This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3499.53 3898.99 56
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4898.68 15598.04 156
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14499.23 493.45 8299.57 1495.34 3099.89 299.63 9
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 14199.73 1399.59 13
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27096.48 2195.38 14793.63 28394.89 5597.94 23495.38 2896.92 26995.17 302
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16296.71 899.42 3393.99 4799.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26693.12 7397.94 2798.54 2581.19 27199.63 695.48 2499.69 1499.60 12
EPP-MVSNet93.91 13793.68 14494.59 12298.08 8285.55 18597.44 1294.03 27594.22 5094.94 17196.19 18182.07 26099.57 1487.28 22798.89 12698.65 107
LS3D96.11 4795.83 6396.95 3694.75 27694.20 1997.34 1397.98 7597.31 1195.32 15296.77 13993.08 9799.20 8091.79 11798.16 20697.44 214
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 4099.38 5998.92 72
MVSFormer92.18 18992.23 18192.04 22094.74 27780.06 25897.15 1597.37 12388.98 17488.83 31992.79 30477.02 30499.60 996.41 996.75 27696.46 259
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 24199.45 2795.52 2299.66 2199.36 24
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26996.24 2596.28 10196.36 17082.88 24999.35 6088.19 20799.52 4198.96 64
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 8099.74 1299.50 17
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13795.10 4699.40 4693.47 6599.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3699.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EGC-MVSNET80.97 35075.73 36396.67 4298.85 2494.55 1596.83 2396.60 1842.44 3995.32 40098.25 3792.24 11598.02 22691.85 11599.21 9097.45 212
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16796.39 16794.77 5899.42 3393.17 8199.44 5098.58 119
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16499.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4299.84 399.66 6
FE-MVS89.06 25988.29 26691.36 24294.78 27479.57 27396.77 2890.99 32484.87 25492.96 23696.29 17460.69 37898.80 13980.18 30997.11 26095.71 289
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25294.79 24593.56 7999.49 2493.47 6599.05 10697.89 176
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12999.69 1499.42 19
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25487.06 14296.63 3197.28 13791.82 11094.34 19197.41 8890.60 15898.65 16792.47 10098.11 21097.70 196
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20596.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7299.84 399.72 2
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19596.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8999.83 599.68 4
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19496.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7799.82 799.62 10
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18996.49 15794.56 6499.39 4993.57 5899.05 10698.93 68
X-MVStestdata90.70 21488.45 26197.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18926.89 39794.56 6499.39 4993.57 5899.05 10698.93 68
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24394.52 25593.95 7699.49 2493.62 5799.22 8997.51 209
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14296.68 14994.50 6699.42 3393.10 8399.26 8298.99 56
QAPM92.88 16692.77 16793.22 17695.82 23683.31 21296.45 3997.35 12983.91 26493.75 20696.77 13989.25 17798.88 12184.56 26897.02 26397.49 210
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27298.85 1291.77 12695.49 33691.72 11999.08 10295.02 308
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16395.15 22886.60 21799.50 2193.43 7196.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12394.85 5699.42 3393.49 6298.84 13398.00 161
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12395.40 2993.49 6298.84 13398.00 161
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24494.75 17997.12 11691.85 12499.40 4693.45 6798.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28593.73 28193.52 8199.55 1891.81 11699.45 4797.58 203
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18896.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 3199.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15596.57 15595.02 5099.41 3993.63 5699.11 10198.94 66
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12295.63 2399.39 4993.31 7498.88 12898.75 92
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20896.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8599.81 899.70 3
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13496.47 15895.37 3099.27 7493.78 5299.14 9998.48 125
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13796.61 15394.93 5499.41 3993.78 5299.15 9899.00 54
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 18097.23 10691.33 13599.16 8393.25 7898.30 19298.46 126
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15599.05 9986.43 24399.60 2699.10 47
test250685.42 31784.57 32087.96 32597.81 10366.53 37996.14 5856.35 40289.04 17293.55 21398.10 4242.88 40298.68 16388.09 21199.18 9498.67 105
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14695.09 4799.43 3292.99 8898.71 15198.50 122
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21496.72 14794.23 7199.42 3391.99 11099.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 15196.36 17095.68 2199.44 2994.41 3899.28 7998.97 62
FA-MVS(test-final)91.81 19491.85 19291.68 23194.95 26779.99 26296.00 6293.44 28787.80 20094.02 19997.29 10277.60 29598.45 18988.04 21397.49 24596.61 251
GBi-Net93.21 15692.96 16293.97 14495.40 25684.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26798.98 10786.74 23398.38 18398.65 107
test193.21 15692.96 16293.97 14495.40 25684.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26798.98 10786.74 23398.38 18398.65 107
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19895.99 6396.56 18892.38 8597.03 6798.53 2690.12 16698.98 10788.78 19999.16 9798.65 107
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21597.78 6391.21 14097.77 25391.06 13297.06 26198.80 86
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21795.93 6794.84 25694.86 4198.49 1598.74 1681.45 26599.60 994.69 3399.39 5899.15 39
ambc92.98 18096.88 15683.01 22195.92 6896.38 19896.41 9297.48 8688.26 18497.80 24889.96 16998.93 12598.12 151
FC-MVSNet-test95.32 8195.88 5993.62 15998.49 5881.77 23495.90 6998.32 2493.93 5697.53 4297.56 7688.48 18199.40 4692.91 9099.83 599.68 4
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12993.56 7999.37 5794.29 4199.42 5298.99 56
CPTT-MVS94.74 10294.12 13196.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 22195.46 21588.89 17998.98 10789.80 17198.82 13997.80 187
