This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5798.50 19298.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9599.77 3199.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.37 297.93 6798.48 2396.30 26799.00 11489.54 34297.43 30498.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3199.72 45
DeepC-MVS95.98 397.88 6897.58 7398.77 6999.25 8196.93 9998.83 12498.75 10696.96 6796.89 16799.50 1590.46 16499.87 5897.84 7399.76 3799.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft95.07 497.20 11096.78 11498.44 9599.29 7396.31 13698.14 23698.76 10492.41 28296.39 19298.31 18594.92 7699.78 10194.06 22498.77 13999.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator94.51 597.46 9296.93 10699.07 5397.78 22697.64 6999.35 1799.06 3497.02 6493.75 27999.16 7789.25 18799.92 3197.22 10999.75 4199.64 71
3Dnovator+94.38 697.43 9796.78 11499.38 1897.83 22398.52 2899.37 1498.71 11697.09 6292.99 30699.13 8289.36 18399.89 4796.97 11699.57 8099.71 49
TAPA-MVS93.98 795.35 20194.56 21697.74 15199.13 10194.83 21198.33 20898.64 13686.62 36896.29 19498.61 14894.00 9699.29 17980.00 38299.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HY-MVS93.96 896.82 12696.23 13998.57 7998.46 16397.00 9698.14 23698.21 22093.95 20696.72 17497.99 21291.58 13699.76 10794.51 20896.54 21398.95 173
ACMM93.85 995.69 18195.38 17596.61 23497.61 24193.84 25098.91 9898.44 18095.25 14794.28 25198.47 16486.04 26299.12 20095.50 17793.95 26096.87 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP93.49 1095.34 20294.98 19896.43 25897.67 23693.48 26598.73 15098.44 18094.94 16792.53 31998.53 15784.50 29599.14 19795.48 17894.00 25896.66 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS93.45 1194.68 23993.43 28998.42 9998.62 15296.77 10795.48 37798.20 22284.63 38193.34 29498.32 18488.55 20999.81 8184.80 36898.96 12898.68 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft93.27 1295.33 20394.87 20496.71 22299.29 7393.24 27898.58 17898.11 24289.92 34393.57 28399.10 8686.37 25599.79 9890.78 30798.10 16997.09 255
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OpenMVScopyleft93.04 1395.83 17295.00 19698.32 10497.18 27897.32 8199.21 3898.97 4289.96 34291.14 33999.05 9786.64 24999.92 3193.38 24299.47 9997.73 237
ACMH+92.99 1494.30 26893.77 27095.88 28597.81 22592.04 29898.71 15598.37 19493.99 20490.60 34598.47 16480.86 32899.05 21092.75 26292.40 29196.55 317
LTVRE_ROB92.95 1594.60 24593.90 25996.68 22697.41 26294.42 23098.52 18798.59 14491.69 30491.21 33898.35 17884.87 28399.04 21391.06 30293.44 27796.60 309
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH92.88 1694.55 24993.95 25596.34 26497.63 24093.26 27698.81 13498.49 17493.43 24189.74 35198.53 15781.91 31899.08 20893.69 23393.30 28096.70 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS91.98 1793.27 30391.97 31697.19 18897.47 25393.41 26897.09 33395.99 36593.32 24592.47 32295.73 35278.06 34899.53 15394.59 20682.98 37298.62 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet91.96 1896.35 14696.15 14096.96 20799.17 9492.05 29796.08 36698.68 12393.69 22697.75 12997.80 23288.86 20199.69 12494.26 21799.01 12699.15 150
PVSNet_088.72 1991.28 32690.03 33295.00 31497.99 21187.29 37394.84 38298.50 16992.06 29489.86 35095.19 36279.81 33599.39 17292.27 27569.79 39698.33 219
OpenMVS_ROBcopyleft86.42 2089.00 34487.43 35293.69 34293.08 38189.42 34497.91 26396.89 34678.58 38985.86 37594.69 36769.48 38198.29 31177.13 38993.29 28193.36 384
CMPMVSbinary66.06 2189.70 33989.67 33589.78 36493.19 38076.56 39097.00 33798.35 19780.97 38781.57 38697.75 23474.75 36998.61 26489.85 32193.63 27094.17 375
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive62.14 2263.28 37159.38 37474.99 38374.33 40865.47 40485.55 39780.50 40952.02 40151.10 40375.00 40210.91 41280.50 40351.60 40253.40 40078.99 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 36863.57 37273.09 38557.90 41051.22 41285.05 39893.93 39054.45 39944.32 40583.57 39413.22 40989.15 40058.68 40081.00 37978.91 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testing9194.98 22494.25 23397.20 18697.94 21693.41 26898.00 25497.58 28894.99 16195.45 21396.04 34377.20 35699.42 16894.97 19296.02 23498.78 187
testing1195.00 22094.28 23197.16 19197.96 21593.36 27398.09 24497.06 33394.94 16795.33 21796.15 34076.89 35999.40 16995.77 16796.30 22298.72 190
testing9994.83 23294.08 24497.07 19997.94 21693.13 28198.10 24397.17 32594.86 16995.34 21496.00 34676.31 36299.40 16995.08 18995.90 23598.68 195
UWE-MVS94.30 26893.89 26195.53 29697.83 22388.95 35397.52 30093.25 39194.44 18996.63 17797.07 28778.70 34199.28 18091.99 28397.56 18998.36 217
ETVMVS94.50 25593.44 28897.68 15898.18 19495.35 18398.19 22997.11 32793.73 22096.40 19195.39 35974.53 37098.84 24491.10 29996.31 22198.84 181
testing22294.12 28393.03 29797.37 18098.02 20894.66 21697.94 26096.65 35794.63 17995.78 20795.76 34971.49 37898.92 23291.17 29895.88 23698.52 209
WB-MVSnew94.19 27694.04 24694.66 32796.82 30092.14 29397.86 27295.96 36793.50 23795.64 20996.77 31788.06 22197.99 33284.87 36596.86 20293.85 382
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7698.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 1999.89 5
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7498.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4599.90 3
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11497.66 23895.39 17998.89 10399.17 2697.24 5099.76 899.67 191.13 15099.88 5699.39 1399.41 10699.35 115
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 12698.54 15895.24 18998.87 11399.24 1797.50 3199.70 1399.67 191.33 14599.89 4799.47 1299.54 8999.21 138
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 10799.09 10695.41 17898.86 11699.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10499.49 96
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12299.30 6895.25 18898.85 11899.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9299.25 133
MM98.51 3398.24 4699.33 2699.12 10298.14 5498.93 9597.02 33798.96 199.17 4199.47 2091.97 12999.94 899.85 499.69 5699.91 2
WAC-MVS90.94 31688.66 339
Syy-MVS92.55 31592.61 30692.38 35697.39 26383.41 38297.91 26397.46 30493.16 25393.42 29195.37 36084.75 28796.12 37777.00 39096.99 19897.60 242
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23297.15 9398.84 12298.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2599.89 5
test_fmvsmconf0.01_n97.86 6997.54 7898.83 6795.48 35696.83 10498.95 9098.60 14198.58 698.93 5799.55 688.57 20699.91 3999.54 1199.61 7299.77 27
myMVS_eth3d92.73 31392.01 31594.89 31897.39 26390.94 31697.91 26397.46 30493.16 25393.42 29195.37 36068.09 38396.12 37788.34 34296.99 19897.60 242
testing393.19 30792.48 30995.30 30698.07 20392.27 29198.64 16997.17 32593.94 20893.98 26797.04 29467.97 38496.01 37988.40 34197.14 19597.63 241
SSC-MVS84.27 35684.71 35982.96 37989.19 39468.83 40198.08 24596.30 36389.04 35881.37 38794.47 36984.60 29289.89 39949.80 40379.52 38490.15 390
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 8898.82 12699.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 1999.93 1
WB-MVS84.86 35585.33 35683.46 37589.48 39269.56 40098.19 22996.42 36189.55 35081.79 38594.67 36884.80 28590.12 39852.44 40180.64 38290.69 389
test_fmvsmvis_n_192098.44 4198.51 1898.23 11398.33 17896.15 14198.97 8499.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6198.57 208
