This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 2
mamv498.21 297.86 399.26 198.24 7499.36 196.10 6399.32 298.75 299.58 298.70 2091.78 13199.88 198.60 199.67 2098.54 120
LTVRE_ROB93.87 197.93 398.16 297.26 3098.81 2793.86 3599.07 298.98 997.01 1598.92 598.78 1695.22 4298.61 17696.85 499.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1197.41 1197.28 5898.46 3394.62 6698.84 13494.64 3799.53 3798.99 56
reproduce_model97.35 597.24 1297.70 598.44 5895.08 1295.88 7498.50 1896.62 2298.27 2197.93 5794.57 6899.50 2295.57 2099.35 5998.52 123
UA-Net97.35 597.24 1297.69 698.22 7593.87 3498.42 698.19 4796.95 1695.46 14799.23 693.45 8799.57 1595.34 2999.89 299.63 11
reproduce-ours97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 133
our_new_method97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 133
UniMVSNet_ETH3D97.13 997.72 495.35 8699.51 287.38 13797.70 897.54 12398.16 398.94 399.33 397.84 499.08 10090.73 14999.73 1399.59 14
HPM-MVS_fast97.01 1096.89 1897.39 2599.12 893.92 3297.16 1498.17 5393.11 8096.48 9297.36 10096.92 699.34 6594.31 4499.38 5798.92 72
SR-MVS-dyc-post96.84 1196.60 2897.56 1498.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13094.85 6099.42 3693.49 6798.84 13598.00 166
mvs_tets96.83 1296.71 2297.17 3198.83 2492.51 5296.58 3397.61 11787.57 21798.80 898.90 1196.50 999.59 1496.15 1399.47 4199.40 22
v7n96.82 1397.31 1195.33 8898.54 4686.81 15296.83 2298.07 6996.59 2398.46 1898.43 3592.91 10799.52 2096.25 1299.76 1099.65 10
APD-MVS_3200maxsize96.82 1396.65 2497.32 2997.95 9693.82 3796.31 5298.25 3795.51 4196.99 7197.05 12995.63 2399.39 5293.31 7998.88 13098.75 91
HPM-MVScopyleft96.81 1596.62 2697.36 2798.89 2093.53 4297.51 1098.44 2092.35 9395.95 11996.41 17096.71 899.42 3693.99 5299.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs696.80 1697.36 1095.15 10099.12 887.82 13296.68 2997.86 9596.10 3398.14 2899.28 597.94 398.21 21691.38 13899.69 1499.42 20
OurMVSNet-221017-096.80 1696.75 2196.96 3999.03 1191.85 6197.98 798.01 8194.15 5898.93 499.07 788.07 19599.57 1595.86 1599.69 1499.46 19
testf196.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24389.32 19099.23 8698.19 149
APD_test296.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24389.32 19099.23 8698.19 149
COLMAP_ROBcopyleft91.06 596.75 2096.62 2697.13 3298.38 6194.31 2196.79 2598.32 3096.69 1996.86 7697.56 8195.48 2798.77 15190.11 17399.44 4898.31 140
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
anonymousdsp96.74 2196.42 3397.68 898.00 9294.03 2996.97 1997.61 11787.68 21598.45 1998.77 1794.20 7799.50 2296.70 699.40 5599.53 16
DTE-MVSNet96.74 2197.43 694.67 11799.13 684.68 19896.51 3697.94 9298.14 498.67 1398.32 3795.04 5099.69 493.27 8299.82 799.62 12
SR-MVS96.70 2396.42 3397.54 1598.05 8694.69 1596.13 6298.07 6995.17 4396.82 7996.73 15395.09 4999.43 3592.99 9398.71 15598.50 124
PS-CasMVS96.69 2497.43 694.49 13099.13 684.09 20996.61 3297.97 8697.91 698.64 1498.13 4395.24 4099.65 593.39 7799.84 399.72 4
PEN-MVS96.69 2497.39 994.61 12099.16 484.50 19996.54 3498.05 7398.06 598.64 1498.25 4095.01 5399.65 592.95 9499.83 599.68 6
MTAPA96.65 2696.38 3797.47 1998.95 1894.05 2795.88 7497.62 11594.46 5496.29 10196.94 13693.56 8499.37 6094.29 4599.42 5098.99 56
test_djsdf96.62 2796.49 3097.01 3698.55 4491.77 6397.15 1597.37 13488.98 18398.26 2498.86 1293.35 9299.60 1096.41 999.45 4599.66 8
ACMMPcopyleft96.61 2896.34 3897.43 2298.61 3793.88 3396.95 2098.18 4992.26 9696.33 9796.84 14495.10 4899.40 4993.47 7099.33 6599.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2023121196.60 2997.13 1695.00 10397.46 13286.35 16897.11 1898.24 4097.58 998.72 998.97 993.15 9999.15 9193.18 8599.74 1299.50 18
WR-MVS_H96.60 2997.05 1795.24 9499.02 1286.44 16496.78 2698.08 6697.42 1098.48 1797.86 6591.76 13499.63 894.23 4699.84 399.66 8
jajsoiax96.59 3196.42 3397.12 3398.76 3092.49 5396.44 4397.42 13286.96 22798.71 1198.72 1995.36 3499.56 1895.92 1499.45 4599.32 27
ACMH88.36 1296.59 3197.43 694.07 14498.56 4185.33 19296.33 4998.30 3394.66 4998.72 998.30 3897.51 598.00 23694.87 3499.59 2798.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS96.49 3396.18 4697.44 2098.56 4193.99 3096.50 3797.95 8994.58 5094.38 19696.49 16494.56 6999.39 5293.57 6399.05 10698.93 68
ACMH+88.43 1196.48 3496.82 1995.47 8398.54 4689.06 10495.65 8398.61 1596.10 3398.16 2797.52 8696.90 798.62 17590.30 16499.60 2598.72 96
APDe-MVScopyleft96.46 3596.64 2595.93 6497.68 11889.38 9896.90 2198.41 2392.52 8897.43 5097.92 6195.11 4799.50 2294.45 4099.30 7298.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR96.46 3596.14 4997.41 2498.60 3893.82 3796.30 5697.96 8792.35 9395.57 14096.61 16094.93 5899.41 4293.78 5799.15 9899.00 54
mPP-MVS96.46 3596.05 5597.69 698.62 3594.65 1796.45 4197.74 10892.59 8795.47 14596.68 15694.50 7199.42 3693.10 8899.26 8298.99 56
CP-MVS96.44 3896.08 5397.54 1598.29 6894.62 1896.80 2498.08 6692.67 8695.08 17396.39 17594.77 6299.42 3693.17 8699.44 4898.58 118
ZNCC-MVS96.42 3996.20 4597.07 3498.80 2992.79 5096.08 6598.16 5691.74 12195.34 15496.36 17895.68 2199.44 3294.41 4299.28 8098.97 62
region2R96.41 4096.09 5197.38 2698.62 3593.81 3996.32 5197.96 8792.26 9695.28 15996.57 16295.02 5299.41 4293.63 6199.11 10198.94 66
SteuartSystems-ACMMP96.40 4196.30 4096.71 4498.63 3491.96 5995.70 8098.01 8193.34 7796.64 8796.57 16294.99 5499.36 6193.48 6999.34 6398.82 82
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 4296.17 4897.04 3598.51 4993.37 4396.30 5697.98 8492.35 9395.63 13796.47 16595.37 3299.27 8093.78 5799.14 9998.48 127
LPG-MVS_test96.38 4396.23 4396.84 4298.36 6692.13 5695.33 9898.25 3791.78 11797.07 6497.22 11496.38 1299.28 7892.07 11599.59 2799.11 44
nrg03096.32 4496.55 2995.62 7897.83 10388.55 11895.77 7898.29 3692.68 8498.03 3097.91 6295.13 4598.95 12093.85 5599.49 4099.36 25
PGM-MVS96.32 4495.94 6097.43 2298.59 4093.84 3695.33 9898.30 3391.40 13295.76 12996.87 14195.26 3999.45 3192.77 9699.21 9099.00 54
ACMM88.83 996.30 4696.07 5496.97 3898.39 6092.95 4894.74 12198.03 7890.82 14597.15 6196.85 14296.25 1499.00 11293.10 8899.33 6598.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GST-MVS96.24 4795.99 5997.00 3798.65 3392.71 5195.69 8298.01 8192.08 10295.74 13296.28 18495.22 4299.42 3693.17 8699.06 10398.88 77
ACMMP_NAP96.21 4896.12 5096.49 5298.90 1991.42 6794.57 12998.03 7890.42 15796.37 9597.35 10395.68 2199.25 8194.44 4199.34 6398.80 85
CP-MVSNet96.19 4996.80 2094.38 13598.99 1683.82 21296.31 5297.53 12597.60 898.34 2097.52 8691.98 12799.63 893.08 9099.81 899.70 5
MP-MVScopyleft96.14 5095.68 7697.51 1798.81 2794.06 2596.10 6397.78 10692.73 8393.48 22296.72 15494.23 7699.42 3691.99 11799.29 7599.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D96.11 5195.83 6996.95 4094.75 28694.20 2397.34 1397.98 8497.31 1295.32 15596.77 14693.08 10299.20 8791.79 12498.16 21097.44 222
MP-MVS-pluss96.08 5295.92 6396.57 4899.06 1091.21 6993.25 17598.32 3087.89 20896.86 7697.38 9695.55 2699.39 5295.47 2399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet96.07 5396.26 4295.50 8298.26 7187.69 13493.75 15997.86 9595.96 3897.48 4897.14 12195.33 3699.44 3290.79 14799.76 1099.38 23
PS-MVSNAJss96.01 5496.04 5695.89 6998.82 2588.51 11995.57 8997.88 9388.72 18998.81 798.86 1290.77 15799.60 1095.43 2599.53 3799.57 15
SED-MVS96.00 5596.41 3694.76 11298.51 4986.97 14895.21 10498.10 6391.95 10497.63 3897.25 11096.48 1099.35 6293.29 8099.29 7597.95 174
DVP-MVS++95.93 5696.34 3894.70 11596.54 18286.66 15898.45 498.22 4493.26 7897.54 4397.36 10093.12 10099.38 5893.88 5398.68 15998.04 161
APD_test195.91 5795.42 8797.36 2798.82 2596.62 795.64 8497.64 11393.38 7695.89 12497.23 11293.35 9297.66 27188.20 21698.66 16397.79 196
test_fmvsmconf0.01_n95.90 5896.09 5195.31 9197.30 13989.21 10094.24 14098.76 1386.25 23497.56 4298.66 2195.73 1998.44 19797.35 398.99 11498.27 143
