This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 2
UniMVSNet_ETH3D97.13 997.72 495.35 8699.51 287.38 13797.70 897.54 12398.16 398.94 399.33 397.84 499.08 10090.73 14999.73 1399.59 14
FOURS199.21 394.68 1698.45 498.81 1197.73 798.27 21
PEN-MVS96.69 2497.39 994.61 12099.16 484.50 19996.54 3498.05 7398.06 598.64 1498.25 4095.01 5399.65 592.95 9499.83 599.68 6
MIMVSNet195.52 7395.45 8495.72 7599.14 589.02 10596.23 5996.87 17893.73 6797.87 3198.49 3190.73 16199.05 10586.43 25399.60 2599.10 47
PS-CasMVS96.69 2497.43 694.49 13099.13 684.09 20996.61 3297.97 8697.91 698.64 1498.13 4395.24 4099.65 593.39 7799.84 399.72 4
DTE-MVSNet96.74 2197.43 694.67 11799.13 684.68 19896.51 3697.94 9298.14 498.67 1398.32 3795.04 5099.69 493.27 8299.82 799.62 12
pmmvs696.80 1697.36 1095.15 10099.12 887.82 13296.68 2997.86 9596.10 3398.14 2899.28 597.94 398.21 21691.38 13899.69 1499.42 20
HPM-MVS_fast97.01 1096.89 1897.39 2599.12 893.92 3297.16 1498.17 5393.11 8096.48 9297.36 10096.92 699.34 6594.31 4499.38 5798.92 72
MP-MVS-pluss96.08 5295.92 6396.57 4899.06 1091.21 6993.25 17598.32 3087.89 20896.86 7697.38 9695.55 2699.39 5295.47 2399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OurMVSNet-221017-096.80 1696.75 2196.96 3999.03 1191.85 6197.98 798.01 8194.15 5898.93 499.07 788.07 19599.57 1595.86 1599.69 1499.46 19
WR-MVS_H96.60 2997.05 1795.24 9499.02 1286.44 16496.78 2698.08 6697.42 1098.48 1797.86 6591.76 13499.63 894.23 4699.84 399.66 8
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1197.41 1197.28 5898.46 3394.62 6698.84 13494.64 3799.53 3798.99 56
testf196.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24389.32 19099.23 8698.19 149
APD_test296.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24389.32 19099.23 8698.19 149
CP-MVSNet96.19 4996.80 2094.38 13598.99 1683.82 21296.31 5297.53 12597.60 898.34 2097.52 8691.98 12799.63 893.08 9099.81 899.70 5
PMVScopyleft87.21 1494.97 9895.33 9193.91 15298.97 1797.16 395.54 9295.85 23096.47 2593.40 22797.46 9395.31 3795.47 35486.18 25798.78 14789.11 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MTAPA96.65 2696.38 3797.47 1998.95 1894.05 2795.88 7497.62 11594.46 5496.29 10196.94 13693.56 8499.37 6094.29 4599.42 5098.99 56
ACMMP_NAP96.21 4896.12 5096.49 5298.90 1991.42 6794.57 12998.03 7890.42 15796.37 9597.35 10395.68 2199.25 8194.44 4199.34 6398.80 85
HPM-MVScopyleft96.81 1596.62 2697.36 2798.89 2093.53 4297.51 1098.44 2092.35 9395.95 11996.41 17096.71 899.42 3693.99 5299.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDDNet94.03 13894.27 13493.31 18098.87 2182.36 23695.51 9391.78 32997.19 1396.32 9898.60 2584.24 24698.75 15287.09 24098.83 14098.81 84
TSAR-MVS + MP.94.96 9994.75 11295.57 8098.86 2288.69 11096.37 4696.81 18285.23 25794.75 18697.12 12391.85 12999.40 4993.45 7298.33 19398.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EGC-MVSNET80.97 36975.73 38696.67 4698.85 2394.55 1996.83 2296.60 1952.44 4235.32 42498.25 4092.24 12098.02 23391.85 12299.21 9097.45 220
mvs_tets96.83 1296.71 2297.17 3198.83 2492.51 5296.58 3397.61 11787.57 21798.80 898.90 1196.50 999.59 1496.15 1399.47 4199.40 22
APD_test195.91 5795.42 8797.36 2798.82 2596.62 795.64 8497.64 11393.38 7695.89 12497.23 11293.35 9297.66 27188.20 21698.66 16397.79 196
PS-MVSNAJss96.01 5496.04 5695.89 6998.82 2588.51 11995.57 8997.88 9388.72 18998.81 798.86 1290.77 15799.60 1095.43 2599.53 3799.57 15
MP-MVScopyleft96.14 5095.68 7697.51 1798.81 2794.06 2596.10 6397.78 10692.73 8393.48 22296.72 15494.23 7699.42 3691.99 11799.29 7599.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LTVRE_ROB93.87 197.93 398.16 297.26 3098.81 2793.86 3599.07 298.98 997.01 1598.92 598.78 1695.22 4298.61 17696.85 499.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ZNCC-MVS96.42 3996.20 4597.07 3498.80 2992.79 5096.08 6598.16 5691.74 12195.34 15496.36 17895.68 2199.44 3294.41 4299.28 8098.97 62
jajsoiax96.59 3196.42 3397.12 3398.76 3092.49 5396.44 4397.42 13286.96 22798.71 1198.72 1995.36 3499.56 1895.92 1499.45 4599.32 27
tt080595.42 8095.93 6293.86 15598.75 3188.47 12097.68 994.29 27896.48 2495.38 15093.63 29494.89 5997.94 24295.38 2796.92 27895.17 320
MSP-MVS95.34 8394.63 12297.48 1898.67 3294.05 2796.41 4598.18 4991.26 13595.12 16995.15 23786.60 22499.50 2293.43 7696.81 28298.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GST-MVS96.24 4795.99 5997.00 3798.65 3392.71 5195.69 8298.01 8192.08 10295.74 13296.28 18495.22 4299.42 3693.17 8699.06 10398.88 77
SteuartSystems-ACMMP96.40 4196.30 4096.71 4498.63 3491.96 5995.70 8098.01 8193.34 7796.64 8796.57 16294.99 5499.36 6193.48 6999.34 6398.82 82
Skip Steuart: Steuart Systems R&D Blog.
region2R96.41 4096.09 5197.38 2698.62 3593.81 3996.32 5197.96 8792.26 9695.28 15996.57 16295.02 5299.41 4293.63 6199.11 10198.94 66
mPP-MVS96.46 3596.05 5597.69 698.62 3594.65 1796.45 4197.74 10892.59 8795.47 14596.68 15694.50 7199.42 3693.10 8899.26 8298.99 56
ACMMPcopyleft96.61 2896.34 3897.43 2298.61 3793.88 3396.95 2098.18 4992.26 9696.33 9796.84 14495.10 4899.40 4993.47 7099.33 6599.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VPNet93.08 16693.76 14891.03 26398.60 3875.83 33991.51 24495.62 23591.84 11395.74 13297.10 12689.31 18398.32 20785.07 27299.06 10398.93 68
ACMMPR96.46 3596.14 4997.41 2498.60 3893.82 3796.30 5697.96 8792.35 9395.57 14096.61 16094.93 5899.41 4293.78 5799.15 9899.00 54
PGM-MVS96.32 4495.94 6097.43 2298.59 4093.84 3695.33 9898.30 3391.40 13295.76 12996.87 14195.26 3999.45 3192.77 9699.21 9099.00 54
XVS96.49 3396.18 4697.44 2098.56 4193.99 3096.50 3797.95 8994.58 5094.38 19696.49 16494.56 6999.39 5293.57 6399.05 10698.93 68
X-MVStestdata90.70 22588.45 27397.44 2098.56 4193.99 3096.50 3797.95 8994.58 5094.38 19626.89 42194.56 6999.39 5293.57 6399.05 10698.93 68
ACMH88.36 1296.59 3197.43 694.07 14498.56 4185.33 19296.33 4998.30 3394.66 4998.72 998.30 3897.51 598.00 23694.87 3499.59 2798.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_0728_SECOND94.88 10798.55 4486.72 15595.20 10698.22 4499.38 5893.44 7399.31 7098.53 122
test_djsdf96.62 2796.49 3097.01 3698.55 4491.77 6397.15 1597.37 13488.98 18398.26 2498.86 1293.35 9299.60 1096.41 999.45 4599.66 8
v7n96.82 1397.31 1195.33 8898.54 4686.81 15296.83 2298.07 6996.59 2398.46 1898.43 3592.91 10799.52 2096.25 1299.76 1099.65 10
ACMH+88.43 1196.48 3496.82 1995.47 8398.54 4689.06 10495.65 8398.61 1596.10 3398.16 2797.52 8696.90 798.62 17590.30 16499.60 2598.72 96
SixPastTwentyTwo94.91 10095.21 9693.98 14698.52 4883.19 22395.93 7194.84 26494.86 4898.49 1698.74 1881.45 27599.60 1094.69 3699.39 5699.15 39
SED-MVS96.00 5596.41 3694.76 11298.51 4986.97 14895.21 10498.10 6391.95 10497.63 3897.25 11096.48 1099.35 6293.29 8099.29 7597.95 174
IU-MVS98.51 4986.66 15896.83 18172.74 37795.83 12693.00 9299.29 7598.64 111
test_241102_ONE98.51 4986.97 14898.10 6391.85 11097.63 3897.03 13096.48 1098.95 120
DVP-MVScopyleft95.82 6296.18 4694.72 11498.51 4986.69 15695.20 10697.00 16691.85 11097.40 5497.35 10395.58 2499.34 6593.44 7399.31 7098.13 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 4986.69 15695.34 9798.18 4991.85 11097.63 3897.37 9795.58 24
HFP-MVS96.39 4296.17 4897.04 3598.51 4993.37 4396.30 5697.98 8492.35 9395.63 13796.47 16595.37 3299.27 8093.78 5799.14 9998.48 127
Baseline_NR-MVSNet94.47 11995.09 10292.60 20898.50 5580.82 25792.08 22296.68 19193.82 6696.29 10198.56 2790.10 17597.75 26490.10 17599.66 2199.24 32
OPM-MVS95.61 7095.45 8496.08 5798.49 5691.00 7292.65 19697.33 14290.05 16296.77 8296.85 14295.04 5098.56 18392.77 9699.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test95.32 8495.88 6593.62 16698.49 5681.77 24295.90 7398.32 3093.93 6397.53 4597.56 8188.48 18899.40 4992.91 9599.83 599.68 6
reproduce_model97.35 597.24 1297.70 598.44 5895.08 1295.88 7498.50 1896.62 2298.27 2197.93 5794.57 6899.50 2295.57 2099.35 5998.52 123
