.43 12490.98 39297.62 29797.36 35296.82 18199.67 27594.73 30799.56 21698.98 274
APD_test198.83 8798.66 10499.34 7599.78 2399.47 998.42 13699.45 11498.28 15098.98 15499.19 12497.76 11699.58 31796.57 23199.55 22098.97 277
DeepC-MVS_fast96.85 698.30 17098.15 17898.75 17598.61 30497.23 20797.76 21999.09 23597.31 23498.75 19898.66 24497.56 13399.64 29496.10 26799.55 22099.39 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft98.10 18997.67 21899.42 6099.11 20498.93 7597.76 21999.28 18894.97 33398.72 20198.77 22597.04 16799.85 12893.79 33899.54 22299.49 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DSMNet-mixed97.42 24697.60 22696.87 33299.15 19991.46 37198.54 11699.12 23092.87 37297.58 30199.63 3596.21 21199.90 6895.74 28299.54 22299.27 222
CPTT-MVS97.84 21697.36 24099.27 9099.31 15698.46 10798.29 14599.27 19194.90 33597.83 28598.37 28494.90 25699.84 14693.85 33799.54 22299.51 127
1112_ss97.29 25796.86 26998.58 19899.34 15396.32 24996.75 29999.58 5993.14 36796.89 34297.48 34492.11 31299.86 11696.91 19799.54 22299.57 96
XVS98.72 10398.45 13699.53 3799.46 12599.21 3298.65 10399.34 15798.62 12297.54 30598.63 25197.50 14199.83 16396.79 21099.53 22699.56 102
X-MVStestdata94.32 34692.59 36499.53 3799.46 12599.21 3298.65 10399.34 15798.62 12297.54 30545.85 42197.50 14199.83 16396.79 21099.53 22699.56 102
Test_1112_low_res96.99 28096.55 29198.31 23699.35 15195.47 27595.84 35199.53 8491.51 38696.80 34798.48 27491.36 31999.83 16396.58 22999.53 22699.62 70
SF-MVS98.53 14298.27 16399.32 8299.31 15698.75 8398.19 15499.41 13196.77 27398.83 18698.90 19797.80 11499.82 17395.68 28699.52 22999.38 188
Anonymous2024052998.93 7598.87 7699.12 11299.19 18598.22 12799.01 6798.99 25599.25 5999.54 5799.37 8497.04 16799.80 19497.89 13499.52 22999.35 201
GST-MVS98.61 12998.30 15899.52 4299.51 10599.20 3898.26 14899.25 19797.44 22398.67 20698.39 28197.68 12099.85 12896.00 26899.51 23199.52 124
tttt051795.64 32594.98 33597.64 28699.36 14793.81 33298.72 9790.47 41498.08 16798.67 20698.34 28873.88 40499.92 5397.77 14499.51 23199.20 236
HQP_MVS97.99 20097.67 21898.93 14699.19 18597.65 18497.77 21699.27 19198.20 15897.79 28897.98 31594.90 25699.70 25994.42 31899.51 23199.45 157
plane_prior599.27 19199.70 25994.42 31899.51 23199.45 157
ab-mvs98.41 15498.36 15098.59 19799.19 18597.23 20799.32 2398.81 28697.66 19598.62 21399.40 8396.82 18199.80 19495.88 27399.51 23198.75 314
OMC-MVS97.88 20797.49 23299.04 13198.89 25298.63 9196.94 28799.25 19795.02 33198.53 22998.51 26797.27 15599.47 35293.50 34699.51 23199.01 268
CMPMVSbinary75.91 2396.29 30495.44 32198.84 15796.25 41398.69 9097.02 28299.12 23088.90 40397.83 28598.86 20789.51 33398.90 40191.92 36999.51 23198.92 286
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc98.24 24298.82 26495.97 26098.62 10799.00 25499.27 11299.21 12196.99 17299.50 34396.55 23899.50 23899.26 225
TSAR-MVS + MP.98.63 12598.49 13099.06 12899.64 6997.90 16198.51 12398.94 25796.96 26199.24 12198.89 20397.83 10999.81 18796.88 20499.49 23999.48 144
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPU-MVS98.82 15998.59 30998.30 11898.10 16898.52 26698.18 8498.75 40494.62 31099.48 24099.41 171
9.1497.78 21099.07 21397.53 24799.32 16495.53 31998.54 22898.70 23697.58 13199.76 23094.32 32399.46 241
TSAR-MVS + GP.98.18 18597.98 19598.77 17298.71 28097.88 16296.32 32198.66 30396.33 29099.23 12398.51 26797.48 14599.40 36397.16 17699.46 24199.02 267
DVP-MVS++98.90 7998.70 9899.51 4698.43 32899.15 5199.43 1299.32 16498.17 16199.26 11699.02 16398.18 8499.88 9197.07 18599.45 24399.49 134
PC_three_145293.27 36599.40 8898.54 26298.22 8097.00 41695.17 29799.45 24399.49 134
PCF-MVS92.86 1894.36 34593.00 36298.42 22498.70 28497.56 18993.16 40899.11 23279.59 41797.55 30497.43 34792.19 31099.73 24779.85 41799.45 24397.97 371
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet96.99 28096.76 27797.67 28298.72 27794.89 29495.95 34398.20 32692.62 37598.55 22698.54 26294.88 25999.52 33793.96 33299.44 24698.59 332
