This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11598.16 298.94 299.33 297.84 499.08 9390.73 14199.73 1399.59 13
FOURS199.21 394.68 1298.45 498.81 997.73 698.27 20
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 19696.54 3498.05 6798.06 498.64 1398.25 3795.01 5199.65 392.95 8899.83 599.68 4
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 17093.73 6097.87 2898.49 2990.73 15799.05 9886.43 24399.60 2799.10 47
PS-CasMVS96.69 2097.43 594.49 12799.13 684.09 20696.61 3297.97 8097.91 598.64 1398.13 4195.24 3899.65 393.39 7199.84 399.72 2
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19596.51 3597.94 8698.14 398.67 1298.32 3495.04 4899.69 293.27 7699.82 799.62 10
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8896.10 2798.14 2499.28 397.94 398.21 21191.38 12999.69 1499.42 19
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4893.11 7496.48 9097.36 9396.92 699.34 6394.31 3999.38 5998.92 72
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16698.32 2587.89 19996.86 7597.38 8995.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7594.15 5198.93 399.07 588.07 19099.57 1495.86 1599.69 1499.46 18
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16196.78 2798.08 6097.42 998.48 1697.86 6191.76 13099.63 694.23 4199.84 399.66 6
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 997.41 1097.28 5698.46 3094.62 6498.84 12894.64 3399.53 3998.99 56
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23789.32 18099.23 8698.19 142
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23789.32 18099.23 8698.19 142
CP-MVSNet96.19 4596.80 1694.38 13298.99 1683.82 20996.31 5097.53 11797.60 798.34 1997.52 8091.98 12499.63 693.08 8499.81 899.70 3
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22396.47 2293.40 21997.46 8695.31 3595.47 34486.18 24798.78 14389.11 386
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10894.46 4796.29 9996.94 12893.56 8199.37 5794.29 4099.42 5298.99 56
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 12098.03 7290.42 15096.37 9397.35 9695.68 2199.25 7594.44 3699.34 6498.80 85
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1792.35 8895.95 11696.41 16196.71 899.42 3393.99 4699.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDDNet94.03 13394.27 12993.31 17498.87 2182.36 23095.51 8691.78 32097.19 1296.32 9698.60 2284.24 24098.75 14687.09 23098.83 13798.81 84
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17485.23 24694.75 18197.12 11591.85 12699.40 4693.45 6698.33 18998.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26793.12 7397.94 2798.54 2581.19 27599.63 695.48 2399.69 1499.60 12
EGC-MVSNET80.97 35775.73 37396.67 4298.85 2494.55 1596.83 2396.60 1872.44 4085.32 40998.25 3792.24 11798.02 22891.85 11399.21 9097.45 210
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 11087.57 20898.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 7997.64 10693.38 6995.89 12197.23 10593.35 8997.66 26588.20 20698.66 15997.79 186
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8788.72 18298.81 698.86 1090.77 15399.60 995.43 2699.53 3999.57 14
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9992.73 7893.48 21696.72 14694.23 7399.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 5191.74 11595.34 15196.36 16995.68 2199.44 2994.41 3799.28 7998.97 62
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12486.96 21798.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27196.48 2195.38 14793.63 28194.89 5797.94 23695.38 2796.92 27195.17 307
MSP-MVS95.34 8094.63 11797.48 1498.67 3394.05 2396.41 4398.18 4491.26 12895.12 16495.15 22686.60 21999.50 2193.43 7096.81 27598.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7798.01 7592.08 9695.74 12996.28 17595.22 4099.42 3393.17 8099.06 10398.88 77
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7598.01 7593.34 7096.64 8596.57 15494.99 5299.36 5893.48 6399.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 8192.26 9195.28 15596.57 15495.02 5099.41 3993.63 5599.11 10198.94 66
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 10192.59 8295.47 14296.68 14894.50 6899.42 3393.10 8299.26 8298.99 56
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4492.26 9196.33 9596.84 13695.10 4699.40 4693.47 6499.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VPNet93.08 16193.76 14291.03 25598.60 3975.83 33391.51 23595.62 22891.84 10795.74 12997.10 11889.31 17898.32 20285.07 26499.06 10398.93 68
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 8192.35 8895.57 13796.61 15294.93 5699.41 3993.78 5199.15 9899.00 54
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2891.40 12695.76 12696.87 13395.26 3799.45 2792.77 9099.21 9099.00 54
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8394.58 4394.38 19196.49 15694.56 6699.39 4993.57 5799.05 10698.93 68
X-MVStestdata90.70 21788.45 26397.44 1698.56 4293.99 2696.50 3697.95 8394.58 4394.38 19126.89 40694.56 6699.39 4993.57 5799.05 10698.93 68
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18996.33 4798.30 2894.66 4298.72 898.30 3597.51 598.00 23094.87 3099.59 2998.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_0728_SECOND94.88 10498.55 4586.72 15295.20 9798.22 3999.38 5593.44 6799.31 6998.53 120
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12688.98 17698.26 2298.86 1093.35 8999.60 996.41 999.45 4799.66 6
v7n96.82 997.31 1095.33 8698.54 4786.81 14996.83 2398.07 6396.59 2098.46 1798.43 3292.91 10499.52 1996.25 1299.76 1099.65 8
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4789.06 10195.65 7898.61 1396.10 2798.16 2397.52 8096.90 798.62 16990.30 15599.60 2798.72 96
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 4983.19 21895.93 6794.84 25794.86 4198.49 1598.74 1681.45 26999.60 994.69 3299.39 5899.15 39
SED-MVS96.00 5196.41 3294.76 10998.51 5086.97 14595.21 9598.10 5791.95 9897.63 3597.25 10396.48 1099.35 6093.29 7499.29 7497.95 167
IU-MVS98.51 5086.66 15596.83 17372.74 36495.83 12393.00 8699.29 7498.64 111
test_241102_ONE98.51 5086.97 14598.10 5791.85 10497.63 3597.03 12296.48 1098.95 114
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5086.69 15395.20 9797.00 15891.85 10497.40 5297.35 9695.58 2499.34 6393.44 6799.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 5086.69 15395.34 8998.18 4491.85 10497.63 3597.37 9095.58 24
HFP-MVS96.39 3896.17 4497.04 3198.51 5093.37 3996.30 5497.98 7892.35 8895.63 13496.47 15795.37 3099.27 7493.78 5199.14 9998.48 124
Baseline_NR-MVSNet94.47 11495.09 9792.60 20198.50 5680.82 25092.08 21396.68 18393.82 5996.29 9998.56 2490.10 17097.75 25890.10 16699.66 2199.24 32
OPM-MVS95.61 6595.45 7796.08 5498.49 5791.00 6892.65 18797.33 13490.05 15596.77 8096.85 13495.04 4898.56 17892.77 9099.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test95.32 8195.88 5993.62 16098.49 5781.77 23595.90 6998.32 2593.93 5697.53 4297.56 7588.48 18399.40 4692.91 8999.83 599.68 4
mvsmamba95.61 6595.40 8196.22 5198.44 5989.86 8497.14 1797.45 12391.25 13097.49 4498.14 3983.49 24499.45 2795.52 2199.66 2199.36 24
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6093.04 4194.54 12498.05 6790.45 14996.31 9796.76 14092.91 10498.72 15191.19 13099.42 5298.32 132
ACMM88.83 996.30 4296.07 5096.97 3498.39 6192.95 4494.74 11298.03 7290.82 13997.15 5996.85 13496.25 1499.00 10593.10 8299.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs195.43 7395.94 5593.93 14898.38 6285.08 19295.46 8797.12 15191.84 10797.28 5698.46 3095.30 3697.71 26290.17 16299.42 5298.99 56
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6294.31 1796.79 2698.32 2596.69 1796.86 7597.56 7595.48 2798.77 14590.11 16499.44 5098.31 134
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TransMVSNet (Re)95.27 8796.04 5292.97 18298.37 6481.92 23495.07 10296.76 17993.97 5597.77 3198.57 2395.72 2097.90 23788.89 19799.23 8699.08 48
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6592.13 5295.33 9098.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
LGP-MVS_train96.84 3898.36 6592.13 5298.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
