This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 14199.73 1399.59 13
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19596.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8999.83 599.68 4
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15599.05 9986.43 24399.60 2699.10 47
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20596.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7299.84 399.72 2
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19496.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7799.82 799.62 10
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12999.69 1499.42 19
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 4099.38 5998.92 72
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2599.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4299.84 399.66 6
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3499.53 3898.99 56
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20896.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8599.81 899.70 3
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22096.47 2293.40 21797.46 8795.31 3595.47 33786.18 24798.78 14489.11 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12993.56 7999.37 5794.29 4199.42 5298.99 56
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3799.34 6498.80 86
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16296.71 899.42 3393.99 4799.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDDNet94.03 13194.27 12793.31 17398.87 2182.36 22995.51 8691.78 31897.19 1296.32 9698.60 2284.24 23798.75 14787.09 23098.83 13898.81 84
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24494.75 17997.12 11691.85 12499.40 4693.45 6798.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26693.12 7397.94 2798.54 2581.19 27199.63 695.48 2499.69 1499.60 12
EGC-MVSNET80.97 35075.73 36396.67 4298.85 2494.55 1596.83 2396.60 1842.44 3995.32 40098.25 3792.24 11598.02 22691.85 11599.21 9097.45 212
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26388.20 20698.66 15997.79 188
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15199.60 995.43 2799.53 3899.57 14
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21496.72 14794.23 7199.42 3391.99 11099.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 15196.36 17095.68 2199.44 2994.41 3899.28 7998.97 62
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27096.48 2195.38 14793.63 28394.89 5597.94 23495.38 2896.92 26995.17 302
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16395.15 22886.60 21799.50 2193.43 7196.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12996.28 17695.22 4099.42 3393.17 8199.06 10398.88 77
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15594.99 5299.36 5893.48 6499.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15596.57 15595.02 5099.41 3993.63 5699.11 10198.94 66
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14296.68 14994.50 6699.42 3393.10 8399.26 8298.99 56
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13795.10 4699.40 4693.47 6599.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VPNet93.08 15993.76 14091.03 25598.60 3975.83 33191.51 23495.62 22591.84 10795.74 12997.10 11989.31 17698.32 20085.07 26299.06 10398.93 68
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13796.61 15394.93 5499.41 3993.78 5299.15 9899.00 54
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12696.87 13495.26 3799.45 2792.77 9199.21 9099.00 54
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18996.49 15794.56 6499.39 4993.57 5899.05 10698.93 68
X-MVStestdata90.70 21488.45 26197.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18926.89 39794.56 6499.39 4993.57 5899.05 10698.93 68
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18896.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 3199.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6494.27 12094.15 13094.65 11698.55 4586.28 16695.80 7395.55 23388.41 18897.09 6198.08 4478.69 28598.87 12595.63 1799.53 3898.81 84
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6899.31 6998.53 121
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15599.60 2698.72 97
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21795.93 6794.84 25694.86 4198.49 1598.74 1681.45 26599.60 994.69 3399.39 5899.15 39
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7599.29 7497.95 169
IU-MVS98.51 5186.66 15496.83 17072.74 35595.83 12393.00 8799.29 7498.64 112
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12396.48 1098.95 114
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6899.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13496.47 15895.37 3099.27 7493.78 5299.14 9998.48 125
Baseline_NR-MVSNet94.47 11395.09 9792.60 20198.50 5780.82 25092.08 21296.68 18093.82 5996.29 9998.56 2490.10 16897.75 25690.10 16699.66 2199.24 32
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13595.04 4898.56 17792.77 9199.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test95.32 8195.88 5993.62 15998.49 5881.77 23495.90 6998.32 2493.93 5697.53 4297.56 7688.48 18199.40 4692.91 9099.83 599.68 4
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 24199.45 2795.52 2299.66 2199.36 24
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 14192.91 10298.72 15291.19 13099.42 5298.32 133
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13596.25 1499.00 10693.10 8399.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 19195.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 26090.17 16299.42 5298.99 56
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16499.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TransMVSNet (Re)95.27 8796.04 5292.97 18198.37 6581.92 23395.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19799.23 8699.08 48
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16796.39 16794.77 5899.42 3393.17 8199.44 5098.58 119
FIs94.90 9795.35 8393.55 16298.28 6981.76 23595.33 9098.14 4993.05 7697.07 6397.18 11187.65 19599.29 7091.72 11999.69 1499.61 11
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 6099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13999.76 1099.38 22
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26996.24 2596.28 10196.36 17082.88 24999.35 6088.19 20799.52 4198.96 64
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14499.23 493.45 8299.57 1495.34 3099.89 299.63 9
test_part298.21 7589.41 9396.72 81
test_040295.73 6196.22 4094.26 13598.19 7685.77 17993.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12699.29 7497.88 177
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15895.85 1899.12 9190.45 14799.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CPTT-MVS94.74 10294.12 13196.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 22195.46 21588.89 17998.98 10789.80 17198.82 13997.80 187
