This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3798.93 9899.65 4599.72 1698.93 2699.95 2299.11 52100.00 199.82 25
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12899.20 4599.65 4699.48 3299.92 899.71 1798.07 8899.96 1199.53 30100.00 199.93 8
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
ANet_high99.57 799.67 599.28 8599.89 698.09 13599.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3599.31 41100.00 199.82 25
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2598.11 13297.77 20599.90 999.33 5099.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13198.08 16199.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8197.73 17897.93 18299.83 2099.22 6099.93 699.30 9499.42 1099.96 1199.85 599.99 599.29 212
UA-Net99.47 1399.40 2099.70 299.49 11599.29 1999.80 399.72 3399.82 399.04 14399.81 598.05 9199.96 1198.85 6999.99 599.86 18
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4599.09 8399.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3499.27 5799.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
v1098.97 6699.11 5298.55 20199.44 12996.21 24698.90 7899.55 7398.73 10899.48 6899.60 3996.63 18899.83 15499.70 2299.99 599.61 73
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16099.75 3596.59 23497.97 18199.86 1398.22 14299.88 1799.71 1798.59 5099.84 13799.73 1999.98 1299.98 2
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18199.71 4796.10 24797.87 19399.85 1598.56 12399.90 1299.68 2098.69 4199.85 12099.72 2199.98 1299.97 3
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 18999.55 9396.09 25097.74 21099.81 2498.55 12499.85 1999.55 4898.60 4999.84 13799.69 2499.98 1299.89 11
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13497.68 21699.84 1899.29 5599.92 899.57 4299.60 599.96 1199.74 1899.98 1299.89 11
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6496.97 22098.00 17599.85 1599.24 5999.92 899.50 5999.39 1199.95 2299.89 399.98 1298.71 306
v899.01 6099.16 4598.57 19699.47 12496.31 24298.90 7899.47 10499.03 8999.52 6299.57 4296.93 16899.81 17799.60 2599.98 1299.60 74
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6999.11 7399.70 3599.73 1599.00 2299.97 499.26 4399.98 1299.89 11
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16699.55 9396.59 23497.79 20299.82 2298.21 14399.81 2399.53 5498.46 6099.84 13799.70 2299.97 1999.90 10
bld_raw_dy_0_6497.62 22397.51 22497.96 25497.97 34696.28 24398.20 14799.82 2296.46 27399.37 8997.12 34792.42 30199.70 25096.27 24399.97 1997.90 358
MVS_030498.10 18397.88 19898.76 17098.82 25796.50 23697.90 18791.35 39999.56 2698.32 23999.13 13096.06 21099.93 4099.84 799.97 1999.85 19
pmmvs-eth3d98.47 14398.34 14798.86 15299.30 15797.76 17497.16 26699.28 18095.54 30599.42 7999.19 11397.27 14999.63 28997.89 12899.97 1999.20 229
IterMVS-LS98.55 13298.70 9298.09 24199.48 12294.73 29297.22 26299.39 12898.97 9499.38 8799.31 9396.00 21499.93 4098.58 8699.97 1999.60 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2799.63 1799.78 2699.67 2599.48 999.81 17799.30 4299.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14299.65 6597.05 21697.80 20199.76 2998.70 11199.78 2699.11 13398.79 3499.95 2299.85 599.96 2599.83 22
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13299.64 7097.28 20297.82 19899.76 2998.73 10899.82 2199.09 13998.81 3299.95 2299.86 499.96 2599.83 22
MM98.22 17497.99 18798.91 14798.66 29196.97 22097.89 18994.44 38199.54 2798.95 15799.14 12993.50 28499.92 5099.80 1299.96 2599.85 19
test_fmvs399.12 5199.41 1998.25 23199.76 3195.07 28499.05 6499.94 297.78 17699.82 2199.84 298.56 5499.71 24699.96 199.96 2599.97 3
Anonymous2024052198.69 10698.87 7198.16 23999.77 2895.11 28399.08 5899.44 11499.34 4999.33 9799.55 4894.10 27699.94 3599.25 4599.96 2599.42 161
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5199.66 1399.68 3999.66 2798.44 6199.95 2299.73 1999.96 2599.75 43
RRT_MVS99.09 5498.94 6699.55 2399.87 1298.82 7899.48 998.16 31899.49 3199.59 5299.65 3094.79 25899.95 2299.45 3599.96 2599.88 14
test250692.39 36291.89 36493.89 37899.38 14082.28 40899.32 2366.03 41499.08 8598.77 19199.57 4266.26 40499.84 13798.71 7999.95 3299.54 108
test111196.49 29196.82 26395.52 36099.42 13587.08 39399.22 4287.14 40699.11 7399.46 7199.58 4188.69 33099.86 10898.80 7199.95 3299.62 67
ECVR-MVScopyleft96.42 29396.61 27795.85 35299.38 14088.18 38999.22 4286.00 40899.08 8599.36 9299.57 4288.47 33599.82 16498.52 9299.95 3299.54 108
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 5599.90 299.86 1899.78 899.58 699.95 2299.00 6199.95 3299.78 33
D2MVS97.84 20997.84 20197.83 26199.14 19594.74 29196.94 27598.88 26195.84 29798.89 17098.96 17494.40 26699.69 25597.55 14699.95 3299.05 251
PS-CasMVS99.40 2199.33 2699.62 699.71 4799.10 6099.29 3399.53 8199.53 2999.46 7199.41 7698.23 7399.95 2298.89 6899.95 3299.81 28
mvsmamba99.24 3799.15 5099.49 4899.83 1998.85 7499.41 1399.55 7399.54 2799.40 8399.52 5795.86 22599.91 5999.32 4099.95 3299.70 51
CHOSEN 1792x268897.49 23197.14 24798.54 20499.68 5896.09 25096.50 29899.62 4891.58 37198.84 18198.97 17192.36 30299.88 8396.76 20499.95 3299.67 57
IterMVS-SCA-FT97.85 20898.18 16796.87 32499.27 16191.16 37295.53 34699.25 18999.10 8099.41 8099.35 8393.10 28999.96 1198.65 8399.94 4099.49 127
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2898.37 11199.30 3299.57 6299.61 2299.40 8399.50 5997.12 15799.85 12099.02 6099.94 4099.80 29
UGNet98.53 13698.45 13098.79 16397.94 34996.96 22299.08 5898.54 30099.10 8096.82 33399.47 6596.55 19199.84 13798.56 9199.94 4099.55 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS97.73 21498.11 17696.57 33399.24 16690.28 38095.52 34899.21 19898.86 10399.33 9799.33 8993.11 28899.94 3598.49 9499.94 4099.48 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_n_192098.40 15098.92 6896.81 32899.74 3790.76 37798.15 15399.91 798.33 13199.89 1599.55 4895.07 24699.88 8399.76 1699.93 4499.79 30
test_f98.67 11498.87 7198.05 24899.72 4495.59 26298.51 11799.81 2496.30 28299.78 2699.82 496.14 20698.63 39599.82 899.93 4499.95 6
CHOSEN 280x42095.51 31995.47 30895.65 35898.25 33188.27 38893.25 39498.88 26193.53 34994.65 38197.15 34386.17 34699.93 4097.41 15499.93 4498.73 305
CANet97.87 20297.76 20498.19 23697.75 35795.51 26796.76 28699.05 23497.74 17796.93 32298.21 28495.59 23299.89 7497.86 13399.93 4499.19 234
v114498.60 12498.66 9898.41 21899.36 14795.90 25597.58 23199.34 14997.51 19899.27 10899.15 12696.34 20299.80 18499.47 3499.93 4499.51 120
PEN-MVS99.41 2099.34 2599.62 699.73 3899.14 5299.29 3399.54 7899.62 2099.56 5399.42 7398.16 8499.96 1198.78 7299.93 4499.77 35
DTE-MVSNet99.43 1899.35 2399.66 499.71 4799.30 1799.31 2799.51 8599.64 1599.56 5399.46 6698.23 7399.97 498.78 7299.93 4499.72 45
CP-MVSNet99.21 3999.09 5599.56 2199.65 6598.96 7099.13 5599.34 14999.42 4199.33 9799.26 10097.01 16599.94 3598.74 7699.93 4499.79 30
WR-MVS_H99.33 2699.22 4099.65 599.71 4799.24 2599.32 2399.55 7399.46 3599.50 6799.34 8797.30 14699.93 4098.90 6699.93 4499.77 35
PVSNet_BlendedMVS97.55 22897.53 22297.60 28298.92 23693.77 32796.64 29299.43 12094.49 32997.62 28599.18 11696.82 17599.67 26794.73 29599.93 4499.36 190