APD-MVS_3200maxsize98.84 8698.61 11499.53 3799.19 18599.27 2698.49 12699.33 16298.64 11899.03 15098.98 18097.89 10699.85 12896.54 23999.42 24799.46 153
MSLP-MVS++98.02 19598.14 18097.64 28698.58 31195.19 28697.48 25299.23 20497.47 21597.90 27898.62 25397.04 16798.81 40397.55 15699.41 24898.94 284
QAPM97.31 25496.81 27598.82 15998.80 26997.49 19299.06 6299.19 21290.22 39697.69 29499.16 13496.91 17599.90 6890.89 38999.41 24899.07 258
SR-MVS-dyc-post98.81 9198.55 11999.57 2099.20 18299.38 1298.48 12999.30 17798.64 11898.95 16298.96 18597.49 14499.86 11696.56 23599.39 25099.45 157
RE-MVS-def98.58 11799.20 18299.38 1298.48 12999.30 17798.64 11898.95 16298.96 18597.75 11796.56 23599.39 25099.45 157
MVS-HIRNet94.32 34695.62 31290.42 40198.46 32475.36 42596.29 32389.13 41795.25 32795.38 38499.75 1392.88 30099.19 38894.07 33099.39 25096.72 402
CDPH-MVS97.26 25896.66 28599.07 12299.00 22898.15 13096.03 33799.01 25291.21 39097.79 28897.85 32496.89 17699.69 26392.75 36199.38 25399.39 181
VPNet98.87 8298.83 8199.01 13599.70 5297.62 18798.43 13499.35 15199.47 3599.28 11099.05 15896.72 19099.82 17398.09 12199.36 25499.59 85
plane_prior97.65 18497.07 28196.72 27599.36 254
thisisatest053095.27 33294.45 34397.74 27899.19 18594.37 30997.86 20590.20 41597.17 25198.22 25397.65 33473.53 40599.90 6896.90 20299.35 25698.95 280
HPM-MVS++copyleft98.10 18997.64 22399.48 5399.09 20999.13 5997.52 24898.75 29697.46 22096.90 34197.83 32596.01 21999.84 14695.82 28099.35 25699.46 153
LS3D98.63 12598.38 14899.36 6697.25 39299.38 1299.12 5799.32 16499.21 6398.44 23798.88 20497.31 15199.80 19496.58 22999.34 25898.92 286
CNVR-MVS98.17 18797.87 20699.07 12298.67 29498.24 12297.01 28398.93 26097.25 24097.62 29798.34 28897.27 15599.57 31996.42 24699.33 25999.39 181
sss97.21 26396.93 26398.06 25598.83 26195.22 28596.75 29998.48 31494.49 34297.27 32397.90 32192.77 30399.80 19496.57 23199.32 26099.16 251
3Dnovator+97.89 398.69 11198.51 12499.24 9798.81 26698.40 10999.02 6699.19 21298.99 9798.07 26799.28 10497.11 16599.84 14696.84 20899.32 26099.47 151
SR-MVS98.71 10498.43 13999.57 2099.18 19299.35 1698.36 14199.29 18598.29 14898.88 17898.85 21097.53 13799.87 10896.14 26499.31 26299.48 144
Anonymous20240521197.90 20397.50 23199.08 12098.90 24798.25 12198.53 11796.16 37698.87 10899.11 13398.86 20790.40 32899.78 21897.36 16699.31 26299.19 241
Patchmatch-test96.55 29596.34 29797.17 31898.35 33493.06 34598.40 13797.79 33797.33 23198.41 24098.67 24183.68 37699.69 26395.16 29899.31 26298.77 311
LCM-MVSNet-Re98.64 12398.48 13199.11 11498.85 25898.51 10498.49 12699.83 2298.37 13899.69 3899.46 7098.21 8299.92 5394.13 32899.30 26598.91 289
EPNet_dtu94.93 34094.78 34095.38 37693.58 42187.68 40396.78 29695.69 38797.35 23089.14 41898.09 30888.15 34599.49 34694.95 30399.30 26598.98 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS96.21 1196.63 29395.95 30498.65 18598.93 23998.09 13796.93 28999.28 18883.58 41398.13 26297.78 32696.13 21499.40 36393.52 34499.29 26798.45 340
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet93.40 1795.67 32395.70 30995.57 37098.83 26188.57 39792.50 41097.72 33992.69 37496.49 36196.44 37093.72 28999.43 35993.61 34199.28 26898.71 317
EIA-MVS98.00 19797.74 21398.80 16398.72 27798.09 13798.05 17599.60 5697.39 22696.63 35295.55 38597.68 12099.80 19496.73 21899.27 26998.52 335
LFMVS97.20 26496.72 27998.64 18698.72 27796.95 22598.93 7894.14 40099.74 1098.78 19299.01 17284.45 36899.73 24797.44 16299.27 26999.25 226
ITE_SJBPF98.87 15499.22 17698.48 10699.35 15197.50 21298.28 25098.60 25797.64 12699.35 37193.86 33699.27 26998.79 309
HQP3-MVS99.04 24499.26 272
HQP-MVS97.00 27996.49 29498.55 20698.67 29496.79 23396.29 32399.04 24496.05 30095.55 37896.84 36193.84 28499.54 33192.82 35899.26 27299.32 210
MVStest195.86 31795.60 31396.63 34195.87 41791.70 36897.93 19398.94 25798.03 16899.56 5399.66 2971.83 40698.26 41099.35 4099.24 27499.91 12