DPE-MVScopyleft95.89 5995.88 6595.92 6697.93 9789.83 8893.46 16998.30 3392.37 9197.75 3596.95 13595.14 4499.51 2191.74 12599.28 8098.41 132
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS95.88 6095.88 6595.87 7098.12 8089.65 9095.58 8898.56 1791.84 11396.36 9696.68 15694.37 7599.32 7192.41 10899.05 10698.64 111
3Dnovator+92.74 295.86 6195.77 7396.13 5696.81 16690.79 7796.30 5697.82 10096.13 3294.74 18797.23 11291.33 14199.16 9093.25 8398.30 19698.46 128
mmtdpeth95.82 6296.02 5895.23 9596.91 15788.62 11396.49 3999.26 495.07 4493.41 22499.29 490.25 17097.27 29294.49 3999.01 11399.80 3
DVP-MVScopyleft95.82 6296.18 4694.72 11498.51 4986.69 15695.20 10697.00 16691.85 11097.40 5497.35 10395.58 2499.34 6593.44 7399.31 7098.13 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CS-MVS95.77 6495.58 8096.37 5496.84 16391.72 6596.73 2899.06 894.23 5692.48 26394.79 25593.56 8499.49 2893.47 7099.05 10697.89 183
SMA-MVScopyleft95.77 6495.54 8196.47 5398.27 7091.19 7095.09 10997.79 10586.48 23097.42 5297.51 9094.47 7499.29 7493.55 6599.29 7598.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_040295.73 6696.22 4494.26 13898.19 7785.77 18293.24 17697.24 15096.88 1897.69 3697.77 7194.12 7899.13 9591.54 13499.29 7597.88 184
ACMP88.15 1395.71 6795.43 8696.54 4998.17 7891.73 6494.24 14098.08 6689.46 17296.61 8996.47 16595.85 1899.12 9690.45 15699.56 3498.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE95.68 6895.34 9096.69 4598.40 5993.04 4594.54 13398.05 7390.45 15696.31 9996.76 14892.91 10798.72 15791.19 13999.42 5098.32 138
DP-MVS95.62 6995.84 6894.97 10497.16 14688.62 11394.54 13397.64 11396.94 1796.58 9097.32 10793.07 10398.72 15790.45 15698.84 13597.57 212
test_fmvsmconf0.1_n95.61 7095.72 7595.26 9296.85 16289.20 10193.51 16798.60 1685.68 24897.42 5298.30 3895.34 3598.39 19896.85 498.98 11598.19 149
OPM-MVS95.61 7095.45 8496.08 5798.49 5691.00 7292.65 19697.33 14290.05 16296.77 8296.85 14295.04 5098.56 18392.77 9699.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF95.58 7294.89 10797.62 997.58 12496.30 895.97 7097.53 12592.42 8993.41 22497.78 6791.21 14697.77 26191.06 14197.06 27098.80 85
MIMVSNet195.52 7395.45 8495.72 7599.14 589.02 10596.23 5996.87 17893.73 6797.87 3198.49 3190.73 16199.05 10586.43 25399.60 2599.10 47
Anonymous2024052995.50 7495.83 6994.50 12897.33 13885.93 17895.19 10896.77 18696.64 2197.61 4198.05 4793.23 9698.79 14588.60 21399.04 11198.78 87
Vis-MVSNetpermissive95.50 7495.48 8395.56 8198.11 8189.40 9795.35 9698.22 4492.36 9294.11 20198.07 4692.02 12599.44 3293.38 7897.67 24697.85 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EC-MVSNet95.44 7695.62 7894.89 10696.93 15687.69 13496.48 4099.14 793.93 6392.77 25494.52 26693.95 8199.49 2893.62 6299.22 8997.51 217
test_fmvsmconf_n95.43 7795.50 8295.22 9796.48 18989.19 10293.23 17798.36 2785.61 25196.92 7498.02 5195.23 4198.38 20196.69 798.95 12498.09 157
pm-mvs195.43 7795.94 6093.93 15198.38 6185.08 19595.46 9497.12 15991.84 11397.28 5898.46 3395.30 3897.71 26890.17 17199.42 5098.99 56
DeepC-MVS91.39 495.43 7795.33 9195.71 7697.67 11990.17 8493.86 15698.02 8087.35 21996.22 10797.99 5494.48 7399.05 10592.73 9999.68 1797.93 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tt080595.42 8095.93 6293.86 15598.75 3188.47 12097.68 994.29 27896.48 2495.38 15093.63 29494.89 5997.94 24295.38 2796.92 27895.17 320
XVG-OURS-SEG-HR95.38 8195.00 10596.51 5098.10 8294.07 2492.46 20498.13 5890.69 14893.75 21596.25 18898.03 297.02 30892.08 11495.55 31398.45 129
UniMVSNet_NR-MVSNet95.35 8295.21 9695.76 7397.69 11788.59 11692.26 21897.84 9894.91 4796.80 8095.78 21390.42 16699.41 4291.60 13099.58 3199.29 29
MSP-MVS95.34 8394.63 12297.48 1898.67 3294.05 2796.41 4598.18 4991.26 13595.12 16995.15 23786.60 22499.50 2293.43 7696.81 28298.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SPE-MVS-test95.32 8495.10 10195.96 6096.86 16190.75 7896.33 4999.20 593.99 6091.03 29793.73 29293.52 8699.55 1991.81 12399.45 4597.58 211
FC-MVSNet-test95.32 8495.88 6593.62 16698.49 5681.77 24295.90 7398.32 3093.93 6397.53 4597.56 8188.48 18899.40 4992.91 9599.83 599.68 6
UniMVSNet (Re)95.32 8495.15 9895.80 7297.79 10788.91 10792.91 18698.07 6993.46 7496.31 9995.97 20290.14 17299.34 6592.11 11299.64 2399.16 38
Gipumacopyleft95.31 8795.80 7293.81 15897.99 9590.91 7496.42 4497.95 8996.69 1991.78 28498.85 1491.77 13295.49 35391.72 12699.08 10295.02 329
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvs5depth95.28 8895.82 7193.66 16496.42 19283.08 22697.35 1299.28 396.44 2696.20 10999.65 284.10 24898.01 23494.06 4998.93 12599.87 1
DU-MVS95.28 8895.12 10095.75 7497.75 10988.59 11692.58 19897.81 10193.99 6096.80 8095.90 20390.10 17599.41 4291.60 13099.58 3199.26 30
NR-MVSNet95.28 8895.28 9495.26 9297.75 10987.21 14195.08 11097.37 13493.92 6597.65 3795.90 20390.10 17599.33 7090.11 17399.66 2199.26 30
TransMVSNet (Re)95.27 9196.04 5692.97 18898.37 6381.92 24195.07 11196.76 18793.97 6297.77 3498.57 2695.72 2097.90 24388.89 20799.23 8699.08 48
SD-MVS95.19 9295.73 7493.55 16996.62 17788.88 10994.67 12398.05 7391.26 13597.25 6096.40 17195.42 3094.36 37492.72 10099.19 9297.40 226
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VPA-MVSNet95.14 9395.67 7793.58 16897.76 10883.15 22494.58 12897.58 12093.39 7597.05 6798.04 4993.25 9598.51 18989.75 18399.59 2799.08 48
casdiffmvs_mvgpermissive95.10 9495.62 7893.53 17296.25 21183.23 22192.66 19598.19 4793.06 8197.49 4797.15 12094.78 6198.71 16392.27 11098.72 15398.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmvis_n_192095.08 9595.40 8894.13 14296.66 17287.75 13393.44 17198.49 1985.57 25298.27 2197.11 12494.11 7997.75 26496.26 1198.72 15396.89 251
HPM-MVS++copyleft95.02 9694.39 12696.91 4197.88 10093.58 4194.09 14996.99 16891.05 14092.40 26895.22 23691.03 15399.25 8192.11 11298.69 15897.90 181
APD-MVScopyleft95.00 9794.69 11695.93 6497.38 13490.88 7594.59 12697.81 10189.22 17995.46 14796.17 19393.42 9099.34 6589.30 19298.87 13397.56 214
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PMVScopyleft87.21 1494.97 9895.33 9193.91 15298.97 1797.16 395.54 9295.85 23096.47 2593.40 22797.46 9395.31 3795.47 35486.18 25798.78 14789.11 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TSAR-MVS + MP.94.96 9994.75 11295.57 8098.86 2288.69 11096.37 4696.81 18285.23 25794.75 18697.12 12391.85 12999.40 4993.45 7298.33 19398.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SixPastTwentyTwo94.91 10095.21 9693.98 14698.52 4883.19 22395.93 7194.84 26494.86 4898.49 1698.74 1881.45 27599.60 1094.69 3699.39 5699.15 39
FIs94.90 10195.35 8993.55 16998.28 6981.76 24395.33 9898.14 5793.05 8297.07 6497.18 11887.65 20299.29 7491.72 12699.69 1499.61 13
AllTest94.88 10294.51 12496.00 5898.02 9092.17 5495.26 10298.43 2190.48 15495.04 17496.74 15192.54 11697.86 25185.11 27098.98 11597.98 170
FMVSNet194.84 10395.13 9993.97 14797.60 12284.29 20295.99 6796.56 19992.38 9097.03 6898.53 2890.12 17398.98 11388.78 20999.16 9798.65 106
ANet_high94.83 10496.28 4190.47 28196.65 17373.16 36094.33 13798.74 1496.39 2898.09 2998.93 1093.37 9198.70 16490.38 15999.68 1799.53 16
MVSMamba_PlusPlus94.82 10595.89 6491.62 24097.82 10478.88 29596.52 3597.60 11997.14 1494.23 19998.48 3287.01 21499.71 395.43 2598.80 14496.28 278
3Dnovator92.54 394.80 10694.90 10694.47 13195.47 26487.06 14596.63 3197.28 14891.82 11694.34 19897.41 9490.60 16498.65 17392.47 10798.11 21597.70 204
CPTT-MVS94.74 10794.12 13996.60 4798.15 7993.01 4695.84 7697.66 11289.21 18093.28 23295.46 22688.89 18698.98 11389.80 18098.82 14197.80 195
test_fmvsm_n_192094.72 10894.74 11494.67 11796.30 20688.62 11393.19 17898.07 6985.63 25097.08 6397.35 10390.86 15497.66 27195.70 1698.48 18097.74 202
XVG-OURS94.72 10894.12 13996.50 5198.00 9294.23 2291.48 24698.17 5390.72 14795.30 15696.47 16587.94 19996.98 30991.41 13797.61 25098.30 141
