This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3699.98 199.60 799.60 699.05 2499.74 4499.79 39
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1098.72 799.57 699.97 799.53 1699.65 299.25 1499.84 599.77 53
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1699.05 299.60 599.98 199.28 3599.61 598.83 4399.70 7799.77 53
DPE-MVScopyleft99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3498.40 1299.64 499.98 199.31 3199.56 998.96 3199.85 399.70 89
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS99.23 1499.28 2899.17 599.65 1899.34 8099.46 2498.21 2099.28 3598.47 998.89 4199.94 2599.50 1799.42 1798.61 5499.73 5199.52 129
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1799.63 1198.26 1399.27 3798.01 1899.27 1699.97 799.60 799.59 798.58 5699.71 6899.73 73
AdaColmapbinary99.06 2498.98 4999.15 799.60 2599.30 8699.38 3098.16 2299.02 7498.55 898.71 5099.57 5599.58 1399.09 3597.84 9999.64 11099.36 147
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2098.10 1499.28 1599.98 199.30 3399.34 2299.05 2499.81 1699.79 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2999.39 2998.23 1999.52 1598.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 8999.76 58
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PLCcopyleft97.93 299.02 2898.94 5099.11 1099.46 3499.24 9199.06 4697.96 3499.31 3199.16 197.90 7599.79 4599.36 2798.71 6398.12 8599.65 10699.52 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9097.87 2098.91 3999.92 2899.30 3399.45 1599.38 899.79 2599.58 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4697.79 2199.15 2299.96 1299.59 1099.54 1198.86 3999.78 2899.74 69
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4199.63 1198.31 899.56 1097.37 2699.27 1699.97 799.70 399.35 2199.24 1699.71 6899.76 58
CPTT-MVS99.14 1999.20 3399.06 1499.58 2699.53 5099.45 2597.80 3799.19 4998.32 1398.58 5399.95 1799.60 799.28 2598.20 8199.64 11099.69 93
MSLP-MVS++99.15 1899.24 3199.04 1599.52 3299.49 5699.09 4498.07 3099.37 2598.47 997.79 7799.89 3499.50 1798.93 4599.45 499.61 11799.76 58
xxxxxxxxxxxxxcwj98.14 5197.38 10599.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2586.38 16398.92 5899.22 2798.84 4199.76 3599.56 122
SF-MVS99.18 1699.32 2699.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2599.92 2898.92 5899.22 2798.84 4199.76 3599.56 122
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2299.68 498.25 1499.56 1097.12 3099.19 1999.95 1799.72 199.43 1699.25 1499.72 5899.77 53
NCCC99.05 2599.08 3999.02 1999.62 2399.38 7199.43 2898.21 2099.36 2797.66 2397.79 7799.90 3299.45 2299.17 3198.43 6499.77 3399.51 133
CNLPA99.03 2799.05 4299.01 2099.27 4499.22 9399.03 4897.98 3399.34 2999.00 498.25 6699.71 4999.31 3198.80 5598.82 4599.48 15499.17 157
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4899.33 3298.29 1199.75 197.96 1999.15 2299.95 1799.61 699.17 3199.06 2399.81 1699.84 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MCST-MVS99.11 2099.27 2998.93 2299.67 1399.33 8399.51 2098.31 899.28 3596.57 3699.10 2899.90 3299.71 299.19 3098.35 7099.82 1099.71 87
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5099.72 298.11 2999.73 297.43 2599.15 2299.96 1299.59 1099.73 199.07 2299.88 199.82 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft99.10 2199.30 2798.86 2499.69 899.48 5799.59 1698.34 499.26 4096.55 3799.10 2899.96 1299.36 2799.25 2698.37 6999.64 11099.66 103
CSCG98.90 3098.93 5198.85 2599.75 399.72 699.49 2196.58 4399.38 2398.05 1698.97 3497.87 7499.49 1997.78 12198.92 3499.78 2899.90 3
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7499.64 898.05 3299.53 1396.58 3598.93 3799.92 2899.49 1999.46 1499.32 1099.80 2499.64 110
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5596.62 3499.16 2199.98 199.12 4599.63 399.19 2099.78 2899.83 23
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7695.62 4398.97 3499.94 2599.54 1599.51 1298.79 4799.71 6899.73 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4199.11 4297.35 4099.14 5597.30 2799.44 1199.96 1299.32 3098.89 5099.39 799.79 2599.58 116
OMC-MVS98.84 3299.01 4898.65 3099.39 3699.23 9299.22 3596.70 4299.40 2297.77 2297.89 7699.80 4399.21 3699.02 4098.65 5299.57 13999.07 164