dmvs_re94.48 25894.18 23895.37 30397.68 23590.11 33398.54 18697.08 32994.56 18194.42 24497.24 27384.25 29897.76 34691.02 30592.83 28798.24 221
SDMVSNet96.85 12496.42 12998.14 11999.30 6896.38 13099.21 3899.23 2095.92 11095.96 20498.76 13685.88 26399.44 16797.93 6495.59 23998.60 203
dmvs_testset87.64 34988.93 34283.79 37495.25 36163.36 40597.20 32391.17 39993.07 25785.64 37895.98 34785.30 27891.52 39769.42 39687.33 35396.49 329
sd_testset96.17 15395.76 15797.42 17499.30 6894.34 23598.82 12699.08 3295.92 11095.96 20498.76 13682.83 31599.32 17795.56 17495.59 23998.60 203
test_fmvsm_n_192098.87 1099.01 398.45 9399.42 5596.43 12698.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4198.94 174
test_cas_vis1_n_192097.38 10197.36 8997.45 17198.95 12193.25 27799.00 7898.53 15997.70 2099.77 799.35 4484.71 28999.85 6398.57 2799.66 6199.26 131
test_vis1_n_192096.71 12996.84 11096.31 26699.11 10489.74 33799.05 6598.58 14998.08 1299.87 199.37 3878.48 34399.93 2599.29 1499.69 5699.27 129
test_vis1_n95.47 18995.13 18996.49 25097.77 22790.41 32899.27 2698.11 24296.58 8399.66 1599.18 7367.00 38799.62 13799.21 1599.40 10999.44 107
test_fmvs1_n95.90 16895.99 14895.63 29398.67 14788.32 36499.26 2798.22 21996.40 9299.67 1499.26 5773.91 37499.70 11999.02 1899.50 9498.87 178
mvsany_test197.69 7997.70 6997.66 16298.24 18494.18 24297.53 29897.53 29895.52 13199.66 1599.51 1394.30 8999.56 14598.38 4598.62 14599.23 135
APD_test188.22 34788.01 34788.86 36695.98 34074.66 39697.21 32296.44 36083.96 38386.66 37297.90 21960.95 39297.84 34482.73 37490.23 31694.09 377
test_vis1_rt91.29 32590.65 32593.19 35197.45 25786.25 37698.57 18390.90 40193.30 24786.94 36993.59 37862.07 39199.11 20297.48 10095.58 24194.22 374
test_vis3_rt79.22 35777.40 36384.67 37386.44 39974.85 39597.66 28981.43 40884.98 37967.12 39981.91 39728.09 40897.60 35088.96 33680.04 38381.55 397
test_fmvs293.43 29893.58 28192.95 35396.97 28983.91 38099.19 4297.24 32295.74 12095.20 21998.27 19069.65 38098.72 25696.26 14893.73 26696.24 341
test_fmvs196.42 14196.67 12195.66 29298.82 13388.53 36098.80 13598.20 22296.39 9399.64 1799.20 6780.35 33299.67 12699.04 1799.57 8098.78 187
test_fmvs387.17 35087.06 35387.50 36891.21 38775.66 39299.05 6596.61 35892.79 26988.85 36092.78 38343.72 39893.49 39193.95 22684.56 36893.34 385
mvsany_test388.80 34588.04 34691.09 36389.78 39181.57 38897.83 27795.49 37293.81 21587.53 36693.95 37656.14 39497.43 35694.68 19983.13 37194.26 372
testf179.02 35977.70 36182.99 37788.10 39666.90 40294.67 38493.11 39271.08 39474.02 39293.41 38034.15 40493.25 39272.25 39478.50 38788.82 392
APD_test279.02 35977.70 36182.99 37788.10 39666.90 40294.67 38493.11 39271.08 39474.02 39293.41 38034.15 40493.25 39272.25 39478.50 38788.82 392
test_f86.07 35485.39 35588.10 36789.28 39375.57 39397.73 28496.33 36289.41 35485.35 37991.56 38943.31 40095.53 38291.32 29684.23 37093.21 386
FE-MVS95.62 18494.90 20297.78 14698.37 17094.92 20697.17 32897.38 31490.95 32797.73 13297.70 23885.32 27799.63 13491.18 29798.33 16298.79 184
FA-MVS(test-final)96.41 14595.94 14997.82 14398.21 18895.20 19197.80 27897.58 28893.21 25097.36 14797.70 23889.47 18099.56 14594.12 22197.99 17198.71 193
iter_conf_final96.42 14196.12 14197.34 18198.46 16396.55 12199.08 6198.06 25796.03 10695.63 21098.46 16687.72 22998.59 26797.84 7393.80 26496.87 277
bld_raw_dy_0_6495.74 17695.31 18297.03 20196.35 32595.76 16599.12 5397.37 31595.97 10894.70 23298.48 16285.80 26598.49 27796.55 13993.48 27396.84 282
patch_mono-298.36 5098.87 696.82 21799.53 3690.68 32398.64 16999.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
EGC-MVSNET75.22 36569.54 36892.28 35894.81 36889.58 34197.64 29196.50 3591.82 4085.57 40995.74 35068.21 38296.26 37673.80 39391.71 29890.99 388
test250694.44 26193.91 25896.04 27599.02 11188.99 35299.06 6379.47 41096.96 6798.36 9499.26 5777.21 35599.52 15696.78 13499.04 12399.59 79
test111195.94 16595.78 15596.41 25998.99 11890.12 33299.04 6892.45 39696.99 6698.03 10999.27 5681.40 32199.48 16296.87 12899.04 12399.63 73
ECVR-MVScopyleft95.95 16395.71 16296.65 22799.02 11190.86 31899.03 7191.80 39796.96 6798.10 10399.26 5781.31 32299.51 15796.90 12299.04 12399.59 79
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
tt080594.54 25093.85 26496.63 23197.98 21393.06 28598.77 14297.84 27593.67 23093.80 27798.04 20776.88 36098.96 22594.79 19892.86 28697.86 233
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5199.74 37
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 28197.52 9899.72 5199.74 37
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 414
eth-test0.00 414
GeoE96.58 13596.07 14398.10 12798.35 17195.89 16199.34 1898.12 23993.12 25696.09 19898.87 12089.71 17698.97 22192.95 25698.08 17099.43 109
test_method79.03 35878.17 36081.63 38086.06 40054.40 41182.75 39996.89 34639.54 40380.98 38895.57 35858.37 39394.73 38884.74 36978.61 38695.75 353
Anonymous2024052191.18 32790.44 32893.42 34493.70 37888.47 36198.94 9397.56 29188.46 36189.56 35495.08 36577.15 35896.97 36383.92 37189.55 32694.82 369
h-mvs3396.17 15395.62 16897.81 14499.03 11094.45 22898.64 16998.75 10697.48 3298.67 7398.72 13989.76 17499.86 6297.95 6281.59 37799.11 155
hse-mvs295.71 17895.30 18396.93 20998.50 16093.53 26398.36 20598.10 24597.48 3298.67 7397.99 21289.76 17499.02 21797.95 6280.91 38198.22 223
CL-MVSNet_self_test90.11 33689.14 33993.02 35291.86 38588.23 36696.51 36398.07 25290.49 33190.49 34694.41 37084.75 28795.34 38480.79 38074.95 39395.50 357
KD-MVS_2432*160089.61 34187.96 34894.54 33094.06 37591.59 30695.59 37597.63 28589.87 34488.95 35894.38 37278.28 34596.82 36584.83 36668.05 39795.21 361
KD-MVS_self_test90.38 33489.38 33793.40 34692.85 38288.94 35497.95 25897.94 26890.35 33790.25 34793.96 37579.82 33495.94 38084.62 37076.69 39195.33 359
AUN-MVS94.53 25293.73 27496.92 21298.50 16093.52 26498.34 20798.10 24593.83 21495.94 20697.98 21485.59 26999.03 21494.35 21280.94 38098.22 223
ZD-MVS99.46 4998.70 2398.79 9893.21 25098.67 7398.97 10595.70 4599.83 6996.07 15299.58 79
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.34 5899.82 7697.72 8099.65 6499.71 49
RE-MVS-def98.34 3599.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.29 6197.72 8099.65 6499.71 49
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1299.70 53
IU-MVS99.71 1999.23 798.64 13695.28 14599.63 1898.35 4799.81 1299.83 13
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17397.24 10799.73 4899.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 1999.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2699.84 6797.72 8099.73 4899.67 65
cl2294.68 23994.19 23696.13 27398.11 20193.60 25996.94 34098.31 20392.43 28193.32 29596.87 31286.51 25098.28 31294.10 22391.16 30696.51 326
miper_ehance_all_eth95.01 21994.69 21195.97 27997.70 23493.31 27497.02 33698.07 25292.23 28993.51 28796.96 30491.85 13098.15 31893.68 23491.16 30696.44 334
miper_enhance_ethall95.10 21594.75 20896.12 27497.53 25093.73 25696.61 36098.08 25092.20 29293.89 27196.65 32392.44 11298.30 30894.21 21891.16 30696.34 337
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4298.86 7595.77 11998.31 9999.10 8695.46 5199.93 2597.57 9499.81 1299.74 37
dcpmvs_298.08 6098.59 1496.56 24199.57 3390.34 33099.15 4798.38 19396.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
cl____94.51 25494.01 25096.02 27697.58 24393.40 27097.05 33497.96 26791.73 30392.76 31197.08 28689.06 19498.13 32092.61 26390.29 31596.52 323