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14994.37 7099.32 6992.41 10199.05 10698.64 112
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19298.07 4592.02 12099.44 2993.38 7397.67 23997.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20696.25 17998.03 297.02 29592.08 10795.55 30098.45 127
EPP-MVSNet93.91 13793.68 14494.59 12298.08 8285.55 18597.44 1294.03 27594.22 5094.94 17196.19 18182.07 26099.57 1487.28 22798.89 12698.65 107
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12394.85 5699.42 3393.49 6298.84 13398.00 161
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12395.40 2993.49 6298.84 13398.00 161
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14695.09 4799.43 3292.99 8898.71 15198.50 122
K. test v393.37 14993.27 15993.66 15898.05 8582.62 22594.35 12686.62 35596.05 2997.51 4398.85 1276.59 31199.65 393.21 7998.20 20498.73 96
lessismore_v093.87 15198.05 8583.77 20980.32 38897.13 6097.91 5977.49 29699.11 9392.62 9798.08 21398.74 95
test111190.39 22590.61 22189.74 29298.04 8871.50 36195.59 8179.72 39089.41 16495.94 11798.14 3970.79 33398.81 13688.52 20499.32 6898.90 74
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
XVG-OURS94.72 10394.12 13196.50 4798.00 9194.23 1891.48 23598.17 4590.72 13995.30 15396.47 15887.94 19296.98 29691.41 12897.61 24298.30 136
114514_t90.51 21989.80 23992.63 19898.00 9182.24 23093.40 16297.29 13565.84 38489.40 31494.80 24486.99 20798.75 14783.88 27398.61 16196.89 241
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27298.85 1291.77 12695.49 33691.72 11999.08 10295.02 308
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12295.63 2399.39 4993.31 7498.88 12898.75 92
SDMVSNet94.43 11495.02 9892.69 19497.93 9682.88 22391.92 22195.99 21693.65 6595.51 13998.63 2094.60 6396.48 31287.57 22199.35 6198.70 101
sd_testset93.94 13594.39 11992.61 20097.93 9683.24 21493.17 16995.04 25093.65 6595.51 13998.63 2094.49 6795.89 32981.72 29499.35 6198.70 101
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12895.14 4299.51 2091.74 11899.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SSC-MVS90.16 23492.96 16281.78 36897.88 9948.48 40090.75 25187.69 34796.02 3196.70 8297.63 7285.60 22997.80 24885.73 25198.60 16399.06 50
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25795.22 22791.03 14799.25 7592.11 10598.69 15497.90 174
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21696.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12398.12 20998.03 159
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 5099.49 4299.36 24
test250685.42 31784.57 32087.96 32597.81 10366.53 37996.14 5856.35 40289.04 17293.55 21398.10 4242.88 40298.68 16388.09 21199.18 9498.67 105
ECVR-MVScopyleft90.12 23690.16 23090.00 28897.81 10372.68 35595.76 7578.54 39389.04 17295.36 15098.10 4270.51 33498.64 16887.10 22999.18 9498.67 105
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19290.14 16599.34 6392.11 10599.64 2499.16 38
VPA-MVSNet95.14 8995.67 7093.58 16197.76 10683.15 21894.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17499.59 2899.08 48
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19390.10 16899.41 3991.60 12399.58 3399.26 30
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19390.10 16899.33 6890.11 16499.66 2199.26 30
XXY-MVS92.58 17693.16 16190.84 26497.75 10779.84 26591.87 22596.22 20685.94 22995.53 13897.68 6792.69 10894.48 35183.21 27797.51 24498.21 142
WB-MVS89.44 25292.15 18481.32 36997.73 11048.22 40189.73 28687.98 34595.24 3696.05 11396.99 12785.18 23196.95 29782.45 28697.97 22398.78 88
PVSNet_Blended_VisFu91.63 19891.20 20792.94 18597.73 11083.95 20792.14 21197.46 11878.85 31992.35 26094.98 23684.16 23899.08 9486.36 24496.77 27595.79 286
tfpnnormal94.27 12094.87 10392.48 20597.71 11280.88 24994.55 12295.41 24093.70 6196.67 8497.72 6691.40 13498.18 21387.45 22399.18 9498.36 131
HQP_MVS94.26 12293.93 13495.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21895.59 20986.93 20998.95 11489.26 18698.51 17398.60 117
plane_prior797.71 11288.68 109
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20897.84 8894.91 4096.80 7895.78 20290.42 16099.41 3991.60 12399.58 3399.29 29
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3699.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9499.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
KD-MVS_self_test94.10 12994.73 11092.19 21297.66 11879.49 27594.86 10897.12 14889.59 16296.87 7497.65 7090.40 16298.34 19989.08 19299.35 6198.75 92
Vis-MVSNet (Re-imp)90.42 22290.16 23091.20 25197.66 11877.32 30994.33 12887.66 34891.20 12992.99 23495.13 23075.40 31698.28 20277.86 32999.19 9297.99 164
dcpmvs_293.96 13495.01 9990.82 26597.60 12074.04 34593.68 15498.85 789.80 15897.82 2997.01 12691.14 14599.21 7890.56 14598.59 16499.19 36
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19895.99 6396.56 18892.38 8597.03 6798.53 2690.12 16698.98 10788.78 19999.16 9798.65 107
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21597.78 6391.21 14097.77 25391.06 13297.06 26198.80 86
WR-MVS93.49 14693.72 14192.80 19197.57 12380.03 26090.14 27395.68 22493.70 6196.62 8695.39 22287.21 20399.04 10287.50 22299.64 2499.33 26
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28991.92 12398.78 14389.11 19199.24 8596.92 239
MCST-MVS92.91 16492.51 17694.10 14097.52 12585.72 18191.36 23997.13 14780.33 30192.91 23894.24 26291.23 13998.72 15289.99 16897.93 22697.86 179
F-COLMAP92.28 18691.06 21195.95 5997.52 12591.90 5693.53 15697.18 14283.98 26388.70 32794.04 26988.41 18398.55 17980.17 31095.99 29197.39 219
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14796.03 18994.66 6099.08 9490.70 14298.97 119
VDD-MVS94.37 11594.37 12194.40 13297.49 12786.07 17293.97 14493.28 28994.49 4596.24 10397.78 6387.99 19198.79 14088.92 19599.14 9998.34 132
testgi90.38 22691.34 20587.50 33197.49 12771.54 36089.43 29595.16 24788.38 18994.54 18594.68 24992.88 10493.09 36571.60 36997.85 23097.88 177
save fliter97.46 13088.05 12492.04 21497.08 15087.63 206
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 8099.74 1299.50 17
plane_prior197.38 132
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14496.17 18493.42 8599.34 6389.30 18298.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14797.36 13485.72 18194.15 13695.44 23783.25 27095.51 13998.05 4692.54 11197.19 28895.55 2197.46 24898.94 66
ITE_SJBPF95.95 5997.34 13593.36 4096.55 19191.93 10094.82 17695.39 22291.99 12197.08 29385.53 25397.96 22497.41 215
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17495.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20399.04 11198.78 88