ab-mvs92.40 18292.62 17491.74 22797.02 14881.65 23695.84 7195.50 23686.95 21792.95 23797.56 7690.70 15697.50 27079.63 31797.43 24996.06 274
bld_raw_dy_0_6494.27 12094.15 13094.65 11698.55 4586.28 16695.80 7395.55 23388.41 18897.09 6198.08 4478.69 28598.87 12595.63 1799.53 3898.81 84
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 5099.49 4299.36 24
ECVR-MVScopyleft90.12 23690.16 23090.00 28897.81 10372.68 35595.76 7578.54 39389.04 17295.36 15098.10 4270.51 33498.64 16887.10 22999.18 9498.67 105
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15594.99 5299.36 5893.48 6499.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
OpenMVScopyleft89.45 892.27 18792.13 18592.68 19594.53 28684.10 20495.70 7697.03 15382.44 28591.14 28396.42 16188.47 18298.38 19485.95 24897.47 24795.55 297
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12996.28 17695.22 4099.42 3393.17 8199.06 10398.88 77
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15599.60 2698.72 97
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26388.20 20698.66 15997.79 188
test111190.39 22590.61 22189.74 29298.04 8871.50 36195.59 8179.72 39089.41 16495.94 11798.14 3970.79 33398.81 13688.52 20499.32 6898.90 74
canonicalmvs94.59 10894.69 11194.30 13495.60 25187.03 14395.59 8198.24 3491.56 12195.21 16192.04 32194.95 5398.66 16591.45 12797.57 24397.20 228
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14994.37 7099.32 6992.41 10199.05 10698.64 112
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15199.60 995.43 2799.53 3899.57 14
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22096.47 2293.40 21797.46 8795.31 3595.47 33786.18 24798.78 14489.11 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VDDNet94.03 13194.27 12793.31 17398.87 2182.36 22995.51 8691.78 31897.19 1296.32 9698.60 2284.24 23798.75 14787.09 23098.83 13898.81 84
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 19195.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 26090.17 16299.42 5298.99 56
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19298.07 4592.02 12099.44 2993.38 7397.67 23997.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
FIs94.90 9795.35 8393.55 16298.28 6981.76 23595.33 9098.14 4993.05 7697.07 6397.18 11187.65 19599.29 7091.72 11999.69 1499.61 11
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12696.87 13495.26 3799.45 2792.77 9199.21 9099.00 54
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7599.29 7497.95 169
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20793.12 9598.06 22186.28 24698.61 16197.95 169
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6899.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6899.31 6998.53 121
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17495.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20399.04 11198.78 88
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 6099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19390.10 16899.33 6890.11 16499.66 2199.26 30
TransMVSNet (Re)95.27 8796.04 5292.97 18198.37 6581.92 23395.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19799.23 8699.08 48
UGNet93.08 15992.50 17794.79 10893.87 30187.99 12595.07 10194.26 27290.64 14287.33 34697.67 6986.89 21198.49 18388.10 21098.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051789.81 24688.90 25592.55 20397.00 14979.73 27095.03 10383.65 37789.88 15695.30 15394.79 24553.64 39099.39 4991.99 11098.79 14398.54 120
LFMVS91.33 20591.16 21091.82 22496.27 20279.36 27795.01 10485.61 36596.04 3094.82 17697.06 12172.03 32998.46 18884.96 26398.70 15397.65 200
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28991.92 12398.78 14389.11 19199.24 8596.92 239
GG-mvs-BLEND83.24 36485.06 39571.03 36394.99 10665.55 40074.09 39475.51 39444.57 39794.46 35259.57 39287.54 38184.24 387
EU-MVSNet87.39 29786.71 30189.44 29693.40 30876.11 32694.93 10790.00 33257.17 39395.71 13297.37 9164.77 36197.68 26292.67 9694.37 33094.52 324
KD-MVS_self_test94.10 12994.73 11092.19 21297.66 11879.49 27594.86 10897.12 14889.59 16296.87 7497.65 7090.40 16298.34 19989.08 19299.35 6198.75 92
MTMP94.82 10954.62 403
PHI-MVS94.34 11893.80 13895.95 5995.65 24791.67 6294.82 10997.86 8587.86 19993.04 23394.16 26691.58 13098.78 14390.27 15798.96 12197.41 215
gg-mvs-nofinetune82.10 34381.02 34585.34 34987.46 38571.04 36294.74 11167.56 39996.44 2379.43 38998.99 645.24 39696.15 32267.18 38492.17 36388.85 378
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13596.25 1499.00 10693.10 8399.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS95.19 8895.73 6793.55 16296.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16395.42 2894.36 35592.72 9599.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
API-MVS91.52 20191.61 19691.26 24794.16 29286.26 16794.66 11494.82 25791.17 13092.13 26791.08 33490.03 17197.06 29479.09 32497.35 25390.45 375
v1094.68 10695.27 8992.90 18796.57 17680.15 25494.65 11597.57 11090.68 14197.43 4898.00 5188.18 18599.15 8494.84 3299.55 3799.41 20
v894.65 10795.29 8792.74 19296.65 17079.77 26994.59 11697.17 14391.86 10397.47 4797.93 5588.16 18699.08 9494.32 3999.47 4399.38 22
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14496.17 18493.42 8599.34 6389.30 18298.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPA-MVSNet95.14 8995.67 7093.58 16197.76 10683.15 21894.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17499.59 2899.08 48
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3799.34 6498.80 86
HQP_MVS94.26 12293.93 13495.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21895.59 20986.93 20998.95 11489.26 18698.51 17398.60 117
plane_prior294.56 12091.74 115
tfpnnormal94.27 12094.87 10392.48 20597.71 11280.88 24994.55 12295.41 24093.70 6196.67 8497.72 6691.40 13498.18 21387.45 22399.18 9498.36 131
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 14192.91 10298.72 15291.19 13099.42 5298.32 133
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14798.84 13397.57 204
MIMVSNet87.13 30586.54 30488.89 30796.05 22176.11 32694.39 12588.51 33781.37 29288.27 33496.75 14372.38 32695.52 33465.71 38795.47 30395.03 307
K. test v393.37 14993.27 15993.66 15898.05 8582.62 22594.35 12686.62 35596.05 2997.51 4398.85 1276.59 31199.65 393.21 7998.20 20498.73 96
MVS_030493.92 13693.68 14494.64 11795.94 23185.83 17894.34 12788.14 34392.98 7791.09 28497.68 6786.73 21499.36 5896.64 799.59 2898.72 97
Vis-MVSNet (Re-imp)90.42 22290.16 23091.20 25197.66 11877.32 30994.33 12887.66 34891.20 12992.99 23495.13 23075.40 31698.28 20277.86 32999.19 9297.99 164
ANet_high94.83 10096.28 3790.47 27396.65 17073.16 35094.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 15099.68 1899.53 15