XVG-ACMP-BASELINE95.68 6895.34 9096.69 4598.40 5993.04 4594.54 13398.05 7390.45 15696.31 9996.76 14892.91 10798.72 15791.19 13999.42 5098.32 138
ACMM88.83 996.30 4696.07 5496.97 3898.39 6092.95 4894.74 12198.03 7890.82 14597.15 6196.85 14296.25 1499.00 11293.10 8899.33 6598.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs195.43 7795.94 6093.93 15198.38 6185.08 19595.46 9497.12 15991.84 11397.28 5898.46 3395.30 3897.71 26890.17 17199.42 5098.99 56
COLMAP_ROBcopyleft91.06 596.75 2096.62 2697.13 3298.38 6194.31 2196.79 2598.32 3096.69 1996.86 7697.56 8195.48 2798.77 15190.11 17399.44 4898.31 140
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
reproduce-ours97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 133
our_new_method97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 133
TransMVSNet (Re)95.27 9196.04 5692.97 18898.37 6381.92 24195.07 11196.76 18793.97 6297.77 3498.57 2695.72 2097.90 24388.89 20799.23 8699.08 48
LPG-MVS_test96.38 4396.23 4396.84 4298.36 6692.13 5695.33 9898.25 3791.78 11797.07 6497.22 11496.38 1299.28 7892.07 11599.59 2799.11 44
LGP-MVS_train96.84 4298.36 6692.13 5698.25 3791.78 11797.07 6497.22 11496.38 1299.28 7892.07 11599.59 2799.11 44
CP-MVS96.44 3896.08 5397.54 1598.29 6894.62 1896.80 2498.08 6692.67 8695.08 17396.39 17594.77 6299.42 3693.17 8699.44 4898.58 118
FIs94.90 10195.35 8993.55 16998.28 6981.76 24395.33 9898.14 5793.05 8297.07 6497.18 11887.65 20299.29 7491.72 12699.69 1499.61 13
SMA-MVScopyleft95.77 6495.54 8196.47 5398.27 7091.19 7095.09 10997.79 10586.48 23097.42 5297.51 9094.47 7499.29 7493.55 6599.29 7598.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_one_060198.26 7187.14 14398.18 4994.25 5596.99 7197.36 10095.13 45
TranMVSNet+NR-MVSNet96.07 5396.26 4295.50 8298.26 7187.69 13493.75 15997.86 9595.96 3897.48 4897.14 12195.33 3699.44 3290.79 14799.76 1099.38 23
IS-MVSNet94.49 11894.35 13094.92 10598.25 7386.46 16397.13 1794.31 27796.24 3196.28 10396.36 17882.88 25899.35 6288.19 21799.52 3998.96 64
mamv498.21 297.86 399.26 198.24 7499.36 196.10 6399.32 298.75 299.58 298.70 2091.78 13199.88 198.60 199.67 2098.54 120
UA-Net97.35 597.24 1297.69 698.22 7593.87 3498.42 698.19 4796.95 1695.46 14799.23 693.45 8799.57 1595.34 2999.89 299.63 11
test_part298.21 7689.41 9696.72 83
test_040295.73 6696.22 4494.26 13898.19 7785.77 18293.24 17697.24 15096.88 1897.69 3697.77 7194.12 7899.13 9591.54 13499.29 7597.88 184
ACMP88.15 1395.71 6795.43 8696.54 4998.17 7891.73 6494.24 14098.08 6689.46 17296.61 8996.47 16595.85 1899.12 9690.45 15699.56 3498.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CPTT-MVS94.74 10794.12 13996.60 4798.15 7993.01 4695.84 7697.66 11289.21 18093.28 23295.46 22688.89 18698.98 11389.80 18098.82 14197.80 195
SF-MVS95.88 6095.88 6595.87 7098.12 8089.65 9095.58 8898.56 1791.84 11396.36 9696.68 15694.37 7599.32 7192.41 10899.05 10698.64 111
Vis-MVSNetpermissive95.50 7495.48 8395.56 8198.11 8189.40 9795.35 9698.22 4492.36 9294.11 20198.07 4692.02 12599.44 3293.38 7897.67 24697.85 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVG-OURS-SEG-HR95.38 8195.00 10596.51 5098.10 8294.07 2492.46 20498.13 5890.69 14893.75 21596.25 18898.03 297.02 30892.08 11495.55 31398.45 129
EPP-MVSNet93.91 14393.68 15294.59 12498.08 8385.55 18897.44 1194.03 28394.22 5794.94 17896.19 19082.07 27099.57 1587.28 23798.89 12898.65 106
SR-MVS-dyc-post96.84 1196.60 2897.56 1498.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13094.85 6099.42 3693.49 6798.84 13598.00 166
RE-MVS-def96.66 2398.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13095.40 3193.49 6798.84 13598.00 166
SR-MVS96.70 2396.42 3397.54 1598.05 8694.69 1596.13 6298.07 6995.17 4396.82 7996.73 15395.09 4999.43 3592.99 9398.71 15598.50 124
K. test v393.37 15693.27 16693.66 16498.05 8682.62 23294.35 13686.62 36996.05 3597.51 4698.85 1476.59 32099.65 593.21 8498.20 20898.73 95
lessismore_v093.87 15498.05 8683.77 21380.32 40997.13 6297.91 6277.49 30599.11 9892.62 10298.08 21998.74 94
test111190.39 23690.61 23289.74 30198.04 8971.50 37295.59 8579.72 41189.41 17395.94 12098.14 4270.79 34398.81 14188.52 21499.32 6998.90 74
AllTest94.88 10294.51 12496.00 5898.02 9092.17 5495.26 10298.43 2190.48 15495.04 17496.74 15192.54 11697.86 25185.11 27098.98 11597.98 170
TestCases96.00 5898.02 9092.17 5498.43 2190.48 15495.04 17496.74 15192.54 11697.86 25185.11 27098.98 11597.98 170
anonymousdsp96.74 2196.42 3397.68 898.00 9294.03 2996.97 1997.61 11787.68 21598.45 1998.77 1794.20 7799.50 2296.70 699.40 5599.53 16
XVG-OURS94.72 10894.12 13996.50 5198.00 9294.23 2291.48 24698.17 5390.72 14795.30 15696.47 16587.94 19996.98 30991.41 13797.61 25098.30 141
114514_t90.51 23089.80 25092.63 20598.00 9282.24 23893.40 17297.29 14665.84 40789.40 32894.80 25486.99 21598.75 15283.88 28498.61 16596.89 251
Gipumacopyleft95.31 8795.80 7293.81 15897.99 9590.91 7496.42 4497.95 8996.69 1991.78 28498.85 1491.77 13295.49 35391.72 12699.08 10295.02 329
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVS_3200maxsize96.82 1396.65 2497.32 2997.95 9693.82 3796.31 5298.25 3795.51 4196.99 7197.05 12995.63 2399.39 5293.31 7998.88 13098.75 91
SDMVSNet94.43 12195.02 10392.69 20097.93 9782.88 23091.92 23195.99 22793.65 7295.51 14298.63 2394.60 6796.48 32787.57 23199.35 5998.70 100
sd_testset93.94 14294.39 12692.61 20797.93 9783.24 22093.17 17995.04 25893.65 7295.51 14298.63 2394.49 7295.89 34681.72 30699.35 5998.70 100
DPE-MVScopyleft95.89 5995.88 6595.92 6697.93 9789.83 8893.46 16998.30 3392.37 9197.75 3596.95 13595.14 4499.51 2191.74 12599.28 8098.41 132
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SSC-MVS90.16 24592.96 17081.78 39097.88 10048.48 42290.75 26487.69 36096.02 3796.70 8497.63 7785.60 23697.80 25685.73 26198.60 16799.06 50
HPM-MVS++copyleft95.02 9694.39 12696.91 4197.88 10093.58 4194.09 14996.99 16891.05 14092.40 26895.22 23691.03 15399.25 8192.11 11298.69 15897.90 181
EG-PatchMatch MVS94.54 11794.67 12094.14 14197.87 10286.50 16092.00 22696.74 18888.16 20496.93 7397.61 7893.04 10497.90 24391.60 13098.12 21498.03 164
nrg03096.32 4496.55 2995.62 7897.83 10388.55 11895.77 7898.29 3692.68 8498.03 3097.91 6295.13 4598.95 12093.85 5599.49 4099.36 25
MVSMamba_PlusPlus94.82 10595.89 6491.62 24097.82 10478.88 29596.52 3597.60 11997.14 1494.23 19998.48 3287.01 21499.71 395.43 2598.80 14496.28 278
test250685.42 33084.57 33387.96 33497.81 10566.53 39596.14 6156.35 42489.04 18193.55 22198.10 4442.88 42198.68 16888.09 22199.18 9498.67 104
ECVR-MVScopyleft90.12 24790.16 24190.00 29797.81 10572.68 36695.76 7978.54 41489.04 18195.36 15398.10 4470.51 34598.64 17487.10 23999.18 9498.67 104
UniMVSNet (Re)95.32 8495.15 9895.80 7297.79 10788.91 10792.91 18698.07 6993.46 7496.31 9995.97 20290.14 17299.34 6592.11 11299.64 2399.16 38
VPA-MVSNet95.14 9395.67 7793.58 16897.76 10883.15 22494.58 12897.58 12093.39 7597.05 6798.04 4993.25 9598.51 18989.75 18399.59 2799.08 48
DU-MVS95.28 8895.12 10095.75 7497.75 10988.59 11692.58 19897.81 10193.99 6096.80 8095.90 20390.10 17599.41 4291.60 13099.58 3199.26 30
NR-MVSNet95.28 8895.28 9495.26 9297.75 10987.21 14195.08 11097.37 13493.92 6597.65 3795.90 20390.10 17599.33 7090.11 17399.66 2199.26 30
XXY-MVS92.58 18493.16 16890.84 27297.75 10979.84 27291.87 23596.22 21785.94 24195.53 14197.68 7392.69 11394.48 37083.21 28897.51 25398.21 147
WB-MVS89.44 26392.15 19381.32 39197.73 11248.22 42389.73 29987.98 35895.24 4296.05 11696.99 13485.18 23996.95 31082.45 29897.97 22998.78 87
PVSNet_Blended_VisFu91.63 20891.20 21692.94 19197.73 11283.95 21192.14 22197.46 13078.85 33792.35 27194.98 24584.16 24799.08 10086.36 25496.77 28495.79 302
tfpnnormal94.27 12894.87 10892.48 21297.71 11480.88 25694.55 13295.41 24993.70 6896.67 8697.72 7291.40 14098.18 22087.45 23399.18 9498.36 133
HQP_MVS94.26 12993.93 14295.23 9597.71 11488.12 12594.56 13097.81 10191.74 12193.31 22995.59 22086.93 21798.95 12089.26 19698.51 17798.60 116