CSCG94.69 11094.75 11294.52 12797.55 12687.87 13095.01 11497.57 12192.68 8496.20 10993.44 30091.92 12898.78 14889.11 20199.24 8596.92 249
v1094.68 11195.27 9592.90 19396.57 17980.15 26194.65 12597.57 12190.68 14997.43 5098.00 5288.18 19299.15 9194.84 3599.55 3599.41 21
v894.65 11295.29 9392.74 19896.65 17379.77 27694.59 12697.17 15491.86 10997.47 4997.93 5788.16 19399.08 10094.32 4399.47 4199.38 23
sasdasda94.59 11394.69 11694.30 13695.60 25887.03 14695.59 8598.24 4091.56 12795.21 16592.04 33494.95 5598.66 17091.45 13597.57 25197.20 237
canonicalmvs94.59 11394.69 11694.30 13695.60 25887.03 14695.59 8598.24 4091.56 12795.21 16592.04 33494.95 5598.66 17091.45 13597.57 25197.20 237
CNVR-MVS94.58 11594.29 13195.46 8496.94 15489.35 9991.81 23996.80 18389.66 16993.90 21395.44 22892.80 11198.72 15792.74 9898.52 17598.32 138
GeoE94.55 11694.68 11994.15 14097.23 14185.11 19494.14 14697.34 14188.71 19095.26 16095.50 22594.65 6599.12 9690.94 14598.40 18398.23 145
EG-PatchMatch MVS94.54 11794.67 12094.14 14197.87 10286.50 16092.00 22696.74 18888.16 20496.93 7397.61 7893.04 10497.90 24391.60 13098.12 21498.03 164
IS-MVSNet94.49 11894.35 13094.92 10598.25 7386.46 16397.13 1794.31 27796.24 3196.28 10396.36 17882.88 25899.35 6288.19 21799.52 3998.96 64
Baseline_NR-MVSNet94.47 11995.09 10292.60 20898.50 5580.82 25792.08 22296.68 19193.82 6696.29 10198.56 2790.10 17597.75 26490.10 17599.66 2199.24 32
MGCFI-Net94.44 12094.67 12093.75 16095.56 26085.47 18995.25 10398.24 4091.53 12995.04 17492.21 32994.94 5798.54 18691.56 13397.66 24797.24 235
SDMVSNet94.43 12195.02 10392.69 20097.93 9782.88 23091.92 23195.99 22793.65 7295.51 14298.63 2394.60 6796.48 32787.57 23199.35 5998.70 100
MM94.41 12294.14 13895.22 9795.84 24087.21 14194.31 13990.92 33794.48 5392.80 25297.52 8685.27 23899.49 2896.58 899.57 3398.97 62
VDD-MVS94.37 12394.37 12894.40 13497.49 12986.07 17593.97 15393.28 29894.49 5296.24 10597.78 6787.99 19898.79 14588.92 20599.14 9998.34 137
EI-MVSNet-Vis-set94.36 12494.28 13294.61 12092.55 33685.98 17792.44 20694.69 27193.70 6896.12 11495.81 20991.24 14498.86 13193.76 6098.22 20598.98 60
EI-MVSNet-UG-set94.35 12594.27 13494.59 12492.46 33985.87 18092.42 20894.69 27193.67 7196.13 11395.84 20791.20 14798.86 13193.78 5798.23 20399.03 52
PHI-MVS94.34 12693.80 14695.95 6195.65 25491.67 6694.82 11997.86 9587.86 20993.04 24494.16 27791.58 13698.78 14890.27 16698.96 12297.41 223
casdiffmvspermissive94.32 12794.80 11092.85 19596.05 22781.44 24892.35 21198.05 7391.53 12995.75 13196.80 14593.35 9298.49 19091.01 14498.32 19598.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpnnormal94.27 12894.87 10892.48 21297.71 11480.88 25694.55 13295.41 24993.70 6896.67 8697.72 7291.40 14098.18 22087.45 23399.18 9498.36 133
fmvsm_s_conf0.1_n_a94.26 12994.37 12893.95 15097.36 13685.72 18494.15 14495.44 24683.25 28495.51 14298.05 4792.54 11697.19 29895.55 2197.46 25798.94 66
HQP_MVS94.26 12993.93 14295.23 9597.71 11488.12 12594.56 13097.81 10191.74 12193.31 22995.59 22086.93 21798.95 12089.26 19698.51 17798.60 116
baseline94.26 12994.80 11092.64 20296.08 22580.99 25493.69 16298.04 7790.80 14694.89 18196.32 18093.19 9798.48 19491.68 12898.51 17798.43 131
OMC-MVS94.22 13293.69 15195.81 7197.25 14091.27 6892.27 21797.40 13387.10 22694.56 19195.42 22993.74 8298.11 22586.62 24798.85 13498.06 158
LCM-MVSNet-Re94.20 13394.58 12393.04 18595.91 23783.13 22593.79 15899.19 692.00 10398.84 698.04 4993.64 8399.02 11081.28 31198.54 17396.96 248
DeepPCF-MVS90.46 694.20 13393.56 15896.14 5595.96 23492.96 4789.48 30697.46 13085.14 26096.23 10695.42 22993.19 9798.08 22790.37 16098.76 14997.38 229
fmvsm_s_conf0.1_n94.19 13594.41 12593.52 17497.22 14384.37 20093.73 16095.26 25384.45 27295.76 12998.00 5291.85 12997.21 29595.62 1797.82 23898.98 60
KD-MVS_self_test94.10 13694.73 11592.19 21997.66 12079.49 28294.86 11897.12 15989.59 17196.87 7597.65 7590.40 16898.34 20689.08 20299.35 5998.75 91
NCCC94.08 13793.54 15995.70 7796.49 18789.90 8792.39 21096.91 17590.64 15092.33 27494.60 26390.58 16598.96 11890.21 17097.70 24498.23 145
VDDNet94.03 13894.27 13493.31 18098.87 2182.36 23695.51 9391.78 32997.19 1396.32 9898.60 2584.24 24698.75 15287.09 24098.83 14098.81 84
fmvsm_s_conf0.5_n_a94.02 13994.08 14193.84 15696.72 16985.73 18393.65 16595.23 25483.30 28295.13 16897.56 8192.22 12197.17 29995.51 2297.41 25998.64 111
fmvsm_s_conf0.5_n94.00 14094.20 13693.42 17896.69 17084.37 20093.38 17395.13 25684.50 27195.40 14997.55 8591.77 13297.20 29695.59 1897.79 23998.69 103
dcpmvs_293.96 14195.01 10490.82 27397.60 12274.04 35593.68 16398.85 1089.80 16797.82 3297.01 13391.14 15199.21 8490.56 15398.59 16899.19 36
sd_testset93.94 14294.39 12692.61 20797.93 9783.24 22093.17 17995.04 25893.65 7295.51 14298.63 2394.49 7295.89 34681.72 30699.35 5998.70 100
EPP-MVSNet93.91 14393.68 15294.59 12498.08 8385.55 18897.44 1194.03 28394.22 5794.94 17896.19 19082.07 27099.57 1587.28 23798.89 12898.65 106
Effi-MVS+-dtu93.90 14492.60 18397.77 494.74 28796.67 694.00 15195.41 24989.94 16391.93 28392.13 33290.12 17398.97 11787.68 23097.48 25597.67 207
fmvsm_l_conf0.5_n93.79 14593.81 14493.73 16296.16 21786.26 17092.46 20496.72 18981.69 30695.77 12897.11 12490.83 15697.82 25495.58 1997.99 22797.11 240
IterMVS-LS93.78 14694.28 13292.27 21696.27 20879.21 28991.87 23596.78 18491.77 11996.57 9197.07 12787.15 21198.74 15591.99 11799.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS_fast89.96 793.73 14793.44 16194.60 12396.14 22087.90 12993.36 17497.14 15685.53 25393.90 21395.45 22791.30 14398.59 18089.51 18698.62 16497.31 232
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_LR93.66 14893.28 16594.80 11096.25 21190.95 7390.21 28395.43 24887.91 20693.74 21794.40 26892.88 10996.38 33290.39 15898.28 19797.07 241
MVS_111021_HR93.63 14993.42 16294.26 13896.65 17386.96 15089.30 31396.23 21588.36 20093.57 22094.60 26393.45 8797.77 26190.23 16998.38 18798.03 164
fmvsm_l_conf0.5_n_a93.59 15093.63 15393.49 17696.10 22385.66 18692.32 21396.57 19881.32 30995.63 13797.14 12190.19 17197.73 26795.37 2898.03 22397.07 241
v114493.50 15193.81 14492.57 20996.28 20779.61 27991.86 23796.96 16986.95 22895.91 12296.32 18087.65 20298.96 11893.51 6698.88 13099.13 41
v119293.49 15293.78 14792.62 20696.16 21779.62 27891.83 23897.22 15286.07 23996.10 11596.38 17687.22 20999.02 11094.14 4898.88 13099.22 33
WR-MVS93.49 15293.72 14992.80 19797.57 12580.03 26790.14 28695.68 23493.70 6896.62 8895.39 23387.21 21099.04 10887.50 23299.64 2399.33 26
balanced_conf0393.45 15494.17 13791.28 25495.81 24478.40 30296.20 6097.48 12988.56 19595.29 15897.20 11785.56 23799.21 8492.52 10698.91 12796.24 281
V4293.43 15593.58 15692.97 18895.34 27081.22 25192.67 19496.49 20487.25 22296.20 10996.37 17787.32 20898.85 13392.39 10998.21 20698.85 81
K. test v393.37 15693.27 16693.66 16498.05 8682.62 23294.35 13686.62 36996.05 3597.51 4698.85 1476.59 32099.65 593.21 8498.20 20898.73 95
PM-MVS93.33 15792.67 18195.33 8896.58 17894.06 2592.26 21892.18 31985.92 24296.22 10796.61 16085.64 23595.99 34490.35 16198.23 20395.93 295
v124093.29 15893.71 15092.06 22696.01 23277.89 31091.81 23997.37 13485.12 26196.69 8596.40 17186.67 22299.07 10494.51 3898.76 14999.22 33
v2v48293.29 15893.63 15392.29 21596.35 19978.82 29791.77 24196.28 21188.45 19695.70 13696.26 18786.02 23098.90 12493.02 9198.81 14399.14 40
alignmvs93.26 16092.85 17494.50 12895.70 25087.45 13693.45 17095.76 23191.58 12695.25 16292.42 32781.96 27298.72 15791.61 12997.87 23697.33 231
v192192093.26 16093.61 15592.19 21996.04 23178.31 30491.88 23497.24 15085.17 25996.19 11296.19 19086.76 22199.05 10594.18 4798.84 13599.22 33
MSLP-MVS++93.25 16293.88 14391.37 24896.34 20082.81 23193.11 18097.74 10889.37 17594.08 20395.29 23590.40 16896.35 33490.35 16198.25 20194.96 330