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3999.64 898.28 1299.23 4394.57 6099.35 1399.97 799.55 1499.63 398.66 5199.70 7799.74 69
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2999.60 1598.15 2499.08 6593.81 7898.46 5999.95 1799.59 1099.49 1399.21 1999.68 8999.75 65
ACMMPcopyleft98.74 3499.03 4698.40 3399.36 3999.64 2299.20 3697.75 3898.82 9795.24 5098.85 4299.87 3699.17 4298.74 6297.50 11299.71 6899.76 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+96.92 798.71 3699.05 4298.32 3499.53 3099.34 8099.06 4694.61 6099.65 497.49 2496.75 10099.86 3799.44 2398.78 5799.30 1199.81 1699.67 99
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2599.67 595.63 4698.66 11395.27 4999.11 2599.82 4299.67 499.33 2399.19 2099.73 5199.74 69
train_agg98.73 3599.11 3798.28 3699.36 3999.35 7899.48 2397.96 3498.83 9593.86 7798.70 5199.86 3799.44 2399.08 3798.38 6799.61 11799.58 116
MSDG98.27 4898.29 6998.24 3799.20 4599.22 9399.20 3697.82 3699.37 2594.43 6595.90 12197.31 8099.12 4598.76 5998.35 7099.67 9799.14 161
3Dnovator96.92 798.67 3799.05 4298.23 3899.57 2799.45 6199.11 4294.66 5999.69 396.80 3396.55 11099.61 5299.40 2598.87 5299.49 399.85 399.66 103
QAPM98.62 4099.04 4598.13 3999.57 2799.48 5799.17 3894.78 5699.57 996.16 3896.73 10199.80 4399.33 2998.79 5699.29 1399.75 3999.64 110
abl_698.09 4099.33 4299.22 9398.79 5994.96 5498.52 12297.00 3297.30 8799.86 3798.76 6699.69 8099.41 142
DPM-MVS98.31 4798.53 6298.05 4198.76 5598.77 11599.13 4098.07 3099.10 6294.27 7196.70 10299.84 4198.70 6897.90 11598.11 8699.40 16699.28 150
DeepC-MVS97.63 498.33 4698.57 6098.04 4298.62 5799.65 1799.45 2598.15 2499.51 1692.80 9595.74 12596.44 8999.46 2199.37 1999.50 299.78 2899.81 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS97.50 698.18 5098.35 6897.99 4398.65 5699.36 7598.94 5198.14 2698.59 11593.62 8296.61 10699.76 4899.03 5297.77 12297.45 11799.57 13998.89 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 5999.44 2798.13 2799.65 492.30 10298.91 3999.95 1799.05 5099.42 1798.95 3299.58 13599.82 24
TAPA-MVS97.53 598.41 4398.84 5597.91 4599.08 4899.33 8399.15 3997.13 4199.34 2993.20 8797.75 7999.19 5999.20 3798.66 6598.13 8499.66 10299.48 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 5999.03 4894.59 6299.09 6397.19 2999.73 399.95 1799.39 2698.95 4398.69 5099.75 3999.65 106
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5098.51 6695.52 4899.27 3794.85 5699.56 799.69 5099.04 5199.36 2098.88 3799.60 12599.58 116
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3498.14 8494.81 5599.31 3195.00 5499.51 899.79 4599.00 5498.94 4498.83 4399.69 8099.57 121
CANet98.46 4299.16 3497.64 4998.48 5899.64 2299.35 3194.71 5899.53 1395.17 5197.63 8399.59 5398.38 8298.88 5198.99 2999.74 4499.86 15
CDPH-MVS98.41 4399.10 3897.61 5099.32 4399.36 7599.49 2196.15 4598.82 9791.82 10698.41 6099.66 5199.10 4798.93 4598.97 3099.75 3999.58 116
DELS-MVS98.19 4998.77 5797.52 5198.29 6199.71 999.12 4194.58 6398.80 10095.38 4896.24 11598.24 7197.92 9699.06 3899.52 199.82 1099.79 39
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft96.23 1197.95 5798.45 6597.35 5299.52 3299.42 6698.91 5394.61 6098.87 8792.24 10494.61 13699.05 6199.10 4798.64 6799.05 2499.74 4499.51 133
MAR-MVS97.71 6398.04 8297.32 5399.35 4198.91 10897.65 10191.68 10598.00 14397.01 3197.72 8194.83 10998.85 6598.44 8498.86 3999.41 16499.52 129
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft96.15 1297.78 6098.17 7697.32 5398.84 5199.45 6199.28 3395.43 4999.48 1891.80 10794.83 13598.36 6998.90 6198.09 9997.85 9899.68 8999.15 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PVSNet_BlendedMVS97.51 7097.71 9297.28 5598.06 6399.61 3497.31 11095.02 5299.08 6595.51 4598.05 7090.11 14098.07 9098.91 4898.40 6599.72 5899.78 45
PVSNet_Blended97.51 7097.71 9297.28 5598.06 6399.61 3497.31 11095.02 5299.08 6595.51 4598.05 7090.11 14098.07 9098.91 4898.40 6599.72 5899.78 45
LS3D97.79 5998.25 7097.26 5798.40 5999.63 2599.53 1898.63 199.25 4288.13 12396.93 9794.14 11999.19 3899.14 3399.23 1799.69 8099.42 141
PatchMatch-RL97.77 6198.25 7097.21 5899.11 4799.25 8997.06 12494.09 6898.72 11195.14 5298.47 5896.29 9198.43 8198.65 6697.44 11899.45 15898.94 167