CP-MVS96.44 3496.08 4997.54 1198.29 6794.62 1496.80 2598.08 6092.67 8195.08 16896.39 16694.77 6099.42 3393.17 8099.44 5098.58 118
FIs94.90 9795.35 8393.55 16398.28 6881.76 23695.33 9098.14 5293.05 7697.07 6297.18 11087.65 19799.29 7091.72 11799.69 1499.61 11
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 6991.19 6695.09 10097.79 9886.48 22097.42 5097.51 8394.47 7199.29 7093.55 5999.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_one_060198.26 7087.14 14098.18 4494.25 4896.99 7097.36 9395.13 43
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7087.69 13193.75 15197.86 8895.96 3297.48 4697.14 11395.33 3499.44 2990.79 13999.76 1099.38 22
IS-MVSNet94.49 11394.35 12594.92 10298.25 7286.46 16097.13 1894.31 27096.24 2596.28 10196.36 16982.88 25299.35 6088.19 20799.52 4198.96 64
UA-Net97.35 497.24 1197.69 498.22 7393.87 3098.42 698.19 4296.95 1495.46 14499.23 493.45 8499.57 1495.34 2999.89 299.63 9
test_part298.21 7489.41 9396.72 81
test_040295.73 6196.22 4094.26 13598.19 7585.77 17993.24 16797.24 14296.88 1697.69 3397.77 6494.12 7599.13 8891.54 12599.29 7497.88 175
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7691.73 6094.24 13298.08 6089.46 16596.61 8796.47 15795.85 1899.12 9090.45 14799.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CPTT-MVS94.74 10294.12 13396.60 4398.15 7793.01 4295.84 7197.66 10589.21 17393.28 22395.46 21488.89 18198.98 10689.80 17198.82 13897.80 185
SF-MVS95.88 5695.88 5995.87 6898.12 7889.65 8795.58 8398.56 1591.84 10796.36 9496.68 14894.37 7299.32 6992.41 10099.05 10698.64 111
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 7989.40 9495.35 8898.22 3992.36 8794.11 19498.07 4492.02 12299.44 2993.38 7297.67 23997.85 179
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8094.07 2092.46 19598.13 5390.69 14293.75 20896.25 17898.03 297.02 29992.08 10595.55 30398.45 126
EPP-MVSNet93.91 13993.68 14694.59 12198.08 8185.55 18597.44 1294.03 27694.22 5094.94 17396.19 18082.07 26399.57 1487.28 22798.89 12598.65 106
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8295.27 996.37 4498.12 5495.66 3397.00 6897.03 12294.85 5899.42 3393.49 6198.84 13298.00 159
RE-MVS-def96.66 1998.07 8295.27 996.37 4498.12 5495.66 3397.00 6897.03 12295.40 2993.49 6198.84 13298.00 159
SR-MVS96.70 1996.42 2997.54 1198.05 8494.69 1196.13 5998.07 6395.17 3796.82 7796.73 14595.09 4799.43 3292.99 8798.71 15098.50 121
K. test v393.37 15193.27 16193.66 15998.05 8482.62 22694.35 12786.62 35896.05 2997.51 4398.85 1276.59 31599.65 393.21 7898.20 20498.73 95
lessismore_v093.87 15198.05 8483.77 21080.32 39697.13 6097.91 5877.49 30099.11 9292.62 9698.08 21398.74 94
test111190.39 22890.61 22489.74 29498.04 8771.50 36395.59 8079.72 39889.41 16695.94 11798.14 3970.79 33798.81 13588.52 20499.32 6898.90 74
AllTest94.88 9894.51 11996.00 5698.02 8892.17 5095.26 9398.43 1890.48 14795.04 16996.74 14392.54 11397.86 24585.11 26298.98 11497.98 163
TestCases96.00 5698.02 8892.17 5098.43 1890.48 14795.04 16996.74 14392.54 11397.86 24585.11 26298.98 11497.98 163
anonymousdsp96.74 1796.42 2997.68 698.00 9094.03 2596.97 2097.61 11087.68 20698.45 1898.77 1594.20 7499.50 2196.70 599.40 5799.53 15
XVG-OURS94.72 10394.12 13396.50 4798.00 9094.23 1891.48 23698.17 4890.72 14195.30 15396.47 15787.94 19496.98 30091.41 12897.61 24398.30 135
114514_t90.51 22289.80 24292.63 19898.00 9082.24 23193.40 16397.29 13865.84 39389.40 31594.80 24286.99 20998.75 14683.88 27598.61 16196.89 241
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9390.91 7096.42 4297.95 8396.69 1791.78 27398.85 1291.77 12895.49 34391.72 11799.08 10295.02 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9493.82 3396.31 5098.25 3295.51 3596.99 7097.05 12195.63 2399.39 4993.31 7398.88 12798.75 91
SDMVSNet94.43 11695.02 9892.69 19497.93 9582.88 22491.92 22295.99 21993.65 6595.51 13998.63 2094.60 6596.48 31887.57 22199.35 6198.70 100
sd_testset93.94 13794.39 12192.61 20097.93 9583.24 21593.17 17095.04 25193.65 6595.51 13998.63 2094.49 6995.89 33681.72 29699.35 6198.70 100
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9589.83 8593.46 16098.30 2892.37 8697.75 3296.95 12795.14 4299.51 2091.74 11699.28 7998.41 128
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SSC-MVS90.16 23692.96 16481.78 37797.88 9848.48 40990.75 25287.69 35096.02 3196.70 8297.63 7185.60 23197.80 25085.73 25198.60 16399.06 50
HPM-MVS++copyleft95.02 9294.39 12196.91 3797.88 9893.58 3794.09 14096.99 16091.05 13492.40 25895.22 22591.03 14999.25 7592.11 10398.69 15397.90 172
EG-PatchMatch MVS94.54 11294.67 11594.14 13897.87 10086.50 15792.00 21796.74 18088.16 19596.93 7297.61 7293.04 10197.90 23791.60 12198.12 20998.03 157
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11595.77 7398.29 3192.68 7998.03 2697.91 5895.13 4398.95 11493.85 4999.49 4299.36 24
test250685.42 32084.57 32387.96 32797.81 10266.53 38496.14 5856.35 41189.04 17493.55 21598.10 4242.88 40998.68 16288.09 21199.18 9498.67 104
ECVR-MVScopyleft90.12 23890.16 23390.00 29097.81 10272.68 35795.76 7478.54 40189.04 17495.36 15098.10 4270.51 33898.64 16887.10 22999.18 9498.67 104
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10488.91 10592.91 17798.07 6393.46 6796.31 9795.97 19190.14 16799.34 6392.11 10399.64 2499.16 38
VPA-MVSNet95.14 8995.67 7093.58 16297.76 10583.15 21994.58 11997.58 11293.39 6897.05 6598.04 4793.25 9298.51 18489.75 17499.59 2999.08 48
DU-MVS95.28 8595.12 9595.75 7297.75 10688.59 11392.58 18997.81 9493.99 5396.80 7895.90 19290.10 17099.41 3991.60 12199.58 3499.26 30
NR-MVSNet95.28 8595.28 8895.26 9097.75 10687.21 13895.08 10197.37 12693.92 5897.65 3495.90 19290.10 17099.33 6890.11 16499.66 2199.26 30
XXY-MVS92.58 17893.16 16390.84 26497.75 10679.84 26591.87 22696.22 20985.94 23195.53 13897.68 6692.69 11094.48 35983.21 27997.51 24698.21 140
WB-MVS89.44 25492.15 18681.32 37897.73 10948.22 41089.73 28787.98 34895.24 3696.05 11396.99 12685.18 23396.95 30182.45 28897.97 22398.78 87
PVSNet_Blended_VisFu91.63 20091.20 20992.94 18597.73 10983.95 20892.14 21297.46 12178.85 32592.35 26194.98 23484.16 24199.08 9386.36 24496.77 27795.79 289
tfpnnormal94.27 12394.87 10392.48 20597.71 11180.88 24994.55 12395.41 24293.70 6196.67 8497.72 6591.40 13698.18 21587.45 22399.18 9498.36 130
HQP_MVS94.26 12493.93 13695.23 9397.71 11188.12 12294.56 12197.81 9491.74 11593.31 22095.59 20886.93 21198.95 11489.26 18698.51 17398.60 116
plane_prior797.71 11188.68 109
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11488.59 11392.26 20997.84 9194.91 4096.80 7895.78 20190.42 16299.41 3991.60 12199.58 3499.29 29
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11589.38 9596.90 2298.41 2092.52 8397.43 4897.92 5795.11 4599.50 2194.45 3599.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11690.17 8093.86 14898.02 7487.35 21096.22 10597.99 5294.48 7099.05 9892.73 9399.68 1897.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
KD-MVS_self_test94.10 13194.73 11092.19 21297.66 11779.49 27594.86 10997.12 15189.59 16496.87 7497.65 6990.40 16498.34 20189.08 19299.35 6198.75 91
Vis-MVSNet (Re-imp)90.42 22590.16 23391.20 25197.66 11777.32 31194.33 12987.66 35191.20 13192.99 23695.13 22875.40 32098.28 20477.86 33199.19 9297.99 162
dcpmvs_293.96 13695.01 9990.82 26597.60 11974.04 34793.68 15598.85 889.80 16097.82 2997.01 12591.14 14799.21 7890.56 14598.59 16499.19 36
FMVSNet194.84 9995.13 9493.97 14497.60 11984.29 19995.99 6396.56 19192.38 8597.03 6698.53 2690.12 16898.98 10688.78 19999.16 9798.65 106
RPSCF95.58 6894.89 10297.62 797.58 12196.30 795.97 6697.53 11792.42 8493.41 21797.78 6291.21 14297.77 25591.06 13297.06 26398.80 85
WR-MVS93.49 14893.72 14392.80 19197.57 12280.03 26090.14 27495.68 22793.70 6196.62 8695.39 22187.21 20599.04 10187.50 22299.64 2499.33 26
CSCG94.69 10594.75 10794.52 12497.55 12387.87 12795.01 10597.57 11392.68 7996.20 10793.44 28791.92 12598.78 14289.11 19199.24 8596.92 239
MCST-MVS92.91 16692.51 17894.10 14097.52 12485.72 18191.36 24097.13 15080.33 30692.91 24094.24 26091.23 14198.72 15189.99 16897.93 22697.86 177