Vis-MVSNetpermissive99.34 2599.36 2299.27 8899.73 3898.26 11899.17 5099.78 2799.11 7399.27 10899.48 6498.82 3199.95 2298.94 6499.93 4499.59 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SDMVSNet99.23 3899.32 2898.96 13999.68 5897.35 19898.84 8599.48 9699.69 999.63 4899.68 2099.03 2199.96 1197.97 12599.92 5599.57 91
sd_testset99.28 2999.31 3099.19 10199.68 5898.06 14499.41 1399.30 16999.69 999.63 4899.68 2099.25 1499.96 1197.25 16299.92 5599.57 91
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2999.64 1599.84 2099.83 399.50 899.87 10099.36 3899.92 5599.64 63
nrg03099.40 2199.35 2399.54 2799.58 7799.13 5598.98 7199.48 9699.68 1199.46 7199.26 10098.62 4799.73 23899.17 5199.92 5599.76 39
v119298.60 12498.66 9898.41 21899.27 16195.88 25697.52 23799.36 13897.41 21199.33 9799.20 11296.37 20099.82 16499.57 2799.92 5599.55 104
iter_conf0596.54 28796.07 29397.92 25597.90 35294.50 29997.87 19399.14 22197.73 17898.89 17098.95 17875.75 39399.87 10098.50 9399.92 5599.40 173
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5599.44 3899.78 2699.76 1096.39 19799.92 5099.44 3699.92 5599.68 54
DeepC-MVS97.60 498.97 6698.93 6799.10 11499.35 15197.98 15198.01 17499.46 10697.56 19499.54 5699.50 5998.97 2399.84 13798.06 11899.92 5599.49 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
patch_mono-298.51 14098.63 10298.17 23799.38 14094.78 28997.36 24999.69 3798.16 15398.49 22699.29 9597.06 16099.97 498.29 10499.91 6399.76 39
dcpmvs_298.78 9099.11 5297.78 26599.56 8993.67 32999.06 6299.86 1399.50 3099.66 4299.26 10097.21 15499.99 298.00 12399.91 6399.68 54
Anonymous2023121199.27 3099.27 3599.26 9099.29 15898.18 12699.49 899.51 8599.70 899.80 2499.68 2096.84 17299.83 15499.21 4899.91 6399.77 35
v14419298.54 13498.57 11298.45 21499.21 17395.98 25397.63 22499.36 13897.15 24199.32 10399.18 11695.84 22699.84 13799.50 3299.91 6399.54 108
PVSNet_Blended_VisFu98.17 18198.15 17298.22 23499.73 3895.15 28097.36 24999.68 4294.45 33398.99 14999.27 9896.87 17199.94 3597.13 17199.91 6399.57 91
test_040298.76 9498.71 8998.93 14499.56 8998.14 13098.45 12799.34 14999.28 5698.95 15798.91 18498.34 6999.79 19795.63 27699.91 6398.86 285
test_fmvs298.70 10398.97 6597.89 25899.54 9894.05 31198.55 10899.92 696.78 25899.72 3199.78 896.60 18999.67 26799.91 299.90 6999.94 7
v192192098.54 13498.60 10998.38 22199.20 17795.76 26197.56 23399.36 13897.23 23399.38 8799.17 12096.02 21299.84 13799.57 2799.90 6999.54 108
v2v48298.56 12898.62 10498.37 22299.42 13595.81 25997.58 23199.16 21597.90 16799.28 10699.01 16195.98 21999.79 19799.33 3999.90 6999.51 120
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14698.87 7398.39 13299.42 12399.42 4199.36 9299.06 14098.38 6499.95 2298.34 10199.90 6999.57 91
FMVSNet199.17 4299.17 4399.17 10299.55 9398.24 12099.20 4599.44 11499.21 6299.43 7699.55 4897.82 10799.86 10898.42 9899.89 7399.41 164
FIs99.14 4699.09 5599.29 8499.70 5498.28 11799.13 5599.52 8499.48 3299.24 11799.41 7696.79 17899.82 16498.69 8199.88 7499.76 39
v124098.55 13298.62 10498.32 22599.22 17195.58 26497.51 23999.45 11097.16 23999.45 7499.24 10596.12 20899.85 12099.60 2599.88 7499.55 104
TAMVS98.24 17398.05 18298.80 16099.07 20897.18 21197.88 19098.81 27796.66 26499.17 12799.21 11094.81 25599.77 21596.96 18599.88 7499.44 154
test_fmvs1_n98.09 18698.28 15497.52 29199.68 5893.47 33398.63 9999.93 495.41 31299.68 3999.64 3291.88 30999.48 33999.82 899.87 7799.62 67
EU-MVSNet97.66 22098.50 12095.13 36699.63 7485.84 39698.35 13698.21 31498.23 14199.54 5699.46 6695.02 24799.68 26498.24 10599.87 7799.87 16
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5399.59 2399.71 3399.57 4297.12 15799.90 6499.21 4899.87 7799.54 108
test_cas_vis1_n_192098.33 16098.68 9597.27 30599.69 5692.29 35498.03 16999.85 1597.62 18699.96 499.62 3493.98 27799.74 23399.52 3199.86 8099.79 30
CS-MVS99.13 4999.10 5499.24 9599.06 21299.15 4799.36 1999.88 1199.36 4898.21 24598.46 26298.68 4299.93 4099.03 5999.85 8198.64 315
CS-MVS-test99.13 4999.09 5599.26 9099.13 19798.97 6699.31 2799.88 1199.44 3898.16 24898.51 25498.64 4499.93 4098.91 6599.85 8198.88 283
v14898.45 14598.60 10998.00 25199.44 12994.98 28597.44 24599.06 23198.30 13499.32 10398.97 17196.65 18799.62 29298.37 9999.85 8199.39 175
WR-MVS98.40 15098.19 16699.03 13099.00 22197.65 18296.85 28198.94 25098.57 12198.89 17098.50 25895.60 23199.85 12097.54 14899.85 8199.59 80
test_vis1_n98.31 16398.50 12097.73 27499.76 3194.17 30998.68 9699.91 796.31 28099.79 2599.57 4292.85 29699.42 35199.79 1399.84 8599.60 74
CANet_DTU97.26 24897.06 24997.84 26097.57 36694.65 29696.19 31798.79 28097.23 23395.14 37598.24 28193.22 28699.84 13797.34 15799.84 8599.04 255
V4298.78 9098.78 8198.76 17099.44 12997.04 21798.27 14099.19 20497.87 16999.25 11699.16 12296.84 17299.78 20899.21 4899.84 8599.46 146
VPA-MVSNet99.30 2899.30 3299.28 8599.49 11598.36 11499.00 6899.45 11099.63 1799.52 6299.44 7198.25 7199.88 8399.09 5499.84 8599.62 67
SixPastTwentyTwo98.75 9598.62 10499.16 10599.83 1997.96 15599.28 3798.20 31599.37 4599.70 3599.65 3092.65 29999.93 4099.04 5899.84 8599.60 74
HyFIR lowres test97.19 25596.60 27998.96 13999.62 7697.28 20295.17 35899.50 8794.21 33899.01 14798.32 27786.61 34299.99 297.10 17399.84 8599.60 74
TDRefinement99.42 1999.38 2199.55 2399.76 3199.33 1699.68 599.71 3499.38 4499.53 6099.61 3798.64 4499.80 18498.24 10599.84 8599.52 118
pm-mvs199.44 1599.48 1499.33 7899.80 2298.63 8999.29 3399.63 4799.30 5499.65 4599.60 3999.16 2099.82 16499.07 5599.83 9299.56 97
Baseline_NR-MVSNet98.98 6598.86 7499.36 6499.82 2198.55 9797.47 24399.57 6299.37 4599.21 12099.61 3796.76 18199.83 15498.06 11899.83 9299.71 46
Patchmtry97.35 24196.97 25298.50 21097.31 38196.47 23798.18 14998.92 25598.95 9798.78 18899.37 7985.44 35499.85 12095.96 26099.83 9299.17 240
ppachtmachnet_test97.50 22997.74 20696.78 33098.70 27891.23 37194.55 37899.05 23496.36 27799.21 12098.79 21196.39 19799.78 20896.74 20699.82 9599.34 196
EI-MVSNet98.40 15098.51 11898.04 24999.10 20194.73 29297.20 26398.87 26398.97 9499.06 13699.02 15296.00 21499.80 18498.58 8699.82 9599.60 74
NR-MVSNet98.95 6998.82 7799.36 6499.16 19098.72 8799.22 4299.20 20099.10 8099.72 3198.76 21696.38 19999.86 10898.00 12399.82 9599.50 123
MVSTER96.86 27496.55 28197.79 26497.91 35194.21 30797.56 23398.87 26397.49 20199.06 13699.05 14780.72 37699.80 18498.44 9699.82 9599.37 184
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9399.69 3798.90 10099.43 7699.35 8398.86 2899.67 26797.81 13499.81 9999.24 222
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9399.69 3798.90 10099.43 7699.35 8398.86 2899.67 26797.81 13499.81 9999.24 222
cl____97.02 26696.83 26297.58 28497.82 35594.04 31394.66 37399.16 21597.04 24498.63 20598.71 22288.68 33299.69 25597.00 17999.81 9999.00 262
DIV-MVS_self_test97.02 26696.84 26197.58 28497.82 35594.03 31494.66 37399.16 21597.04 24498.63 20598.71 22288.69 33099.69 25597.00 17999.81 9999.01 259
eth_miper_zixun_eth97.23 25297.25 23997.17 31098.00 34592.77 34494.71 37099.18 20897.27 22598.56 21898.74 21891.89 30899.69 25597.06 17799.81 9999.05 251
PMMVS298.07 18898.08 18098.04 24999.41 13794.59 29894.59 37799.40 12697.50 19998.82 18598.83 20396.83 17499.84 13797.50 15199.81 9999.71 46