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
OMC-MVS94.22 12593.69 14395.81 6997.25 13891.27 6492.27 20797.40 12287.10 21594.56 18495.42 21893.74 7798.11 21886.62 23798.85 13298.06 153
GeoE94.55 11094.68 11394.15 13797.23 13985.11 19094.14 13897.34 13088.71 18195.26 15695.50 21494.65 6199.12 9190.94 13698.40 17998.23 140
ZD-MVS97.23 13990.32 7897.54 11284.40 26094.78 17895.79 19992.76 10799.39 4988.72 20198.40 179
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16797.22 14184.37 19693.73 15195.26 24584.45 25995.76 12698.00 5191.85 12497.21 28595.62 1897.82 23198.98 60
plane_prior697.21 14288.23 12186.93 209
DP-MVS Recon92.31 18591.88 19193.60 16097.18 14386.87 14791.10 24497.37 12384.92 25392.08 26894.08 26888.59 18098.20 21083.50 27498.14 20895.73 288
新几何193.17 17797.16 14487.29 13594.43 26767.95 37891.29 27894.94 23886.97 20898.23 20881.06 30297.75 23393.98 336
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14798.84 13397.57 204
CHOSEN 1792x268887.19 30385.92 31291.00 25897.13 14679.41 27684.51 36895.60 22664.14 38790.07 30294.81 24278.26 29197.14 29173.34 35895.38 30796.46 259
HyFIR lowres test87.19 30385.51 31492.24 21097.12 14780.51 25185.03 36296.06 21166.11 38391.66 27492.98 30070.12 33599.14 8675.29 34895.23 31197.07 231
ab-mvs92.40 18292.62 17491.74 22797.02 14881.65 23695.84 7195.50 23686.95 21792.95 23797.56 7690.70 15697.50 27079.63 31797.43 24996.06 274
tttt051789.81 24688.90 25592.55 20397.00 14979.73 27095.03 10383.65 37789.88 15695.30 15394.79 24553.64 39099.39 4991.99 11098.79 14398.54 120
h-mvs3392.89 16591.99 18895.58 7796.97 15090.55 7693.94 14594.01 27889.23 16893.95 20196.19 18176.88 30799.14 8691.02 13395.71 29797.04 235
test22296.95 15185.27 18988.83 31193.61 28165.09 38690.74 28994.85 24184.62 23697.36 25293.91 337
CDPH-MVS92.67 17491.83 19395.18 9696.94 15288.46 11890.70 25497.07 15177.38 32592.34 26295.08 23392.67 10998.88 12185.74 25098.57 16698.20 143
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22996.80 17289.66 16093.90 20495.44 21792.80 10698.72 15292.74 9398.52 17198.32 133
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24394.52 25593.95 7699.49 2493.62 5799.22 8997.51 209
原ACMM192.87 18896.91 15584.22 20197.01 15476.84 33189.64 31294.46 25688.00 19098.70 15981.53 29698.01 22095.70 291
ambc92.98 18096.88 15683.01 22195.92 6896.38 19896.41 9297.48 8688.26 18497.80 24889.96 16998.93 12598.12 151
testdata91.03 25596.87 15782.01 23194.28 27171.55 35992.46 25395.42 21885.65 22797.38 28182.64 28297.27 25493.70 343
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28593.73 28193.52 8199.55 1891.81 11699.45 4797.58 203
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20793.12 9598.06 22186.28 24698.61 16197.95 169
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25294.79 24593.56 7999.49 2493.47 6599.05 10697.89 176
NP-MVS96.82 16287.10 14193.40 290
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 18097.23 10691.33 13599.16 8393.25 7898.30 19298.46 126
Test_1112_low_res87.50 29586.58 30290.25 28096.80 16477.75 30387.53 32996.25 20269.73 37386.47 35093.61 28575.67 31497.88 23979.95 31293.20 34995.11 306
PAPM_NR91.03 20990.81 21691.68 23196.73 16581.10 24693.72 15296.35 19988.19 19288.77 32592.12 32085.09 23397.25 28382.40 28793.90 33996.68 250
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15396.72 16685.73 18093.65 15595.23 24683.30 26895.13 16297.56 7692.22 11697.17 28995.51 2397.41 25098.64 112
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 17196.69 16784.37 19693.38 16395.13 24884.50 25895.40 14697.55 8091.77 12697.20 28695.59 1997.79 23298.69 104
1112_ss88.42 27687.41 28591.45 23996.69 16780.99 24789.72 28796.72 17873.37 34987.00 34890.69 34177.38 29998.20 21081.38 29793.72 34295.15 304
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24098.27 2097.11 11794.11 7497.75 25696.26 1198.72 14996.89 241
patch_mono-292.46 18092.72 17291.71 22996.65 17078.91 28788.85 31097.17 14383.89 26592.45 25496.76 14189.86 17297.09 29290.24 15998.59 16499.12 43
v894.65 10795.29 8792.74 19296.65 17079.77 26994.59 11697.17 14391.86 10397.47 4797.93 5588.16 18699.08 9494.32 3999.47 4399.38 22
MVS_111021_HR93.63 14393.42 15594.26 13596.65 17086.96 14689.30 30096.23 20488.36 19093.57 21294.60 25293.45 8297.77 25390.23 16098.38 18398.03 159
ANet_high94.83 10096.28 3790.47 27396.65 17073.16 35094.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 15099.68 1899.53 15
SD-MVS95.19 8895.73 6793.55 16296.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16395.42 2894.36 35592.72 9599.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS93.33 15092.67 17395.33 8696.58 17594.06 2192.26 20892.18 30985.92 23096.22 10596.61 15385.64 22895.99 32890.35 15298.23 19995.93 279
Anonymous2024052192.86 16893.57 15090.74 26796.57 17675.50 33394.15 13695.60 22689.38 16595.90 12097.90 6180.39 27597.96 23292.60 9899.68 1898.75 92
v1094.68 10695.27 8992.90 18796.57 17680.15 25494.65 11597.57 11090.68 14197.43 4898.00 5188.18 18599.15 8494.84 3299.55 3799.41 20
Anonymous20240521192.58 17692.50 17792.83 19096.55 17883.22 21692.43 19791.64 32094.10 5295.59 13696.64 15181.88 26497.50 27085.12 25998.52 17197.77 190
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4898.68 15598.04 156
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
PLCcopyleft85.34 1590.40 22388.92 25394.85 10596.53 18290.02 8191.58 23396.48 19480.16 30286.14 35292.18 31785.73 22598.25 20776.87 33994.61 32696.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS88.58 1092.49 17991.75 19594.73 11096.50 18389.69 8692.91 17697.68 10178.02 32392.79 24294.10 26790.85 14997.96 23284.76 26698.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
NCCC94.08 13093.54 15295.70 7596.49 18489.90 8392.39 20096.91 16490.64 14292.33 26394.60 25290.58 15998.96 11290.21 16197.70 23798.23 140
TAMVS90.16 23489.05 24993.49 16996.49 18486.37 16290.34 26792.55 30580.84 29992.99 23494.57 25481.94 26398.20 21073.51 35798.21 20295.90 282
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23896.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
TEST996.45 18789.46 9090.60 25796.92 16279.09 31590.49 29294.39 25891.31 13698.88 121
train_agg92.71 17391.83 19395.35 8496.45 18789.46 9090.60 25796.92 16279.37 31090.49 29294.39 25891.20 14198.88 12188.66 20298.43 17897.72 195
test_896.37 18989.14 10090.51 26096.89 16579.37 31090.42 29494.36 26091.20 14198.82 131
CLD-MVS91.82 19391.41 20393.04 17896.37 18983.65 21086.82 34397.29 13584.65 25792.27 26489.67 35292.20 11897.85 24583.95 27299.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC96.36 19191.37 23687.16 21288.81 321
ACMP_Plane96.36 19191.37 23687.16 21288.81 321