GBi-Net93.21 16392.96 17093.97 14795.40 26684.29 20295.99 6796.56 19988.63 19195.10 17098.53 2881.31 27798.98 11386.74 24398.38 18798.65 106
test193.21 16392.96 17093.97 14795.40 26684.29 20295.99 6796.56 19988.63 19195.10 17098.53 2881.31 27798.98 11386.74 24398.38 18798.65 106
v14419293.20 16593.54 15992.16 22396.05 22778.26 30591.95 22797.14 15684.98 26595.96 11896.11 19587.08 21399.04 10893.79 5698.84 13599.17 37
VPNet93.08 16693.76 14891.03 26398.60 3875.83 33991.51 24495.62 23591.84 11395.74 13297.10 12689.31 18398.32 20785.07 27299.06 10398.93 68
UGNet93.08 16692.50 18594.79 11193.87 31187.99 12895.07 11194.26 28090.64 15087.33 36297.67 7486.89 21998.49 19088.10 22098.71 15597.91 180
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.93.07 16892.41 18795.06 10295.82 24290.87 7690.97 25992.61 31388.04 20594.61 19093.79 29188.08 19497.81 25589.41 18998.39 18696.50 267
ETV-MVS92.99 16992.74 17793.72 16395.86 23986.30 16992.33 21297.84 9891.70 12492.81 25186.17 39492.22 12199.19 8888.03 22497.73 24195.66 309
EI-MVSNet92.99 16993.26 16792.19 21992.12 34979.21 28992.32 21394.67 27391.77 11995.24 16395.85 20587.14 21298.49 19091.99 11798.26 19998.86 78
MCST-MVS92.91 17192.51 18494.10 14397.52 12785.72 18491.36 25097.13 15880.33 31792.91 25094.24 27391.23 14598.72 15789.99 17797.93 23297.86 187
h-mvs3392.89 17291.99 19795.58 7996.97 15290.55 8093.94 15494.01 28689.23 17793.95 21096.19 19076.88 31699.14 9391.02 14295.71 31097.04 245
MVS_030492.88 17392.27 18994.69 11692.35 34086.03 17692.88 18889.68 34490.53 15391.52 28796.43 16882.52 26699.32 7195.01 3299.54 3698.71 99
QAPM92.88 17392.77 17593.22 18395.82 24283.31 21896.45 4197.35 14083.91 27793.75 21596.77 14689.25 18498.88 12784.56 27897.02 27297.49 218
v14892.87 17593.29 16391.62 24096.25 21177.72 31391.28 25195.05 25789.69 16895.93 12196.04 19887.34 20798.38 20190.05 17697.99 22798.78 87
Anonymous2024052192.86 17693.57 15790.74 27596.57 17975.50 34194.15 14495.60 23689.38 17495.90 12397.90 6480.39 28497.96 24092.60 10499.68 1798.75 91
Effi-MVS+92.79 17792.74 17792.94 19195.10 27483.30 21994.00 15197.53 12591.36 13389.35 32990.65 35794.01 8098.66 17087.40 23595.30 32296.88 253
FMVSNet292.78 17892.73 17992.95 19095.40 26681.98 24094.18 14395.53 24488.63 19196.05 11697.37 9781.31 27798.81 14187.38 23698.67 16198.06 158
Fast-Effi-MVS+-dtu92.77 17992.16 19194.58 12694.66 29288.25 12392.05 22396.65 19389.62 17090.08 31491.23 34592.56 11598.60 17886.30 25596.27 29896.90 250
LF4IMVS92.72 18092.02 19694.84 10995.65 25491.99 5892.92 18596.60 19585.08 26392.44 26693.62 29586.80 22096.35 33486.81 24298.25 20196.18 284
train_agg92.71 18191.83 20295.35 8696.45 19089.46 9390.60 27096.92 17379.37 32890.49 30594.39 26991.20 14798.88 12788.66 21298.43 18297.72 203
VNet92.67 18292.96 17091.79 23296.27 20880.15 26191.95 22794.98 26092.19 10094.52 19396.07 19787.43 20697.39 28784.83 27498.38 18797.83 191
CDPH-MVS92.67 18291.83 20295.18 9996.94 15488.46 12190.70 26797.07 16277.38 34492.34 27395.08 24292.67 11498.88 12785.74 26098.57 17098.20 148
Anonymous20240521192.58 18492.50 18592.83 19696.55 18183.22 22292.43 20791.64 33194.10 5995.59 13996.64 15881.88 27497.50 27885.12 26998.52 17597.77 198
XXY-MVS92.58 18493.16 16890.84 27297.75 10979.84 27291.87 23596.22 21785.94 24195.53 14197.68 7392.69 11394.48 37083.21 28897.51 25398.21 147
MVS_Test92.57 18693.29 16390.40 28493.53 31775.85 33792.52 20096.96 16988.73 18892.35 27196.70 15590.77 15798.37 20592.53 10595.49 31596.99 247
TAPA-MVS88.58 1092.49 18791.75 20494.73 11396.50 18689.69 8992.91 18697.68 11178.02 34192.79 25394.10 27890.85 15597.96 24084.76 27698.16 21096.54 262
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
patch_mono-292.46 18892.72 18091.71 23696.65 17378.91 29488.85 32397.17 15483.89 27892.45 26596.76 14889.86 17997.09 30490.24 16898.59 16899.12 43
test_fmvs392.42 18992.40 18892.46 21493.80 31487.28 13993.86 15697.05 16376.86 35096.25 10498.66 2182.87 25991.26 39395.44 2496.83 28198.82 82
ab-mvs92.40 19092.62 18291.74 23497.02 15081.65 24495.84 7695.50 24586.95 22892.95 24997.56 8190.70 16297.50 27879.63 33097.43 25896.06 289
CANet92.38 19191.99 19793.52 17493.82 31383.46 21691.14 25497.00 16689.81 16686.47 36694.04 28087.90 20099.21 8489.50 18798.27 19897.90 181
EIA-MVS92.35 19292.03 19593.30 18195.81 24483.97 21092.80 19098.17 5387.71 21389.79 32287.56 38491.17 15099.18 8987.97 22597.27 26396.77 257
DP-MVS Recon92.31 19391.88 20093.60 16797.18 14586.87 15191.10 25697.37 13484.92 26692.08 28094.08 27988.59 18798.20 21783.50 28598.14 21295.73 304
RRT-MVS92.28 19493.01 16990.07 29394.06 30673.01 36295.36 9597.88 9392.24 9895.16 16797.52 8678.51 29899.29 7490.55 15495.83 30897.92 179
F-COLMAP92.28 19491.06 22195.95 6197.52 12791.90 6093.53 16697.18 15383.98 27688.70 34194.04 28088.41 19098.55 18580.17 32395.99 30397.39 227
OpenMVScopyleft89.45 892.27 19692.13 19492.68 20194.53 29584.10 20895.70 8097.03 16482.44 29891.14 29696.42 16988.47 18998.38 20185.95 25897.47 25695.55 314
hse-mvs292.24 19791.20 21695.38 8596.16 21790.65 7992.52 20092.01 32689.23 17793.95 21092.99 31176.88 31698.69 16691.02 14296.03 30196.81 255
MVSFormer92.18 19892.23 19092.04 22794.74 28780.06 26597.15 1597.37 13488.98 18388.83 33392.79 31677.02 31399.60 1096.41 996.75 28596.46 270
HQP-MVS92.09 19991.49 21093.88 15396.36 19684.89 19691.37 24797.31 14387.16 22388.81 33593.40 30184.76 24398.60 17886.55 25097.73 24198.14 154
DELS-MVS92.05 20092.16 19191.72 23594.44 29680.13 26387.62 33897.25 14987.34 22092.22 27693.18 30889.54 18298.73 15689.67 18498.20 20896.30 276
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap92.00 20192.76 17689.71 30295.62 25777.02 32190.72 26696.17 22087.70 21495.26 16096.29 18292.54 11696.45 32981.77 30498.77 14895.66 309
CLD-MVS91.82 20291.41 21293.04 18596.37 19483.65 21486.82 35797.29 14684.65 27092.27 27589.67 36692.20 12397.85 25383.95 28399.47 4197.62 209
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FA-MVS(test-final)91.81 20391.85 20191.68 23894.95 27779.99 26996.00 6693.44 29687.80 21094.02 20897.29 10877.60 30498.45 19688.04 22397.49 25496.61 261
BP-MVS191.77 20491.10 22093.75 16096.42 19283.40 21794.10 14891.89 32791.27 13493.36 22894.85 25064.43 37499.29 7494.88 3398.74 15298.56 119
diffmvspermissive91.74 20591.93 19991.15 26193.06 32478.17 30688.77 32697.51 12886.28 23392.42 26793.96 28588.04 19697.46 28190.69 15196.67 28897.82 193
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA91.72 20691.20 21693.26 18296.17 21691.02 7191.14 25495.55 24390.16 16190.87 29893.56 29886.31 22694.40 37379.92 32997.12 26894.37 348
IterMVS-SCA-FT91.65 20791.55 20691.94 22893.89 31079.22 28887.56 34193.51 29491.53 12995.37 15296.62 15978.65 29498.90 12491.89 12194.95 33197.70 204
PVSNet_Blended_VisFu91.63 20891.20 21692.94 19197.73 11283.95 21192.14 22197.46 13078.85 33792.35 27194.98 24584.16 24799.08 10086.36 25496.77 28495.79 302
AdaColmapbinary91.63 20891.36 21392.47 21395.56 26086.36 16792.24 22096.27 21288.88 18789.90 31992.69 31991.65 13598.32 20777.38 34997.64 24892.72 381
GDP-MVS91.56 21090.83 22693.77 15996.34 20083.65 21493.66 16498.12 5987.32 22192.98 24794.71 25863.58 38099.30 7392.61 10398.14 21298.35 136
pmmvs-eth3d91.54 21190.73 23093.99 14595.76 24887.86 13190.83 26293.98 28778.23 34094.02 20896.22 18982.62 26596.83 31886.57 24898.33 19397.29 233
API-MVS91.52 21291.61 20591.26 25594.16 30186.26 17094.66 12494.82 26591.17 13892.13 27991.08 34890.03 17897.06 30779.09 33797.35 26290.45 397
xiu_mvs_v1_base_debu91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
xiu_mvs_v1_base91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
xiu_mvs_v1_base_debi91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
LFMVS91.33 21691.16 21991.82 23196.27 20879.36 28495.01 11485.61 38196.04 3694.82 18397.06 12872.03 33998.46 19584.96 27398.70 15797.65 208
