This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVScopyleft99.45 299.54 799.35 199.72 799.76 699.63 1298.37 299.63 799.03 398.95 4199.98 299.60 799.60 799.05 2999.74 4999.79 42
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 799.57 799.97 899.53 1699.65 299.25 1599.84 1199.77 56
SED-MVS99.44 399.58 499.28 399.69 899.76 699.62 1598.35 399.51 1799.05 299.60 699.98 299.28 3899.61 698.83 5099.70 8399.77 56
DPE-MVScopyleft99.39 599.55 699.20 499.63 2299.71 1599.66 698.33 699.29 3798.40 1299.64 599.98 299.31 3499.56 1098.96 3699.85 999.70 92
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS99.23 1599.28 3299.17 599.65 1999.34 8799.46 2598.21 2199.28 3898.47 998.89 4699.94 2699.50 1799.42 1898.61 6099.73 5799.52 135
zzz-MVS99.31 999.44 1799.16 699.73 599.65 2299.63 1298.26 1499.27 4098.01 1999.27 1999.97 899.60 799.59 898.58 6299.71 7499.73 76
AdaColmapbinary99.06 2598.98 5299.15 799.60 2699.30 9399.38 3198.16 2399.02 8198.55 898.71 5599.57 5799.58 1399.09 3997.84 10599.64 11699.36 154
DVP-MVS++99.41 499.64 199.14 899.69 899.75 999.64 898.33 699.67 498.10 1499.66 499.99 199.33 3199.62 598.86 4499.74 4999.90 6
MSP-MVS99.34 799.52 1099.14 899.68 1399.75 999.64 898.31 999.44 2198.10 1499.28 1899.98 299.30 3699.34 2499.05 2999.81 2199.79 42
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft99.38 699.60 399.12 1099.76 299.62 3499.39 3098.23 2099.52 1698.03 1899.45 1199.98 299.64 599.58 999.30 1199.68 9599.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PLCcopyleft97.93 299.02 2998.94 5399.11 1199.46 3599.24 9899.06 4797.96 3599.31 3499.16 197.90 7999.79 4699.36 2998.71 7098.12 9199.65 11299.52 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVScopyleft99.25 1399.38 2399.09 1299.69 899.58 4999.56 1898.32 898.85 9797.87 2198.91 4499.92 2999.30 3699.45 1699.38 899.79 3099.58 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS99.27 1199.44 1799.08 1399.62 2499.58 4999.53 1998.16 2399.21 4997.79 2299.15 2599.96 1399.59 1099.54 1298.86 4499.78 3399.74 72
HFP-MVS99.32 899.53 999.07 1499.69 899.59 4699.63 1298.31 999.56 1197.37 2899.27 1999.97 899.70 399.35 2399.24 1799.71 7499.76 61
CPTT-MVS99.14 2099.20 3799.06 1599.58 2799.53 5699.45 2697.80 3899.19 5298.32 1398.58 5899.95 1899.60 799.28 2798.20 8799.64 11699.69 96
MSLP-MVS++99.15 1999.24 3599.04 1699.52 3399.49 6399.09 4598.07 3199.37 2798.47 997.79 8199.89 3599.50 1798.93 5199.45 499.61 12499.76 61
xxxxxxxxxxxxxcwj98.14 5597.38 10999.03 1799.65 1999.41 7598.87 5598.24 1899.14 6298.73 599.11 2986.38 16998.92 6199.22 2998.84 4899.76 4099.56 128
SF-MVS99.18 1799.32 2999.03 1799.65 1999.41 7598.87 5598.24 1899.14 6298.73 599.11 2999.92 2998.92 6199.22 2998.84 4899.76 4099.56 128
ACMMPR99.30 1099.54 799.03 1799.66 1799.64 2799.68 498.25 1599.56 1197.12 3299.19 2299.95 1899.72 199.43 1799.25 1599.72 6499.77 56
NCCC99.05 2699.08 4299.02 2099.62 2499.38 7899.43 2998.21 2199.36 3097.66 2597.79 8199.90 3399.45 2399.17 3498.43 7099.77 3899.51 140
CNLPA99.03 2899.05 4599.01 2199.27 4599.22 10099.03 4997.98 3499.34 3299.00 498.25 7099.71 5099.31 3498.80 6298.82 5299.48 16199.17 164
SD-MVS99.25 1399.50 1298.96 2298.79 5499.55 5499.33 3398.29 1299.75 197.96 2099.15 2599.95 1899.61 699.17 3499.06 2899.81 2199.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MCST-MVS99.11 2199.27 3398.93 2399.67 1499.33 9099.51 2198.31 999.28 3896.57 3899.10 3299.90 3399.71 299.19 3398.35 7699.82 1599.71 90
TSAR-MVS + MP.99.27 1199.57 598.92 2498.78 5599.53 5699.72 298.11 3099.73 297.43 2799.15 2599.96 1399.59 1099.73 199.07 2699.88 499.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft99.10 2299.30 3198.86 2599.69 899.48 6499.59 1798.34 499.26 4396.55 3999.10 3299.96 1399.36 2999.25 2898.37 7599.64 11699.66 106
CSCG98.90 3198.93 5498.85 2699.75 399.72 1299.49 2296.58 4499.38 2598.05 1798.97 3997.87 7899.49 1997.78 12898.92 3999.78 3399.90 6
DeepC-MVS_fast98.34 199.17 1899.45 1498.85 2699.55 3099.37 8199.64 898.05 3399.53 1496.58 3798.93 4299.92 2999.49 1999.46 1599.32 1099.80 2999.64 113
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP99.20 1699.51 1198.83 2899.66 1799.66 2199.71 398.12 2999.14 6296.62 3699.16 2499.98 299.12 4999.63 399.19 2199.78 3399.83 27
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft99.07 2499.36 2598.74 2999.63 2299.57 5199.66 698.25 1599.00 8395.62 4798.97 3999.94 2699.54 1599.51 1398.79 5499.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS99.08 2399.43 2098.67 3099.15 4799.59 4699.11 4397.35 4199.14 6297.30 2999.44 1299.96 1399.32 3398.89 5699.39 799.79 3099.58 122