DIV-MVS_self_test94.52 25394.03 24795.99 27797.57 24793.38 27197.05 33497.94 26891.74 30192.81 30997.10 28089.12 19198.07 32692.60 26490.30 31496.53 320
eth_miper_zixun_eth94.68 23994.41 22795.47 29997.64 23991.71 30496.73 35798.07 25292.71 27193.64 28097.21 27690.54 16398.17 31793.38 24289.76 32196.54 318
9.1498.06 5899.47 4798.71 15598.82 8194.36 19199.16 4499.29 5396.05 3399.81 8197.00 11499.71 53
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
save fliter99.46 4998.38 3598.21 22498.71 11697.95 13
ET-MVSNet_ETH3D94.13 28192.98 29897.58 16698.22 18796.20 13897.31 31695.37 37394.53 18379.56 38997.63 24886.51 25097.53 35496.91 11990.74 31099.02 165
UniMVSNet_ETH3D94.24 27393.33 29196.97 20697.19 27793.38 27198.74 14698.57 15191.21 32393.81 27698.58 15372.85 37798.77 25395.05 19093.93 26198.77 189
EIA-MVS97.75 7497.58 7398.27 10798.38 16896.44 12599.01 7698.60 14195.88 11597.26 14997.53 25594.97 7499.33 17697.38 10499.20 11899.05 163
miper_refine_blended89.61 34187.96 34894.54 33094.06 37591.59 30695.59 37597.63 28589.87 34488.95 35894.38 37278.28 34596.82 36584.83 36668.05 39795.21 361
miper_lstm_enhance94.33 26694.07 24595.11 31197.75 22890.97 31597.22 32198.03 26091.67 30592.76 31196.97 30290.03 17197.78 34592.51 27189.64 32396.56 315
ETV-MVS97.96 6497.81 6598.40 10098.42 16597.27 8398.73 15098.55 15596.84 7198.38 9397.44 26195.39 5499.35 17497.62 8898.89 13198.58 207
CS-MVS98.44 4198.49 2198.31 10599.08 10796.73 10999.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 19898.71 2499.49 9699.09 157
D2MVS95.18 21195.08 19395.48 29897.10 28392.07 29698.30 21599.13 3094.02 20192.90 30796.73 31889.48 17998.73 25594.48 20993.60 27295.65 356
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1299.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3899.81 1299.84 12
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 4999.09 5998.82 8196.58 8399.10 4699.32 4995.39 5499.82 7697.70 8499.63 6999.72 45
DPM-MVS97.55 9096.99 10499.23 3899.04 10998.55 2797.17 32898.35 19794.85 17197.93 12198.58 15395.07 7299.71 11892.60 26499.34 11399.43 109
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 5998.82 8195.71 12398.73 7199.06 9695.27 6299.93 2597.07 11399.63 6999.72 45
test_yl97.22 10796.78 11498.54 8398.73 13896.60 11598.45 19698.31 20394.70 17398.02 11198.42 17090.80 15899.70 11996.81 13196.79 20599.34 116
thisisatest053096.01 15995.36 17697.97 13498.38 16895.52 17498.88 10894.19 38794.04 19997.64 14098.31 18583.82 31199.46 16595.29 18397.70 18498.93 175
Anonymous2024052995.10 21594.22 23497.75 15099.01 11394.26 23898.87 11398.83 8085.79 37696.64 17698.97 10578.73 34099.85 6396.27 14794.89 24499.12 154
Anonymous20240521195.28 20594.49 21997.67 15999.00 11493.75 25498.70 15997.04 33490.66 32996.49 18798.80 12878.13 34799.83 6996.21 15195.36 24399.44 107
DCV-MVSNet97.22 10796.78 11498.54 8398.73 13896.60 11598.45 19698.31 20394.70 17398.02 11198.42 17090.80 15899.70 11996.81 13196.79 20599.34 116
tttt051796.07 15795.51 17097.78 14698.41 16794.84 20999.28 2494.33 38594.26 19497.64 14098.64 14684.05 30499.47 16495.34 17997.60 18799.03 164
our_test_393.65 29693.30 29294.69 32595.45 35889.68 34096.91 34397.65 28391.97 29691.66 33596.88 31089.67 17797.93 33788.02 34691.49 30196.48 331
thisisatest051595.61 18794.89 20397.76 14998.15 19995.15 19496.77 35494.41 38392.95 26397.18 15297.43 26284.78 28699.45 16694.63 20197.73 18398.68 195
ppachtmachnet_test93.22 30592.63 30594.97 31595.45 35890.84 31996.88 34997.88 27390.60 33092.08 33097.26 27088.08 22097.86 34385.12 36490.33 31396.22 342
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 23099.37 3199.52 1196.52 2299.89 4798.06 5799.81 1299.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.20 139
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20398.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8799.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.63 2999.18 1099.27 35
thres100view90095.38 19794.70 21097.41 17598.98 11994.92 20698.87 11396.90 34495.38 13896.61 17996.88 31084.29 29699.56 14588.11 34396.29 22397.76 234
tfpnnormal93.66 29492.70 30496.55 24696.94 29195.94 15498.97 8499.19 2491.04 32591.38 33797.34 26584.94 28298.61 26485.45 36289.02 33695.11 364
tfpn200view995.32 20494.62 21397.43 17398.94 12294.98 20298.68 16296.93 34295.33 14196.55 18396.53 32784.23 30099.56 14588.11 34396.29 22397.76 234
c3_l94.79 23494.43 22695.89 28497.75 22893.12 28397.16 33098.03 26092.23 28993.46 29097.05 29391.39 14298.01 32993.58 23989.21 33296.53 320
CHOSEN 280x42097.18 11197.18 9697.20 18698.81 13493.27 27595.78 37399.15 2895.25 14796.79 17398.11 20292.29 11699.07 20998.56 2999.85 599.25 133
CANet98.05 6297.76 6798.90 6598.73 13897.27 8398.35 20698.78 10097.37 4197.72 13398.96 11091.53 14199.92 3198.79 2399.65 6499.51 89
Fast-Effi-MVS+-dtu95.87 16995.85 15295.91 28297.74 23191.74 30398.69 16198.15 23595.56 12994.92 22497.68 24388.98 19898.79 25193.19 24897.78 18097.20 254
Effi-MVS+-dtu96.29 14896.56 12495.51 29797.89 22190.22 33198.80 13598.10 24596.57 8596.45 19096.66 32190.81 15798.91 23495.72 16897.99 17197.40 247
CANet_DTU96.96 11996.55 12598.21 11498.17 19796.07 14497.98 25698.21 22097.24 5097.13 15398.93 11486.88 24699.91 3995.00 19199.37 11298.66 199
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6798.88 10895.32 37498.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5499.90 3
MP-MVS-pluss98.31 5697.92 6499.49 1299.72 1298.88 1898.43 20198.78 10094.10 19797.69 13599.42 2995.25 6499.92 3198.09 5699.80 1999.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4699.26 2798.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7699.59 7699.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs189.45 18199.20 139
sam_mvs88.99 195
IterMVS-SCA-FT94.11 28493.87 26294.85 32097.98 21390.56 32697.18 32698.11 24293.75 21792.58 31797.48 25783.97 30697.41 35792.48 27391.30 30396.58 311
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4599.14 4998.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4899.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
OPM-MVS95.69 18195.33 17996.76 22096.16 33494.63 21998.43 20198.39 19096.64 8195.02 22398.78 13085.15 27999.05 21095.21 18794.20 25096.60 309
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5699.92 3197.89 6899.75 4199.79 19
ambc89.49 36586.66 39875.78 39192.66 39296.72 35286.55 37392.50 38646.01 39697.90 33890.32 31282.09 37394.80 370
MTGPAbinary98.74 108
CS-MVS-test98.49 3598.50 2098.46 9299.20 9297.05 9599.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19598.83 2299.56 8699.20 139
Effi-MVS+97.12 11496.69 11998.39 10198.19 19296.72 11097.37 30998.43 18493.71 22397.65 13998.02 20892.20 12199.25 18296.87 12897.79 17999.19 143
xiu_mvs_v2_base97.66 8197.70 6997.56 16898.61 15395.46 17697.44 30298.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7398.66 14497.41 246
xiu_mvs_v1_base97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
new-patchmatchnet88.50 34687.45 35191.67 36190.31 39085.89 37797.16 33097.33 31689.47 35183.63 38392.77 38476.38 36195.06 38782.70 37577.29 39094.06 379
pmmvs691.77 32190.63 32695.17 30994.69 37191.24 31298.67 16597.92 27086.14 37289.62 35297.56 25475.79 36598.34 30290.75 30884.56 36895.94 350
pmmvs593.65 29692.97 29995.68 29195.49 35592.37 29098.20 22697.28 31989.66 34892.58 31797.26 27082.14 31798.09 32493.18 24990.95 30996.58 311
test_post196.68 35830.43 40787.85 22898.69 25792.59 266