K. test v398.00 19297.66 21499.03 13099.79 2497.56 18799.19 4992.47 39399.62 2099.52 6299.66 2789.61 32499.96 1199.25 4599.81 9999.56 97
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13599.43 13497.73 17898.00 17599.62 4899.22 6099.55 5599.22 10998.93 2699.75 22898.66 8299.81 9999.50 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet97.69 21797.35 23598.69 17898.73 26997.02 21996.92 27998.75 28795.89 29698.59 21398.67 23092.08 30799.74 23396.72 20999.81 9999.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG98.68 11198.50 12099.20 9999.45 12898.63 8998.56 10799.57 6297.87 16998.85 17998.04 29897.66 11699.84 13796.72 20999.81 9999.13 244
miper_lstm_enhance97.18 25697.16 24497.25 30798.16 33792.85 34295.15 36099.31 16197.25 22798.74 19698.78 21290.07 32199.78 20897.19 16499.80 10999.11 246
UniMVSNet (Re)98.87 7898.71 8999.35 7099.24 16698.73 8597.73 21299.38 13098.93 9899.12 12898.73 21996.77 17999.86 10898.63 8599.80 10999.46 146
FMVSNet298.49 14198.40 13798.75 17398.90 24097.14 21598.61 10299.13 22298.59 11899.19 12299.28 9694.14 27299.82 16497.97 12599.80 10999.29 212
XXY-MVS99.14 4699.15 5099.10 11499.76 3197.74 17698.85 8399.62 4898.48 12699.37 8999.49 6398.75 3699.86 10898.20 10899.80 10999.71 46
IS-MVSNet98.19 17897.90 19699.08 11899.57 8197.97 15299.31 2798.32 31099.01 9198.98 15099.03 15191.59 31099.79 19795.49 28199.80 10999.48 137
mvsany_test398.87 7898.92 6898.74 17799.38 14096.94 22498.58 10599.10 22696.49 27099.96 499.81 598.18 8099.45 34698.97 6399.79 11499.83 22
EI-MVSNet-UG-set98.69 10698.71 8998.62 18699.10 20196.37 23997.23 25998.87 26399.20 6499.19 12298.99 16597.30 14699.85 12098.77 7599.79 11499.65 62
pmmvs497.58 22797.28 23898.51 20798.84 25296.93 22595.40 35398.52 30293.60 34898.61 20998.65 23595.10 24599.60 29996.97 18499.79 11498.99 263
test20.0398.78 9098.77 8298.78 16699.46 12597.20 20997.78 20399.24 19499.04 8899.41 8098.90 18797.65 11799.76 22197.70 14299.79 11499.39 175
Vis-MVSNet (Re-imp)97.46 23397.16 24498.34 22499.55 9396.10 24798.94 7598.44 30598.32 13398.16 24898.62 24288.76 32999.73 23893.88 32399.79 11499.18 236
iter_conf05_1196.72 27996.30 28897.97 25397.97 34696.24 24594.99 36496.19 36396.45 27496.77 33696.84 34891.46 31299.78 20896.27 24399.78 11997.90 358
EI-MVSNet-Vis-set98.68 11198.70 9298.63 18599.09 20496.40 23897.23 25998.86 26899.20 6499.18 12698.97 17197.29 14899.85 12098.72 7899.78 11999.64 63
LPG-MVS_test98.71 9998.46 12999.47 5499.57 8198.97 6698.23 14399.48 9696.60 26599.10 13299.06 14098.71 3999.83 15495.58 27999.78 11999.62 67
LGP-MVS_train99.47 5499.57 8198.97 6699.48 9696.60 26599.10 13299.06 14098.71 3999.83 15495.58 27999.78 11999.62 67
CLD-MVS97.49 23197.16 24498.48 21199.07 20897.03 21894.71 37099.21 19894.46 33198.06 25897.16 34297.57 12699.48 33994.46 30399.78 11998.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs197.72 21597.94 19297.07 31598.66 29192.39 35197.68 21699.81 2495.20 31699.54 5699.44 7191.56 31199.41 35299.78 1599.77 12499.40 173
new-patchmatchnet98.35 15698.74 8397.18 30899.24 16692.23 35696.42 30399.48 9698.30 13499.69 3799.53 5497.44 14099.82 16498.84 7099.77 12499.49 127
Patchmatch-RL test97.26 24897.02 25197.99 25299.52 10395.53 26696.13 32199.71 3497.47 20299.27 10899.16 12284.30 36399.62 29297.89 12899.77 12498.81 292
UniMVSNet_NR-MVSNet98.86 8198.68 9599.40 6299.17 18898.74 8297.68 21699.40 12699.14 7299.06 13698.59 24696.71 18599.93 4098.57 8899.77 12499.53 115
DU-MVS98.82 8498.63 10299.39 6399.16 19098.74 8297.54 23599.25 18998.84 10699.06 13698.76 21696.76 18199.93 4098.57 8899.77 12499.50 123
EC-MVSNet99.09 5499.05 5999.20 9999.28 15998.93 7199.24 4199.84 1899.08 8598.12 25398.37 27098.72 3899.90 6499.05 5799.77 12498.77 300
ACMMP++_ref99.77 124
wuyk23d96.06 30197.62 21891.38 38798.65 29498.57 9698.85 8396.95 35096.86 25499.90 1299.16 12299.18 1798.40 39789.23 38499.77 12477.18 405
ACMP95.32 1598.41 14898.09 17799.36 6499.51 10598.79 8097.68 21699.38 13095.76 29998.81 18798.82 20698.36 6599.82 16494.75 29499.77 12499.48 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4798.83 7698.60 10399.58 5599.11 7399.53 6099.18 11698.81 3299.67 26796.71 21199.77 12499.50 123
ACMH96.65 799.25 3399.24 3999.26 9099.72 4498.38 10999.07 6199.55 7398.30 13499.65 4599.45 7099.22 1599.76 22198.44 9699.77 12499.64 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
c3_l97.36 24097.37 23397.31 30298.09 34193.25 33595.01 36399.16 21597.05 24398.77 19198.72 22192.88 29499.64 28696.93 18699.76 13599.05 251
pmmvs597.64 22197.49 22698.08 24499.14 19595.12 28296.70 29099.05 23493.77 34698.62 20798.83 20393.23 28599.75 22898.33 10399.76 13599.36 190
baseline98.96 6899.02 6098.76 17099.38 14097.26 20498.49 12099.50 8798.86 10399.19 12299.06 14098.23 7399.69 25598.71 7999.76 13599.33 201
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7599.41 6099.58 7799.10 6098.74 8799.56 6999.09 8399.33 9799.19 11398.40 6399.72 24595.98 25999.76 13599.42 161
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SD-MVS98.40 15098.68 9597.54 28998.96 22897.99 14897.88 19099.36 13898.20 14799.63 4899.04 14998.76 3595.33 40796.56 22399.74 13999.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS98.82 8498.72 8799.12 11099.64 7098.54 10097.98 17899.68 4297.62 18699.34 9699.18 11697.54 12999.77 21597.79 13699.74 13999.04 255
XVG-ACMP-BASELINE98.56 12898.34 14799.22 9899.54 9898.59 9497.71 21399.46 10697.25 22798.98 15098.99 16597.54 12999.84 13795.88 26299.74 13999.23 224
GeoE99.05 5898.99 6499.25 9399.44 12998.35 11598.73 9099.56 6998.42 12798.91 16798.81 20898.94 2599.91 5998.35 10099.73 14299.49 127
Anonymous2023120698.21 17698.21 16398.20 23599.51 10595.43 27198.13 15499.32 15696.16 28598.93 16598.82 20696.00 21499.83 15497.32 15899.73 14299.36 190
casdiffmvspermissive98.95 6999.00 6298.81 15899.38 14097.33 19997.82 19899.57 6299.17 7199.35 9499.17 12098.35 6899.69 25598.46 9599.73 14299.41 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason97.45 23597.35 23597.76 26999.24 16693.93 31995.86 33598.42 30694.24 33798.50 22598.13 28894.82 25399.91 5997.22 16399.73 14299.43 158
jason: jason.
N_pmnet97.63 22297.17 24398.99 13599.27 16197.86 16295.98 32693.41 39095.25 31499.47 7098.90 18795.63 23099.85 12096.91 18799.73 14299.27 215
USDC97.41 23897.40 23097.44 29898.94 23093.67 32995.17 35899.53 8194.03 34398.97 15499.10 13695.29 24099.34 36295.84 26899.73 14299.30 210
Gipumacopyleft99.03 5999.16 4598.64 18199.94 298.51 10299.32 2399.75 3299.58 2598.60 21199.62 3498.22 7699.51 33297.70 14299.73 14297.89 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EGC-MVSNET85.24 37280.54 37599.34 7399.77 2899.20 3499.08 5899.29 17712.08 40820.84 40999.42 7397.55 12899.85 12097.08 17499.72 14998.96 269
lessismore_v098.97 13899.73 3897.53 18986.71 40799.37 8999.52 5789.93 32299.92 5098.99 6299.72 14999.44 154
CP-MVS98.70 10398.42 13599.52 3999.36 14799.12 5798.72 9199.36 13897.54 19798.30 24098.40 26697.86 10399.89 7496.53 22899.72 14999.56 97
SteuartSystems-ACMMP98.79 8898.54 11599.54 2799.73 3899.16 4398.23 14399.31 16197.92 16598.90 16898.90 18798.00 9499.88 8396.15 25299.72 14999.58 86
Skip Steuart: Steuart Systems R&D Blog.