F-COLMAP92.28 18891.06 21395.95 5997.52 12491.90 5693.53 15797.18 14583.98 26588.70 32894.04 26788.41 18598.55 18080.17 31295.99 29497.39 217
9.1494.81 10497.49 12694.11 13998.37 2187.56 20995.38 14796.03 18894.66 6299.08 9390.70 14298.97 119
VDD-MVS94.37 11894.37 12394.40 13197.49 12686.07 17293.97 14593.28 29094.49 4596.24 10397.78 6287.99 19398.79 13988.92 19599.14 9998.34 131
testgi90.38 22991.34 20787.50 33397.49 12671.54 36289.43 29695.16 24888.38 19094.54 18794.68 24792.88 10693.09 37471.60 37497.85 23097.88 175
save fliter97.46 12988.05 12492.04 21597.08 15387.63 207
Anonymous2023121196.60 2597.13 1295.00 10097.46 12986.35 16597.11 1998.24 3597.58 898.72 898.97 793.15 9699.15 8493.18 7999.74 1299.50 17
plane_prior197.38 131
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13190.88 7194.59 11797.81 9489.22 17295.46 14496.17 18393.42 8799.34 6389.30 18298.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
fmvsm_s_conf0.1_n_a94.26 12494.37 12393.95 14797.36 13385.72 18194.15 13695.44 23983.25 27395.51 13998.05 4592.54 11397.19 29095.55 2097.46 25098.94 66
ITE_SJBPF95.95 5997.34 13493.36 4096.55 19491.93 10094.82 17895.39 22191.99 12397.08 29685.53 25397.96 22497.41 213
Anonymous2024052995.50 7095.83 6394.50 12597.33 13585.93 17495.19 9996.77 17896.64 1997.61 3898.05 4593.23 9398.79 13988.60 20399.04 11198.78 87
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13689.21 9794.24 13298.76 1186.25 22497.56 3998.66 1895.73 1998.44 19297.35 298.99 11398.27 137
OMC-MVS94.22 12793.69 14595.81 6997.25 13791.27 6492.27 20897.40 12587.10 21694.56 18695.42 21793.74 7998.11 22086.62 23798.85 13198.06 151
GeoE94.55 11194.68 11494.15 13797.23 13885.11 19194.14 13897.34 13388.71 18395.26 15695.50 21394.65 6399.12 9090.94 13698.40 17998.23 138
ZD-MVS97.23 13890.32 7897.54 11584.40 26294.78 18095.79 19892.76 10999.39 4988.72 20198.40 179
fmvsm_s_conf0.1_n94.19 13094.41 12093.52 16897.22 14084.37 19793.73 15295.26 24684.45 26195.76 12698.00 5091.85 12697.21 28795.62 1797.82 23198.98 60
plane_prior697.21 14188.23 12186.93 211
DP-MVS Recon92.31 18791.88 19393.60 16197.18 14286.87 14891.10 24597.37 12684.92 25592.08 26994.08 26688.59 18298.20 21283.50 27698.14 20895.73 291
新几何193.17 17897.16 14387.29 13594.43 26867.95 38791.29 27994.94 23686.97 21098.23 21081.06 30497.75 23393.98 345
DP-MVS95.62 6495.84 6294.97 10197.16 14388.62 11194.54 12497.64 10696.94 1596.58 8897.32 10093.07 10098.72 15190.45 14798.84 13297.57 202
CHOSEN 1792x268887.19 30685.92 31591.00 25897.13 14579.41 27684.51 37795.60 22964.14 39690.07 30394.81 24078.26 29597.14 29473.34 36395.38 31096.46 259
HyFIR lowres test87.19 30685.51 31792.24 21097.12 14680.51 25185.03 37196.06 21466.11 39291.66 27592.98 29870.12 33999.14 8675.29 35295.23 31497.07 231
ab-mvs92.40 18492.62 17691.74 22797.02 14781.65 23795.84 7195.50 23886.95 21892.95 23997.56 7590.70 15897.50 27279.63 31997.43 25196.06 276
tttt051789.81 24888.90 25792.55 20397.00 14879.73 27095.03 10483.65 38289.88 15895.30 15394.79 24353.64 39399.39 4991.99 10898.79 14298.54 119
h-mvs3392.89 16791.99 19095.58 7796.97 14990.55 7693.94 14694.01 27989.23 17093.95 20396.19 18076.88 31199.14 8691.02 13395.71 30097.04 235
test22296.95 15085.27 19088.83 31293.61 28265.09 39590.74 29094.85 23984.62 23997.36 25493.91 346
CDPH-MVS92.67 17691.83 19595.18 9696.94 15188.46 11890.70 25597.07 15477.38 33292.34 26395.08 23192.67 11198.88 12185.74 25098.57 16698.20 141
CNVR-MVS94.58 11094.29 12695.46 8296.94 15189.35 9691.81 23096.80 17589.66 16293.90 20695.44 21692.80 10898.72 15192.74 9298.52 17198.32 132
EC-MVSNet95.44 7295.62 7194.89 10396.93 15387.69 13196.48 3899.14 493.93 5692.77 24494.52 25393.95 7899.49 2493.62 5699.22 8997.51 207
原ACMM192.87 18896.91 15484.22 20297.01 15776.84 33889.64 31394.46 25488.00 19298.70 15881.53 29898.01 22095.70 294
ambc92.98 18196.88 15583.01 22295.92 6896.38 20196.41 9297.48 8588.26 18697.80 25089.96 16998.93 12498.12 149
testdata91.03 25596.87 15682.01 23294.28 27271.55 36892.46 25495.42 21785.65 22997.38 28382.64 28497.27 25693.70 352
CS-MVS-test95.32 8195.10 9695.96 5896.86 15790.75 7496.33 4799.20 293.99 5391.03 28693.73 27993.52 8399.55 1891.81 11499.45 4797.58 201
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15889.20 9893.51 15898.60 1485.68 23797.42 5098.30 3595.34 3398.39 19396.85 398.98 11498.19 142
OPU-MVS95.15 9796.84 15989.43 9295.21 9595.66 20693.12 9798.06 22386.28 24698.61 16197.95 167
CS-MVS95.77 5995.58 7396.37 5096.84 15991.72 6196.73 2999.06 594.23 4992.48 25394.79 24393.56 8199.49 2493.47 6499.05 10697.89 174
NP-MVS96.82 16187.10 14193.40 288
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16290.79 7396.30 5497.82 9396.13 2694.74 18297.23 10591.33 13799.16 8393.25 7798.30 19298.46 125
Test_1112_low_res87.50 29886.58 30590.25 28296.80 16377.75 30587.53 33196.25 20569.73 38286.47 35493.61 28375.67 31897.88 24179.95 31493.20 35895.11 313
PAPM_NR91.03 21190.81 21991.68 23196.73 16481.10 24693.72 15396.35 20288.19 19388.77 32692.12 31985.09 23597.25 28582.40 28993.90 34696.68 250
fmvsm_s_conf0.5_n_a94.02 13494.08 13593.84 15396.72 16585.73 18093.65 15695.23 24783.30 27195.13 16397.56 7592.22 11897.17 29195.51 2297.41 25298.64 111
fmvsm_s_conf0.5_n94.00 13594.20 13193.42 17296.69 16684.37 19793.38 16495.13 24984.50 26095.40 14697.55 7991.77 12897.20 28895.59 1897.79 23298.69 103
1112_ss88.42 27987.41 28891.45 23996.69 16680.99 24789.72 28896.72 18173.37 35887.00 35290.69 34177.38 30398.20 21281.38 29993.72 34995.15 309
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16887.75 13093.44 16298.49 1685.57 24198.27 2097.11 11694.11 7697.75 25896.26 1198.72 14896.89 241
patch_mono-292.46 18292.72 17491.71 22996.65 16978.91 28788.85 31197.17 14683.89 26792.45 25596.76 14089.86 17497.09 29590.24 15998.59 16499.12 43
v894.65 10795.29 8792.74 19296.65 16979.77 26994.59 11797.17 14691.86 10397.47 4797.93 5488.16 18899.08 9394.32 3899.47 4399.38 22
MVS_111021_HR93.63 14593.42 15794.26 13596.65 16986.96 14789.30 30196.23 20788.36 19193.57 21494.60 25093.45 8497.77 25590.23 16098.38 18398.03 157
ANet_high94.83 10096.28 3790.47 27496.65 16973.16 35294.33 12998.74 1296.39 2498.09 2598.93 893.37 8898.70 15890.38 15099.68 1899.53 15
SD-MVS95.19 8895.73 6793.55 16396.62 17388.88 10794.67 11498.05 6791.26 12897.25 5896.40 16295.42 2894.36 36392.72 9499.19 9297.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS93.33 15292.67 17595.33 8696.58 17494.06 2192.26 20992.18 31185.92 23296.22 10596.61 15285.64 23095.99 33490.35 15298.23 19995.93 282
Anonymous2024052192.86 17093.57 15290.74 26796.57 17575.50 33594.15 13695.60 22989.38 16795.90 12097.90 6080.39 27997.96 23492.60 9799.68 1898.75 91
v1094.68 10695.27 8992.90 18796.57 17580.15 25494.65 11697.57 11390.68 14397.43 4898.00 5088.18 18799.15 8494.84 3199.55 3899.41 20
Anonymous20240521192.58 17892.50 17992.83 19096.55 17783.22 21792.43 19891.64 32294.10 5295.59 13696.64 15081.88 26797.50 27285.12 26198.52 17197.77 188
DVP-MVS++95.93 5296.34 3494.70 11296.54 17886.66 15598.45 498.22 3993.26 7197.54 4097.36 9393.12 9799.38 5593.88 4798.68 15598.04 154
MSC_two_6792asdad95.90 6596.54 17889.57 8896.87 17099.41 3994.06 4499.30 7198.72 96
No_MVS95.90 6596.54 17889.57 8896.87 17099.41 3994.06 4499.30 7198.72 96
PLCcopyleft85.34 1590.40 22688.92 25594.85 10596.53 18190.02 8191.58 23496.48 19780.16 30786.14 35692.18 31685.73 22798.25 20976.87 34194.61 33096.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS88.58 1092.49 18191.75 19794.73 11096.50 18289.69 8692.91 17797.68 10478.02 32992.79 24394.10 26590.85 15197.96 23484.76 26898.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
NCCC94.08 13293.54 15495.70 7596.49 18389.90 8392.39 20196.91 16790.64 14492.33 26494.60 25090.58 16198.96 11190.21 16197.70 23798.23 138
TAMVS90.16 23689.05 25193.49 17096.49 18386.37 16390.34 26892.55 30780.84 30492.99 23694.57 25281.94 26698.20 21273.51 36298.21 20295.90 285