test_post31.83 40688.83 20298.91 234
Fast-Effi-MVS+96.28 15095.70 16498.03 13198.29 18395.97 15198.58 17898.25 21791.74 30195.29 21897.23 27491.03 15599.15 19592.90 25897.96 17398.97 170
patchmatchnet-post95.10 36489.42 18298.89 238
Anonymous2023121194.10 28593.26 29496.61 23499.11 10494.28 23699.01 7698.88 6286.43 37092.81 30997.57 25281.66 32098.68 26094.83 19589.02 33696.88 275
pmmvs-eth3d90.36 33589.05 34094.32 33791.10 38892.12 29497.63 29496.95 34188.86 35984.91 38193.13 38278.32 34496.74 36788.70 33881.81 37694.09 377
GG-mvs-BLEND96.59 23796.34 32694.98 20296.51 36388.58 40493.10 30494.34 37480.34 33398.05 32789.53 32896.99 19896.74 291
xiu_mvs_v1_base_debi97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
Anonymous2023120691.66 32291.10 32293.33 34794.02 37787.35 37298.58 17897.26 32190.48 33290.16 34896.31 33283.83 31096.53 37379.36 38489.90 32096.12 345
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11199.39 3294.81 7799.96 497.91 6699.79 2599.77 27
MTMP98.89 10394.14 388
gm-plane-assit95.88 34487.47 37189.74 34796.94 30799.19 19093.32 245
test9_res96.39 14699.57 8099.69 56
MVP-Stereo94.28 27293.92 25695.35 30494.95 36592.60 28997.97 25797.65 28391.61 30690.68 34497.09 28486.32 25698.42 28789.70 32599.34 11395.02 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.31 6498.50 2997.92 26198.73 11192.63 27297.74 13098.68 14296.20 2899.80 88
train_agg97.97 6397.52 7999.33 2699.31 6498.50 2997.92 26198.73 11192.98 26197.74 13098.68 14296.20 2899.80 8896.59 13799.57 8099.68 61
gg-mvs-nofinetune92.21 31990.58 32797.13 19496.75 30495.09 19695.85 37189.40 40385.43 37894.50 23781.98 39680.80 32998.40 30192.16 27698.33 16297.88 231
SCA95.46 19095.13 18996.46 25697.67 23691.29 31197.33 31497.60 28794.68 17696.92 16597.10 28083.97 30698.89 23892.59 26698.32 16499.20 139
Patchmatch-test94.42 26293.68 27896.63 23197.60 24291.76 30194.83 38397.49 30389.45 35294.14 25997.10 28088.99 19598.83 24785.37 36398.13 16899.29 127
test_899.29 7398.44 3197.89 26998.72 11392.98 26197.70 13498.66 14596.20 2899.80 88
MS-PatchMatch93.84 29393.63 27994.46 33596.18 33189.45 34397.76 28198.27 21292.23 28992.13 32997.49 25679.50 33698.69 25789.75 32399.38 11195.25 360
Patchmatch-RL test91.49 32390.85 32493.41 34591.37 38684.40 37892.81 39195.93 36991.87 29987.25 36794.87 36688.99 19596.53 37392.54 27082.00 37499.30 125
cdsmvs_eth3d_5k23.98 37331.98 3750.00 3910.00 4140.00 4160.00 40298.59 1440.00 4090.00 41098.61 14890.60 1620.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.88 37710.50 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40994.51 810.00 4100.00 4090.00 4080.00 406
agg_prior295.87 16299.57 8099.68 61
agg_prior99.30 6898.38 3598.72 11397.57 14499.81 81
tmp_tt68.90 36766.97 36974.68 38450.78 41159.95 40887.13 39683.47 40738.80 40462.21 40096.23 33664.70 38976.91 40688.91 33730.49 40487.19 395
canonicalmvs97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13697.40 26492.26 11799.49 15898.28 5096.28 22699.08 161
anonymousdsp95.42 19494.91 20196.94 20895.10 36395.90 16099.14 4998.41 18693.75 21793.16 29997.46 25887.50 23698.41 29595.63 17394.03 25796.50 328
alignmvs97.56 8997.07 10199.01 5698.66 14898.37 3998.83 12498.06 25796.74 7798.00 11597.65 24490.80 15899.48 16298.37 4696.56 21299.19 143
nrg03096.28 15095.72 15997.96 13696.90 29598.15 5299.39 1298.31 20395.47 13394.42 24498.35 17892.09 12498.69 25797.50 9989.05 33497.04 257
v14419294.39 26493.70 27696.48 25296.06 33794.35 23498.58 17898.16 23491.45 30994.33 24997.02 29787.50 23698.45 28391.08 30189.11 33396.63 306
FIs96.51 13896.12 14197.67 15997.13 28197.54 7499.36 1599.22 2395.89 11394.03 26598.35 17891.98 12798.44 28596.40 14592.76 28897.01 259
v192192094.20 27593.47 28796.40 26195.98 34094.08 24498.52 18798.15 23591.33 31594.25 25397.20 27786.41 25498.42 28790.04 31989.39 33096.69 303
UA-Net97.96 6497.62 7198.98 5998.86 12997.47 7898.89 10399.08 3296.67 8098.72 7299.54 893.15 10499.81 8194.87 19398.83 13699.65 69
v119294.32 26793.58 28196.53 24796.10 33594.45 22898.50 19298.17 23291.54 30794.19 25797.06 29186.95 24598.43 28690.14 31489.57 32496.70 298
FC-MVSNet-test96.42 14196.05 14497.53 16996.95 29097.27 8399.36 1599.23 2095.83 11793.93 26998.37 17692.00 12698.32 30496.02 15792.72 28997.00 260
v114494.59 24793.92 25696.60 23696.21 32994.78 21598.59 17698.14 23791.86 30094.21 25697.02 29787.97 22398.41 29591.72 29089.57 32496.61 308
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4499.23 3198.96 4596.10 10498.94 5399.17 7496.06 3299.92 3197.62 8899.78 2999.75 35
v14894.29 27093.76 27295.91 28296.10 33592.93 28698.58 17897.97 26592.59 27593.47 28996.95 30688.53 21098.32 30492.56 26887.06 35796.49 329
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
AllTest95.24 20794.65 21296.99 20399.25 8193.21 27998.59 17698.18 22791.36 31293.52 28598.77 13284.67 29099.72 11389.70 32597.87 17698.02 229
TestCases96.99 20399.25 8193.21 27998.18 22791.36 31293.52 28598.77 13284.67 29099.72 11389.70 32597.87 17698.02 229
v7n94.19 27693.43 28996.47 25395.90 34394.38 23399.26 2798.34 19991.99 29592.76 31197.13 27988.31 21398.52 27589.48 33087.70 34896.52 323
region2R98.61 1898.38 2899.29 2999.74 798.16 5199.23 3198.93 5096.15 10198.94 5399.17 7495.91 3999.94 897.55 9599.79 2599.78 21
iter_conf0596.13 15695.79 15497.15 19298.16 19895.99 14598.88 10897.98 26395.91 11295.58 21198.46 16685.53 27098.59 26797.88 6993.75 26596.86 280
RRT_MVS95.98 16195.78 15596.56 24196.48 31994.22 24199.57 697.92 27095.89 11393.95 26898.70 14089.27 18698.42 28797.23 10893.02 28397.04 257
PS-MVSNAJss96.43 14096.26 13796.92 21295.84 34695.08 19799.16 4698.50 16995.87 11693.84 27598.34 18294.51 8198.61 26496.88 12593.45 27697.06 256
PS-MVSNAJ97.73 7597.77 6697.62 16498.68 14695.58 17097.34 31398.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7099.17 12097.39 248
jajsoiax95.45 19295.03 19596.73 22195.42 36094.63 21999.14 4998.52 16295.74 12093.22 29798.36 17783.87 30998.65 26296.95 11894.04 25696.91 271
mvs_tets95.41 19695.00 19696.65 22795.58 35294.42 23099.00 7898.55 15595.73 12293.21 29898.38 17583.45 31398.63 26397.09 11294.00 25896.91 271
EI-MVSNet-UG-set98.41 4598.34 3598.61 7799.45 5296.32 13498.28 21898.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 8999.73 42
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7299.46 4996.49 12398.30 21598.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6499.80 18
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10098.83 12595.70 4599.92 3197.53 9799.67 5999.66 68
test_prior498.01 5997.86 272
XVS98.70 1498.49 2199.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7199.74 4599.78 21
v124094.06 28993.29 29396.34 26496.03 33993.90 24898.44 19998.17 23291.18 32494.13 26097.01 29986.05 26098.42 28789.13 33589.50 32896.70 298
pm-mvs193.94 29293.06 29696.59 23796.49 31895.16 19298.95 9098.03 26092.32 28691.08 34097.84 22684.54 29498.41 29592.16 27686.13 36696.19 344
test_prior297.80 27896.12 10397.89 12498.69 14195.96 3796.89 12399.60 74
X-MVStestdata94.06 28992.30 31299.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8643.50 40395.90 4199.89 4797.85 7199.74 4599.78 21
test_prior99.19 4099.31 6498.22 4798.84 7999.70 11999.65 69
旧先验297.57 29791.30 31798.67 7399.80 8895.70 171
新几何297.64 291
新几何199.16 4599.34 5798.01 5998.69 12090.06 34198.13 10198.95 11294.60 7999.89 4791.97 28599.47 9999.59 79
旧先验199.29 7397.48 7698.70 11999.09 9295.56 4899.47 9999.61 75