LF4IMVS97.90 19797.69 21098.52 20699.17 18897.66 18197.19 26599.47 10496.31 28097.85 27298.20 28596.71 18599.52 32894.62 29899.72 14998.38 336
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7499.06 6498.69 9599.54 7899.31 5299.62 5199.53 5497.36 14499.86 10899.24 4799.71 15499.39 175
test_0728_THIRD98.17 15099.08 13499.02 15297.89 10199.88 8397.07 17599.71 15499.70 51
HPM-MVS_fast99.01 6098.82 7799.57 1699.71 4799.35 1299.00 6899.50 8797.33 21898.94 16498.86 19798.75 3699.82 16497.53 14999.71 15499.56 97
FMVSNet596.01 30395.20 32098.41 21897.53 37196.10 24798.74 8799.50 8797.22 23698.03 26299.04 14969.80 39799.88 8397.27 16099.71 15499.25 219
RPSCF98.62 12298.36 14499.42 5899.65 6599.42 798.55 10899.57 6297.72 18098.90 16899.26 10096.12 20899.52 32895.72 27299.71 15499.32 203
MP-MVS-pluss98.57 12798.23 16299.60 1199.69 5699.35 1297.16 26699.38 13094.87 32398.97 15498.99 16598.01 9399.88 8397.29 15999.70 15999.58 86
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA98.88 7798.64 10199.61 999.67 6299.36 1198.43 12899.20 20098.83 10798.89 17098.90 18796.98 16799.92 5097.16 16699.70 15999.56 97
APDe-MVScopyleft98.99 6298.79 8099.60 1199.21 17399.15 4798.87 8099.48 9697.57 19299.35 9499.24 10597.83 10499.89 7497.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
tfpnnormal98.90 7598.90 7098.91 14799.67 6297.82 16899.00 6899.44 11499.45 3699.51 6699.24 10598.20 7999.86 10895.92 26199.69 16299.04 255
GBi-Net98.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11498.59 11898.95 15799.55 4894.14 27299.86 10897.77 13799.69 16299.41 164
test198.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11498.59 11898.95 15799.55 4894.14 27299.86 10897.77 13799.69 16299.41 164
FMVSNet397.50 22997.24 24098.29 22998.08 34295.83 25897.86 19598.91 25797.89 16898.95 15798.95 17887.06 33999.81 17797.77 13799.69 16299.23 224
ACMMPcopyleft98.75 9598.50 12099.52 3999.56 8999.16 4398.87 8099.37 13497.16 23998.82 18599.01 16197.71 11399.87 10096.29 24299.69 16299.54 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft98.59 12698.26 15899.57 1699.27 16199.15 4797.01 27199.39 12897.67 18299.44 7598.99 16597.53 13199.89 7495.40 28399.68 16799.66 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-OURS98.53 13698.34 14799.11 11299.50 10898.82 7895.97 32799.50 8797.30 22299.05 14198.98 16999.35 1299.32 36595.72 27299.68 16799.18 236
EPNet96.14 30095.44 31198.25 23190.76 41195.50 26897.92 18494.65 37998.97 9492.98 39598.85 20089.12 32899.87 10095.99 25899.68 16799.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS98.99 6299.01 6198.94 14299.50 10897.47 19198.04 16899.59 5398.15 15499.40 8399.36 8298.58 5399.76 22198.78 7299.68 16799.59 80
ACMMP++99.68 167
EPP-MVSNet98.30 16498.04 18399.07 12099.56 8997.83 16599.29 3398.07 32299.03 8998.59 21399.13 13092.16 30599.90 6496.87 19599.68 16799.49 127
our_test_397.39 23997.73 20896.34 33898.70 27889.78 38294.61 37698.97 24996.50 26999.04 14398.85 20095.98 21999.84 13797.26 16199.67 17399.41 164
ACMMP_NAP98.75 9598.48 12599.57 1699.58 7799.29 1997.82 19899.25 18996.94 24998.78 18899.12 13298.02 9299.84 13797.13 17199.67 17399.59 80
HPM-MVScopyleft98.79 8898.53 11699.59 1599.65 6599.29 1999.16 5199.43 12096.74 26098.61 20998.38 26998.62 4799.87 10096.47 23199.67 17399.59 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator98.27 298.81 8698.73 8599.05 12798.76 26597.81 17199.25 4099.30 16998.57 12198.55 22099.33 8997.95 9999.90 6497.16 16699.67 17399.44 154
PMVScopyleft91.26 2097.86 20397.94 19297.65 27899.71 4797.94 15798.52 11298.68 29298.99 9297.52 29599.35 8397.41 14198.18 39991.59 36499.67 17396.82 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DP-MVS98.93 7198.81 7999.28 8599.21 17398.45 10698.46 12599.33 15499.63 1799.48 6899.15 12697.23 15299.75 22897.17 16599.66 17899.63 66
MVS_111021_LR98.30 16498.12 17598.83 15599.16 19098.03 14696.09 32399.30 16997.58 19198.10 25598.24 28198.25 7199.34 36296.69 21299.65 17999.12 245
ACMM96.08 1298.91 7398.73 8599.48 5199.55 9399.14 5298.07 16399.37 13497.62 18699.04 14398.96 17498.84 3099.79 19797.43 15399.65 17999.49 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS98.68 11198.40 13799.54 2799.57 8199.21 2898.46 12599.29 17797.28 22498.11 25498.39 26798.00 9499.87 10096.86 19799.64 18199.55 104
SMA-MVScopyleft98.40 15098.03 18499.51 4399.16 19099.21 2898.05 16699.22 19794.16 33998.98 15099.10 13697.52 13399.79 19796.45 23399.64 18199.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
diffmvspermissive98.22 17498.24 16198.17 23799.00 22195.44 27096.38 30599.58 5597.79 17598.53 22398.50 25896.76 18199.74 23397.95 12799.64 18199.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DVP-MVScopyleft98.77 9398.52 11799.52 3999.50 10899.21 2898.02 17198.84 27297.97 16099.08 13499.02 15297.61 12399.88 8396.99 18199.63 18499.48 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1199.50 10899.23 2698.02 17199.32 15699.88 8396.99 18199.63 18499.68 54
VDD-MVS98.56 12898.39 14099.07 12099.13 19798.07 14198.59 10497.01 34699.59 2399.11 12999.27 9894.82 25399.79 19798.34 10199.63 18499.34 196
SED-MVS98.91 7398.72 8799.49 4899.49 11599.17 3998.10 15999.31 16198.03 15799.66 4299.02 15298.36 6599.88 8396.91 18799.62 18799.41 164
IU-MVS99.49 11599.15 4798.87 26392.97 35699.41 8096.76 20499.62 18799.66 58
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2298.58 9599.27 3999.57 6299.39 4399.75 3099.62 3499.17 1899.83 15499.06 5699.62 18799.66 58
mPP-MVS98.64 11898.34 14799.54 2799.54 9899.17 3998.63 9999.24 19497.47 20298.09 25698.68 22897.62 12299.89 7496.22 24799.62 18799.57 91
DeepPCF-MVS96.93 598.32 16198.01 18599.23 9798.39 32498.97 6695.03 36299.18 20896.88 25299.33 9798.78 21298.16 8499.28 37296.74 20699.62 18799.44 154
AllTest98.44 14698.20 16499.16 10599.50 10898.55 9798.25 14299.58 5596.80 25698.88 17499.06 14097.65 11799.57 31194.45 30499.61 19299.37 184
TestCases99.16 10599.50 10898.55 9799.58 5596.80 25698.88 17499.06 14097.65 11799.57 31194.45 30499.61 19299.37 184
MSC_two_6792asdad99.32 8098.43 31998.37 11198.86 26899.89 7497.14 16999.60 19499.71 46
No_MVS99.32 8098.43 31998.37 11198.86 26899.89 7497.14 16999.60 19499.71 46
test_241102_TWO99.30 16998.03 15799.26 11299.02 15297.51 13499.88 8396.91 18799.60 19499.66 58
MP-MVScopyleft98.46 14498.09 17799.54 2799.57 8199.22 2798.50 11999.19 20497.61 18997.58 28998.66 23397.40 14299.88 8394.72 29799.60 19499.54 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS98.71 9998.44 13299.51 4399.49 11599.16 4398.52 11299.31 16197.47 20298.58 21598.50 25897.97 9899.85 12096.57 21999.59 19899.53 115
CVMVSNet96.25 29897.21 24293.38 38499.10 20180.56 41197.20 26398.19 31796.94 24999.00 14899.02 15289.50 32699.80 18496.36 23899.59 19899.78 33
ACMMPR98.70 10398.42 13599.54 2799.52 10399.14 5298.52 11299.31 16197.47 20298.56 21898.54 25097.75 11199.88 8396.57 21999.59 19899.58 86
PGM-MVS98.66 11598.37 14399.55 2399.53 10199.18 3898.23 14399.49 9497.01 24698.69 19898.88 19498.00 9499.89 7495.87 26599.59 19899.58 86
DELS-MVS98.27 16898.20 16498.48 21198.86 24896.70 23295.60 34499.20 20097.73 17898.45 22998.71 22297.50 13599.82 16498.21 10799.59 19898.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 10698.40 13799.54 2799.53 10199.17 3998.52 11299.31 16197.46 20798.44 23098.51 25497.83 10499.88 8396.46 23299.58 20399.58 86
114514_t96.50 29095.77 29798.69 17899.48 12297.43 19597.84 19799.55 7381.42 40296.51 34698.58 24795.53 23399.67 26793.41 33699.58 20398.98 264
PHI-MVS98.29 16797.95 19099.34 7398.44 31899.16 4398.12 15699.38 13096.01 29198.06 25898.43 26497.80 10899.67 26795.69 27499.58 20399.20 229
TinyColmap97.89 19997.98 18897.60 28298.86 24894.35 30496.21 31599.44 11497.45 20999.06 13698.88 19497.99 9799.28 37294.38 31099.58 20399.18 236
