This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 16896.85 299.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5398.46 2794.62 5998.84 12794.64 2199.53 3698.99 55
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3596.95 1495.46 13199.23 493.45 7699.57 1495.34 1799.89 299.63 9
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 12997.70 897.54 10798.16 298.94 299.33 297.84 499.08 9290.73 12899.73 1399.59 13
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4193.11 6996.48 8497.36 8296.92 699.34 6194.31 2799.38 5798.92 68
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 4795.66 3297.00 6497.03 10794.85 5399.42 3293.49 4998.84 12698.00 148
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10287.57 20198.80 798.90 996.50 999.59 1396.15 799.47 4199.40 21
v7n96.82 997.31 1095.33 8698.54 4886.81 14396.83 2398.07 5696.59 2098.46 1798.43 2992.91 9699.52 1996.25 699.76 1099.65 8
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 2795.51 3496.99 6697.05 10695.63 2299.39 4893.31 6198.88 12198.75 87
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1392.35 8295.95 10996.41 14596.71 899.42 3293.99 3499.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs696.80 1297.36 995.15 9399.12 887.82 12596.68 3097.86 8096.10 2798.14 2399.28 397.94 398.21 20491.38 11699.69 1499.42 19
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 6794.15 4898.93 399.07 588.07 17599.57 1495.86 999.69 1499.46 18
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1894.96 3697.30 5197.93 4896.05 1697.90 22989.32 16799.23 8298.19 133
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1894.96 3697.30 5197.93 4896.05 1697.90 22989.32 16799.23 8298.19 133
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2096.69 1796.86 7097.56 6795.48 2698.77 14490.11 15199.44 4898.31 125
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10287.68 19998.45 1898.77 1594.20 6799.50 2196.70 399.40 5599.53 15
DTE-MVSNet96.74 1797.43 594.67 10999.13 684.68 18496.51 3597.94 7898.14 398.67 1298.32 3195.04 4599.69 293.27 6499.82 799.62 10
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 5695.17 3596.82 7296.73 12995.09 4499.43 3192.99 7598.71 14398.50 112
PS-CasMVS96.69 2097.43 594.49 12299.13 684.09 19396.61 3297.97 7297.91 598.64 1398.13 3795.24 3699.65 393.39 5999.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11299.16 484.50 18596.54 3498.05 5998.06 498.64 1398.25 3395.01 4899.65 392.95 7699.83 599.68 4
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10094.46 4496.29 9396.94 11293.56 7399.37 5694.29 2899.42 5098.99 55
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 11888.98 16998.26 2198.86 1093.35 8199.60 996.41 499.45 4599.66 6
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 3792.26 8596.33 8996.84 12095.10 4399.40 4593.47 5299.33 6299.02 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2023121196.60 2597.13 1295.00 9697.46 12686.35 15997.11 1998.24 3097.58 898.72 898.97 793.15 8899.15 8293.18 6799.74 1299.50 17
WR-MVS_H96.60 2597.05 1395.24 9099.02 1286.44 15596.78 2798.08 5397.42 998.48 1697.86 5591.76 11899.63 694.23 2999.84 399.66 6
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 11686.96 21098.71 1098.72 1795.36 3199.56 1795.92 899.45 4599.32 27
ACMH88.36 1296.59 2797.43 594.07 13498.56 4285.33 17896.33 4798.30 2394.66 4098.72 898.30 3297.51 598.00 22294.87 1899.59 2898.86 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 7594.58 4194.38 17496.49 14094.56 6099.39 4893.57 4599.05 10298.93 64
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 9895.65 7998.61 1196.10 2798.16 2297.52 7096.90 798.62 16790.30 14299.60 2698.72 92
APDe-MVS96.46 3196.64 2195.93 6297.68 11289.38 9596.90 2298.41 1692.52 7797.43 4697.92 5195.11 4299.50 2194.45 2399.30 6798.92 68
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7392.35 8295.57 12796.61 13694.93 5199.41 3893.78 3999.15 9499.00 53
mPP-MVS96.46 3196.05 5097.69 498.62 3694.65 1396.45 3997.74 9392.59 7695.47 12996.68 13294.50 6299.42 3293.10 7099.26 7898.99 55
CP-MVS96.44 3496.08 4897.54 1198.29 6894.62 1496.80 2598.08 5392.67 7595.08 15296.39 15094.77 5599.42 3293.17 6899.44 4898.58 109
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4491.74 10995.34 13796.36 15395.68 2099.44 2894.41 2599.28 7598.97 60
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7392.26 8595.28 14196.57 13895.02 4799.41 3893.63 4399.11 9798.94 63
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 6793.34 6596.64 7996.57 13894.99 4999.36 5793.48 5199.34 6098.82 78
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7092.35 8295.63 12596.47 14195.37 2999.27 7293.78 3999.14 9598.48 115
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 2791.78 10597.07 5997.22 9596.38 1299.28 7092.07 9599.59 2899.11 44
nrg03096.32 4096.55 2595.62 7697.83 9988.55 11195.77 7498.29 2692.68 7398.03 2597.91 5295.13 4098.95 11293.85 3799.49 4099.36 24
PGM-MVS96.32 4095.94 5497.43 1898.59 4193.84 3295.33 9098.30 2391.40 11895.76 11896.87 11795.26 3599.45 2692.77 7899.21 8699.00 53
ACMM88.83 996.30 4296.07 4996.97 3498.39 6292.95 4494.74 11198.03 6490.82 13197.15 5696.85 11896.25 1499.00 10493.10 7099.33 6298.95 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GST-MVS96.24 4395.99 5397.00 3398.65 3492.71 4795.69 7898.01 6792.08 9095.74 12096.28 15995.22 3799.42 3293.17 6899.06 9998.88 73
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6490.42 14296.37 8797.35 8595.68 2099.25 7394.44 2499.34 6098.80 82
CP-MVSNet96.19 4596.80 1694.38 12798.99 1683.82 19696.31 5097.53 10997.60 798.34 1997.52 7091.98 11499.63 693.08 7299.81 899.70 3
MP-MVScopyleft96.14 4695.68 6797.51 1398.81 2894.06 2196.10 6097.78 9192.73 7293.48 19996.72 13094.23 6699.42 3291.99 9799.29 7099.05 50
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D96.11 4795.83 6296.95 3694.75 25994.20 1997.34 1397.98 7097.31 1195.32 13896.77 12293.08 9199.20 7891.79 10498.16 19697.44 200
MP-MVS-pluss96.08 4895.92 5796.57 4499.06 1091.21 6593.25 15798.32 2087.89 19296.86 7097.38 7895.55 2599.39 4895.47 1399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 12693.75 14697.86 8095.96 3197.48 4497.14 10195.33 3299.44 2890.79 12699.76 1099.38 22
PS-MVSNAJss96.01 5096.04 5195.89 6798.82 2688.51 11295.57 8497.88 7988.72 17598.81 698.86 1090.77 13999.60 995.43 1599.53 3699.57 14
SED-MVS96.00 5196.41 3294.76 10598.51 5186.97 13995.21 9498.10 5091.95 9297.63 3497.25 9196.48 1099.35 5893.29 6299.29 7097.95 156
DVP-MVS++95.93 5296.34 3494.70 10896.54 16886.66 14998.45 498.22 3293.26 6697.54 3897.36 8293.12 8999.38 5493.88 3598.68 14798.04 143
APD_test195.91 5395.42 7797.36 2398.82 2696.62 695.64 8097.64 9893.38 6495.89 11497.23 9393.35 8197.66 25488.20 19398.66 15197.79 175
DPE-MVScopyleft95.89 5495.88 5895.92 6497.93 9689.83 8593.46 15398.30 2392.37 8097.75 3196.95 11195.14 3999.51 2091.74 10599.28 7598.41 119
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS95.88 5595.88 5895.87 6898.12 7989.65 8795.58 8398.56 1291.84 10196.36 8896.68 13294.37 6599.32 6792.41 8899.05 10298.64 103