无先验97.58 29698.72 11391.38 31199.87 5893.36 24499.60 77
原ACMM297.67 288
原ACMM198.65 7599.32 6296.62 11298.67 12893.27 24997.81 12598.97 10595.18 6799.83 6993.84 23099.46 10299.50 91
test22299.23 8897.17 9297.40 30598.66 13188.68 36098.05 10698.96 11094.14 9399.53 9199.61 75
testdata299.89 4791.65 292
segment_acmp96.85 14
testdata98.26 11099.20 9295.36 18198.68 12391.89 29898.60 8199.10 8694.44 8699.82 7694.27 21699.44 10399.58 83
testdata197.32 31596.34 95
v894.47 25993.77 27096.57 24096.36 32494.83 21199.05 6598.19 22491.92 29793.16 29996.97 30288.82 20398.48 27891.69 29187.79 34796.39 335
131496.25 15295.73 15897.79 14597.13 28195.55 17398.19 22998.59 14493.47 23992.03 33197.82 23091.33 14599.49 15894.62 20398.44 15598.32 220
LFMVS95.86 17094.98 19898.47 9198.87 12896.32 13498.84 12296.02 36493.40 24298.62 7999.20 6774.99 36899.63 13497.72 8097.20 19499.46 104
VDD-MVS95.82 17395.23 18597.61 16598.84 13293.98 24698.68 16297.40 31295.02 16097.95 11799.34 4874.37 37399.78 10198.64 2596.80 20499.08 161
VDDNet95.36 20094.53 21797.86 13998.10 20295.13 19598.85 11897.75 27990.46 33398.36 9499.39 3273.27 37699.64 13197.98 6096.58 21198.81 183
v1094.29 27093.55 28396.51 24996.39 32394.80 21398.99 8198.19 22491.35 31493.02 30596.99 30088.09 21998.41 29590.50 31188.41 34296.33 339
VPNet94.99 22294.19 23697.40 17797.16 27996.57 11898.71 15598.97 4295.67 12594.84 22698.24 19480.36 33198.67 26196.46 14287.32 35496.96 263
MVS94.67 24293.54 28498.08 12896.88 29696.56 11998.19 22998.50 16978.05 39092.69 31498.02 20891.07 15499.63 13490.09 31598.36 16198.04 228
v2v48294.69 23794.03 24796.65 22796.17 33294.79 21498.67 16598.08 25092.72 27094.00 26697.16 27887.69 23398.45 28392.91 25788.87 33896.72 294
V4294.78 23594.14 24196.70 22496.33 32795.22 19098.97 8498.09 24992.32 28694.31 25097.06 29188.39 21298.55 27192.90 25888.87 33896.34 337
SD-MVS98.64 1698.68 1198.53 8599.33 5998.36 4098.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 35098.17 5299.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS94.81 23394.03 24797.14 19397.15 28093.86 24996.76 35597.58 28894.00 20394.76 23197.04 29480.91 32698.48 27891.79 28896.25 22899.09 157
MSLP-MVS++98.56 2998.57 1598.55 8199.26 8096.80 10598.71 15599.05 3697.28 4598.84 6299.28 5496.47 2399.40 16998.52 3699.70 5499.47 100
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6199.15 4798.81 8696.24 9799.20 3899.37 3895.30 6099.80 8897.73 7999.67 5999.72 45
ADS-MVSNet294.58 24894.40 22895.11 31198.00 20988.74 35696.04 36797.30 31790.15 33996.47 18896.64 32487.89 22597.56 35390.08 31697.06 19699.02 165
EI-MVSNet95.96 16295.83 15396.36 26297.93 21893.70 25898.12 23998.27 21293.70 22595.07 22199.02 9892.23 11998.54 27394.68 19993.46 27496.84 282
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
CVMVSNet95.43 19396.04 14593.57 34397.93 21883.62 38198.12 23998.59 14495.68 12496.56 18199.02 9887.51 23497.51 35593.56 24097.44 19099.60 77
pmmvs494.69 23793.99 25396.81 21895.74 34795.94 15497.40 30597.67 28290.42 33593.37 29397.59 25089.08 19398.20 31592.97 25591.67 29996.30 340
EU-MVSNet93.66 29494.14 24192.25 35995.96 34283.38 38398.52 18798.12 23994.69 17592.61 31698.13 20187.36 23996.39 37591.82 28790.00 31996.98 261
VNet97.79 7397.40 8798.96 6198.88 12697.55 7398.63 17298.93 5096.74 7799.02 4898.84 12390.33 16799.83 6998.53 3096.66 20899.50 91
test-LLR95.10 21594.87 20495.80 28796.77 30189.70 33896.91 34395.21 37595.11 15494.83 22895.72 35487.71 23098.97 22193.06 25198.50 15298.72 190
TESTMET0.1,194.18 27993.69 27795.63 29396.92 29289.12 34896.91 34394.78 38093.17 25294.88 22596.45 33078.52 34298.92 23293.09 25098.50 15298.85 179
test-mter94.08 28793.51 28595.80 28796.77 30189.70 33896.91 34395.21 37592.89 26594.83 22895.72 35477.69 35098.97 22193.06 25198.50 15298.72 190
VPA-MVSNet95.75 17595.11 19297.69 15697.24 27097.27 8398.94 9399.23 2095.13 15295.51 21297.32 26785.73 26698.91 23497.33 10689.55 32696.89 274
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5299.23 3198.95 4696.10 10498.93 5799.19 7295.70 4599.94 897.62 8899.79 2599.78 21
testgi93.06 31092.45 31094.88 31996.43 32289.90 33498.75 14397.54 29795.60 12791.63 33697.91 21874.46 37297.02 36286.10 35693.67 26797.72 238
test20.0390.89 33190.38 32992.43 35593.48 37988.14 36798.33 20897.56 29193.40 24287.96 36496.71 32080.69 33094.13 39079.15 38586.17 36495.01 368
thres600view795.49 18894.77 20697.67 15998.98 11995.02 19898.85 11896.90 34495.38 13896.63 17796.90 30984.29 29699.59 14088.65 34096.33 21998.40 214
ADS-MVSNet95.00 22094.45 22496.63 23198.00 20991.91 29996.04 36797.74 28090.15 33996.47 18896.64 32487.89 22598.96 22590.08 31697.06 19699.02 165
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 4999.22 3598.79 9896.13 10297.92 12299.23 6294.54 8099.94 896.74 13699.78 2999.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs21.48 37424.95 37711.09 39014.89 4126.47 41596.56 3619.87 4137.55 40617.93 40639.02 4049.43 4135.90 40916.56 40812.72 40620.91 404
thres40095.38 19794.62 21397.65 16398.94 12294.98 20298.68 16296.93 34295.33 14196.55 18396.53 32784.23 30099.56 14588.11 34396.29 22398.40 214
test12320.95 37523.72 37812.64 38913.54 4138.19 41496.55 3626.13 4147.48 40716.74 40737.98 40512.97 4106.05 40816.69 4075.43 40723.68 403
thres20095.25 20694.57 21597.28 18398.81 13494.92 20698.20 22697.11 32795.24 14996.54 18596.22 33884.58 29399.53 15387.93 34796.50 21597.39 248
test0.0.03 194.08 28793.51 28595.80 28795.53 35492.89 28797.38 30795.97 36695.11 15492.51 32196.66 32187.71 23096.94 36487.03 35193.67 26797.57 244
pmmvs386.67 35384.86 35892.11 36088.16 39587.19 37496.63 35994.75 38179.88 38887.22 36892.75 38566.56 38895.20 38681.24 37976.56 39293.96 380
EMVS64.07 37063.26 37366.53 38781.73 40458.81 41091.85 39384.75 40651.93 40259.09 40275.13 40143.32 39979.09 40542.03 40539.47 40261.69 401
E-PMN64.94 36964.25 37167.02 38682.28 40359.36 40991.83 39485.63 40552.69 40060.22 40177.28 40041.06 40180.12 40446.15 40441.14 40161.57 402
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5698.99 8199.49 595.43 13599.03 4799.32 4995.56 4899.94 896.80 13399.77 3199.78 21
LCM-MVSNet-Re95.22 20895.32 18094.91 31698.18 19487.85 37098.75 14395.66 37195.11 15488.96 35796.85 31390.26 16997.65 34895.65 17298.44 15599.22 137
LCM-MVSNet78.70 36176.24 36686.08 37077.26 40771.99 39894.34 38896.72 35261.62 39876.53 39089.33 39133.91 40692.78 39581.85 37774.60 39493.46 383
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20498.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6499.61 7299.74 37
mvs_anonymous96.70 13096.53 12797.18 18998.19 19293.78 25198.31 21398.19 22494.01 20294.47 23898.27 19092.08 12598.46 28297.39 10397.91 17499.31 122
MVS_Test97.28 10597.00 10398.13 12298.33 17895.97 15198.74 14698.07 25294.27 19398.44 9198.07 20492.48 11199.26 18196.43 14498.19 16699.16 149
MDA-MVSNet-bldmvs89.97 33888.35 34494.83 32295.21 36291.34 30997.64 29197.51 30088.36 36271.17 39796.13 34179.22 33896.63 37283.65 37286.27 36396.52 323
CDPH-MVS97.94 6697.49 8099.28 3299.47 4798.44 3197.91 26398.67 12892.57 27698.77 6798.85 12295.93 3899.72 11395.56 17499.69 5699.68 61
test1299.18 4299.16 9898.19 4898.53 15998.07 10595.13 7099.72 11399.56 8699.63 73