SSC-MVS98.71 10498.74 8898.62 19199.72 4296.08 25898.74 9298.64 30699.74 1099.67 4299.24 11594.57 26899.95 2499.11 5599.24 27499.82 27
ETV-MVS98.03 19497.86 20798.56 20598.69 28998.07 14397.51 25099.50 9098.10 16697.50 30995.51 38698.41 6299.88 9196.27 25699.24 27497.71 384
MCST-MVS98.00 19797.63 22499.10 11699.24 17198.17 12996.89 29298.73 29995.66 31397.92 27697.70 33297.17 16199.66 28696.18 26299.23 27799.47 151
ttmdpeth97.91 20298.02 19197.58 29198.69 28994.10 31798.13 16298.90 26697.95 17497.32 32299.58 4395.95 22898.75 40496.41 24799.22 27899.87 18
SCA96.41 30296.66 28595.67 36798.24 34188.35 39995.85 35096.88 36696.11 29897.67 29598.67 24193.10 29599.85 12894.16 32499.22 27898.81 303
MSDG97.71 22397.52 23098.28 23998.91 24696.82 23194.42 39399.37 14297.65 19698.37 24598.29 29397.40 14899.33 37494.09 32999.22 27898.68 324
MIMVSNet96.62 29496.25 30297.71 28199.04 22294.66 30299.16 5196.92 36597.23 24697.87 28199.10 14786.11 35699.65 29191.65 37499.21 28198.82 299
test_prior295.74 35496.48 28596.11 36797.63 33695.92 23094.16 32499.20 282
VDDNet98.21 18297.95 19899.01 13599.58 7697.74 17899.01 6797.29 35299.67 1698.97 15899.50 6290.45 32799.80 19497.88 13799.20 28299.48 144
OpenMVScopyleft96.65 797.09 27196.68 28298.32 23498.32 33697.16 21598.86 8699.37 14289.48 40096.29 36499.15 13896.56 19699.90 6892.90 35599.20 28297.89 372
ZD-MVS99.01 22798.84 7899.07 23794.10 35498.05 27098.12 30496.36 20799.86 11692.70 36399.19 285
MSP-MVS98.40 15698.00 19399.61 1299.57 8199.25 2898.57 11299.35 15197.55 20899.31 10897.71 33094.61 26799.88 9196.14 26499.19 28599.70 54
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNLPA97.17 26796.71 28098.55 20698.56 31498.05 14796.33 32098.93 26096.91 26597.06 33097.39 34994.38 27399.45 35691.66 37399.18 28798.14 361
train_agg97.10 27096.45 29599.07 12298.71 28098.08 14195.96 34199.03 24691.64 38295.85 37297.53 34096.47 20099.76 23093.67 34099.16 28899.36 197
agg_prior292.50 36699.16 28899.37 190
test9_res93.28 35099.15 29099.38 188
MS-PatchMatch97.68 22597.75 21297.45 30598.23 34393.78 33397.29 26698.84 28196.10 29998.64 21098.65 24696.04 21799.36 36896.84 20899.14 29199.20 236
AdaColmapbinary97.14 26996.71 28098.46 21998.34 33597.80 17496.95 28698.93 26095.58 31796.92 33697.66 33395.87 23199.53 33390.97 38699.14 29198.04 366
VNet98.42 15398.30 15898.79 16698.79 27097.29 20398.23 15098.66 30399.31 5398.85 18398.80 21994.80 26399.78 21898.13 11899.13 29399.31 214
test1298.93 14698.58 31197.83 16798.66 30396.53 35695.51 24299.69 26399.13 29399.27 222
DP-MVS Recon97.33 25396.92 26598.57 20199.09 20997.99 15096.79 29599.35 15193.18 36697.71 29298.07 31095.00 25599.31 37693.97 33199.13 29398.42 347
thisisatest051594.12 35293.16 35996.97 32798.60 30692.90 34993.77 40490.61 41394.10 35496.91 33895.87 38074.99 40399.80 19494.52 31399.12 29698.20 358
pmmvs395.03 33794.40 34496.93 32897.70 37092.53 35695.08 37597.71 34088.57 40497.71 29298.08 30979.39 39399.82 17396.19 26099.11 29798.43 345
test22298.92 24396.93 22795.54 35998.78 29185.72 41096.86 34498.11 30594.43 27099.10 29899.23 231
xiu_mvs_v1_base_debu97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
xiu_mvs_v1_base97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
xiu_mvs_v1_base_debi97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
MG-MVS96.77 28896.61 28797.26 31498.31 33793.06 34595.93 34498.12 33196.45 28797.92 27698.73 23093.77 28899.39 36591.19 38499.04 30299.33 208
cl2295.79 32095.39 32496.98 32696.77 40392.79 35194.40 39498.53 31194.59 34197.89 27998.17 30182.82 38299.24 38496.37 24999.03 30398.92 286
miper_ehance_all_eth97.06 27397.03 25897.16 32097.83 36193.06 34594.66 38699.09 23595.99 30598.69 20398.45 27692.73 30599.61 30696.79 21099.03 30398.82 299
miper_enhance_ethall96.01 31295.74 30796.81 33696.41 41192.27 36393.69 40598.89 26991.14 39198.30 24697.35 35390.58 32699.58 31796.31 25399.03 30398.60 329
