SMA-MVS |  | | 97.53 7 | 97.93 7 | 97.07 12 | 99.21 1 | 99.02 8 | 98.08 20 | 96.25 12 | 96.36 12 | 93.57 17 | 96.56 15 | 99.27 5 | 96.78 17 | 97.91 4 | 97.43 3 | 98.51 27 | 98.94 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APDe-MVS | | | 97.79 5 | 97.96 6 | 97.60 2 | 99.20 2 | 99.10 6 | 98.88 2 | 96.68 2 | 96.81 7 | 94.64 7 | 97.84 3 | 98.02 11 | 97.24 3 | 97.74 8 | 97.02 14 | 98.97 5 | 99.16 6 |
|
zzz-MVS | | | 96.98 16 | 96.68 24 | 97.33 6 | 99.09 3 | 98.71 13 | 98.43 9 | 96.01 17 | 96.11 19 | 95.19 4 | 92.89 34 | 97.32 23 | 96.84 13 | 97.20 19 | 96.09 47 | 98.44 38 | 98.46 34 |
|
DVP-MVS++ | | | 98.07 1 | 98.46 1 | 97.62 1 | 99.08 4 | 99.29 2 | 98.84 3 | 96.63 4 | 97.89 1 | 95.35 3 | 97.83 4 | 99.48 3 | 96.98 9 | 97.99 2 | 97.14 11 | 98.82 11 | 99.60 1 |
|
HPM-MVS++ |  | | 97.22 11 | 97.40 12 | 97.01 13 | 99.08 4 | 98.55 25 | 98.19 15 | 96.48 7 | 96.02 21 | 93.28 22 | 96.26 18 | 98.71 8 | 96.76 18 | 97.30 16 | 96.25 37 | 98.30 55 | 98.68 15 |
|
ACMMP_NAP | | | 96.93 17 | 97.27 15 | 96.53 25 | 99.06 6 | 98.95 9 | 98.24 14 | 96.06 16 | 95.66 23 | 90.96 35 | 95.63 25 | 97.71 16 | 96.53 21 | 97.66 10 | 96.68 20 | 98.30 55 | 98.61 20 |
|
DVP-MVS |  | | 97.93 3 | 98.23 3 | 97.58 3 | 99.05 7 | 99.31 1 | 98.64 6 | 96.62 5 | 97.56 2 | 95.08 6 | 96.61 14 | 99.64 1 | 97.32 1 | 97.91 4 | 97.31 6 | 98.77 16 | 99.26 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 96.16 25 | 96.33 29 | 95.95 28 | 99.04 8 | 98.63 20 | 98.32 13 | 92.76 44 | 93.42 50 | 90.49 40 | 96.30 17 | 95.31 42 | 96.71 19 | 96.46 42 | 96.02 48 | 98.38 46 | 98.19 44 |
|
APD-MVS |  | | 97.12 13 | 97.05 18 | 97.19 8 | 99.04 8 | 98.63 20 | 98.45 8 | 96.54 6 | 94.81 38 | 93.50 18 | 96.10 20 | 97.40 22 | 96.81 14 | 97.05 23 | 96.82 19 | 98.80 12 | 98.56 22 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
NCCC | | | 96.75 20 | 96.67 25 | 96.85 18 | 99.03 10 | 98.44 36 | 98.15 17 | 96.28 11 | 96.32 13 | 92.39 27 | 92.16 36 | 97.55 20 | 96.68 20 | 97.32 14 | 96.65 22 | 98.55 26 | 98.26 40 |
|
CNVR-MVS | | | 97.30 10 | 97.41 11 | 97.18 9 | 99.02 11 | 98.60 22 | 98.15 17 | 96.24 14 | 96.12 18 | 94.10 13 | 95.54 26 | 97.99 12 | 96.99 7 | 97.97 3 | 97.17 9 | 98.57 25 | 98.50 30 |
|
MSP-MVS | | | 97.70 6 | 98.09 5 | 97.24 7 | 99.00 12 | 99.17 5 | 98.76 5 | 96.41 10 | 96.91 5 | 93.88 16 | 97.72 5 | 99.04 7 | 96.93 11 | 97.29 17 | 97.31 6 | 98.45 37 | 99.23 4 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