c3_l91.32 21791.42 21191.00 26692.29 34276.79 32787.52 34496.42 20785.76 24694.72 18993.89 28882.73 26298.16 22290.93 14698.55 17198.04 161
Fast-Effi-MVS+91.28 21890.86 22492.53 21195.45 26582.53 23389.25 31696.52 20385.00 26489.91 31888.55 37892.94 10598.84 13484.72 27795.44 31796.22 282
MDA-MVSNet-bldmvs91.04 21990.88 22391.55 24394.68 29180.16 26085.49 37892.14 32290.41 15894.93 17995.79 21085.10 24096.93 31385.15 26794.19 35297.57 212
PAPM_NR91.03 22090.81 22791.68 23896.73 16881.10 25393.72 16196.35 21088.19 20288.77 33992.12 33385.09 24197.25 29382.40 29993.90 35796.68 260
MSDG90.82 22190.67 23191.26 25594.16 30183.08 22686.63 36296.19 21890.60 15291.94 28291.89 33689.16 18595.75 34880.96 31694.51 34294.95 331
test20.0390.80 22290.85 22590.63 27895.63 25679.24 28789.81 29792.87 30489.90 16494.39 19596.40 17185.77 23195.27 36173.86 37399.05 10697.39 227
FMVSNet390.78 22390.32 24092.16 22393.03 32679.92 27192.54 19994.95 26186.17 23895.10 17096.01 20069.97 34798.75 15286.74 24398.38 18797.82 193
eth_miper_zixun_eth90.72 22490.61 23291.05 26292.04 35276.84 32686.91 35396.67 19285.21 25894.41 19493.92 28679.53 28898.26 21389.76 18297.02 27298.06 158
X-MVStestdata90.70 22588.45 27397.44 2098.56 4193.99 3096.50 3797.95 8994.58 5094.38 19626.89 42194.56 6999.39 5293.57 6399.05 10698.93 68
BH-untuned90.68 22690.90 22290.05 29695.98 23379.57 28090.04 28994.94 26287.91 20694.07 20493.00 31087.76 20197.78 26079.19 33695.17 32692.80 380
cl____90.65 22790.56 23490.91 27091.85 35776.98 32486.75 35895.36 25185.53 25394.06 20594.89 24877.36 31097.98 23990.27 16698.98 11597.76 199
DIV-MVS_self_test90.65 22790.56 23490.91 27091.85 35776.99 32386.75 35895.36 25185.52 25594.06 20594.89 24877.37 30997.99 23890.28 16598.97 12097.76 199
test_fmvs290.62 22990.40 23891.29 25391.93 35685.46 19092.70 19396.48 20574.44 36594.91 18097.59 7975.52 32490.57 39693.44 7396.56 29097.84 190
114514_t90.51 23089.80 25092.63 20598.00 9282.24 23893.40 17297.29 14665.84 40789.40 32894.80 25486.99 21598.75 15283.88 28498.61 16596.89 251
miper_ehance_all_eth90.48 23190.42 23790.69 27691.62 36476.57 33086.83 35696.18 21983.38 28194.06 20592.66 32182.20 26898.04 22989.79 18197.02 27297.45 220
BH-RMVSNet90.47 23290.44 23690.56 28095.21 27378.65 30189.15 31793.94 28888.21 20192.74 25594.22 27486.38 22597.88 24778.67 33995.39 31995.14 323
Vis-MVSNet (Re-imp)90.42 23390.16 24191.20 25997.66 12077.32 31894.33 13787.66 36191.20 13792.99 24595.13 23975.40 32598.28 20977.86 34299.19 9297.99 169
test_vis3_rt90.40 23490.03 24591.52 24592.58 33488.95 10690.38 27897.72 11073.30 37297.79 3397.51 9077.05 31287.10 41089.03 20394.89 33298.50 124
PLCcopyleft85.34 1590.40 23488.92 26594.85 10896.53 18590.02 8591.58 24396.48 20580.16 31886.14 36892.18 33085.73 23298.25 21476.87 35294.61 34196.30 276
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test111190.39 23690.61 23289.74 30198.04 8971.50 37295.59 8579.72 41189.41 17395.94 12098.14 4270.79 34398.81 14188.52 21499.32 6998.90 74
testgi90.38 23791.34 21487.50 34297.49 12971.54 37189.43 30895.16 25588.38 19894.54 19294.68 26092.88 10993.09 38571.60 38697.85 23797.88 184
mvs_anonymous90.37 23891.30 21587.58 34192.17 34868.00 38889.84 29694.73 27083.82 27993.22 23897.40 9587.54 20497.40 28687.94 22695.05 32997.34 230
PVSNet_BlendedMVS90.35 23989.96 24691.54 24494.81 28278.80 29990.14 28696.93 17179.43 32788.68 34295.06 24386.27 22798.15 22380.27 31998.04 22297.68 206
UnsupCasMVSNet_eth90.33 24090.34 23990.28 28694.64 29380.24 25989.69 30195.88 22885.77 24593.94 21295.69 21781.99 27192.98 38684.21 28191.30 38997.62 209
MAR-MVS90.32 24188.87 26894.66 11994.82 28191.85 6194.22 14294.75 26980.91 31287.52 36088.07 38286.63 22397.87 25076.67 35396.21 29994.25 351
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
RPMNet90.31 24290.14 24490.81 27491.01 37278.93 29192.52 20098.12 5991.91 10789.10 33096.89 14068.84 34999.41 4290.17 17192.70 37894.08 352
mvsmamba90.24 24389.43 25692.64 20295.52 26282.36 23696.64 3092.29 31781.77 30492.14 27896.28 18470.59 34499.10 9984.44 28095.22 32596.47 269
IterMVS90.18 24490.16 24190.21 29093.15 32275.98 33687.56 34192.97 30386.43 23294.09 20296.40 17178.32 29997.43 28387.87 22794.69 33997.23 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SSC-MVS90.16 24592.96 17081.78 39097.88 10048.48 42290.75 26487.69 36096.02 3796.70 8497.63 7785.60 23697.80 25685.73 26198.60 16799.06 50
TAMVS90.16 24589.05 26193.49 17696.49 18786.37 16690.34 28092.55 31480.84 31592.99 24594.57 26581.94 27398.20 21773.51 37498.21 20695.90 298
ECVR-MVScopyleft90.12 24790.16 24190.00 29797.81 10572.68 36695.76 7978.54 41489.04 18195.36 15398.10 4470.51 34598.64 17487.10 23999.18 9498.67 104
test_yl90.11 24889.73 25391.26 25594.09 30479.82 27390.44 27492.65 31090.90 14193.19 23993.30 30373.90 32998.03 23082.23 30096.87 27995.93 295
DCV-MVSNet90.11 24889.73 25391.26 25594.09 30479.82 27390.44 27492.65 31090.90 14193.19 23993.30 30373.90 32998.03 23082.23 30096.87 27995.93 295
Patchmtry90.11 24889.92 24790.66 27790.35 38377.00 32292.96 18492.81 30590.25 16094.74 18796.93 13767.11 35697.52 27785.17 26598.98 11597.46 219
MVP-Stereo90.07 25188.92 26593.54 17196.31 20486.49 16190.93 26095.59 24079.80 32091.48 28895.59 22080.79 28197.39 28778.57 34091.19 39096.76 258
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS90.05 25288.30 27795.32 9096.09 22490.52 8192.42 20892.05 32582.08 30288.45 34592.86 31365.76 36698.69 16688.91 20696.07 30096.75 259
CL-MVSNet_self_test90.04 25389.90 24890.47 28195.24 27277.81 31186.60 36492.62 31285.64 24993.25 23693.92 28683.84 24996.06 34179.93 32798.03 22397.53 216
D2MVS89.93 25489.60 25590.92 26894.03 30778.40 30288.69 32894.85 26378.96 33593.08 24195.09 24174.57 32796.94 31188.19 21798.96 12297.41 223
miper_lstm_enhance89.90 25589.80 25090.19 29291.37 36877.50 31583.82 39595.00 25984.84 26893.05 24394.96 24676.53 32195.20 36289.96 17898.67 16197.86 187
CANet_DTU89.85 25689.17 25991.87 22992.20 34680.02 26890.79 26395.87 22986.02 24082.53 39891.77 33880.01 28598.57 18285.66 26297.70 24497.01 246
tttt051789.81 25788.90 26792.55 21097.00 15179.73 27795.03 11383.65 39489.88 16595.30 15694.79 25553.64 40399.39 5291.99 11798.79 14698.54 120
EPNet89.80 25888.25 28194.45 13283.91 41986.18 17293.87 15587.07 36791.16 13980.64 40894.72 25778.83 29298.89 12685.17 26598.89 12898.28 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CDS-MVSNet89.55 25988.22 28493.53 17295.37 26986.49 16189.26 31493.59 29179.76 32291.15 29592.31 32877.12 31198.38 20177.51 34797.92 23395.71 305
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS89.54 26089.80 25088.76 31894.88 27872.47 36889.60 30292.44 31685.82 24489.48 32695.98 20182.85 26097.74 26681.87 30395.27 32396.08 288
OpenMVS_ROBcopyleft85.12 1689.52 26189.05 26190.92 26894.58 29481.21 25291.10 25693.41 29777.03 34993.41 22493.99 28483.23 25497.80 25679.93 32794.80 33693.74 363
test_vis1_n_192089.45 26289.85 24988.28 32993.59 31676.71 32890.67 26897.78 10679.67 32490.30 31196.11 19576.62 31992.17 38990.31 16393.57 36295.96 293
WB-MVS89.44 26392.15 19381.32 39197.73 11248.22 42389.73 29987.98 35895.24 4296.05 11696.99 13485.18 23996.95 31082.45 29897.97 22998.78 87
DPM-MVS89.35 26488.40 27492.18 22296.13 22284.20 20686.96 35296.15 22175.40 35987.36 36191.55 34383.30 25398.01 23482.17 30296.62 28994.32 350
MVSTER89.32 26588.75 26991.03 26390.10 38676.62 32990.85 26194.67 27382.27 29995.24 16395.79 21061.09 39098.49 19090.49 15598.26 19997.97 173
PatchMatch-RL89.18 26688.02 28992.64 20295.90 23892.87 4988.67 33091.06 33480.34 31690.03 31691.67 34083.34 25294.42 37276.35 35794.84 33590.64 396
jason89.17 26788.32 27691.70 23795.73 24980.07 26488.10 33493.22 29971.98 38090.09 31392.79 31678.53 29798.56 18387.43 23497.06 27096.46 270
jason: jason.