iter_conf_final90.23 23289.32 24592.95 18394.65 28381.46 24094.32 13095.40 24285.61 23892.84 23995.37 22454.58 38799.13 8892.16 10498.94 12498.25 139
MM95.22 9487.21 13894.31 13190.92 32694.48 4692.80 24197.52 8185.27 23099.49 2496.58 899.57 3598.97 62
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15895.85 1899.12 9190.45 14799.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS90.32 23088.87 25694.66 11594.82 27191.85 5794.22 13494.75 26080.91 29687.52 34488.07 36786.63 21697.87 24276.67 34096.21 28794.25 330
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FMVSNet292.78 17092.73 17192.95 18395.40 25681.98 23294.18 13595.53 23588.63 18296.05 11397.37 9181.31 26798.81 13687.38 22698.67 15798.06 153
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14797.36 13485.72 18194.15 13695.44 23783.25 27095.51 13998.05 4692.54 11197.19 28895.55 2197.46 24898.94 66
Anonymous2024052192.86 16893.57 15090.74 26796.57 17675.50 33394.15 13695.60 22689.38 16595.90 12097.90 6180.39 27597.96 23292.60 9899.68 1898.75 92
GeoE94.55 11094.68 11394.15 13797.23 13985.11 19094.14 13897.34 13088.71 18195.26 15695.50 21494.65 6199.12 9190.94 13698.40 17998.23 140
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14796.03 18994.66 6099.08 9490.70 14298.97 119
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25795.22 22791.03 14799.25 7592.11 10598.69 15497.90 174
HY-MVS82.50 1886.81 30985.93 31189.47 29593.63 30577.93 29994.02 14191.58 32175.68 33483.64 37093.64 28277.40 29897.42 27671.70 36892.07 36493.05 355
Effi-MVS+-dtu93.90 13892.60 17597.77 394.74 27796.67 594.00 14295.41 24089.94 15491.93 27192.13 31990.12 16698.97 11187.68 22097.48 24697.67 199
Effi-MVS+92.79 16992.74 16992.94 18595.10 26483.30 21394.00 14297.53 11491.36 12589.35 31590.65 34394.01 7598.66 16587.40 22595.30 30996.88 243
VDD-MVS94.37 11594.37 12194.40 13297.49 12786.07 17293.97 14493.28 28994.49 4596.24 10397.78 6387.99 19198.79 14088.92 19599.14 9998.34 132
h-mvs3392.89 16591.99 18895.58 7796.97 15090.55 7693.94 14594.01 27889.23 16893.95 20196.19 18176.88 30799.14 8691.02 13395.71 29797.04 235
EPNet89.80 24788.25 26994.45 13083.91 39786.18 16993.87 14687.07 35391.16 13180.64 38694.72 24778.83 28398.89 12085.17 25598.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs392.42 18192.40 18092.46 20793.80 30487.28 13693.86 14797.05 15276.86 33096.25 10298.66 1882.87 25091.26 37395.44 2696.83 27298.82 82
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9499.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LCM-MVSNet-Re94.20 12694.58 11693.04 17895.91 23283.13 21993.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29898.54 16996.96 238
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13999.76 1099.38 22
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16797.22 14184.37 19693.73 15195.26 24584.45 25995.76 12698.00 5191.85 12497.21 28595.62 1897.82 23198.98 60
PAPM_NR91.03 20990.81 21691.68 23196.73 16581.10 24693.72 15296.35 19988.19 19288.77 32592.12 32085.09 23397.25 28382.40 28793.90 33996.68 250
baseline94.26 12294.80 10592.64 19696.08 21980.99 24793.69 15398.04 6890.80 13894.89 17496.32 17293.19 9298.48 18791.68 12198.51 17398.43 128
dcpmvs_293.96 13495.01 9990.82 26597.60 12074.04 34593.68 15498.85 789.80 15897.82 2997.01 12691.14 14599.21 7890.56 14598.59 16499.19 36
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15396.72 16685.73 18093.65 15595.23 24683.30 26895.13 16297.56 7692.22 11697.17 28995.51 2397.41 25098.64 112
F-COLMAP92.28 18691.06 21195.95 5997.52 12591.90 5693.53 15697.18 14283.98 26388.70 32794.04 26988.41 18398.55 17980.17 31095.99 29197.39 219
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
FMVSNet587.82 28686.56 30391.62 23392.31 32479.81 26893.49 15894.81 25983.26 26991.36 27796.93 13052.77 39297.49 27276.07 34498.03 21797.55 207
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12895.14 4299.51 2091.74 11899.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
alignmvs93.26 15392.85 16694.50 12695.70 24387.45 13393.45 16095.76 22191.58 12095.25 15892.42 31581.96 26298.72 15291.61 12297.87 22997.33 223
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24098.27 2097.11 11794.11 7497.75 25696.26 1198.72 14996.89 241
114514_t90.51 21989.80 23992.63 19898.00 9182.24 23093.40 16297.29 13565.84 38489.40 31494.80 24486.99 20798.75 14783.88 27398.61 16196.89 241
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 17196.69 16784.37 19693.38 16395.13 24884.50 25895.40 14697.55 8091.77 12697.20 28695.59 1997.79 23298.69 104
DeepC-MVS_fast89.96 793.73 14193.44 15494.60 12196.14 21487.90 12693.36 16497.14 14585.53 24193.90 20495.45 21691.30 13798.59 17489.51 17798.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2599.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_040295.73 6196.22 4094.26 13598.19 7685.77 17993.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12699.29 7497.88 177
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23896.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23797.08 6297.35 9790.86 14897.66 26395.70 1698.48 17697.74 194
sd_testset93.94 13594.39 11992.61 20097.93 9683.24 21493.17 16995.04 25093.65 6595.51 13998.63 2094.49 6795.89 32981.72 29499.35 6198.70 101
MSLP-MVS++93.25 15593.88 13591.37 24196.34 19582.81 22493.11 17097.74 9889.37 16694.08 19495.29 22690.40 16296.35 31990.35 15298.25 19794.96 309
baseline187.62 29187.31 28688.54 31494.71 28074.27 34393.10 17188.20 34186.20 22492.18 26693.04 29773.21 32395.52 33479.32 32185.82 38495.83 284
plane_prior88.12 12293.01 17288.98 17498.06 214
thres100view90087.35 29886.89 29788.72 31096.14 21473.09 35193.00 17385.31 36892.13 9593.26 22390.96 33663.42 36798.28 20271.27 37196.54 28194.79 317
Patchmtry90.11 23789.92 23690.66 26990.35 36277.00 31392.96 17492.81 29690.25 15194.74 18096.93 13067.11 34597.52 26985.17 25598.98 11497.46 211
LF4IMVS92.72 17292.02 18794.84 10695.65 24791.99 5492.92 17596.60 18485.08 25092.44 25593.62 28486.80 21296.35 31986.81 23298.25 19796.18 270
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19290.14 16599.34 6392.11 10599.64 2499.16 38
TAPA-MVS88.58 1092.49 17991.75 19594.73 11096.50 18389.69 8692.91 17697.68 10178.02 32392.79 24294.10 26790.85 14997.96 23284.76 26698.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest053088.69 27387.52 28492.20 21196.33 19679.36 27792.81 17884.01 37686.44 22093.67 20992.68 30853.62 39199.25 7589.65 17698.45 17798.00 161
EIA-MVS92.35 18492.03 18693.30 17495.81 23883.97 20692.80 17998.17 4587.71 20389.79 30987.56 36891.17 14499.18 8287.97 21597.27 25496.77 247
iter_conf0588.94 26688.09 27691.50 23892.74 31976.97 31692.80 17995.92 21782.82 27993.65 21095.37 22449.41 39499.13 8890.82 13899.28 7998.40 130