3Dnovator+92.74 295.86 5695.77 6596.13 5396.81 15590.79 7396.30 5497.82 8596.13 2694.74 16597.23 9391.33 12599.16 8193.25 6598.30 18298.46 116
DVP-MVScopyleft95.82 5796.18 4294.72 10798.51 5186.69 14795.20 9697.00 15091.85 9897.40 4997.35 8595.58 2399.34 6193.44 5599.31 6598.13 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CS-MVS95.77 5895.58 7196.37 5096.84 15291.72 6196.73 2999.06 594.23 4692.48 23594.79 22893.56 7399.49 2493.47 5299.05 10297.89 163
SMA-MVScopyleft95.77 5895.54 7296.47 4998.27 7091.19 6695.09 9997.79 9086.48 21397.42 4897.51 7294.47 6499.29 6893.55 4799.29 7098.93 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_040295.73 6096.22 4094.26 12998.19 7685.77 17293.24 15897.24 13496.88 1697.69 3297.77 5894.12 6899.13 8691.54 11399.29 7097.88 164
ACMP88.15 1395.71 6195.43 7696.54 4598.17 7791.73 6094.24 13098.08 5389.46 15896.61 8196.47 14195.85 1899.12 8990.45 13499.56 3498.77 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE95.68 6295.34 8096.69 4198.40 6193.04 4194.54 12398.05 5990.45 14196.31 9196.76 12492.91 9698.72 15091.19 11799.42 5098.32 123
DP-MVS95.62 6395.84 6194.97 9797.16 13788.62 10894.54 12397.64 9896.94 1596.58 8297.32 8893.07 9298.72 15090.45 13498.84 12697.57 190
OPM-MVS95.61 6495.45 7496.08 5498.49 5891.00 6892.65 17597.33 12690.05 14796.77 7596.85 11895.04 4598.56 17592.77 7899.06 9998.70 95
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvsmamba95.61 6495.40 7896.22 5198.44 6089.86 8497.14 1797.45 11591.25 12297.49 4298.14 3583.49 22499.45 2695.52 1199.66 2199.36 24
RPSCF95.58 6694.89 9797.62 797.58 11896.30 795.97 6697.53 10992.42 7893.41 20097.78 5691.21 13097.77 24691.06 11997.06 24498.80 82
MIMVSNet195.52 6795.45 7495.72 7399.14 589.02 9996.23 5796.87 16293.73 5797.87 2798.49 2690.73 14399.05 9786.43 22899.60 2699.10 47
Anonymous2024052995.50 6895.83 6294.50 12097.33 13185.93 16895.19 9896.77 17096.64 1997.61 3798.05 4293.23 8598.79 13888.60 19099.04 10798.78 84
Vis-MVSNetpermissive95.50 6895.48 7395.56 7998.11 8089.40 9495.35 8898.22 3292.36 8194.11 17798.07 4192.02 11299.44 2893.38 6097.67 22597.85 168
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DROMVSNet95.44 7095.62 6994.89 9996.93 14787.69 12696.48 3899.14 493.93 5392.77 22694.52 23893.95 7099.49 2493.62 4499.22 8597.51 195
pm-mvs195.43 7195.94 5493.93 14098.38 6385.08 18195.46 8797.12 14391.84 10197.28 5398.46 2795.30 3497.71 25190.17 14999.42 5098.99 55
DeepC-MVS91.39 495.43 7195.33 8195.71 7497.67 11390.17 8093.86 14398.02 6687.35 20396.22 9997.99 4694.48 6399.05 9792.73 8199.68 1897.93 158
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tt080595.42 7395.93 5693.86 14498.75 3288.47 11397.68 994.29 25696.48 2195.38 13393.63 26694.89 5297.94 22895.38 1696.92 25295.17 284
RRT_MVS95.41 7495.20 8896.05 5598.86 2288.92 10197.49 1194.48 25293.12 6897.94 2698.54 2281.19 25599.63 695.48 1299.69 1499.60 12
XVG-OURS-SEG-HR95.38 7595.00 9596.51 4698.10 8194.07 2092.46 18398.13 4690.69 13493.75 19196.25 16298.03 297.02 28192.08 9495.55 28398.45 117
UniMVSNet_NR-MVSNet95.35 7695.21 8695.76 7197.69 11188.59 10992.26 19597.84 8394.91 3896.80 7395.78 18590.42 14899.41 3891.60 11099.58 3299.29 29
MSP-MVS95.34 7794.63 10997.48 1498.67 3394.05 2396.41 4398.18 3791.26 12095.12 14895.15 21186.60 20399.50 2193.43 5896.81 25698.89 71
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS-test95.32 7895.10 9295.96 5896.86 15190.75 7496.33 4799.20 293.99 5091.03 26793.73 26493.52 7599.55 1891.81 10399.45 4597.58 189
FC-MVSNet-test95.32 7895.88 5893.62 14998.49 5881.77 21995.90 6998.32 2093.93 5397.53 4097.56 6788.48 16899.40 4592.91 7799.83 599.68 4
UniMVSNet (Re)95.32 7895.15 8995.80 7097.79 10288.91 10292.91 16598.07 5693.46 6296.31 9195.97 17590.14 15299.34 6192.11 9299.64 2499.16 38
Gipumacopyleft95.31 8195.80 6493.81 14697.99 9490.91 7096.42 4297.95 7596.69 1791.78 25598.85 1291.77 11795.49 31991.72 10699.08 9895.02 290
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DU-MVS95.28 8295.12 9195.75 7297.75 10488.59 10992.58 17797.81 8693.99 5096.80 7395.90 17690.10 15599.41 3891.60 11099.58 3299.26 30
NR-MVSNet95.28 8295.28 8495.26 8997.75 10487.21 13395.08 10097.37 11893.92 5597.65 3395.90 17690.10 15599.33 6690.11 15199.66 2199.26 30
TransMVSNet (Re)95.27 8496.04 5192.97 16998.37 6581.92 21895.07 10196.76 17193.97 5297.77 3098.57 2095.72 1997.90 22988.89 18499.23 8299.08 48
SD-MVS95.19 8595.73 6693.55 15296.62 16388.88 10494.67 11398.05 5991.26 12097.25 5596.40 14695.42 2794.36 33692.72 8299.19 8897.40 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VPA-MVSNet95.14 8695.67 6893.58 15197.76 10383.15 20594.58 11897.58 10493.39 6397.05 6298.04 4393.25 8498.51 18089.75 16199.59 2899.08 48
casdiffmvs_mvgpermissive95.10 8795.62 6993.53 15596.25 19283.23 20292.66 17498.19 3593.06 7097.49 4297.15 10094.78 5498.71 15692.27 9098.72 14298.65 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS++copyleft95.02 8894.39 11296.91 3797.88 9793.58 3794.09 13696.99 15291.05 12692.40 24095.22 21091.03 13799.25 7392.11 9298.69 14697.90 161
APD-MVScopyleft95.00 8994.69 10595.93 6297.38 12890.88 7194.59 11697.81 8689.22 16595.46 13196.17 16793.42 7999.34 6189.30 16998.87 12497.56 192
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PMVScopyleft87.21 1494.97 9095.33 8193.91 14198.97 1797.16 295.54 8595.85 21296.47 2293.40 20297.46 7595.31 3395.47 32086.18 23298.78 13789.11 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TSAR-MVS + MP.94.96 9194.75 10295.57 7898.86 2288.69 10596.37 4496.81 16685.23 23394.75 16497.12 10291.85 11699.40 4593.45 5498.33 17998.62 106
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SixPastTwentyTwo94.91 9295.21 8693.98 13698.52 5083.19 20495.93 6794.84 24294.86 3998.49 1598.74 1681.45 24999.60 994.69 2099.39 5699.15 39
FIs94.90 9395.35 7993.55 15298.28 6981.76 22095.33 9098.14 4593.05 7197.07 5997.18 9887.65 18299.29 6891.72 10699.69 1499.61 11
AllTest94.88 9494.51 11196.00 5698.02 8992.17 5095.26 9398.43 1490.48 13995.04 15396.74 12792.54 10597.86 23785.11 24398.98 10997.98 152
FMVSNet194.84 9595.13 9093.97 13797.60 11684.29 18695.99 6396.56 18192.38 7997.03 6398.53 2390.12 15398.98 10588.78 18699.16 9398.65 98
ANet_high94.83 9696.28 3790.47 25996.65 15973.16 33494.33 12798.74 1096.39 2498.09 2498.93 893.37 8098.70 15790.38 13799.68 1899.53 15
3Dnovator92.54 394.80 9794.90 9694.47 12395.47 23787.06 13696.63 3197.28 13291.82 10494.34 17697.41 7690.60 14698.65 16592.47 8798.11 20097.70 182
CPTT-MVS94.74 9894.12 12196.60 4398.15 7893.01 4295.84 7197.66 9789.21 16693.28 20695.46 19888.89 16698.98 10589.80 15898.82 13297.80 174
XVG-OURS94.72 9994.12 12196.50 4798.00 9194.23 1891.48 22198.17 4190.72 13395.30 13996.47 14187.94 17996.98 28291.41 11597.61 22898.30 126
CSCG94.69 10094.75 10294.52 11997.55 12087.87 12395.01 10497.57 10592.68 7396.20 10193.44 27291.92 11598.78 14189.11 17899.24 8196.92 222
v1094.68 10195.27 8592.90 17596.57 16580.15 23994.65 11597.57 10590.68 13597.43 4698.00 4588.18 17299.15 8294.84 1999.55 3599.41 20