PCF-MVS84.52 1789.12 26887.71 29293.34 17996.06 22685.84 18186.58 36597.31 14368.46 40093.61 21993.89 28887.51 20598.52 18867.85 39998.11 21595.66 309
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvsany_test389.11 26988.21 28591.83 23091.30 36990.25 8388.09 33578.76 41276.37 35396.43 9398.39 3683.79 25090.43 39986.57 24894.20 35094.80 337
FE-MVS89.06 27088.29 27891.36 24994.78 28479.57 28096.77 2790.99 33584.87 26792.96 24896.29 18260.69 39298.80 14480.18 32297.11 26995.71 305
cl2289.02 27188.50 27290.59 27989.76 38876.45 33186.62 36394.03 28382.98 29192.65 25792.49 32272.05 33897.53 27688.93 20497.02 27297.78 197
USDC89.02 27189.08 26088.84 31795.07 27574.50 34988.97 31996.39 20873.21 37393.27 23396.28 18482.16 26996.39 33177.55 34698.80 14495.62 312
test_vis1_n89.01 27389.01 26389.03 31392.57 33582.46 23592.62 19796.06 22273.02 37590.40 30895.77 21474.86 32689.68 40290.78 14894.98 33094.95 331
xiu_mvs_v2_base89.00 27489.19 25888.46 32794.86 28074.63 34686.97 35195.60 23680.88 31387.83 35488.62 37791.04 15298.81 14182.51 29794.38 34491.93 387
new-patchmatchnet88.97 27590.79 22883.50 38594.28 30055.83 42085.34 38093.56 29386.18 23795.47 14595.73 21683.10 25596.51 32685.40 26498.06 22098.16 152
pmmvs488.95 27687.70 29392.70 19994.30 29985.60 18787.22 34792.16 32174.62 36489.75 32494.19 27577.97 30296.41 33082.71 29296.36 29596.09 287
N_pmnet88.90 27787.25 30093.83 15794.40 29893.81 3984.73 38487.09 36579.36 33093.26 23492.43 32679.29 29091.68 39177.50 34897.22 26596.00 291
PS-MVSNAJ88.86 27888.99 26488.48 32694.88 27874.71 34486.69 36095.60 23680.88 31387.83 35487.37 38790.77 15798.82 13682.52 29694.37 34591.93 387
Patchmatch-RL test88.81 27988.52 27189.69 30395.33 27179.94 27086.22 37092.71 30978.46 33895.80 12794.18 27666.25 36495.33 35989.22 19898.53 17493.78 361
Anonymous2023120688.77 28088.29 27890.20 29196.31 20478.81 29889.56 30493.49 29574.26 36792.38 26995.58 22382.21 26795.43 35672.07 38298.75 15196.34 274
PVSNet_Blended88.74 28188.16 28790.46 28394.81 28278.80 29986.64 36196.93 17174.67 36388.68 34289.18 37386.27 22798.15 22380.27 31996.00 30294.44 347
test_fmvs1_n88.73 28288.38 27589.76 30092.06 35182.53 23392.30 21696.59 19771.14 38592.58 26095.41 23268.55 35089.57 40491.12 14095.66 31197.18 239
thisisatest053088.69 28387.52 29592.20 21896.33 20279.36 28492.81 18984.01 39386.44 23193.67 21892.68 32053.62 40499.25 8189.65 18598.45 18198.00 166
ppachtmachnet_test88.61 28488.64 27088.50 32591.76 35970.99 37584.59 38792.98 30279.30 33292.38 26993.53 29979.57 28797.45 28286.50 25297.17 26797.07 241
UnsupCasMVSNet_bld88.50 28588.03 28889.90 29895.52 26278.88 29587.39 34594.02 28579.32 33193.06 24294.02 28280.72 28294.27 37575.16 36593.08 37496.54 262
MonoMVSNet88.46 28689.28 25785.98 36290.52 37970.07 38195.31 10194.81 26788.38 19893.47 22396.13 19473.21 33295.07 36382.61 29489.12 39892.81 379
miper_enhance_ethall88.42 28787.87 29090.07 29388.67 40175.52 34085.10 38195.59 24075.68 35592.49 26289.45 36978.96 29197.88 24787.86 22897.02 27296.81 255
1112_ss88.42 28787.41 29691.45 24696.69 17080.99 25489.72 30096.72 18973.37 37187.00 36490.69 35577.38 30898.20 21781.38 31093.72 36095.15 322
lupinMVS88.34 28987.31 29791.45 24694.74 28780.06 26587.23 34692.27 31871.10 38688.83 33391.15 34677.02 31398.53 18786.67 24696.75 28595.76 303
test_cas_vis1_n_192088.25 29088.27 28088.20 33192.19 34778.92 29389.45 30795.44 24675.29 36293.23 23795.65 21971.58 34090.23 40088.05 22293.55 36495.44 316
YYNet188.17 29188.24 28287.93 33592.21 34573.62 35780.75 40588.77 34882.51 29794.99 17795.11 24082.70 26393.70 37983.33 28693.83 35896.48 268
MDA-MVSNet_test_wron88.16 29288.23 28387.93 33592.22 34473.71 35680.71 40688.84 34782.52 29694.88 18295.14 23882.70 26393.61 38083.28 28793.80 35996.46 270
MS-PatchMatch88.05 29387.75 29188.95 31493.28 31977.93 30887.88 33792.49 31575.42 35892.57 26193.59 29780.44 28394.24 37781.28 31192.75 37794.69 343
CR-MVSNet87.89 29487.12 30590.22 28991.01 37278.93 29192.52 20092.81 30573.08 37489.10 33096.93 13767.11 35697.64 27388.80 20892.70 37894.08 352
pmmvs587.87 29587.14 30390.07 29393.26 32176.97 32588.89 32192.18 31973.71 37088.36 34693.89 28876.86 31896.73 32180.32 31896.81 28296.51 264
wuyk23d87.83 29690.79 22878.96 39690.46 38288.63 11292.72 19190.67 34091.65 12598.68 1297.64 7696.06 1577.53 41859.84 41299.41 5470.73 416
FMVSNet587.82 29786.56 31691.62 24092.31 34179.81 27593.49 16894.81 26783.26 28391.36 29096.93 13752.77 40597.49 28076.07 35998.03 22397.55 215
GA-MVS87.70 29886.82 31090.31 28593.27 32077.22 32084.72 38692.79 30785.11 26289.82 32090.07 35866.80 35997.76 26384.56 27894.27 34895.96 293
TR-MVS87.70 29887.17 30289.27 31094.11 30379.26 28688.69 32891.86 32881.94 30390.69 30389.79 36382.82 26197.42 28472.65 38091.98 38691.14 393
thres600view787.66 30087.10 30689.36 30896.05 22773.17 35992.72 19185.31 38491.89 10893.29 23190.97 34963.42 38198.39 19873.23 37696.99 27796.51 264
PAPR87.65 30186.77 31290.27 28792.85 33177.38 31788.56 33196.23 21576.82 35284.98 37789.75 36586.08 22997.16 30172.33 38193.35 36796.26 280
baseline187.62 30287.31 29788.54 32394.71 29074.27 35293.10 18188.20 35486.20 23692.18 27793.04 30973.21 33295.52 35179.32 33485.82 40695.83 300
test_fmvs187.59 30387.27 29988.54 32388.32 40281.26 25090.43 27795.72 23370.55 39191.70 28594.63 26168.13 35189.42 40590.59 15295.34 32194.94 333
our_test_387.55 30487.59 29487.44 34391.76 35970.48 37683.83 39490.55 34179.79 32192.06 28192.17 33178.63 29695.63 34984.77 27594.73 33796.22 282
PatchT87.51 30588.17 28685.55 36690.64 37666.91 39292.02 22586.09 37392.20 9989.05 33297.16 11964.15 37696.37 33389.21 19992.98 37693.37 371
Test_1112_low_res87.50 30686.58 31490.25 28896.80 16777.75 31287.53 34396.25 21369.73 39686.47 36693.61 29675.67 32397.88 24779.95 32593.20 37095.11 326
SCA87.43 30787.21 30188.10 33392.01 35371.98 37089.43 30888.11 35682.26 30088.71 34092.83 31478.65 29497.59 27479.61 33193.30 36894.75 340
EU-MVSNet87.39 30886.71 31389.44 30593.40 31876.11 33494.93 11790.00 34357.17 41695.71 13597.37 9764.77 37397.68 27092.67 10194.37 34594.52 345
thres100view90087.35 30986.89 30988.72 31996.14 22073.09 36193.00 18385.31 38492.13 10193.26 23490.96 35063.42 38198.28 20971.27 38896.54 29194.79 338
CMPMVSbinary68.83 2287.28 31085.67 32692.09 22588.77 40085.42 19190.31 28194.38 27670.02 39488.00 35193.30 30373.78 33194.03 37875.96 36196.54 29196.83 254
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sss87.23 31186.82 31088.46 32793.96 30877.94 30786.84 35592.78 30877.59 34387.61 35991.83 33778.75 29391.92 39077.84 34394.20 35095.52 315
BH-w/o87.21 31287.02 30787.79 34094.77 28577.27 31987.90 33693.21 30181.74 30589.99 31788.39 38083.47 25196.93 31371.29 38792.43 38289.15 398
thres40087.20 31386.52 31889.24 31295.77 24672.94 36391.89 23286.00 37490.84 14392.61 25889.80 36163.93 37798.28 20971.27 38896.54 29196.51 264
CHOSEN 1792x268887.19 31485.92 32591.00 26697.13 14879.41 28384.51 38895.60 23664.14 41090.07 31594.81 25278.26 30097.14 30273.34 37595.38 32096.46 270
HyFIR lowres test87.19 31485.51 32792.24 21797.12 14980.51 25885.03 38296.06 22266.11 40691.66 28692.98 31270.12 34699.14 9375.29 36495.23 32497.07 241
reproduce_monomvs87.13 31686.90 30887.84 33990.92 37468.15 38791.19 25393.75 28985.84 24394.21 20095.83 20842.99 41897.10 30389.46 18897.88 23598.26 144
MIMVSNet87.13 31686.54 31788.89 31696.05 22776.11 33494.39 13588.51 35081.37 30888.27 34896.75 15072.38 33695.52 35165.71 40495.47 31695.03 328
tfpn200view987.05 31886.52 31888.67 32095.77 24672.94 36391.89 23286.00 37490.84 14392.61 25889.80 36163.93 37798.28 20971.27 38896.54 29194.79 338
cascas87.02 31986.28 32289.25 31191.56 36676.45 33184.33 39096.78 18471.01 38786.89 36585.91 39581.35 27696.94 31183.09 28995.60 31294.35 349
WTY-MVS86.93 32086.50 32088.24 33094.96 27674.64 34587.19 34892.07 32478.29 33988.32 34791.59 34278.06 30194.27 37574.88 36693.15 37295.80 301