OMC-MVS98.84 3399.01 5198.65 3199.39 3799.23 9999.22 3696.70 4399.40 2497.77 2397.89 8099.80 4499.21 3999.02 4598.65 5899.57 14699.07 171
ACMMP_NAP99.05 2699.45 1498.58 3299.73 599.60 4499.64 898.28 1399.23 4694.57 6699.35 1699.97 899.55 1499.63 398.66 5799.70 8399.74 72
X-MVS98.93 3099.37 2498.42 3399.67 1499.62 3499.60 1698.15 2599.08 7293.81 8498.46 6399.95 1899.59 1099.49 1499.21 2099.68 9599.75 68
ACMMPcopyleft98.74 3599.03 4998.40 3499.36 4099.64 2799.20 3797.75 3998.82 10495.24 5598.85 4799.87 3799.17 4698.74 6997.50 11899.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+96.92 798.71 3799.05 4598.32 3599.53 3199.34 8799.06 4794.61 6199.65 597.49 2696.75 10499.86 3899.44 2498.78 6499.30 1199.81 2199.67 102
PGM-MVS98.86 3299.35 2898.29 3699.77 199.63 3099.67 595.63 4798.66 12095.27 5499.11 2999.82 4399.67 499.33 2599.19 2199.73 5799.74 72
train_agg98.73 3699.11 4098.28 3799.36 4099.35 8599.48 2497.96 3598.83 10293.86 8398.70 5699.86 3899.44 2499.08 4198.38 7399.61 12499.58 122
MSDG98.27 5198.29 7298.24 3899.20 4699.22 10099.20 3797.82 3799.37 2794.43 7295.90 12597.31 8499.12 4998.76 6698.35 7699.67 10399.14 168
3Dnovator96.92 798.67 3899.05 4598.23 3999.57 2899.45 6899.11 4394.66 6099.69 396.80 3596.55 11499.61 5499.40 2698.87 5999.49 399.85 999.66 106
QAPM98.62 4199.04 4898.13 4099.57 2899.48 6499.17 3994.78 5799.57 1096.16 4196.73 10599.80 4499.33 3198.79 6399.29 1399.75 4499.64 113
abl_698.09 4199.33 4399.22 10098.79 6094.96 5598.52 12997.00 3497.30 9199.86 3898.76 7299.69 8699.41 149
DPM-MVS98.31 5098.53 6598.05 4298.76 5698.77 12299.13 4198.07 3199.10 6994.27 7796.70 10699.84 4298.70 7497.90 12298.11 9299.40 17399.28 157
DeepC-MVS97.63 498.33 4998.57 6398.04 4398.62 5899.65 2299.45 2698.15 2599.51 1792.80 10295.74 12996.44 9399.46 2299.37 2099.50 299.78 3399.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS97.50 698.18 5498.35 7197.99 4498.65 5799.36 8298.94 5398.14 2798.59 12293.62 8996.61 11099.76 4999.03 5697.77 12997.45 12399.57 14698.89 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + ACMM98.77 3499.45 1497.98 4599.37 3899.46 6699.44 2898.13 2899.65 592.30 10998.91 4499.95 1899.05 5499.42 1898.95 3799.58 14299.82 28
TAPA-MVS97.53 598.41 4698.84 5897.91 4699.08 4999.33 9099.15 4097.13 4299.34 3293.20 9497.75 8399.19 6199.20 4098.66 7298.13 9099.66 10899.48 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.98.66 4099.36 2597.85 4797.16 8499.46 6699.03 4994.59 6499.09 7097.19 3199.73 399.95 1899.39 2798.95 4998.69 5699.75 4499.65 109
MVS_111021_LR98.67 3899.41 2297.81 4899.37 3899.53 5698.51 6995.52 4999.27 4094.85 6199.56 899.69 5199.04 5599.36 2198.88 4299.60 13299.58 122
test250697.16 8396.68 13397.73 4996.95 8899.79 498.48 7094.42 6899.17 5497.74 2499.15 2580.93 20298.89 6799.03 4399.09 2499.88 499.62 117
CS-MVS98.56 4499.32 2997.68 5098.28 6499.89 298.71 6394.53 6699.41 2395.43 5199.05 3798.66 6799.19 4199.21 3199.07 2699.93 199.94 1
MVS_111021_HR98.59 4299.36 2597.68 5099.42 3699.61 3998.14 9094.81 5699.31 3495.00 5999.51 999.79 4699.00 5898.94 5098.83 5099.69 8699.57 127
CANet98.46 4599.16 3897.64 5298.48 6099.64 2799.35 3294.71 5999.53 1495.17 5697.63 8799.59 5598.38 8898.88 5898.99 3499.74 4999.86 19
CDPH-MVS98.41 4699.10 4197.61 5399.32 4499.36 8299.49 2296.15 4698.82 10491.82 11398.41 6499.66 5299.10 5198.93 5198.97 3599.75 4499.58 122
CS-MVS-test98.58 4399.42 2197.60 5498.52 5999.91 198.60 6694.60 6399.37 2794.62 6599.40 1499.16 6299.39 2799.36 2198.85 4799.90 399.92 3
DELS-MVS98.19 5398.77 6097.52 5598.29 6399.71 1599.12 4294.58 6598.80 10795.38 5396.24 11998.24 7597.92 10399.06 4299.52 199.82 1599.79 42
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ECVR-MVScopyleft97.27 8097.09 12097.48 5696.95 8899.79 498.48 7094.42 6899.17 5496.28 4093.54 15189.39 15198.89 6799.03 4399.09 2499.88 499.61 120
test111197.09 8796.83 13097.39 5796.92 9099.81 398.44 7494.45 6799.17 5495.85 4592.10 16488.97 15298.78 7199.02 4599.11 2399.88 499.63 115
OpenMVScopyleft96.23 1197.95 6098.45 6897.35 5899.52 3399.42 7398.91 5494.61 6198.87 9492.24 11194.61 14199.05 6599.10 5198.64 7499.05 2999.74 4999.51 140
MAR-MVS97.71 6698.04 8697.32 5999.35 4298.91 11597.65 10891.68 11198.00 15097.01 3397.72 8594.83 11398.85 7098.44 9198.86 4499.41 17199.52 135