Anonymous2023121197.10 8197.06 11897.14 5996.32 9199.52 5398.16 8393.76 7598.84 9495.98 4090.92 16394.58 11498.90 6197.72 12698.10 8799.71 6899.75 65
MVS_030498.14 5199.03 4697.10 6098.05 6599.63 2599.27 3494.33 6599.63 693.06 9097.32 8699.05 6198.09 8998.82 5498.87 3899.81 1699.89 6
EPNet98.05 5498.86 5397.10 6099.02 4999.43 6598.47 6794.73 5799.05 7195.62 4398.93 3797.62 7895.48 16198.59 7598.55 5799.29 17399.84 19
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + COLMAP96.79 8996.55 12997.06 6297.70 7098.46 13999.07 4596.23 4499.38 2391.32 11098.80 4385.61 16998.69 7097.64 13196.92 12999.37 16899.06 165
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8396.28 14097.47 3999.58 894.70 5998.99 3399.85 4097.24 11499.55 1099.34 997.73 19899.56 122
tfpn200view996.75 9196.51 13297.03 6496.31 9299.67 1298.41 6993.99 7197.35 16494.52 6195.90 12186.93 15599.14 4498.26 8997.80 10199.82 1099.70 89
thres20096.76 9096.53 13097.03 6496.31 9299.67 1298.37 7293.99 7197.68 15994.49 6395.83 12486.77 15799.18 4098.26 8997.82 10099.82 1099.66 103
thres40096.71 9496.45 13797.02 6696.28 9599.63 2598.41 6994.00 7097.82 15494.42 6695.74 12586.26 16499.18 4098.20 9397.79 10299.81 1699.70 89
baseline197.58 6798.05 8197.02 6696.21 9799.45 6197.71 9993.71 7998.47 12495.75 4298.78 4593.20 12998.91 6098.52 7998.44 6299.81 1699.53 126
CLD-MVS96.74 9296.51 13297.01 6896.71 8698.62 12898.73 6094.38 6498.94 8294.46 6497.33 8587.03 15398.07 9097.20 14796.87 13099.72 5899.54 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thres100view90096.72 9396.47 13597.00 6996.31 9299.52 5398.28 7894.01 6997.35 16494.52 6195.90 12186.93 15599.09 4998.07 10297.87 9799.81 1699.63 112
thres600view796.69 9596.43 13997.00 6996.28 9599.67 1298.41 6993.99 7197.85 15394.29 6995.96 11985.91 16799.19 3898.26 8997.63 10699.82 1099.73 73
RPSCF97.61 6698.16 7796.96 7198.10 6299.00 10198.84 5793.76 7599.45 1994.78 5899.39 1299.31 5798.53 7996.61 15795.43 16797.74 19697.93 190
CS-MVS98.06 5399.12 3696.82 7295.83 10899.66 1598.93 5293.12 9198.95 7994.29 6998.55 5499.05 6198.94 5699.05 3998.78 4899.83 899.80 31
canonicalmvs97.31 7597.81 9196.72 7396.20 9899.45 6198.21 8191.60 10799.22 4495.39 4798.48 5790.95 13799.16 4397.66 12899.05 2499.76 3599.90 3
IS_MVSNet97.86 5898.86 5396.68 7496.02 10099.72 698.35 7593.37 8598.75 11094.01 7296.88 9998.40 6898.48 8099.09 3599.42 599.83 899.80 31
ACMM96.26 996.67 9796.69 12696.66 7597.29 7898.46 13996.48 13695.09 5199.21 4693.19 8898.78 4586.73 15898.17 8497.84 11996.32 14599.74 4499.49 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS98.05 5499.25 3096.65 7695.61 11799.61 3498.26 8093.52 8198.90 8693.74 8199.32 1499.20 5898.90 6199.21 2998.72 4999.87 299.79 39
OPM-MVS96.22 10795.85 14896.65 7697.75 6898.54 13499.00 5095.53 4796.88 17789.88 11795.95 12086.46 16298.07 9097.65 13096.63 13699.67 9798.83 174
EPP-MVSNet97.75 6298.71 5896.63 7895.68 11599.56 4797.51 10493.10 9299.22 4494.99 5597.18 9297.30 8198.65 7198.83 5398.93 3399.84 599.92 1
DCV-MVSNet97.56 6898.36 6796.62 7996.44 8998.36 14898.37 7291.73 10499.11 6194.80 5798.36 6396.28 9298.60 7598.12 9698.44 6299.76 3599.87 12
CHOSEN 280x42097.99 5699.24 3196.53 8098.34 6099.61 3498.36 7489.80 14099.27 3795.08 5399.81 198.58 6598.64 7299.02 4098.92 3498.93 18399.48 137
MVSTER97.16 7997.71 9296.52 8195.97 10498.48 13798.63 6392.10 9798.68 11295.96 4199.23 1891.79 13496.87 12298.76 5997.37 12299.57 13999.68 98
PMMVS97.52 6998.39 6696.51 8295.82 10998.73 12297.80 9593.05 9398.76 10794.39 6899.07 3197.03 8598.55 7798.31 8897.61 10799.43 16199.21 156
ACMP96.25 1096.62 10096.72 12596.50 8396.96 8498.75 11997.80 9594.30 6698.85 9093.12 8998.78 4586.61 16097.23 11597.73 12596.61 13799.62 11599.71 87
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EIA-MVS97.70 6498.78 5696.44 8495.72 11299.65 1798.14 8493.72 7898.30 13192.31 10198.63 5297.90 7398.97 5598.92 4798.30 7699.78 2899.80 31
casdiffmvs96.93 8697.43 10396.34 8595.70 11399.50 5597.75 9893.22 8898.98 7892.64 9694.97 13291.71 13598.93 5798.62 6998.52 6099.82 1099.72 84
diffmvs96.83 8897.33 10896.25 8695.76 11099.34 8098.06 9093.22 8899.43 2192.30 10296.90 9889.83 14598.55 7798.00 11098.14 8399.64 11099.70 89