HQP-MVS92.09 19091.49 20193.88 15096.36 19184.89 19291.37 23697.31 13287.16 21288.81 32193.40 29084.76 23498.60 17286.55 24097.73 23498.14 149
v2v48293.29 15193.63 14692.29 20896.35 19478.82 28991.77 23196.28 20088.45 18695.70 13396.26 17886.02 22398.90 11893.02 8698.81 14199.14 40
MSLP-MVS++93.25 15593.88 13591.37 24196.34 19582.81 22493.11 17097.74 9889.37 16694.08 19495.29 22690.40 16296.35 31990.35 15298.25 19794.96 309
thisisatest053088.69 27387.52 28492.20 21196.33 19679.36 27792.81 17884.01 37686.44 22093.67 20992.68 30853.62 39199.25 7589.65 17698.45 17798.00 161
FPMVS84.50 32583.28 32988.16 32396.32 19794.49 1685.76 35685.47 36683.09 27485.20 35794.26 26163.79 36686.58 39063.72 38991.88 36783.40 388
Anonymous2023120688.77 27088.29 26690.20 28396.31 19878.81 29089.56 29193.49 28674.26 34592.38 25895.58 21282.21 25795.43 33972.07 36598.75 14896.34 263
MVP-Stereo90.07 24088.92 25393.54 16496.31 19886.49 15790.93 24795.59 23079.80 30391.48 27595.59 20980.79 27297.39 27978.57 32791.19 36996.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23797.08 6297.35 9790.86 14897.66 26395.70 1698.48 17697.74 194
v114493.50 14593.81 13692.57 20296.28 20179.61 27291.86 22796.96 15886.95 21795.91 11996.32 17287.65 19598.96 11293.51 6198.88 12899.13 41
LFMVS91.33 20591.16 21091.82 22496.27 20279.36 27795.01 10485.61 36596.04 3094.82 17697.06 12172.03 32998.46 18884.96 26398.70 15397.65 200
VNet92.67 17492.96 16291.79 22596.27 20280.15 25491.95 21794.98 25292.19 9494.52 18696.07 18787.43 19997.39 27984.83 26498.38 18397.83 183
IterMVS-LS93.78 14094.28 12592.27 20996.27 20279.21 28291.87 22596.78 17391.77 11396.57 8997.07 12087.15 20498.74 15091.99 11099.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14892.87 16793.29 15691.62 23396.25 20577.72 30491.28 24095.05 24989.69 15995.93 11896.04 18887.34 20098.38 19490.05 16797.99 22198.78 88
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16596.25 20583.23 21592.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10398.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR93.66 14293.28 15894.80 10796.25 20590.95 6990.21 27095.43 23987.91 19693.74 20894.40 25792.88 10496.38 31790.39 14998.28 19397.07 231
agg_prior96.20 20888.89 10696.88 16690.21 29998.78 143
旧先验196.20 20884.17 20394.82 25795.57 21389.57 17497.89 22896.32 264
CNLPA91.72 19691.20 20793.26 17596.17 21091.02 6791.14 24295.55 23390.16 15290.87 28693.56 28786.31 21994.40 35479.92 31697.12 25994.37 327
fmvsm_l_conf0.5_n93.79 13993.81 13693.73 15696.16 21186.26 16792.46 19496.72 17881.69 29195.77 12597.11 11790.83 15097.82 24695.58 2097.99 22197.11 230
hse-mvs292.24 18891.20 20795.38 8396.16 21190.65 7592.52 19092.01 31689.23 16893.95 20192.99 29976.88 30798.69 16191.02 13396.03 28996.81 245
v119293.49 14693.78 13992.62 19996.16 21179.62 27191.83 22897.22 14186.07 22796.10 11296.38 16887.22 20299.02 10494.14 4498.88 12899.22 33
thres100view90087.35 29886.89 29788.72 31096.14 21473.09 35193.00 17385.31 36892.13 9593.26 22390.96 33663.42 36798.28 20271.27 37196.54 28194.79 317
DeepC-MVS_fast89.96 793.73 14193.44 15494.60 12196.14 21487.90 12693.36 16497.14 14585.53 24193.90 20495.45 21691.30 13798.59 17489.51 17798.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS89.35 25388.40 26292.18 21596.13 21684.20 20286.96 33896.15 21075.40 33887.36 34591.55 32983.30 24498.01 22782.17 29096.62 27994.32 329
fmvsm_l_conf0.5_n_a93.59 14493.63 14693.49 16996.10 21785.66 18392.32 20396.57 18781.32 29395.63 13497.14 11490.19 16497.73 25995.37 2998.03 21797.07 231
AUN-MVS90.05 24188.30 26595.32 8896.09 21890.52 7792.42 19892.05 31582.08 28888.45 33192.86 30165.76 35598.69 16188.91 19696.07 28896.75 249
baseline94.26 12294.80 10592.64 19696.08 21980.99 24793.69 15398.04 6890.80 13894.89 17496.32 17293.19 9298.48 18791.68 12198.51 17398.43 128
PCF-MVS84.52 1789.12 25787.71 28193.34 17296.06 22085.84 17786.58 35197.31 13268.46 37793.61 21193.89 27787.51 19898.52 18167.85 38298.11 21095.66 293
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14419293.20 15893.54 15292.16 21696.05 22178.26 29691.95 21797.14 14584.98 25295.96 11596.11 18587.08 20699.04 10293.79 5198.84 13399.17 37
thres600view787.66 28987.10 29589.36 29996.05 22173.17 34992.72 18185.31 36891.89 10293.29 22090.97 33563.42 36798.39 19173.23 35996.99 26896.51 254
casdiffmvspermissive94.32 11994.80 10592.85 18996.05 22181.44 24192.35 20198.05 6491.53 12295.75 12896.80 13893.35 8798.49 18391.01 13598.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet87.13 30586.54 30488.89 30796.05 22176.11 32694.39 12588.51 33781.37 29288.27 33496.75 14372.38 32695.52 33465.71 38795.47 30395.03 307
v192192093.26 15393.61 14892.19 21296.04 22578.31 29591.88 22497.24 13985.17 24696.19 10996.19 18186.76 21399.05 9994.18 4398.84 13399.22 33
v124093.29 15193.71 14292.06 21996.01 22677.89 30191.81 22997.37 12385.12 24896.69 8396.40 16386.67 21599.07 9894.51 3598.76 14699.22 33
BH-untuned90.68 21590.90 21290.05 28795.98 22779.57 27390.04 27694.94 25487.91 19694.07 19593.00 29887.76 19497.78 25279.19 32395.17 31292.80 358
DeepPCF-MVS90.46 694.20 12693.56 15196.14 5295.96 22892.96 4389.48 29397.46 11885.14 24796.23 10495.42 21893.19 9298.08 22090.37 15198.76 14697.38 221
test_prior94.61 11895.95 22987.23 13797.36 12898.68 16397.93 171
test1294.43 13195.95 22986.75 15096.24 20389.76 31089.79 17398.79 14097.95 22597.75 193
MVS_030493.92 13693.68 14494.64 11795.94 23185.83 17894.34 12788.14 34392.98 7791.09 28497.68 6786.73 21499.36 5896.64 799.59 2898.72 97
LCM-MVSNet-Re94.20 12694.58 11693.04 17895.91 23283.13 21993.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29898.54 16996.96 238
PatchMatch-RL89.18 25588.02 27892.64 19695.90 23392.87 4588.67 31791.06 32380.34 30090.03 30391.67 32683.34 24394.42 35376.35 34394.84 32090.64 374
ETV-MVS92.99 16292.74 16993.72 15795.86 23486.30 16592.33 20297.84 8891.70 11892.81 24086.17 37892.22 11699.19 8188.03 21497.73 23495.66 293
testing383.66 33082.52 33587.08 33495.84 23565.84 38189.80 28577.17 39688.17 19390.84 28788.63 36230.95 40498.11 21884.05 27197.19 25797.28 226
TSAR-MVS + GP.93.07 16192.41 17995.06 9995.82 23690.87 7290.97 24692.61 30488.04 19594.61 18393.79 28088.08 18797.81 24789.41 17998.39 18296.50 257
QAPM92.88 16692.77 16793.22 17695.82 23683.31 21296.45 3997.35 12983.91 26493.75 20696.77 13989.25 17798.88 12184.56 26897.02 26397.49 210
EIA-MVS92.35 18492.03 18693.30 17495.81 23883.97 20692.80 17998.17 4587.71 20389.79 30987.56 36891.17 14499.18 8287.97 21597.27 25496.77 247
tfpn200view987.05 30686.52 30588.67 31195.77 23972.94 35291.89 22286.00 36090.84 13592.61 24789.80 34763.93 36498.28 20271.27 37196.54 28194.79 317