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18589.19 9993.23 16898.36 2285.61 24096.92 7398.02 4995.23 3998.38 19696.69 698.95 12398.09 150
TEST996.45 18689.46 9090.60 25896.92 16579.09 32190.49 29394.39 25691.31 13898.88 121
train_agg92.71 17591.83 19595.35 8496.45 18689.46 9090.60 25896.92 16579.37 31590.49 29394.39 25691.20 14398.88 12188.66 20298.43 17897.72 193
test_896.37 18889.14 10090.51 26196.89 16879.37 31590.42 29594.36 25891.20 14398.82 130
CLD-MVS91.82 19591.41 20593.04 17996.37 18883.65 21186.82 34697.29 13884.65 25992.27 26589.67 35492.20 12097.85 24783.95 27499.47 4397.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC96.36 19091.37 23787.16 21388.81 322
ACMP_Plane96.36 19091.37 23787.16 21388.81 322
HQP-MVS92.09 19291.49 20393.88 15096.36 19084.89 19391.37 23797.31 13587.16 21388.81 32293.40 28884.76 23798.60 17286.55 24097.73 23498.14 147
v2v48293.29 15393.63 14892.29 20896.35 19378.82 28991.77 23296.28 20388.45 18895.70 13396.26 17786.02 22598.90 11893.02 8598.81 14099.14 40
MSLP-MVS++93.25 15793.88 13791.37 24196.34 19482.81 22593.11 17197.74 10189.37 16894.08 19695.29 22490.40 16496.35 32590.35 15298.25 19794.96 316
thisisatest053088.69 27687.52 28792.20 21196.33 19579.36 27792.81 17984.01 38186.44 22193.67 21192.68 30653.62 39499.25 7589.65 17698.45 17798.00 159
FPMVS84.50 32883.28 33388.16 32596.32 19694.49 1685.76 36585.47 37083.09 27785.20 36194.26 25963.79 37086.58 39963.72 39591.88 37683.40 397
Anonymous2023120688.77 27388.29 26990.20 28596.31 19778.81 29089.56 29293.49 28774.26 35492.38 25995.58 21182.21 26095.43 34672.07 37098.75 14796.34 263
MVP-Stereo90.07 24288.92 25593.54 16596.31 19786.49 15890.93 24895.59 23379.80 30891.48 27695.59 20880.79 27697.39 28178.57 32991.19 37896.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 19988.62 11193.19 16998.07 6385.63 23997.08 6197.35 9690.86 15097.66 26595.70 1698.48 17697.74 192
v114493.50 14793.81 13892.57 20296.28 20079.61 27291.86 22896.96 16186.95 21895.91 11996.32 17187.65 19798.96 11193.51 6098.88 12799.13 41
LFMVS91.33 20791.16 21291.82 22496.27 20179.36 27795.01 10585.61 36996.04 3094.82 17897.06 12072.03 33398.46 19084.96 26598.70 15297.65 198
VNet92.67 17692.96 16491.79 22596.27 20180.15 25491.95 21894.98 25392.19 9494.52 18896.07 18687.43 20197.39 28184.83 26698.38 18397.83 181
IterMVS-LS93.78 14294.28 12792.27 20996.27 20179.21 28291.87 22696.78 17691.77 11396.57 8997.07 11987.15 20698.74 14991.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14892.87 16993.29 15891.62 23396.25 20477.72 30691.28 24195.05 25089.69 16195.93 11896.04 18787.34 20298.38 19690.05 16797.99 22198.78 87
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16696.25 20483.23 21692.66 18698.19 4293.06 7597.49 4497.15 11294.78 5998.71 15792.27 10298.72 14898.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR93.66 14493.28 16094.80 10796.25 20490.95 6990.21 27195.43 24187.91 19793.74 21094.40 25592.88 10696.38 32390.39 14998.28 19397.07 231
agg_prior96.20 20788.89 10696.88 16990.21 30098.78 142
旧先验196.20 20784.17 20494.82 25895.57 21289.57 17697.89 22896.32 264
CNLPA91.72 19891.20 20993.26 17696.17 20991.02 6791.14 24395.55 23690.16 15490.87 28793.56 28586.31 22194.40 36279.92 31897.12 26194.37 336
fmvsm_l_conf0.5_n93.79 14193.81 13893.73 15796.16 21086.26 16792.46 19596.72 18181.69 29595.77 12597.11 11690.83 15297.82 24895.58 1997.99 22197.11 230
hse-mvs292.24 19091.20 20995.38 8396.16 21090.65 7592.52 19192.01 31889.23 17093.95 20392.99 29776.88 31198.69 16091.02 13396.03 29296.81 245
v119293.49 14893.78 14192.62 19996.16 21079.62 27191.83 22997.22 14486.07 22996.10 11296.38 16787.22 20499.02 10394.14 4398.88 12799.22 33
thres100view90087.35 30186.89 30088.72 31296.14 21373.09 35393.00 17485.31 37292.13 9593.26 22590.96 33663.42 37198.28 20471.27 37696.54 28394.79 326
DeepC-MVS_fast89.96 793.73 14393.44 15694.60 12096.14 21387.90 12693.36 16597.14 14885.53 24293.90 20695.45 21591.30 13998.59 17489.51 17798.62 16097.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS89.35 25588.40 26492.18 21596.13 21584.20 20386.96 34196.15 21375.40 34687.36 34991.55 32983.30 24798.01 22982.17 29296.62 28194.32 338
fmvsm_l_conf0.5_n_a93.59 14693.63 14893.49 17096.10 21685.66 18392.32 20496.57 19081.32 29895.63 13497.14 11390.19 16697.73 26195.37 2898.03 21797.07 231
AUN-MVS90.05 24388.30 26895.32 8896.09 21790.52 7792.42 19992.05 31782.08 29288.45 33292.86 29965.76 35998.69 16088.91 19696.07 29196.75 249
baseline94.26 12494.80 10592.64 19696.08 21880.99 24793.69 15498.04 7190.80 14094.89 17696.32 17193.19 9498.48 18991.68 11998.51 17398.43 127
PCF-MVS84.52 1789.12 25987.71 28493.34 17396.06 21985.84 17786.58 35497.31 13568.46 38693.61 21393.89 27587.51 20098.52 18367.85 38798.11 21095.66 296
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14419293.20 16093.54 15492.16 21696.05 22078.26 29691.95 21897.14 14884.98 25495.96 11596.11 18487.08 20899.04 10193.79 5098.84 13299.17 37
thres600view787.66 29287.10 29889.36 30196.05 22073.17 35192.72 18285.31 37291.89 10293.29 22290.97 33563.42 37198.39 19373.23 36496.99 27096.51 254
casdiffmvspermissive94.32 12294.80 10592.85 18996.05 22081.44 24192.35 20298.05 6791.53 12395.75 12896.80 13793.35 8998.49 18591.01 13598.32 19198.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet87.13 30886.54 30788.89 30996.05 22076.11 32894.39 12688.51 33981.37 29788.27 33596.75 14272.38 33095.52 34165.71 39295.47 30695.03 314
v192192093.26 15593.61 15092.19 21296.04 22478.31 29591.88 22597.24 14285.17 24896.19 10996.19 18086.76 21599.05 9894.18 4298.84 13299.22 33
v124093.29 15393.71 14492.06 21996.01 22577.89 30291.81 23097.37 12685.12 25096.69 8396.40 16286.67 21799.07 9794.51 3498.76 14599.22 33
BH-untuned90.68 21890.90 21590.05 28995.98 22679.57 27390.04 27794.94 25587.91 19794.07 19793.00 29687.76 19697.78 25479.19 32595.17 31592.80 367
DeepPCF-MVS90.46 694.20 12893.56 15396.14 5295.96 22792.96 4389.48 29497.46 12185.14 24996.23 10495.42 21793.19 9498.08 22290.37 15198.76 14597.38 219
test_prior94.61 11795.95 22887.23 13797.36 13198.68 16297.93 169
test1294.43 13095.95 22886.75 15196.24 20689.76 31189.79 17598.79 13997.95 22597.75 191
MVS_030493.92 13893.68 14694.64 11695.94 23085.83 17894.34 12888.14 34592.98 7791.09 28597.68 6686.73 21699.36 5896.64 799.59 2998.72 96
LCM-MVSNet-Re94.20 12894.58 11893.04 17995.91 23183.13 22093.79 15099.19 392.00 9798.84 598.04 4793.64 8099.02 10381.28 30098.54 16996.96 238
PatchMatch-RL89.18 25788.02 28192.64 19695.90 23292.87 4588.67 31891.06 32580.34 30590.03 30491.67 32683.34 24694.42 36176.35 34694.84 32490.64 383
ETV-MVS92.99 16492.74 17193.72 15895.86 23386.30 16692.33 20397.84 9191.70 11892.81 24186.17 38292.22 11899.19 8188.03 21497.73 23495.66 296
MM94.41 11794.14 13295.22 9495.84 23487.21 13894.31 13190.92 32894.48 4692.80 24297.52 8085.27 23299.49 2496.58 899.57 3698.97 62
testing383.66 33482.52 33987.08 33695.84 23465.84 38989.80 28677.17 40588.17 19490.84 28888.63 36430.95 41398.11 22084.05 27397.19 25997.28 224
TSAR-MVS + GP.93.07 16392.41 18195.06 9995.82 23690.87 7290.97 24792.61 30688.04 19694.61 18593.79 27888.08 18997.81 24989.41 17998.39 18296.50 257
QAPM92.88 16892.77 16993.22 17795.82 23683.31 21396.45 3997.35 13283.91 26693.75 20896.77 13889.25 17998.88 12184.56 27097.02 26597.49 208
EIA-MVS92.35 18692.03 18893.30 17595.81 23883.97 20792.80 18098.17 4887.71 20489.79 31087.56 37291.17 14699.18 8287.97 21597.27 25696.77 247
tfpn200view987.05 30986.52 30888.67 31395.77 23972.94 35491.89 22386.00 36390.84 13792.61 24889.80 34863.93 36898.28 20471.27 37696.54 28394.79 326
thres40087.20 30586.52 30889.24 30595.77 23972.94 35491.89 22386.00 36390.84 13792.61 24889.80 34863.93 36898.28 20471.27 37696.54 28396.51 254
pmmvs-eth3d91.54 20290.73 22293.99 14295.76 24187.86 12890.83 25093.98 28078.23 32894.02 20196.22 17982.62 25996.83 30986.57 23898.33 18997.29 223
jason89.17 25888.32 26691.70 23095.73 24280.07 25788.10 32293.22 29171.98 36790.09 30192.79 30278.53 29398.56 17887.43 22497.06 26396.46 259
jason: jason.