DI_MVS_plusplus_trai96.90 8797.49 9896.21 8795.61 11799.40 7098.72 6192.11 9699.14 5592.98 9493.08 15595.14 10598.13 8898.05 10697.91 9599.74 4499.73 73
PVSNet_Blended_VisFu97.41 7398.49 6496.15 8897.49 7199.76 196.02 14493.75 7799.26 4093.38 8693.73 14499.35 5696.47 13698.96 4298.46 6199.77 3399.90 3
HQP-MVS96.37 10396.58 12796.13 8997.31 7798.44 14198.45 6895.22 5098.86 8888.58 12198.33 6487.00 15497.67 10597.23 14596.56 13999.56 14299.62 113
thisisatest053097.23 7798.25 7096.05 9095.60 11999.59 4196.96 12693.23 8699.17 5192.60 9898.75 4896.19 9398.17 8498.19 9496.10 15399.72 5899.77 53
tttt051797.23 7798.24 7396.04 9195.60 11999.60 3996.94 12793.23 8699.15 5292.56 9998.74 4996.12 9698.17 8498.21 9296.10 15399.73 5199.78 45
FC-MVSNet-train97.04 8297.91 8896.03 9296.00 10298.41 14496.53 13593.42 8299.04 7393.02 9298.03 7294.32 11797.47 11097.93 11397.77 10399.75 3999.88 10
UGNet97.66 6599.07 4196.01 9397.19 8099.65 1797.09 12293.39 8399.35 2894.40 6798.79 4499.59 5394.24 18198.04 10798.29 7799.73 5199.80 31
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline97.45 7298.70 5995.99 9495.89 10599.36 7598.29 7791.37 11399.21 4692.99 9398.40 6196.87 8697.96 9498.60 7398.60 5599.42 16399.86 15
MVS_Test97.30 7698.54 6195.87 9595.74 11199.28 8798.19 8291.40 11299.18 5091.59 10898.17 6896.18 9498.63 7398.61 7098.55 5799.66 10299.78 45
test_part195.56 12095.38 15295.78 9696.07 9998.16 15597.57 10290.78 12497.43 16393.04 9189.12 17889.41 14697.93 9596.38 16597.38 12199.29 17399.78 45
GBi-Net96.98 8498.00 8595.78 9693.81 14997.98 15898.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9798.07 10298.34 7299.68 8999.67 99
test196.98 8498.00 8595.78 9693.81 14997.98 15898.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9798.07 10298.34 7299.68 8999.67 99
CHOSEN 1792x268896.41 10296.99 12095.74 9998.01 6699.72 697.70 10090.78 12499.13 6090.03 11687.35 19195.36 10398.33 8398.59 7598.91 3699.59 13199.87 12
FMVSNet397.02 8398.12 7995.73 10093.59 15597.98 15898.34 7691.32 11498.80 10093.92 7497.21 8995.94 9997.63 10698.61 7098.62 5399.61 11799.65 106
Vis-MVSNet (Re-imp)97.40 7498.89 5295.66 10195.99 10399.62 2997.82 9493.22 8898.82 9791.40 10996.94 9698.56 6695.70 15399.14 3399.41 699.79 2599.75 65
FMVSNet296.64 9897.50 9795.63 10293.81 14997.98 15898.09 8690.87 12098.99 7793.48 8493.17 15295.25 10497.89 9798.63 6898.80 4699.68 8999.67 99
LGP-MVS_train96.23 10696.89 12295.46 10397.32 7598.77 11598.81 5893.60 8098.58 11685.52 14199.08 3086.67 15997.83 10397.87 11797.51 11199.69 8099.73 73
HyFIR lowres test95.99 11296.56 12895.32 10497.99 6799.65 1796.54 13388.86 14998.44 12589.77 11984.14 20197.05 8499.03 5298.55 7798.19 8299.73 5199.86 15
ET-MVSNet_ETH3D96.17 10896.99 12095.21 10588.53 20598.54 13498.28 7892.61 9498.85 9093.60 8399.06 3290.39 13998.63 7395.98 17996.68 13499.61 11799.41 142
FMVSNet195.77 11696.41 14095.03 10693.42 15697.86 16597.11 12189.89 13798.53 12092.00 10589.17 17593.23 12898.15 8798.07 10298.34 7299.61 11799.69 93
test0.0.03 196.69 9598.12 7995.01 10795.49 12498.99 10395.86 14690.82 12298.38 12792.54 10096.66 10497.33 7995.75 15197.75 12498.34 7299.60 12599.40 145
CDS-MVSNet96.59 10198.02 8494.92 10894.45 14298.96 10697.46 10691.75 10397.86 15290.07 11596.02 11897.25 8296.21 14098.04 10798.38 6799.60 12599.65 106
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UA-Net97.13 8099.14 3594.78 10997.21 7999.38 7197.56 10392.04 9898.48 12388.03 12498.39 6299.91 3194.03 18499.33 2399.23 1799.81 1699.25 153
ACMH+95.51 1395.40 12496.00 14294.70 11096.33 9098.79 11296.79 12891.32 11498.77 10687.18 13195.60 12985.46 17096.97 11997.15 14896.59 13899.59 13199.65 106
baseline296.36 10497.82 9094.65 11194.60 14199.09 9996.45 13789.63 14298.36 12991.29 11197.60 8494.13 12096.37 13798.45 8297.70 10499.54 14899.41 142
IterMVS-LS96.12 11097.48 9994.53 11295.19 13197.56 18397.15 11889.19 14799.08 6588.23 12294.97 13294.73 11197.84 10297.86 11898.26 7899.60 12599.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GeoE95.98 11497.24 11494.51 11395.02 13499.38 7198.02 9187.86 16398.37 12887.86 12792.99 15793.54 12498.56 7698.61 7097.92 9399.73 5199.85 18
MS-PatchMatch95.99 11297.26 11394.51 11397.46 7298.76 11897.27 11286.97 16899.09 6389.83 11893.51 14797.78 7596.18 14297.53 13595.71 16499.35 16998.41 180