v894.65 10295.29 8392.74 18096.65 15979.77 25494.59 11697.17 13891.86 9797.47 4597.93 4888.16 17399.08 9294.32 2699.47 4199.38 22
canonicalmvs94.59 10394.69 10594.30 12895.60 23487.03 13895.59 8198.24 3091.56 11595.21 14792.04 30494.95 5098.66 16391.45 11497.57 22997.20 213
CNVR-MVS94.58 10494.29 11595.46 8296.94 14589.35 9691.81 21596.80 16789.66 15493.90 18995.44 20092.80 10098.72 15092.74 8098.52 16298.32 123
GeoE94.55 10594.68 10794.15 13197.23 13385.11 18094.14 13497.34 12588.71 17695.26 14295.50 19694.65 5899.12 8990.94 12398.40 16998.23 129
EG-PatchMatch MVS94.54 10694.67 10894.14 13297.87 9886.50 15192.00 20396.74 17288.16 18896.93 6897.61 6493.04 9397.90 22991.60 11098.12 19998.03 146
IS-MVSNet94.49 10794.35 11494.92 9898.25 7386.46 15497.13 1894.31 25596.24 2596.28 9596.36 15382.88 23299.35 5888.19 19499.52 3998.96 61
Baseline_NR-MVSNet94.47 10895.09 9392.60 18798.50 5780.82 23592.08 19996.68 17493.82 5696.29 9398.56 2190.10 15597.75 24990.10 15399.66 2199.24 32
VDD-MVS94.37 10994.37 11394.40 12697.49 12386.07 16693.97 14093.28 27594.49 4396.24 9797.78 5687.99 17898.79 13888.92 18299.14 9598.34 122
EI-MVSNet-Vis-set94.36 11094.28 11694.61 11292.55 30685.98 16792.44 18494.69 24893.70 5896.12 10595.81 18191.24 12898.86 12493.76 4298.22 19198.98 59
EI-MVSNet-UG-set94.35 11194.27 11894.59 11692.46 30785.87 17092.42 18694.69 24893.67 6196.13 10495.84 18091.20 13198.86 12493.78 3998.23 18999.03 51
PHI-MVS94.34 11293.80 12695.95 5995.65 23091.67 6294.82 10997.86 8087.86 19393.04 21794.16 24991.58 12098.78 14190.27 14498.96 11597.41 201
casdiffmvspermissive94.32 11394.80 10092.85 17796.05 20681.44 22692.35 18998.05 5991.53 11695.75 11996.80 12193.35 8198.49 18191.01 12298.32 18198.64 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
bld_raw_dy_0_6494.27 11494.15 12094.65 11198.55 4586.28 16195.80 7395.55 22588.41 18397.09 5898.08 4078.69 26998.87 12395.63 1099.53 3698.81 80
tfpnnormal94.27 11494.87 9892.48 19197.71 10880.88 23494.55 12295.41 23093.70 5896.67 7897.72 5991.40 12498.18 20887.45 20899.18 9098.36 121
HQP_MVS94.26 11693.93 12395.23 9197.71 10888.12 11894.56 12097.81 8691.74 10993.31 20395.59 19186.93 19698.95 11289.26 17398.51 16498.60 107
baseline94.26 11694.80 10092.64 18396.08 20480.99 23293.69 14898.04 6390.80 13294.89 15996.32 15593.19 8698.48 18591.68 10898.51 16498.43 118
OMC-MVS94.22 11893.69 13195.81 6997.25 13291.27 6492.27 19497.40 11787.10 20994.56 16995.42 20193.74 7198.11 21386.62 22298.85 12598.06 140
LCM-MVSNet-Re94.20 11994.58 11093.04 16695.91 21683.13 20693.79 14599.19 392.00 9198.84 598.04 4393.64 7299.02 10281.28 27998.54 16096.96 221
DeepPCF-MVS90.46 694.20 11993.56 13796.14 5295.96 21392.96 4389.48 27597.46 11385.14 23696.23 9895.42 20193.19 8698.08 21490.37 13898.76 13997.38 207
KD-MVS_self_test94.10 12194.73 10492.19 19897.66 11479.49 26094.86 10897.12 14389.59 15796.87 6997.65 6290.40 15098.34 19489.08 17999.35 5998.75 87
NCCC94.08 12293.54 13895.70 7596.49 17389.90 8392.39 18896.91 15990.64 13692.33 24694.60 23590.58 14798.96 11090.21 14897.70 22398.23 129
VDDNet94.03 12394.27 11893.31 16198.87 2182.36 21495.51 8691.78 30597.19 1296.32 9098.60 1984.24 22098.75 14587.09 21598.83 13198.81 80
dcpmvs_293.96 12495.01 9490.82 25197.60 11674.04 32993.68 14998.85 789.80 15297.82 2897.01 11091.14 13599.21 7690.56 13298.59 15599.19 36
EPP-MVSNet93.91 12593.68 13294.59 11698.08 8285.55 17597.44 1294.03 26194.22 4794.94 15696.19 16482.07 24499.57 1487.28 21298.89 11998.65 98
Effi-MVS+-dtu93.90 12692.60 16097.77 394.74 26096.67 594.00 13895.41 23089.94 14891.93 25492.13 30290.12 15398.97 10987.68 20697.48 23297.67 185
IterMVS-LS93.78 12794.28 11692.27 19596.27 18979.21 26791.87 21196.78 16891.77 10796.57 8397.07 10487.15 19198.74 14891.99 9799.03 10898.86 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS_fast89.96 793.73 12893.44 14094.60 11596.14 20087.90 12293.36 15697.14 14085.53 23093.90 18995.45 19991.30 12798.59 17289.51 16498.62 15297.31 210
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_LR93.66 12993.28 14494.80 10396.25 19290.95 6990.21 25595.43 22987.91 19093.74 19394.40 24092.88 9896.38 30190.39 13698.28 18397.07 215
MVS_111021_HR93.63 13093.42 14194.26 12996.65 15986.96 14189.30 28196.23 19788.36 18593.57 19794.60 23593.45 7697.77 24690.23 14798.38 17398.03 146
v114493.50 13193.81 12592.57 18896.28 18879.61 25791.86 21396.96 15386.95 21195.91 11296.32 15587.65 18298.96 11093.51 4898.88 12199.13 41
v119293.49 13293.78 12792.62 18696.16 19879.62 25691.83 21497.22 13686.07 22096.10 10696.38 15187.22 18999.02 10294.14 3198.88 12199.22 33
WR-MVS93.49 13293.72 12992.80 17997.57 11980.03 24590.14 25895.68 21693.70 5896.62 8095.39 20587.21 19099.04 10087.50 20799.64 2499.33 26
V4293.43 13493.58 13592.97 16995.34 24381.22 22992.67 17396.49 18687.25 20596.20 10196.37 15287.32 18898.85 12692.39 8998.21 19298.85 77
K. test v393.37 13593.27 14593.66 14898.05 8582.62 21094.35 12686.62 33796.05 2997.51 4198.85 1276.59 29499.65 393.21 6698.20 19498.73 91
PM-MVS93.33 13692.67 15895.33 8696.58 16494.06 2192.26 19592.18 29685.92 22396.22 9996.61 13685.64 21495.99 31290.35 13998.23 18995.93 261
v124093.29 13793.71 13092.06 20596.01 21177.89 28591.81 21597.37 11885.12 23796.69 7796.40 14686.67 20199.07 9694.51 2298.76 13999.22 33
v2v48293.29 13793.63 13392.29 19496.35 18278.82 27391.77 21796.28 19388.45 18195.70 12496.26 16186.02 20998.90 11693.02 7398.81 13499.14 40
alignmvs93.26 13992.85 15194.50 12095.70 22687.45 12893.45 15495.76 21391.58 11495.25 14492.42 29881.96 24698.72 15091.61 10997.87 21697.33 209
v192192093.26 13993.61 13492.19 19896.04 21078.31 27991.88 21097.24 13485.17 23596.19 10396.19 16486.76 20099.05 9794.18 3098.84 12699.22 33
MSLP-MVS++93.25 14193.88 12491.37 22796.34 18382.81 20993.11 15997.74 9389.37 16194.08 17995.29 20990.40 15096.35 30390.35 13998.25 18794.96 291
GBi-Net93.21 14292.96 14893.97 13795.40 23984.29 18695.99 6396.56 18188.63 17795.10 14998.53 2381.31 25198.98 10586.74 21898.38 17398.65 98
test193.21 14292.96 14893.97 13795.40 23984.29 18695.99 6396.56 18188.63 17795.10 14998.53 2381.31 25198.98 10586.74 21898.38 17398.65 98
v14419293.20 14493.54 13892.16 20296.05 20678.26 28091.95 20497.14 14084.98 24195.96 10896.11 16887.08 19399.04 10093.79 3898.84 12699.17 37
VPNet93.08 14593.76 12891.03 24198.60 3975.83 31591.51 22095.62 21791.84 10195.74 12097.10 10389.31 16398.32 19585.07 24599.06 9998.93 64
UGNet93.08 14592.50 16294.79 10493.87 28487.99 12195.07 10194.26 25890.64 13687.33 32797.67 6186.89 19898.49 18188.10 19798.71 14397.91 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.93.07 14792.41 16495.06 9595.82 21990.87 7290.97 23292.61 29088.04 18994.61 16893.79 26388.08 17497.81 24189.41 16698.39 17296.50 239
ETV-MVS92.99 14892.74 15493.72 14795.86 21886.30 16092.33 19097.84 8391.70 11292.81 22486.17 36092.22 10999.19 7988.03 20097.73 22095.66 275
EI-MVSNet92.99 14893.26 14692.19 19892.12 31479.21 26792.32 19194.67 25091.77 10795.24 14595.85 17887.14 19298.49 18191.99 9798.26 18598.86 74