alignmvs93.26 15592.85 16894.50 12595.70 24387.45 13393.45 16195.76 22491.58 12095.25 15892.42 31381.96 26598.72 15191.61 12097.87 22997.33 221
xiu_mvs_v1_base_debu91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
xiu_mvs_v1_base91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
xiu_mvs_v1_base_debi91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
PHI-MVS94.34 12193.80 14095.95 5995.65 24791.67 6294.82 11097.86 8887.86 20093.04 23594.16 26491.58 13298.78 14290.27 15798.96 12197.41 213
LF4IMVS92.72 17492.02 18994.84 10695.65 24791.99 5492.92 17696.60 18785.08 25292.44 25693.62 28286.80 21496.35 32586.81 23298.25 19796.18 271
test20.0390.80 21490.85 21890.63 27195.63 24979.24 28089.81 28592.87 29789.90 15794.39 19096.40 16285.77 22695.27 35173.86 36199.05 10697.39 217
TinyColmap92.00 19492.76 17089.71 29595.62 25077.02 31490.72 25496.17 21287.70 20595.26 15696.29 17392.54 11396.45 32081.77 29498.77 14495.66 296
sasdasda94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 32094.95 5398.66 16491.45 12697.57 24497.20 227
canonicalmvs94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 32094.95 5398.66 16491.45 12697.57 24497.20 227
MGCFI-Net94.44 11594.67 11593.75 15695.56 25385.47 18695.25 9498.24 3591.53 12395.04 16992.21 31594.94 5598.54 18191.56 12497.66 24097.24 225
AdaColmapbinary91.63 20091.36 20692.47 20695.56 25386.36 16492.24 21196.27 20488.88 18089.90 30792.69 30591.65 13198.32 20277.38 33897.64 24192.72 368
UnsupCasMVSNet_bld88.50 27888.03 28089.90 29195.52 25578.88 28887.39 33394.02 27879.32 31993.06 23394.02 26980.72 27794.27 36475.16 35393.08 36296.54 252
3Dnovator92.54 394.80 10194.90 10194.47 12895.47 25687.06 14296.63 3197.28 14091.82 11094.34 19397.41 8790.60 16098.65 16792.47 9998.11 21097.70 194
Fast-Effi-MVS+91.28 20990.86 21792.53 20495.45 25782.53 22789.25 30496.52 19585.00 25389.91 30688.55 36692.94 10298.84 12884.72 26995.44 30796.22 269
GBi-Net93.21 15892.96 16493.97 14495.40 25884.29 19995.99 6396.56 19188.63 18495.10 16598.53 2681.31 27198.98 10686.74 23398.38 18398.65 106
test193.21 15892.96 16493.97 14495.40 25884.29 19995.99 6396.56 19188.63 18495.10 16598.53 2681.31 27198.98 10686.74 23398.38 18398.65 106
FMVSNet292.78 17292.73 17392.95 18495.40 25881.98 23394.18 13595.53 23788.63 18496.05 11397.37 9081.31 27198.81 13587.38 22698.67 15798.06 151
CDS-MVSNet89.55 25088.22 27593.53 16695.37 26186.49 15889.26 30293.59 28379.76 31091.15 28392.31 31477.12 30698.38 19677.51 33697.92 22795.71 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4293.43 15093.58 15192.97 18295.34 26281.22 24492.67 18596.49 19687.25 21296.20 10796.37 16887.32 20398.85 12792.39 10198.21 20298.85 81
Patchmatch-RL test88.81 27288.52 26189.69 29695.33 26379.94 26386.22 35992.71 30278.46 32695.80 12494.18 26366.25 35795.33 34989.22 18898.53 17093.78 349
CL-MVSNet_self_test90.04 24489.90 24090.47 27495.24 26477.81 30486.60 35392.62 30585.64 23893.25 22793.92 27383.84 24296.06 33279.93 31698.03 21797.53 206
BH-RMVSNet90.47 22490.44 22890.56 27395.21 26578.65 29389.15 30593.94 28188.21 19292.74 24594.22 26186.38 22097.88 24178.67 32895.39 30995.14 310
Effi-MVS+92.79 17192.74 17192.94 18595.10 26683.30 21494.00 14297.53 11791.36 12789.35 31690.65 34394.01 7798.66 16487.40 22595.30 31296.88 243
USDC89.02 26289.08 25088.84 31095.07 26774.50 34288.97 30796.39 20073.21 36093.27 22496.28 17582.16 26296.39 32277.55 33598.80 14195.62 299
WTY-MVS86.93 31186.50 31088.24 32394.96 26874.64 33887.19 33692.07 31678.29 32788.32 33491.59 32878.06 29694.27 36474.88 35493.15 36095.80 288
FA-MVS(test-final)91.81 19691.85 19491.68 23194.95 26979.99 26296.00 6293.44 28887.80 20194.02 20197.29 10177.60 29998.45 19188.04 21397.49 24796.61 251
PS-MVSNAJ88.86 27188.99 25488.48 31994.88 27074.71 33786.69 34995.60 22980.88 30287.83 34187.37 37590.77 15398.82 13082.52 28694.37 33491.93 374
MG-MVS89.54 25189.80 24288.76 31194.88 27072.47 35989.60 29092.44 30985.82 23389.48 31495.98 19082.85 25497.74 26081.87 29395.27 31396.08 275
xiu_mvs_v2_base89.00 26589.19 24888.46 32094.86 27274.63 33986.97 34095.60 22980.88 30287.83 34188.62 36591.04 14898.81 13582.51 28794.38 33391.93 374
MAR-MVS90.32 23388.87 25894.66 11594.82 27391.85 5794.22 13494.75 26180.91 30187.52 34888.07 37086.63 21897.87 24476.67 34296.21 29094.25 339
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_BlendedMVS90.35 23189.96 23891.54 23694.81 27478.80 29190.14 27496.93 16379.43 31488.68 32995.06 23286.27 22298.15 21880.27 30898.04 21697.68 196
PVSNet_Blended88.74 27488.16 27890.46 27794.81 27478.80 29186.64 35096.93 16374.67 35088.68 32989.18 36186.27 22298.15 21880.27 30896.00 29394.44 335
FE-MVS89.06 26188.29 26991.36 24294.78 27679.57 27396.77 2890.99 32684.87 25692.96 23896.29 17360.69 38298.80 13880.18 31197.11 26295.71 292
BH-w/o87.21 30487.02 29987.79 33194.77 27777.27 31287.90 32493.21 29381.74 29489.99 30588.39 36883.47 24596.93 30471.29 37592.43 37089.15 385
LS3D96.11 4795.83 6396.95 3694.75 27894.20 1997.34 1397.98 7897.31 1195.32 15296.77 13893.08 9999.20 8091.79 11598.16 20697.44 212
Effi-MVS+-dtu93.90 14092.60 17797.77 394.74 27996.67 594.00 14295.41 24289.94 15691.93 27292.13 31890.12 16898.97 11087.68 22097.48 24897.67 197
MVSFormer92.18 19192.23 18392.04 22094.74 27980.06 25897.15 1597.37 12688.98 17688.83 32092.79 30277.02 30899.60 996.41 996.75 27896.46 259
lupinMVS88.34 28187.31 28991.45 23994.74 27980.06 25887.23 33492.27 31071.10 37288.83 32091.15 33277.02 30898.53 18286.67 23696.75 27895.76 290
baseline187.62 29487.31 28988.54 31694.71 28274.27 34593.10 17288.20 34386.20 22692.18 26793.04 29573.21 32795.52 34179.32 32385.82 39395.83 287
MDA-MVSNet-bldmvs91.04 21090.88 21691.55 23594.68 28380.16 25385.49 36792.14 31490.41 15194.93 17495.79 19885.10 23496.93 30485.15 25994.19 34197.57 202
Fast-Effi-MVS+-dtu92.77 17392.16 18494.58 12394.66 28488.25 12092.05 21496.65 18589.62 16390.08 30291.23 33192.56 11298.60 17286.30 24596.27 28996.90 240
UnsupCasMVSNet_eth90.33 23290.34 23190.28 28094.64 28580.24 25289.69 28995.88 22185.77 23493.94 20595.69 20581.99 26492.98 37584.21 27291.30 37797.62 199
OpenMVS_ROBcopyleft85.12 1689.52 25289.05 25190.92 26094.58 28681.21 24591.10 24593.41 28977.03 33693.41 21793.99 27183.23 24897.80 25079.93 31694.80 32593.74 351
OpenMVScopyleft89.45 892.27 18992.13 18792.68 19594.53 28784.10 20595.70 7597.03 15682.44 28891.14 28496.42 16088.47 18498.38 19685.95 24897.47 24995.55 301
thres20085.85 31785.18 31887.88 33094.44 28872.52 35889.08 30686.21 36088.57 18791.44 27788.40 36764.22 36698.00 23068.35 38595.88 29893.12 361
DELS-MVS92.05 19392.16 18491.72 22894.44 28880.13 25687.62 32697.25 14187.34 21192.22 26693.18 29489.54 17798.73 15089.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
N_pmnet88.90 27087.25 29293.83 15494.40 29093.81 3584.73 37387.09 35579.36 31793.26 22592.43 31279.29 28691.68 38077.50 33797.22 25896.00 278