thres40087.20 30286.52 30589.24 30395.77 23972.94 35291.89 22286.00 36090.84 13592.61 24789.80 34763.93 36498.28 20271.27 37196.54 28196.51 254
pmmvs-eth3d91.54 20090.73 21993.99 14295.76 24187.86 12890.83 24993.98 27978.23 32294.02 19996.22 18082.62 25696.83 30386.57 23898.33 18997.29 225
jason89.17 25688.32 26491.70 23095.73 24280.07 25788.10 32093.22 29071.98 35890.09 30092.79 30478.53 28998.56 17787.43 22497.06 26196.46 259
jason: jason.
alignmvs93.26 15392.85 16694.50 12695.70 24387.45 13393.45 16095.76 22191.58 12095.25 15892.42 31581.96 26298.72 15291.61 12297.87 22997.33 223
xiu_mvs_v1_base_debu91.47 20291.52 19891.33 24395.69 24481.56 23789.92 28096.05 21383.22 27191.26 27990.74 33891.55 13198.82 13189.29 18395.91 29293.62 346
xiu_mvs_v1_base91.47 20291.52 19891.33 24395.69 24481.56 23789.92 28096.05 21383.22 27191.26 27990.74 33891.55 13198.82 13189.29 18395.91 29293.62 346
xiu_mvs_v1_base_debi91.47 20291.52 19891.33 24395.69 24481.56 23789.92 28096.05 21383.22 27191.26 27990.74 33891.55 13198.82 13189.29 18395.91 29293.62 346
PHI-MVS94.34 11893.80 13895.95 5995.65 24791.67 6294.82 10997.86 8587.86 19993.04 23394.16 26691.58 13098.78 14390.27 15798.96 12197.41 215
LF4IMVS92.72 17292.02 18794.84 10695.65 24791.99 5492.92 17596.60 18485.08 25092.44 25593.62 28486.80 21296.35 31986.81 23298.25 19796.18 270
test20.0390.80 21190.85 21590.63 27095.63 24979.24 28089.81 28492.87 29589.90 15594.39 18896.40 16385.77 22495.27 34473.86 35699.05 10697.39 219
TinyColmap92.00 19292.76 16889.71 29395.62 25077.02 31290.72 25396.17 20987.70 20495.26 15696.29 17492.54 11196.45 31481.77 29298.77 14595.66 293
canonicalmvs94.59 10894.69 11194.30 13495.60 25187.03 14395.59 8198.24 3491.56 12195.21 16192.04 32194.95 5398.66 16591.45 12797.57 24397.20 228
AdaColmapbinary91.63 19891.36 20492.47 20695.56 25286.36 16392.24 21096.27 20188.88 17889.90 30692.69 30791.65 12998.32 20077.38 33697.64 24092.72 359
UnsupCasMVSNet_bld88.50 27588.03 27789.90 28995.52 25378.88 28887.39 33194.02 27779.32 31393.06 23194.02 27180.72 27394.27 35675.16 34993.08 35396.54 252
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25487.06 14296.63 3197.28 13791.82 11094.34 19197.41 8890.60 15898.65 16792.47 10098.11 21097.70 196
Fast-Effi-MVS+91.28 20790.86 21492.53 20495.45 25582.53 22689.25 30396.52 19285.00 25189.91 30588.55 36492.94 10098.84 12984.72 26795.44 30496.22 268
GBi-Net93.21 15692.96 16293.97 14495.40 25684.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26798.98 10786.74 23398.38 18398.65 107
test193.21 15692.96 16293.97 14495.40 25684.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26798.98 10786.74 23398.38 18398.65 107
FMVSNet292.78 17092.73 17192.95 18395.40 25681.98 23294.18 13595.53 23588.63 18296.05 11397.37 9181.31 26798.81 13687.38 22698.67 15798.06 153
CDS-MVSNet89.55 24888.22 27293.53 16595.37 25986.49 15789.26 30193.59 28279.76 30591.15 28292.31 31677.12 30298.38 19477.51 33497.92 22795.71 289
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4293.43 14893.58 14992.97 18195.34 26081.22 24492.67 18496.49 19387.25 21196.20 10796.37 16987.32 20198.85 12892.39 10298.21 20298.85 81
Patchmatch-RL test88.81 26988.52 25989.69 29495.33 26179.94 26386.22 35392.71 30078.46 32095.80 12494.18 26566.25 35395.33 34289.22 18898.53 17093.78 340
CL-MVSNet_self_test90.04 24289.90 23790.47 27395.24 26277.81 30286.60 35092.62 30385.64 23693.25 22593.92 27583.84 23996.06 32679.93 31498.03 21797.53 208
BH-RMVSNet90.47 22190.44 22590.56 27295.21 26378.65 29389.15 30493.94 28088.21 19192.74 24494.22 26386.38 21897.88 23978.67 32695.39 30695.14 305
Effi-MVS+92.79 16992.74 16992.94 18595.10 26483.30 21394.00 14297.53 11491.36 12589.35 31590.65 34394.01 7598.66 16587.40 22595.30 30996.88 243
USDC89.02 26089.08 24888.84 30895.07 26574.50 34088.97 30696.39 19773.21 35193.27 22296.28 17682.16 25996.39 31677.55 33398.80 14295.62 296
WTY-MVS86.93 30886.50 30788.24 32194.96 26674.64 33687.19 33492.07 31478.29 32188.32 33391.59 32878.06 29294.27 35674.88 35093.15 35195.80 285
FA-MVS(test-final)91.81 19491.85 19291.68 23194.95 26779.99 26296.00 6293.44 28787.80 20094.02 19997.29 10277.60 29598.45 18988.04 21397.49 24596.61 251
PS-MVSNAJ88.86 26888.99 25288.48 31794.88 26874.71 33586.69 34695.60 22680.88 29787.83 33987.37 37190.77 15198.82 13182.52 28494.37 33091.93 365
MG-MVS89.54 24989.80 23988.76 30994.88 26872.47 35789.60 28992.44 30785.82 23189.48 31395.98 19182.85 25197.74 25881.87 29195.27 31096.08 273
xiu_mvs_v2_base89.00 26389.19 24688.46 31894.86 27074.63 33786.97 33795.60 22680.88 29787.83 33988.62 36391.04 14698.81 13682.51 28594.38 32991.93 365
MAR-MVS90.32 23088.87 25694.66 11594.82 27191.85 5794.22 13494.75 26080.91 29687.52 34488.07 36786.63 21697.87 24276.67 34096.21 28794.25 330
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_BlendedMVS90.35 22889.96 23591.54 23694.81 27278.80 29190.14 27396.93 16079.43 30988.68 32895.06 23486.27 22098.15 21680.27 30698.04 21697.68 198
PVSNet_Blended88.74 27188.16 27590.46 27594.81 27278.80 29186.64 34796.93 16074.67 34188.68 32889.18 35986.27 22098.15 21680.27 30696.00 29094.44 326
FE-MVS89.06 25988.29 26691.36 24294.78 27479.57 27396.77 2890.99 32484.87 25492.96 23696.29 17460.69 37898.80 13980.18 30997.11 26095.71 289
BH-w/o87.21 30187.02 29687.79 32994.77 27577.27 31087.90 32293.21 29281.74 29089.99 30488.39 36683.47 24296.93 30071.29 37092.43 36189.15 376
LS3D96.11 4795.83 6396.95 3694.75 27694.20 1997.34 1397.98 7597.31 1195.32 15296.77 13993.08 9799.20 8091.79 11798.16 20697.44 214
Effi-MVS+-dtu93.90 13892.60 17597.77 394.74 27796.67 594.00 14295.41 24089.94 15491.93 27192.13 31990.12 16698.97 11187.68 22097.48 24697.67 199
MVSFormer92.18 18992.23 18192.04 22094.74 27780.06 25897.15 1597.37 12388.98 17488.83 31992.79 30477.02 30499.60 996.41 996.75 27696.46 259
lupinMVS88.34 27887.31 28691.45 23994.74 27780.06 25887.23 33292.27 30871.10 36388.83 31991.15 33277.02 30498.53 18086.67 23696.75 27695.76 287
baseline187.62 29187.31 28688.54 31494.71 28074.27 34393.10 17188.20 34186.20 22492.18 26693.04 29773.21 32395.52 33479.32 32185.82 38495.83 284
MDA-MVSNet-bldmvs91.04 20890.88 21391.55 23594.68 28180.16 25385.49 35892.14 31290.41 14994.93 17295.79 19985.10 23296.93 30085.15 25794.19 33697.57 204
Fast-Effi-MVS+-dtu92.77 17192.16 18294.58 12494.66 28288.25 12092.05 21396.65 18289.62 16190.08 30191.23 33192.56 11098.60 17286.30 24596.27 28696.90 240
iter_conf_final90.23 23289.32 24592.95 18394.65 28381.46 24094.32 13095.40 24285.61 23892.84 23995.37 22454.58 38799.13 8892.16 10498.94 12498.25 139
UnsupCasMVSNet_eth90.33 22990.34 22890.28 27894.64 28480.24 25289.69 28895.88 21885.77 23293.94 20395.69 20681.99 26192.98 36684.21 27091.30 36897.62 201