plane_prior797.71 11488.68 111
UniMVSNet_NR-MVSNet95.35 8295.21 9695.76 7397.69 11788.59 11692.26 21897.84 9894.91 4796.80 8095.78 21390.42 16699.41 4291.60 13099.58 3199.29 29
APDe-MVScopyleft96.46 3596.64 2595.93 6497.68 11889.38 9896.90 2198.41 2392.52 8897.43 5097.92 6195.11 4799.50 2294.45 4099.30 7298.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS91.39 495.43 7795.33 9195.71 7697.67 11990.17 8493.86 15698.02 8087.35 21996.22 10797.99 5494.48 7399.05 10592.73 9999.68 1797.93 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
KD-MVS_self_test94.10 13694.73 11592.19 21997.66 12079.49 28294.86 11897.12 15989.59 17196.87 7597.65 7590.40 16898.34 20689.08 20299.35 5998.75 91
Vis-MVSNet (Re-imp)90.42 23390.16 24191.20 25997.66 12077.32 31894.33 13787.66 36191.20 13792.99 24595.13 23975.40 32598.28 20977.86 34299.19 9297.99 169
dcpmvs_293.96 14195.01 10490.82 27397.60 12274.04 35593.68 16398.85 1089.80 16797.82 3297.01 13391.14 15199.21 8490.56 15398.59 16899.19 36
FMVSNet194.84 10395.13 9993.97 14797.60 12284.29 20295.99 6796.56 19992.38 9097.03 6898.53 2890.12 17398.98 11388.78 20999.16 9798.65 106
RPSCF95.58 7294.89 10797.62 997.58 12496.30 895.97 7097.53 12592.42 8993.41 22497.78 6791.21 14697.77 26191.06 14197.06 27098.80 85
WR-MVS93.49 15293.72 14992.80 19797.57 12580.03 26790.14 28695.68 23493.70 6896.62 8895.39 23387.21 21099.04 10887.50 23299.64 2399.33 26
CSCG94.69 11094.75 11294.52 12797.55 12687.87 13095.01 11497.57 12192.68 8496.20 10993.44 30091.92 12898.78 14889.11 20199.24 8596.92 249
MCST-MVS92.91 17192.51 18494.10 14397.52 12785.72 18491.36 25097.13 15880.33 31792.91 25094.24 27391.23 14598.72 15789.99 17797.93 23297.86 187
F-COLMAP92.28 19491.06 22195.95 6197.52 12791.90 6093.53 16697.18 15383.98 27688.70 34194.04 28088.41 19098.55 18580.17 32395.99 30397.39 227
9.1494.81 10997.49 12994.11 14798.37 2687.56 21895.38 15096.03 19994.66 6499.08 10090.70 15098.97 120
VDD-MVS94.37 12394.37 12894.40 13497.49 12986.07 17593.97 15393.28 29894.49 5296.24 10597.78 6787.99 19898.79 14588.92 20599.14 9998.34 137
testgi90.38 23791.34 21487.50 34297.49 12971.54 37189.43 30895.16 25588.38 19894.54 19294.68 26092.88 10993.09 38571.60 38697.85 23797.88 184
save fliter97.46 13288.05 12792.04 22497.08 16187.63 216
Anonymous2023121196.60 2997.13 1695.00 10397.46 13286.35 16897.11 1898.24 4097.58 998.72 998.97 993.15 9999.15 9193.18 8599.74 1299.50 18
plane_prior197.38 134
APD-MVScopyleft95.00 9794.69 11695.93 6497.38 13490.88 7594.59 12697.81 10189.22 17995.46 14796.17 19393.42 9099.34 6589.30 19298.87 13397.56 214
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
fmvsm_s_conf0.1_n_a94.26 12994.37 12893.95 15097.36 13685.72 18494.15 14495.44 24683.25 28495.51 14298.05 4792.54 11697.19 29895.55 2197.46 25798.94 66
ITE_SJBPF95.95 6197.34 13793.36 4496.55 20291.93 10694.82 18395.39 23391.99 12697.08 30585.53 26397.96 23097.41 223
Anonymous2024052995.50 7495.83 6994.50 12897.33 13885.93 17895.19 10896.77 18696.64 2197.61 4198.05 4793.23 9698.79 14588.60 21399.04 11198.78 87
test_fmvsmconf0.01_n95.90 5896.09 5195.31 9197.30 13989.21 10094.24 14098.76 1386.25 23497.56 4298.66 2195.73 1998.44 19797.35 398.99 11498.27 143
OMC-MVS94.22 13293.69 15195.81 7197.25 14091.27 6892.27 21797.40 13387.10 22694.56 19195.42 22993.74 8298.11 22586.62 24798.85 13498.06 158
GeoE94.55 11694.68 11994.15 14097.23 14185.11 19494.14 14697.34 14188.71 19095.26 16095.50 22594.65 6599.12 9690.94 14598.40 18398.23 145
ZD-MVS97.23 14190.32 8297.54 12384.40 27394.78 18595.79 21092.76 11299.39 5288.72 21198.40 183
fmvsm_s_conf0.1_n94.19 13594.41 12593.52 17497.22 14384.37 20093.73 16095.26 25384.45 27295.76 12998.00 5291.85 12997.21 29595.62 1797.82 23898.98 60
plane_prior697.21 14488.23 12486.93 217
DP-MVS Recon92.31 19391.88 20093.60 16797.18 14586.87 15191.10 25697.37 13484.92 26692.08 28094.08 27988.59 18798.20 21783.50 28598.14 21295.73 304
新几何193.17 18497.16 14687.29 13894.43 27567.95 40191.29 29194.94 24786.97 21698.23 21581.06 31597.75 24093.98 357
DP-MVS95.62 6995.84 6894.97 10497.16 14688.62 11394.54 13397.64 11396.94 1796.58 9097.32 10793.07 10398.72 15790.45 15698.84 13597.57 212
CHOSEN 1792x268887.19 31485.92 32591.00 26697.13 14879.41 28384.51 38895.60 23664.14 41090.07 31594.81 25278.26 30097.14 30273.34 37595.38 32096.46 270
HyFIR lowres test87.19 31485.51 32792.24 21797.12 14980.51 25885.03 38296.06 22266.11 40691.66 28692.98 31270.12 34699.14 9375.29 36495.23 32497.07 241
ab-mvs92.40 19092.62 18291.74 23497.02 15081.65 24495.84 7695.50 24586.95 22892.95 24997.56 8190.70 16297.50 27879.63 33097.43 25896.06 289
tttt051789.81 25788.90 26792.55 21097.00 15179.73 27795.03 11383.65 39489.88 16595.30 15694.79 25553.64 40399.39 5291.99 11798.79 14698.54 120
h-mvs3392.89 17291.99 19795.58 7996.97 15290.55 8093.94 15494.01 28689.23 17793.95 21096.19 19076.88 31699.14 9391.02 14295.71 31097.04 245
test22296.95 15385.27 19388.83 32493.61 29065.09 40990.74 30194.85 25084.62 24597.36 26193.91 358
CDPH-MVS92.67 18291.83 20295.18 9996.94 15488.46 12190.70 26797.07 16277.38 34492.34 27395.08 24292.67 11498.88 12785.74 26098.57 17098.20 148
CNVR-MVS94.58 11594.29 13195.46 8496.94 15489.35 9991.81 23996.80 18389.66 16993.90 21395.44 22892.80 11198.72 15792.74 9898.52 17598.32 138
EC-MVSNet95.44 7695.62 7894.89 10696.93 15687.69 13496.48 4099.14 793.93 6392.77 25494.52 26693.95 8199.49 2893.62 6299.22 8997.51 217
mmtdpeth95.82 6296.02 5895.23 9596.91 15788.62 11396.49 3999.26 495.07 4493.41 22499.29 490.25 17097.27 29294.49 3999.01 11399.80 3
原ACMM192.87 19496.91 15784.22 20597.01 16576.84 35189.64 32594.46 26788.00 19798.70 16481.53 30998.01 22695.70 307
ambc92.98 18796.88 15983.01 22895.92 7296.38 20996.41 9497.48 9288.26 19197.80 25689.96 17898.93 12598.12 156
testdata91.03 26396.87 16082.01 23994.28 27971.55 38292.46 26495.42 22985.65 23497.38 28982.64 29397.27 26393.70 364
SPE-MVS-test95.32 8495.10 10195.96 6096.86 16190.75 7896.33 4999.20 593.99 6091.03 29793.73 29293.52 8699.55 1991.81 12399.45 4597.58 211
test_fmvsmconf0.1_n95.61 7095.72 7595.26 9296.85 16289.20 10193.51 16798.60 1685.68 24897.42 5298.30 3895.34 3598.39 19896.85 498.98 11598.19 149
OPU-MVS95.15 10096.84 16389.43 9595.21 10495.66 21893.12 10098.06 22886.28 25698.61 16597.95 174
CS-MVS95.77 6495.58 8096.37 5496.84 16391.72 6596.73 2899.06 894.23 5692.48 26394.79 25593.56 8499.49 2893.47 7099.05 10697.89 183
NP-MVS96.82 16587.10 14493.40 301
3Dnovator+92.74 295.86 6195.77 7396.13 5696.81 16690.79 7796.30 5697.82 10096.13 3294.74 18797.23 11291.33 14199.16 9093.25 8398.30 19698.46 128
Test_1112_low_res87.50 30686.58 31490.25 28896.80 16777.75 31287.53 34396.25 21369.73 39686.47 36693.61 29675.67 32397.88 24779.95 32593.20 37095.11 326
PAPM_NR91.03 22090.81 22791.68 23896.73 16881.10 25393.72 16196.35 21088.19 20288.77 33992.12 33385.09 24197.25 29382.40 29993.90 35796.68 260
fmvsm_s_conf0.5_n_a94.02 13994.08 14193.84 15696.72 16985.73 18393.65 16595.23 25483.30 28295.13 16897.56 8192.22 12197.17 29995.51 2297.41 25998.64 111
fmvsm_s_conf0.5_n94.00 14094.20 13693.42 17896.69 17084.37 20093.38 17395.13 25684.50 27195.40 14997.55 8591.77 13297.20 29695.59 1897.79 23998.69 103
1112_ss88.42 28787.41 29691.45 24696.69 17080.99 25489.72 30096.72 18973.37 37187.00 36490.69 35577.38 30898.20 21781.38 31093.72 36095.15 322
test_fmvsmvis_n_192095.08 9595.40 8894.13 14296.66 17287.75 13393.44 17198.49 1985.57 25298.27 2197.11 12494.11 7997.75 26496.26 1198.72 15396.89 251
patch_mono-292.46 18892.72 18091.71 23696.65 17378.91 29488.85 32397.17 15483.89 27892.45 26596.76 14889.86 17997.09 30490.24 16898.59 16899.12 43
v894.65 11295.29 9392.74 19896.65 17379.77 27694.59 12697.17 15491.86 10997.47 4997.93 5788.16 19399.08 10094.32 4399.47 4199.38 23