ttmdpeth86.91 32186.57 31587.91 33789.68 39074.24 35391.49 24587.09 36579.84 31989.46 32797.86 6565.42 36891.04 39481.57 30896.74 28798.44 130
HY-MVS82.50 1886.81 32285.93 32489.47 30493.63 31577.93 30894.02 15091.58 33275.68 35583.64 38893.64 29377.40 30797.42 28471.70 38592.07 38593.05 376
test_f86.65 32387.13 30485.19 37090.28 38486.11 17486.52 36691.66 33069.76 39595.73 13497.21 11669.51 34881.28 41789.15 20094.40 34388.17 403
131486.46 32486.33 32186.87 35191.65 36374.54 34791.94 22994.10 28274.28 36684.78 37987.33 38883.03 25795.00 36478.72 33891.16 39191.06 394
ET-MVSNet_ETH3D86.15 32584.27 33691.79 23293.04 32581.28 24987.17 34986.14 37279.57 32583.65 38788.66 37557.10 39698.18 22087.74 22995.40 31895.90 298
Patchmatch-test86.10 32686.01 32386.38 35990.63 37774.22 35489.57 30386.69 36885.73 24789.81 32192.83 31465.24 37191.04 39477.82 34595.78 30993.88 360
thres20085.85 32785.18 32887.88 33894.44 29672.52 36789.08 31886.21 37188.57 19491.44 28988.40 37964.22 37598.00 23668.35 39795.88 30793.12 373
EPNet_dtu85.63 32884.37 33489.40 30786.30 41274.33 35191.64 24288.26 35284.84 26872.96 41789.85 35971.27 34297.69 26976.60 35497.62 24996.18 284
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis1_rt85.58 32984.58 33288.60 32287.97 40386.76 15385.45 37993.59 29166.43 40487.64 35789.20 37279.33 28985.38 41481.59 30789.98 39793.66 365
test250685.42 33084.57 33387.96 33497.81 10566.53 39596.14 6156.35 42489.04 18193.55 22198.10 4442.88 42198.68 16888.09 22199.18 9498.67 104
PatchmatchNetpermissive85.22 33184.64 33186.98 34789.51 39469.83 38390.52 27287.34 36478.87 33687.22 36392.74 31866.91 35896.53 32481.77 30486.88 40494.58 344
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CVMVSNet85.16 33284.72 33086.48 35592.12 34970.19 37792.32 21388.17 35556.15 41790.64 30495.85 20567.97 35496.69 32288.78 20990.52 39492.56 382
JIA-IIPM85.08 33383.04 34791.19 26087.56 40586.14 17389.40 31084.44 39288.98 18382.20 39997.95 5656.82 39896.15 33776.55 35683.45 41091.30 392
MVS84.98 33484.30 33587.01 34691.03 37177.69 31491.94 22994.16 28159.36 41584.23 38487.50 38685.66 23396.80 31971.79 38393.05 37586.54 407
Syy-MVS84.81 33584.93 32984.42 37791.71 36163.36 41085.89 37381.49 40281.03 31085.13 37481.64 41177.44 30695.00 36485.94 25994.12 35394.91 334
MVStest184.79 33684.06 33886.98 34777.73 42474.76 34391.08 25885.63 37977.70 34296.86 7697.97 5541.05 42388.24 40892.22 11196.28 29797.94 176
thisisatest051584.72 33782.99 34889.90 29892.96 32875.33 34284.36 38983.42 39577.37 34588.27 34886.65 38953.94 40298.72 15782.56 29597.40 26095.67 308
dmvs_re84.69 33883.94 34086.95 34992.24 34382.93 22989.51 30587.37 36384.38 27485.37 37185.08 40172.44 33586.59 41168.05 39891.03 39391.33 391
FPMVS84.50 33983.28 34588.16 33296.32 20394.49 2085.76 37685.47 38283.09 28885.20 37394.26 27263.79 37986.58 41263.72 40891.88 38883.40 410
tpm84.38 34084.08 33785.30 36990.47 38163.43 40989.34 31185.63 37977.24 34887.62 35895.03 24461.00 39197.30 29079.26 33591.09 39295.16 321
tpmvs84.22 34183.97 33984.94 37287.09 40965.18 40291.21 25288.35 35182.87 29285.21 37290.96 35065.24 37196.75 32079.60 33385.25 40792.90 378
WB-MVSnew84.20 34283.89 34185.16 37191.62 36466.15 39988.44 33381.00 40576.23 35487.98 35287.77 38384.98 24293.35 38362.85 41094.10 35595.98 292
ADS-MVSNet284.01 34382.20 35589.41 30689.04 39776.37 33387.57 33990.98 33672.71 37884.46 38092.45 32368.08 35296.48 32770.58 39383.97 40895.38 317
WBMVS84.00 34483.48 34385.56 36592.71 33261.52 41283.82 39589.38 34679.56 32690.74 30193.20 30748.21 40897.28 29175.63 36398.10 21797.88 184
mvsany_test183.91 34582.93 34986.84 35286.18 41385.93 17881.11 40475.03 41970.80 39088.57 34494.63 26183.08 25687.38 40980.39 31786.57 40587.21 405
testing383.66 34682.52 35187.08 34595.84 24065.84 40089.80 29877.17 41888.17 20390.84 29988.63 37630.95 42698.11 22584.05 28297.19 26697.28 234
test-LLR83.58 34783.17 34684.79 37489.68 39066.86 39383.08 39784.52 39083.07 28982.85 39484.78 40262.86 38493.49 38182.85 29094.86 33394.03 355
testing9183.56 34882.45 35286.91 35092.92 32967.29 38986.33 36888.07 35786.22 23584.26 38385.76 39648.15 40997.17 29976.27 35894.08 35696.27 279
baseline283.38 34981.54 35988.90 31591.38 36772.84 36588.78 32581.22 40478.97 33479.82 41087.56 38461.73 38897.80 25674.30 37090.05 39696.05 290
IB-MVS77.21 1983.11 35081.05 36289.29 30991.15 37075.85 33785.66 37786.00 37479.70 32382.02 40286.61 39048.26 40798.39 19877.84 34392.22 38393.63 366
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer83.09 35182.21 35485.73 36389.27 39667.01 39190.35 27986.47 37070.42 39283.52 39093.23 30661.18 38996.85 31777.21 35088.26 40293.34 372
PMMVS83.00 35281.11 36188.66 32183.81 42086.44 16482.24 40185.65 37861.75 41482.07 40085.64 39879.75 28691.59 39275.99 36093.09 37387.94 404
testing9982.94 35381.72 35686.59 35392.55 33666.53 39586.08 37285.70 37785.47 25683.95 38585.70 39745.87 41197.07 30676.58 35593.56 36396.17 286
PVSNet76.22 2082.89 35482.37 35384.48 37693.96 30864.38 40778.60 40888.61 34971.50 38384.43 38286.36 39374.27 32894.60 36969.87 39593.69 36194.46 346
tpmrst82.85 35582.93 34982.64 38787.65 40458.99 41890.14 28687.90 35975.54 35783.93 38691.63 34166.79 36195.36 35781.21 31381.54 41493.57 370
test0.0.03 182.48 35681.47 36085.48 36789.70 38973.57 35884.73 38481.64 40183.07 28988.13 35086.61 39062.86 38489.10 40766.24 40390.29 39593.77 362
ADS-MVSNet82.25 35781.55 35884.34 37889.04 39765.30 40187.57 33985.13 38872.71 37884.46 38092.45 32368.08 35292.33 38870.58 39383.97 40895.38 317
DSMNet-mixed82.21 35881.56 35784.16 38089.57 39370.00 38290.65 26977.66 41654.99 41883.30 39297.57 8077.89 30390.50 39866.86 40295.54 31491.97 386
KD-MVS_2432*160082.17 35980.75 36686.42 35782.04 42170.09 37981.75 40290.80 33882.56 29490.37 30989.30 37042.90 41996.11 33974.47 36892.55 38093.06 374
miper_refine_blended82.17 35980.75 36686.42 35782.04 42170.09 37981.75 40290.80 33882.56 29490.37 30989.30 37042.90 41996.11 33974.47 36892.55 38093.06 374
gg-mvs-nofinetune82.10 36181.02 36385.34 36887.46 40771.04 37394.74 12167.56 42196.44 2679.43 41198.99 845.24 41296.15 33767.18 40192.17 38488.85 400
testing1181.98 36280.52 36986.38 35992.69 33367.13 39085.79 37584.80 38982.16 30181.19 40785.41 39945.24 41296.88 31674.14 37193.24 36995.14 323
PAPM81.91 36380.11 37387.31 34493.87 31172.32 36984.02 39293.22 29969.47 39776.13 41589.84 36072.15 33797.23 29453.27 41789.02 39992.37 384
tpm281.46 36480.35 37184.80 37389.90 38765.14 40390.44 27485.36 38365.82 40882.05 40192.44 32557.94 39596.69 32270.71 39288.49 40192.56 382
PMMVS281.31 36583.44 34474.92 39990.52 37946.49 42569.19 41585.23 38784.30 27587.95 35394.71 25876.95 31584.36 41664.07 40798.09 21893.89 359
new_pmnet81.22 36681.01 36481.86 38990.92 37470.15 37884.03 39180.25 41070.83 38885.97 36989.78 36467.93 35584.65 41567.44 40091.90 38790.78 395
test-mter81.21 36780.01 37484.79 37489.68 39066.86 39383.08 39784.52 39073.85 36982.85 39484.78 40243.66 41793.49 38182.85 29094.86 33394.03 355
EPMVS81.17 36880.37 37083.58 38485.58 41565.08 40490.31 28171.34 42077.31 34785.80 37091.30 34459.38 39392.70 38779.99 32482.34 41392.96 377
EGC-MVSNET80.97 36975.73 38696.67 4698.85 2394.55 1996.83 2296.60 1952.44 4235.32 42498.25 4092.24 12098.02 23391.85 12299.21 9097.45 220
pmmvs380.83 37078.96 37886.45 35687.23 40877.48 31684.87 38382.31 39963.83 41185.03 37689.50 36849.66 40693.10 38473.12 37895.10 32788.78 402
E-PMN80.72 37180.86 36580.29 39485.11 41668.77 38572.96 41281.97 40087.76 21283.25 39383.01 40962.22 38789.17 40677.15 35194.31 34782.93 411
tpm cat180.61 37279.46 37584.07 38188.78 39965.06 40589.26 31488.23 35362.27 41381.90 40389.66 36762.70 38695.29 36071.72 38480.60 41591.86 389
testing22280.54 37378.53 38186.58 35492.54 33868.60 38686.24 36982.72 39883.78 28082.68 39784.24 40439.25 42495.94 34560.25 41195.09 32895.20 319