thres600view787.66 28987.10 29589.36 29996.05 22173.17 34992.72 18185.31 36891.89 10293.29 22090.97 33563.42 36798.39 19173.23 35996.99 26896.51 254
wuyk23d87.83 28590.79 21778.96 37490.46 36188.63 11092.72 18190.67 32991.65 11998.68 1197.64 7196.06 1577.53 39659.84 39199.41 5670.73 394
test_fmvs290.62 21890.40 22791.29 24691.93 33885.46 18692.70 18396.48 19474.44 34394.91 17397.59 7475.52 31590.57 37593.44 6896.56 28097.84 182
V4293.43 14893.58 14992.97 18195.34 26081.22 24492.67 18496.49 19387.25 21196.20 10796.37 16987.32 20198.85 12892.39 10298.21 20298.85 81
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16596.25 20583.23 21592.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10398.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13595.04 4898.56 17792.77 9199.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_vis1_n89.01 26289.01 25189.03 30492.57 32182.46 22892.62 18796.06 21173.02 35390.40 29595.77 20374.86 31789.68 38190.78 14094.98 31594.95 310
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19390.10 16899.41 3991.60 12399.58 3399.26 30
FMVSNet390.78 21290.32 22992.16 21693.03 31679.92 26492.54 18994.95 25386.17 22695.10 16496.01 19069.97 33698.75 14786.74 23398.38 18397.82 185
hse-mvs292.24 18891.20 20795.38 8396.16 21190.65 7592.52 19092.01 31689.23 16893.95 20192.99 29976.88 30798.69 16191.02 13396.03 28996.81 245
MVS_Test92.57 17893.29 15690.40 27693.53 30775.85 32992.52 19096.96 15888.73 17992.35 26096.70 14890.77 15198.37 19892.53 9995.49 30296.99 237
CR-MVSNet87.89 28387.12 29490.22 28191.01 35378.93 28492.52 19092.81 29673.08 35289.10 31696.93 13067.11 34597.64 26588.80 19892.70 35794.08 331
RPMNet90.31 23190.14 23390.81 26691.01 35378.93 28492.52 19098.12 5191.91 10189.10 31696.89 13368.84 33899.41 3990.17 16292.70 35794.08 331
fmvsm_l_conf0.5_n93.79 13993.81 13693.73 15696.16 21186.26 16792.46 19496.72 17881.69 29195.77 12597.11 11790.83 15097.82 24695.58 2097.99 22197.11 230
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20696.25 17998.03 297.02 29592.08 10795.55 30098.45 127
EI-MVSNet-Vis-set94.36 11694.28 12594.61 11892.55 32285.98 17392.44 19694.69 26293.70 6196.12 11195.81 19891.24 13898.86 12693.76 5598.22 20198.98 60
Anonymous20240521192.58 17692.50 17792.83 19096.55 17883.22 21692.43 19791.64 32094.10 5295.59 13696.64 15181.88 26497.50 27085.12 25998.52 17197.77 190
AUN-MVS90.05 24188.30 26595.32 8896.09 21890.52 7792.42 19892.05 31582.08 28888.45 33192.86 30165.76 35598.69 16188.91 19696.07 28896.75 249
EI-MVSNet-UG-set94.35 11794.27 12794.59 12292.46 32385.87 17692.42 19894.69 26293.67 6496.13 11095.84 19791.20 14198.86 12693.78 5298.23 19999.03 52
NCCC94.08 13093.54 15295.70 7596.49 18489.90 8392.39 20096.91 16490.64 14292.33 26394.60 25290.58 15998.96 11290.21 16197.70 23798.23 140
casdiffmvspermissive94.32 11994.80 10592.85 18996.05 22181.44 24192.35 20198.05 6491.53 12295.75 12896.80 13893.35 8798.49 18391.01 13598.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS92.99 16292.74 16993.72 15795.86 23486.30 16592.33 20297.84 8891.70 11892.81 24086.17 37892.22 11699.19 8188.03 21497.73 23495.66 293
fmvsm_l_conf0.5_n_a93.59 14493.63 14693.49 16996.10 21785.66 18392.32 20396.57 18781.32 29395.63 13497.14 11490.19 16497.73 25995.37 2998.03 21797.07 231
EI-MVSNet92.99 16293.26 16092.19 21292.12 33279.21 28292.32 20394.67 26491.77 11395.24 15995.85 19587.14 20598.49 18391.99 11098.26 19598.86 78
CVMVSNet85.16 31984.72 31786.48 34092.12 33270.19 36692.32 20388.17 34256.15 39490.64 29195.85 19567.97 34396.69 30788.78 19990.52 37392.56 360
test_fmvs1_n88.73 27288.38 26389.76 29192.06 33482.53 22692.30 20696.59 18671.14 36292.58 24995.41 22168.55 33989.57 38391.12 13195.66 29897.18 229
OMC-MVS94.22 12593.69 14395.81 6997.25 13891.27 6492.27 20797.40 12287.10 21594.56 18495.42 21893.74 7798.11 21886.62 23798.85 13298.06 153
PM-MVS93.33 15092.67 17395.33 8696.58 17594.06 2192.26 20892.18 30985.92 23096.22 10596.61 15385.64 22895.99 32890.35 15298.23 19995.93 279
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20897.84 8894.91 4096.80 7895.78 20290.42 16099.41 3991.60 12399.58 3399.29 29
AdaColmapbinary91.63 19891.36 20492.47 20695.56 25286.36 16392.24 21096.27 20188.88 17889.90 30692.69 30791.65 12998.32 20077.38 33697.64 24092.72 359
PVSNet_Blended_VisFu91.63 19891.20 20792.94 18597.73 11083.95 20792.14 21197.46 11878.85 31992.35 26094.98 23684.16 23899.08 9486.36 24496.77 27595.79 286
Baseline_NR-MVSNet94.47 11395.09 9792.60 20198.50 5780.82 25092.08 21296.68 18093.82 5996.29 9998.56 2490.10 16897.75 25690.10 16699.66 2199.24 32
Fast-Effi-MVS+-dtu92.77 17192.16 18294.58 12494.66 28288.25 12092.05 21396.65 18289.62 16190.08 30191.23 33192.56 11098.60 17286.30 24596.27 28696.90 240
save fliter97.46 13088.05 12492.04 21497.08 15087.63 206
PatchT87.51 29488.17 27485.55 34790.64 35666.91 37692.02 21586.09 35992.20 9389.05 31897.16 11264.15 36396.37 31889.21 18992.98 35593.37 350
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21696.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12398.12 20998.03 159
v14419293.20 15893.54 15292.16 21696.05 22178.26 29691.95 21797.14 14584.98 25295.96 11596.11 18587.08 20699.04 10293.79 5198.84 13399.17 37
VNet92.67 17492.96 16291.79 22596.27 20280.15 25491.95 21794.98 25292.19 9494.52 18696.07 18787.43 19997.39 27984.83 26498.38 18397.83 183
131486.46 31186.33 30886.87 33891.65 34574.54 33891.94 21994.10 27474.28 34484.78 36387.33 37283.03 24895.00 34678.72 32591.16 37091.06 372
MVS84.98 32184.30 32287.01 33591.03 35277.69 30591.94 21994.16 27359.36 39284.23 36787.50 37085.66 22696.80 30471.79 36693.05 35486.54 385
SDMVSNet94.43 11495.02 9892.69 19497.93 9682.88 22391.92 22195.99 21693.65 6595.51 13998.63 2094.60 6396.48 31287.57 22199.35 6198.70 101
tfpn200view987.05 30686.52 30588.67 31195.77 23972.94 35291.89 22286.00 36090.84 13592.61 24789.80 34763.93 36498.28 20271.27 37196.54 28194.79 317
thres40087.20 30286.52 30589.24 30395.77 23972.94 35291.89 22286.00 36090.84 13592.61 24789.80 34763.93 36498.28 20271.27 37196.54 28196.51 254
v192192093.26 15393.61 14892.19 21296.04 22578.31 29591.88 22497.24 13985.17 24696.19 10996.19 18186.76 21399.05 9994.18 4398.84 13399.22 33
XXY-MVS92.58 17693.16 16190.84 26497.75 10779.84 26591.87 22596.22 20685.94 22995.53 13897.68 6792.69 10894.48 35183.21 27797.51 24498.21 142
IterMVS-LS93.78 14094.28 12592.27 20996.27 20279.21 28291.87 22596.78 17391.77 11396.57 8997.07 12087.15 20498.74 15091.99 11099.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114493.50 14593.81 13692.57 20296.28 20179.61 27291.86 22796.96 15886.95 21795.91 11996.32 17287.65 19598.96 11293.51 6198.88 12899.13 41