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft96.15 1297.78 6398.17 8097.32 5998.84 5299.45 6899.28 3495.43 5099.48 1991.80 11494.83 14098.36 7398.90 6498.09 10697.85 10499.68 9599.15 165
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PVSNet_BlendedMVS97.51 7397.71 9697.28 6198.06 6699.61 3997.31 11795.02 5399.08 7295.51 4998.05 7490.11 14498.07 9798.91 5498.40 7199.72 6499.78 48
PVSNet_Blended97.51 7397.71 9697.28 6198.06 6699.61 3997.31 11795.02 5399.08 7295.51 4998.05 7490.11 14498.07 9798.91 5498.40 7199.72 6499.78 48
LS3D97.79 6298.25 7497.26 6398.40 6199.63 3099.53 1998.63 199.25 4588.13 13096.93 10194.14 12399.19 4199.14 3799.23 1899.69 8699.42 148
PatchMatch-RL97.77 6498.25 7497.21 6499.11 4899.25 9697.06 13194.09 7498.72 11895.14 5798.47 6296.29 9598.43 8798.65 7397.44 12499.45 16598.94 174
Anonymous2023121197.10 8697.06 12397.14 6596.32 9799.52 5998.16 8993.76 8198.84 10195.98 4390.92 17094.58 11898.90 6497.72 13398.10 9399.71 7499.75 68
MVS_030498.14 5599.03 4997.10 6698.05 6899.63 3099.27 3594.33 7199.63 793.06 9797.32 9099.05 6598.09 9698.82 6198.87 4399.81 2199.89 10
EPNet98.05 5798.86 5697.10 6699.02 5099.43 7298.47 7294.73 5899.05 7895.62 4798.93 4297.62 8295.48 16898.59 8298.55 6399.29 18099.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + COLMAP96.79 9596.55 13697.06 6897.70 7398.46 14699.07 4696.23 4599.38 2591.32 11798.80 4885.61 17598.69 7697.64 13896.92 13599.37 17599.06 172
DeepPCF-MVS97.74 398.34 4899.46 1397.04 6998.82 5399.33 9096.28 14797.47 4099.58 994.70 6498.99 3899.85 4197.24 12199.55 1199.34 997.73 20599.56 128
tfpn200view996.75 9796.51 13997.03 7096.31 9899.67 1898.41 7593.99 7797.35 17194.52 6795.90 12586.93 16199.14 4898.26 9697.80 10799.82 1599.70 92
thres20096.76 9696.53 13797.03 7096.31 9899.67 1898.37 7893.99 7797.68 16694.49 7095.83 12886.77 16399.18 4498.26 9697.82 10699.82 1599.66 106
thres40096.71 10096.45 14497.02 7296.28 10199.63 3098.41 7594.00 7697.82 16194.42 7395.74 12986.26 17099.18 4498.20 10097.79 10899.81 2199.70 92
baseline197.58 7098.05 8597.02 7296.21 10399.45 6897.71 10593.71 8598.47 13195.75 4698.78 5093.20 13398.91 6398.52 8698.44 6899.81 2199.53 132
CLD-MVS96.74 9896.51 13997.01 7496.71 9298.62 13598.73 6194.38 7098.94 8894.46 7197.33 8987.03 15998.07 9797.20 15496.87 13699.72 6499.54 131
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thres100view90096.72 9996.47 14297.00 7596.31 9899.52 5998.28 8494.01 7597.35 17194.52 6795.90 12586.93 16199.09 5398.07 10997.87 10399.81 2199.63 115
thres600view796.69 10196.43 14697.00 7596.28 10199.67 1898.41 7593.99 7797.85 16094.29 7695.96 12385.91 17399.19 4198.26 9697.63 11299.82 1599.73 76
RPSCF97.61 6998.16 8196.96 7798.10 6599.00 10898.84 5893.76 8199.45 2094.78 6399.39 1599.31 5998.53 8596.61 16495.43 17497.74 20397.93 197
DROMVSNet98.22 5299.44 1796.79 7895.62 12399.56 5299.01 5192.22 10199.17 5494.51 6999.41 1399.62 5399.49 1999.16 3699.26 1499.91 299.94 1
canonicalmvs97.31 7897.81 9596.72 7996.20 10499.45 6898.21 8791.60 11399.22 4795.39 5298.48 6190.95 14199.16 4797.66 13599.05 2999.76 4099.90 6
IS_MVSNet97.86 6198.86 5696.68 8096.02 10699.72 1298.35 8193.37 9198.75 11794.01 7896.88 10398.40 7298.48 8699.09 3999.42 599.83 1499.80 35
ACMM96.26 996.67 10396.69 13296.66 8197.29 8198.46 14696.48 14395.09 5299.21 4993.19 9598.78 5086.73 16498.17 9197.84 12696.32 15299.74 4999.49 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS98.05 5799.25 3496.65 8295.61 12499.61 3998.26 8693.52 8798.90 9393.74 8899.32 1799.20 6098.90 6499.21 3198.72 5599.87 899.79 42
OPM-MVS96.22 11495.85 15596.65 8297.75 7198.54 14199.00 5295.53 4896.88 18489.88 12495.95 12486.46 16898.07 9797.65 13796.63 14299.67 10398.83 181
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPP-MVSNet97.75 6598.71 6196.63 8495.68 12199.56 5297.51 11193.10 9799.22 4794.99 6097.18 9697.30 8598.65 7798.83 6098.93 3899.84 1199.92 3
DCV-MVSNet97.56 7198.36 7096.62 8596.44 9598.36 15598.37 7891.73 11099.11 6894.80 6298.36 6796.28 9698.60 8198.12 10398.44 6899.76 4099.87 16
CHOSEN 280x42097.99 5999.24 3596.53 8698.34 6299.61 3998.36 8089.80 14699.27 4095.08 5899.81 198.58 6998.64 7899.02 4598.92 3998.93 19099.48 144
MVSTER97.16 8397.71 9696.52 8795.97 11098.48 14498.63 6592.10 10398.68 11995.96 4499.23 2191.79 13896.87 12998.76 6697.37 12899.57 14699.68 101