ACMH95.42 1495.27 12895.96 14494.45 11596.83 8598.78 11494.72 17191.67 10698.95 7986.82 13496.42 11283.67 18097.00 11897.48 13796.68 13499.69 8099.76 58
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS95.53 12196.50 13494.39 11693.86 14899.03 10096.67 13089.55 14497.33 16690.64 11393.02 15691.58 13696.21 14097.72 12697.43 11999.43 16199.36 147
FMVSNet595.42 12396.47 13594.20 11792.26 16895.99 20495.66 14987.15 16797.87 15193.46 8596.68 10393.79 12397.52 10797.10 15197.21 12499.11 18096.62 204
pmmvs495.09 12995.90 14594.14 11892.29 16797.70 16995.45 15490.31 13198.60 11490.70 11293.25 15089.90 14396.67 12997.13 14995.42 16899.44 16099.28 150
UniMVSNet_ETH3D93.15 16492.33 19794.11 11993.91 14698.61 13094.81 16890.98 11997.06 17387.51 13082.27 20576.33 21197.87 10194.79 19497.47 11699.56 14299.81 29
Effi-MVS+95.81 11597.31 11294.06 12095.09 13299.35 7897.24 11488.22 15898.54 11985.38 14398.52 5588.68 14798.70 6898.32 8797.93 9299.74 4499.84 19
Fast-Effi-MVS+95.38 12596.52 13194.05 12194.15 14499.14 9897.24 11486.79 16998.53 12087.62 12994.51 13787.06 15298.76 6698.60 7398.04 9099.72 5899.77 53
FC-MVSNet-test96.07 11197.94 8793.89 12293.60 15498.67 12596.62 13290.30 13398.76 10788.62 12095.57 13097.63 7794.48 17797.97 11197.48 11599.71 6899.52 129
dps94.63 14095.31 15593.84 12395.53 12298.71 12396.54 13380.12 19597.81 15697.21 2896.98 9492.37 13096.34 13992.46 20391.77 20397.26 20497.08 198
CANet_DTU96.64 9899.08 3993.81 12497.10 8299.42 6698.85 5690.01 13499.31 3179.98 17599.78 299.10 6097.42 11198.35 8698.05 8999.47 15699.53 126
Baseline_NR-MVSNet93.87 15593.98 17793.75 12591.66 18297.02 19695.53 15291.52 11197.16 17287.77 12887.93 18983.69 17996.35 13895.10 19097.23 12399.68 8999.73 73
Vis-MVSNetpermissive96.16 10998.22 7493.75 12595.33 12999.70 1197.27 11290.85 12198.30 13185.51 14295.72 12796.45 8793.69 19098.70 6499.00 2899.84 599.69 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet (Re)94.58 14395.34 15393.71 12792.25 16998.08 15794.97 16191.29 11897.03 17587.94 12593.97 14386.25 16596.07 14596.27 17195.97 15899.72 5899.79 39
EPNet_dtu96.30 10598.53 6293.70 12898.97 5098.24 15297.36 10894.23 6798.85 9079.18 17999.19 1998.47 6794.09 18397.89 11698.21 8098.39 18998.85 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap94.00 15194.35 16893.60 12995.89 10598.26 15097.49 10588.82 15098.56 11883.21 15491.28 16280.48 19896.68 12897.34 14196.26 14899.53 15098.24 184
USDC94.26 14794.83 15993.59 13096.02 10098.44 14197.84 9388.65 15398.86 8882.73 16094.02 14180.56 19696.76 12597.28 14496.15 15299.55 14498.50 178
testgi95.67 11897.48 9993.56 13195.07 13399.00 10195.33 15788.47 15598.80 10086.90 13397.30 8792.33 13195.97 14897.66 12897.91 9599.60 12599.38 146
UniMVSNet_NR-MVSNet94.59 14295.47 15193.55 13291.85 17797.89 16495.03 15992.00 9997.33 16686.12 13593.19 15187.29 15196.60 13296.12 17496.70 13399.72 5899.80 31
tfpnnormal93.85 15794.12 17293.54 13393.22 15798.24 15295.45 15491.96 10194.61 20383.91 14690.74 16581.75 19397.04 11797.49 13696.16 15199.68 8999.84 19
CostFormer94.25 14894.88 15893.51 13495.43 12698.34 14996.21 14280.64 19397.94 14894.01 7298.30 6586.20 16697.52 10792.71 20192.69 19797.23 20598.02 188
DU-MVS93.98 15294.44 16793.44 13591.66 18297.77 16695.03 15991.57 10897.17 17086.12 13593.13 15381.13 19596.60 13295.10 19097.01 12899.67 9799.80 31
NR-MVSNet94.01 15094.51 16593.44 13592.56 16297.77 16695.67 14891.57 10897.17 17085.84 13893.13 15380.53 19795.29 16797.01 15296.17 15099.69 8099.75 65
test-LLR95.50 12297.32 10993.37 13795.49 12498.74 12096.44 13890.82 12298.18 13682.75 15896.60 10794.67 11295.54 15998.09 9996.00 15599.20 17798.93 168
IB-MVS93.96 1595.02 13196.44 13893.36 13897.05 8399.28 8790.43 19893.39 8398.02 14296.02 3994.92 13492.07 13383.52 20795.38 18495.82 16199.72 5899.59 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep1395.57 11997.48 9993.35 13995.43 12698.97 10597.19 11783.72 18998.92 8587.91 12697.75 7996.12 9697.88 10096.84 15695.64 16597.96 19498.10 186
CVMVSNet95.33 12797.09 11693.27 14095.23 13098.39 14695.49 15392.58 9597.71 15883.00 15794.44 13993.28 12793.92 18797.79 12098.54 5999.41 16499.45 139