v119293.49 14693.78 13992.62 19996.16 21179.62 27191.83 22897.22 14186.07 22796.10 11296.38 16887.22 20299.02 10494.14 4498.88 12899.22 33
v124093.29 15193.71 14292.06 21996.01 22677.89 30191.81 22997.37 12385.12 24896.69 8396.40 16386.67 21599.07 9894.51 3598.76 14699.22 33
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22996.80 17289.66 16093.90 20495.44 21792.80 10698.72 15292.74 9398.52 17198.32 133
v2v48293.29 15193.63 14692.29 20896.35 19478.82 28991.77 23196.28 20088.45 18695.70 13396.26 17886.02 22398.90 11893.02 8698.81 14199.14 40
EPNet_dtu85.63 31584.37 32189.40 29886.30 39074.33 34291.64 23288.26 33984.84 25572.96 39589.85 34571.27 33297.69 26176.60 34197.62 24196.18 270
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft85.34 1590.40 22388.92 25394.85 10596.53 18290.02 8191.58 23396.48 19480.16 30286.14 35292.18 31785.73 22598.25 20776.87 33994.61 32696.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPNet93.08 15993.76 14091.03 25598.60 3975.83 33191.51 23495.62 22591.84 10795.74 12997.10 11989.31 17698.32 20085.07 26299.06 10398.93 68
XVG-OURS94.72 10394.12 13196.50 4798.00 9194.23 1891.48 23598.17 4590.72 13995.30 15396.47 15887.94 19296.98 29691.41 12897.61 24298.30 136
HQP-NCC96.36 19191.37 23687.16 21288.81 321
ACMP_Plane96.36 19191.37 23687.16 21288.81 321
HQP-MVS92.09 19091.49 20193.88 15096.36 19184.89 19291.37 23697.31 13287.16 21288.81 32193.40 29084.76 23498.60 17286.55 24097.73 23498.14 149
MCST-MVS92.91 16492.51 17694.10 14097.52 12585.72 18191.36 23997.13 14780.33 30192.91 23894.24 26291.23 13998.72 15289.99 16897.93 22697.86 179
v14892.87 16793.29 15691.62 23396.25 20577.72 30491.28 24095.05 24989.69 15995.93 11896.04 18887.34 20098.38 19490.05 16797.99 22198.78 88
tpmvs84.22 32783.97 32584.94 35287.09 38765.18 38391.21 24188.35 33882.87 27885.21 35690.96 33665.24 35996.75 30579.60 32085.25 38592.90 357
CANet92.38 18391.99 18893.52 16793.82 30383.46 21191.14 24297.00 15589.81 15786.47 35094.04 26987.90 19399.21 7889.50 17898.27 19497.90 174
CNLPA91.72 19691.20 20793.26 17596.17 21091.02 6791.14 24295.55 23390.16 15290.87 28693.56 28786.31 21994.40 35479.92 31697.12 25994.37 327
DP-MVS Recon92.31 18591.88 19193.60 16097.18 14386.87 14791.10 24497.37 12384.92 25392.08 26894.08 26888.59 18098.20 21083.50 27498.14 20895.73 288
OpenMVS_ROBcopyleft85.12 1689.52 25089.05 24990.92 26094.58 28581.21 24591.10 24493.41 28877.03 32993.41 21593.99 27383.23 24597.80 24879.93 31494.80 32193.74 342
TSAR-MVS + GP.93.07 16192.41 17995.06 9995.82 23690.87 7290.97 24692.61 30488.04 19594.61 18393.79 28088.08 18797.81 24789.41 17998.39 18296.50 257
MVP-Stereo90.07 24088.92 25393.54 16496.31 19886.49 15790.93 24795.59 23079.80 30391.48 27595.59 20980.79 27297.39 27978.57 32791.19 36996.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVSTER89.32 25488.75 25791.03 25590.10 36576.62 32190.85 24894.67 26482.27 28695.24 15995.79 19961.09 37698.49 18390.49 14698.26 19597.97 168
pmmvs-eth3d91.54 20090.73 21993.99 14295.76 24187.86 12890.83 24993.98 27978.23 32294.02 19996.22 18082.62 25696.83 30386.57 23898.33 18997.29 225
CANet_DTU89.85 24589.17 24791.87 22292.20 32980.02 26190.79 25095.87 21986.02 22882.53 37791.77 32480.01 27698.57 17685.66 25297.70 23797.01 236
SSC-MVS90.16 23492.96 16281.78 36897.88 9948.48 40090.75 25187.69 34796.02 3196.70 8297.63 7285.60 22997.80 24885.73 25198.60 16399.06 50
test_prior489.91 8290.74 252
TinyColmap92.00 19292.76 16889.71 29395.62 25077.02 31290.72 25396.17 20987.70 20495.26 15696.29 17492.54 11196.45 31481.77 29298.77 14595.66 293
CDPH-MVS92.67 17491.83 19395.18 9696.94 15288.46 11890.70 25497.07 15177.38 32592.34 26295.08 23392.67 10998.88 12185.74 25098.57 16698.20 143
test_vis1_n_192089.45 25189.85 23888.28 32093.59 30676.71 32090.67 25597.78 9679.67 30790.30 29896.11 18576.62 31092.17 36990.31 15493.57 34495.96 277
DSMNet-mixed82.21 34081.56 33984.16 35989.57 37170.00 37090.65 25677.66 39554.99 39583.30 37397.57 7577.89 29490.50 37766.86 38595.54 30191.97 364
TEST996.45 18789.46 9090.60 25796.92 16279.09 31590.49 29294.39 25891.31 13698.88 121
train_agg92.71 17391.83 19395.35 8496.45 18789.46 9090.60 25796.92 16279.37 31090.49 29294.39 25891.20 14198.88 12188.66 20298.43 17897.72 195
PatchmatchNetpermissive85.22 31884.64 31886.98 33689.51 37269.83 37190.52 25987.34 35178.87 31887.22 34792.74 30666.91 34796.53 30981.77 29286.88 38294.58 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_896.37 18989.14 10090.51 26096.89 16579.37 31090.42 29494.36 26091.20 14198.82 131
test_yl90.11 23789.73 24291.26 24794.09 29579.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32098.03 22382.23 28896.87 27095.93 279
DCV-MVSNet90.11 23789.73 24291.26 24794.09 29579.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32098.03 22382.23 28896.87 27095.93 279
tpm281.46 34580.35 35284.80 35389.90 36665.14 38490.44 26185.36 36765.82 38582.05 38092.44 31357.94 38196.69 30770.71 37588.49 37992.56 360
test_fmvs187.59 29287.27 28888.54 31488.32 38081.26 24390.43 26495.72 22370.55 36891.70 27394.63 25068.13 34089.42 38490.59 14495.34 30894.94 312
test_vis3_rt90.40 22390.03 23491.52 23792.58 32088.95 10390.38 26597.72 10073.30 35097.79 3097.51 8477.05 30387.10 38889.03 19394.89 31798.50 122
CostFormer83.09 33482.21 33785.73 34689.27 37467.01 37590.35 26686.47 35670.42 36983.52 37293.23 29561.18 37596.85 30277.21 33788.26 38093.34 351
TAMVS90.16 23489.05 24993.49 16996.49 18486.37 16290.34 26792.55 30580.84 29992.99 23494.57 25481.94 26398.20 21073.51 35798.21 20295.90 282
EPMVS81.17 34980.37 35183.58 36285.58 39365.08 38590.31 26871.34 39877.31 32785.80 35491.30 33059.38 37992.70 36779.99 31182.34 39192.96 356
CMPMVSbinary68.83 2287.28 29985.67 31392.09 21888.77 37885.42 18790.31 26894.38 26870.02 37188.00 33793.30 29273.78 32294.03 35975.96 34696.54 28196.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_post190.21 2705.85 40165.36 35796.00 32779.61 318
test_prior290.21 27089.33 16790.77 28894.81 24290.41 16188.21 20598.55 167
MVS_111021_LR93.66 14293.28 15894.80 10796.25 20590.95 6990.21 27095.43 23987.91 19693.74 20894.40 25792.88 10496.38 31790.39 14998.28 19397.07 231
WR-MVS93.49 14693.72 14192.80 19197.57 12380.03 26090.14 27395.68 22493.70 6196.62 8695.39 22287.21 20399.04 10287.50 22299.64 2499.33 26
tpmrst82.85 33782.93 33382.64 36587.65 38258.99 39690.14 27387.90 34675.54 33683.93 36891.63 32766.79 35095.36 34081.21 30081.54 39293.57 349
PVSNet_BlendedMVS90.35 22889.96 23591.54 23694.81 27278.80 29190.14 27396.93 16079.43 30988.68 32895.06 23486.27 22098.15 21680.27 30698.04 21697.68 198
BH-untuned90.68 21590.90 21290.05 28795.98 22779.57 27390.04 27694.94 25487.91 19694.07 19593.00 29887.76 19497.78 25279.19 32395.17 31292.80 358