casdiffmvspermissive97.63 8397.41 8698.28 10698.33 17896.14 14298.82 12698.32 20196.38 9497.95 11799.21 6591.23 14999.23 18598.12 5498.37 15999.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive97.58 8797.40 8798.13 12298.32 18195.81 16498.06 24798.37 19496.20 9998.74 6998.89 11891.31 14799.25 18298.16 5398.52 15099.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline295.11 21494.52 21896.87 21496.65 31093.56 26098.27 22094.10 38993.45 24092.02 33297.43 26287.45 23899.19 19093.88 22997.41 19297.87 232
baseline195.84 17195.12 19198.01 13298.49 16295.98 14698.73 15097.03 33595.37 14096.22 19598.19 19789.96 17299.16 19294.60 20487.48 35098.90 177
YYNet190.70 33389.39 33694.62 32994.79 36990.65 32497.20 32397.46 30487.54 36572.54 39595.74 35086.51 25096.66 37186.00 35786.76 36296.54 318
PMMVS277.95 36375.44 36785.46 37182.54 40274.95 39494.23 38993.08 39472.80 39374.68 39187.38 39236.36 40391.56 39673.95 39263.94 39989.87 391
MDA-MVSNet_test_wron90.71 33289.38 33794.68 32694.83 36790.78 32197.19 32597.46 30487.60 36472.41 39695.72 35486.51 25096.71 37085.92 35886.80 36196.56 315
tpmvs94.60 24594.36 22995.33 30597.46 25488.60 35896.88 34997.68 28191.29 31893.80 27796.42 33188.58 20599.24 18491.06 30296.04 23398.17 225
PM-MVS87.77 34886.55 35491.40 36291.03 38983.36 38496.92 34195.18 37791.28 31986.48 37493.42 37953.27 39596.74 36789.43 33181.97 37594.11 376
HQP_MVS96.14 15595.90 15196.85 21597.42 25994.60 22498.80 13598.56 15397.28 4595.34 21498.28 18787.09 24199.03 21496.07 15294.27 24796.92 266
plane_prior797.42 25994.63 219
plane_prior697.35 26694.61 22287.09 241
plane_prior598.56 15399.03 21496.07 15294.27 24796.92 266
plane_prior498.28 187
plane_prior394.61 22297.02 6495.34 214
plane_prior298.80 13597.28 45
plane_prior197.37 265
plane_prior94.60 22498.44 19996.74 7794.22 249
PS-CasMVS94.67 24293.99 25396.71 22296.68 30895.26 18799.13 5299.03 3793.68 22892.33 32597.95 21685.35 27498.10 32293.59 23888.16 34596.79 286
UniMVSNet_NR-MVSNet95.71 17895.15 18897.40 17796.84 29896.97 9798.74 14699.24 1795.16 15193.88 27297.72 23791.68 13398.31 30695.81 16387.25 35596.92 266
PEN-MVS94.42 26293.73 27496.49 25096.28 32894.84 20999.17 4599.00 3993.51 23692.23 32797.83 22986.10 25997.90 33892.55 26986.92 35996.74 291
TransMVSNet (Re)92.67 31491.51 32096.15 27196.58 31394.65 21798.90 9996.73 35190.86 32889.46 35597.86 22385.62 26898.09 32486.45 35481.12 37895.71 354
DTE-MVSNet93.98 29193.26 29496.14 27296.06 33794.39 23299.20 4098.86 7593.06 25891.78 33397.81 23185.87 26497.58 35290.53 31086.17 36496.46 333
DU-MVS95.42 19494.76 20797.40 17796.53 31596.97 9798.66 16798.99 4195.43 13593.88 27297.69 24088.57 20698.31 30695.81 16387.25 35596.92 266
UniMVSNet (Re)95.78 17495.19 18797.58 16696.99 28897.47 7898.79 14099.18 2595.60 12793.92 27097.04 29491.68 13398.48 27895.80 16587.66 34996.79 286
CP-MVSNet94.94 22994.30 23096.83 21696.72 30695.56 17199.11 5598.95 4693.89 20992.42 32497.90 21987.19 24098.12 32194.32 21488.21 34396.82 285
WR-MVS_H95.05 21894.46 22296.81 21896.86 29795.82 16399.24 3099.24 1793.87 21192.53 31996.84 31490.37 16598.24 31493.24 24687.93 34696.38 336
WR-MVS95.15 21294.46 22297.22 18596.67 30996.45 12498.21 22498.81 8694.15 19593.16 29997.69 24087.51 23498.30 30895.29 18388.62 34096.90 273
NR-MVSNet94.98 22494.16 23997.44 17296.53 31597.22 9098.74 14698.95 4694.96 16489.25 35697.69 24089.32 18498.18 31694.59 20687.40 35296.92 266
Baseline_NR-MVSNet94.35 26593.81 26695.96 28096.20 33094.05 24598.61 17596.67 35591.44 31093.85 27497.60 24988.57 20698.14 31994.39 21086.93 35895.68 355
TranMVSNet+NR-MVSNet95.14 21394.48 22097.11 19696.45 32196.36 13299.03 7199.03 3795.04 15993.58 28297.93 21788.27 21498.03 32894.13 22086.90 36096.95 265
TSAR-MVS + GP.98.38 4798.24 4698.81 6899.22 8997.25 8898.11 24198.29 21197.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 14999.51 89
n20.00 415
nn0.00 415
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5799.28 2498.81 8696.24 9798.35 9699.23 6295.46 5199.94 897.42 10299.81 1299.77 27
door-mid94.37 384
XVG-OURS-SEG-HR96.51 13896.34 13297.02 20298.77 13693.76 25297.79 28098.50 16995.45 13496.94 16299.09 9287.87 22799.55 15296.76 13595.83 23897.74 236
mvsmamba96.57 13696.32 13497.32 18296.60 31196.43 12699.54 797.98 26396.49 8695.20 21998.64 14690.82 15698.55 27197.97 6193.65 26996.98 261
MVSFormer97.57 8897.49 8097.84 14098.07 20395.76 16599.47 998.40 18894.98 16298.79 6598.83 12592.34 11498.41 29596.91 11999.59 7699.34 116
jason97.32 10497.08 10098.06 13097.45 25795.59 16997.87 27197.91 27294.79 17298.55 8398.83 12591.12 15199.23 18597.58 9199.60 7499.34 116
jason: jason.
lupinMVS97.44 9697.22 9598.12 12598.07 20395.76 16597.68 28797.76 27894.50 18698.79 6598.61 14892.34 11499.30 17897.58 9199.59 7699.31 122
test_djsdf96.00 16095.69 16596.93 20995.72 34895.49 17599.47 998.40 18894.98 16294.58 23497.86 22389.16 19098.41 29596.91 11994.12 25596.88 275
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6299.44 1198.82 8194.46 18898.94 5399.20 6795.16 6899.74 11197.58 9199.85 599.77 27
K. test v392.55 31591.91 31894.48 33395.64 35089.24 34699.07 6294.88 37994.04 19986.78 37097.59 25077.64 35397.64 34992.08 27889.43 32996.57 313
lessismore_v094.45 33694.93 36688.44 36291.03 40086.77 37197.64 24676.23 36398.42 28790.31 31385.64 36796.51 326
SixPastTwentyTwo93.34 30192.86 30094.75 32495.67 34989.41 34598.75 14396.67 35593.89 20990.15 34998.25 19380.87 32798.27 31390.90 30690.64 31196.57 313
OurMVSNet-221017-094.21 27494.00 25194.85 32095.60 35189.22 34798.89 10397.43 31095.29 14492.18 32898.52 16082.86 31498.59 26793.46 24191.76 29796.74 291
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6699.53 898.80 9394.63 17998.61 8098.97 10595.13 7099.77 10697.65 8699.83 1199.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS96.55 13796.41 13096.99 20398.75 13793.76 25297.50 30198.52 16295.67 12596.83 16899.30 5288.95 20099.53 15395.88 16196.26 22797.69 239
XVG-ACMP-BASELINE94.54 25094.14 24195.75 29096.55 31491.65 30598.11 24198.44 18094.96 16494.22 25597.90 21979.18 33999.11 20294.05 22593.85 26296.48 331
casdiffmvs_mvgpermissive97.72 7697.48 8298.44 9598.42 16596.59 11798.92 9798.44 18096.20 9997.76 12799.20 6791.66 13599.23 18598.27 5198.41 15899.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test95.62 18495.34 17796.47 25397.46 25493.54 26198.99 8198.54 15794.67 17794.36 24798.77 13285.39 27299.11 20295.71 16994.15 25396.76 289
LGP-MVS_train96.47 25397.46 25493.54 26198.54 15794.67 17794.36 24798.77 13285.39 27299.11 20295.71 16994.15 25396.76 289
baseline97.64 8297.44 8598.25 11198.35 17196.20 13899.00 7898.32 20196.33 9698.03 10999.17 7491.35 14499.16 19298.10 5598.29 16599.39 112
test1198.66 131
door94.64 382
EPNet_dtu95.21 20994.95 20095.99 27796.17 33290.45 32798.16 23597.27 32096.77 7593.14 30298.33 18390.34 16698.42 28785.57 36098.81 13899.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.12 11496.80 11198.08 12899.30 6894.56 22698.05 24899.71 193.57 23597.09 15498.91 11788.17 21699.89 4796.87 12899.56 8699.81 17
EPNet97.28 10596.87 10998.51 8694.98 36496.14 14298.90 9997.02 33798.28 1095.99 20299.11 8491.36 14399.89 4796.98 11599.19 11999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS94.25 239
HQP-NCC97.20 27498.05 24896.43 8994.45 239
ACMP_Plane97.20 27498.05 24896.43 8994.45 239
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13598.82 8194.52 18599.23 3799.25 6195.54 5099.80 8896.52 14199.77 3199.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS95.30 181
HQP4-MVS94.45 23998.96 22596.87 277