TranMVSNet+NR-MVSNet93.67 15894.14 17093.13 14191.28 19697.58 18195.60 15191.97 10097.06 17384.05 14490.64 16882.22 19096.17 14394.94 19396.78 13199.69 8099.78 45
Effi-MVS+-dtu95.74 11798.04 8293.06 14293.92 14599.16 9697.90 9288.16 16099.07 7082.02 16398.02 7394.32 11796.74 12698.53 7897.56 10999.61 11799.62 113
tpm cat194.06 14994.90 15793.06 14295.42 12898.52 13696.64 13180.67 19297.82 15492.63 9793.39 14995.00 10796.06 14691.36 20691.58 20596.98 20696.66 203
EPMVS95.05 13096.86 12492.94 14495.84 10798.96 10696.68 12979.87 19699.05 7190.15 11497.12 9395.99 9897.49 10995.17 18894.75 18697.59 20096.96 200
pm-mvs194.27 14695.57 15092.75 14592.58 16198.13 15694.87 16690.71 12796.70 18383.78 14889.94 17189.85 14494.96 17497.58 13397.07 12599.61 11799.72 84
TransMVSNet (Re)93.45 16094.08 17392.72 14692.83 15897.62 17994.94 16291.54 11095.65 20083.06 15688.93 17983.53 18194.25 18097.41 13897.03 12699.67 9798.40 183
TDRefinement93.04 16793.57 18492.41 14796.58 8798.77 11597.78 9791.96 10198.12 13980.84 16889.13 17779.87 20387.78 20396.44 16294.50 18999.54 14898.15 185
CP-MVSNet93.25 16394.00 17692.38 14891.65 18497.56 18394.38 18089.20 14696.05 19483.16 15589.51 17381.97 19196.16 14496.43 16396.56 13999.71 6899.89 6
WR-MVS_H93.54 15994.67 16392.22 14991.95 17397.91 16394.58 17788.75 15196.64 18483.88 14790.66 16785.13 17394.40 17896.54 16195.91 16099.73 5199.89 6
WR-MVS93.43 16294.48 16692.21 15091.52 18997.69 17194.66 17589.98 13596.86 17883.43 15290.12 16985.03 17493.94 18696.02 17895.82 16199.71 6899.82 24
TESTMET0.1,194.95 13297.32 10992.20 15192.62 16098.74 12096.44 13886.67 17198.18 13682.75 15896.60 10794.67 11295.54 15998.09 9996.00 15599.20 17798.93 168
PEN-MVS92.72 17493.20 19092.15 15291.29 19497.31 19394.67 17489.81 13896.19 19081.83 16488.58 18279.06 20695.61 15795.21 18796.27 14699.72 5899.82 24
Fast-Effi-MVS+-dtu95.38 12598.20 7592.09 15393.91 14698.87 10997.35 10985.01 18299.08 6581.09 16798.10 6996.36 9095.62 15698.43 8597.03 12699.55 14499.50 135
SCA94.95 13297.44 10292.04 15495.55 12199.16 9696.26 14179.30 20099.02 7485.73 14098.18 6797.13 8397.69 10496.03 17794.91 18197.69 19997.65 192
V4293.05 16693.90 18092.04 15491.91 17497.66 17394.91 16389.91 13696.85 17980.58 17089.66 17283.43 18395.37 16595.03 19294.90 18299.59 13199.78 45
test-mter94.86 13597.32 10992.00 15692.41 16598.82 11196.18 14386.35 17598.05 14182.28 16196.48 11194.39 11695.46 16398.17 9596.20 14999.32 17199.13 162
PS-CasMVS92.72 17493.36 18891.98 15791.62 18697.52 18594.13 18488.98 14895.94 19781.51 16687.35 19179.95 20295.91 14996.37 16696.49 14199.70 7799.89 6
thisisatest051594.61 14196.89 12291.95 15892.00 17298.47 13892.01 19390.73 12698.18 13683.96 14594.51 13795.13 10693.38 19197.38 13994.74 18799.61 11799.79 39
PatchmatchNetpermissive94.70 13797.08 11791.92 15995.53 12298.85 11095.77 14779.54 19898.95 7985.98 13798.52 5596.45 8797.39 11295.32 18594.09 19197.32 20297.38 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DTE-MVSNet92.42 18292.85 19391.91 16090.87 19996.97 19794.53 17989.81 13895.86 19981.59 16588.83 18077.88 20995.01 17394.34 19796.35 14499.64 11099.73 73
v2v48292.77 17393.52 18791.90 16191.59 18797.63 17694.57 17890.31 13196.80 18179.22 17888.74 18181.55 19496.04 14795.26 18694.97 18099.66 10299.69 93
ADS-MVSNet94.65 13997.04 11991.88 16295.68 11598.99 10395.89 14579.03 20399.15 5285.81 13996.96 9598.21 7297.10 11694.48 19694.24 19097.74 19697.21 196
v14892.36 18592.88 19291.75 16391.63 18597.66 17392.64 19090.55 12996.09 19283.34 15388.19 18480.00 20092.74 19593.98 19894.58 18899.58 13599.69 93
RPMNet94.66 13897.16 11591.75 16394.98 13598.59 13197.00 12578.37 20797.98 14483.78 14896.27 11494.09 12296.91 12197.36 14096.73 13299.48 15499.09 163
v892.87 16893.87 18191.72 16592.05 17197.50 18694.79 16988.20 15996.85 17980.11 17490.01 17082.86 18795.48 16195.15 18994.90 18299.66 10299.80 31
tpmrst93.86 15695.88 14691.50 16695.69 11498.62 12895.64 15079.41 19998.80 10083.76 15095.63 12896.13 9597.25 11392.92 20092.31 19997.27 20396.74 201
IterMVS-SCA-FT94.89 13497.87 8991.42 16794.86 13897.70 16997.24 11484.88 18398.93 8375.74 19194.26 14098.25 7096.69 12798.52 7997.68 10599.10 18199.73 73