pmmvs488.95 26787.70 28592.70 19394.30 29185.60 18487.22 33592.16 31374.62 35189.75 31294.19 26277.97 29796.41 32182.71 28396.36 28796.09 274
new-patchmatchnet88.97 26690.79 22083.50 37294.28 29255.83 40785.34 36993.56 28586.18 22795.47 14295.73 20483.10 24996.51 31785.40 25498.06 21498.16 145
API-MVS91.52 20391.61 19891.26 24794.16 29386.26 16794.66 11594.82 25891.17 13292.13 26891.08 33490.03 17397.06 29879.09 32697.35 25590.45 384
MSDG90.82 21390.67 22391.26 24794.16 29383.08 22186.63 35196.19 21090.60 14691.94 27191.89 32289.16 18095.75 33880.96 30594.51 33194.95 317
TR-MVS87.70 29087.17 29489.27 30394.11 29579.26 27988.69 31691.86 31981.94 29390.69 29189.79 35182.82 25597.42 27872.65 36891.98 37491.14 380
test_yl90.11 23989.73 24591.26 24794.09 29679.82 26690.44 26292.65 30390.90 13593.19 23093.30 29073.90 32498.03 22582.23 29096.87 27295.93 282
DCV-MVSNet90.11 23989.73 24591.26 24794.09 29679.82 26690.44 26292.65 30390.90 13593.19 23093.30 29073.90 32498.03 22582.23 29096.87 27295.93 282
D2MVS89.93 24589.60 24790.92 26094.03 29878.40 29488.69 31694.85 25678.96 32393.08 23295.09 23074.57 32296.94 30288.19 20798.96 12197.41 213
sss87.23 30386.82 30188.46 32093.96 29977.94 29986.84 34492.78 30177.59 33187.61 34791.83 32378.75 28991.92 37977.84 33294.20 33995.52 302
PVSNet76.22 2082.89 34282.37 34184.48 36493.96 29964.38 39678.60 39588.61 33871.50 36984.43 37086.36 38174.27 32394.60 35869.87 38393.69 35094.46 334
iter_conf05_1188.91 26988.32 26690.66 26993.95 30178.09 29886.98 33993.06 29479.35 31887.64 34489.80 34880.25 28098.96 11185.18 25598.69 15394.95 317
bld_raw_dy_0_6490.86 21290.99 21490.47 27493.95 30177.88 30393.99 14498.93 777.75 33097.03 6690.61 34481.82 26898.58 17685.18 25599.61 2694.95 317
IterMVS-SCA-FT91.65 19991.55 19991.94 22193.89 30379.22 28187.56 32993.51 28691.53 12395.37 14996.62 15178.65 29098.90 11891.89 11294.95 32097.70 194
UGNet93.08 16192.50 17994.79 10893.87 30487.99 12595.07 10294.26 27390.64 14487.33 35097.67 6886.89 21398.49 18588.10 21098.71 15097.91 171
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM81.91 35180.11 36187.31 33593.87 30472.32 36084.02 38193.22 29169.47 38376.13 40289.84 34772.15 33197.23 28653.27 40489.02 38692.37 371
CANet92.38 18591.99 19093.52 16893.82 30683.46 21291.14 24397.00 15889.81 15986.47 35494.04 26787.90 19599.21 7889.50 17898.27 19497.90 172
test_fmvs392.42 18392.40 18292.46 20793.80 30787.28 13693.86 14897.05 15576.86 33796.25 10298.66 1882.87 25391.26 38295.44 2596.83 27498.82 82
HY-MVS82.50 1886.81 31285.93 31489.47 29793.63 30877.93 30094.02 14191.58 32375.68 34283.64 37693.64 28077.40 30297.42 27871.70 37392.07 37393.05 364
test_vis1_n_192089.45 25389.85 24188.28 32293.59 30976.71 32290.67 25697.78 9979.67 31290.30 29996.11 18476.62 31492.17 37890.31 15493.57 35195.96 280
MVS_Test92.57 18093.29 15890.40 27893.53 31075.85 33192.52 19196.96 16188.73 18192.35 26196.70 14790.77 15398.37 20092.53 9895.49 30596.99 237
EU-MVSNet87.39 30086.71 30489.44 29893.40 31176.11 32894.93 10890.00 33457.17 40295.71 13297.37 9064.77 36597.68 26492.67 9594.37 33494.52 333
MS-PatchMatch88.05 28587.75 28388.95 30793.28 31277.93 30087.88 32592.49 30875.42 34592.57 25193.59 28480.44 27894.24 36681.28 30092.75 36594.69 331
GA-MVS87.70 29086.82 30190.31 27993.27 31377.22 31384.72 37592.79 30085.11 25189.82 30890.07 34566.80 35297.76 25784.56 27094.27 33795.96 280
pmmvs587.87 28787.14 29590.07 28793.26 31476.97 31888.89 30992.18 31173.71 35788.36 33393.89 27576.86 31396.73 31280.32 30796.81 27596.51 254
IterMVS90.18 23590.16 23390.21 28493.15 31575.98 33087.56 32992.97 29686.43 22294.09 19596.40 16278.32 29497.43 27787.87 21794.69 32897.23 226
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet78.83 36980.60 35673.51 38793.07 31647.37 41187.10 33878.00 40268.94 38477.53 40097.26 10271.45 33594.62 35763.28 39688.74 38778.55 402
diffmvspermissive91.74 19791.93 19291.15 25393.06 31778.17 29788.77 31497.51 12086.28 22392.42 25793.96 27288.04 19197.46 27590.69 14396.67 28097.82 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D86.15 31584.27 32691.79 22593.04 31881.28 24287.17 33786.14 36179.57 31383.65 37588.66 36357.10 38698.18 21587.74 21995.40 30895.90 285
FMVSNet390.78 21590.32 23292.16 21693.03 31979.92 26492.54 19094.95 25486.17 22895.10 16596.01 18969.97 34098.75 14686.74 23398.38 18397.82 183
ETVMVS79.85 36577.94 37285.59 35392.97 32066.20 38786.13 36080.99 39381.41 29683.52 37883.89 39341.81 41094.98 35656.47 40294.25 33895.61 300
thisisatest051584.72 32682.99 33689.90 29192.96 32175.33 33684.36 37883.42 38377.37 33388.27 33586.65 37753.94 39298.72 15182.56 28597.40 25395.67 295
testing9183.56 33682.45 34086.91 34092.92 32267.29 37886.33 35788.07 34786.22 22584.26 37185.76 38448.15 39997.17 29176.27 34794.08 34596.27 267
PAPR87.65 29386.77 30390.27 28192.85 32377.38 31088.56 31996.23 20776.82 33984.98 36589.75 35386.08 22497.16 29372.33 36993.35 35596.26 268
iter_conf0588.94 26888.09 27991.50 23892.74 32476.97 31892.80 18095.92 22082.82 28293.65 21295.37 22349.41 39799.13 8890.82 13899.28 7998.40 129
testing1181.98 35080.52 35786.38 34992.69 32567.13 37985.79 36484.80 37782.16 29181.19 39485.41 38745.24 40196.88 30774.14 35993.24 35795.14 310
test_vis3_rt90.40 22690.03 23791.52 23792.58 32688.95 10390.38 26697.72 10373.30 35997.79 3097.51 8377.05 30787.10 39789.03 19394.89 32198.50 121
test_vis1_n89.01 26489.01 25389.03 30692.57 32782.46 22992.62 18896.06 21473.02 36290.40 29695.77 20274.86 32189.68 39090.78 14094.98 31994.95 317
testing9982.94 34181.72 34486.59 34392.55 32866.53 38486.08 36185.70 36685.47 24583.95 37385.70 38545.87 40097.07 29776.58 34493.56 35296.17 273
EI-MVSNet-Vis-set94.36 11994.28 12794.61 11792.55 32885.98 17392.44 19794.69 26393.70 6196.12 11195.81 19791.24 14098.86 12593.76 5498.22 20198.98 60
testing22280.54 36178.53 36886.58 34492.54 33068.60 37686.24 35882.72 38583.78 26982.68 38484.24 39239.25 41195.94 33560.25 39895.09 31795.20 306
EI-MVSNet-UG-set94.35 12094.27 12994.59 12192.46 33185.87 17692.42 19994.69 26393.67 6496.13 11095.84 19691.20 14398.86 12593.78 5198.23 19999.03 52
FMVSNet587.82 28986.56 30691.62 23392.31 33279.81 26893.49 15994.81 26083.26 27291.36 27896.93 12952.77 39597.49 27476.07 34898.03 21797.55 205
c3_l91.32 20891.42 20491.00 25892.29 33376.79 32187.52 33296.42 19985.76 23594.72 18493.89 27582.73 25698.16 21790.93 13798.55 16798.04 154
dmvs_re84.69 32783.94 32986.95 33992.24 33482.93 22389.51 29387.37 35384.38 26385.37 35985.08 38972.44 32986.59 39868.05 38691.03 38191.33 378
MDA-MVSNet_test_wron88.16 28488.23 27487.93 32892.22 33573.71 34880.71 39388.84 33682.52 28694.88 17795.14 22782.70 25793.61 36983.28 27893.80 34896.46 259
YYNet188.17 28388.24 27387.93 32892.21 33673.62 34980.75 39288.77 33782.51 28794.99 17295.11 22982.70 25793.70 36883.33 27793.83 34796.48 258