API-MVS97.04 27596.91 26797.42 30797.88 36098.23 12698.18 15598.50 31397.57 20497.39 31996.75 36396.77 18599.15 39190.16 39399.02 30694.88 414
旧先验198.82 26497.45 19598.76 29398.34 28895.50 24399.01 30799.23 231
新几何198.91 15098.94 23797.76 17698.76 29387.58 40796.75 34998.10 30694.80 26399.78 21892.73 36299.00 30899.20 236
mvsmamba97.57 23497.26 24598.51 21298.69 28996.73 23898.74 9297.25 35397.03 25997.88 28099.23 11990.95 32299.87 10896.61 22799.00 30898.91 289
原ACMM198.35 23298.90 24796.25 25198.83 28592.48 37696.07 36998.10 30695.39 24699.71 25592.61 36598.99 31099.08 256
testgi98.32 16798.39 14698.13 24999.57 8195.54 27197.78 21499.49 9797.37 22899.19 12697.65 33498.96 2499.49 34696.50 24298.99 31099.34 203
MVP-Stereo98.08 19297.92 20298.57 20198.96 23596.79 23397.90 19999.18 21696.41 28898.46 23598.95 18995.93 22999.60 30796.51 24198.98 31299.31 214
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testing393.51 36092.09 37097.75 27698.60 30694.40 30897.32 26395.26 38997.56 20696.79 34895.50 38753.57 42699.77 22495.26 29698.97 31399.08 256
alignmvs97.35 25196.88 26898.78 16998.54 31698.09 13797.71 22497.69 34199.20 6597.59 30095.90 37988.12 34699.55 32698.18 11598.96 31498.70 320
testdata98.09 25098.93 23995.40 27898.80 28890.08 39897.45 31498.37 28495.26 24899.70 25993.58 34398.95 31599.17 248
mvsany_test197.60 23097.54 22897.77 27297.72 36595.35 27995.36 36897.13 35794.13 35399.71 3499.33 9597.93 10599.30 37897.60 15598.94 31698.67 325
Effi-MVS+-dtu98.26 17697.90 20499.35 7298.02 35499.49 698.02 18099.16 22398.29 14897.64 29697.99 31496.44 20299.95 2496.66 22498.93 31798.60 329
FA-MVS(test-final)96.99 28096.82 27397.50 30198.70 28494.78 29699.34 2096.99 36095.07 33098.48 23499.33 9588.41 34499.65 29196.13 26698.92 31898.07 365
MVS_Test98.18 18598.36 15097.67 28298.48 32194.73 29998.18 15599.02 24997.69 19398.04 27199.11 14497.22 15999.56 32298.57 9598.90 31998.71 317
CL-MVSNet_self_test97.44 24497.22 24898.08 25398.57 31395.78 26694.30 39698.79 28996.58 28198.60 21798.19 30094.74 26699.64 29496.41 24798.84 32098.82 299
WB-MVS98.52 14598.55 11998.43 22399.65 6395.59 26898.52 11898.77 29299.65 1899.52 6399.00 17594.34 27499.93 4498.65 9098.83 32199.76 42
Fast-Effi-MVS+97.67 22697.38 23898.57 20198.71 28097.43 19797.23 27099.45 11494.82 33796.13 36696.51 36698.52 5699.91 6296.19 26098.83 32198.37 352
NCCC97.86 21097.47 23599.05 12998.61 30498.07 14396.98 28598.90 26697.63 19797.04 33197.93 32095.99 22499.66 28695.31 29598.82 32399.43 165
PatchMatch-RL97.24 26196.78 27698.61 19499.03 22597.83 16796.36 31899.06 23893.49 36497.36 32197.78 32695.75 23499.49 34693.44 34798.77 32498.52 335
DPM-MVS96.32 30395.59 31598.51 21298.76 27197.21 21094.54 39298.26 32391.94 38196.37 36297.25 35493.06 29799.43 35991.42 37998.74 32598.89 291
YYNet197.60 23097.67 21897.39 30999.04 22293.04 34895.27 36998.38 32097.25 24098.92 17198.95 18995.48 24499.73 24796.99 19198.74 32599.41 171
MDA-MVSNet-bldmvs97.94 20197.91 20398.06 25599.44 12994.96 29396.63 30599.15 22898.35 13998.83 18699.11 14494.31 27599.85 12896.60 22898.72 32799.37 190
MDA-MVSNet_test_wron97.60 23097.66 22197.41 30899.04 22293.09 34495.27 36998.42 31797.26 23998.88 17898.95 18995.43 24599.73 24797.02 18898.72 32799.41 171
MGCFI-Net98.34 16398.28 16098.51 21298.47 32297.59 18898.96 7499.48 9999.18 7197.40 31795.50 38798.66 4399.50 34398.18 11598.71 32998.44 343
sasdasda98.34 16398.26 16498.58 19898.46 32497.82 17098.96 7499.46 11099.19 6997.46 31295.46 39098.59 5099.46 35498.08 12298.71 32998.46 337
FE-MVS95.66 32494.95 33797.77 27298.53 31895.28 28299.40 1696.09 37893.11 36897.96 27599.26 11079.10 39599.77 22492.40 36798.71 32998.27 356
Fast-Effi-MVS+-dtu98.27 17498.09 18398.81 16198.43 32898.11 13497.61 23899.50 9098.64 11897.39 31997.52 34298.12 9299.95 2496.90 20298.71 32998.38 350
canonicalmvs98.34 16398.26 16498.58 19898.46 32497.82 17098.96 7499.46 11099.19 6997.46 31295.46 39098.59 5099.46 35498.08 12298.71 32998.46 337