MVS_111021_HR93.63 14993.42 16294.26 13896.65 17386.96 15089.30 31396.23 21588.36 20093.57 22094.60 26393.45 8797.77 26190.23 16998.38 18798.03 164
ANet_high94.83 10496.28 4190.47 28196.65 17373.16 36094.33 13798.74 1496.39 2898.09 2998.93 1093.37 9198.70 16490.38 15999.68 1799.53 16
SD-MVS95.19 9295.73 7493.55 16996.62 17788.88 10994.67 12398.05 7391.26 13597.25 6096.40 17195.42 3094.36 37492.72 10099.19 9297.40 226
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS93.33 15792.67 18195.33 8896.58 17894.06 2592.26 21892.18 31985.92 24296.22 10796.61 16085.64 23595.99 34490.35 16198.23 20395.93 295
Anonymous2024052192.86 17693.57 15790.74 27596.57 17975.50 34194.15 14495.60 23689.38 17495.90 12397.90 6480.39 28497.96 24092.60 10499.68 1798.75 91
v1094.68 11195.27 9592.90 19396.57 17980.15 26194.65 12597.57 12190.68 14997.43 5098.00 5288.18 19299.15 9194.84 3599.55 3599.41 21
Anonymous20240521192.58 18492.50 18592.83 19696.55 18183.22 22292.43 20791.64 33194.10 5995.59 13996.64 15881.88 27497.50 27885.12 26998.52 17597.77 198
DVP-MVS++95.93 5696.34 3894.70 11596.54 18286.66 15898.45 498.22 4493.26 7897.54 4397.36 10093.12 10099.38 5893.88 5398.68 15998.04 161
MSC_two_6792asdad95.90 6796.54 18289.57 9196.87 17899.41 4294.06 4999.30 7298.72 96
No_MVS95.90 6796.54 18289.57 9196.87 17899.41 4294.06 4999.30 7298.72 96
PLCcopyleft85.34 1590.40 23488.92 26594.85 10896.53 18590.02 8591.58 24396.48 20580.16 31886.14 36892.18 33085.73 23298.25 21476.87 35294.61 34196.30 276
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS88.58 1092.49 18791.75 20494.73 11396.50 18689.69 8992.91 18697.68 11178.02 34192.79 25394.10 27890.85 15597.96 24084.76 27698.16 21096.54 262
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
NCCC94.08 13793.54 15995.70 7796.49 18789.90 8792.39 21096.91 17590.64 15092.33 27494.60 26390.58 16598.96 11890.21 17097.70 24498.23 145
TAMVS90.16 24589.05 26193.49 17696.49 18786.37 16690.34 28092.55 31480.84 31592.99 24594.57 26581.94 27398.20 21773.51 37498.21 20695.90 298
test_fmvsmconf_n95.43 7795.50 8295.22 9796.48 18989.19 10293.23 17798.36 2785.61 25196.92 7498.02 5195.23 4198.38 20196.69 798.95 12498.09 157
TEST996.45 19089.46 9390.60 27096.92 17379.09 33390.49 30594.39 26991.31 14298.88 127
train_agg92.71 18191.83 20295.35 8696.45 19089.46 9390.60 27096.92 17379.37 32890.49 30594.39 26991.20 14798.88 12788.66 21298.43 18297.72 203
BP-MVS191.77 20491.10 22093.75 16096.42 19283.40 21794.10 14891.89 32791.27 13493.36 22894.85 25064.43 37499.29 7494.88 3398.74 15298.56 119
mvs5depth95.28 8895.82 7193.66 16496.42 19283.08 22697.35 1299.28 396.44 2696.20 10999.65 284.10 24898.01 23494.06 4998.93 12599.87 1
test_896.37 19489.14 10390.51 27396.89 17679.37 32890.42 30794.36 27191.20 14798.82 136
CLD-MVS91.82 20291.41 21293.04 18596.37 19483.65 21486.82 35797.29 14684.65 27092.27 27589.67 36692.20 12397.85 25383.95 28399.47 4197.62 209
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC96.36 19691.37 24787.16 22388.81 335
ACMP_Plane96.36 19691.37 24787.16 22388.81 335
HQP-MVS92.09 19991.49 21093.88 15396.36 19684.89 19691.37 24797.31 14387.16 22388.81 33593.40 30184.76 24398.60 17886.55 25097.73 24198.14 154
v2v48293.29 15893.63 15392.29 21596.35 19978.82 29791.77 24196.28 21188.45 19695.70 13696.26 18786.02 23098.90 12493.02 9198.81 14399.14 40
GDP-MVS91.56 21090.83 22693.77 15996.34 20083.65 21493.66 16498.12 5987.32 22192.98 24794.71 25863.58 38099.30 7392.61 10398.14 21298.35 136
MSLP-MVS++93.25 16293.88 14391.37 24896.34 20082.81 23193.11 18097.74 10889.37 17594.08 20395.29 23590.40 16896.35 33490.35 16198.25 20194.96 330
thisisatest053088.69 28387.52 29592.20 21896.33 20279.36 28492.81 18984.01 39386.44 23193.67 21892.68 32053.62 40499.25 8189.65 18598.45 18198.00 166
FPMVS84.50 33983.28 34588.16 33296.32 20394.49 2085.76 37685.47 38283.09 28885.20 37394.26 27263.79 37986.58 41263.72 40891.88 38883.40 410
Anonymous2023120688.77 28088.29 27890.20 29196.31 20478.81 29889.56 30493.49 29574.26 36792.38 26995.58 22382.21 26795.43 35672.07 38298.75 15196.34 274
MVP-Stereo90.07 25188.92 26593.54 17196.31 20486.49 16190.93 26095.59 24079.80 32091.48 28895.59 22080.79 28197.39 28778.57 34091.19 39096.76 258
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvsm_n_192094.72 10894.74 11494.67 11796.30 20688.62 11393.19 17898.07 6985.63 25097.08 6397.35 10390.86 15497.66 27195.70 1698.48 18097.74 202
v114493.50 15193.81 14492.57 20996.28 20779.61 27991.86 23796.96 16986.95 22895.91 12296.32 18087.65 20298.96 11893.51 6698.88 13099.13 41
LFMVS91.33 21691.16 21991.82 23196.27 20879.36 28495.01 11485.61 38196.04 3694.82 18397.06 12872.03 33998.46 19584.96 27398.70 15797.65 208
VNet92.67 18292.96 17091.79 23296.27 20880.15 26191.95 22794.98 26092.19 10094.52 19396.07 19787.43 20697.39 28784.83 27498.38 18797.83 191
IterMVS-LS93.78 14694.28 13292.27 21696.27 20879.21 28991.87 23596.78 18491.77 11996.57 9197.07 12787.15 21198.74 15591.99 11799.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14892.87 17593.29 16391.62 24096.25 21177.72 31391.28 25195.05 25789.69 16895.93 12196.04 19887.34 20798.38 20190.05 17697.99 22798.78 87
casdiffmvs_mvgpermissive95.10 9495.62 7893.53 17296.25 21183.23 22192.66 19598.19 4793.06 8197.49 4797.15 12094.78 6198.71 16392.27 11098.72 15398.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR93.66 14893.28 16594.80 11096.25 21190.95 7390.21 28395.43 24887.91 20693.74 21794.40 26892.88 10996.38 33290.39 15898.28 19797.07 241
agg_prior96.20 21488.89 10896.88 17790.21 31298.78 148
旧先验196.20 21484.17 20794.82 26595.57 22489.57 18197.89 23496.32 275
CNLPA91.72 20691.20 21693.26 18296.17 21691.02 7191.14 25495.55 24390.16 16190.87 29893.56 29886.31 22694.40 37379.92 32997.12 26894.37 348
fmvsm_l_conf0.5_n93.79 14593.81 14493.73 16296.16 21786.26 17092.46 20496.72 18981.69 30695.77 12897.11 12490.83 15697.82 25495.58 1997.99 22797.11 240
hse-mvs292.24 19791.20 21695.38 8596.16 21790.65 7992.52 20092.01 32689.23 17793.95 21092.99 31176.88 31698.69 16691.02 14296.03 30196.81 255
v119293.49 15293.78 14792.62 20696.16 21779.62 27891.83 23897.22 15286.07 23996.10 11596.38 17687.22 20999.02 11094.14 4898.88 13099.22 33
thres100view90087.35 30986.89 30988.72 31996.14 22073.09 36193.00 18385.31 38492.13 10193.26 23490.96 35063.42 38198.28 20971.27 38896.54 29194.79 338
DeepC-MVS_fast89.96 793.73 14793.44 16194.60 12396.14 22087.90 12993.36 17497.14 15685.53 25393.90 21395.45 22791.30 14398.59 18089.51 18698.62 16497.31 232
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS89.35 26488.40 27492.18 22296.13 22284.20 20686.96 35296.15 22175.40 35987.36 36191.55 34383.30 25398.01 23482.17 30296.62 28994.32 350
fmvsm_l_conf0.5_n_a93.59 15093.63 15393.49 17696.10 22385.66 18692.32 21396.57 19881.32 30995.63 13797.14 12190.19 17197.73 26795.37 2898.03 22397.07 241
AUN-MVS90.05 25288.30 27795.32 9096.09 22490.52 8192.42 20892.05 32582.08 30288.45 34592.86 31365.76 36698.69 16688.91 20696.07 30096.75 259
baseline94.26 12994.80 11092.64 20296.08 22580.99 25493.69 16298.04 7790.80 14694.89 18196.32 18093.19 9798.48 19491.68 12898.51 17798.43 131
PCF-MVS84.52 1789.12 26887.71 29293.34 17996.06 22685.84 18186.58 36597.31 14368.46 40093.61 21993.89 28887.51 20598.52 18867.85 39998.11 21595.66 309
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14419293.20 16593.54 15992.16 22396.05 22778.26 30591.95 22797.14 15684.98 26595.96 11896.11 19587.08 21399.04 10893.79 5698.84 13599.17 37
thres600view787.66 30087.10 30689.36 30896.05 22773.17 35992.72 19185.31 38491.89 10893.29 23190.97 34963.42 38198.39 19873.23 37696.99 27796.51 264
casdiffmvspermissive94.32 12794.80 11092.85 19596.05 22781.44 24892.35 21198.05 7391.53 12995.75 13196.80 14593.35 9298.49 19091.01 14498.32 19598.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet87.13 31686.54 31788.89 31696.05 22776.11 33494.39 13588.51 35081.37 30888.27 34896.75 15072.38 33695.52 35165.71 40495.47 31695.03 328