MCST-MVS92.91 15092.51 16194.10 13397.52 12185.72 17391.36 22597.13 14280.33 28092.91 22294.24 24591.23 12998.72 15089.99 15597.93 21397.86 166
h-mvs3392.89 15191.99 17295.58 7796.97 14390.55 7693.94 14194.01 26489.23 16393.95 18696.19 16476.88 29099.14 8491.02 12095.71 28097.04 218
QAPM92.88 15292.77 15293.22 16495.82 21983.31 20096.45 3997.35 12483.91 25093.75 19196.77 12289.25 16498.88 11984.56 25197.02 24697.49 196
v14892.87 15393.29 14291.62 21996.25 19277.72 28891.28 22695.05 23689.69 15395.93 11196.04 17187.34 18798.38 19090.05 15497.99 21098.78 84
Anonymous2024052192.86 15493.57 13690.74 25396.57 16575.50 31794.15 13395.60 21889.38 16095.90 11397.90 5480.39 25997.96 22692.60 8599.68 1898.75 87
Effi-MVS+92.79 15592.74 15492.94 17395.10 24783.30 20194.00 13897.53 10991.36 11989.35 29690.65 32694.01 6998.66 16387.40 21095.30 29296.88 225
FMVSNet292.78 15692.73 15692.95 17195.40 23981.98 21794.18 13295.53 22788.63 17796.05 10797.37 7981.31 25198.81 13487.38 21198.67 14998.06 140
Fast-Effi-MVS+-dtu92.77 15792.16 16794.58 11894.66 26588.25 11692.05 20096.65 17689.62 15590.08 28291.23 31492.56 10498.60 17086.30 23096.27 26996.90 223
LF4IMVS92.72 15892.02 17194.84 10295.65 23091.99 5492.92 16496.60 17885.08 23992.44 23893.62 26786.80 19996.35 30386.81 21798.25 18796.18 252
train_agg92.71 15991.83 17795.35 8496.45 17589.46 9090.60 24296.92 15779.37 28990.49 27394.39 24191.20 13198.88 11988.66 18998.43 16897.72 181
VNet92.67 16092.96 14891.79 21196.27 18980.15 23991.95 20494.98 23892.19 8894.52 17196.07 17087.43 18697.39 26984.83 24798.38 17397.83 170
CDPH-MVS92.67 16091.83 17795.18 9296.94 14588.46 11490.70 23997.07 14677.38 30492.34 24595.08 21692.67 10398.88 11985.74 23498.57 15798.20 132
Anonymous20240521192.58 16292.50 16292.83 17896.55 16783.22 20392.43 18591.64 30794.10 4995.59 12696.64 13481.88 24897.50 26085.12 24298.52 16297.77 177
XXY-MVS92.58 16293.16 14790.84 25097.75 10479.84 25091.87 21196.22 19985.94 22295.53 12897.68 6092.69 10294.48 33283.21 26097.51 23098.21 131
MVS_Test92.57 16493.29 14290.40 26293.53 29075.85 31392.52 17996.96 15388.73 17492.35 24396.70 13190.77 13998.37 19392.53 8695.49 28596.99 220
TAPA-MVS88.58 1092.49 16591.75 17994.73 10696.50 17289.69 8692.91 16597.68 9678.02 30292.79 22594.10 25090.85 13897.96 22684.76 24998.16 19696.54 234
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
patch_mono-292.46 16692.72 15791.71 21596.65 15978.91 27188.85 29097.17 13883.89 25192.45 23796.76 12489.86 15997.09 27890.24 14698.59 15599.12 43
test_fmvs392.42 16792.40 16592.46 19393.80 28787.28 13193.86 14397.05 14776.86 30996.25 9698.66 1882.87 23391.26 35495.44 1496.83 25598.82 78
ab-mvs92.40 16892.62 15991.74 21397.02 14181.65 22195.84 7195.50 22886.95 21192.95 22197.56 6790.70 14497.50 26079.63 29897.43 23496.06 256
CANet92.38 16991.99 17293.52 15793.82 28683.46 19991.14 22897.00 15089.81 15186.47 33194.04 25287.90 18099.21 7689.50 16598.27 18497.90 161
EIA-MVS92.35 17092.03 17093.30 16295.81 22183.97 19492.80 16898.17 4187.71 19789.79 29087.56 35091.17 13499.18 8087.97 20197.27 23896.77 229
DP-MVS Recon92.31 17191.88 17593.60 15097.18 13686.87 14291.10 23097.37 11884.92 24292.08 25194.08 25188.59 16798.20 20583.50 25798.14 19895.73 270
F-COLMAP92.28 17291.06 19595.95 5997.52 12191.90 5693.53 15197.18 13783.98 24988.70 30894.04 25288.41 17098.55 17780.17 29195.99 27497.39 205
OpenMVScopyleft89.45 892.27 17392.13 16992.68 18294.53 26984.10 19295.70 7697.03 14882.44 26891.14 26696.42 14488.47 16998.38 19085.95 23397.47 23395.55 279
hse-mvs292.24 17491.20 19195.38 8396.16 19890.65 7592.52 17992.01 30389.23 16393.95 18692.99 28276.88 29098.69 15991.02 12096.03 27296.81 227
MVSFormer92.18 17592.23 16692.04 20694.74 26080.06 24397.15 1597.37 11888.98 16988.83 30092.79 28777.02 28799.60 996.41 496.75 25996.46 241
HQP-MVS92.09 17691.49 18593.88 14296.36 17984.89 18291.37 22297.31 12787.16 20688.81 30293.40 27384.76 21798.60 17086.55 22597.73 22098.14 137
DELS-MVS92.05 17792.16 16791.72 21494.44 27080.13 24187.62 30497.25 13387.34 20492.22 24893.18 27989.54 16298.73 14989.67 16298.20 19496.30 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap92.00 17892.76 15389.71 27995.62 23377.02 29690.72 23896.17 20287.70 19895.26 14296.29 15792.54 10596.45 29881.77 27498.77 13895.66 275
CLD-MVS91.82 17991.41 18793.04 16696.37 17783.65 19886.82 32397.29 13084.65 24692.27 24789.67 33592.20 11097.85 23983.95 25599.47 4197.62 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FA-MVS(test-final)91.81 18091.85 17691.68 21794.95 25079.99 24796.00 6293.44 27387.80 19494.02 18497.29 8977.60 27998.45 18788.04 19997.49 23196.61 233
diffmvspermissive91.74 18191.93 17491.15 23993.06 29878.17 28188.77 29397.51 11286.28 21692.42 23993.96 25788.04 17697.46 26390.69 13096.67 26197.82 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA91.72 18291.20 19193.26 16396.17 19791.02 6791.14 22895.55 22590.16 14690.87 26893.56 27086.31 20594.40 33579.92 29797.12 24294.37 307
IterMVS-SCA-FT91.65 18391.55 18191.94 20793.89 28379.22 26687.56 30793.51 27191.53 11695.37 13596.62 13578.65 27098.90 11691.89 10194.95 29997.70 182
PVSNet_Blended_VisFu91.63 18491.20 19192.94 17397.73 10783.95 19592.14 19897.46 11378.85 29892.35 24394.98 21984.16 22199.08 9286.36 22996.77 25895.79 268
AdaColmapbinary91.63 18491.36 18892.47 19295.56 23586.36 15892.24 19796.27 19488.88 17389.90 28792.69 29091.65 11998.32 19577.38 31797.64 22692.72 339
pmmvs-eth3d91.54 18690.73 20393.99 13595.76 22487.86 12490.83 23593.98 26578.23 30194.02 18496.22 16382.62 23996.83 28886.57 22398.33 17997.29 211
API-MVS91.52 18791.61 18091.26 23394.16 27586.26 16294.66 11494.82 24391.17 12492.13 25091.08 31790.03 15897.06 28079.09 30597.35 23790.45 354
xiu_mvs_v1_base_debu91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26596.05 20683.22 25591.26 26290.74 32191.55 12198.82 12989.29 17095.91 27593.62 326
xiu_mvs_v1_base91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26596.05 20683.22 25591.26 26290.74 32191.55 12198.82 12989.29 17095.91 27593.62 326
xiu_mvs_v1_base_debi91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26596.05 20683.22 25591.26 26290.74 32191.55 12198.82 12989.29 17095.91 27593.62 326
LFMVS91.33 19191.16 19491.82 21096.27 18979.36 26295.01 10485.61 34796.04 3094.82 16197.06 10572.03 31098.46 18684.96 24698.70 14597.65 186
c3_l91.32 19291.42 18691.00 24492.29 30976.79 30387.52 31096.42 18985.76 22694.72 16793.89 26082.73 23698.16 21090.93 12498.55 15898.04 143
Fast-Effi-MVS+91.28 19390.86 19892.53 19095.45 23882.53 21189.25 28496.52 18585.00 24089.91 28688.55 34692.94 9498.84 12784.72 25095.44 28796.22 250
MDA-MVSNet-bldmvs91.04 19490.88 19791.55 22194.68 26480.16 23885.49 33692.14 29990.41 14394.93 15795.79 18285.10 21596.93 28585.15 24094.19 31997.57 190
PAPM_NR91.03 19590.81 20091.68 21796.73 15781.10 23193.72 14796.35 19288.19 18788.77 30692.12 30385.09 21697.25 27382.40 26993.90 32096.68 232