xiu_mvs_v2_base97.16 26897.49 23296.17 35798.54 31692.46 35795.45 36498.84 28197.25 24097.48 31196.49 36798.31 7199.90 6896.34 25298.68 33496.15 408
PS-MVSNAJ97.08 27297.39 23796.16 35998.56 31492.46 35795.24 37198.85 28097.25 24097.49 31095.99 37698.07 9399.90 6896.37 24998.67 33596.12 409
UWE-MVS92.38 37691.76 37994.21 38797.16 39484.65 41395.42 36688.45 41895.96 30696.17 36595.84 38266.36 41699.71 25591.87 37198.64 33698.28 355
PatchmatchNetpermissive95.58 32695.67 31195.30 37797.34 39087.32 40497.65 23396.65 36995.30 32697.07 32998.69 23784.77 36599.75 23794.97 30298.64 33698.83 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVEpermissive83.40 2292.50 37491.92 37694.25 38598.83 26191.64 36992.71 40983.52 42395.92 30886.46 42195.46 39095.20 24995.40 41980.51 41698.64 33695.73 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
OpenMVS_ROBcopyleft95.38 1495.84 31995.18 33297.81 26998.41 33297.15 21697.37 25998.62 30783.86 41298.65 20998.37 28494.29 27699.68 27288.41 39898.62 33996.60 403
cascas94.79 34194.33 34796.15 36096.02 41692.36 36192.34 41299.26 19685.34 41195.08 38894.96 39992.96 29998.53 40794.41 32198.59 34097.56 389
BH-RMVSNet96.83 28596.58 29097.58 29198.47 32294.05 31896.67 30397.36 34896.70 27797.87 28197.98 31595.14 25199.44 35890.47 39298.58 34199.25 226
GA-MVS95.86 31795.32 32797.49 30298.60 30694.15 31693.83 40397.93 33595.49 32096.68 35097.42 34883.21 37899.30 37896.22 25898.55 34299.01 268
RRT-MVS97.88 20797.98 19597.61 28898.15 34793.77 33498.97 7399.64 5099.16 7398.69 20399.42 7791.60 31699.89 7997.63 15298.52 34399.16 251
F-COLMAP97.30 25596.68 28299.14 11099.19 18598.39 11097.27 26999.30 17792.93 37096.62 35398.00 31395.73 23599.68 27292.62 36498.46 34499.35 201
XVG-OURS-SEG-HR98.49 14798.28 16099.14 11099.49 11598.83 7996.54 30799.48 9997.32 23399.11 13398.61 25599.33 1399.30 37896.23 25798.38 34599.28 221
test_yl96.69 28996.29 29997.90 26298.28 33895.24 28397.29 26697.36 34898.21 15498.17 25597.86 32286.27 35299.55 32694.87 30498.32 34698.89 291
DCV-MVSNet96.69 28996.29 29997.90 26298.28 33895.24 28397.29 26697.36 34898.21 15498.17 25597.86 32286.27 35299.55 32694.87 30498.32 34698.89 291
WB-MVSnew95.73 32295.57 31696.23 35496.70 40490.70 38896.07 33693.86 40195.60 31697.04 33195.45 39396.00 22099.55 32691.04 38598.31 34898.43 345
tt080598.69 11198.62 11098.90 15399.75 3399.30 2199.15 5396.97 36198.86 10998.87 18297.62 33798.63 4698.96 39799.41 3898.29 34998.45 340
thres600view794.45 34493.83 35096.29 35099.06 21891.53 37097.99 18894.24 39898.34 14097.44 31595.01 39679.84 38999.67 27584.33 40998.23 35097.66 385
MAR-MVS96.47 30095.70 30998.79 16697.92 35899.12 6198.28 14698.60 30892.16 38095.54 38196.17 37494.77 26599.52 33789.62 39598.23 35097.72 383
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+98.02 19597.82 20998.62 19198.53 31897.19 21297.33 26299.68 4597.30 23596.68 35097.46 34698.56 5499.80 19496.63 22598.20 35298.86 296
test_vis1_rt97.75 22097.72 21697.83 26798.81 26696.35 24897.30 26599.69 4094.61 34097.87 28198.05 31196.26 21098.32 40998.74 8398.18 35398.82 299
test-LLR93.90 35593.85 34994.04 38896.53 40784.62 41494.05 40092.39 40796.17 29594.12 39895.07 39482.30 38399.67 27595.87 27698.18 35397.82 375
test-mter92.33 37891.76 37994.04 38896.53 40784.62 41494.05 40092.39 40794.00 35794.12 39895.07 39465.63 41999.67 27595.87 27698.18 35397.82 375
mvs_anonymous97.83 21898.16 17796.87 33298.18 34591.89 36697.31 26498.90 26697.37 22898.83 18699.46 7096.28 20999.79 20798.90 7098.16 35698.95 280
WTY-MVS96.67 29196.27 30197.87 26598.81 26694.61 30496.77 29797.92 33694.94 33497.12 32697.74 32991.11 32199.82 17393.89 33498.15 35799.18 244
thres20093.72 35893.14 36095.46 37498.66 29991.29 37696.61 30694.63 39397.39 22696.83 34593.71 40879.88 38899.56 32282.40 41498.13 35895.54 413
TESTMET0.1,192.19 38091.77 37893.46 39596.48 40982.80 42094.05 40091.52 41294.45 34694.00 40194.88 40066.65 41599.56 32295.78 28198.11 35998.02 367