v192192093.26 16093.61 15592.19 21996.04 23178.31 30491.88 23497.24 15085.17 25996.19 11296.19 19086.76 22199.05 10594.18 4798.84 13599.22 33
v124093.29 15893.71 15092.06 22696.01 23277.89 31091.81 23997.37 13485.12 26196.69 8596.40 17186.67 22299.07 10494.51 3898.76 14999.22 33
BH-untuned90.68 22690.90 22290.05 29695.98 23379.57 28090.04 28994.94 26287.91 20694.07 20493.00 31087.76 20197.78 26079.19 33695.17 32692.80 380
DeepPCF-MVS90.46 694.20 13393.56 15896.14 5595.96 23492.96 4789.48 30697.46 13085.14 26096.23 10695.42 22993.19 9798.08 22790.37 16098.76 14997.38 229
test_prior94.61 12095.95 23587.23 14097.36 13998.68 16897.93 177
test1294.43 13395.95 23586.75 15496.24 21489.76 32389.79 18098.79 14597.95 23197.75 201
LCM-MVSNet-Re94.20 13394.58 12393.04 18595.91 23783.13 22593.79 15899.19 692.00 10398.84 698.04 4993.64 8399.02 11081.28 31198.54 17396.96 248
PatchMatch-RL89.18 26688.02 28992.64 20295.90 23892.87 4988.67 33091.06 33480.34 31690.03 31691.67 34083.34 25294.42 37276.35 35794.84 33590.64 396
ETV-MVS92.99 16992.74 17793.72 16395.86 23986.30 16992.33 21297.84 9891.70 12492.81 25186.17 39492.22 12199.19 8888.03 22497.73 24195.66 309
MM94.41 12294.14 13895.22 9795.84 24087.21 14194.31 13990.92 33794.48 5392.80 25297.52 8685.27 23899.49 2896.58 899.57 3398.97 62
testing383.66 34682.52 35187.08 34595.84 24065.84 40089.80 29877.17 41888.17 20390.84 29988.63 37630.95 42698.11 22584.05 28297.19 26697.28 234
TSAR-MVS + GP.93.07 16892.41 18795.06 10295.82 24290.87 7690.97 25992.61 31388.04 20594.61 19093.79 29188.08 19497.81 25589.41 18998.39 18696.50 267
QAPM92.88 17392.77 17593.22 18395.82 24283.31 21896.45 4197.35 14083.91 27793.75 21596.77 14689.25 18498.88 12784.56 27897.02 27297.49 218
balanced_conf0393.45 15494.17 13791.28 25495.81 24478.40 30296.20 6097.48 12988.56 19595.29 15897.20 11785.56 23799.21 8492.52 10698.91 12796.24 281
EIA-MVS92.35 19292.03 19593.30 18195.81 24483.97 21092.80 19098.17 5387.71 21389.79 32287.56 38491.17 15099.18 8987.97 22597.27 26396.77 257
tfpn200view987.05 31886.52 31888.67 32095.77 24672.94 36391.89 23286.00 37490.84 14392.61 25889.80 36163.93 37798.28 20971.27 38896.54 29194.79 338
thres40087.20 31386.52 31889.24 31295.77 24672.94 36391.89 23286.00 37490.84 14392.61 25889.80 36163.93 37798.28 20971.27 38896.54 29196.51 264
pmmvs-eth3d91.54 21190.73 23093.99 14595.76 24887.86 13190.83 26293.98 28778.23 34094.02 20896.22 18982.62 26596.83 31886.57 24898.33 19397.29 233
jason89.17 26788.32 27691.70 23795.73 24980.07 26488.10 33493.22 29971.98 38090.09 31392.79 31678.53 29798.56 18387.43 23497.06 27096.46 270
jason: jason.
alignmvs93.26 16092.85 17494.50 12895.70 25087.45 13693.45 17095.76 23191.58 12695.25 16292.42 32781.96 27298.72 15791.61 12997.87 23697.33 231
xiu_mvs_v1_base_debu91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
xiu_mvs_v1_base91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
xiu_mvs_v1_base_debi91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
PHI-MVS94.34 12693.80 14695.95 6195.65 25491.67 6694.82 11997.86 9587.86 20993.04 24494.16 27791.58 13698.78 14890.27 16698.96 12297.41 223
LF4IMVS92.72 18092.02 19694.84 10995.65 25491.99 5892.92 18596.60 19585.08 26392.44 26693.62 29586.80 22096.35 33486.81 24298.25 20196.18 284
test20.0390.80 22290.85 22590.63 27895.63 25679.24 28789.81 29792.87 30489.90 16494.39 19596.40 17185.77 23195.27 36173.86 37399.05 10697.39 227
TinyColmap92.00 20192.76 17689.71 30295.62 25777.02 32190.72 26696.17 22087.70 21495.26 16096.29 18292.54 11696.45 32981.77 30498.77 14895.66 309
sasdasda94.59 11394.69 11694.30 13695.60 25887.03 14695.59 8598.24 4091.56 12795.21 16592.04 33494.95 5598.66 17091.45 13597.57 25197.20 237
canonicalmvs94.59 11394.69 11694.30 13695.60 25887.03 14695.59 8598.24 4091.56 12795.21 16592.04 33494.95 5598.66 17091.45 13597.57 25197.20 237
MGCFI-Net94.44 12094.67 12093.75 16095.56 26085.47 18995.25 10398.24 4091.53 12995.04 17492.21 32994.94 5798.54 18691.56 13397.66 24797.24 235
AdaColmapbinary91.63 20891.36 21392.47 21395.56 26086.36 16792.24 22096.27 21288.88 18789.90 31992.69 31991.65 13598.32 20777.38 34997.64 24892.72 381
mvsmamba90.24 24389.43 25692.64 20295.52 26282.36 23696.64 3092.29 31781.77 30492.14 27896.28 18470.59 34499.10 9984.44 28095.22 32596.47 269
UnsupCasMVSNet_bld88.50 28588.03 28889.90 29895.52 26278.88 29587.39 34594.02 28579.32 33193.06 24294.02 28280.72 28294.27 37575.16 36593.08 37496.54 262
3Dnovator92.54 394.80 10694.90 10694.47 13195.47 26487.06 14596.63 3197.28 14891.82 11694.34 19897.41 9490.60 16498.65 17392.47 10798.11 21597.70 204
Fast-Effi-MVS+91.28 21890.86 22492.53 21195.45 26582.53 23389.25 31696.52 20385.00 26489.91 31888.55 37892.94 10598.84 13484.72 27795.44 31796.22 282
GBi-Net93.21 16392.96 17093.97 14795.40 26684.29 20295.99 6796.56 19988.63 19195.10 17098.53 2881.31 27798.98 11386.74 24398.38 18798.65 106
test193.21 16392.96 17093.97 14795.40 26684.29 20295.99 6796.56 19988.63 19195.10 17098.53 2881.31 27798.98 11386.74 24398.38 18798.65 106
FMVSNet292.78 17892.73 17992.95 19095.40 26681.98 24094.18 14395.53 24488.63 19196.05 11697.37 9781.31 27798.81 14187.38 23698.67 16198.06 158
CDS-MVSNet89.55 25988.22 28493.53 17295.37 26986.49 16189.26 31493.59 29179.76 32291.15 29592.31 32877.12 31198.38 20177.51 34797.92 23395.71 305
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4293.43 15593.58 15692.97 18895.34 27081.22 25192.67 19496.49 20487.25 22296.20 10996.37 17787.32 20898.85 13392.39 10998.21 20698.85 81
Patchmatch-RL test88.81 27988.52 27189.69 30395.33 27179.94 27086.22 37092.71 30978.46 33895.80 12794.18 27666.25 36495.33 35989.22 19898.53 17493.78 361
CL-MVSNet_self_test90.04 25389.90 24890.47 28195.24 27277.81 31186.60 36492.62 31285.64 24993.25 23693.92 28683.84 24996.06 34179.93 32798.03 22397.53 216
BH-RMVSNet90.47 23290.44 23690.56 28095.21 27378.65 30189.15 31793.94 28888.21 20192.74 25594.22 27486.38 22597.88 24778.67 33995.39 31995.14 323
Effi-MVS+92.79 17792.74 17792.94 19195.10 27483.30 21994.00 15197.53 12591.36 13389.35 32990.65 35794.01 8098.66 17087.40 23595.30 32296.88 253
USDC89.02 27189.08 26088.84 31795.07 27574.50 34988.97 31996.39 20873.21 37393.27 23396.28 18482.16 26996.39 33177.55 34698.80 14495.62 312
WTY-MVS86.93 32086.50 32088.24 33094.96 27674.64 34587.19 34892.07 32478.29 33988.32 34791.59 34278.06 30194.27 37574.88 36693.15 37295.80 301
FA-MVS(test-final)91.81 20391.85 20191.68 23894.95 27779.99 26996.00 6693.44 29687.80 21094.02 20897.29 10877.60 30498.45 19688.04 22397.49 25496.61 261
PS-MVSNAJ88.86 27888.99 26488.48 32694.88 27874.71 34486.69 36095.60 23680.88 31387.83 35487.37 38790.77 15798.82 13682.52 29694.37 34591.93 387
MG-MVS89.54 26089.80 25088.76 31894.88 27872.47 36889.60 30292.44 31685.82 24489.48 32695.98 20182.85 26097.74 26681.87 30395.27 32396.08 288
xiu_mvs_v2_base89.00 27489.19 25888.46 32794.86 28074.63 34686.97 35195.60 23680.88 31387.83 35488.62 37791.04 15298.81 14182.51 29794.38 34491.93 387
MAR-MVS90.32 24188.87 26894.66 11994.82 28191.85 6194.22 14294.75 26980.91 31287.52 36088.07 38286.63 22397.87 25076.67 35396.21 29994.25 351
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_BlendedMVS90.35 23989.96 24691.54 24494.81 28278.80 29990.14 28696.93 17179.43 32788.68 34295.06 24386.27 22798.15 22380.27 31998.04 22297.68 206
PVSNet_Blended88.74 28188.16 28790.46 28394.81 28278.80 29986.64 36196.93 17174.67 36388.68 34289.18 37386.27 22798.15 22380.27 31996.00 30294.44 347
FE-MVS89.06 27088.29 27891.36 24994.78 28479.57 28096.77 2790.99 33584.87 26792.96 24896.29 18260.69 39298.80 14480.18 32297.11 26995.71 305
BH-w/o87.21 31287.02 30787.79 34094.77 28577.27 31987.90 33693.21 30181.74 30589.99 31788.39 38083.47 25196.93 31371.29 38792.43 38289.15 398