MVS_030490.96 19690.15 21793.37 15993.17 29587.06 13693.62 15092.43 29489.60 15682.25 35695.50 19682.56 24097.83 24084.41 25397.83 21895.22 283
MSDG90.82 19790.67 20491.26 23394.16 27583.08 20786.63 32896.19 20090.60 13891.94 25391.89 30589.16 16595.75 31480.96 28494.51 31094.95 292
test20.0390.80 19890.85 19990.63 25695.63 23279.24 26589.81 26992.87 28189.90 14994.39 17396.40 14685.77 21095.27 32773.86 33699.05 10297.39 205
FMVSNet390.78 19990.32 21392.16 20293.03 30079.92 24992.54 17894.95 23986.17 21995.10 14996.01 17369.97 31698.75 14586.74 21898.38 17397.82 172
eth_miper_zixun_eth90.72 20090.61 20591.05 24092.04 31776.84 30286.91 31996.67 17585.21 23494.41 17293.92 25879.53 26398.26 20189.76 16097.02 24698.06 140
X-MVStestdata90.70 20188.45 24697.44 1698.56 4293.99 2696.50 3697.95 7594.58 4194.38 17426.89 37594.56 6099.39 4893.57 4599.05 10298.93 64
BH-untuned90.68 20290.90 19690.05 27395.98 21279.57 25890.04 26194.94 24087.91 19094.07 18093.00 28187.76 18197.78 24579.19 30495.17 29592.80 338
cl____90.65 20390.56 20790.91 24891.85 32076.98 29986.75 32495.36 23385.53 23094.06 18194.89 22277.36 28497.98 22590.27 14498.98 10997.76 178
DIV-MVS_self_test90.65 20390.56 20790.91 24891.85 32076.99 29886.75 32495.36 23385.52 23294.06 18194.89 22277.37 28397.99 22490.28 14398.97 11397.76 178
test_fmvs290.62 20590.40 21191.29 23291.93 31985.46 17692.70 17296.48 18774.44 32194.91 15897.59 6575.52 29790.57 35693.44 5596.56 26397.84 169
114514_t90.51 20689.80 22492.63 18598.00 9182.24 21593.40 15597.29 13065.84 36289.40 29594.80 22786.99 19498.75 14583.88 25698.61 15396.89 224
miper_ehance_all_eth90.48 20790.42 21090.69 25491.62 32576.57 30686.83 32296.18 20183.38 25394.06 18192.66 29282.20 24298.04 21689.79 15997.02 24697.45 198
BH-RMVSNet90.47 20890.44 20990.56 25895.21 24678.65 27789.15 28593.94 26688.21 18692.74 22794.22 24686.38 20497.88 23378.67 30795.39 28995.14 287
Vis-MVSNet (Re-imp)90.42 20990.16 21491.20 23797.66 11477.32 29394.33 12787.66 33191.20 12392.99 21895.13 21375.40 29898.28 19777.86 31099.19 8897.99 151
test_vis3_rt90.40 21090.03 21991.52 22392.58 30488.95 10090.38 25097.72 9573.30 32897.79 2997.51 7277.05 28687.10 36889.03 18094.89 30098.50 112
PLCcopyleft85.34 1590.40 21088.92 23894.85 10196.53 17190.02 8191.58 21996.48 18780.16 28186.14 33392.18 30085.73 21198.25 20276.87 32094.61 30996.30 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test111190.39 21290.61 20589.74 27898.04 8871.50 34595.59 8179.72 37089.41 15995.94 11098.14 3570.79 31398.81 13488.52 19199.32 6498.90 70
testgi90.38 21391.34 18987.50 31697.49 12371.54 34489.43 27695.16 23588.38 18494.54 17094.68 23292.88 9893.09 34671.60 34997.85 21797.88 164
mvs_anonymous90.37 21491.30 19087.58 31592.17 31368.00 35889.84 26894.73 24783.82 25293.22 21197.40 7787.54 18497.40 26887.94 20295.05 29797.34 208
PVSNet_BlendedMVS90.35 21589.96 22091.54 22294.81 25578.80 27590.14 25896.93 15579.43 28888.68 30995.06 21786.27 20698.15 21180.27 28798.04 20697.68 184
UnsupCasMVSNet_eth90.33 21690.34 21290.28 26494.64 26780.24 23789.69 27195.88 21085.77 22593.94 18895.69 18981.99 24592.98 34784.21 25491.30 34897.62 187
MAR-MVS90.32 21788.87 24194.66 11094.82 25491.85 5794.22 13194.75 24680.91 27587.52 32588.07 34986.63 20297.87 23676.67 32196.21 27094.25 310
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
RPMNet90.31 21890.14 21890.81 25291.01 33278.93 26992.52 17998.12 4791.91 9589.10 29796.89 11668.84 31899.41 3890.17 14992.70 33794.08 311
iter_conf_final90.23 21989.32 23092.95 17194.65 26681.46 22594.32 12995.40 23285.61 22992.84 22395.37 20754.58 36799.13 8692.16 9198.94 11798.25 128
IterMVS90.18 22090.16 21490.21 26893.15 29675.98 31287.56 30792.97 28086.43 21594.09 17896.40 14678.32 27497.43 26587.87 20394.69 30797.23 212
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS90.16 22189.05 23493.49 15896.49 17386.37 15790.34 25292.55 29180.84 27892.99 21894.57 23781.94 24798.20 20573.51 33798.21 19295.90 264
ECVR-MVScopyleft90.12 22290.16 21490.00 27497.81 10072.68 33995.76 7578.54 37289.04 16795.36 13698.10 3870.51 31498.64 16687.10 21499.18 9098.67 96
test_yl90.11 22389.73 22791.26 23394.09 27879.82 25190.44 24692.65 28790.90 12793.19 21293.30 27573.90 30298.03 21782.23 27096.87 25395.93 261
DCV-MVSNet90.11 22389.73 22791.26 23394.09 27879.82 25190.44 24692.65 28790.90 12793.19 21293.30 27573.90 30298.03 21782.23 27096.87 25395.93 261
Patchmtry90.11 22389.92 22190.66 25590.35 34177.00 29792.96 16392.81 28290.25 14594.74 16596.93 11367.11 32597.52 25985.17 23898.98 10997.46 197
MVP-Stereo90.07 22688.92 23893.54 15496.31 18686.49 15290.93 23395.59 22279.80 28291.48 25895.59 19180.79 25697.39 26978.57 30891.19 34996.76 230
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS90.05 22788.30 25095.32 8896.09 20390.52 7792.42 18692.05 30282.08 27188.45 31292.86 28465.76 33598.69 15988.91 18396.07 27196.75 231
CL-MVSNet_self_test90.04 22889.90 22290.47 25995.24 24577.81 28686.60 33092.62 28985.64 22893.25 21093.92 25883.84 22296.06 31079.93 29598.03 20797.53 194
D2MVS89.93 22989.60 22990.92 24694.03 28078.40 27888.69 29594.85 24178.96 29693.08 21495.09 21574.57 30096.94 28388.19 19498.96 11597.41 201
miper_lstm_enhance89.90 23089.80 22490.19 27091.37 32877.50 29083.82 35295.00 23784.84 24493.05 21694.96 22076.53 29595.20 32889.96 15698.67 14997.86 166
CANet_DTU89.85 23189.17 23291.87 20892.20 31280.02 24690.79 23695.87 21186.02 22182.53 35591.77 30780.01 26098.57 17485.66 23597.70 22397.01 219
tttt051789.81 23288.90 24092.55 18997.00 14279.73 25595.03 10383.65 35989.88 15095.30 13994.79 22853.64 37099.39 4891.99 9798.79 13698.54 110
EPNet89.80 23388.25 25394.45 12483.91 37686.18 16393.87 14287.07 33591.16 12580.64 36494.72 23078.83 26798.89 11885.17 23898.89 11998.28 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CDS-MVSNet89.55 23488.22 25693.53 15595.37 24286.49 15289.26 28293.59 26879.76 28491.15 26592.31 29977.12 28598.38 19077.51 31597.92 21495.71 271
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS89.54 23589.80 22488.76 29594.88 25172.47 34189.60 27292.44 29385.82 22489.48 29495.98 17482.85 23497.74 25081.87 27395.27 29396.08 255
OpenMVS_ROBcopyleft85.12 1689.52 23689.05 23490.92 24694.58 26881.21 23091.10 23093.41 27477.03 30893.41 20093.99 25683.23 22897.80 24279.93 29594.80 30493.74 322
test_vis1_n_192089.45 23789.85 22388.28 30693.59 28976.71 30490.67 24097.78 9179.67 28690.30 27996.11 16876.62 29392.17 35090.31 14193.57 32595.96 259
DPM-MVS89.35 23888.40 24792.18 20196.13 20284.20 19086.96 31896.15 20375.40 31787.36 32691.55 31283.30 22798.01 22182.17 27296.62 26294.32 309
MVSTER89.32 23988.75 24291.03 24190.10 34476.62 30590.85 23494.67 25082.27 26995.24 14595.79 18261.09 35698.49 18190.49 13398.26 18597.97 155
PatchMatch-RL89.18 24088.02 26292.64 18395.90 21792.87 4588.67 29791.06 31080.34 27990.03 28491.67 30983.34 22694.42 33476.35 32494.84 30390.64 353
jason89.17 24188.32 24991.70 21695.73 22580.07 24288.10 30093.22 27671.98 33690.09 28192.79 28778.53 27398.56 17587.43 20997.06 24496.46 241
jason: jason.