PMMVS96.51 29695.98 30398.09 25097.53 38095.84 26394.92 37998.84 28191.58 38496.05 37095.58 38495.68 23699.66 28695.59 28998.09 36098.76 313
thres100view90094.19 34993.67 35395.75 36699.06 21891.35 37498.03 17894.24 39898.33 14197.40 31794.98 39879.84 38999.62 30083.05 41198.08 36196.29 404
tfpn200view994.03 35393.44 35595.78 36598.93 23991.44 37297.60 23994.29 39697.94 17697.10 32794.31 40579.67 39199.62 30083.05 41198.08 36196.29 404
thres40094.14 35193.44 35596.24 35398.93 23991.44 37297.60 23994.29 39697.94 17697.10 32794.31 40579.67 39199.62 30083.05 41198.08 36197.66 385
Syy-MVS96.04 31195.56 31797.49 30297.10 39694.48 30696.18 33096.58 37195.65 31494.77 39092.29 41791.27 32099.36 36898.17 11798.05 36498.63 327
myMVS_eth3d91.92 38290.45 38496.30 34997.10 39690.90 38496.18 33096.58 37195.65 31494.77 39092.29 41753.88 42599.36 36889.59 39698.05 36498.63 327
PLCcopyleft94.65 1696.51 29695.73 30898.85 15698.75 27397.91 16096.42 31599.06 23890.94 39395.59 37597.38 35094.41 27199.59 31190.93 38798.04 36699.05 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UBG93.25 36592.32 36696.04 36197.72 36590.16 39195.92 34695.91 38296.03 30393.95 40393.04 41369.60 40999.52 33790.72 39197.98 36798.45 340
MDTV_nov1_ep1395.22 33097.06 39883.20 41997.74 22196.16 37694.37 34896.99 33498.83 21383.95 37499.53 33393.90 33397.95 368
PAPM_NR96.82 28796.32 29898.30 23799.07 21396.69 24097.48 25298.76 29395.81 31196.61 35496.47 36994.12 28199.17 38990.82 39097.78 36999.06 259
EMVS93.83 35694.02 34893.23 39896.83 40284.96 41189.77 41796.32 37597.92 17897.43 31696.36 37386.17 35498.93 39987.68 40197.73 37095.81 411
E-PMN94.17 35094.37 34593.58 39496.86 40085.71 41090.11 41697.07 35898.17 16197.82 28797.19 35584.62 36798.94 39889.77 39497.68 37196.09 410
testing1193.08 36892.02 37296.26 35297.56 37690.83 38696.32 32195.70 38596.47 28692.66 41093.73 40764.36 42199.59 31193.77 33997.57 37298.37 352
testing22291.96 38190.37 38596.72 34097.47 38792.59 35496.11 33494.76 39196.83 26992.90 40992.87 41457.92 42499.55 32686.93 40497.52 37398.00 370
PatchT96.65 29296.35 29697.54 29797.40 38895.32 28197.98 18996.64 37099.33 5196.89 34299.42 7784.32 37099.81 18797.69 15197.49 37497.48 390
FPMVS93.44 36292.23 36897.08 32199.25 17097.86 16495.61 35797.16 35692.90 37193.76 40598.65 24675.94 40295.66 41879.30 41897.49 37497.73 382
testing9193.32 36392.27 36796.47 34597.54 37891.25 37896.17 33296.76 36897.18 25093.65 40693.50 41065.11 42099.63 29793.04 35397.45 37698.53 334
AUN-MVS96.24 30895.45 32098.60 19698.70 28497.22 20997.38 25897.65 34395.95 30795.53 38297.96 31982.11 38599.79 20796.31 25397.44 37798.80 308
BH-untuned96.83 28596.75 27897.08 32198.74 27493.33 34296.71 30198.26 32396.72 27598.44 23797.37 35195.20 24999.47 35291.89 37097.43 37898.44 343
ETVMVS92.60 37391.08 38297.18 31697.70 37093.65 33996.54 30795.70 38596.51 28294.68 39292.39 41661.80 42399.50 34386.97 40397.41 37998.40 348
hse-mvs297.46 24197.07 25698.64 18698.73 27597.33 20197.45 25597.64 34599.11 7698.58 22197.98 31588.65 34199.79 20798.11 11997.39 38098.81 303
UnsupCasMVSNet_bld97.30 25596.92 26598.45 22099.28 16296.78 23696.20 32899.27 19195.42 32298.28 25098.30 29293.16 29399.71 25594.99 30097.37 38198.87 295
PAPR95.29 33194.47 34297.75 27697.50 38695.14 28894.89 38098.71 30191.39 38895.35 38595.48 38994.57 26899.14 39284.95 40897.37 38198.97 277
CR-MVSNet96.28 30595.95 30497.28 31297.71 36894.22 31198.11 16698.92 26392.31 37896.91 33899.37 8485.44 36299.81 18797.39 16597.36 38397.81 377
RPMNet97.02 27696.93 26397.30 31197.71 36894.22 31198.11 16699.30 17799.37 4696.91 33899.34 9386.72 34999.87 10897.53 15997.36 38397.81 377
HY-MVS95.94 1395.90 31695.35 32697.55 29697.95 35694.79 29598.81 9196.94 36492.28 37995.17 38698.57 26089.90 33199.75 23791.20 38397.33 38598.10 363
testing9993.04 36991.98 37596.23 35497.53 38090.70 38896.35 31995.94 38196.87 26793.41 40793.43 41163.84 42299.59 31193.24 35197.19 38698.40 348