LS3D96.11 5195.83 6996.95 4094.75 28694.20 2397.34 1397.98 8497.31 1295.32 15596.77 14693.08 10299.20 8791.79 12498.16 21097.44 222
Effi-MVS+-dtu93.90 14492.60 18397.77 494.74 28796.67 694.00 15195.41 24989.94 16391.93 28392.13 33290.12 17398.97 11787.68 23097.48 25597.67 207
MVSFormer92.18 19892.23 19092.04 22794.74 28780.06 26597.15 1597.37 13488.98 18388.83 33392.79 31677.02 31399.60 1096.41 996.75 28596.46 270
lupinMVS88.34 28987.31 29791.45 24694.74 28780.06 26587.23 34692.27 31871.10 38688.83 33391.15 34677.02 31398.53 18786.67 24696.75 28595.76 303
baseline187.62 30287.31 29788.54 32394.71 29074.27 35293.10 18188.20 35486.20 23692.18 27793.04 30973.21 33295.52 35179.32 33485.82 40695.83 300
MDA-MVSNet-bldmvs91.04 21990.88 22391.55 24394.68 29180.16 26085.49 37892.14 32290.41 15894.93 17995.79 21085.10 24096.93 31385.15 26794.19 35297.57 212
Fast-Effi-MVS+-dtu92.77 17992.16 19194.58 12694.66 29288.25 12392.05 22396.65 19389.62 17090.08 31491.23 34592.56 11598.60 17886.30 25596.27 29896.90 250
UnsupCasMVSNet_eth90.33 24090.34 23990.28 28694.64 29380.24 25989.69 30195.88 22885.77 24593.94 21295.69 21781.99 27192.98 38684.21 28191.30 38997.62 209
OpenMVS_ROBcopyleft85.12 1689.52 26189.05 26190.92 26894.58 29481.21 25291.10 25693.41 29777.03 34993.41 22493.99 28483.23 25497.80 25679.93 32794.80 33693.74 363
OpenMVScopyleft89.45 892.27 19692.13 19492.68 20194.53 29584.10 20895.70 8097.03 16482.44 29891.14 29696.42 16988.47 18998.38 20185.95 25897.47 25695.55 314
thres20085.85 32785.18 32887.88 33894.44 29672.52 36789.08 31886.21 37188.57 19491.44 28988.40 37964.22 37598.00 23668.35 39795.88 30793.12 373
DELS-MVS92.05 20092.16 19191.72 23594.44 29680.13 26387.62 33897.25 14987.34 22092.22 27693.18 30889.54 18298.73 15689.67 18498.20 20896.30 276
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
N_pmnet88.90 27787.25 30093.83 15794.40 29893.81 3984.73 38487.09 36579.36 33093.26 23492.43 32679.29 29091.68 39177.50 34897.22 26596.00 291
pmmvs488.95 27687.70 29392.70 19994.30 29985.60 18787.22 34792.16 32174.62 36489.75 32494.19 27577.97 30296.41 33082.71 29296.36 29596.09 287
new-patchmatchnet88.97 27590.79 22883.50 38594.28 30055.83 42085.34 38093.56 29386.18 23795.47 14595.73 21683.10 25596.51 32685.40 26498.06 22098.16 152
API-MVS91.52 21291.61 20591.26 25594.16 30186.26 17094.66 12494.82 26591.17 13892.13 27991.08 34890.03 17897.06 30779.09 33797.35 26290.45 397
MSDG90.82 22190.67 23191.26 25594.16 30183.08 22686.63 36296.19 21890.60 15291.94 28291.89 33689.16 18595.75 34880.96 31694.51 34294.95 331
TR-MVS87.70 29887.17 30289.27 31094.11 30379.26 28688.69 32891.86 32881.94 30390.69 30389.79 36382.82 26197.42 28472.65 38091.98 38691.14 393
test_yl90.11 24889.73 25391.26 25594.09 30479.82 27390.44 27492.65 31090.90 14193.19 23993.30 30373.90 32998.03 23082.23 30096.87 27995.93 295
DCV-MVSNet90.11 24889.73 25391.26 25594.09 30479.82 27390.44 27492.65 31090.90 14193.19 23993.30 30373.90 32998.03 23082.23 30096.87 27995.93 295
RRT-MVS92.28 19493.01 16990.07 29394.06 30673.01 36295.36 9597.88 9392.24 9895.16 16797.52 8678.51 29899.29 7490.55 15495.83 30897.92 179
D2MVS89.93 25489.60 25590.92 26894.03 30778.40 30288.69 32894.85 26378.96 33593.08 24195.09 24174.57 32796.94 31188.19 21798.96 12297.41 223
sss87.23 31186.82 31088.46 32793.96 30877.94 30786.84 35592.78 30877.59 34387.61 35991.83 33778.75 29391.92 39077.84 34394.20 35095.52 315
PVSNet76.22 2082.89 35482.37 35384.48 37693.96 30864.38 40778.60 40888.61 34971.50 38384.43 38286.36 39374.27 32894.60 36969.87 39593.69 36194.46 346
IterMVS-SCA-FT91.65 20791.55 20691.94 22893.89 31079.22 28887.56 34193.51 29491.53 12995.37 15296.62 15978.65 29498.90 12491.89 12194.95 33197.70 204
UGNet93.08 16692.50 18594.79 11193.87 31187.99 12895.07 11194.26 28090.64 15087.33 36297.67 7486.89 21998.49 19088.10 22098.71 15597.91 180
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM81.91 36380.11 37387.31 34493.87 31172.32 36984.02 39293.22 29969.47 39776.13 41589.84 36072.15 33797.23 29453.27 41789.02 39992.37 384
CANet92.38 19191.99 19793.52 17493.82 31383.46 21691.14 25497.00 16689.81 16686.47 36694.04 28087.90 20099.21 8489.50 18798.27 19897.90 181
test_fmvs392.42 18992.40 18892.46 21493.80 31487.28 13993.86 15697.05 16376.86 35096.25 10498.66 2182.87 25991.26 39395.44 2496.83 28198.82 82
HY-MVS82.50 1886.81 32285.93 32489.47 30493.63 31577.93 30894.02 15091.58 33275.68 35583.64 38893.64 29377.40 30797.42 28471.70 38592.07 38593.05 376
test_vis1_n_192089.45 26289.85 24988.28 32993.59 31676.71 32890.67 26897.78 10679.67 32490.30 31196.11 19576.62 31992.17 38990.31 16393.57 36295.96 293
MVS_Test92.57 18693.29 16390.40 28493.53 31775.85 33792.52 20096.96 16988.73 18892.35 27196.70 15590.77 15798.37 20592.53 10595.49 31596.99 247
EU-MVSNet87.39 30886.71 31389.44 30593.40 31876.11 33494.93 11790.00 34357.17 41695.71 13597.37 9764.77 37397.68 27092.67 10194.37 34594.52 345
MS-PatchMatch88.05 29387.75 29188.95 31493.28 31977.93 30887.88 33792.49 31575.42 35892.57 26193.59 29780.44 28394.24 37781.28 31192.75 37794.69 343
GA-MVS87.70 29886.82 31090.31 28593.27 32077.22 32084.72 38692.79 30785.11 26289.82 32090.07 35866.80 35997.76 26384.56 27894.27 34895.96 293
pmmvs587.87 29587.14 30390.07 29393.26 32176.97 32588.89 32192.18 31973.71 37088.36 34693.89 28876.86 31896.73 32180.32 31896.81 28296.51 264
IterMVS90.18 24490.16 24190.21 29093.15 32275.98 33687.56 34192.97 30386.43 23294.09 20296.40 17178.32 29997.43 28387.87 22794.69 33997.23 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet78.83 38280.60 36873.51 40093.07 32347.37 42487.10 35078.00 41568.94 39877.53 41397.26 10971.45 34194.62 36863.28 40988.74 40078.55 415
diffmvspermissive91.74 20591.93 19991.15 26193.06 32478.17 30688.77 32697.51 12886.28 23392.42 26793.96 28588.04 19697.46 28190.69 15196.67 28897.82 193
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D86.15 32584.27 33691.79 23293.04 32581.28 24987.17 34986.14 37279.57 32583.65 38788.66 37557.10 39698.18 22087.74 22995.40 31895.90 298
FMVSNet390.78 22390.32 24092.16 22393.03 32679.92 27192.54 19994.95 26186.17 23895.10 17096.01 20069.97 34798.75 15286.74 24398.38 18797.82 193
ETVMVS79.85 37877.94 38585.59 36492.97 32766.20 39886.13 37180.99 40681.41 30783.52 39083.89 40541.81 42294.98 36756.47 41594.25 34995.61 313
thisisatest051584.72 33782.99 34889.90 29892.96 32875.33 34284.36 38983.42 39577.37 34588.27 34886.65 38953.94 40298.72 15782.56 29597.40 26095.67 308
testing9183.56 34882.45 35286.91 35092.92 32967.29 38986.33 36888.07 35786.22 23584.26 38385.76 39648.15 40997.17 29976.27 35894.08 35696.27 279
UBG80.28 37678.94 37984.31 37992.86 33061.77 41183.87 39383.31 39777.33 34682.78 39683.72 40647.60 41096.06 34165.47 40593.48 36595.11 326
PAPR87.65 30186.77 31290.27 28792.85 33177.38 31788.56 33196.23 21576.82 35284.98 37789.75 36586.08 22997.16 30172.33 38193.35 36796.26 280
WBMVS84.00 34483.48 34385.56 36592.71 33261.52 41283.82 39589.38 34679.56 32690.74 30193.20 30748.21 40897.28 29175.63 36398.10 21797.88 184
testing1181.98 36280.52 36986.38 35992.69 33367.13 39085.79 37584.80 38982.16 30181.19 40785.41 39945.24 41296.88 31674.14 37193.24 36995.14 323
test_vis3_rt90.40 23490.03 24591.52 24592.58 33488.95 10690.38 27897.72 11073.30 37297.79 3397.51 9077.05 31287.10 41089.03 20394.89 33298.50 124
test_vis1_n89.01 27389.01 26389.03 31392.57 33582.46 23592.62 19796.06 22273.02 37590.40 30895.77 21474.86 32689.68 40290.78 14894.98 33094.95 331
testing9982.94 35381.72 35686.59 35392.55 33666.53 39586.08 37285.70 37785.47 25683.95 38585.70 39745.87 41197.07 30676.58 35593.56 36396.17 286
EI-MVSNet-Vis-set94.36 12494.28 13294.61 12092.55 33685.98 17792.44 20694.69 27193.70 6896.12 11495.81 20991.24 14498.86 13193.76 6098.22 20598.98 60