PMMVS97.52 7298.39 6996.51 8895.82 11598.73 12997.80 10193.05 9898.76 11494.39 7599.07 3597.03 8998.55 8398.31 9597.61 11399.43 16899.21 163
ACMP96.25 1096.62 10696.72 13196.50 8996.96 8798.75 12697.80 10194.30 7298.85 9793.12 9698.78 5086.61 16697.23 12297.73 13296.61 14399.62 12299.71 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EIA-MVS97.70 6798.78 5996.44 9095.72 11899.65 2298.14 9093.72 8498.30 13892.31 10898.63 5797.90 7798.97 5998.92 5398.30 8299.78 3399.80 35
casdiffmvs96.93 9297.43 10796.34 9195.70 11999.50 6297.75 10493.22 9498.98 8592.64 10394.97 13791.71 13998.93 6098.62 7698.52 6699.82 1599.72 87
diffmvs96.83 9497.33 11296.25 9295.76 11699.34 8798.06 9693.22 9499.43 2292.30 10996.90 10289.83 14998.55 8398.00 11798.14 8999.64 11699.70 92
DI_MVS_plusplus_trai96.90 9397.49 10296.21 9395.61 12499.40 7798.72 6292.11 10299.14 6292.98 10193.08 16195.14 10998.13 9598.05 11397.91 10199.74 4999.73 76
PVSNet_Blended_VisFu97.41 7698.49 6796.15 9497.49 7499.76 696.02 15193.75 8399.26 4393.38 9393.73 14999.35 5896.47 14398.96 4898.46 6799.77 3899.90 6
HQP-MVS96.37 11096.58 13496.13 9597.31 8098.44 14898.45 7395.22 5198.86 9588.58 12898.33 6887.00 16097.67 11297.23 15296.56 14599.56 14999.62 117
thisisatest053097.23 8198.25 7496.05 9695.60 12699.59 4696.96 13393.23 9299.17 5492.60 10598.75 5396.19 9798.17 9198.19 10196.10 16099.72 6499.77 56
tttt051797.23 8198.24 7796.04 9795.60 12699.60 4496.94 13493.23 9299.15 5992.56 10698.74 5496.12 10098.17 9198.21 9996.10 16099.73 5799.78 48
FC-MVSNet-train97.04 8897.91 9296.03 9896.00 10898.41 15196.53 14293.42 8899.04 8093.02 9998.03 7694.32 12197.47 11797.93 12097.77 10999.75 4499.88 14
UGNet97.66 6899.07 4496.01 9997.19 8399.65 2297.09 12993.39 8999.35 3194.40 7498.79 4999.59 5594.24 18898.04 11498.29 8399.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline97.45 7598.70 6295.99 10095.89 11199.36 8298.29 8391.37 11999.21 4992.99 10098.40 6596.87 9097.96 10198.60 8098.60 6199.42 17099.86 19
MVS_Test97.30 7998.54 6495.87 10195.74 11799.28 9498.19 8891.40 11899.18 5391.59 11598.17 7296.18 9898.63 7998.61 7798.55 6399.66 10899.78 48
test_part195.56 12795.38 15995.78 10296.07 10598.16 16297.57 10990.78 13097.43 17093.04 9889.12 18589.41 15097.93 10296.38 17297.38 12799.29 18099.78 48
GBi-Net96.98 9098.00 8995.78 10293.81 15697.98 16598.09 9291.32 12098.80 10793.92 8097.21 9395.94 10397.89 10498.07 10998.34 7899.68 9599.67 102
test196.98 9098.00 8995.78 10293.81 15697.98 16598.09 9291.32 12098.80 10793.92 8097.21 9395.94 10397.89 10498.07 10998.34 7899.68 9599.67 102
CHOSEN 1792x268896.41 10996.99 12595.74 10598.01 6999.72 1297.70 10690.78 13099.13 6790.03 12387.35 19895.36 10798.33 8998.59 8298.91 4199.59 13899.87 16
FMVSNet397.02 8998.12 8395.73 10693.59 16297.98 16598.34 8291.32 12098.80 10793.92 8097.21 9395.94 10397.63 11398.61 7798.62 5999.61 12499.65 109
Vis-MVSNet (Re-imp)97.40 7798.89 5595.66 10795.99 10999.62 3497.82 10093.22 9498.82 10491.40 11696.94 10098.56 7095.70 16099.14 3799.41 699.79 3099.75 68
FMVSNet296.64 10497.50 10195.63 10893.81 15697.98 16598.09 9290.87 12698.99 8493.48 9193.17 15895.25 10897.89 10498.63 7598.80 5399.68 9599.67 102
LGP-MVS_train96.23 11396.89 12795.46 10997.32 7898.77 12298.81 5993.60 8698.58 12385.52 14899.08 3486.67 16597.83 11097.87 12497.51 11799.69 8699.73 76
HyFIR lowres test95.99 11996.56 13595.32 11097.99 7099.65 2296.54 14088.86 15598.44 13289.77 12684.14 20897.05 8899.03 5698.55 8498.19 8899.73 5799.86 19
ET-MVSNet_ETH3D96.17 11596.99 12595.21 11188.53 21298.54 14198.28 8492.61 9998.85 9793.60 9099.06 3690.39 14398.63 7995.98 18696.68 14099.61 12499.41 149
FMVSNet195.77 12396.41 14795.03 11293.42 16397.86 17297.11 12889.89 14398.53 12792.00 11289.17 18293.23 13298.15 9498.07 10998.34 7899.61 12499.69 96
test0.0.03 196.69 10198.12 8395.01 11395.49 13198.99 11095.86 15390.82 12898.38 13492.54 10796.66 10897.33 8395.75 15897.75 13198.34 7899.60 13299.40 152
CDS-MVSNet96.59 10798.02 8894.92 11494.45 14998.96 11397.46 11391.75 10997.86 15990.07 12296.02 12297.25 8696.21 14798.04 11498.38 7399.60 13299.65 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UA-Net97.13 8599.14 3994.78 11597.21 8299.38 7897.56 11092.04 10498.48 13088.03 13198.39 6699.91 3294.03 19199.33 2599.23 1899.81 2199.25 160
ACMH+95.51 1395.40 13196.00 14994.70 11696.33 9698.79 11996.79 13591.32 12098.77 11387.18 13895.60 13385.46 17696.97 12697.15 15596.59 14499.59 13899.65 109