MVSFormer98.26 17098.43 13397.77 26698.88 24693.89 32399.39 1799.56 6999.11 7398.16 24898.13 28893.81 28099.97 499.26 4399.57 20799.43 158
lupinMVS97.06 26396.86 25997.65 27898.88 24693.89 32395.48 34997.97 32493.53 34998.16 24897.58 32493.81 28099.91 5996.77 20399.57 20799.17 240
MVS_111021_HR98.25 17298.08 18098.75 17399.09 20497.46 19295.97 32799.27 18397.60 19097.99 26398.25 28098.15 8699.38 35796.87 19599.57 20799.42 161
test_vis3_rt99.14 4699.17 4399.07 12099.78 2598.38 10998.92 7799.94 297.80 17499.91 1199.67 2597.15 15698.91 39099.76 1699.56 21099.92 9
OPM-MVS98.56 12898.32 15199.25 9399.41 13798.73 8597.13 26899.18 20897.10 24298.75 19498.92 18398.18 8099.65 28396.68 21399.56 21099.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_Blended96.88 27396.68 27297.47 29698.92 23693.77 32794.71 37099.43 12090.98 37997.62 28597.36 33896.82 17599.67 26794.73 29599.56 21098.98 264
APD_test198.83 8398.66 9899.34 7399.78 2599.47 698.42 13099.45 11098.28 13998.98 15099.19 11397.76 11099.58 30996.57 21999.55 21398.97 267
DeepC-MVS_fast96.85 698.30 16498.15 17298.75 17398.61 29597.23 20597.76 20899.09 22897.31 22198.75 19498.66 23397.56 12799.64 28696.10 25699.55 21399.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft98.10 18397.67 21199.42 5899.11 19998.93 7197.76 20899.28 18094.97 32098.72 19798.77 21497.04 16199.85 12093.79 32699.54 21599.49 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DSMNet-mixed97.42 23797.60 21996.87 32499.15 19491.46 36298.54 11099.12 22392.87 35997.58 28999.63 3396.21 20599.90 6495.74 27199.54 21599.27 215
CPTT-MVS97.84 20997.36 23499.27 8899.31 15498.46 10598.29 13899.27 18394.90 32297.83 27398.37 27094.90 24999.84 13793.85 32599.54 21599.51 120
1112_ss97.29 24796.86 25998.58 19399.34 15396.32 24196.75 28799.58 5593.14 35496.89 32997.48 33092.11 30699.86 10896.91 18799.54 21599.57 91
XVS98.72 9898.45 13099.53 3499.46 12599.21 2898.65 9799.34 14998.62 11697.54 29398.63 24097.50 13599.83 15496.79 20099.53 21999.56 97
X-MVStestdata94.32 33492.59 35299.53 3499.46 12599.21 2898.65 9799.34 14998.62 11697.54 29345.85 40697.50 13599.83 15496.79 20099.53 21999.56 97
Test_1112_low_res96.99 27096.55 28198.31 22799.35 15195.47 26995.84 33899.53 8191.51 37396.80 33498.48 26191.36 31399.83 15496.58 21799.53 21999.62 67
SF-MVS98.53 13698.27 15799.32 8099.31 15498.75 8198.19 14899.41 12496.77 25998.83 18298.90 18797.80 10899.82 16495.68 27599.52 22299.38 182
Anonymous2024052998.93 7198.87 7199.12 11099.19 18098.22 12599.01 6698.99 24899.25 5899.54 5699.37 7997.04 16199.80 18497.89 12899.52 22299.35 194
GST-MVS98.61 12398.30 15299.52 3999.51 10599.20 3498.26 14199.25 18997.44 21098.67 20098.39 26797.68 11499.85 12096.00 25799.51 22499.52 118
tttt051795.64 31594.98 32497.64 28099.36 14793.81 32598.72 9190.47 40198.08 15698.67 20098.34 27473.88 39599.92 5097.77 13799.51 22499.20 229
HQP_MVS97.99 19597.67 21198.93 14499.19 18097.65 18297.77 20599.27 18398.20 14797.79 27697.98 30194.90 24999.70 25094.42 30699.51 22499.45 150
plane_prior599.27 18399.70 25094.42 30699.51 22499.45 150
ab-mvs98.41 14898.36 14498.59 19299.19 18097.23 20599.32 2398.81 27797.66 18398.62 20799.40 7896.82 17599.80 18495.88 26299.51 22498.75 303
OMC-MVS97.88 20197.49 22699.04 12998.89 24598.63 8996.94 27599.25 18995.02 31898.53 22398.51 25497.27 14999.47 34293.50 33499.51 22499.01 259
CMPMVSbinary75.91 2396.29 29695.44 31198.84 15496.25 40198.69 8897.02 27099.12 22388.90 39097.83 27398.86 19789.51 32598.90 39191.92 35799.51 22498.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc98.24 23398.82 25795.97 25498.62 10199.00 24799.27 10899.21 11096.99 16699.50 33396.55 22699.50 23199.26 218
TSAR-MVS + MP.98.63 12098.49 12499.06 12699.64 7097.90 15998.51 11798.94 25096.96 24799.24 11798.89 19397.83 10499.81 17796.88 19499.49 23299.48 137
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPU-MVS98.82 15698.59 30098.30 11698.10 15998.52 25398.18 8098.75 39494.62 29899.48 23399.41 164
9.1497.78 20399.07 20897.53 23699.32 15695.53 30698.54 22298.70 22597.58 12599.76 22194.32 31199.46 234
TSAR-MVS + GP.98.18 17997.98 18898.77 16998.71 27497.88 16096.32 30998.66 29396.33 27899.23 11998.51 25497.48 13999.40 35397.16 16699.46 23499.02 258
DVP-MVS++98.90 7598.70 9299.51 4398.43 31999.15 4799.43 1199.32 15698.17 15099.26 11299.02 15298.18 8099.88 8397.07 17599.45 23699.49 127
PC_three_145293.27 35299.40 8398.54 25098.22 7697.00 40395.17 28699.45 23699.49 127
PCF-MVS92.86 1894.36 33393.00 35098.42 21798.70 27897.56 18793.16 39599.11 22579.59 40397.55 29297.43 33392.19 30499.73 23879.85 40499.45 23697.97 357
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet96.99 27096.76 26797.67 27698.72 27194.89 28795.95 33198.20 31592.62 36298.55 22098.54 25094.88 25299.52 32893.96 32099.44 23998.59 320
APD-MVS_3200maxsize98.84 8298.61 10899.53 3499.19 18099.27 2298.49 12099.33 15498.64 11299.03 14698.98 16997.89 10199.85 12096.54 22799.42 24099.46 146
MSLP-MVS++98.02 19098.14 17497.64 28098.58 30295.19 27997.48 24199.23 19697.47 20297.90 26798.62 24297.04 16198.81 39397.55 14699.41 24198.94 274
QAPM97.31 24496.81 26598.82 15698.80 26397.49 19099.06 6299.19 20490.22 38397.69 28299.16 12296.91 16999.90 6490.89 37799.41 24199.07 249
SR-MVS-dyc-post98.81 8698.55 11399.57 1699.20 17799.38 898.48 12399.30 16998.64 11298.95 15798.96 17497.49 13899.86 10896.56 22399.39 24399.45 150
RE-MVS-def98.58 11199.20 17799.38 898.48 12399.30 16998.64 11298.95 15798.96 17497.75 11196.56 22399.39 24399.45 150
MVS-HIRNet94.32 33495.62 30390.42 38898.46 31575.36 41296.29 31189.13 40495.25 31495.38 37299.75 1192.88 29499.19 37894.07 31899.39 24396.72 389
CDPH-MVS97.26 24896.66 27599.07 12099.00 22198.15 12896.03 32599.01 24591.21 37797.79 27697.85 31096.89 17099.69 25592.75 34999.38 24699.39 175
VPNet98.87 7898.83 7699.01 13399.70 5497.62 18598.43 12899.35 14399.47 3499.28 10699.05 14796.72 18499.82 16498.09 11599.36 24799.59 80
plane_prior97.65 18297.07 26996.72 26199.36 247
thisisatest053095.27 32294.45 33197.74 27299.19 18094.37 30397.86 19590.20 40297.17 23898.22 24497.65 32073.53 39699.90 6496.90 19299.35 24998.95 270
HPM-MVS++copyleft98.10 18397.64 21699.48 5199.09 20499.13 5597.52 23798.75 28797.46 20796.90 32897.83 31196.01 21399.84 13795.82 26999.35 24999.46 146
LS3D98.63 12098.38 14299.36 6497.25 38299.38 899.12 5799.32 15699.21 6298.44 23098.88 19497.31 14599.80 18496.58 21799.34 25198.92 276
CNVR-MVS98.17 18197.87 19999.07 12098.67 28698.24 12097.01 27198.93 25297.25 22797.62 28598.34 27497.27 14999.57 31196.42 23499.33 25299.39 175
sss97.21 25396.93 25398.06 24698.83 25495.22 27896.75 28798.48 30494.49 32997.27 31097.90 30792.77 29799.80 18496.57 21999.32 25399.16 243
3Dnovator+97.89 398.69 10698.51 11899.24 9598.81 26098.40 10799.02 6599.19 20498.99 9298.07 25799.28 9697.11 15999.84 13796.84 19899.32 25399.47 144
SR-MVS98.71 9998.43 13399.57 1699.18 18799.35 1298.36 13599.29 17798.29 13798.88 17498.85 20097.53 13199.87 10096.14 25399.31 25599.48 137
Anonymous20240521197.90 19797.50 22599.08 11898.90 24098.25 11998.53 11196.16 36498.87 10299.11 12998.86 19790.40 32099.78 20897.36 15699.31 25599.19 234
Patchmatch-test96.55 28696.34 28697.17 31098.35 32593.06 33798.40 13197.79 32797.33 21898.41 23398.67 23083.68 36799.69 25595.16 28799.31 25598.77 300
LCM-MVSNet-Re98.64 11898.48 12599.11 11298.85 25198.51 10298.49 12099.83 2098.37 12899.69 3799.46 6698.21 7899.92 5094.13 31699.30 25898.91 279
EPNet_dtu94.93 32894.78 32995.38 36493.58 40887.68 39196.78 28495.69 37497.35 21789.14 40498.09 29488.15 33799.49 33694.95 29199.30 25898.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS96.21 1196.63 28495.95 29598.65 18098.93 23298.09 13596.93 27799.28 18083.58 40098.13 25297.78 31296.13 20799.40 35393.52 33299.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet93.40 1795.67 31395.70 30095.57 35998.83 25488.57 38592.50 39797.72 32992.69 36196.49 34996.44 35893.72 28399.43 34993.61 32999.28 26198.71 306