CANet_DTU89.85 24789.17 24991.87 22292.20 33780.02 26190.79 25195.87 22286.02 23082.53 38591.77 32480.01 28198.57 17785.66 25297.70 23797.01 236
test_cas_vis1_n_192088.25 28288.27 27188.20 32492.19 33878.92 28689.45 29595.44 23975.29 34993.23 22895.65 20771.58 33490.23 38888.05 21293.55 35395.44 303
mvs_anonymous90.37 23091.30 20887.58 33292.17 33968.00 37789.84 28494.73 26283.82 26893.22 22997.40 8887.54 19997.40 28087.94 21695.05 31897.34 220
EI-MVSNet92.99 16493.26 16292.19 21292.12 34079.21 28292.32 20494.67 26591.77 11395.24 15995.85 19487.14 20798.49 18591.99 10898.26 19598.86 78
CVMVSNet85.16 32284.72 32086.48 34592.12 34070.19 36892.32 20488.17 34456.15 40390.64 29295.85 19467.97 34796.69 31388.78 19990.52 38292.56 369
test_fmvs1_n88.73 27588.38 26589.76 29392.06 34282.53 22792.30 20796.59 18971.14 37192.58 25095.41 22068.55 34389.57 39291.12 13195.66 30197.18 229
eth_miper_zixun_eth90.72 21690.61 22491.05 25492.04 34376.84 32086.91 34296.67 18485.21 24794.41 18993.92 27379.53 28498.26 20889.76 17397.02 26598.06 151
SCA87.43 29987.21 29388.10 32692.01 34471.98 36189.43 29688.11 34682.26 29088.71 32792.83 30078.65 29097.59 26879.61 32093.30 35694.75 328
dmvs_testset78.23 37078.99 36575.94 38591.99 34555.34 40888.86 31078.70 40082.69 28381.64 39279.46 40075.93 31785.74 40048.78 40682.85 39986.76 393
UWE-MVS80.29 36379.10 36483.87 36991.97 34659.56 40386.50 35677.43 40475.40 34687.79 34388.10 36944.08 40596.90 30664.23 39396.36 28795.14 310
test_fmvs290.62 22190.40 23091.29 24691.93 34785.46 18792.70 18496.48 19774.44 35294.91 17597.59 7375.52 31990.57 38493.44 6796.56 28297.84 180
cl____90.65 21990.56 22690.91 26291.85 34876.98 31786.75 34795.36 24485.53 24294.06 19894.89 23777.36 30597.98 23390.27 15798.98 11497.76 189
DIV-MVS_self_test90.65 21990.56 22690.91 26291.85 34876.99 31686.75 34795.36 24485.52 24494.06 19894.89 23777.37 30497.99 23290.28 15698.97 11997.76 189
our_test_387.55 29687.59 28687.44 33491.76 35070.48 36783.83 38290.55 33279.79 30992.06 27092.17 31778.63 29295.63 33984.77 26794.73 32696.22 269
ppachtmachnet_test88.61 27788.64 26088.50 31891.76 35070.99 36684.59 37692.98 29579.30 32092.38 25993.53 28679.57 28397.45 27686.50 24297.17 26097.07 231
Syy-MVS84.81 32584.93 31984.42 36591.71 35263.36 39985.89 36281.49 38981.03 29985.13 36281.64 39877.44 30195.00 35385.94 24994.12 34294.91 322
myMVS_eth3d79.62 36678.26 36983.72 37091.71 35261.25 40185.89 36281.49 38981.03 29985.13 36281.64 39832.12 41295.00 35371.17 37994.12 34294.91 322
131486.46 31486.33 31186.87 34191.65 35474.54 34091.94 22094.10 27574.28 35384.78 36787.33 37683.03 25195.00 35378.72 32791.16 37991.06 381
WB-MVSnew84.20 33183.89 33085.16 35991.62 35566.15 38888.44 32181.00 39276.23 34187.98 33987.77 37184.98 23693.35 37262.85 39794.10 34495.98 279
miper_ehance_all_eth90.48 22390.42 22990.69 26891.62 35576.57 32486.83 34596.18 21183.38 27094.06 19892.66 30782.20 26198.04 22489.79 17297.02 26597.45 210
cascas87.02 31086.28 31289.25 30491.56 35776.45 32584.33 37996.78 17671.01 37386.89 35385.91 38381.35 27096.94 30283.09 28095.60 30294.35 337
baseline283.38 33781.54 34788.90 30891.38 35872.84 35688.78 31381.22 39178.97 32279.82 39787.56 37261.73 37897.80 25074.30 35890.05 38496.05 277
miper_lstm_enhance89.90 24689.80 24290.19 28691.37 35977.50 30883.82 38395.00 25284.84 25793.05 23494.96 23576.53 31695.20 35289.96 16998.67 15797.86 177
mvsany_test389.11 26088.21 27691.83 22391.30 36090.25 7988.09 32378.76 39976.37 34096.43 9198.39 3383.79 24390.43 38786.57 23894.20 33994.80 325
IB-MVS77.21 1983.11 33881.05 35089.29 30291.15 36175.85 33185.66 36686.00 36379.70 31182.02 38986.61 37848.26 39898.39 19377.84 33292.22 37193.63 354
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS84.98 32484.30 32587.01 33791.03 36277.69 30791.94 22094.16 27459.36 40184.23 37287.50 37485.66 22896.80 31071.79 37193.05 36386.54 394
CR-MVSNet87.89 28687.12 29790.22 28391.01 36378.93 28492.52 19192.81 29873.08 36189.10 31796.93 12967.11 34997.64 26788.80 19892.70 36694.08 340
RPMNet90.31 23490.14 23690.81 26691.01 36378.93 28492.52 19198.12 5491.91 10189.10 31796.89 13268.84 34299.41 3990.17 16292.70 36694.08 340
new_pmnet81.22 35481.01 35281.86 37690.92 36570.15 36984.03 38080.25 39770.83 37485.97 35789.78 35267.93 34884.65 40267.44 38891.90 37590.78 382
PatchT87.51 29788.17 27785.55 35490.64 36666.91 38192.02 21686.09 36292.20 9389.05 31997.16 11164.15 36796.37 32489.21 18992.98 36493.37 359
Patchmatch-test86.10 31686.01 31386.38 34990.63 36774.22 34689.57 29186.69 35785.73 23689.81 30992.83 30065.24 36391.04 38377.82 33495.78 29993.88 348
PVSNet_070.34 2174.58 37172.96 37479.47 38290.63 36766.24 38673.26 39683.40 38463.67 39878.02 39978.35 40272.53 32889.59 39156.68 40160.05 40682.57 400
PMMVS281.31 35383.44 33274.92 38690.52 36946.49 41269.19 40085.23 37584.30 26487.95 34094.71 24676.95 31084.36 40364.07 39498.09 21293.89 347
tpm84.38 32984.08 32785.30 35790.47 37063.43 39889.34 29985.63 36877.24 33587.62 34695.03 23361.00 38197.30 28479.26 32491.09 38095.16 308
wuyk23d87.83 28890.79 22078.96 38390.46 37188.63 11092.72 18290.67 33191.65 11998.68 1197.64 7096.06 1577.53 40559.84 39999.41 5670.73 403
Patchmtry90.11 23989.92 23990.66 26990.35 37277.00 31592.96 17592.81 29890.25 15394.74 18296.93 12967.11 34997.52 27185.17 25798.98 11497.46 209
test_f86.65 31387.13 29685.19 35890.28 37386.11 17186.52 35591.66 32169.76 38195.73 13197.21 10969.51 34181.28 40489.15 19094.40 33288.17 390
CHOSEN 280x42080.04 36477.97 37186.23 35190.13 37474.53 34172.87 39889.59 33566.38 39176.29 40185.32 38856.96 38795.36 34769.49 38494.72 32788.79 388
MVSTER89.32 25688.75 25991.03 25590.10 37576.62 32390.85 24994.67 26582.27 28995.24 15995.79 19861.09 38098.49 18590.49 14698.26 19597.97 166
tpm281.46 35280.35 35984.80 36189.90 37665.14 39290.44 26285.36 37165.82 39482.05 38892.44 31157.94 38596.69 31370.71 38088.49 38892.56 369
cl2289.02 26288.50 26290.59 27289.76 37776.45 32586.62 35294.03 27682.98 28092.65 24792.49 30872.05 33297.53 27088.93 19497.02 26597.78 187
test0.0.03 182.48 34481.47 34885.48 35589.70 37873.57 35084.73 37381.64 38883.07 27888.13 33786.61 37862.86 37489.10 39566.24 39190.29 38393.77 350
test-LLR83.58 33583.17 33484.79 36289.68 37966.86 38283.08 38484.52 37883.07 27882.85 38284.78 39062.86 37493.49 37082.85 28194.86 32294.03 343
test-mter81.21 35580.01 36284.79 36289.68 37966.86 38283.08 38484.52 37873.85 35682.85 38284.78 39043.66 40693.49 37082.85 28194.86 32294.03 343
DSMNet-mixed82.21 34681.56 34584.16 36789.57 38170.00 37290.65 25777.66 40354.99 40483.30 38097.57 7477.89 29890.50 38666.86 39095.54 30491.97 373
PatchmatchNetpermissive85.22 32184.64 32186.98 33889.51 38269.83 37390.52 26087.34 35478.87 32487.22 35192.74 30466.91 35196.53 31581.77 29486.88 39194.58 332