OpenMVS_ROBcopyleft85.12 1689.52 25089.05 24990.92 26094.58 28581.21 24591.10 24493.41 28877.03 32993.41 21593.99 27383.23 24597.80 24879.93 31494.80 32193.74 342
OpenMVScopyleft89.45 892.27 18792.13 18592.68 19594.53 28684.10 20495.70 7697.03 15382.44 28591.14 28396.42 16188.47 18298.38 19485.95 24897.47 24795.55 297
thres20085.85 31485.18 31587.88 32894.44 28772.52 35689.08 30586.21 35788.57 18591.44 27688.40 36564.22 36298.00 22868.35 38095.88 29593.12 352
DELS-MVS92.05 19192.16 18291.72 22894.44 28780.13 25687.62 32497.25 13887.34 21092.22 26593.18 29689.54 17598.73 15189.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
N_pmnet88.90 26787.25 28993.83 15494.40 28993.81 3584.73 36487.09 35279.36 31293.26 22392.43 31479.29 28191.68 37177.50 33597.22 25696.00 276
pmmvs488.95 26587.70 28292.70 19394.30 29085.60 18487.22 33392.16 31174.62 34289.75 31194.19 26477.97 29396.41 31582.71 28196.36 28596.09 272
new-patchmatchnet88.97 26490.79 21783.50 36394.28 29155.83 39885.34 36093.56 28486.18 22595.47 14295.73 20583.10 24696.51 31185.40 25498.06 21498.16 147
API-MVS91.52 20191.61 19691.26 24794.16 29286.26 16794.66 11494.82 25791.17 13092.13 26791.08 33490.03 17197.06 29479.09 32497.35 25390.45 375
MSDG90.82 21090.67 22091.26 24794.16 29283.08 22086.63 34896.19 20790.60 14491.94 27091.89 32289.16 17895.75 33180.96 30394.51 32794.95 310
TR-MVS87.70 28787.17 29189.27 30194.11 29479.26 27988.69 31591.86 31781.94 28990.69 29089.79 34982.82 25297.42 27672.65 36391.98 36591.14 371
test_yl90.11 23789.73 24291.26 24794.09 29579.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32098.03 22382.23 28896.87 27095.93 279
DCV-MVSNet90.11 23789.73 24291.26 24794.09 29579.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32098.03 22382.23 28896.87 27095.93 279
D2MVS89.93 24389.60 24490.92 26094.03 29778.40 29488.69 31594.85 25578.96 31793.08 23095.09 23274.57 31896.94 29888.19 20798.96 12197.41 215
sss87.23 30086.82 29888.46 31893.96 29877.94 29886.84 34192.78 29977.59 32487.61 34391.83 32378.75 28491.92 37077.84 33094.20 33495.52 298
PVSNet76.22 2082.89 33682.37 33684.48 35693.96 29864.38 38878.60 38688.61 33671.50 36084.43 36686.36 37774.27 31994.60 35069.87 37893.69 34394.46 325
IterMVS-SCA-FT91.65 19791.55 19791.94 22193.89 30079.22 28187.56 32793.51 28591.53 12295.37 14996.62 15278.65 28698.90 11891.89 11494.95 31697.70 196
UGNet93.08 15992.50 17794.79 10893.87 30187.99 12595.07 10194.26 27290.64 14287.33 34697.67 6986.89 21198.49 18388.10 21098.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM81.91 34480.11 35487.31 33393.87 30172.32 35884.02 37293.22 29069.47 37476.13 39389.84 34672.15 32797.23 28453.27 39589.02 37792.37 362
CANet92.38 18391.99 18893.52 16793.82 30383.46 21191.14 24297.00 15589.81 15786.47 35094.04 26987.90 19399.21 7889.50 17898.27 19497.90 174
test_fmvs392.42 18192.40 18092.46 20793.80 30487.28 13693.86 14797.05 15276.86 33096.25 10298.66 1882.87 25091.26 37395.44 2696.83 27298.82 82
HY-MVS82.50 1886.81 30985.93 31189.47 29593.63 30577.93 29994.02 14191.58 32175.68 33483.64 37093.64 28277.40 29897.42 27671.70 36892.07 36493.05 355
test_vis1_n_192089.45 25189.85 23888.28 32093.59 30676.71 32090.67 25597.78 9679.67 30790.30 29896.11 18576.62 31092.17 36990.31 15493.57 34495.96 277
MVS_Test92.57 17893.29 15690.40 27693.53 30775.85 32992.52 19096.96 15888.73 17992.35 26096.70 14890.77 15198.37 19892.53 9995.49 30296.99 237
EU-MVSNet87.39 29786.71 30189.44 29693.40 30876.11 32694.93 10790.00 33257.17 39395.71 13297.37 9164.77 36197.68 26292.67 9694.37 33094.52 324
MS-PatchMatch88.05 28287.75 28088.95 30593.28 30977.93 29987.88 32392.49 30675.42 33792.57 25093.59 28680.44 27494.24 35881.28 29892.75 35694.69 322
GA-MVS87.70 28786.82 29890.31 27793.27 31077.22 31184.72 36692.79 29885.11 24989.82 30790.07 34466.80 34897.76 25584.56 26894.27 33395.96 277
pmmvs587.87 28487.14 29290.07 28593.26 31176.97 31688.89 30892.18 30973.71 34888.36 33293.89 27776.86 30996.73 30680.32 30596.81 27396.51 254
IterMVS90.18 23390.16 23090.21 28293.15 31275.98 32887.56 32792.97 29486.43 22194.09 19396.40 16378.32 29097.43 27587.87 21794.69 32497.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet78.83 35980.60 35073.51 37893.07 31347.37 40287.10 33678.00 39468.94 37577.53 39197.26 10371.45 33194.62 34963.28 39088.74 37878.55 393
diffmvspermissive91.74 19591.93 19091.15 25393.06 31478.17 29788.77 31397.51 11786.28 22292.42 25693.96 27488.04 18997.46 27390.69 14396.67 27897.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D86.15 31284.27 32391.79 22593.04 31581.28 24287.17 33586.14 35879.57 30883.65 36988.66 36157.10 38298.18 21387.74 21995.40 30595.90 282
FMVSNet390.78 21290.32 22992.16 21693.03 31679.92 26492.54 18994.95 25386.17 22695.10 16496.01 19069.97 33698.75 14786.74 23398.38 18397.82 185
thisisatest051584.72 32382.99 33289.90 28992.96 31775.33 33484.36 36983.42 37877.37 32688.27 33486.65 37353.94 38998.72 15282.56 28397.40 25195.67 292
PAPR87.65 29086.77 30090.27 27992.85 31877.38 30888.56 31896.23 20476.82 33284.98 36189.75 35186.08 22297.16 29072.33 36493.35 34796.26 267
iter_conf0588.94 26688.09 27691.50 23892.74 31976.97 31692.80 17995.92 21782.82 27993.65 21095.37 22449.41 39499.13 8890.82 13899.28 7998.40 130
test_vis3_rt90.40 22390.03 23491.52 23792.58 32088.95 10390.38 26597.72 10073.30 35097.79 3097.51 8477.05 30387.10 38889.03 19394.89 31798.50 122
test_vis1_n89.01 26289.01 25189.03 30492.57 32182.46 22892.62 18796.06 21173.02 35390.40 29595.77 20374.86 31789.68 38190.78 14094.98 31594.95 310
EI-MVSNet-Vis-set94.36 11694.28 12594.61 11892.55 32285.98 17392.44 19694.69 26293.70 6196.12 11195.81 19891.24 13898.86 12693.76 5598.22 20198.98 60
EI-MVSNet-UG-set94.35 11794.27 12794.59 12292.46 32385.87 17692.42 19894.69 26293.67 6496.13 11095.84 19791.20 14198.86 12693.78 5298.23 19999.03 52
FMVSNet587.82 28686.56 30391.62 23392.31 32479.81 26893.49 15894.81 25983.26 26991.36 27796.93 13052.77 39297.49 27276.07 34498.03 21797.55 207
c3_l91.32 20691.42 20291.00 25892.29 32576.79 31987.52 33096.42 19685.76 23394.72 18293.89 27782.73 25398.16 21590.93 13798.55 16798.04 156
dmvs_re84.69 32483.94 32686.95 33792.24 32682.93 22289.51 29287.37 35084.38 26185.37 35585.08 38272.44 32586.59 38968.05 38191.03 37291.33 369
MDA-MVSNet_test_wron88.16 28188.23 27187.93 32692.22 32773.71 34680.71 38488.84 33482.52 28394.88 17595.14 22982.70 25493.61 36183.28 27693.80 34196.46 259
YYNet188.17 28088.24 27087.93 32692.21 32873.62 34780.75 38388.77 33582.51 28494.99 17095.11 23182.70 25493.70 36083.33 27593.83 34096.48 258