baseline296.36 11197.82 9494.65 11794.60 14899.09 10696.45 14489.63 14898.36 13691.29 11897.60 8894.13 12496.37 14498.45 8997.70 11099.54 15599.41 149
IterMVS-LS96.12 11797.48 10394.53 11895.19 13897.56 19097.15 12589.19 15399.08 7288.23 12994.97 13794.73 11597.84 10997.86 12598.26 8499.60 13299.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GeoE95.98 12197.24 11894.51 11995.02 14199.38 7898.02 9787.86 16998.37 13587.86 13492.99 16393.54 12898.56 8298.61 7797.92 9999.73 5799.85 22
MS-PatchMatch95.99 11997.26 11794.51 11997.46 7598.76 12597.27 11986.97 17499.09 7089.83 12593.51 15397.78 7996.18 14997.53 14295.71 17199.35 17698.41 187
FA-MVS(training)96.52 10898.29 7294.45 12195.88 11399.52 5997.66 10781.47 19798.94 8893.79 8795.54 13599.11 6398.29 9098.89 5696.49 14799.63 12199.52 135
ACMH95.42 1495.27 13595.96 15194.45 12196.83 9198.78 12194.72 17891.67 11298.95 8686.82 14196.42 11683.67 18697.00 12597.48 14496.68 14099.69 8699.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS95.53 12896.50 14194.39 12393.86 15599.03 10796.67 13789.55 15097.33 17390.64 12093.02 16291.58 14096.21 14797.72 13397.43 12599.43 16899.36 154
FMVSNet595.42 13096.47 14294.20 12492.26 17595.99 21195.66 15687.15 17397.87 15893.46 9296.68 10793.79 12797.52 11497.10 15897.21 13099.11 18796.62 211
pmmvs495.09 13695.90 15294.14 12592.29 17497.70 17695.45 16190.31 13798.60 12190.70 11993.25 15689.90 14796.67 13697.13 15695.42 17599.44 16799.28 157
UniMVSNet_ETH3D93.15 17192.33 20494.11 12693.91 15398.61 13794.81 17590.98 12597.06 18087.51 13782.27 21276.33 21897.87 10894.79 20197.47 12299.56 14999.81 33
Effi-MVS+95.81 12297.31 11694.06 12795.09 13999.35 8597.24 12188.22 16498.54 12685.38 15098.52 5988.68 15398.70 7498.32 9497.93 9899.74 4999.84 23
Fast-Effi-MVS+95.38 13296.52 13894.05 12894.15 15199.14 10597.24 12186.79 17598.53 12787.62 13694.51 14287.06 15898.76 7298.60 8098.04 9699.72 6499.77 56
FC-MVSNet-test96.07 11897.94 9193.89 12993.60 16198.67 13296.62 13990.30 13998.76 11488.62 12795.57 13497.63 8194.48 18497.97 11897.48 12199.71 7499.52 135
dps94.63 14795.31 16293.84 13095.53 12998.71 13096.54 14080.12 20297.81 16397.21 3096.98 9892.37 13496.34 14692.46 21091.77 21097.26 21197.08 205
CANet_DTU96.64 10499.08 4293.81 13197.10 8599.42 7398.85 5790.01 14099.31 3479.98 18299.78 299.10 6497.42 11898.35 9398.05 9599.47 16399.53 132
Baseline_NR-MVSNet93.87 16293.98 18493.75 13291.66 18997.02 20395.53 15991.52 11797.16 17987.77 13587.93 19683.69 18596.35 14595.10 19797.23 12999.68 9599.73 76
Vis-MVSNetpermissive96.16 11698.22 7893.75 13295.33 13699.70 1797.27 11990.85 12798.30 13885.51 14995.72 13196.45 9193.69 19798.70 7199.00 3399.84 1199.69 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet (Re)94.58 15095.34 16093.71 13492.25 17698.08 16494.97 16891.29 12497.03 18287.94 13293.97 14886.25 17196.07 15296.27 17895.97 16599.72 6499.79 42
EPNet_dtu96.30 11298.53 6593.70 13598.97 5198.24 15997.36 11594.23 7398.85 9779.18 18699.19 2298.47 7194.09 19097.89 12398.21 8698.39 19698.85 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap94.00 15894.35 17593.60 13695.89 11198.26 15797.49 11288.82 15698.56 12583.21 16191.28 16980.48 20596.68 13597.34 14896.26 15599.53 15798.24 191
USDC94.26 15494.83 16693.59 13796.02 10698.44 14897.84 9988.65 15998.86 9582.73 16794.02 14680.56 20396.76 13297.28 15196.15 15999.55 15198.50 185
testgi95.67 12597.48 10393.56 13895.07 14099.00 10895.33 16488.47 16198.80 10786.90 14097.30 9192.33 13595.97 15597.66 13597.91 10199.60 13299.38 153
UniMVSNet_NR-MVSNet94.59 14995.47 15893.55 13991.85 18497.89 17195.03 16692.00 10597.33 17386.12 14293.19 15787.29 15796.60 13996.12 18196.70 13999.72 6499.80 35
tfpnnormal93.85 16494.12 17993.54 14093.22 16498.24 15995.45 16191.96 10794.61 21083.91 15390.74 17281.75 19997.04 12497.49 14396.16 15899.68 9599.84 23
CostFormer94.25 15594.88 16593.51 14195.43 13398.34 15696.21 14980.64 20097.94 15594.01 7898.30 6986.20 17297.52 11492.71 20892.69 20497.23 21298.02 195
DU-MVS93.98 15994.44 17493.44 14291.66 18997.77 17395.03 16691.57 11497.17 17786.12 14293.13 15981.13 20196.60 13995.10 19797.01 13499.67 10399.80 35
NR-MVSNet94.01 15794.51 17293.44 14292.56 16997.77 17395.67 15591.57 11497.17 17785.84 14593.13 15980.53 20495.29 17497.01 15996.17 15799.69 8699.75 68
test-LLR95.50 12997.32 11393.37 14495.49 13198.74 12796.44 14590.82 12898.18 14382.75 16596.60 11194.67 11695.54 16698.09 10696.00 16299.20 18498.93 175