PCF-MVS84.52 1789.12 24287.71 26593.34 16096.06 20585.84 17186.58 33197.31 12768.46 35593.61 19693.89 26087.51 18598.52 17967.85 36098.11 20095.66 275
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvsany_test389.11 24388.21 25791.83 20991.30 32990.25 7988.09 30178.76 37176.37 31296.43 8598.39 3083.79 22390.43 35986.57 22394.20 31794.80 296
FE-MVS89.06 24488.29 25191.36 22894.78 25779.57 25896.77 2890.99 31184.87 24392.96 22096.29 15760.69 35898.80 13780.18 29097.11 24395.71 271
cl2289.02 24588.50 24590.59 25789.76 34676.45 30786.62 32994.03 26182.98 26192.65 22992.49 29372.05 30997.53 25888.93 18197.02 24697.78 176
USDC89.02 24589.08 23388.84 29495.07 24874.50 32488.97 28796.39 19073.21 32993.27 20796.28 15982.16 24396.39 30077.55 31498.80 13595.62 278
test_vis1_n89.01 24789.01 23689.03 29092.57 30582.46 21392.62 17696.06 20473.02 33190.40 27695.77 18674.86 29989.68 36190.78 12794.98 29894.95 292
xiu_mvs_v2_base89.00 24889.19 23188.46 30494.86 25374.63 32186.97 31795.60 21880.88 27687.83 32088.62 34591.04 13698.81 13482.51 26894.38 31291.93 345
new-patchmatchnet88.97 24990.79 20183.50 34494.28 27455.83 37885.34 33893.56 27086.18 21895.47 12995.73 18883.10 22996.51 29685.40 23798.06 20498.16 135
pmmvs488.95 25087.70 26692.70 18194.30 27385.60 17487.22 31392.16 29874.62 32089.75 29294.19 24777.97 27796.41 29982.71 26496.36 26896.09 254
iter_conf0588.94 25188.09 26091.50 22492.74 30376.97 30092.80 16895.92 20982.82 26393.65 19595.37 20749.41 37499.13 8690.82 12599.28 7598.40 120
N_pmnet88.90 25287.25 27393.83 14594.40 27293.81 3584.73 34287.09 33479.36 29193.26 20892.43 29779.29 26591.68 35277.50 31697.22 24096.00 258
PS-MVSNAJ88.86 25388.99 23788.48 30394.88 25174.71 31986.69 32695.60 21880.88 27687.83 32087.37 35390.77 13998.82 12982.52 26794.37 31391.93 345
Patchmatch-RL test88.81 25488.52 24489.69 28095.33 24479.94 24886.22 33392.71 28678.46 29995.80 11794.18 24866.25 33395.33 32589.22 17598.53 16193.78 320
Anonymous2023120688.77 25588.29 25190.20 26996.31 18678.81 27489.56 27493.49 27274.26 32392.38 24195.58 19482.21 24195.43 32272.07 34598.75 14196.34 245
PVSNet_Blended88.74 25688.16 25990.46 26194.81 25578.80 27586.64 32796.93 15574.67 31988.68 30989.18 34286.27 20698.15 21180.27 28796.00 27394.44 306
test_fmvs1_n88.73 25788.38 24889.76 27792.06 31682.53 21192.30 19396.59 18071.14 34092.58 23295.41 20468.55 31989.57 36391.12 11895.66 28197.18 214
thisisatest053088.69 25887.52 26892.20 19796.33 18479.36 26292.81 16784.01 35886.44 21493.67 19492.68 29153.62 37199.25 7389.65 16398.45 16798.00 148
ppachtmachnet_test88.61 25988.64 24388.50 30291.76 32270.99 34884.59 34592.98 27979.30 29392.38 24193.53 27179.57 26297.45 26486.50 22797.17 24197.07 215
UnsupCasMVSNet_bld88.50 26088.03 26189.90 27595.52 23678.88 27287.39 31194.02 26379.32 29293.06 21594.02 25480.72 25794.27 33775.16 33093.08 33396.54 234
miper_enhance_ethall88.42 26187.87 26390.07 27188.67 35875.52 31685.10 33995.59 22275.68 31392.49 23489.45 33878.96 26697.88 23387.86 20497.02 24696.81 227
1112_ss88.42 26187.41 26991.45 22596.69 15880.99 23289.72 27096.72 17373.37 32787.00 32990.69 32477.38 28298.20 20581.38 27893.72 32395.15 286
lupinMVS88.34 26387.31 27091.45 22594.74 26080.06 24387.23 31292.27 29571.10 34188.83 30091.15 31577.02 28798.53 17886.67 22196.75 25995.76 269
YYNet188.17 26488.24 25487.93 31192.21 31173.62 33180.75 36188.77 32182.51 26794.99 15595.11 21482.70 23793.70 34183.33 25893.83 32196.48 240
MDA-MVSNet_test_wron88.16 26588.23 25587.93 31192.22 31073.71 33080.71 36288.84 32082.52 26694.88 16095.14 21282.70 23793.61 34283.28 25993.80 32296.46 241
MS-PatchMatch88.05 26687.75 26488.95 29193.28 29277.93 28387.88 30392.49 29275.42 31692.57 23393.59 26980.44 25894.24 33981.28 27992.75 33694.69 302
CR-MVSNet87.89 26787.12 27890.22 26791.01 33278.93 26992.52 17992.81 28273.08 33089.10 29796.93 11367.11 32597.64 25588.80 18592.70 33794.08 311
pmmvs587.87 26887.14 27690.07 27193.26 29476.97 30088.89 28992.18 29673.71 32688.36 31393.89 26076.86 29296.73 29180.32 28696.81 25696.51 236
wuyk23d87.83 26990.79 20178.96 35390.46 34088.63 10792.72 17090.67 31591.65 11398.68 1197.64 6396.06 1577.53 37459.84 36999.41 5470.73 372
FMVSNet587.82 27086.56 28791.62 21992.31 30879.81 25393.49 15294.81 24583.26 25491.36 26096.93 11352.77 37297.49 26276.07 32598.03 20797.55 193
GA-MVS87.70 27186.82 28290.31 26393.27 29377.22 29584.72 34492.79 28485.11 23889.82 28890.07 32766.80 32897.76 24884.56 25194.27 31695.96 259
TR-MVS87.70 27187.17 27589.27 28794.11 27779.26 26488.69 29591.86 30481.94 27290.69 27189.79 33282.82 23597.42 26672.65 34391.98 34591.14 350
thres600view787.66 27387.10 27989.36 28596.05 20673.17 33392.72 17085.31 35091.89 9693.29 20590.97 31863.42 34798.39 18873.23 33996.99 25196.51 236
PAPR87.65 27486.77 28490.27 26592.85 30277.38 29288.56 29896.23 19776.82 31184.98 33989.75 33486.08 20897.16 27672.33 34493.35 32796.26 249
baseline187.62 27587.31 27088.54 30094.71 26374.27 32793.10 16088.20 32786.20 21792.18 24993.04 28073.21 30595.52 31779.32 30285.82 36395.83 266
test_fmvs187.59 27687.27 27288.54 30088.32 35981.26 22890.43 24995.72 21570.55 34691.70 25694.63 23368.13 32089.42 36490.59 13195.34 29194.94 294
our_test_387.55 27787.59 26787.44 31791.76 32270.48 34983.83 35190.55 31679.79 28392.06 25292.17 30178.63 27295.63 31584.77 24894.73 30596.22 250
PatchT87.51 27888.17 25885.55 33090.64 33566.91 36092.02 20286.09 34192.20 8789.05 29997.16 9964.15 34396.37 30289.21 17692.98 33593.37 330
Test_1112_low_res87.50 27986.58 28690.25 26696.80 15677.75 28787.53 30996.25 19569.73 35186.47 33193.61 26875.67 29697.88 23379.95 29393.20 32995.11 288
SCA87.43 28087.21 27488.10 30992.01 31871.98 34389.43 27688.11 32982.26 27088.71 30792.83 28578.65 27097.59 25679.61 29993.30 32894.75 299
EU-MVSNet87.39 28186.71 28589.44 28293.40 29176.11 31094.93 10790.00 31857.17 37195.71 12397.37 7964.77 34197.68 25392.67 8394.37 31394.52 304
thres100view90087.35 28286.89 28188.72 29696.14 20073.09 33593.00 16285.31 35092.13 8993.26 20890.96 31963.42 34798.28 19771.27 35196.54 26494.79 297
CMPMVSbinary68.83 2287.28 28385.67 29792.09 20488.77 35785.42 17790.31 25394.38 25470.02 34988.00 31893.30 27573.78 30494.03 34075.96 32796.54 26496.83 226
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sss87.23 28486.82 28288.46 30493.96 28177.94 28286.84 32192.78 28577.59 30387.61 32491.83 30678.75 26891.92 35177.84 31194.20 31795.52 280
BH-w/o87.21 28587.02 28087.79 31494.77 25877.27 29487.90 30293.21 27881.74 27389.99 28588.39 34883.47 22596.93 28571.29 35092.43 34189.15 355
thres40087.20 28686.52 28989.24 28995.77 22272.94 33691.89 20886.00 34290.84 12992.61 23089.80 33063.93 34498.28 19771.27 35196.54 26496.51 236
CHOSEN 1792x268887.19 28785.92 29691.00 24497.13 13979.41 26184.51 34695.60 21864.14 36590.07 28394.81 22578.26 27597.14 27773.34 33895.38 29096.46 241