HQP3-MVS98.46 17694.18 251
HQP2-MVS86.75 247
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19598.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5799.66 6199.69 56
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19698.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10499.41 10699.71 49
114514_t96.93 12096.27 13698.92 6399.50 4197.63 7098.85 11898.90 5784.80 38097.77 12699.11 8492.84 10699.66 12894.85 19499.77 3199.47 100
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6299.34 1898.87 6995.96 10998.60 8199.13 8296.05 3399.94 897.77 7799.86 199.77 27
DSMNet-mixed92.52 31792.58 30792.33 35794.15 37382.65 38598.30 21594.26 38689.08 35792.65 31595.73 35285.01 28195.76 38186.24 35597.76 18198.59 205
tpm294.19 27693.76 27295.46 30097.23 27189.04 35097.31 31696.85 35087.08 36796.21 19696.79 31683.75 31298.74 25492.43 27496.23 22998.59 205
NP-MVS97.28 26894.51 22797.73 235
EG-PatchMatch MVS91.13 32890.12 33194.17 34094.73 37089.00 35198.13 23897.81 27689.22 35685.32 38096.46 32967.71 38598.42 28787.89 34893.82 26395.08 365
tpm cat193.36 29992.80 30195.07 31397.58 24387.97 36896.76 35597.86 27482.17 38693.53 28496.04 34386.13 25899.13 19889.24 33395.87 23798.10 227
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5898.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7799.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
CostFormer94.95 22794.73 20995.60 29597.28 26889.06 34997.53 29896.89 34689.66 34896.82 17096.72 31986.05 26098.95 23095.53 17696.13 23298.79 184
CR-MVSNet94.76 23694.15 24096.59 23797.00 28693.43 26694.96 37997.56 29192.46 27796.93 16396.24 33488.15 21797.88 34287.38 34996.65 20998.46 212
JIA-IIPM93.35 30092.49 30895.92 28196.48 31990.65 32495.01 37896.96 34085.93 37496.08 19987.33 39387.70 23298.78 25291.35 29595.58 24198.34 218
Patchmtry93.22 30592.35 31195.84 28696.77 30193.09 28494.66 38697.56 29187.37 36692.90 30796.24 33488.15 21797.90 33887.37 35090.10 31896.53 320
PatchT93.06 31091.97 31696.35 26396.69 30792.67 28894.48 38797.08 32986.62 36897.08 15592.23 38787.94 22497.90 33878.89 38696.69 20798.49 211
tpmrst95.63 18395.69 16595.44 30197.54 24888.54 35996.97 33897.56 29193.50 23797.52 14596.93 30889.49 17899.16 19295.25 18596.42 21798.64 201
BH-w/o95.38 19795.08 19396.26 26998.34 17691.79 30097.70 28697.43 31092.87 26694.24 25497.22 27588.66 20498.84 24491.55 29397.70 18498.16 226
tpm94.13 28193.80 26795.12 31096.50 31787.91 36997.44 30295.89 37092.62 27396.37 19396.30 33384.13 30398.30 30893.24 24691.66 30099.14 152
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 6897.75 28298.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3799.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned95.95 16395.72 15996.65 22798.55 15792.26 29298.23 22297.79 27793.73 22094.62 23398.01 21088.97 19999.00 22093.04 25398.51 15198.68 195
RPMNet92.81 31291.34 32197.24 18497.00 28693.43 26694.96 37998.80 9382.27 38596.93 16392.12 38886.98 24499.82 7676.32 39196.65 20998.46 212
MVSTER96.06 15895.72 15997.08 19898.23 18695.93 15798.73 15098.27 21294.86 16995.07 22198.09 20388.21 21598.54 27396.59 13793.46 27496.79 286
CPTT-MVS97.72 7697.32 9198.92 6399.64 2897.10 9499.12 5398.81 8692.34 28498.09 10499.08 9493.01 10599.92 3196.06 15599.77 3199.75 35
GBi-Net94.49 25693.80 26796.56 24198.21 18895.00 19998.82 12698.18 22792.46 27794.09 26197.07 28781.16 32397.95 33492.08 27892.14 29296.72 294
PVSNet_Blended_VisFu97.70 7897.46 8398.44 9599.27 7895.91 15998.63 17299.16 2794.48 18797.67 13698.88 11992.80 10799.91 3997.11 11199.12 12199.50 91
PVSNet_BlendedMVS96.73 12896.60 12397.12 19599.25 8195.35 18398.26 22199.26 1594.28 19297.94 11997.46 25892.74 10899.81 8196.88 12593.32 27996.20 343
UnsupCasMVSNet_eth90.99 33089.92 33394.19 33994.08 37489.83 33597.13 33298.67 12893.69 22685.83 37696.19 33975.15 36796.74 36789.14 33479.41 38596.00 348
UnsupCasMVSNet_bld87.17 35085.12 35793.31 34891.94 38488.77 35594.92 38198.30 20984.30 38282.30 38490.04 39063.96 39097.25 35985.85 35974.47 39593.93 381
PVSNet_Blended97.38 10197.12 9798.14 11999.25 8195.35 18397.28 31899.26 1593.13 25597.94 11998.21 19592.74 10899.81 8196.88 12599.40 10999.27 129
FMVSNet591.81 32090.92 32394.49 33297.21 27392.09 29598.00 25497.55 29689.31 35590.86 34295.61 35774.48 37195.32 38585.57 36089.70 32296.07 347
test194.49 25693.80 26796.56 24198.21 18895.00 19998.82 12698.18 22792.46 27794.09 26197.07 28781.16 32397.95 33492.08 27892.14 29296.72 294
new_pmnet90.06 33789.00 34193.22 35094.18 37288.32 36496.42 36596.89 34686.19 37185.67 37793.62 37777.18 35797.10 36181.61 37889.29 33194.23 373
FMVSNet394.97 22694.26 23297.11 19698.18 19496.62 11298.56 18498.26 21693.67 23094.09 26197.10 28084.25 29898.01 32992.08 27892.14 29296.70 298
dp94.15 28093.90 25994.90 31797.31 26786.82 37596.97 33897.19 32491.22 32296.02 20196.61 32685.51 27199.02 21790.00 32094.30 24698.85 179
FMVSNet294.47 25993.61 28097.04 20098.21 18896.43 12698.79 14098.27 21292.46 27793.50 28897.09 28481.16 32398.00 33191.09 30091.93 29596.70 298
FMVSNet193.19 30792.07 31496.56 24197.54 24895.00 19998.82 12698.18 22790.38 33692.27 32697.07 28773.68 37597.95 33489.36 33291.30 30396.72 294
N_pmnet87.12 35287.77 35085.17 37295.46 35761.92 40697.37 30970.66 41185.83 37588.73 36296.04 34385.33 27697.76 34680.02 38190.48 31295.84 351
cascas94.63 24493.86 26396.93 20996.91 29494.27 23796.00 37098.51 16485.55 37794.54 23596.23 33684.20 30298.87 24195.80 16596.98 20197.66 240
BH-RMVSNet95.92 16795.32 18097.69 15698.32 18194.64 21898.19 22997.45 30894.56 18196.03 20098.61 14885.02 28099.12 20090.68 30999.06 12299.30 125
UGNet96.78 12796.30 13598.19 11898.24 18495.89 16198.88 10898.93 5097.39 3896.81 17197.84 22682.60 31699.90 4596.53 14099.49 9698.79 184
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS97.37 10396.92 10798.72 7198.86 12996.89 10398.31 21398.71 11695.26 14697.67 13698.56 15692.21 12099.78 10195.89 16096.85 20399.48 98
XXY-MVS95.20 21094.45 22497.46 17096.75 30496.56 11998.86 11698.65 13593.30 24793.27 29698.27 19084.85 28498.87 24194.82 19691.26 30596.96 263
EC-MVSNet98.21 5898.11 5698.49 8998.34 17697.26 8799.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 21998.91 2099.50 9499.19 143
sss97.39 10096.98 10598.61 7798.60 15496.61 11498.22 22398.93 5093.97 20598.01 11498.48 16291.98 12799.85 6396.45 14398.15 16799.39 112
Test_1112_low_res96.34 14795.66 16798.36 10298.56 15595.94 15497.71 28598.07 25292.10 29394.79 23097.29 26991.75 13299.56 14594.17 21996.50 21599.58 83
1112_ss96.63 13196.00 14798.50 8798.56 15596.37 13198.18 23498.10 24592.92 26494.84 22698.43 16892.14 12299.58 14194.35 21296.51 21499.56 85
ab-mvs-re8.20 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.43 1680.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs96.42 14195.71 16298.55 8198.63 15196.75 10897.88 27098.74 10893.84 21296.54 18598.18 19885.34 27599.75 10995.93 15996.35 21899.15 150
TR-MVS94.94 22994.20 23597.17 19097.75 22894.14 24397.59 29597.02 33792.28 28895.75 20897.64 24683.88 30898.96 22589.77 32296.15 23198.40 214
MDTV_nov1_ep13_2view84.26 37996.89 34890.97 32697.90 12389.89 17393.91 22899.18 148
MDTV_nov1_ep1395.40 17197.48 25288.34 36396.85 35197.29 31893.74 21997.48 14697.26 27089.18 18999.05 21091.92 28697.43 191
MIMVSNet189.67 34088.28 34593.82 34192.81 38391.08 31498.01 25297.45 30887.95 36387.90 36595.87 34867.63 38694.56 38978.73 38788.18 34495.83 352