IB-MVS93.96 1595.02 13896.44 14593.36 14597.05 8699.28 9490.43 20593.39 8998.02 14996.02 4294.92 13992.07 13783.52 21495.38 19195.82 16899.72 6499.59 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep1395.57 12697.48 10393.35 14695.43 13398.97 11297.19 12483.72 19598.92 9287.91 13397.75 8396.12 10097.88 10796.84 16395.64 17297.96 20198.10 193
CVMVSNet95.33 13497.09 12093.27 14795.23 13798.39 15395.49 16092.58 10097.71 16583.00 16494.44 14493.28 13193.92 19497.79 12798.54 6599.41 17199.45 146
TranMVSNet+NR-MVSNet93.67 16594.14 17793.13 14891.28 20397.58 18895.60 15891.97 10697.06 18084.05 15190.64 17582.22 19696.17 15094.94 20096.78 13799.69 8699.78 48
Effi-MVS+-dtu95.74 12498.04 8693.06 14993.92 15299.16 10397.90 9888.16 16699.07 7782.02 17098.02 7794.32 12196.74 13398.53 8597.56 11599.61 12499.62 117
tpm cat194.06 15694.90 16493.06 14995.42 13598.52 14396.64 13880.67 19997.82 16192.63 10493.39 15595.00 11196.06 15391.36 21391.58 21296.98 21396.66 210
EPMVS95.05 13796.86 12992.94 15195.84 11498.96 11396.68 13679.87 20399.05 7890.15 12197.12 9795.99 10297.49 11695.17 19594.75 19397.59 20796.96 207
pm-mvs194.27 15395.57 15792.75 15292.58 16898.13 16394.87 17390.71 13396.70 19083.78 15589.94 17889.85 14894.96 18197.58 14097.07 13199.61 12499.72 87
TransMVSNet (Re)93.45 16794.08 18092.72 15392.83 16597.62 18694.94 16991.54 11695.65 20783.06 16388.93 18683.53 18794.25 18797.41 14597.03 13299.67 10398.40 190
TDRefinement93.04 17493.57 19192.41 15496.58 9398.77 12297.78 10391.96 10798.12 14680.84 17589.13 18479.87 21087.78 21096.44 16994.50 19699.54 15598.15 192
CP-MVSNet93.25 17094.00 18392.38 15591.65 19197.56 19094.38 18789.20 15296.05 20183.16 16289.51 18081.97 19796.16 15196.43 17096.56 14599.71 7499.89 10
WR-MVS_H93.54 16694.67 17092.22 15691.95 18097.91 17094.58 18488.75 15796.64 19183.88 15490.66 17485.13 17994.40 18596.54 16895.91 16799.73 5799.89 10
WR-MVS93.43 16994.48 17392.21 15791.52 19697.69 17894.66 18289.98 14196.86 18583.43 15990.12 17685.03 18093.94 19396.02 18595.82 16899.71 7499.82 28
TESTMET0.1,194.95 13997.32 11392.20 15892.62 16798.74 12796.44 14586.67 17798.18 14382.75 16596.60 11194.67 11695.54 16698.09 10696.00 16299.20 18498.93 175
PEN-MVS92.72 18193.20 19792.15 15991.29 20197.31 20094.67 18189.81 14496.19 19781.83 17188.58 18979.06 21395.61 16495.21 19496.27 15399.72 6499.82 28
Fast-Effi-MVS+-dtu95.38 13298.20 7992.09 16093.91 15398.87 11697.35 11685.01 18899.08 7281.09 17498.10 7396.36 9495.62 16398.43 9297.03 13299.55 15199.50 142
SCA94.95 13997.44 10692.04 16195.55 12899.16 10396.26 14879.30 20799.02 8185.73 14798.18 7197.13 8797.69 11196.03 18494.91 18897.69 20697.65 199
V4293.05 17393.90 18792.04 16191.91 18197.66 18094.91 17089.91 14296.85 18680.58 17789.66 17983.43 18995.37 17295.03 19994.90 18999.59 13899.78 48
test-mter94.86 14297.32 11392.00 16392.41 17298.82 11896.18 15086.35 18198.05 14882.28 16896.48 11594.39 12095.46 17098.17 10296.20 15699.32 17899.13 169
PS-CasMVS92.72 18193.36 19591.98 16491.62 19397.52 19294.13 19188.98 15495.94 20481.51 17387.35 19879.95 20995.91 15696.37 17396.49 14799.70 8399.89 10
thisisatest051594.61 14896.89 12791.95 16592.00 17998.47 14592.01 20090.73 13298.18 14383.96 15294.51 14295.13 11093.38 19897.38 14694.74 19499.61 12499.79 42
PatchmatchNetpermissive94.70 14497.08 12291.92 16695.53 12998.85 11795.77 15479.54 20598.95 8685.98 14498.52 5996.45 9197.39 11995.32 19294.09 19897.32 20997.38 202
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DTE-MVSNet92.42 18992.85 20091.91 16790.87 20696.97 20494.53 18689.81 14495.86 20681.59 17288.83 18777.88 21695.01 18094.34 20496.35 15199.64 11699.73 76
v2v48292.77 18093.52 19491.90 16891.59 19497.63 18394.57 18590.31 13796.80 18879.22 18588.74 18881.55 20096.04 15495.26 19394.97 18799.66 10899.69 96
ADS-MVSNet94.65 14697.04 12491.88 16995.68 12198.99 11095.89 15279.03 21099.15 5985.81 14696.96 9998.21 7697.10 12394.48 20394.24 19797.74 20397.21 203
v14892.36 19292.88 19991.75 17091.63 19297.66 18092.64 19790.55 13596.09 19983.34 16088.19 19180.00 20792.74 20293.98 20594.58 19599.58 14299.69 96
RPMNet94.66 14597.16 11991.75 17094.98 14298.59 13897.00 13278.37 21497.98 15183.78 15596.27 11894.09 12696.91 12897.36 14796.73 13899.48 16199.09 170
v892.87 17593.87 18891.72 17292.05 17897.50 19394.79 17688.20 16596.85 18680.11 18190.01 17782.86 19395.48 16895.15 19694.90 18999.66 10899.80 35