IterMVS94.81 13697.71 9291.42 16794.83 13997.63 17697.38 10785.08 18098.93 8375.67 19294.02 14197.64 7696.66 13098.45 8297.60 10898.90 18499.72 84
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114492.81 17094.03 17591.40 16991.68 18197.60 18094.73 17088.40 15696.71 18278.48 18288.14 18684.46 17895.45 16496.31 17095.22 17399.65 10699.76 58
CR-MVSNet94.57 14497.34 10791.33 17094.90 13698.59 13197.15 11879.14 20197.98 14480.42 17196.59 10993.50 12696.85 12398.10 9797.49 11399.50 15399.15 158
v1092.79 17294.06 17491.31 17191.78 17997.29 19594.87 16686.10 17696.97 17679.82 17688.16 18584.56 17795.63 15596.33 16995.31 17099.65 10699.80 31
SixPastTwentyTwo93.44 16195.32 15491.24 17292.11 17098.40 14592.77 18988.64 15498.09 14077.83 18493.51 14785.74 16896.52 13596.91 15494.89 18499.59 13199.73 73
pmmvs691.90 18992.53 19691.17 17391.81 17897.63 17693.23 18688.37 15793.43 20880.61 16977.32 20987.47 15094.12 18296.58 15995.72 16398.88 18599.53 126
GA-MVS93.93 15496.31 14191.16 17493.61 15398.79 11295.39 15690.69 12898.25 13473.28 20096.15 11688.42 14894.39 17997.76 12395.35 16999.58 13599.45 139
v119292.43 18193.61 18391.05 17591.53 18897.43 18994.61 17687.99 16196.60 18576.72 18787.11 19382.74 18895.85 15096.35 16895.30 17199.60 12599.74 69
v14419292.38 18393.55 18691.00 17691.44 19097.47 18894.27 18187.41 16696.52 18778.03 18387.50 19082.65 18995.32 16695.82 18295.15 17599.55 14499.78 45
v192192092.36 18593.57 18490.94 17791.39 19297.39 19194.70 17287.63 16596.60 18576.63 18886.98 19482.89 18695.75 15196.26 17295.14 17699.55 14499.73 73
pmmvs592.71 17694.27 16990.90 17891.42 19197.74 16893.23 18686.66 17295.99 19678.96 18191.45 16083.44 18295.55 15897.30 14395.05 17899.58 13598.93 168
MIMVSNet94.49 14597.59 9690.87 17991.74 18098.70 12494.68 17378.73 20597.98 14483.71 15197.71 8294.81 11096.96 12097.97 11197.92 9399.40 16698.04 187
EG-PatchMatch MVS92.45 17893.92 17990.72 18092.56 16298.43 14394.88 16584.54 18597.18 16979.55 17786.12 19883.23 18493.15 19497.22 14696.00 15599.67 9799.27 152
EU-MVSNet92.80 17194.76 16190.51 18191.88 17596.74 20192.48 19188.69 15296.21 18979.00 18091.51 15987.82 14991.83 19995.87 18196.27 14699.21 17698.92 171
v124091.99 18893.33 18990.44 18291.29 19497.30 19494.25 18286.79 16996.43 18875.49 19486.34 19781.85 19295.29 16796.42 16495.22 17399.52 15199.73 73
LTVRE_ROB93.20 1692.84 16994.92 15690.43 18392.83 15898.63 12797.08 12387.87 16297.91 14968.42 20993.54 14679.46 20596.62 13197.55 13497.40 12099.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CMPMVSbinary70.31 1890.74 19291.06 20090.36 18497.32 7597.43 18992.97 18887.82 16493.50 20775.34 19583.27 20384.90 17592.19 19892.64 20291.21 20696.50 20994.46 207
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v7n91.61 19092.95 19190.04 18590.56 20097.69 17193.74 18585.59 17895.89 19876.95 18686.60 19678.60 20893.76 18997.01 15294.99 17999.65 10699.87 12
pmmvs-eth3d89.81 19689.65 20390.00 18686.94 20795.38 20691.08 19486.39 17494.57 20482.27 16283.03 20464.94 21493.96 18596.57 16093.82 19399.35 16999.24 154
PatchT93.96 15397.36 10690.00 18694.76 14098.65 12690.11 20178.57 20697.96 14780.42 17196.07 11794.10 12196.85 12398.10 9797.49 11399.26 17599.15 158
anonymousdsp93.12 16595.86 14789.93 18891.09 19798.25 15195.12 15885.08 18097.44 16273.30 19990.89 16490.78 13895.25 16997.91 11495.96 15999.71 6899.82 24
pmnet_mix0292.44 17994.68 16289.83 18992.46 16497.65 17589.92 20390.49 13098.76 10773.05 20291.78 15890.08 14294.86 17594.53 19591.94 20298.21 19298.01 189
tpm92.38 18394.79 16089.56 19094.30 14397.50 18694.24 18378.97 20497.72 15774.93 19697.97 7482.91 18596.60 13293.65 19994.81 18598.33 19098.98 166
N_pmnet92.21 18794.60 16489.42 19191.88 17597.38 19289.15 20589.74 14197.89 15073.75 19887.94 18892.23 13293.85 18896.10 17593.20 19698.15 19397.43 194
MDTV_nov1_ep13_2view92.44 17995.66 14988.68 19291.05 19897.92 16292.17 19279.64 19798.83 9576.20 18991.45 16093.51 12595.04 17295.68 18393.70 19497.96 19498.53 177
PM-MVS89.55 19790.30 20288.67 19387.06 20695.60 20590.88 19684.51 18696.14 19175.75 19086.89 19563.47 21794.64 17696.85 15593.89 19299.17 17999.29 149
MVS-HIRNet92.51 17795.97 14388.48 19493.73 15298.37 14790.33 19975.36 21398.32 13077.78 18589.15 17694.87 10895.14 17197.62 13296.39 14398.51 18697.11 197