131495.74 32195.60 31396.17 35797.53 38092.75 35398.07 17298.31 32291.22 38994.25 39696.68 36495.53 24099.03 39391.64 37597.18 38796.74 401
gg-mvs-nofinetune92.37 37791.20 38195.85 36395.80 41892.38 36099.31 2781.84 42499.75 891.83 41399.74 1568.29 41099.02 39487.15 40297.12 38896.16 407
ET-MVSNet_ETH3D94.30 34893.21 35897.58 29198.14 34894.47 30794.78 38293.24 40594.72 33889.56 41695.87 38078.57 39899.81 18796.91 19797.11 38998.46 337
ADS-MVSNet295.43 33094.98 33596.76 33998.14 34891.74 36797.92 19697.76 33890.23 39496.51 35898.91 19485.61 35999.85 12892.88 35696.90 39098.69 321
ADS-MVSNet95.24 33394.93 33896.18 35698.14 34890.10 39297.92 19697.32 35190.23 39496.51 35898.91 19485.61 35999.74 24292.88 35696.90 39098.69 321
MVS93.19 36692.09 37096.50 34496.91 39994.03 32198.07 17298.06 33368.01 41994.56 39596.48 36895.96 22799.30 37883.84 41096.89 39296.17 406
tpm293.09 36792.58 36594.62 38297.56 37686.53 40697.66 23195.79 38486.15 40994.07 40098.23 29775.95 40199.53 33390.91 38896.86 39397.81 377
baseline293.73 35792.83 36396.42 34697.70 37091.28 37796.84 29489.77 41693.96 35892.44 41195.93 37879.14 39499.77 22492.94 35496.76 39498.21 357
CostFormer93.97 35493.78 35194.51 38397.53 38085.83 40997.98 18995.96 38089.29 40294.99 38998.63 25178.63 39799.62 30094.54 31296.50 39598.09 364
EPMVS93.72 35893.27 35795.09 38096.04 41587.76 40298.13 16285.01 42294.69 33996.92 33698.64 24978.47 40099.31 37695.04 29996.46 39698.20 358
h-mvs3397.77 21997.33 24399.10 11699.21 17897.84 16698.35 14298.57 30999.11 7698.58 22199.02 16388.65 34199.96 1298.11 11996.34 39799.49 134
TR-MVS95.55 32795.12 33396.86 33597.54 37893.94 32596.49 31196.53 37394.36 34997.03 33396.61 36594.26 27799.16 39086.91 40596.31 39897.47 391
tpmvs95.02 33895.25 32894.33 38496.39 41285.87 40798.08 17096.83 36795.46 32195.51 38398.69 23785.91 35799.53 33394.16 32496.23 39997.58 388
tpmrst95.07 33695.46 31993.91 39097.11 39584.36 41697.62 23696.96 36294.98 33296.35 36398.80 21985.46 36199.59 31195.60 28896.23 39997.79 380
dmvs_re95.98 31495.39 32497.74 27898.86 25597.45 19598.37 14095.69 38797.95 17496.56 35595.95 37790.70 32597.68 41488.32 39996.13 40198.11 362
KD-MVS_2432*160092.87 37191.99 37395.51 37291.37 42389.27 39594.07 39898.14 32995.42 32297.25 32496.44 37067.86 41199.24 38491.28 38196.08 40298.02 367
miper_refine_blended92.87 37191.99 37395.51 37291.37 42389.27 39594.07 39898.14 32995.42 32297.25 32496.44 37067.86 41199.24 38491.28 38196.08 40298.02 367
BH-w/o95.13 33594.89 33995.86 36298.20 34491.31 37595.65 35697.37 34793.64 36096.52 35795.70 38393.04 29899.02 39488.10 40095.82 40497.24 395
UnsupCasMVSNet_eth97.89 20597.60 22698.75 17599.31 15697.17 21497.62 23699.35 15198.72 11698.76 19798.68 23992.57 30799.74 24297.76 14895.60 40599.34 203
PAPM91.88 38390.34 38696.51 34398.06 35392.56 35592.44 41197.17 35586.35 40890.38 41596.01 37586.61 35099.21 38770.65 42195.43 40697.75 381
tpm cat193.29 36493.13 36193.75 39297.39 38984.74 41297.39 25797.65 34383.39 41494.16 39798.41 27982.86 38199.39 36591.56 37795.35 40797.14 396
tpm94.67 34294.34 34695.66 36897.68 37388.42 39897.88 20194.90 39094.46 34496.03 37198.56 26178.66 39699.79 20795.88 27395.01 40898.78 310
JIA-IIPM95.52 32895.03 33497.00 32496.85 40194.03 32196.93 28995.82 38399.20 6594.63 39499.71 1983.09 37999.60 30794.42 31894.64 40997.36 394
IB-MVS91.63 1992.24 37990.90 38396.27 35197.22 39391.24 37994.36 39593.33 40492.37 37792.24 41294.58 40466.20 41899.89 7993.16 35294.63 41097.66 385
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND94.76 38194.54 42092.13 36599.31 2780.47 42588.73 41991.01 41967.59 41498.16 41282.30 41594.53 41193.98 415
test0.0.03 194.51 34393.69 35296.99 32596.05 41493.61 34094.97 37893.49 40296.17 29597.57 30394.88 40082.30 38399.01 39693.60 34294.17 41298.37 352
MonoMVSNet96.25 30696.53 29395.39 37596.57 40691.01 38298.82 9097.68 34298.57 12898.03 27299.37 8490.92 32397.78 41394.99 30093.88 41397.38 393