新几何290.02 277
旧先验290.00 27868.65 37692.71 24596.52 31085.15 257
无先验89.94 27995.75 22270.81 36698.59 17481.17 30194.81 315
xiu_mvs_v1_base_debu91.47 20291.52 19891.33 24395.69 24481.56 23789.92 28096.05 21383.22 27191.26 27990.74 33891.55 13198.82 13189.29 18395.91 29293.62 346
xiu_mvs_v1_base91.47 20291.52 19891.33 24395.69 24481.56 23789.92 28096.05 21383.22 27191.26 27990.74 33891.55 13198.82 13189.29 18395.91 29293.62 346
xiu_mvs_v1_base_debi91.47 20291.52 19891.33 24395.69 24481.56 23789.92 28096.05 21383.22 27191.26 27990.74 33891.55 13198.82 13189.29 18395.91 29293.62 346
mvs_anonymous90.37 22791.30 20687.58 33092.17 33168.00 37489.84 28394.73 26183.82 26693.22 22797.40 8987.54 19797.40 27887.94 21695.05 31497.34 222
test20.0390.80 21190.85 21590.63 27095.63 24979.24 28089.81 28492.87 29589.90 15594.39 18896.40 16385.77 22495.27 34473.86 35699.05 10697.39 219
testing383.66 33082.52 33587.08 33495.84 23565.84 38189.80 28577.17 39688.17 19390.84 28788.63 36230.95 40498.11 21884.05 27197.19 25797.28 226
WB-MVS89.44 25292.15 18481.32 36997.73 11048.22 40189.73 28687.98 34595.24 3696.05 11396.99 12785.18 23196.95 29782.45 28697.97 22398.78 88
1112_ss88.42 27687.41 28591.45 23996.69 16780.99 24789.72 28796.72 17873.37 34987.00 34890.69 34177.38 29998.20 21081.38 29793.72 34295.15 304
UnsupCasMVSNet_eth90.33 22990.34 22890.28 27894.64 28480.24 25289.69 28895.88 21885.77 23293.94 20395.69 20681.99 26192.98 36684.21 27091.30 36897.62 201
MG-MVS89.54 24989.80 23988.76 30994.88 26872.47 35789.60 28992.44 30785.82 23189.48 31395.98 19182.85 25197.74 25881.87 29195.27 31096.08 273
Patchmatch-test86.10 31386.01 31086.38 34490.63 35774.22 34489.57 29086.69 35485.73 23489.81 30892.83 30265.24 35991.04 37477.82 33295.78 29693.88 339
Anonymous2023120688.77 27088.29 26690.20 28396.31 19878.81 29089.56 29193.49 28674.26 34592.38 25895.58 21282.21 25795.43 33972.07 36598.75 14896.34 263
dmvs_re84.69 32483.94 32686.95 33792.24 32682.93 22289.51 29287.37 35084.38 26185.37 35585.08 38272.44 32586.59 38968.05 38191.03 37291.33 369
DeepPCF-MVS90.46 694.20 12693.56 15196.14 5295.96 22892.96 4389.48 29397.46 11885.14 24796.23 10495.42 21893.19 9298.08 22090.37 15198.76 14697.38 221
test_cas_vis1_n_192088.25 27988.27 26888.20 32292.19 33078.92 28689.45 29495.44 23775.29 34093.23 22695.65 20871.58 33090.23 37988.05 21293.55 34595.44 299
SCA87.43 29687.21 29088.10 32492.01 33671.98 35989.43 29588.11 34482.26 28788.71 32692.83 30278.65 28697.59 26679.61 31893.30 34894.75 319
testgi90.38 22691.34 20587.50 33197.49 12771.54 36089.43 29595.16 24788.38 18994.54 18594.68 24992.88 10493.09 36571.60 36997.85 23097.88 177
JIA-IIPM85.08 32083.04 33191.19 25287.56 38386.14 17089.40 29784.44 37588.98 17482.20 37897.95 5456.82 38496.15 32276.55 34283.45 38891.30 370
原ACMM289.34 298
tpm84.38 32684.08 32485.30 35090.47 36063.43 39089.34 29885.63 36477.24 32887.62 34295.03 23561.00 37797.30 28279.26 32291.09 37195.16 303
MVS_111021_HR93.63 14393.42 15594.26 13596.65 17086.96 14689.30 30096.23 20488.36 19093.57 21294.60 25293.45 8297.77 25390.23 16098.38 18398.03 159
tpm cat180.61 35379.46 35684.07 36088.78 37765.06 38689.26 30188.23 34062.27 39081.90 38289.66 35362.70 37295.29 34371.72 36780.60 39391.86 367
CDS-MVSNet89.55 24888.22 27293.53 16595.37 25986.49 15789.26 30193.59 28279.76 30591.15 28292.31 31677.12 30298.38 19477.51 33497.92 22795.71 289
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+91.28 20790.86 21492.53 20495.45 25582.53 22689.25 30396.52 19285.00 25189.91 30588.55 36492.94 10098.84 12984.72 26795.44 30496.22 268
BH-RMVSNet90.47 22190.44 22590.56 27295.21 26378.65 29389.15 30493.94 28088.21 19192.74 24494.22 26386.38 21897.88 23978.67 32695.39 30695.14 305
thres20085.85 31485.18 31587.88 32894.44 28772.52 35689.08 30586.21 35788.57 18591.44 27688.40 36564.22 36298.00 22868.35 38095.88 29593.12 352
USDC89.02 26089.08 24888.84 30895.07 26574.50 34088.97 30696.39 19773.21 35193.27 22296.28 17682.16 25996.39 31677.55 33398.80 14295.62 296
testdata188.96 30788.44 187
pmmvs587.87 28487.14 29290.07 28593.26 31176.97 31688.89 30892.18 30973.71 34888.36 33293.89 27776.86 30996.73 30680.32 30596.81 27396.51 254
dmvs_testset78.23 36078.99 35775.94 37691.99 33755.34 39988.86 30978.70 39282.69 28081.64 38479.46 39175.93 31385.74 39148.78 39782.85 39086.76 384
patch_mono-292.46 18092.72 17291.71 22996.65 17078.91 28788.85 31097.17 14383.89 26592.45 25496.76 14189.86 17297.09 29290.24 15998.59 16499.12 43
test22296.95 15185.27 18988.83 31193.61 28165.09 38690.74 28994.85 24184.62 23697.36 25293.91 337
baseline283.38 33281.54 34188.90 30691.38 34872.84 35488.78 31281.22 38578.97 31679.82 38887.56 36861.73 37497.80 24874.30 35490.05 37596.05 275
diffmvspermissive91.74 19591.93 19091.15 25393.06 31478.17 29788.77 31397.51 11786.28 22292.42 25693.96 27488.04 18997.46 27390.69 14396.67 27897.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MDTV_nov1_ep1383.88 32789.42 37361.52 39288.74 31487.41 34973.99 34684.96 36294.01 27265.25 35895.53 33378.02 32893.16 350
D2MVS89.93 24389.60 24490.92 26094.03 29778.40 29488.69 31594.85 25578.96 31793.08 23095.09 23274.57 31896.94 29888.19 20798.96 12197.41 215
TR-MVS87.70 28787.17 29189.27 30194.11 29479.26 27988.69 31591.86 31781.94 28990.69 29089.79 34982.82 25297.42 27672.65 36391.98 36591.14 371
PatchMatch-RL89.18 25588.02 27892.64 19695.90 23392.87 4588.67 31791.06 32380.34 30090.03 30391.67 32683.34 24394.42 35376.35 34394.84 32090.64 374
PAPR87.65 29086.77 30090.27 27992.85 31877.38 30888.56 31896.23 20476.82 33284.98 36189.75 35186.08 22297.16 29072.33 36493.35 34796.26 267
MDTV_nov1_ep13_2view42.48 40488.45 31967.22 38083.56 37166.80 34872.86 36294.06 333
jason89.17 25688.32 26491.70 23095.73 24280.07 25788.10 32093.22 29071.98 35890.09 30092.79 30478.53 28998.56 17787.43 22497.06 26196.46 259
jason: jason.
mvsany_test389.11 25888.21 27391.83 22391.30 35090.25 7988.09 32178.76 39176.37 33396.43 9198.39 3383.79 24090.43 37886.57 23894.20 33494.80 316
BH-w/o87.21 30187.02 29687.79 32994.77 27577.27 31087.90 32293.21 29281.74 29089.99 30488.39 36683.47 24296.93 30071.29 37092.43 36189.15 376
MS-PatchMatch88.05 28287.75 28088.95 30593.28 30977.93 29987.88 32392.49 30675.42 33792.57 25093.59 28680.44 27494.24 35881.28 29892.75 35694.69 322
DELS-MVS92.05 19192.16 18291.72 22894.44 28780.13 25687.62 32497.25 13887.34 21092.22 26593.18 29689.54 17598.73 15189.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet284.01 32882.20 33889.41 29789.04 37576.37 32587.57 32590.98 32572.71 35684.46 36492.45 31168.08 34196.48 31270.58 37683.97 38695.38 300