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.88 33189.42 38361.52 40088.74 31587.41 35273.99 35584.96 36694.01 27065.25 36295.53 34078.02 33093.16 359
CostFormer83.09 33982.21 34285.73 35289.27 38467.01 38090.35 26786.47 35970.42 37883.52 37893.23 29361.18 37996.85 30877.21 33988.26 38993.34 360
ADS-MVSNet284.01 33282.20 34389.41 29989.04 38576.37 32787.57 32790.98 32772.71 36584.46 36892.45 30968.08 34596.48 31870.58 38183.97 39595.38 304
ADS-MVSNet82.25 34581.55 34684.34 36689.04 38565.30 39087.57 32785.13 37672.71 36584.46 36892.45 30968.08 34592.33 37770.58 38183.97 39595.38 304
tpm cat180.61 36079.46 36384.07 36888.78 38765.06 39489.26 30288.23 34262.27 39981.90 39089.66 35562.70 37695.29 35071.72 37280.60 40291.86 376
CMPMVSbinary68.83 2287.28 30285.67 31692.09 21888.77 38885.42 18890.31 26994.38 26970.02 38088.00 33893.30 29073.78 32694.03 36775.96 35096.54 28396.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall88.42 27987.87 28290.07 28788.67 38975.52 33485.10 37095.59 23375.68 34292.49 25289.45 35778.96 28797.88 24187.86 21897.02 26596.81 245
test_fmvs187.59 29587.27 29188.54 31688.32 39081.26 24390.43 26595.72 22670.55 37791.70 27494.63 24868.13 34489.42 39390.59 14495.34 31194.94 321
test_vis1_rt85.58 31984.58 32288.60 31587.97 39186.76 15085.45 36893.59 28366.43 39087.64 34489.20 36079.33 28585.38 40181.59 29789.98 38593.66 353
tpmrst82.85 34382.93 33782.64 37487.65 39258.99 40590.14 27487.90 34975.54 34483.93 37491.63 32766.79 35495.36 34781.21 30281.54 40193.57 358
JIA-IIPM85.08 32383.04 33591.19 25287.56 39386.14 17089.40 29884.44 38088.98 17682.20 38697.95 5356.82 38896.15 32876.55 34583.45 39791.30 379
TESTMET0.1,179.09 36878.04 37082.25 37587.52 39464.03 39783.08 38480.62 39570.28 37980.16 39683.22 39544.13 40490.56 38579.95 31493.36 35492.15 372
gg-mvs-nofinetune82.10 34981.02 35185.34 35687.46 39571.04 36494.74 11267.56 40896.44 2379.43 39898.99 645.24 40196.15 32867.18 38992.17 37288.85 387
pmmvs380.83 35878.96 36686.45 34687.23 39677.48 30984.87 37282.31 38663.83 39785.03 36489.50 35649.66 39693.10 37373.12 36695.10 31688.78 389
tpmvs84.22 33083.97 32884.94 36087.09 39765.18 39191.21 24288.35 34082.87 28185.21 36090.96 33665.24 36396.75 31179.60 32285.25 39492.90 366
gm-plane-assit87.08 39859.33 40471.22 37083.58 39497.20 28873.95 360
MVEpermissive59.87 2373.86 37272.65 37577.47 38487.00 39974.35 34361.37 40260.93 41067.27 38869.69 40586.49 38081.24 27472.33 40656.45 40383.45 39785.74 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 31884.37 32489.40 30086.30 40074.33 34491.64 23388.26 34184.84 25772.96 40489.85 34671.27 33697.69 26376.60 34397.62 24296.18 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test183.91 33382.93 33786.84 34286.18 40185.93 17481.11 39175.03 40670.80 37688.57 33194.63 24883.08 25087.38 39680.39 30686.57 39287.21 392
dp79.28 36778.62 36781.24 37985.97 40256.45 40686.91 34285.26 37472.97 36381.45 39389.17 36256.01 39095.45 34573.19 36576.68 40391.82 377
EPMVS81.17 35680.37 35883.58 37185.58 40365.08 39390.31 26971.34 40777.31 33485.80 35891.30 33059.38 38392.70 37679.99 31382.34 40092.96 365
E-PMN80.72 35980.86 35380.29 38185.11 40468.77 37572.96 39781.97 38787.76 20383.25 38183.01 39662.22 37789.17 39477.15 34094.31 33682.93 398
GG-mvs-BLEND83.24 37385.06 40571.03 36594.99 10765.55 40974.09 40375.51 40344.57 40394.46 36059.57 40087.54 39084.24 396
EMVS80.35 36280.28 36080.54 38084.73 40669.07 37472.54 39980.73 39487.80 20181.66 39181.73 39762.89 37389.84 38975.79 35194.65 32982.71 399
EPNet89.80 24988.25 27294.45 12983.91 40786.18 16993.87 14787.07 35691.16 13380.64 39594.72 24578.83 28898.89 12085.17 25798.89 12598.28 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS83.00 34081.11 34988.66 31483.81 40886.44 16182.24 38885.65 36761.75 40082.07 38785.64 38679.75 28291.59 38175.99 34993.09 36187.94 391
KD-MVS_2432*160082.17 34780.75 35486.42 34782.04 40970.09 37081.75 38990.80 32982.56 28490.37 29789.30 35842.90 40796.11 33074.47 35692.55 36893.06 362
miper_refine_blended82.17 34780.75 35486.42 34782.04 40970.09 37081.75 38990.80 32982.56 28490.37 29789.30 35842.90 40796.11 33074.47 35692.55 36893.06 362
DeepMVS_CXcopyleft53.83 38970.38 41164.56 39548.52 41333.01 40565.50 40674.21 40456.19 38946.64 40838.45 40870.07 40450.30 404
test_method50.44 37348.94 37654.93 38839.68 41212.38 41528.59 40390.09 3336.82 40641.10 40878.41 40154.41 39170.69 40750.12 40551.26 40781.72 401
tmp_tt37.97 37444.33 37718.88 39011.80 41321.54 41463.51 40145.66 4144.23 40751.34 40750.48 40559.08 38422.11 40944.50 40768.35 40513.00 405
test1239.49 37612.01 3791.91 3912.87 4141.30 41682.38 3871.34 4161.36 4092.84 4106.56 4082.45 4140.97 4102.73 4095.56 4083.47 406
testmvs9.02 37711.42 3801.81 3922.77 4151.13 41779.44 3941.90 4151.18 4102.65 4116.80 4071.95 4150.87 4112.62 4103.45 4093.44 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
eth-test20.00 416
eth-test0.00 416
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.35 37531.13 3780.00 3930.00 4160.00 4180.00 40495.58 2350.00 4110.00 41291.15 33293.43 860.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.56 37810.09 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41190.77 1530.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.56 37810.08 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41290.69 3410.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS61.25 40174.55 355
PC_three_145275.31 34895.87 12295.75 20392.93 10396.34 32787.18 22898.68 15598.04 154
test_241102_TWO98.10 5791.95 9897.54 4097.25 10395.37 3099.35 6093.29 7499.25 8398.49 123
test_0728_THIRD93.26 7197.40 5297.35 9694.69 6199.34 6393.88 4799.42 5298.89 75
GSMVS94.75 328
sam_mvs166.64 35594.75 328
sam_mvs66.41 356
MTGPAbinary97.62 108
test_post190.21 2715.85 41065.36 36196.00 33379.61 320
test_post6.07 40965.74 36095.84 337
patchmatchnet-post91.71 32566.22 35897.59 268
MTMP94.82 11054.62 412
test9_res88.16 20998.40 17997.83 181
agg_prior287.06 23198.36 18897.98 163
test_prior489.91 8290.74 253
test_prior290.21 27189.33 16990.77 28994.81 24090.41 16388.21 20598.55 167
旧先验290.00 27968.65 38592.71 24696.52 31685.15 259
新几何290.02 278
无先验89.94 28095.75 22570.81 37598.59 17481.17 30394.81 324
原ACMM289.34 299
testdata298.03 22580.24 310
segment_acmp92.14 121
testdata188.96 30888.44 189
plane_prior597.81 9498.95 11489.26 18698.51 17398.60 116
plane_prior495.59 208
plane_prior388.43 11990.35 15293.31 220
plane_prior294.56 12191.74 115
plane_prior88.12 12293.01 17388.98 17698.06 214
n20.00 417
nn0.00 417
door-mid92.13 315
test1196.65 185
door91.26 324
HQP5-MVS84.89 193
BP-MVS86.55 240
HQP4-MVS88.81 32298.61 17098.15 146
HQP3-MVS97.31 13597.73 234
HQP2-MVS84.76 237
MDTV_nov1_ep13_2view42.48 41388.45 32067.22 38983.56 37766.80 35272.86 36794.06 342
ACMMP++_ref98.82 138
ACMMP++99.25 83
Test By Simon90.61 159