CANet_DTU89.85 24589.17 24791.87 22292.20 32980.02 26190.79 25095.87 21986.02 22882.53 37791.77 32480.01 27698.57 17685.66 25297.70 23797.01 236
test_cas_vis1_n_192088.25 27988.27 26888.20 32292.19 33078.92 28689.45 29495.44 23775.29 34093.23 22695.65 20871.58 33090.23 37988.05 21293.55 34595.44 299
mvs_anonymous90.37 22791.30 20687.58 33092.17 33168.00 37489.84 28394.73 26183.82 26693.22 22797.40 8987.54 19797.40 27887.94 21695.05 31497.34 222
EI-MVSNet92.99 16293.26 16092.19 21292.12 33279.21 28292.32 20394.67 26491.77 11395.24 15995.85 19587.14 20598.49 18391.99 11098.26 19598.86 78
CVMVSNet85.16 31984.72 31786.48 34092.12 33270.19 36692.32 20388.17 34256.15 39490.64 29195.85 19567.97 34396.69 30788.78 19990.52 37392.56 360
test_fmvs1_n88.73 27288.38 26389.76 29192.06 33482.53 22692.30 20696.59 18671.14 36292.58 24995.41 22168.55 33989.57 38391.12 13195.66 29897.18 229
eth_miper_zixun_eth90.72 21390.61 22191.05 25492.04 33576.84 31886.91 33996.67 18185.21 24594.41 18793.92 27579.53 27998.26 20689.76 17397.02 26398.06 153
SCA87.43 29687.21 29088.10 32492.01 33671.98 35989.43 29588.11 34482.26 28788.71 32692.83 30278.65 28697.59 26679.61 31893.30 34894.75 319
dmvs_testset78.23 36078.99 35775.94 37691.99 33755.34 39988.86 30978.70 39282.69 28081.64 38479.46 39175.93 31385.74 39148.78 39782.85 39086.76 384
test_fmvs290.62 21890.40 22791.29 24691.93 33885.46 18692.70 18396.48 19474.44 34394.91 17397.59 7475.52 31590.57 37593.44 6896.56 28097.84 182
cl____90.65 21690.56 22390.91 26291.85 33976.98 31586.75 34495.36 24385.53 24194.06 19694.89 23977.36 30197.98 23190.27 15798.98 11497.76 191
DIV-MVS_self_test90.65 21690.56 22390.91 26291.85 33976.99 31486.75 34495.36 24385.52 24394.06 19694.89 23977.37 30097.99 23090.28 15698.97 11997.76 191
our_test_387.55 29387.59 28387.44 33291.76 34170.48 36583.83 37390.55 33079.79 30492.06 26992.17 31878.63 28895.63 33284.77 26594.73 32296.22 268
ppachtmachnet_test88.61 27488.64 25888.50 31691.76 34170.99 36484.59 36792.98 29379.30 31492.38 25893.53 28879.57 27897.45 27486.50 24297.17 25897.07 231
Syy-MVS84.81 32284.93 31684.42 35791.71 34363.36 39185.89 35481.49 38381.03 29485.13 35881.64 38977.44 29795.00 34685.94 24994.12 33794.91 313
myMVS_eth3d79.62 35678.26 36083.72 36191.71 34361.25 39385.89 35481.49 38381.03 29485.13 35881.64 38932.12 40395.00 34671.17 37494.12 33794.91 313
131486.46 31186.33 30886.87 33891.65 34574.54 33891.94 21994.10 27474.28 34484.78 36387.33 37283.03 24895.00 34678.72 32591.16 37091.06 372
miper_ehance_all_eth90.48 22090.42 22690.69 26891.62 34676.57 32286.83 34296.18 20883.38 26794.06 19692.66 30982.20 25898.04 22289.79 17297.02 26397.45 212
cascas87.02 30786.28 30989.25 30291.56 34776.45 32384.33 37096.78 17371.01 36486.89 34985.91 37981.35 26696.94 29883.09 27895.60 29994.35 328
baseline283.38 33281.54 34188.90 30691.38 34872.84 35488.78 31281.22 38578.97 31679.82 38887.56 36861.73 37497.80 24874.30 35490.05 37596.05 275
miper_lstm_enhance89.90 24489.80 23990.19 28491.37 34977.50 30683.82 37495.00 25184.84 25593.05 23294.96 23776.53 31295.20 34589.96 16998.67 15797.86 179
mvsany_test389.11 25888.21 27391.83 22391.30 35090.25 7988.09 32178.76 39176.37 33396.43 9198.39 3383.79 24090.43 37886.57 23894.20 33494.80 316
IB-MVS77.21 1983.11 33381.05 34489.29 30091.15 35175.85 32985.66 35786.00 36079.70 30682.02 38186.61 37448.26 39598.39 19177.84 33092.22 36293.63 345
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS84.98 32184.30 32287.01 33591.03 35277.69 30591.94 21994.16 27359.36 39284.23 36787.50 37085.66 22696.80 30471.79 36693.05 35486.54 385
CR-MVSNet87.89 28387.12 29490.22 28191.01 35378.93 28492.52 19092.81 29673.08 35289.10 31696.93 13067.11 34597.64 26588.80 19892.70 35794.08 331
RPMNet90.31 23190.14 23390.81 26691.01 35378.93 28492.52 19098.12 5191.91 10189.10 31696.89 13368.84 33899.41 3990.17 16292.70 35794.08 331
new_pmnet81.22 34781.01 34681.86 36790.92 35570.15 36784.03 37180.25 38970.83 36585.97 35389.78 35067.93 34484.65 39367.44 38391.90 36690.78 373
PatchT87.51 29488.17 27485.55 34790.64 35666.91 37692.02 21586.09 35992.20 9389.05 31897.16 11264.15 36396.37 31889.21 18992.98 35593.37 350
Patchmatch-test86.10 31386.01 31086.38 34490.63 35774.22 34489.57 29086.69 35485.73 23489.81 30892.83 30265.24 35991.04 37477.82 33295.78 29693.88 339
PVSNet_070.34 2174.58 36172.96 36479.47 37390.63 35766.24 38073.26 38783.40 37963.67 38978.02 39078.35 39372.53 32489.59 38256.68 39360.05 39782.57 391
PMMVS281.31 34683.44 32874.92 37790.52 35946.49 40369.19 39185.23 37184.30 26287.95 33894.71 24876.95 30684.36 39464.07 38898.09 21293.89 338
tpm84.38 32684.08 32485.30 35090.47 36063.43 39089.34 29885.63 36477.24 32887.62 34295.03 23561.00 37797.30 28279.26 32291.09 37195.16 303
wuyk23d87.83 28590.79 21778.96 37490.46 36188.63 11092.72 18190.67 32991.65 11998.68 1197.64 7196.06 1577.53 39659.84 39199.41 5670.73 394
Patchmtry90.11 23789.92 23690.66 26990.35 36277.00 31392.96 17492.81 29690.25 15194.74 18096.93 13067.11 34597.52 26985.17 25598.98 11497.46 211
test_f86.65 31087.13 29385.19 35190.28 36386.11 17186.52 35291.66 31969.76 37295.73 13197.21 11069.51 33781.28 39589.15 19094.40 32888.17 381
CHOSEN 280x42080.04 35577.97 36286.23 34590.13 36474.53 33972.87 38989.59 33366.38 38276.29 39285.32 38156.96 38395.36 34069.49 37994.72 32388.79 379
MVSTER89.32 25488.75 25791.03 25590.10 36576.62 32190.85 24894.67 26482.27 28695.24 15995.79 19961.09 37698.49 18390.49 14698.26 19597.97 168
tpm281.46 34580.35 35284.80 35389.90 36665.14 38490.44 26185.36 36765.82 38582.05 38092.44 31357.94 38196.69 30770.71 37588.49 37992.56 360
cl2289.02 26088.50 26090.59 27189.76 36776.45 32386.62 34994.03 27582.98 27792.65 24692.49 31072.05 32897.53 26888.93 19497.02 26397.78 189
test0.0.03 182.48 33881.47 34285.48 34889.70 36873.57 34884.73 36481.64 38283.07 27588.13 33686.61 37462.86 37089.10 38666.24 38690.29 37493.77 341
test-LLR83.58 33183.17 33084.79 35489.68 36966.86 37783.08 37584.52 37383.07 27582.85 37584.78 38362.86 37093.49 36282.85 27994.86 31894.03 334
test-mter81.21 34880.01 35584.79 35489.68 36966.86 37783.08 37584.52 37373.85 34782.85 37584.78 38343.66 39993.49 36282.85 27994.86 31894.03 334
DSMNet-mixed82.21 34081.56 33984.16 35989.57 37170.00 37090.65 25677.66 39554.99 39583.30 37397.57 7577.89 29490.50 37766.86 38595.54 30191.97 364
PatchmatchNetpermissive85.22 31884.64 31886.98 33689.51 37269.83 37190.52 25987.34 35178.87 31887.22 34792.74 30666.91 34796.53 30981.77 29286.88 38294.58 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.88 32789.42 37361.52 39288.74 31487.41 34973.99 34684.96 36294.01 27265.25 35895.53 33378.02 32893.16 350
CostFormer83.09 33482.21 33785.73 34689.27 37467.01 37590.35 26686.47 35670.42 36983.52 37293.23 29561.18 37596.85 30277.21 33788.26 38093.34 351