EMVS80.35 37480.28 37280.54 39384.73 41869.07 38472.54 41480.73 40787.80 21081.66 40481.73 41062.89 38389.84 40175.79 36294.65 34082.71 412
UWE-MVS80.29 37579.10 37683.87 38291.97 35559.56 41686.50 36777.43 41775.40 35987.79 35688.10 38144.08 41696.90 31564.23 40696.36 29595.14 323
UBG80.28 37678.94 37984.31 37992.86 33061.77 41183.87 39383.31 39777.33 34682.78 39683.72 40647.60 41096.06 34165.47 40593.48 36595.11 326
CHOSEN 280x42080.04 37777.97 38486.23 36190.13 38574.53 34872.87 41389.59 34566.38 40576.29 41485.32 40056.96 39795.36 35769.49 39694.72 33888.79 401
ETVMVS79.85 37877.94 38585.59 36492.97 32766.20 39886.13 37180.99 40681.41 30783.52 39083.89 40541.81 42294.98 36756.47 41594.25 34995.61 313
myMVS_eth3d79.62 37978.26 38283.72 38391.71 36161.25 41485.89 37381.49 40281.03 31085.13 37481.64 41132.12 42595.00 36471.17 39194.12 35394.91 334
dp79.28 38078.62 38081.24 39285.97 41456.45 41986.91 35385.26 38672.97 37681.45 40689.17 37456.01 40095.45 35573.19 37776.68 41691.82 390
TESTMET0.1,179.09 38178.04 38382.25 38887.52 40664.03 40883.08 39780.62 40870.28 39380.16 40983.22 40844.13 41590.56 39779.95 32593.36 36692.15 385
MVS-HIRNet78.83 38280.60 36873.51 40093.07 32347.37 42487.10 35078.00 41568.94 39877.53 41397.26 10971.45 34194.62 36863.28 40988.74 40078.55 415
dmvs_testset78.23 38378.99 37775.94 39891.99 35455.34 42188.86 32278.70 41382.69 29381.64 40579.46 41375.93 32285.74 41348.78 41982.85 41286.76 406
PVSNet_070.34 2174.58 38472.96 38779.47 39590.63 37766.24 39773.26 41183.40 39663.67 41278.02 41278.35 41572.53 33489.59 40356.68 41460.05 41982.57 413
MVEpermissive59.87 2373.86 38572.65 38877.47 39787.00 41174.35 35061.37 41760.93 42367.27 40269.69 41886.49 39281.24 28072.33 42056.45 41683.45 41085.74 408
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai53.72 38653.79 38953.51 40379.69 42336.70 42777.18 40932.53 42971.69 38168.63 41960.79 41826.65 42773.11 41930.67 42236.29 42150.73 417
test_method50.44 38748.94 39054.93 40139.68 42712.38 43028.59 41890.09 3426.82 42141.10 42378.41 41454.41 40170.69 42150.12 41851.26 42081.72 414
kuosan43.63 38844.25 39241.78 40466.04 42634.37 42875.56 41032.62 42853.25 41950.46 42251.18 41925.28 42849.13 42213.44 42330.41 42241.84 419
tmp_tt37.97 38944.33 39118.88 40511.80 42821.54 42963.51 41645.66 4274.23 42251.34 42150.48 42059.08 39422.11 42444.50 42068.35 41813.00 420
cdsmvs_eth3d_5k23.35 39031.13 3930.00 4080.00 4310.00 4330.00 41995.58 2420.00 4260.00 42791.15 34693.43 890.00 4270.00 4260.00 4250.00 423
test1239.49 39112.01 3941.91 4062.87 4291.30 43182.38 4001.34 4311.36 4242.84 4256.56 4232.45 4290.97 4252.73 4245.56 4233.47 421
testmvs9.02 39211.42 3951.81 4072.77 4301.13 43279.44 4071.90 4301.18 4252.65 4266.80 4221.95 4300.87 4262.62 4253.45 4243.44 422
pcd_1.5k_mvsjas7.56 39310.09 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42690.77 1570.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.56 39310.08 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42790.69 3550.00 4310.00 4270.00 4260.00 4250.00 423
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS61.25 41474.55 367
FOURS199.21 394.68 1698.45 498.81 1197.73 798.27 21
MSC_two_6792asdad95.90 6796.54 18289.57 9196.87 17899.41 4294.06 4999.30 7298.72 96
PC_three_145275.31 36195.87 12595.75 21592.93 10696.34 33687.18 23898.68 15998.04 161
No_MVS95.90 6796.54 18289.57 9196.87 17899.41 4294.06 4999.30 7298.72 96
test_one_060198.26 7187.14 14398.18 4994.25 5596.99 7197.36 10095.13 45
eth-test20.00 431
eth-test0.00 431
ZD-MVS97.23 14190.32 8297.54 12384.40 27394.78 18595.79 21092.76 11299.39 5288.72 21198.40 183
RE-MVS-def96.66 2398.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13095.40 3193.49 6798.84 13598.00 166
IU-MVS98.51 4986.66 15896.83 18172.74 37795.83 12693.00 9299.29 7598.64 111
OPU-MVS95.15 10096.84 16389.43 9595.21 10495.66 21893.12 10098.06 22886.28 25698.61 16597.95 174
test_241102_TWO98.10 6391.95 10497.54 4397.25 11095.37 3299.35 6293.29 8099.25 8398.49 126
test_241102_ONE98.51 4986.97 14898.10 6391.85 11097.63 3897.03 13096.48 1098.95 120
9.1494.81 10997.49 12994.11 14798.37 2687.56 21895.38 15096.03 19994.66 6499.08 10090.70 15098.97 120
save fliter97.46 13288.05 12792.04 22497.08 16187.63 216
test_0728_THIRD93.26 7897.40 5497.35 10394.69 6399.34 6593.88 5399.42 5098.89 75
test_0728_SECOND94.88 10798.55 4486.72 15595.20 10698.22 4499.38 5893.44 7399.31 7098.53 122
test072698.51 4986.69 15695.34 9798.18 4991.85 11097.63 3897.37 9795.58 24
GSMVS94.75 340
test_part298.21 7689.41 9696.72 83
sam_mvs166.64 36294.75 340
sam_mvs66.41 363
ambc92.98 18796.88 15983.01 22895.92 7296.38 20996.41 9497.48 9288.26 19197.80 25689.96 17898.93 12598.12 156
MTGPAbinary97.62 115
test_post190.21 2835.85 42565.36 36996.00 34379.61 331
test_post6.07 42465.74 36795.84 347
patchmatchnet-post91.71 33966.22 36597.59 274
GG-mvs-BLEND83.24 38685.06 41771.03 37494.99 11665.55 42274.09 41675.51 41644.57 41494.46 37159.57 41387.54 40384.24 409
MTMP94.82 11954.62 425
gm-plane-assit87.08 41059.33 41771.22 38483.58 40797.20 29673.95 372
test9_res88.16 21998.40 18397.83 191
TEST996.45 19089.46 9390.60 27096.92 17379.09 33390.49 30594.39 26991.31 14298.88 127
test_896.37 19489.14 10390.51 27396.89 17679.37 32890.42 30794.36 27191.20 14798.82 136
agg_prior287.06 24198.36 19297.98 170
agg_prior96.20 21488.89 10896.88 17790.21 31298.78 148
TestCases96.00 5898.02 9092.17 5498.43 2190.48 15495.04 17496.74 15192.54 11697.86 25185.11 27098.98 11597.98 170
test_prior489.91 8690.74 265
test_prior290.21 28389.33 17690.77 30094.81 25290.41 16788.21 21598.55 171
test_prior94.61 12095.95 23587.23 14097.36 13998.68 16897.93 177
旧先验290.00 29168.65 39992.71 25696.52 32585.15 267
新几何290.02 290
新几何193.17 18497.16 14687.29 13894.43 27567.95 40191.29 29194.94 24786.97 21698.23 21581.06 31597.75 24093.98 357
旧先验196.20 21484.17 20794.82 26595.57 22489.57 18197.89 23496.32 275
无先验89.94 29295.75 23270.81 38998.59 18081.17 31494.81 336
原ACMM289.34 311
原ACMM192.87 19496.91 15784.22 20597.01 16576.84 35189.64 32594.46 26788.00 19798.70 16481.53 30998.01 22695.70 307
test22296.95 15385.27 19388.83 32493.61 29065.09 40990.74 30194.85 25084.62 24597.36 26193.91 358
testdata298.03 23080.24 321
segment_acmp92.14 124
testdata91.03 26396.87 16082.01 23994.28 27971.55 38292.46 26495.42 22985.65 23497.38 28982.64 29397.27 26393.70 364
testdata188.96 32088.44 197
test1294.43 13395.95 23586.75 15496.24 21489.76 32389.79 18098.79 14597.95 23197.75 201
plane_prior797.71 11488.68 111
plane_prior697.21 14488.23 12486.93 217
plane_prior597.81 10198.95 12089.26 19698.51 17798.60 116
plane_prior495.59 220
plane_prior388.43 12290.35 15993.31 229
plane_prior294.56 13091.74 121
plane_prior197.38 134
plane_prior88.12 12593.01 18288.98 18398.06 220
n20.00 432
nn0.00 432
door-mid92.13 323
lessismore_v093.87 15498.05 8683.77 21380.32 40997.13 6297.91 6277.49 30599.11 9892.62 10298.08 21998.74 94
LGP-MVS_train96.84 4298.36 6692.13 5698.25 3791.78 11797.07 6497.22 11496.38 1299.28 7892.07 11599.59 2799.11 44
test1196.65 193
door91.26 333
HQP5-MVS84.89 196
HQP-NCC96.36 19691.37 24787.16 22388.81 335
ACMP_Plane96.36 19691.37 24787.16 22388.81 335
BP-MVS86.55 250
HQP4-MVS88.81 33598.61 17698.15 153
HQP3-MVS97.31 14397.73 241
HQP2-MVS84.76 243
NP-MVS96.82 16587.10 14493.40 301
MDTV_nov1_ep13_2view42.48 42688.45 33267.22 40383.56 38966.80 35972.86 37994.06 354
MDTV_nov1_ep1383.88 34289.42 39561.52 41288.74 32787.41 36273.99 36884.96 37894.01 28365.25 37095.53 35078.02 34193.16 371
ACMMP++_ref98.82 141
ACMMP++99.25 83
Test By Simon90.61 163
ITE_SJBPF95.95 6197.34 13793.36 4496.55 20291.93 10694.82 18395.39 23391.99 12697.08 30585.53 26397.96 23097.41 223
DeepMVS_CXcopyleft53.83 40270.38 42564.56 40648.52 42633.01 42065.50 42074.21 41756.19 39946.64 42338.45 42170.07 41750.30 418