ADS-MVSNet82.25 33981.55 34084.34 35889.04 37565.30 38287.57 32585.13 37272.71 35684.46 36492.45 31168.08 34192.33 36870.58 37683.97 38695.38 300
IterMVS-SCA-FT91.65 19791.55 19791.94 22193.89 30079.22 28187.56 32793.51 28591.53 12295.37 14996.62 15278.65 28698.90 11891.89 11494.95 31697.70 196
IterMVS90.18 23390.16 23090.21 28293.15 31275.98 32887.56 32792.97 29486.43 22194.09 19396.40 16378.32 29097.43 27587.87 21794.69 32497.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res87.50 29586.58 30290.25 28096.80 16477.75 30387.53 32996.25 20269.73 37386.47 35093.61 28575.67 31497.88 23979.95 31293.20 34995.11 306
c3_l91.32 20691.42 20291.00 25892.29 32576.79 31987.52 33096.42 19685.76 23394.72 18293.89 27782.73 25398.16 21590.93 13798.55 16798.04 156
UnsupCasMVSNet_bld88.50 27588.03 27789.90 28995.52 25378.88 28887.39 33194.02 27779.32 31393.06 23194.02 27180.72 27394.27 35675.16 34993.08 35396.54 252
lupinMVS88.34 27887.31 28691.45 23994.74 27780.06 25887.23 33292.27 30871.10 36388.83 31991.15 33277.02 30498.53 18086.67 23696.75 27695.76 287
pmmvs488.95 26587.70 28292.70 19394.30 29085.60 18487.22 33392.16 31174.62 34289.75 31194.19 26477.97 29396.41 31582.71 28196.36 28596.09 272
WTY-MVS86.93 30886.50 30788.24 32194.96 26674.64 33687.19 33492.07 31478.29 32188.32 33391.59 32878.06 29294.27 35674.88 35093.15 35195.80 285
ET-MVSNet_ETH3D86.15 31284.27 32391.79 22593.04 31581.28 24287.17 33586.14 35879.57 30883.65 36988.66 36157.10 38298.18 21387.74 21995.40 30595.90 282
MVS-HIRNet78.83 35980.60 35073.51 37893.07 31347.37 40287.10 33678.00 39468.94 37577.53 39197.26 10371.45 33194.62 34963.28 39088.74 37878.55 393
xiu_mvs_v2_base89.00 26389.19 24688.46 31894.86 27074.63 33786.97 33795.60 22680.88 29787.83 33988.62 36391.04 14698.81 13682.51 28594.38 32991.93 365
DPM-MVS89.35 25388.40 26292.18 21596.13 21684.20 20286.96 33896.15 21075.40 33887.36 34591.55 32983.30 24498.01 22782.17 29096.62 27994.32 329
eth_miper_zixun_eth90.72 21390.61 22191.05 25492.04 33576.84 31886.91 33996.67 18185.21 24594.41 18793.92 27579.53 27998.26 20689.76 17397.02 26398.06 153
dp79.28 35778.62 35981.24 37085.97 39256.45 39786.91 33985.26 37072.97 35481.45 38589.17 36056.01 38695.45 33873.19 36076.68 39491.82 368
sss87.23 30086.82 29888.46 31893.96 29877.94 29886.84 34192.78 29977.59 32487.61 34391.83 32378.75 28491.92 37077.84 33094.20 33495.52 298
miper_ehance_all_eth90.48 22090.42 22690.69 26891.62 34676.57 32286.83 34296.18 20883.38 26794.06 19692.66 30982.20 25898.04 22289.79 17297.02 26397.45 212
CLD-MVS91.82 19391.41 20393.04 17896.37 18983.65 21086.82 34397.29 13584.65 25792.27 26489.67 35292.20 11897.85 24583.95 27299.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl____90.65 21690.56 22390.91 26291.85 33976.98 31586.75 34495.36 24385.53 24194.06 19694.89 23977.36 30197.98 23190.27 15798.98 11497.76 191
DIV-MVS_self_test90.65 21690.56 22390.91 26291.85 33976.99 31486.75 34495.36 24385.52 24394.06 19694.89 23977.37 30097.99 23090.28 15698.97 11997.76 191
PS-MVSNAJ88.86 26888.99 25288.48 31794.88 26874.71 33586.69 34695.60 22680.88 29787.83 33987.37 37190.77 15198.82 13182.52 28494.37 33091.93 365
PVSNet_Blended88.74 27188.16 27590.46 27594.81 27278.80 29186.64 34796.93 16074.67 34188.68 32889.18 35986.27 22098.15 21680.27 30696.00 29094.44 326
MSDG90.82 21090.67 22091.26 24794.16 29283.08 22086.63 34896.19 20790.60 14491.94 27091.89 32289.16 17895.75 33180.96 30394.51 32794.95 310
cl2289.02 26088.50 26090.59 27189.76 36776.45 32386.62 34994.03 27582.98 27792.65 24692.49 31072.05 32897.53 26888.93 19497.02 26397.78 189
CL-MVSNet_self_test90.04 24289.90 23790.47 27395.24 26277.81 30286.60 35092.62 30385.64 23693.25 22593.92 27583.84 23996.06 32679.93 31498.03 21797.53 208
PCF-MVS84.52 1789.12 25787.71 28193.34 17296.06 22085.84 17786.58 35197.31 13268.46 37793.61 21193.89 27787.51 19898.52 18167.85 38298.11 21095.66 293
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_f86.65 31087.13 29385.19 35190.28 36386.11 17186.52 35291.66 31969.76 37295.73 13197.21 11069.51 33781.28 39589.15 19094.40 32888.17 381
Patchmatch-RL test88.81 26988.52 25989.69 29495.33 26179.94 26386.22 35392.71 30078.46 32095.80 12494.18 26566.25 35395.33 34289.22 18898.53 17093.78 340
Syy-MVS84.81 32284.93 31684.42 35791.71 34363.36 39185.89 35481.49 38381.03 29485.13 35881.64 38977.44 29795.00 34685.94 24994.12 33794.91 313
myMVS_eth3d79.62 35678.26 36083.72 36191.71 34361.25 39385.89 35481.49 38381.03 29485.13 35881.64 38932.12 40395.00 34671.17 37494.12 33794.91 313
FPMVS84.50 32583.28 32988.16 32396.32 19794.49 1685.76 35685.47 36683.09 27485.20 35794.26 26163.79 36686.58 39063.72 38991.88 36783.40 388
IB-MVS77.21 1983.11 33381.05 34489.29 30091.15 35175.85 32985.66 35786.00 36079.70 30682.02 38186.61 37448.26 39598.39 19177.84 33092.22 36293.63 345
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs91.04 20890.88 21391.55 23594.68 28180.16 25385.49 35892.14 31290.41 14994.93 17295.79 19985.10 23296.93 30085.15 25794.19 33697.57 204
test_vis1_rt85.58 31684.58 31988.60 31387.97 38186.76 14985.45 35993.59 28266.43 38187.64 34189.20 35879.33 28085.38 39281.59 29589.98 37693.66 344
new-patchmatchnet88.97 26490.79 21783.50 36394.28 29155.83 39885.34 36093.56 28486.18 22595.47 14295.73 20583.10 24696.51 31185.40 25498.06 21498.16 147
miper_enhance_ethall88.42 27687.87 27990.07 28588.67 37975.52 33285.10 36195.59 23075.68 33492.49 25189.45 35578.96 28297.88 23987.86 21897.02 26396.81 245
HyFIR lowres test87.19 30385.51 31492.24 21097.12 14780.51 25185.03 36296.06 21166.11 38391.66 27492.98 30070.12 33599.14 8675.29 34895.23 31197.07 231
pmmvs380.83 35178.96 35886.45 34187.23 38677.48 30784.87 36382.31 38063.83 38885.03 36089.50 35449.66 39393.10 36473.12 36195.10 31388.78 380
test0.0.03 182.48 33881.47 34285.48 34889.70 36873.57 34884.73 36481.64 38283.07 27588.13 33686.61 37462.86 37089.10 38666.24 38690.29 37493.77 341
N_pmnet88.90 26787.25 28993.83 15494.40 28993.81 3584.73 36487.09 35279.36 31293.26 22392.43 31479.29 28191.68 37177.50 33597.22 25696.00 276
GA-MVS87.70 28786.82 29890.31 27793.27 31077.22 31184.72 36692.79 29885.11 24989.82 30790.07 34466.80 34897.76 25584.56 26894.27 33395.96 277
ppachtmachnet_test88.61 27488.64 25888.50 31691.76 34170.99 36484.59 36792.98 29379.30 31492.38 25893.53 28879.57 27897.45 27486.50 24297.17 25897.07 231
CHOSEN 1792x268887.19 30385.92 31291.00 25897.13 14679.41 27684.51 36895.60 22664.14 38790.07 30294.81 24278.26 29197.14 29173.34 35895.38 30796.46 259
thisisatest051584.72 32382.99 33289.90 28992.96 31775.33 33484.36 36983.42 37877.37 32688.27 33486.65 37353.94 38998.72 15282.56 28397.40 25195.67 292
cascas87.02 30786.28 30989.25 30291.56 34776.45 32384.33 37096.78 17371.01 36486.89 34985.91 37981.35 26696.94 29883.09 27895.60 29994.35 328