new_pmnet90.45 19592.84 19487.66 19588.96 20496.16 20388.71 20684.66 18497.56 16071.91 20685.60 19986.58 16193.28 19296.07 17693.54 19598.46 18794.39 208
test20.0390.65 19493.71 18287.09 19690.44 20196.24 20289.74 20485.46 17995.59 20172.99 20390.68 16685.33 17184.41 20695.94 18095.10 17799.52 15197.06 199
gg-mvs-nofinetune90.85 19194.14 17087.02 19794.89 13799.25 8998.64 6276.29 21188.24 21257.50 21679.93 20795.45 10295.18 17098.77 5898.07 8899.62 11599.24 154
Anonymous2023120690.70 19393.93 17886.92 19890.21 20396.79 19990.30 20086.61 17396.05 19469.25 20788.46 18384.86 17685.86 20597.11 15096.47 14299.30 17297.80 191
MDA-MVSNet-bldmvs87.84 20189.22 20486.23 19981.74 21196.77 20083.74 21189.57 14394.50 20572.83 20496.64 10564.47 21692.71 19681.43 21192.28 20096.81 20798.47 179
MIMVSNet188.61 19990.68 20186.19 20081.56 21295.30 20887.78 20785.98 17794.19 20672.30 20578.84 20878.90 20790.06 20096.59 15895.47 16699.46 15795.49 206
gm-plane-assit89.44 19892.82 19585.49 20191.37 19395.34 20779.55 21582.12 19091.68 21164.79 21387.98 18780.26 19995.66 15498.51 8197.56 10999.45 15898.41 180
new-patchmatchnet86.12 20387.30 20584.74 20286.92 20895.19 20983.57 21284.42 18792.67 20965.66 21080.32 20664.72 21589.41 20192.33 20589.21 20798.43 18896.69 202
pmmvs388.19 20091.27 19984.60 20385.60 20993.66 21085.68 21081.13 19192.36 21063.66 21589.51 17377.10 21093.22 19396.37 16692.40 19898.30 19197.46 193
FPMVS83.82 20484.61 20682.90 20490.39 20290.71 21290.85 19784.10 18895.47 20265.15 21183.44 20274.46 21275.48 20981.63 21079.42 21291.42 21487.14 212
test_method87.27 20291.58 19882.25 20575.65 21687.52 21586.81 20972.60 21497.51 16173.20 20185.07 20079.97 20188.69 20297.31 14295.24 17296.53 20898.41 180
tmp_tt82.25 20597.73 6988.71 21380.18 21368.65 21699.15 5286.98 13299.47 985.31 17268.35 21487.51 20883.81 21091.64 213
Gipumacopyleft81.40 20581.78 20780.96 20783.21 21085.61 21679.73 21476.25 21297.33 16664.21 21455.32 21355.55 21886.04 20492.43 20492.20 20196.32 21093.99 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft72.60 1776.39 20777.66 21074.92 20881.04 21369.37 22068.47 21780.54 19485.39 21365.07 21273.52 21072.91 21365.67 21580.35 21276.81 21388.71 21585.25 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS277.26 20679.47 20974.70 20976.00 21588.37 21474.22 21676.34 21078.31 21454.13 21769.96 21152.50 21970.14 21384.83 20988.71 20897.35 20193.58 210
E-PMN68.30 20968.43 21168.15 21074.70 21871.56 21955.64 21977.24 20877.48 21639.46 21951.95 21641.68 22173.28 21170.65 21479.51 21188.61 21686.20 214
EMVS68.12 21068.11 21268.14 21175.51 21771.76 21855.38 22077.20 20977.78 21537.79 22053.59 21443.61 22074.72 21067.05 21576.70 21488.27 21786.24 213
MVEpermissive67.97 1965.53 21167.43 21363.31 21259.33 21974.20 21753.09 22170.43 21566.27 21743.13 21845.98 21730.62 22270.65 21279.34 21386.30 20983.25 21889.33 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND69.11 20898.13 7835.26 2133.49 22298.20 15494.89 1642.38 21998.42 1265.82 22396.37 11398.60 645.97 21898.75 6197.98 9199.01 18298.61 175
testmvs31.24 21240.15 21420.86 21412.61 22017.99 22125.16 22213.30 21748.42 21824.82 22153.07 21530.13 22428.47 21642.73 21637.65 21520.79 21951.04 216
test12326.75 21334.25 21518.01 2157.93 22117.18 22224.85 22312.36 21844.83 21916.52 22241.80 21818.10 22528.29 21733.08 21734.79 21618.10 22049.95 217
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def69.05 208
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
Anonymous20240521197.40 10496.45 8899.54 4998.08 8993.79 7498.24 13593.55 14594.41 11598.88 6498.04 10798.24 7999.75 3999.76 58
our_test_392.30 16697.58 18190.09 202
ambc80.99 20880.04 21490.84 21190.91 19596.09 19274.18 19762.81 21230.59 22382.44 20896.25 17391.77 20395.91 21198.56 176
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 218
XVS97.42 7399.62 2998.59 6493.81 7899.95 1799.69 80
X-MVStestdata97.42 7399.62 2998.59 6493.81 7899.95 1799.69 80
mPP-MVS99.53 3099.89 34
NP-MVS98.57 117
Patchmtry98.59 13197.15 11879.14 20180.42 171
DeepMVS_CXcopyleft96.85 19887.43 20889.27 14598.30 13175.55 19395.05 13179.47 20492.62 19789.48 20795.18 21295.96 205