DeepMVS_CXcopyleft93.44 39698.24 34194.21 31394.34 39564.28 42091.34 41494.87 40289.45 33592.77 42177.54 41993.14 41493.35 416
dmvs_testset92.94 37092.21 36995.13 37898.59 30990.99 38397.65 23392.09 40996.95 26294.00 40193.55 40992.34 30996.97 41772.20 42092.52 41597.43 392
tmp_tt78.77 38778.73 39078.90 40358.45 42874.76 42794.20 39778.26 42639.16 42186.71 42092.82 41580.50 38775.19 42386.16 40792.29 41686.74 417
dp93.47 36193.59 35493.13 39996.64 40581.62 42397.66 23196.42 37492.80 37396.11 36798.64 24978.55 39999.59 31193.31 34992.18 41798.16 360
baseline195.96 31595.44 32197.52 29998.51 32093.99 32498.39 13896.09 37898.21 15498.40 24497.76 32886.88 34899.63 29795.42 29389.27 41898.95 280
test_method79.78 38679.50 38980.62 40280.21 42745.76 43070.82 41898.41 31931.08 42280.89 42297.71 33084.85 36497.37 41591.51 37880.03 41998.75 314
dongtai76.24 38875.95 39177.12 40492.39 42267.91 42890.16 41559.44 42982.04 41589.42 41794.67 40349.68 42781.74 42248.06 42277.66 42081.72 418
PVSNet_089.98 2191.15 38490.30 38793.70 39397.72 36584.34 41790.24 41497.42 34690.20 39793.79 40493.09 41290.90 32498.89 40286.57 40672.76 42197.87 374
kuosan69.30 38968.95 39270.34 40587.68 42665.00 42991.11 41359.90 42869.02 41874.46 42388.89 42048.58 42868.03 42428.61 42372.33 42277.99 419
testmvs17.12 39120.53 3946.87 40712.05 4294.20 43293.62 4066.73 4304.62 42510.41 42524.33 4228.28 4303.56 4269.69 42515.07 42312.86 422
test12317.04 39220.11 3957.82 40610.25 4304.91 43194.80 3814.47 4314.93 42410.00 42624.28 4239.69 4293.64 42510.14 42412.43 42414.92 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.66 39032.88 3930.00 4080.00 4310.00 4330.00 41999.10 2330.00 4260.00 42797.58 33899.21 160.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas8.17 39310.90 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42698.07 930.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.12 39410.83 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42797.48 3440.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS90.90 38491.37 380
FOURS199.73 3699.67 399.43 1299.54 8199.43 4199.26 116
test_one_060199.39 13999.20 3899.31 16998.49 13498.66 20899.02 16397.64 126
eth-test20.00 431
eth-test0.00 431
test_241102_ONE99.49 11599.17 4399.31 16997.98 17199.66 4398.90 19798.36 6599.48 349
save fliter99.11 20497.97 15496.53 30999.02 24998.24 151
test072699.50 10899.21 3298.17 15899.35 15197.97 17299.26 11699.06 15197.61 129
GSMVS98.81 303
test_part299.36 14799.10 6499.05 145
sam_mvs184.74 36698.81 303
sam_mvs84.29 372
MTGPAbinary99.20 208
test_post197.59 24120.48 42583.07 38099.66 28694.16 324
test_post21.25 42483.86 37599.70 259
patchmatchnet-post98.77 22584.37 36999.85 128
MTMP97.93 19391.91 411
gm-plane-assit94.83 41981.97 42288.07 40694.99 39799.60 30791.76 372
TEST998.71 28098.08 14195.96 34199.03 24691.40 38795.85 37297.53 34096.52 19899.76 230
test_898.67 29498.01 14995.91 34799.02 24991.64 38295.79 37497.50 34396.47 20099.76 230
agg_prior98.68 29397.99 15099.01 25295.59 37599.77 224
test_prior497.97 15495.86 348
test_prior98.95 14398.69 28997.95 15899.03 24699.59 31199.30 217
旧先验295.76 35388.56 40597.52 30799.66 28694.48 314
新几何295.93 344
无先验95.74 35498.74 29889.38 40199.73 24792.38 36899.22 235
原ACMM295.53 360
testdata299.79 20792.80 360
segment_acmp97.02 170
testdata195.44 36596.32 291
plane_prior799.19 18597.87 163
plane_prior698.99 23197.70 18294.90 256
plane_prior497.98 315
plane_prior397.78 17597.41 22497.79 288
plane_prior297.77 21698.20 158
plane_prior199.05 221
n20.00 432
nn0.00 432
door-mid99.57 66
test1198.87 272
door99.41 131
HQP5-MVS96.79 233
HQP-NCC98.67 29496.29 32396.05 30095.55 378
ACMP_Plane98.67 29496.29 32396.05 30095.55 378
BP-MVS92.82 358
HQP4-MVS95.56 37799.54 33199.32 210
HQP2-MVS93.84 284
NP-MVS98.84 25997.39 19996.84 361
MDTV_nov1_ep13_2view74.92 42697.69 22690.06 39997.75 29185.78 35893.52 34498.69 321
Test By Simon96.52 198