tpmrst93.86 16395.88 15391.50 17395.69 12098.62 13595.64 15779.41 20698.80 10783.76 15795.63 13296.13 9997.25 12092.92 20792.31 20697.27 21096.74 208
IterMVS-SCA-FT94.89 14197.87 9391.42 17494.86 14597.70 17697.24 12184.88 18998.93 9075.74 19894.26 14598.25 7496.69 13498.52 8697.68 11199.10 18899.73 76
IterMVS94.81 14397.71 9691.42 17494.83 14697.63 18397.38 11485.08 18698.93 9075.67 19994.02 14697.64 8096.66 13798.45 8997.60 11498.90 19199.72 87
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114492.81 17794.03 18291.40 17691.68 18897.60 18794.73 17788.40 16296.71 18978.48 18988.14 19384.46 18495.45 17196.31 17795.22 18099.65 11299.76 61
CR-MVSNet94.57 15197.34 11191.33 17794.90 14398.59 13897.15 12579.14 20897.98 15180.42 17896.59 11393.50 13096.85 13098.10 10497.49 11999.50 16099.15 165
v1092.79 17994.06 18191.31 17891.78 18697.29 20294.87 17386.10 18296.97 18379.82 18388.16 19284.56 18395.63 16296.33 17695.31 17799.65 11299.80 35
SixPastTwentyTwo93.44 16895.32 16191.24 17992.11 17798.40 15292.77 19688.64 16098.09 14777.83 19193.51 15385.74 17496.52 14296.91 16194.89 19199.59 13899.73 76
pmmvs691.90 19692.53 20391.17 18091.81 18597.63 18393.23 19388.37 16393.43 21580.61 17677.32 21687.47 15694.12 18996.58 16695.72 17098.88 19299.53 132
GA-MVS93.93 16196.31 14891.16 18193.61 16098.79 11995.39 16390.69 13498.25 14173.28 20796.15 12088.42 15494.39 18697.76 13095.35 17699.58 14299.45 146
v119292.43 18893.61 19091.05 18291.53 19597.43 19694.61 18387.99 16796.60 19276.72 19487.11 20082.74 19495.85 15796.35 17595.30 17899.60 13299.74 72
v14419292.38 19093.55 19391.00 18391.44 19797.47 19594.27 18887.41 17296.52 19478.03 19087.50 19782.65 19595.32 17395.82 18995.15 18299.55 15199.78 48
v192192092.36 19293.57 19190.94 18491.39 19997.39 19894.70 17987.63 17196.60 19276.63 19586.98 20182.89 19295.75 15896.26 17995.14 18399.55 15199.73 76
pmmvs592.71 18394.27 17690.90 18591.42 19897.74 17593.23 19386.66 17895.99 20378.96 18891.45 16783.44 18895.55 16597.30 15095.05 18599.58 14298.93 175
MIMVSNet94.49 15297.59 10090.87 18691.74 18798.70 13194.68 18078.73 21297.98 15183.71 15897.71 8694.81 11496.96 12797.97 11897.92 9999.40 17398.04 194
EG-PatchMatch MVS92.45 18593.92 18690.72 18792.56 16998.43 15094.88 17284.54 19197.18 17679.55 18486.12 20583.23 19093.15 20197.22 15396.00 16299.67 10399.27 159
EU-MVSNet92.80 17894.76 16890.51 18891.88 18296.74 20892.48 19888.69 15896.21 19679.00 18791.51 16687.82 15591.83 20695.87 18896.27 15399.21 18398.92 178
v124091.99 19593.33 19690.44 18991.29 20197.30 20194.25 18986.79 17596.43 19575.49 20186.34 20481.85 19895.29 17496.42 17195.22 18099.52 15899.73 76
LTVRE_ROB93.20 1692.84 17694.92 16390.43 19092.83 16598.63 13497.08 13087.87 16897.91 15668.42 21693.54 15179.46 21296.62 13897.55 14197.40 12699.74 4999.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CMPMVSbinary70.31 1890.74 19991.06 20790.36 19197.32 7897.43 19692.97 19587.82 17093.50 21475.34 20283.27 21084.90 18192.19 20592.64 20991.21 21396.50 21694.46 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v7n91.61 19792.95 19890.04 19290.56 20797.69 17893.74 19285.59 18495.89 20576.95 19386.60 20378.60 21593.76 19697.01 15994.99 18699.65 11299.87 16
pmmvs-eth3d89.81 20389.65 21090.00 19386.94 21495.38 21391.08 20186.39 18094.57 21182.27 16983.03 21164.94 22193.96 19296.57 16793.82 20099.35 17699.24 161
PatchT93.96 16097.36 11090.00 19394.76 14798.65 13390.11 20878.57 21397.96 15480.42 17896.07 12194.10 12596.85 13098.10 10497.49 11999.26 18299.15 165
anonymousdsp93.12 17295.86 15489.93 19591.09 20498.25 15895.12 16585.08 18697.44 16973.30 20690.89 17190.78 14295.25 17697.91 12195.96 16699.71 7499.82 28
pmnet_mix0292.44 18694.68 16989.83 19692.46 17197.65 18289.92 21090.49 13698.76 11473.05 20991.78 16590.08 14694.86 18294.53 20291.94 20998.21 19998.01 196
tpm92.38 19094.79 16789.56 19794.30 15097.50 19394.24 19078.97 21197.72 16474.93 20397.97 7882.91 19196.60 13993.65 20694.81 19298.33 19798.98 173
N_pmnet92.21 19494.60 17189.42 19891.88 18297.38 19989.15 21289.74 14797.89 15773.75 20587.94 19592.23 13693.85 19596.10 18293.20 20398.15 20097.43 201
MDTV_nov1_ep13_2view92.44 18695.66 15688.68 19991.05 20597.92 16992.17 19979.64 20498.83 10276.20 19691.45 16793.51 12995.04 17995.68 19093.70 20197.96 20198.53 184