EIA-MVS98.00 19297.74 20698.80 16098.72 27198.09 13598.05 16699.60 5297.39 21396.63 34095.55 37397.68 11499.80 18496.73 20899.27 26298.52 322
LFMVS97.20 25496.72 26998.64 18198.72 27196.95 22398.93 7694.14 38799.74 698.78 18899.01 16184.45 36099.73 23897.44 15299.27 26299.25 219
ITE_SJBPF98.87 15199.22 17198.48 10499.35 14397.50 19998.28 24298.60 24597.64 12099.35 36193.86 32499.27 26298.79 298
HQP3-MVS99.04 23799.26 265
HQP-MVS97.00 26996.49 28398.55 20198.67 28696.79 22896.29 31199.04 23796.05 28895.55 36696.84 34893.84 27899.54 32292.82 34699.26 26599.32 203
SSC-MVS98.71 9998.74 8398.62 18699.72 4496.08 25298.74 8798.64 29699.74 699.67 4199.24 10594.57 26299.95 2299.11 5299.24 26799.82 25
ETV-MVS98.03 18997.86 20098.56 20098.69 28398.07 14197.51 23999.50 8798.10 15597.50 29795.51 37498.41 6299.88 8396.27 24399.24 26797.71 372
MCST-MVS98.00 19297.63 21799.10 11499.24 16698.17 12796.89 28098.73 29095.66 30097.92 26597.70 31897.17 15599.66 27896.18 25199.23 26999.47 144
SCA96.41 29496.66 27595.67 35698.24 33288.35 38795.85 33796.88 35396.11 28697.67 28398.67 23093.10 28999.85 12094.16 31299.22 27098.81 292
MSDG97.71 21697.52 22398.28 23098.91 23996.82 22794.42 38099.37 13497.65 18498.37 23898.29 27997.40 14299.33 36494.09 31799.22 27098.68 313
MIMVSNet96.62 28596.25 29297.71 27599.04 21694.66 29599.16 5196.92 35297.23 23397.87 26999.10 13686.11 34899.65 28391.65 36299.21 27298.82 288
test_prior295.74 34096.48 27196.11 35597.63 32295.92 22394.16 31299.20 273
VDDNet98.21 17697.95 19099.01 13399.58 7797.74 17699.01 6697.29 34199.67 1298.97 15499.50 5990.45 31999.80 18497.88 13199.20 27399.48 137
OpenMVScopyleft96.65 797.09 26196.68 27298.32 22598.32 32797.16 21398.86 8299.37 13489.48 38796.29 35299.15 12696.56 19099.90 6492.90 34399.20 27397.89 360
ZD-MVS99.01 22098.84 7599.07 23094.10 34198.05 26098.12 29096.36 20199.86 10892.70 35199.19 276
MSP-MVS98.40 15098.00 18699.61 999.57 8199.25 2498.57 10699.35 14397.55 19699.31 10597.71 31694.61 26199.88 8396.14 25399.19 27699.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNLPA97.17 25796.71 27098.55 20198.56 30598.05 14596.33 30898.93 25296.91 25197.06 31797.39 33594.38 26799.45 34691.66 36199.18 27898.14 347
train_agg97.10 26096.45 28499.07 12098.71 27498.08 13995.96 32999.03 23991.64 36995.85 36097.53 32696.47 19499.76 22193.67 32899.16 27999.36 190
agg_prior292.50 35499.16 27999.37 184
test9_res93.28 33899.15 28199.38 182
MS-PatchMatch97.68 21897.75 20597.45 29798.23 33493.78 32697.29 25598.84 27296.10 28798.64 20498.65 23596.04 21199.36 35896.84 19899.14 28299.20 229
AdaColmapbinary97.14 25996.71 27098.46 21398.34 32697.80 17296.95 27498.93 25295.58 30496.92 32397.66 31995.87 22499.53 32490.97 37499.14 28298.04 352
VNet98.42 14798.30 15298.79 16398.79 26497.29 20198.23 14398.66 29399.31 5298.85 17998.80 20994.80 25699.78 20898.13 11299.13 28499.31 207
test1298.93 14498.58 30297.83 16598.66 29396.53 34495.51 23599.69 25599.13 28499.27 215
DP-MVS Recon97.33 24396.92 25598.57 19699.09 20497.99 14896.79 28399.35 14393.18 35397.71 28098.07 29695.00 24899.31 36693.97 31999.13 28498.42 333
thisisatest051594.12 34093.16 34796.97 31998.60 29792.90 34193.77 39190.61 40094.10 34196.91 32595.87 36874.99 39499.80 18494.52 30199.12 28798.20 344
pmmvs395.03 32694.40 33296.93 32097.70 36292.53 34895.08 36197.71 33088.57 39197.71 28098.08 29579.39 38399.82 16496.19 24999.11 28898.43 331
test22298.92 23696.93 22595.54 34598.78 28285.72 39796.86 33198.11 29194.43 26499.10 28999.23 224
xiu_mvs_v1_base_debu97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
xiu_mvs_v1_base97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
xiu_mvs_v1_base_debi97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
MG-MVS96.77 27896.61 27797.26 30698.31 32893.06 33795.93 33298.12 32196.45 27497.92 26598.73 21993.77 28299.39 35591.19 37299.04 29399.33 201
cl2295.79 31095.39 31496.98 31896.77 39392.79 34394.40 38198.53 30194.59 32897.89 26898.17 28782.82 37299.24 37496.37 23699.03 29498.92 276
miper_ehance_all_eth97.06 26397.03 25097.16 31297.83 35493.06 33794.66 37399.09 22895.99 29298.69 19898.45 26392.73 29899.61 29896.79 20099.03 29498.82 288
miper_enhance_ethall96.01 30395.74 29896.81 32896.41 39992.27 35593.69 39298.89 26091.14 37898.30 24097.35 33990.58 31899.58 30996.31 24099.03 29498.60 318
API-MVS97.04 26596.91 25797.42 29997.88 35398.23 12498.18 14998.50 30397.57 19297.39 30796.75 35196.77 17999.15 38190.16 38099.02 29794.88 401
旧先验198.82 25797.45 19398.76 28498.34 27495.50 23699.01 29899.23 224
新几何198.91 14798.94 23097.76 17498.76 28487.58 39496.75 33798.10 29294.80 25699.78 20892.73 35099.00 29999.20 229
原ACMM198.35 22398.90 24096.25 24498.83 27692.48 36396.07 35798.10 29295.39 23999.71 24692.61 35398.99 30099.08 247
testgi98.32 16198.39 14098.13 24099.57 8195.54 26597.78 20399.49 9497.37 21599.19 12297.65 32098.96 2499.49 33696.50 23098.99 30099.34 196
MVP-Stereo98.08 18797.92 19498.57 19698.96 22896.79 22897.90 18799.18 20896.41 27698.46 22898.95 17895.93 22299.60 29996.51 22998.98 30299.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testing393.51 34892.09 35797.75 27098.60 29794.40 30297.32 25295.26 37697.56 19496.79 33595.50 37553.57 41399.77 21595.26 28598.97 30399.08 247
alignmvs97.35 24196.88 25898.78 16698.54 30798.09 13597.71 21397.69 33199.20 6497.59 28895.90 36788.12 33899.55 31798.18 10998.96 30498.70 309
testdata98.09 24198.93 23295.40 27298.80 27990.08 38597.45 30298.37 27095.26 24199.70 25093.58 33198.95 30599.17 240
mvsany_test197.60 22497.54 22197.77 26697.72 35895.35 27395.36 35497.13 34494.13 34099.71 3399.33 8997.93 10099.30 36897.60 14598.94 30698.67 314
Effi-MVS+-dtu98.26 17097.90 19699.35 7098.02 34499.49 598.02 17199.16 21598.29 13797.64 28497.99 30096.44 19699.95 2296.66 21498.93 30798.60 318
FA-MVS(test-final)96.99 27096.82 26397.50 29398.70 27894.78 28999.34 2096.99 34795.07 31798.48 22799.33 8988.41 33699.65 28396.13 25598.92 30898.07 351
MVS_Test98.18 17998.36 14497.67 27698.48 31294.73 29298.18 14999.02 24297.69 18198.04 26199.11 13397.22 15399.56 31498.57 8898.90 30998.71 306
CL-MVSNet_self_test97.44 23697.22 24198.08 24498.57 30495.78 26094.30 38398.79 28096.58 26798.60 21198.19 28694.74 26099.64 28696.41 23598.84 31098.82 288
WB-MVS98.52 13998.55 11398.43 21699.65 6595.59 26298.52 11298.77 28399.65 1499.52 6299.00 16494.34 26899.93 4098.65 8398.83 31199.76 39
Fast-Effi-MVS+97.67 21997.38 23298.57 19698.71 27497.43 19597.23 25999.45 11094.82 32496.13 35496.51 35498.52 5699.91 5996.19 24998.83 31198.37 338
NCCC97.86 20397.47 22999.05 12798.61 29598.07 14196.98 27398.90 25897.63 18597.04 31897.93 30695.99 21899.66 27895.31 28498.82 31399.43 158
PatchMatch-RL97.24 25196.78 26698.61 18999.03 21997.83 16596.36 30699.06 23193.49 35197.36 30997.78 31295.75 22799.49 33693.44 33598.77 31498.52 322
DPM-MVS96.32 29595.59 30598.51 20798.76 26597.21 20894.54 37998.26 31291.94 36896.37 35097.25 34093.06 29199.43 34991.42 36798.74 31598.89 280
YYNet197.60 22497.67 21197.39 30199.04 21693.04 34095.27 35598.38 30997.25 22798.92 16698.95 17895.48 23799.73 23896.99 18198.74 31599.41 164
MDA-MVSNet-bldmvs97.94 19697.91 19598.06 24699.44 12994.96 28696.63 29399.15 22098.35 12998.83 18299.11 13394.31 26999.85 12096.60 21698.72 31799.37 184
MDA-MVSNet_test_wron97.60 22497.66 21497.41 30099.04 21693.09 33695.27 35598.42 30697.26 22698.88 17498.95 17895.43 23899.73 23897.02 17898.72 31799.41 164
MGCFI-Net98.34 15798.28 15498.51 20798.47 31397.59 18698.96 7299.48 9699.18 7097.40 30595.50 37598.66 4399.50 33398.18 10998.71 31998.44 329