HyFIR lowres test87.19 28785.51 29892.24 19697.12 14080.51 23685.03 34096.06 20466.11 36191.66 25792.98 28370.12 31599.14 8475.29 32995.23 29497.07 215
MIMVSNet87.13 28986.54 28888.89 29396.05 20676.11 31094.39 12588.51 32381.37 27488.27 31596.75 12672.38 30795.52 31765.71 36595.47 28695.03 289
tfpn200view987.05 29086.52 28988.67 29795.77 22272.94 33691.89 20886.00 34290.84 12992.61 23089.80 33063.93 34498.28 19771.27 35196.54 26494.79 297
cascas87.02 29186.28 29389.25 28891.56 32676.45 30784.33 34896.78 16871.01 34286.89 33085.91 36181.35 25096.94 28383.09 26195.60 28294.35 308
WTY-MVS86.93 29286.50 29188.24 30794.96 24974.64 32087.19 31492.07 30178.29 30088.32 31491.59 31178.06 27694.27 33774.88 33193.15 33195.80 267
HY-MVS82.50 1886.81 29385.93 29589.47 28193.63 28877.93 28394.02 13791.58 30875.68 31383.64 34893.64 26577.40 28197.42 26671.70 34892.07 34493.05 335
test_f86.65 29487.13 27785.19 33490.28 34286.11 16586.52 33291.66 30669.76 35095.73 12297.21 9769.51 31781.28 37389.15 17794.40 31188.17 360
131486.46 29586.33 29286.87 32191.65 32474.54 32291.94 20694.10 26074.28 32284.78 34187.33 35483.03 23195.00 32978.72 30691.16 35091.06 351
ET-MVSNet_ETH3D86.15 29684.27 30691.79 21193.04 29981.28 22787.17 31586.14 34079.57 28783.65 34788.66 34457.10 36298.18 20887.74 20595.40 28895.90 264
Patchmatch-test86.10 29786.01 29486.38 32790.63 33674.22 32889.57 27386.69 33685.73 22789.81 28992.83 28565.24 33991.04 35577.82 31395.78 27993.88 319
thres20085.85 29885.18 29987.88 31394.44 27072.52 34089.08 28686.21 33988.57 18091.44 25988.40 34764.22 34298.00 22268.35 35995.88 27893.12 332
EPNet_dtu85.63 29984.37 30489.40 28486.30 36974.33 32691.64 21888.26 32584.84 24472.96 37389.85 32871.27 31297.69 25276.60 32297.62 22796.18 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis1_rt85.58 30084.58 30288.60 29987.97 36086.76 14485.45 33793.59 26866.43 35987.64 32289.20 34179.33 26485.38 37081.59 27689.98 35593.66 324
test250685.42 30184.57 30387.96 31097.81 10066.53 36396.14 5856.35 38089.04 16793.55 19898.10 3842.88 38298.68 16188.09 19899.18 9098.67 96
PatchmatchNetpermissive85.22 30284.64 30186.98 32089.51 35169.83 35590.52 24487.34 33378.87 29787.22 32892.74 28966.91 32796.53 29481.77 27486.88 36194.58 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CVMVSNet85.16 30384.72 30086.48 32392.12 31470.19 35092.32 19188.17 32856.15 37290.64 27295.85 17867.97 32396.69 29288.78 18690.52 35292.56 340
JIA-IIPM85.08 30483.04 31391.19 23887.56 36286.14 16489.40 27884.44 35788.98 16982.20 35797.95 4756.82 36496.15 30676.55 32383.45 36791.30 349
MVS84.98 30584.30 30587.01 31991.03 33177.69 28991.94 20694.16 25959.36 37084.23 34587.50 35285.66 21296.80 28971.79 34693.05 33486.54 363
thisisatest051584.72 30682.99 31489.90 27592.96 30175.33 31884.36 34783.42 36077.37 30588.27 31586.65 35553.94 36998.72 15082.56 26697.40 23595.67 274
FPMVS84.50 30783.28 31188.16 30896.32 18594.49 1685.76 33485.47 34883.09 25885.20 33794.26 24463.79 34686.58 36963.72 36791.88 34783.40 366
tpm84.38 30884.08 30785.30 33390.47 33963.43 37389.34 27985.63 34677.24 30787.62 32395.03 21861.00 35797.30 27279.26 30391.09 35195.16 285
tpmvs84.22 30983.97 30884.94 33587.09 36665.18 36691.21 22788.35 32482.87 26285.21 33690.96 31965.24 33996.75 29079.60 30185.25 36492.90 337
ADS-MVSNet284.01 31082.20 31989.41 28389.04 35476.37 30987.57 30590.98 31272.71 33484.46 34292.45 29468.08 32196.48 29770.58 35583.97 36595.38 281
mvsany_test183.91 31182.93 31586.84 32286.18 37085.93 16881.11 36075.03 37570.80 34588.57 31194.63 23383.08 23087.38 36780.39 28586.57 36287.21 362
test-LLR83.58 31283.17 31284.79 33789.68 34866.86 36183.08 35384.52 35583.07 25982.85 35384.78 36462.86 35093.49 34382.85 26294.86 30194.03 314
baseline283.38 31381.54 32288.90 29291.38 32772.84 33888.78 29281.22 36578.97 29579.82 36687.56 35061.73 35497.80 24274.30 33490.05 35496.05 257
IB-MVS77.21 1983.11 31481.05 32589.29 28691.15 33075.85 31385.66 33586.00 34279.70 28582.02 36086.61 35648.26 37598.39 18877.84 31192.22 34293.63 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer83.09 31582.21 31885.73 32989.27 35367.01 35990.35 25186.47 33870.42 34783.52 35093.23 27861.18 35596.85 28777.21 31888.26 35993.34 331
PMMVS83.00 31681.11 32488.66 29883.81 37786.44 15582.24 35785.65 34561.75 36982.07 35885.64 36279.75 26191.59 35375.99 32693.09 33287.94 361
PVSNet76.22 2082.89 31782.37 31784.48 33993.96 28164.38 37178.60 36488.61 32271.50 33884.43 34486.36 35974.27 30194.60 33169.87 35793.69 32494.46 305
tpmrst82.85 31882.93 31582.64 34687.65 36158.99 37690.14 25887.90 33075.54 31583.93 34691.63 31066.79 33095.36 32381.21 28181.54 37093.57 329
test0.0.03 182.48 31981.47 32385.48 33189.70 34773.57 33284.73 34281.64 36483.07 25988.13 31786.61 35662.86 35089.10 36666.24 36490.29 35393.77 321
ADS-MVSNet82.25 32081.55 32184.34 34089.04 35465.30 36587.57 30585.13 35472.71 33484.46 34292.45 29468.08 32192.33 34970.58 35583.97 36595.38 281
DSMNet-mixed82.21 32181.56 32084.16 34189.57 35070.00 35490.65 24177.66 37454.99 37383.30 35197.57 6677.89 27890.50 35866.86 36395.54 28491.97 344
KD-MVS_2432*160082.17 32280.75 32986.42 32582.04 37870.09 35281.75 35890.80 31382.56 26490.37 27789.30 33942.90 38096.11 30874.47 33292.55 33993.06 333
miper_refine_blended82.17 32280.75 32986.42 32582.04 37870.09 35281.75 35890.80 31382.56 26490.37 27789.30 33942.90 38096.11 30874.47 33292.55 33993.06 333
gg-mvs-nofinetune82.10 32481.02 32685.34 33287.46 36471.04 34694.74 11167.56 37796.44 2379.43 36798.99 645.24 37696.15 30667.18 36292.17 34388.85 357
PAPM81.91 32580.11 33587.31 31893.87 28472.32 34284.02 35093.22 27669.47 35276.13 37189.84 32972.15 30897.23 27453.27 37389.02 35692.37 342
tpm281.46 32680.35 33384.80 33689.90 34565.14 36790.44 24685.36 34965.82 36382.05 35992.44 29657.94 36196.69 29270.71 35488.49 35892.56 340
PMMVS281.31 32783.44 31074.92 35590.52 33846.49 38069.19 36985.23 35384.30 24887.95 31994.71 23176.95 28984.36 37264.07 36698.09 20293.89 318
new_pmnet81.22 32881.01 32781.86 34890.92 33470.15 35184.03 34980.25 36970.83 34385.97 33489.78 33367.93 32484.65 37167.44 36191.90 34690.78 352
test-mter81.21 32980.01 33684.79 33789.68 34866.86 36183.08 35384.52 35573.85 32582.85 35384.78 36443.66 37993.49 34382.85 26294.86 30194.03 314
EPMVS81.17 33080.37 33283.58 34385.58 37265.08 36890.31 25371.34 37677.31 30685.80 33591.30 31359.38 35992.70 34879.99 29282.34 36992.96 336
EGC-MVSNET80.97 33175.73 34296.67 4298.85 2494.55 1596.83 2396.60 1782.44 3775.32 37898.25 3392.24 10898.02 22091.85 10299.21 8697.45 198
pmmvs380.83 33278.96 33886.45 32487.23 36577.48 29184.87 34182.31 36263.83 36685.03 33889.50 33749.66 37393.10 34573.12 34195.10 29688.78 359
E-PMN80.72 33380.86 32880.29 35185.11 37368.77 35772.96 36681.97 36387.76 19683.25 35283.01 36862.22 35389.17 36577.15 31994.31 31582.93 367