testing22280.54 37378.53 38186.58 35492.54 33868.60 38686.24 36982.72 39883.78 28082.68 39784.24 40439.25 42495.94 34560.25 41195.09 32895.20 319
EI-MVSNet-UG-set94.35 12594.27 13494.59 12492.46 33985.87 18092.42 20894.69 27193.67 7196.13 11395.84 20791.20 14798.86 13193.78 5798.23 20399.03 52
MVS_030492.88 17392.27 18994.69 11692.35 34086.03 17692.88 18889.68 34490.53 15391.52 28796.43 16882.52 26699.32 7195.01 3299.54 3698.71 99
FMVSNet587.82 29786.56 31691.62 24092.31 34179.81 27593.49 16894.81 26783.26 28391.36 29096.93 13752.77 40597.49 28076.07 35998.03 22397.55 215
c3_l91.32 21791.42 21191.00 26692.29 34276.79 32787.52 34496.42 20785.76 24694.72 18993.89 28882.73 26298.16 22290.93 14698.55 17198.04 161
dmvs_re84.69 33883.94 34086.95 34992.24 34382.93 22989.51 30587.37 36384.38 27485.37 37185.08 40172.44 33586.59 41168.05 39891.03 39391.33 391
MDA-MVSNet_test_wron88.16 29288.23 28387.93 33592.22 34473.71 35680.71 40688.84 34782.52 29694.88 18295.14 23882.70 26393.61 38083.28 28793.80 35996.46 270
YYNet188.17 29188.24 28287.93 33592.21 34573.62 35780.75 40588.77 34882.51 29794.99 17795.11 24082.70 26393.70 37983.33 28693.83 35896.48 268
CANet_DTU89.85 25689.17 25991.87 22992.20 34680.02 26890.79 26395.87 22986.02 24082.53 39891.77 33880.01 28598.57 18285.66 26297.70 24497.01 246
test_cas_vis1_n_192088.25 29088.27 28088.20 33192.19 34778.92 29389.45 30795.44 24675.29 36293.23 23795.65 21971.58 34090.23 40088.05 22293.55 36495.44 316
mvs_anonymous90.37 23891.30 21587.58 34192.17 34868.00 38889.84 29694.73 27083.82 27993.22 23897.40 9587.54 20497.40 28687.94 22695.05 32997.34 230
EI-MVSNet92.99 16993.26 16792.19 21992.12 34979.21 28992.32 21394.67 27391.77 11995.24 16395.85 20587.14 21298.49 19091.99 11798.26 19998.86 78
CVMVSNet85.16 33284.72 33086.48 35592.12 34970.19 37792.32 21388.17 35556.15 41790.64 30495.85 20567.97 35496.69 32288.78 20990.52 39492.56 382
test_fmvs1_n88.73 28288.38 27589.76 30092.06 35182.53 23392.30 21696.59 19771.14 38592.58 26095.41 23268.55 35089.57 40491.12 14095.66 31197.18 239
eth_miper_zixun_eth90.72 22490.61 23291.05 26292.04 35276.84 32686.91 35396.67 19285.21 25894.41 19493.92 28679.53 28898.26 21389.76 18297.02 27298.06 158
SCA87.43 30787.21 30188.10 33392.01 35371.98 37089.43 30888.11 35682.26 30088.71 34092.83 31478.65 29497.59 27479.61 33193.30 36894.75 340
dmvs_testset78.23 38378.99 37775.94 39891.99 35455.34 42188.86 32278.70 41382.69 29381.64 40579.46 41375.93 32285.74 41348.78 41982.85 41286.76 406
UWE-MVS80.29 37579.10 37683.87 38291.97 35559.56 41686.50 36777.43 41775.40 35987.79 35688.10 38144.08 41696.90 31564.23 40696.36 29595.14 323
test_fmvs290.62 22990.40 23891.29 25391.93 35685.46 19092.70 19396.48 20574.44 36594.91 18097.59 7975.52 32490.57 39693.44 7396.56 29097.84 190
cl____90.65 22790.56 23490.91 27091.85 35776.98 32486.75 35895.36 25185.53 25394.06 20594.89 24877.36 31097.98 23990.27 16698.98 11597.76 199
DIV-MVS_self_test90.65 22790.56 23490.91 27091.85 35776.99 32386.75 35895.36 25185.52 25594.06 20594.89 24877.37 30997.99 23890.28 16598.97 12097.76 199
our_test_387.55 30487.59 29487.44 34391.76 35970.48 37683.83 39490.55 34179.79 32192.06 28192.17 33178.63 29695.63 34984.77 27594.73 33796.22 282
ppachtmachnet_test88.61 28488.64 27088.50 32591.76 35970.99 37584.59 38792.98 30279.30 33292.38 26993.53 29979.57 28797.45 28286.50 25297.17 26797.07 241
Syy-MVS84.81 33584.93 32984.42 37791.71 36163.36 41085.89 37381.49 40281.03 31085.13 37481.64 41177.44 30695.00 36485.94 25994.12 35394.91 334
myMVS_eth3d79.62 37978.26 38283.72 38391.71 36161.25 41485.89 37381.49 40281.03 31085.13 37481.64 41132.12 42595.00 36471.17 39194.12 35394.91 334
131486.46 32486.33 32186.87 35191.65 36374.54 34791.94 22994.10 28274.28 36684.78 37987.33 38883.03 25795.00 36478.72 33891.16 39191.06 394
WB-MVSnew84.20 34283.89 34185.16 37191.62 36466.15 39988.44 33381.00 40576.23 35487.98 35287.77 38384.98 24293.35 38362.85 41094.10 35595.98 292
miper_ehance_all_eth90.48 23190.42 23790.69 27691.62 36476.57 33086.83 35696.18 21983.38 28194.06 20592.66 32182.20 26898.04 22989.79 18197.02 27297.45 220
cascas87.02 31986.28 32289.25 31191.56 36676.45 33184.33 39096.78 18471.01 38786.89 36585.91 39581.35 27696.94 31183.09 28995.60 31294.35 349
baseline283.38 34981.54 35988.90 31591.38 36772.84 36588.78 32581.22 40478.97 33479.82 41087.56 38461.73 38897.80 25674.30 37090.05 39696.05 290
miper_lstm_enhance89.90 25589.80 25090.19 29291.37 36877.50 31583.82 39595.00 25984.84 26893.05 24394.96 24676.53 32195.20 36289.96 17898.67 16197.86 187
mvsany_test389.11 26988.21 28591.83 23091.30 36990.25 8388.09 33578.76 41276.37 35396.43 9398.39 3683.79 25090.43 39986.57 24894.20 35094.80 337
IB-MVS77.21 1983.11 35081.05 36289.29 30991.15 37075.85 33785.66 37786.00 37479.70 32382.02 40286.61 39048.26 40798.39 19877.84 34392.22 38393.63 366
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS84.98 33484.30 33587.01 34691.03 37177.69 31491.94 22994.16 28159.36 41584.23 38487.50 38685.66 23396.80 31971.79 38393.05 37586.54 407
CR-MVSNet87.89 29487.12 30590.22 28991.01 37278.93 29192.52 20092.81 30573.08 37489.10 33096.93 13767.11 35697.64 27388.80 20892.70 37894.08 352
RPMNet90.31 24290.14 24490.81 27491.01 37278.93 29192.52 20098.12 5991.91 10789.10 33096.89 14068.84 34999.41 4290.17 17192.70 37894.08 352
reproduce_monomvs87.13 31686.90 30887.84 33990.92 37468.15 38791.19 25393.75 28985.84 24394.21 20095.83 20842.99 41897.10 30389.46 18897.88 23598.26 144
new_pmnet81.22 36681.01 36481.86 38990.92 37470.15 37884.03 39180.25 41070.83 38885.97 36989.78 36467.93 35584.65 41567.44 40091.90 38790.78 395
PatchT87.51 30588.17 28685.55 36690.64 37666.91 39292.02 22586.09 37392.20 9989.05 33297.16 11964.15 37696.37 33389.21 19992.98 37693.37 371
Patchmatch-test86.10 32686.01 32386.38 35990.63 37774.22 35489.57 30386.69 36885.73 24789.81 32192.83 31465.24 37191.04 39477.82 34595.78 30993.88 360
PVSNet_070.34 2174.58 38472.96 38779.47 39590.63 37766.24 39773.26 41183.40 39663.67 41278.02 41278.35 41572.53 33489.59 40356.68 41460.05 41982.57 413
MonoMVSNet88.46 28689.28 25785.98 36290.52 37970.07 38195.31 10194.81 26788.38 19893.47 22396.13 19473.21 33295.07 36382.61 29489.12 39892.81 379
PMMVS281.31 36583.44 34474.92 39990.52 37946.49 42569.19 41585.23 38784.30 27587.95 35394.71 25876.95 31584.36 41664.07 40798.09 21893.89 359
tpm84.38 34084.08 33785.30 36990.47 38163.43 40989.34 31185.63 37977.24 34887.62 35895.03 24461.00 39197.30 29079.26 33591.09 39295.16 321
wuyk23d87.83 29690.79 22878.96 39690.46 38288.63 11292.72 19190.67 34091.65 12598.68 1297.64 7696.06 1577.53 41859.84 41299.41 5470.73 416
Patchmtry90.11 24889.92 24790.66 27790.35 38377.00 32292.96 18492.81 30590.25 16094.74 18796.93 13767.11 35697.52 27785.17 26598.98 11597.46 219
test_f86.65 32387.13 30485.19 37090.28 38486.11 17486.52 36691.66 33069.76 39595.73 13497.21 11669.51 34881.28 41789.15 20094.40 34388.17 403
CHOSEN 280x42080.04 37777.97 38486.23 36190.13 38574.53 34872.87 41389.59 34566.38 40576.29 41485.32 40056.96 39795.36 35769.49 39694.72 33888.79 401
MVSTER89.32 26588.75 26991.03 26390.10 38676.62 32990.85 26194.67 27382.27 29995.24 16395.79 21061.09 39098.49 19090.49 15598.26 19997.97 173
tpm281.46 36480.35 37184.80 37389.90 38765.14 40390.44 27485.36 38365.82 40882.05 40192.44 32557.94 39596.69 32270.71 39288.49 40192.56 382
cl2289.02 27188.50 27290.59 27989.76 38876.45 33186.62 36394.03 28382.98 29192.65 25792.49 32272.05 33897.53 27688.93 20497.02 27297.78 197
test0.0.03 182.48 35681.47 36085.48 36789.70 38973.57 35884.73 38481.64 40183.07 28988.13 35086.61 39062.86 38489.10 40766.24 40390.29 39593.77 362
ttmdpeth86.91 32186.57 31587.91 33789.68 39074.24 35391.49 24587.09 36579.84 31989.46 32797.86 6565.42 36891.04 39481.57 30896.74 28798.44 130