sasdasda98.34 15798.26 15898.58 19398.46 31597.82 16898.96 7299.46 10699.19 6897.46 30095.46 37898.59 5099.46 34498.08 11698.71 31998.46 324
FE-MVS95.66 31494.95 32697.77 26698.53 30995.28 27599.40 1696.09 36693.11 35597.96 26499.26 10079.10 38599.77 21592.40 35598.71 31998.27 342
Fast-Effi-MVS+-dtu98.27 16898.09 17798.81 15898.43 31998.11 13297.61 22799.50 8798.64 11297.39 30797.52 32898.12 8799.95 2296.90 19298.71 31998.38 336
canonicalmvs98.34 15798.26 15898.58 19398.46 31597.82 16898.96 7299.46 10699.19 6897.46 30095.46 37898.59 5099.46 34498.08 11698.71 31998.46 324
xiu_mvs_v2_base97.16 25897.49 22696.17 34798.54 30792.46 34995.45 35098.84 27297.25 22797.48 29996.49 35598.31 7099.90 6496.34 23998.68 32496.15 395
PS-MVSNAJ97.08 26297.39 23196.16 34998.56 30592.46 34995.24 35798.85 27197.25 22797.49 29895.99 36498.07 8899.90 6496.37 23698.67 32596.12 396
UWE-MVS92.38 36391.76 36694.21 37497.16 38484.65 40195.42 35288.45 40595.96 29396.17 35395.84 37066.36 40399.71 24691.87 35998.64 32698.28 341
PatchmatchNetpermissive95.58 31695.67 30295.30 36597.34 38087.32 39297.65 22296.65 35695.30 31397.07 31698.69 22684.77 35799.75 22894.97 29098.64 32698.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVEpermissive83.40 2292.50 36191.92 36394.25 37398.83 25491.64 36092.71 39683.52 41095.92 29586.46 40795.46 37895.20 24295.40 40680.51 40398.64 32695.73 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
OpenMVS_ROBcopyleft95.38 1495.84 30995.18 32197.81 26398.41 32397.15 21497.37 24898.62 29783.86 39998.65 20398.37 27094.29 27099.68 26488.41 38598.62 32996.60 390
cascas94.79 32994.33 33596.15 35096.02 40492.36 35392.34 39999.26 18885.34 39895.08 37694.96 38792.96 29398.53 39694.41 30998.59 33097.56 377
BH-RMVSNet96.83 27596.58 28097.58 28498.47 31394.05 31196.67 29197.36 33796.70 26397.87 26997.98 30195.14 24499.44 34890.47 37998.58 33199.25 219
GA-MVS95.86 30895.32 31797.49 29498.60 29794.15 31093.83 39097.93 32595.49 30796.68 33897.42 33483.21 36899.30 36896.22 24798.55 33299.01 259
F-COLMAP97.30 24596.68 27299.14 10899.19 18098.39 10897.27 25899.30 16992.93 35796.62 34198.00 29995.73 22899.68 26492.62 35298.46 33399.35 194
XVG-OURS-SEG-HR98.49 14198.28 15499.14 10899.49 11598.83 7696.54 29599.48 9697.32 22099.11 12998.61 24499.33 1399.30 36896.23 24698.38 33499.28 214
test_yl96.69 28096.29 28997.90 25698.28 32995.24 27697.29 25597.36 33798.21 14398.17 24697.86 30886.27 34499.55 31794.87 29298.32 33598.89 280
DCV-MVSNet96.69 28096.29 28997.90 25698.28 32995.24 27697.29 25597.36 33798.21 14398.17 24697.86 30886.27 34499.55 31794.87 29298.32 33598.89 280
WB-MVSnew95.73 31295.57 30696.23 34496.70 39490.70 37896.07 32493.86 38895.60 30397.04 31895.45 38196.00 21499.55 31791.04 37398.31 33798.43 331
tt080598.69 10698.62 10498.90 15099.75 3599.30 1799.15 5396.97 34898.86 10398.87 17897.62 32398.63 4698.96 38799.41 3798.29 33898.45 327
thres600view794.45 33293.83 33896.29 34099.06 21291.53 36197.99 17794.24 38598.34 13097.44 30395.01 38479.84 37999.67 26784.33 39698.23 33997.66 373
MAR-MVS96.47 29295.70 30098.79 16397.92 35099.12 5798.28 13998.60 29892.16 36795.54 36996.17 36294.77 25999.52 32889.62 38298.23 33997.72 371
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+98.02 19097.82 20298.62 18698.53 30997.19 21097.33 25199.68 4297.30 22296.68 33897.46 33298.56 5499.80 18496.63 21598.20 34198.86 285
test_vis1_rt97.75 21397.72 20997.83 26198.81 26096.35 24097.30 25499.69 3794.61 32797.87 26998.05 29796.26 20498.32 39898.74 7698.18 34298.82 288
test-LLR93.90 34393.85 33794.04 37596.53 39684.62 40294.05 38792.39 39496.17 28394.12 38695.07 38282.30 37399.67 26795.87 26598.18 34297.82 363
test-mter92.33 36591.76 36694.04 37596.53 39684.62 40294.05 38792.39 39494.00 34494.12 38695.07 38265.63 40699.67 26795.87 26598.18 34297.82 363
mvs_anonymous97.83 21198.16 17196.87 32498.18 33691.89 35897.31 25398.90 25897.37 21598.83 18299.46 6696.28 20399.79 19798.90 6698.16 34598.95 270
WTY-MVS96.67 28296.27 29197.87 25998.81 26094.61 29796.77 28597.92 32694.94 32197.12 31397.74 31591.11 31599.82 16493.89 32298.15 34699.18 236
thres20093.72 34693.14 34895.46 36398.66 29191.29 36796.61 29494.63 38097.39 21396.83 33293.71 39579.88 37899.56 31482.40 40198.13 34795.54 400
TESTMET0.1,192.19 36791.77 36593.46 38296.48 39882.80 40794.05 38791.52 39894.45 33394.00 38994.88 38866.65 40299.56 31495.78 27098.11 34898.02 353
PMMVS96.51 28895.98 29498.09 24197.53 37195.84 25794.92 36698.84 27291.58 37196.05 35895.58 37295.68 22999.66 27895.59 27898.09 34998.76 302
thres100view90094.19 33793.67 34195.75 35599.06 21291.35 36598.03 16994.24 38598.33 13197.40 30594.98 38679.84 37999.62 29283.05 39898.08 35096.29 391
tfpn200view994.03 34193.44 34395.78 35498.93 23291.44 36397.60 22894.29 38397.94 16397.10 31494.31 39279.67 38199.62 29283.05 39898.08 35096.29 391
thres40094.14 33993.44 34396.24 34398.93 23291.44 36397.60 22894.29 38397.94 16397.10 31494.31 39279.67 38199.62 29283.05 39898.08 35097.66 373
Syy-MVS96.04 30295.56 30797.49 29497.10 38694.48 30096.18 31896.58 35895.65 30194.77 37892.29 40391.27 31499.36 35898.17 11198.05 35398.63 316
myMVS_eth3d91.92 36990.45 37196.30 33997.10 38690.90 37496.18 31896.58 35895.65 30194.77 37892.29 40353.88 41299.36 35889.59 38398.05 35398.63 316
PLCcopyleft94.65 1696.51 28895.73 29998.85 15398.75 26797.91 15896.42 30399.06 23190.94 38095.59 36397.38 33694.41 26599.59 30390.93 37598.04 35599.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MDTV_nov1_ep1395.22 31997.06 38883.20 40697.74 21096.16 36494.37 33596.99 32198.83 20383.95 36599.53 32493.90 32197.95 356
PAPM_NR96.82 27796.32 28798.30 22899.07 20896.69 23397.48 24198.76 28495.81 29896.61 34296.47 35794.12 27599.17 37990.82 37897.78 35799.06 250
EMVS93.83 34494.02 33693.23 38596.83 39284.96 39989.77 40296.32 36297.92 16597.43 30496.36 36186.17 34698.93 38987.68 38897.73 35895.81 398
E-PMN94.17 33894.37 33393.58 38196.86 39085.71 39890.11 40197.07 34598.17 15097.82 27597.19 34184.62 35998.94 38889.77 38197.68 35996.09 397
testing1193.08 35592.02 35996.26 34297.56 36790.83 37696.32 30995.70 37296.47 27292.66 39793.73 39464.36 40899.59 30393.77 32797.57 36098.37 338
testing22291.96 36890.37 37296.72 33297.47 37792.59 34696.11 32294.76 37896.83 25592.90 39692.87 40057.92 41199.55 31786.93 39197.52 36198.00 356
PatchT96.65 28396.35 28597.54 28997.40 37895.32 27497.98 17896.64 35799.33 5096.89 32999.42 7384.32 36299.81 17797.69 14497.49 36297.48 378
FPMVS93.44 35092.23 35597.08 31399.25 16597.86 16295.61 34397.16 34392.90 35893.76 39298.65 23575.94 39295.66 40579.30 40597.49 36297.73 370
testing9193.32 35192.27 35496.47 33697.54 36991.25 36996.17 32096.76 35597.18 23793.65 39393.50 39765.11 40799.63 28993.04 34197.45 36498.53 321
AUN-MVS96.24 29995.45 31098.60 19198.70 27897.22 20797.38 24797.65 33295.95 29495.53 37097.96 30582.11 37599.79 19796.31 24097.44 36598.80 297
BH-untuned96.83 27596.75 26897.08 31398.74 26893.33 33496.71 28998.26 31296.72 26198.44 23097.37 33795.20 24299.47 34291.89 35897.43 36698.44 329
ETVMVS92.60 36091.08 36997.18 30897.70 36293.65 33196.54 29595.70 37296.51 26894.68 38092.39 40261.80 41099.50 33386.97 39097.41 36798.40 334
hse-mvs297.46 23397.07 24898.64 18198.73 26997.33 19997.45 24497.64 33499.11 7398.58 21597.98 30188.65 33399.79 19798.11 11397.39 36898.81 292
UnsupCasMVSNet_bld97.30 24596.92 25598.45 21499.28 15996.78 23196.20 31699.27 18395.42 30998.28 24298.30 27893.16 28799.71 24694.99 28997.37 36998.87 284
PAPR95.29 32194.47 33097.75 27097.50 37695.14 28194.89 36798.71 29191.39 37595.35 37395.48 37794.57 26299.14 38284.95 39597.37 36998.97 267
CR-MVSNet96.28 29795.95 29597.28 30497.71 36094.22 30598.11 15798.92 25592.31 36596.91 32599.37 7985.44 35499.81 17797.39 15597.36 37197.81 365
RPMNet97.02 26696.93 25397.30 30397.71 36094.22 30598.11 15799.30 16999.37 4596.91 32599.34 8786.72 34199.87 10097.53 14997.36 37197.81 365