new_pmnet81.22 34781.01 34681.86 36790.92 35570.15 36784.03 37180.25 38970.83 36585.97 35389.78 35067.93 34484.65 39367.44 38391.90 36690.78 373
PAPM81.91 34480.11 35487.31 33393.87 30172.32 35884.02 37293.22 29069.47 37476.13 39389.84 34672.15 32797.23 28453.27 39589.02 37792.37 362
our_test_387.55 29387.59 28387.44 33291.76 34170.48 36583.83 37390.55 33079.79 30492.06 26992.17 31878.63 28895.63 33284.77 26594.73 32296.22 268
miper_lstm_enhance89.90 24489.80 23990.19 28491.37 34977.50 30683.82 37495.00 25184.84 25593.05 23294.96 23776.53 31295.20 34589.96 16998.67 15797.86 179
test-LLR83.58 33183.17 33084.79 35489.68 36966.86 37783.08 37584.52 37383.07 27582.85 37584.78 38362.86 37093.49 36282.85 27994.86 31894.03 334
TESTMET0.1,179.09 35878.04 36182.25 36687.52 38464.03 38983.08 37580.62 38770.28 37080.16 38783.22 38644.13 39890.56 37679.95 31293.36 34692.15 363
test-mter81.21 34880.01 35584.79 35489.68 36966.86 37783.08 37584.52 37373.85 34782.85 37584.78 38343.66 39993.49 36282.85 27994.86 31894.03 334
test1239.49 36612.01 3691.91 3822.87 4041.30 40782.38 3781.34 4071.36 4002.84 4016.56 3992.45 4050.97 4012.73 4005.56 3993.47 397
PMMVS83.00 33581.11 34388.66 31283.81 39886.44 16082.24 37985.65 36361.75 39182.07 37985.64 38079.75 27791.59 37275.99 34593.09 35287.94 382
KD-MVS_2432*160082.17 34180.75 34886.42 34282.04 39970.09 36881.75 38090.80 32782.56 28190.37 29689.30 35642.90 40096.11 32474.47 35292.55 35993.06 353
miper_refine_blended82.17 34180.75 34886.42 34282.04 39970.09 36881.75 38090.80 32782.56 28190.37 29689.30 35642.90 40096.11 32474.47 35292.55 35993.06 353
mvsany_test183.91 32982.93 33386.84 33986.18 39185.93 17481.11 38275.03 39770.80 36788.57 33094.63 25083.08 24787.38 38780.39 30486.57 38387.21 383
YYNet188.17 28088.24 27087.93 32692.21 32873.62 34780.75 38388.77 33582.51 28494.99 17095.11 23182.70 25493.70 36083.33 27593.83 34096.48 258
MDA-MVSNet_test_wron88.16 28188.23 27187.93 32692.22 32773.71 34680.71 38488.84 33482.52 28394.88 17595.14 22982.70 25493.61 36183.28 27693.80 34196.46 259
testmvs9.02 36711.42 3701.81 3832.77 4051.13 40879.44 3851.90 4061.18 4012.65 4026.80 3981.95 4060.87 4022.62 4013.45 4003.44 398
PVSNet76.22 2082.89 33682.37 33684.48 35693.96 29864.38 38878.60 38688.61 33671.50 36084.43 36686.36 37774.27 31994.60 35069.87 37893.69 34394.46 325
PVSNet_070.34 2174.58 36172.96 36479.47 37390.63 35766.24 38073.26 38783.40 37963.67 38978.02 39078.35 39372.53 32489.59 38256.68 39360.05 39782.57 391
E-PMN80.72 35280.86 34780.29 37285.11 39468.77 37372.96 38881.97 38187.76 20283.25 37483.01 38762.22 37389.17 38577.15 33894.31 33282.93 389
CHOSEN 280x42080.04 35577.97 36286.23 34590.13 36474.53 33972.87 38989.59 33366.38 38276.29 39285.32 38156.96 38395.36 34069.49 37994.72 32388.79 379
EMVS80.35 35480.28 35380.54 37184.73 39669.07 37272.54 39080.73 38687.80 20081.66 38381.73 38862.89 36989.84 38075.79 34794.65 32582.71 390
PMMVS281.31 34683.44 32874.92 37790.52 35946.49 40369.19 39185.23 37184.30 26287.95 33894.71 24876.95 30684.36 39464.07 38898.09 21293.89 338
tmp_tt37.97 36444.33 36718.88 38111.80 40321.54 40563.51 39245.66 4054.23 39851.34 39850.48 39659.08 38022.11 40044.50 39868.35 39613.00 396
MVEpermissive59.87 2373.86 36272.65 36577.47 37587.00 38974.35 34161.37 39360.93 40167.27 37969.69 39686.49 37681.24 27072.33 39756.45 39483.45 38885.74 386
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 36348.94 36654.93 37939.68 40212.38 40628.59 39490.09 3316.82 39741.10 39978.41 39254.41 38870.69 39850.12 39651.26 39881.72 392
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k23.35 36531.13 3680.00 3840.00 4060.00 4090.00 39595.58 2320.00 4020.00 40391.15 33293.43 840.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.56 36810.09 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40290.77 1510.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.56 36810.08 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40390.69 3410.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS61.25 39374.55 351
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
PC_three_145275.31 33995.87 12295.75 20492.93 10196.34 32187.18 22898.68 15598.04 156
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
eth-test20.00 406
eth-test0.00 406
ZD-MVS97.23 13990.32 7897.54 11284.40 26094.78 17895.79 19992.76 10799.39 4988.72 20198.40 179
IU-MVS98.51 5186.66 15496.83 17072.74 35595.83 12393.00 8799.29 7498.64 112
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7599.25 8398.49 124
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12396.48 1098.95 114
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4899.42 5298.89 75
GSMVS94.75 319
test_part298.21 7589.41 9396.72 81
sam_mvs166.64 35194.75 319
sam_mvs66.41 352
MTGPAbinary97.62 105
test_post6.07 40065.74 35695.84 330
patchmatchnet-post91.71 32566.22 35497.59 266
gm-plane-assit87.08 38859.33 39571.22 36183.58 38597.20 28673.95 355
test9_res88.16 20998.40 17997.83 183
agg_prior287.06 23198.36 18897.98 165
agg_prior96.20 20888.89 10696.88 16690.21 29998.78 143
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
test_prior94.61 11895.95 22987.23 13797.36 12898.68 16397.93 171
新几何193.17 17797.16 14487.29 13594.43 26767.95 37891.29 27894.94 23886.97 20898.23 20881.06 30297.75 23393.98 336
旧先验196.20 20884.17 20394.82 25795.57 21389.57 17497.89 22896.32 264
原ACMM192.87 18896.91 15584.22 20197.01 15476.84 33189.64 31294.46 25688.00 19098.70 15981.53 29698.01 22095.70 291
testdata298.03 22380.24 308
segment_acmp92.14 119
testdata91.03 25596.87 15782.01 23194.28 27171.55 35992.46 25395.42 21885.65 22797.38 28182.64 28297.27 25493.70 343
test1294.43 13195.95 22986.75 15096.24 20389.76 31089.79 17398.79 14097.95 22597.75 193
plane_prior797.71 11288.68 109
plane_prior697.21 14288.23 12186.93 209
plane_prior597.81 9198.95 11489.26 18698.51 17398.60 117
plane_prior495.59 209
plane_prior388.43 11990.35 15093.31 218
plane_prior197.38 132
n20.00 408
nn0.00 408
door-mid92.13 313
lessismore_v093.87 15198.05 8583.77 20980.32 38897.13 6097.91 5977.49 29699.11 9392.62 9798.08 21398.74 95
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
test1196.65 182
door91.26 322
HQP5-MVS84.89 192
BP-MVS86.55 240
HQP4-MVS88.81 32198.61 17098.15 148
HQP3-MVS97.31 13297.73 234
HQP2-MVS84.76 234
NP-MVS96.82 16287.10 14193.40 290
ACMMP++_ref98.82 139
ACMMP++99.25 83
Test By Simon90.61 157
ITE_SJBPF95.95 5997.34 13593.36 4096.55 19191.93 10094.82 17695.39 22291.99 12197.08 29385.53 25397.96 22497.41 215
DeepMVS_CXcopyleft53.83 38070.38 40164.56 38748.52 40433.01 39665.50 39774.21 39556.19 38546.64 39938.45 39970.07 39550.30 395