test-LLR83.58 34783.17 34684.79 37489.68 39066.86 39383.08 39784.52 39083.07 28982.85 39484.78 40262.86 38493.49 38182.85 29094.86 33394.03 355
test-mter81.21 36780.01 37484.79 37489.68 39066.86 39383.08 39784.52 39073.85 36982.85 39484.78 40243.66 41793.49 38182.85 29094.86 33394.03 355
DSMNet-mixed82.21 35881.56 35784.16 38089.57 39370.00 38290.65 26977.66 41654.99 41883.30 39297.57 8077.89 30390.50 39866.86 40295.54 31491.97 386
PatchmatchNetpermissive85.22 33184.64 33186.98 34789.51 39469.83 38390.52 27287.34 36478.87 33687.22 36392.74 31866.91 35896.53 32481.77 30486.88 40494.58 344
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.88 34289.42 39561.52 41288.74 32787.41 36273.99 36884.96 37894.01 28365.25 37095.53 35078.02 34193.16 371
CostFormer83.09 35182.21 35485.73 36389.27 39667.01 39190.35 27986.47 37070.42 39283.52 39093.23 30661.18 38996.85 31777.21 35088.26 40293.34 372
ADS-MVSNet284.01 34382.20 35589.41 30689.04 39776.37 33387.57 33990.98 33672.71 37884.46 38092.45 32368.08 35296.48 32770.58 39383.97 40895.38 317
ADS-MVSNet82.25 35781.55 35884.34 37889.04 39765.30 40187.57 33985.13 38872.71 37884.46 38092.45 32368.08 35292.33 38870.58 39383.97 40895.38 317
tpm cat180.61 37279.46 37584.07 38188.78 39965.06 40589.26 31488.23 35362.27 41381.90 40389.66 36762.70 38695.29 36071.72 38480.60 41591.86 389
CMPMVSbinary68.83 2287.28 31085.67 32692.09 22588.77 40085.42 19190.31 28194.38 27670.02 39488.00 35193.30 30373.78 33194.03 37875.96 36196.54 29196.83 254
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall88.42 28787.87 29090.07 29388.67 40175.52 34085.10 38195.59 24075.68 35592.49 26289.45 36978.96 29197.88 24787.86 22897.02 27296.81 255
test_fmvs187.59 30387.27 29988.54 32388.32 40281.26 25090.43 27795.72 23370.55 39191.70 28594.63 26168.13 35189.42 40590.59 15295.34 32194.94 333
test_vis1_rt85.58 32984.58 33288.60 32287.97 40386.76 15385.45 37993.59 29166.43 40487.64 35789.20 37279.33 28985.38 41481.59 30789.98 39793.66 365
tpmrst82.85 35582.93 34982.64 38787.65 40458.99 41890.14 28687.90 35975.54 35783.93 38691.63 34166.79 36195.36 35781.21 31381.54 41493.57 370
JIA-IIPM85.08 33383.04 34791.19 26087.56 40586.14 17389.40 31084.44 39288.98 18382.20 39997.95 5656.82 39896.15 33776.55 35683.45 41091.30 392
TESTMET0.1,179.09 38178.04 38382.25 38887.52 40664.03 40883.08 39780.62 40870.28 39380.16 40983.22 40844.13 41590.56 39779.95 32593.36 36692.15 385
gg-mvs-nofinetune82.10 36181.02 36385.34 36887.46 40771.04 37394.74 12167.56 42196.44 2679.43 41198.99 845.24 41296.15 33767.18 40192.17 38488.85 400
pmmvs380.83 37078.96 37886.45 35687.23 40877.48 31684.87 38382.31 39963.83 41185.03 37689.50 36849.66 40693.10 38473.12 37895.10 32788.78 402
tpmvs84.22 34183.97 33984.94 37287.09 40965.18 40291.21 25288.35 35182.87 29285.21 37290.96 35065.24 37196.75 32079.60 33385.25 40792.90 378
gm-plane-assit87.08 41059.33 41771.22 38483.58 40797.20 29673.95 372
MVEpermissive59.87 2373.86 38572.65 38877.47 39787.00 41174.35 35061.37 41760.93 42367.27 40269.69 41886.49 39281.24 28072.33 42056.45 41683.45 41085.74 408
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 32884.37 33489.40 30786.30 41274.33 35191.64 24288.26 35284.84 26872.96 41789.85 35971.27 34297.69 26976.60 35497.62 24996.18 284
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test183.91 34582.93 34986.84 35286.18 41385.93 17881.11 40475.03 41970.80 39088.57 34494.63 26183.08 25687.38 40980.39 31786.57 40587.21 405
dp79.28 38078.62 38081.24 39285.97 41456.45 41986.91 35385.26 38672.97 37681.45 40689.17 37456.01 40095.45 35573.19 37776.68 41691.82 390
EPMVS81.17 36880.37 37083.58 38485.58 41565.08 40490.31 28171.34 42077.31 34785.80 37091.30 34459.38 39392.70 38779.99 32482.34 41392.96 377
E-PMN80.72 37180.86 36580.29 39485.11 41668.77 38572.96 41281.97 40087.76 21283.25 39383.01 40962.22 38789.17 40677.15 35194.31 34782.93 411
GG-mvs-BLEND83.24 38685.06 41771.03 37494.99 11665.55 42274.09 41675.51 41644.57 41494.46 37159.57 41387.54 40384.24 409
EMVS80.35 37480.28 37280.54 39384.73 41869.07 38472.54 41480.73 40787.80 21081.66 40481.73 41062.89 38389.84 40175.79 36294.65 34082.71 412
EPNet89.80 25888.25 28194.45 13283.91 41986.18 17293.87 15587.07 36791.16 13980.64 40894.72 25778.83 29298.89 12685.17 26598.89 12898.28 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS83.00 35281.11 36188.66 32183.81 42086.44 16482.24 40185.65 37861.75 41482.07 40085.64 39879.75 28691.59 39275.99 36093.09 37387.94 404
KD-MVS_2432*160082.17 35980.75 36686.42 35782.04 42170.09 37981.75 40290.80 33882.56 29490.37 30989.30 37042.90 41996.11 33974.47 36892.55 38093.06 374
miper_refine_blended82.17 35980.75 36686.42 35782.04 42170.09 37981.75 40290.80 33882.56 29490.37 30989.30 37042.90 41996.11 33974.47 36892.55 38093.06 374
dongtai53.72 38653.79 38953.51 40379.69 42336.70 42777.18 40932.53 42971.69 38168.63 41960.79 41826.65 42773.11 41930.67 42236.29 42150.73 417
MVStest184.79 33684.06 33886.98 34777.73 42474.76 34391.08 25885.63 37977.70 34296.86 7697.97 5541.05 42388.24 40892.22 11196.28 29797.94 176
DeepMVS_CXcopyleft53.83 40270.38 42564.56 40648.52 42633.01 42065.50 42074.21 41756.19 39946.64 42338.45 42170.07 41750.30 418
kuosan43.63 38844.25 39241.78 40466.04 42634.37 42875.56 41032.62 42853.25 41950.46 42251.18 41925.28 42849.13 42213.44 42330.41 42241.84 419
test_method50.44 38748.94 39054.93 40139.68 42712.38 43028.59 41890.09 3426.82 42141.10 42378.41 41454.41 40170.69 42150.12 41851.26 42081.72 414
tmp_tt37.97 38944.33 39118.88 40511.80 42821.54 42963.51 41645.66 4274.23 42251.34 42150.48 42059.08 39422.11 42444.50 42068.35 41813.00 420
test1239.49 39112.01 3941.91 4062.87 4291.30 43182.38 4001.34 4311.36 4242.84 4256.56 4232.45 4290.97 4252.73 4245.56 4233.47 421
testmvs9.02 39211.42 3951.81 4072.77 4301.13 43279.44 4071.90 4301.18 4252.65 4266.80 4221.95 4300.87 4262.62 4253.45 4243.44 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
eth-test20.00 431
eth-test0.00 431
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k23.35 39031.13 3930.00 4080.00 4310.00 4330.00 41995.58 2420.00 4260.00 42791.15 34693.43 890.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.56 39310.09 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42690.77 1570.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.56 39310.08 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42790.69 3550.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS61.25 41474.55 367
PC_three_145275.31 36195.87 12595.75 21592.93 10696.34 33687.18 23898.68 15998.04 161
test_241102_TWO98.10 6391.95 10497.54 4397.25 11095.37 3299.35 6293.29 8099.25 8398.49 126
test_0728_THIRD93.26 7897.40 5497.35 10394.69 6399.34 6593.88 5399.42 5098.89 75
GSMVS94.75 340
sam_mvs166.64 36294.75 340
sam_mvs66.41 363
MTGPAbinary97.62 115
test_post190.21 2835.85 42565.36 36996.00 34379.61 331
test_post6.07 42465.74 36795.84 347
patchmatchnet-post91.71 33966.22 36597.59 274
MTMP94.82 11954.62 425
test9_res88.16 21998.40 18397.83 191
agg_prior287.06 24198.36 19297.98 170
test_prior489.91 8690.74 265
test_prior290.21 28389.33 17690.77 30094.81 25290.41 16788.21 21598.55 171
旧先验290.00 29168.65 39992.71 25696.52 32585.15 267
新几何290.02 290
无先验89.94 29295.75 23270.81 38998.59 18081.17 31494.81 336
原ACMM289.34 311
testdata298.03 23080.24 321
segment_acmp92.14 124
testdata188.96 32088.44 197
plane_prior597.81 10198.95 12089.26 19698.51 17798.60 116
plane_prior495.59 220
plane_prior388.43 12290.35 15993.31 229
plane_prior294.56 13091.74 121
plane_prior88.12 12593.01 18288.98 18398.06 220
n20.00 432
nn0.00 432
door-mid92.13 323
test1196.65 193
door91.26 333
HQP5-MVS84.89 196
BP-MVS86.55 250
HQP4-MVS88.81 33598.61 17698.15 153
HQP3-MVS97.31 14397.73 241
HQP2-MVS84.76 243
MDTV_nov1_ep13_2view42.48 42688.45 33267.22 40383.56 38966.80 35972.86 37994.06 354
ACMMP++_ref98.82 141
ACMMP++99.25 83
Test By Simon90.61 163