HY-MVS95.94 1395.90 30795.35 31697.55 28897.95 34894.79 28898.81 8696.94 35192.28 36695.17 37498.57 24889.90 32399.75 22891.20 37197.33 37398.10 349
testing9993.04 35691.98 36296.23 34497.53 37190.70 37896.35 30795.94 36996.87 25393.41 39493.43 39863.84 40999.59 30393.24 33997.19 37498.40 334
131495.74 31195.60 30496.17 34797.53 37192.75 34598.07 16398.31 31191.22 37694.25 38496.68 35295.53 23399.03 38391.64 36397.18 37596.74 388
gg-mvs-nofinetune92.37 36491.20 36895.85 35295.80 40592.38 35299.31 2781.84 41199.75 591.83 40099.74 1368.29 39899.02 38487.15 38997.12 37696.16 394
ET-MVSNet_ETH3D94.30 33693.21 34697.58 28498.14 33894.47 30194.78 36993.24 39294.72 32589.56 40395.87 36878.57 38899.81 17796.91 18797.11 37798.46 324
ADS-MVSNet295.43 32094.98 32496.76 33198.14 33891.74 35997.92 18497.76 32890.23 38196.51 34698.91 18485.61 35199.85 12092.88 34496.90 37898.69 310
ADS-MVSNet95.24 32394.93 32796.18 34698.14 33890.10 38197.92 18497.32 34090.23 38196.51 34698.91 18485.61 35199.74 23392.88 34496.90 37898.69 310
MVS93.19 35392.09 35796.50 33596.91 38994.03 31498.07 16398.06 32368.01 40494.56 38396.48 35695.96 22199.30 36883.84 39796.89 38096.17 393
tpm293.09 35492.58 35394.62 37097.56 36786.53 39497.66 22095.79 37186.15 39694.07 38898.23 28375.95 39199.53 32490.91 37696.86 38197.81 365
baseline293.73 34592.83 35196.42 33797.70 36291.28 36896.84 28289.77 40393.96 34592.44 39895.93 36679.14 38499.77 21592.94 34296.76 38298.21 343
CostFormer93.97 34293.78 33994.51 37197.53 37185.83 39797.98 17895.96 36889.29 38994.99 37798.63 24078.63 38799.62 29294.54 30096.50 38398.09 350
EPMVS93.72 34693.27 34595.09 36896.04 40387.76 39098.13 15485.01 40994.69 32696.92 32398.64 23878.47 39099.31 36695.04 28896.46 38498.20 344
h-mvs3397.77 21297.33 23799.10 11499.21 17397.84 16498.35 13698.57 29999.11 7398.58 21599.02 15288.65 33399.96 1198.11 11396.34 38599.49 127
TR-MVS95.55 31795.12 32296.86 32797.54 36993.94 31896.49 29996.53 36094.36 33697.03 32096.61 35394.26 27199.16 38086.91 39296.31 38697.47 379
tpmvs95.02 32795.25 31894.33 37296.39 40085.87 39598.08 16196.83 35495.46 30895.51 37198.69 22685.91 34999.53 32494.16 31296.23 38797.58 376
tpmrst95.07 32595.46 30993.91 37797.11 38584.36 40497.62 22596.96 34994.98 31996.35 35198.80 20985.46 35399.59 30395.60 27796.23 38797.79 368
dmvs_re95.98 30595.39 31497.74 27298.86 24897.45 19398.37 13495.69 37497.95 16296.56 34395.95 36590.70 31797.68 40188.32 38696.13 38998.11 348
KD-MVS_2432*160092.87 35891.99 36095.51 36191.37 40989.27 38394.07 38598.14 31995.42 30997.25 31196.44 35867.86 39999.24 37491.28 36996.08 39098.02 353
miper_refine_blended92.87 35891.99 36095.51 36191.37 40989.27 38394.07 38598.14 31995.42 30997.25 31196.44 35867.86 39999.24 37491.28 36996.08 39098.02 353
BH-w/o95.13 32494.89 32895.86 35198.20 33591.31 36695.65 34297.37 33693.64 34796.52 34595.70 37193.04 29299.02 38488.10 38795.82 39297.24 382
UnsupCasMVSNet_eth97.89 19997.60 21998.75 17399.31 15497.17 21297.62 22599.35 14398.72 11098.76 19398.68 22892.57 30099.74 23397.76 14195.60 39399.34 196
PAPM91.88 37090.34 37396.51 33498.06 34392.56 34792.44 39897.17 34286.35 39590.38 40296.01 36386.61 34299.21 37770.65 40895.43 39497.75 369
tpm cat193.29 35293.13 34993.75 37997.39 37984.74 40097.39 24697.65 33283.39 40194.16 38598.41 26582.86 37199.39 35591.56 36595.35 39597.14 383
tpm94.67 33094.34 33495.66 35797.68 36588.42 38697.88 19094.90 37794.46 33196.03 35998.56 24978.66 38699.79 19795.88 26295.01 39698.78 299
JIA-IIPM95.52 31895.03 32397.00 31696.85 39194.03 31496.93 27795.82 37099.20 6494.63 38299.71 1783.09 36999.60 29994.42 30694.64 39797.36 381
IB-MVS91.63 1992.24 36690.90 37096.27 34197.22 38391.24 37094.36 38293.33 39192.37 36492.24 39994.58 39166.20 40599.89 7493.16 34094.63 39897.66 373
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND94.76 36994.54 40792.13 35799.31 2780.47 41288.73 40591.01 40567.59 40198.16 40082.30 40294.53 39993.98 402
test0.0.03 194.51 33193.69 34096.99 31796.05 40293.61 33294.97 36593.49 38996.17 28397.57 29194.88 38882.30 37399.01 38693.60 33094.17 40098.37 338
DeepMVS_CXcopyleft93.44 38398.24 33294.21 30794.34 38264.28 40591.34 40194.87 39089.45 32792.77 40877.54 40693.14 40193.35 403
dmvs_testset92.94 35792.21 35695.13 36698.59 30090.99 37397.65 22292.09 39696.95 24894.00 38993.55 39692.34 30396.97 40472.20 40792.52 40297.43 380
tmp_tt78.77 37478.73 37778.90 39058.45 41374.76 41494.20 38478.26 41339.16 40686.71 40692.82 40180.50 37775.19 40986.16 39492.29 40386.74 404
dp93.47 34993.59 34293.13 38696.64 39581.62 41097.66 22096.42 36192.80 36096.11 35598.64 23878.55 38999.59 30393.31 33792.18 40498.16 346
baseline195.96 30695.44 31197.52 29198.51 31193.99 31798.39 13296.09 36698.21 14398.40 23797.76 31486.88 34099.63 28995.42 28289.27 40598.95 270
test_method79.78 37379.50 37680.62 38980.21 41245.76 41570.82 40398.41 30831.08 40780.89 40897.71 31684.85 35697.37 40291.51 36680.03 40698.75 303
PVSNet_089.98 2191.15 37190.30 37493.70 38097.72 35884.34 40590.24 40097.42 33590.20 38493.79 39193.09 39990.90 31698.89 39286.57 39372.76 40797.87 362
testmvs17.12 37620.53 3796.87 39212.05 4144.20 41793.62 3936.73 4154.62 41010.41 41024.33 4078.28 4153.56 4119.69 41015.07 40812.86 407
test12317.04 37720.11 3807.82 39110.25 4154.91 41694.80 3684.47 4164.93 40910.00 41124.28 4089.69 4143.64 41010.14 40912.43 40914.92 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.66 37532.88 3780.00 3930.00 4160.00 4180.00 40499.10 2260.00 4110.00 41297.58 32499.21 160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas8.17 37810.90 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41198.07 880.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.12 37910.83 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41297.48 3300.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.90 37491.37 368
FOURS199.73 3899.67 299.43 1199.54 7899.43 4099.26 112
test_one_060199.39 13999.20 3499.31 16198.49 12598.66 20299.02 15297.64 120
eth-test20.00 416
eth-test0.00 416
test_241102_ONE99.49 11599.17 3999.31 16197.98 15999.66 4298.90 18798.36 6599.48 339
save fliter99.11 19997.97 15296.53 29799.02 24298.24 140
test072699.50 10899.21 2898.17 15299.35 14397.97 16099.26 11299.06 14097.61 123
GSMVS98.81 292
test_part299.36 14799.10 6099.05 141
sam_mvs184.74 35898.81 292
sam_mvs84.29 364
MTGPAbinary99.20 200
test_post197.59 23020.48 41083.07 37099.66 27894.16 312
test_post21.25 40983.86 36699.70 250
patchmatchnet-post98.77 21484.37 36199.85 120
MTMP97.93 18291.91 397
gm-plane-assit94.83 40681.97 40988.07 39394.99 38599.60 29991.76 360
TEST998.71 27498.08 13995.96 32999.03 23991.40 37495.85 36097.53 32696.52 19299.76 221
test_898.67 28698.01 14795.91 33499.02 24291.64 36995.79 36297.50 32996.47 19499.76 221
agg_prior98.68 28597.99 14899.01 24595.59 36399.77 215
test_prior497.97 15295.86 335
test_prior98.95 14198.69 28397.95 15699.03 23999.59 30399.30 210
旧先验295.76 33988.56 39297.52 29599.66 27894.48 302
新几何295.93 332
无先验95.74 34098.74 28989.38 38899.73 23892.38 35699.22 228
原ACMM295.53 346
testdata299.79 19792.80 348
segment_acmp97.02 164
testdata195.44 35196.32 279
plane_prior799.19 18097.87 161
plane_prior698.99 22497.70 18094.90 249
plane_prior497.98 301
plane_prior397.78 17397.41 21197.79 276
plane_prior297.77 20598.20 147
plane_prior199.05 215
n20.00 417
nn0.00 417
door-mid99.57 62
test1198.87 263
door99.41 124
HQP5-MVS96.79 228
HQP-NCC98.67 28696.29 31196.05 28895.55 366
ACMP_Plane98.67 28696.29 31196.05 28895.55 366
BP-MVS92.82 346
HQP4-MVS95.56 36599.54 32299.32 203
HQP2-MVS93.84 278
NP-MVS98.84 25297.39 19796.84 348
MDTV_nov1_ep13_2view74.92 41397.69 21590.06 38697.75 27985.78 35093.52 33298.69 310
Test By Simon96.52 192