tpm cat180.61 33479.46 33784.07 34288.78 35665.06 36989.26 28288.23 32662.27 36881.90 36189.66 33662.70 35295.29 32671.72 34780.60 37191.86 347
EMVS80.35 33580.28 33480.54 35084.73 37569.07 35672.54 36880.73 36687.80 19481.66 36281.73 36962.89 34989.84 36075.79 32894.65 30882.71 368
CHOSEN 280x42080.04 33677.97 34186.23 32890.13 34374.53 32372.87 36789.59 31966.38 36076.29 37085.32 36356.96 36395.36 32369.49 35894.72 30688.79 358
dp79.28 33778.62 33981.24 34985.97 37156.45 37786.91 31985.26 35272.97 33281.45 36389.17 34356.01 36695.45 32173.19 34076.68 37291.82 348
TESTMET0.1,179.09 33878.04 34082.25 34787.52 36364.03 37283.08 35380.62 36770.28 34880.16 36583.22 36744.13 37890.56 35779.95 29393.36 32692.15 343
MVS-HIRNet78.83 33980.60 33173.51 35693.07 29747.37 37987.10 31678.00 37368.94 35377.53 36997.26 9071.45 31194.62 33063.28 36888.74 35778.55 371
PVSNet_070.34 2174.58 34072.96 34379.47 35290.63 33666.24 36473.26 36583.40 36163.67 36778.02 36878.35 37172.53 30689.59 36256.68 37160.05 37582.57 369
MVEpermissive59.87 2373.86 34172.65 34477.47 35487.00 36874.35 32561.37 37160.93 37967.27 35769.69 37486.49 35881.24 25472.33 37556.45 37283.45 36785.74 364
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 34248.94 34554.93 35739.68 38112.38 38328.59 37290.09 3176.82 37541.10 37778.41 37054.41 36870.69 37650.12 37451.26 37681.72 370
tmp_tt37.97 34344.33 34618.88 35911.80 38221.54 38263.51 37045.66 3834.23 37651.34 37650.48 37459.08 36022.11 37844.50 37568.35 37413.00 374
cdsmvs_eth3d_5k23.35 34431.13 3470.00 3620.00 3850.00 3860.00 37395.58 2240.00 3800.00 38191.15 31593.43 780.00 3810.00 3790.00 3790.00 377
test1239.49 34512.01 3481.91 3602.87 3831.30 38482.38 3561.34 3851.36 3782.84 3796.56 3772.45 3830.97 3792.73 3775.56 3773.47 375
testmvs9.02 34611.42 3491.81 3612.77 3841.13 38579.44 3631.90 3841.18 3792.65 3806.80 3761.95 3840.87 3802.62 3783.45 3783.44 376
pcd_1.5k_mvsjas7.56 34710.09 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38090.77 1390.00 3810.00 3790.00 3790.00 377
ab-mvs-re7.56 34710.08 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38190.69 3240.00 3850.00 3810.00 3790.00 3790.00 377
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
MSC_two_6792asdad95.90 6596.54 16889.57 8896.87 16299.41 3894.06 3299.30 6798.72 92
PC_three_145275.31 31895.87 11595.75 18792.93 9596.34 30587.18 21398.68 14798.04 143
No_MVS95.90 6596.54 16889.57 8896.87 16299.41 3894.06 3299.30 6798.72 92
test_one_060198.26 7187.14 13498.18 3794.25 4596.99 6697.36 8295.13 40
eth-test20.00 385
eth-test0.00 385
ZD-MVS97.23 13390.32 7897.54 10784.40 24794.78 16395.79 18292.76 10199.39 4888.72 18898.40 169
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 4795.66 3297.00 6497.03 10795.40 2893.49 4998.84 12698.00 148
IU-MVS98.51 5186.66 14996.83 16572.74 33395.83 11693.00 7499.29 7098.64 103
OPU-MVS95.15 9396.84 15289.43 9295.21 9495.66 19093.12 8998.06 21586.28 23198.61 15397.95 156
test_241102_TWO98.10 5091.95 9297.54 3897.25 9195.37 2999.35 5893.29 6299.25 7998.49 114
test_241102_ONE98.51 5186.97 13998.10 5091.85 9897.63 3497.03 10796.48 1098.95 112
9.1494.81 9997.49 12394.11 13598.37 1787.56 20295.38 13396.03 17294.66 5799.08 9290.70 12998.97 113
save fliter97.46 12688.05 12092.04 20197.08 14587.63 200
test_0728_THIRD93.26 6697.40 4997.35 8594.69 5699.34 6193.88 3599.42 5098.89 71
test_0728_SECOND94.88 10098.55 4586.72 14695.20 9698.22 3299.38 5493.44 5599.31 6598.53 111
test072698.51 5186.69 14795.34 8998.18 3791.85 9897.63 3497.37 7995.58 23
GSMVS94.75 299
test_part298.21 7589.41 9396.72 76
sam_mvs166.64 33194.75 299
sam_mvs66.41 332
ambc92.98 16896.88 14983.01 20895.92 6896.38 19196.41 8697.48 7488.26 17197.80 24289.96 15698.93 11898.12 139
MTGPAbinary97.62 100
test_post190.21 2555.85 37965.36 33796.00 31179.61 299
test_post6.07 37865.74 33695.84 313
patchmatchnet-post91.71 30866.22 33497.59 256
GG-mvs-BLEND83.24 34585.06 37471.03 34794.99 10665.55 37874.09 37275.51 37244.57 37794.46 33359.57 37087.54 36084.24 365
MTMP94.82 10954.62 381
gm-plane-assit87.08 36759.33 37571.22 33983.58 36697.20 27573.95 335
test9_res88.16 19698.40 16997.83 170
TEST996.45 17589.46 9090.60 24296.92 15779.09 29490.49 27394.39 24191.31 12698.88 119
test_896.37 17789.14 9790.51 24596.89 16079.37 28990.42 27594.36 24391.20 13198.82 129
agg_prior287.06 21698.36 17897.98 152
agg_prior96.20 19588.89 10396.88 16190.21 28098.78 141
TestCases96.00 5698.02 8992.17 5098.43 1490.48 13995.04 15396.74 12792.54 10597.86 23785.11 24398.98 10997.98 152
test_prior489.91 8290.74 237
test_prior290.21 25589.33 16290.77 26994.81 22590.41 14988.21 19298.55 158
test_prior94.61 11295.95 21487.23 13297.36 12398.68 16197.93 158
旧先验290.00 26368.65 35492.71 22896.52 29585.15 240
新几何290.02 262
新几何193.17 16597.16 13787.29 13094.43 25367.95 35691.29 26194.94 22186.97 19598.23 20381.06 28397.75 21993.98 316
旧先验196.20 19584.17 19194.82 24395.57 19589.57 16197.89 21596.32 246
无先验89.94 26495.75 21470.81 34498.59 17281.17 28294.81 295
原ACMM289.34 279
原ACMM192.87 17696.91 14884.22 18997.01 14976.84 31089.64 29394.46 23988.00 17798.70 15781.53 27798.01 20995.70 273
test22296.95 14485.27 17988.83 29193.61 26765.09 36490.74 27094.85 22484.62 21997.36 23693.91 317
testdata298.03 21780.24 289
segment_acmp92.14 111
testdata91.03 24196.87 15082.01 21694.28 25771.55 33792.46 23695.42 20185.65 21397.38 27182.64 26597.27 23893.70 323
testdata188.96 28888.44 182
test1294.43 12595.95 21486.75 14596.24 19689.76 29189.79 16098.79 13897.95 21297.75 180
plane_prior797.71 10888.68 106
plane_prior697.21 13588.23 11786.93 196
plane_prior597.81 8698.95 11289.26 17398.51 16498.60 107
plane_prior495.59 191
plane_prior388.43 11590.35 14493.31 203
plane_prior294.56 12091.74 109
plane_prior197.38 128
plane_prior88.12 11893.01 16188.98 16998.06 204
n20.00 386
nn0.00 386
door-mid92.13 300
lessismore_v093.87 14398.05 8583.77 19780.32 36897.13 5797.91 5277.49 28099.11 9192.62 8498.08 20398.74 90
LGP-MVS_train96.84 3898.36 6692.13 5298.25 2791.78 10597.07 5997.22 9596.38 1299.28 7092.07 9599.59 2899.11 44
test1196.65 176
door91.26 309
HQP5-MVS84.89 182
HQP-NCC96.36 17991.37 22287.16 20688.81 302
ACMP_Plane96.36 17991.37 22287.16 20688.81 302
BP-MVS86.55 225
HQP4-MVS88.81 30298.61 16898.15 136
HQP3-MVS97.31 12797.73 220
HQP2-MVS84.76 217
NP-MVS96.82 15487.10 13593.40 273
MDTV_nov1_ep13_2view42.48 38188.45 29967.22 35883.56 34966.80 32872.86 34294.06 313
MDTV_nov1_ep1383.88 30989.42 35261.52 37488.74 29487.41 33273.99 32484.96 34094.01 25565.25 33895.53 31678.02 30993.16 330
ACMMP++_ref98.82 132
ACMMP++99.25 79
Test By Simon90.61 145
ITE_SJBPF95.95 5997.34 13093.36 4096.55 18491.93 9494.82 16195.39 20591.99 11397.08 27985.53 23697.96 21197.41 201
DeepMVS_CXcopyleft53.83 35870.38 38064.56 37048.52 38233.01 37465.50 37574.21 37356.19 36546.64 37738.45 37670.07 37350.30 373