MIMVSNet93.26 30492.21 31396.41 25997.73 23293.13 28195.65 37497.03 33591.27 32094.04 26496.06 34275.33 36697.19 36086.56 35396.23 22998.92 176
IterMVS-LS95.46 19095.21 18696.22 27098.12 20093.72 25798.32 21298.13 23893.71 22394.26 25297.31 26892.24 11898.10 32294.63 20190.12 31796.84 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet96.99 11896.69 11997.90 13898.05 20795.98 14698.20 22698.33 20093.67 23096.95 16198.49 16193.54 9998.42 28795.24 18697.74 18299.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref92.97 284
IterMVS94.09 28693.85 26494.80 32397.99 21190.35 32997.18 32698.12 23993.68 22892.46 32397.34 26584.05 30497.41 35792.51 27191.33 30296.62 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.86 6997.46 8399.06 5499.53 3698.35 4198.33 20898.89 5992.62 27398.05 10698.94 11395.34 5899.65 12996.04 15699.42 10599.19 143
MVS_111021_LR98.34 5398.23 4898.67 7499.27 7896.90 10197.95 25899.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6699.75 4199.50 91
DP-MVS96.59 13395.93 15098.57 7999.34 5796.19 14098.70 15998.39 19089.45 35294.52 23699.35 4491.85 13099.85 6392.89 26098.88 13299.68 61
ACMMP++93.61 271
HQP-MVS95.72 17795.40 17196.69 22597.20 27494.25 23998.05 24898.46 17696.43 8994.45 23997.73 23586.75 24798.96 22595.30 18194.18 25196.86 280
QAPM96.29 14895.40 17198.96 6197.85 22297.60 7299.23 3198.93 5089.76 34693.11 30399.02 9889.11 19299.93 2591.99 28399.62 7199.34 116
Vis-MVSNetpermissive97.42 9897.11 9898.34 10398.66 14896.23 13799.22 3599.00 3996.63 8298.04 10899.21 6588.05 22299.35 17496.01 15899.21 11799.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet89.46 34388.40 34392.64 35497.58 24382.15 38694.16 39093.05 39575.73 39290.90 34182.52 39579.42 33798.33 30383.53 37398.68 14097.43 245
IS-MVSNet97.22 10796.88 10898.25 11198.85 13196.36 13299.19 4297.97 26595.39 13797.23 15098.99 10491.11 15298.93 23194.60 20498.59 14799.47 100
HyFIR lowres test96.90 12296.49 12898.14 11999.33 5995.56 17197.38 30799.65 292.34 28497.61 14298.20 19689.29 18599.10 20696.97 11697.60 18799.77 27
EPMVS94.99 22294.48 22096.52 24897.22 27291.75 30297.23 32091.66 39894.11 19697.28 14896.81 31585.70 26798.84 24493.04 25397.28 19398.97 170
PAPM_NR97.46 9297.11 9898.50 8799.50 4196.41 12998.63 17298.60 14195.18 15097.06 15898.06 20594.26 9199.57 14293.80 23298.87 13499.52 86
TAMVS97.02 11796.79 11397.70 15598.06 20695.31 18698.52 18798.31 20393.95 20697.05 15998.61 14893.49 10098.52 27595.33 18097.81 17899.29 127
PAPR96.84 12596.24 13898.65 7598.72 14296.92 10097.36 31198.57 15193.33 24496.67 17597.57 25294.30 8999.56 14591.05 30498.59 14799.47 100
RPSCF94.87 23195.40 17193.26 34998.89 12582.06 38798.33 20898.06 25790.30 33896.56 18199.26 5787.09 24199.49 15893.82 23196.32 22098.24 221
Vis-MVSNet (Re-imp)96.87 12396.55 12597.83 14198.73 13895.46 17699.20 4098.30 20994.96 16496.60 18098.87 12090.05 17098.59 26793.67 23698.60 14699.46 104
test_040291.32 32490.27 33094.48 33396.60 31191.12 31398.50 19297.22 32386.10 37388.30 36396.98 30177.65 35297.99 33278.13 38892.94 28594.34 371
MVS_111021_HR98.47 3898.34 3598.88 6699.22 8997.32 8197.91 26399.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 5999.76 3799.69 56
CSCG97.85 7197.74 6898.20 11699.67 2595.16 19299.22 3599.32 1193.04 25997.02 16098.92 11695.36 5799.91 3997.43 10199.64 6899.52 86
PatchMatch-RL96.59 13396.03 14698.27 10799.31 6496.51 12297.91 26399.06 3493.72 22296.92 16598.06 20588.50 21199.65 12991.77 28999.00 12798.66 199
API-MVS97.41 9997.25 9397.91 13798.70 14396.80 10598.82 12698.69 12094.53 18398.11 10298.28 18794.50 8499.57 14294.12 22199.49 9697.37 250
Test By Simon94.64 78
TDRefinement91.06 32989.68 33495.21 30785.35 40191.49 30898.51 19197.07 33191.47 30888.83 36197.84 22677.31 35499.09 20792.79 26177.98 38995.04 366
USDC93.33 30292.71 30395.21 30796.83 29990.83 32096.91 34397.50 30193.84 21290.72 34398.14 20077.69 35098.82 24889.51 32993.21 28295.97 349
EPP-MVSNet97.46 9297.28 9297.99 13398.64 15095.38 18099.33 2198.31 20393.61 23497.19 15199.07 9594.05 9499.23 18596.89 12398.43 15799.37 114
PMMVS96.60 13296.33 13397.41 17597.90 22093.93 24797.35 31298.41 18692.84 26797.76 12797.45 26091.10 15399.20 18996.26 14897.91 17499.11 155
PAPM94.95 22794.00 25197.78 14697.04 28595.65 16896.03 36998.25 21791.23 32194.19 25797.80 23291.27 14898.86 24382.61 37697.61 18698.84 181
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7199.03 7199.41 695.98 10797.60 14399.36 4294.45 8599.93 2597.14 11098.85 13599.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.45 9597.03 10298.73 7099.05 10897.44 8098.07 24698.53 15995.32 14396.80 17298.53 15793.32 10199.72 11394.31 21599.31 11599.02 165
PatchmatchNetpermissive95.71 17895.52 16996.29 26897.58 24390.72 32296.84 35297.52 29994.06 19897.08 15596.96 30489.24 18898.90 23792.03 28298.37 15999.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5599.04 6899.09 3193.32 24598.83 6499.10 8696.54 2199.83 6997.70 8499.76 3799.59 79
F-COLMAP97.09 11696.80 11197.97 13499.45 5294.95 20598.55 18598.62 14093.02 26096.17 19798.58 15394.01 9599.81 8193.95 22698.90 13099.14 152
ANet_high69.08 36665.37 37080.22 38165.99 40971.96 39990.91 39590.09 40282.62 38449.93 40478.39 39929.36 40781.75 40262.49 39938.52 40386.95 396
wuyk23d30.17 37230.18 37630.16 38878.61 40643.29 41366.79 40114.21 41217.31 40514.82 40811.93 40811.55 41141.43 40737.08 40619.30 4055.76 405
OMC-MVS97.55 9097.34 9098.20 11699.33 5995.92 15898.28 21898.59 14495.52 13197.97 11699.10 8693.28 10399.49 15895.09 18898.88 13299.19 143
MG-MVS97.81 7297.60 7298.44 9599.12 10295.97 15197.75 28298.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19799.52 9299.67 65
AdaColmapbinary97.15 11396.70 11898.48 9099.16 9896.69 11198.01 25298.89 5994.44 18996.83 16898.68 14290.69 16199.76 10794.36 21199.29 11698.98 169
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ITE_SJBPF95.44 30197.42 25991.32 31097.50 30195.09 15793.59 28198.35 17881.70 31998.88 24089.71 32493.39 27896.12 345
DeepMVS_CXcopyleft86.78 36997.09 28472.30 39795.17 37875.92 39184.34 38295.19 36270.58 37995.35 38379.98 38389.04 33592.68 387
TinyColmap92.31 31891.53 31994.65 32896.92 29289.75 33696.92 34196.68 35490.45 33489.62 35297.85 22576.06 36498.81 24986.74 35292.51 29095.41 358
MAR-MVS96.91 12196.40 13198.45 9398.69 14596.90 10198.66 16798.68 12392.40 28397.07 15797.96 21591.54 14099.75 10993.68 23498.92 12998.69 194
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS93.14 30992.79 30294.20 33895.88 34488.67 35797.66 28997.07 33193.81 21591.71 33497.65 24477.96 34998.81 24991.47 29491.92 29695.12 363
MSDG95.93 16695.30 18397.83 14198.90 12495.36 18196.83 35398.37 19491.32 31694.43 24398.73 13890.27 16899.60 13990.05 31898.82 13798.52 209
LS3D97.16 11296.66 12298.68 7398.53 15997.19 9198.93 9598.90 5792.83 26895.99 20299.37 3892.12 12399.87 5893.67 23699.57 8098.97 170
CLD-MVS95.62 18495.34 17796.46 25697.52 25193.75 25497.27 31998.46 17695.53 13094.42 24498.00 21186.21 25798.97 22196.25 15094.37 24596.66 304
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS77.62 36477.14 36479.05 38279.25 40560.97 40795.79 37295.94 36865.96 39667.93 39894.40 37137.73 40288.88 40168.83 39788.46 34187.29 394
Gipumacopyleft78.40 36276.75 36583.38 37695.54 35380.43 38979.42 40097.40 31264.67 39773.46 39480.82 39845.65 39793.14 39466.32 39887.43 35176.56 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015