ADS-MVSNet284.01 32882.20 33889.41 29789.04 37576.37 32587.57 32590.98 32572.71 35684.46 36492.45 31168.08 34196.48 31270.58 37683.97 38695.38 300
ADS-MVSNet82.25 33981.55 34084.34 35889.04 37565.30 38287.57 32585.13 37272.71 35684.46 36492.45 31168.08 34192.33 36870.58 37683.97 38695.38 300
tpm cat180.61 35379.46 35684.07 36088.78 37765.06 38689.26 30188.23 34062.27 39081.90 38289.66 35362.70 37295.29 34371.72 36780.60 39391.86 367
CMPMVSbinary68.83 2287.28 29985.67 31392.09 21888.77 37885.42 18790.31 26894.38 26870.02 37188.00 33793.30 29273.78 32294.03 35975.96 34696.54 28196.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall88.42 27687.87 27990.07 28588.67 37975.52 33285.10 36195.59 23075.68 33492.49 25189.45 35578.96 28297.88 23987.86 21897.02 26396.81 245
test_fmvs187.59 29287.27 28888.54 31488.32 38081.26 24390.43 26495.72 22370.55 36891.70 27394.63 25068.13 34089.42 38490.59 14495.34 30894.94 312
test_vis1_rt85.58 31684.58 31988.60 31387.97 38186.76 14985.45 35993.59 28266.43 38187.64 34189.20 35879.33 28085.38 39281.59 29589.98 37693.66 344
tpmrst82.85 33782.93 33382.64 36587.65 38258.99 39690.14 27387.90 34675.54 33683.93 36891.63 32766.79 35095.36 34081.21 30081.54 39293.57 349
JIA-IIPM85.08 32083.04 33191.19 25287.56 38386.14 17089.40 29784.44 37588.98 17482.20 37897.95 5456.82 38496.15 32276.55 34283.45 38891.30 370
TESTMET0.1,179.09 35878.04 36182.25 36687.52 38464.03 38983.08 37580.62 38770.28 37080.16 38783.22 38644.13 39890.56 37679.95 31293.36 34692.15 363
gg-mvs-nofinetune82.10 34381.02 34585.34 34987.46 38571.04 36294.74 11167.56 39996.44 2379.43 38998.99 645.24 39696.15 32267.18 38492.17 36388.85 378
pmmvs380.83 35178.96 35886.45 34187.23 38677.48 30784.87 36382.31 38063.83 38885.03 36089.50 35449.66 39393.10 36473.12 36195.10 31388.78 380
tpmvs84.22 32783.97 32584.94 35287.09 38765.18 38391.21 24188.35 33882.87 27885.21 35690.96 33665.24 35996.75 30579.60 32085.25 38592.90 357
gm-plane-assit87.08 38859.33 39571.22 36183.58 38597.20 28673.95 355
MVEpermissive59.87 2373.86 36272.65 36577.47 37587.00 38974.35 34161.37 39360.93 40167.27 37969.69 39686.49 37681.24 27072.33 39756.45 39483.45 38885.74 386
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 31584.37 32189.40 29886.30 39074.33 34291.64 23288.26 33984.84 25572.96 39589.85 34571.27 33297.69 26176.60 34197.62 24196.18 270
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test183.91 32982.93 33386.84 33986.18 39185.93 17481.11 38275.03 39770.80 36788.57 33094.63 25083.08 24787.38 38780.39 30486.57 38387.21 383
dp79.28 35778.62 35981.24 37085.97 39256.45 39786.91 33985.26 37072.97 35481.45 38589.17 36056.01 38695.45 33873.19 36076.68 39491.82 368
EPMVS81.17 34980.37 35183.58 36285.58 39365.08 38590.31 26871.34 39877.31 32785.80 35491.30 33059.38 37992.70 36779.99 31182.34 39192.96 356
E-PMN80.72 35280.86 34780.29 37285.11 39468.77 37372.96 38881.97 38187.76 20283.25 37483.01 38762.22 37389.17 38577.15 33894.31 33282.93 389
GG-mvs-BLEND83.24 36485.06 39571.03 36394.99 10665.55 40074.09 39475.51 39444.57 39794.46 35259.57 39287.54 38184.24 387
EMVS80.35 35480.28 35380.54 37184.73 39669.07 37272.54 39080.73 38687.80 20081.66 38381.73 38862.89 36989.84 38075.79 34794.65 32582.71 390
EPNet89.80 24788.25 26994.45 13083.91 39786.18 16993.87 14687.07 35391.16 13180.64 38694.72 24778.83 28398.89 12085.17 25598.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS83.00 33581.11 34388.66 31283.81 39886.44 16082.24 37985.65 36361.75 39182.07 37985.64 38079.75 27791.59 37275.99 34593.09 35287.94 382
KD-MVS_2432*160082.17 34180.75 34886.42 34282.04 39970.09 36881.75 38090.80 32782.56 28190.37 29689.30 35642.90 40096.11 32474.47 35292.55 35993.06 353
miper_refine_blended82.17 34180.75 34886.42 34282.04 39970.09 36881.75 38090.80 32782.56 28190.37 29689.30 35642.90 40096.11 32474.47 35292.55 35993.06 353
DeepMVS_CXcopyleft53.83 38070.38 40164.56 38748.52 40433.01 39665.50 39774.21 39556.19 38546.64 39938.45 39970.07 39550.30 395
test_method50.44 36348.94 36654.93 37939.68 40212.38 40628.59 39490.09 3316.82 39741.10 39978.41 39254.41 38870.69 39850.12 39651.26 39881.72 392
tmp_tt37.97 36444.33 36718.88 38111.80 40321.54 40563.51 39245.66 4054.23 39851.34 39850.48 39659.08 38022.11 40044.50 39868.35 39613.00 396
test1239.49 36612.01 3691.91 3822.87 4041.30 40782.38 3781.34 4071.36 4002.84 4016.56 3992.45 4050.97 4012.73 4005.56 3993.47 397
testmvs9.02 36711.42 3701.81 3832.77 4051.13 40879.44 3851.90 4061.18 4012.65 4026.80 3981.95 4060.87 4022.62 4013.45 4003.44 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
eth-test20.00 406
eth-test0.00 406
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k23.35 36531.13 3680.00 3840.00 4060.00 4090.00 39595.58 2320.00 4020.00 40391.15 33293.43 840.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.56 36810.09 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40290.77 1510.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.56 36810.08 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40390.69 3410.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
MM95.22 9487.21 13894.31 13190.92 32694.48 4692.80 24197.52 8185.27 23099.49 2496.58 899.57 3598.97 62
WAC-MVS61.25 39374.55 351
PC_three_145275.31 33995.87 12295.75 20492.93 10196.34 32187.18 22898.68 15598.04 156
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7599.25 8398.49 124
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4899.42 5298.89 75
GSMVS94.75 319
sam_mvs166.64 35194.75 319
sam_mvs66.41 352
MTGPAbinary97.62 105
test_post190.21 2705.85 40165.36 35796.00 32779.61 318
test_post6.07 40065.74 35695.84 330
patchmatchnet-post91.71 32566.22 35497.59 266
MTMP94.82 10954.62 403
test9_res88.16 20998.40 17997.83 183
agg_prior287.06 23198.36 18897.98 165
test_prior489.91 8290.74 252
test_prior290.21 27089.33 16790.77 28894.81 24290.41 16188.21 20598.55 167
旧先验290.00 27868.65 37692.71 24596.52 31085.15 257
新几何290.02 277
无先验89.94 27995.75 22270.81 36698.59 17481.17 30194.81 315
原ACMM289.34 298
testdata298.03 22380.24 308
segment_acmp92.14 119
testdata188.96 30788.44 187
plane_prior597.81 9198.95 11489.26 18698.51 17398.60 117
plane_prior495.59 209
plane_prior388.43 11990.35 15093.31 218
plane_prior294.56 12091.74 115
plane_prior88.12 12293.01 17288.98 17498.06 214
n20.00 408
nn0.00 408
door-mid92.13 313
test1196.65 182
door91.26 322
HQP5-MVS84.89 192
BP-MVS86.55 240
HQP4-MVS88.81 32198.61 17098.15 148
HQP3-MVS97.31 13297.73 234
HQP2-MVS84.76 234
MDTV_nov1_ep13_2view42.48 40488.45 31967.22 38083.56 37166.80 34872.86 36294.06 333
ACMMP++_ref98.82 139
ACMMP++99.25 83
Test By Simon90.61 157