PM-MVS89.55 20490.30 20988.67 20087.06 21395.60 21290.88 20384.51 19296.14 19875.75 19786.89 20263.47 22494.64 18396.85 16293.89 19999.17 18699.29 156
MVS-HIRNet92.51 18495.97 15088.48 20193.73 15998.37 15490.33 20675.36 22098.32 13777.78 19289.15 18394.87 11295.14 17897.62 13996.39 15098.51 19397.11 204
new_pmnet90.45 20292.84 20187.66 20288.96 21196.16 21088.71 21384.66 19097.56 16771.91 21385.60 20686.58 16793.28 19996.07 18393.54 20298.46 19494.39 215
test20.0390.65 20193.71 18987.09 20390.44 20896.24 20989.74 21185.46 18595.59 20872.99 21090.68 17385.33 17784.41 21395.94 18795.10 18499.52 15897.06 206
gg-mvs-nofinetune90.85 19894.14 17787.02 20494.89 14499.25 9698.64 6476.29 21888.24 21957.50 22379.93 21495.45 10695.18 17798.77 6598.07 9499.62 12299.24 161
Anonymous2023120690.70 20093.93 18586.92 20590.21 21096.79 20690.30 20786.61 17996.05 20169.25 21488.46 19084.86 18285.86 21297.11 15796.47 14999.30 17997.80 198
MDA-MVSNet-bldmvs87.84 20889.22 21186.23 20681.74 21896.77 20783.74 21889.57 14994.50 21272.83 21196.64 10964.47 22392.71 20381.43 21892.28 20796.81 21498.47 186
MIMVSNet188.61 20690.68 20886.19 20781.56 21995.30 21587.78 21485.98 18394.19 21372.30 21278.84 21578.90 21490.06 20796.59 16595.47 17399.46 16495.49 213
gm-plane-assit89.44 20592.82 20285.49 20891.37 20095.34 21479.55 22282.12 19691.68 21864.79 22087.98 19480.26 20695.66 16198.51 8897.56 11599.45 16598.41 187
new-patchmatchnet86.12 21087.30 21284.74 20986.92 21595.19 21683.57 21984.42 19392.67 21665.66 21780.32 21364.72 22289.41 20892.33 21289.21 21498.43 19596.69 209
pmmvs388.19 20791.27 20684.60 21085.60 21693.66 21785.68 21781.13 19892.36 21763.66 22289.51 18077.10 21793.22 20096.37 17392.40 20598.30 19897.46 200
FPMVS83.82 21184.61 21382.90 21190.39 20990.71 21990.85 20484.10 19495.47 20965.15 21883.44 20974.46 21975.48 21681.63 21779.42 21991.42 22187.14 219
test_method87.27 20991.58 20582.25 21275.65 22387.52 22286.81 21672.60 22197.51 16873.20 20885.07 20779.97 20888.69 20997.31 14995.24 17996.53 21598.41 187
tmp_tt82.25 21297.73 7288.71 22080.18 22068.65 22399.15 5986.98 13999.47 1085.31 17868.35 22187.51 21583.81 21791.64 220
Gipumacopyleft81.40 21281.78 21480.96 21483.21 21785.61 22379.73 22176.25 21997.33 17364.21 22155.32 22055.55 22586.04 21192.43 21192.20 20896.32 21793.99 216
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft72.60 1776.39 21477.66 21774.92 21581.04 22069.37 22768.47 22480.54 20185.39 22065.07 21973.52 21772.91 22065.67 22280.35 21976.81 22088.71 22285.25 222
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS277.26 21379.47 21674.70 21676.00 22288.37 22174.22 22376.34 21778.31 22154.13 22469.96 21852.50 22670.14 22084.83 21688.71 21597.35 20893.58 217
E-PMN68.30 21668.43 21868.15 21774.70 22571.56 22655.64 22677.24 21577.48 22339.46 22651.95 22341.68 22873.28 21870.65 22179.51 21888.61 22386.20 221
EMVS68.12 21768.11 21968.14 21875.51 22471.76 22555.38 22777.20 21677.78 22237.79 22753.59 22143.61 22774.72 21767.05 22276.70 22188.27 22486.24 220
MVEpermissive67.97 1965.53 21867.43 22063.31 21959.33 22674.20 22453.09 22870.43 22266.27 22443.13 22545.98 22430.62 22970.65 21979.34 22086.30 21683.25 22589.33 218
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND69.11 21598.13 8235.26 2203.49 22998.20 16194.89 1712.38 22698.42 1335.82 23096.37 11798.60 685.97 22598.75 6897.98 9799.01 18998.61 182
testmvs31.24 21940.15 22120.86 22112.61 22717.99 22825.16 22913.30 22448.42 22524.82 22853.07 22230.13 23128.47 22342.73 22337.65 22220.79 22651.04 223
test12326.75 22034.25 22218.01 2227.93 22817.18 22924.85 23012.36 22544.83 22616.52 22941.80 22518.10 23228.29 22433.08 22434.79 22318.10 22749.95 224
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def69.05 215
9.1499.79 46
SR-MVS99.67 1498.25 1599.94 26
Anonymous20240521197.40 10896.45 9499.54 5598.08 9593.79 8098.24 14293.55 15094.41 11998.88 6998.04 11498.24 8599.75 4499.76 61
our_test_392.30 17397.58 18890.09 209
ambc80.99 21580.04 22190.84 21890.91 20296.09 19974.18 20462.81 21930.59 23082.44 21596.25 18091.77 21095.91 21898.56 183
MTAPA98.09 1699.97 8
MTMP98.46 1199.96 13
Patchmatch-RL test66.86 225
XVS97.42 7699.62 3498.59 6793.81 8499.95 1899.69 86
X-MVStestdata97.42 7699.62 3498.59 6793.81 8499.95 1899.69 86
mPP-MVS99.53 3199.89 35
NP-MVS98.57 124
Patchmtry98.59 13897.15 12579.14 20880.42 178
DeepMVS_CXcopyleft96.85 20587.43 21589.27 15198.30 13875.55 20095.05 13679.47 21192.62 20489.48 21495.18 21995.96 212