ACMMPR | | | 96.92 18 | 96.96 19 | 96.87 17 | 98.99 13 | 98.78 11 | 98.38 11 | 95.52 26 | 96.57 10 | 92.81 26 | 96.06 21 | 95.90 37 | 97.07 5 | 96.60 39 | 96.34 34 | 98.46 34 | 98.42 35 |
|
HFP-MVS | | | 97.11 14 | 97.19 16 | 97.00 14 | 98.97 14 | 98.73 12 | 98.37 12 | 95.69 23 | 96.60 9 | 93.28 22 | 96.87 9 | 96.64 29 | 97.27 2 | 96.64 37 | 96.33 35 | 98.44 38 | 98.56 22 |
|
SteuartSystems-ACMMP | | | 97.10 15 | 97.49 10 | 96.65 20 | 98.97 14 | 98.95 9 | 98.43 9 | 95.96 19 | 95.12 30 | 91.46 30 | 96.85 10 | 97.60 18 | 96.37 25 | 97.76 6 | 97.16 10 | 98.68 19 | 98.97 11 |
Skip Steuart: Steuart Systems R&D Blog. |
xxxxxxxxxxxxxcwj | | | 95.62 32 | 94.35 49 | 97.10 10 | 98.95 16 | 98.51 30 | 97.51 30 | 96.48 7 | 96.17 16 | 94.64 7 | 97.32 6 | 76.98 140 | 96.23 27 | 96.78 30 | 96.15 41 | 98.79 14 | 98.55 27 |
|
SF-MVS | | | 97.20 12 | 97.29 14 | 97.10 10 | 98.95 16 | 98.51 30 | 97.51 30 | 96.48 7 | 96.17 16 | 94.64 7 | 97.32 6 | 97.57 19 | 96.23 27 | 96.78 30 | 96.15 41 | 98.79 14 | 98.55 27 |
|
SED-MVS | | | 97.98 2 | 98.36 2 | 97.54 4 | 98.94 18 | 99.29 2 | 98.81 4 | 96.64 3 | 97.14 3 | 95.16 5 | 97.96 2 | 99.61 2 | 96.92 12 | 98.00 1 | 97.24 8 | 98.75 18 | 99.25 3 |
|
X-MVS | | | 96.07 27 | 96.33 29 | 95.77 31 | 98.94 18 | 98.66 15 | 97.94 24 | 95.41 32 | 95.12 30 | 88.03 56 | 93.00 33 | 96.06 33 | 95.85 31 | 96.65 36 | 96.35 31 | 98.47 32 | 98.48 31 |
|
SR-MVS | | | | | | 98.93 20 | | | 96.00 18 | | | | 97.75 15 | | | | | |
|
MP-MVS |  | | 96.56 22 | 96.72 23 | 96.37 26 | 98.93 20 | 98.48 32 | 98.04 21 | 95.55 25 | 94.32 42 | 90.95 37 | 95.88 23 | 97.02 26 | 96.29 26 | 96.77 32 | 96.01 49 | 98.47 32 | 98.56 22 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MCST-MVS | | | 96.83 19 | 97.06 17 | 96.57 21 | 98.88 22 | 98.47 34 | 98.02 22 | 96.16 15 | 95.58 25 | 90.96 35 | 95.78 24 | 97.84 14 | 96.46 23 | 97.00 26 | 96.17 39 | 98.94 7 | 98.55 27 |
|
CP-MVS | | | 96.68 21 | 96.59 27 | 96.77 19 | 98.85 23 | 98.58 23 | 98.18 16 | 95.51 28 | 95.34 27 | 92.94 25 | 95.21 29 | 96.25 32 | 96.79 16 | 96.44 44 | 95.77 51 | 98.35 47 | 98.56 22 |
|
DPE-MVS |  | | 97.83 4 | 98.13 4 | 97.48 5 | 98.83 24 | 99.19 4 | 98.99 1 | 96.70 1 | 96.05 20 | 94.39 11 | 98.30 1 | 99.47 4 | 97.02 6 | 97.75 7 | 97.02 14 | 98.98 3 | 99.10 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
mPP-MVS | | | | | | 98.76 25 | | | | | | | 95.49 40 | | | | | |
|
CSCG | | | 95.68 31 | 95.46 36 | 95.93 29 | 98.71 26 | 99.07 7 | 97.13 37 | 93.55 39 | 95.48 26 | 93.35 21 | 90.61 47 | 93.82 47 | 95.16 39 | 94.60 83 | 95.57 54 | 97.70 106 | 99.08 10 |
|
DeepC-MVS_fast | | 93.32 1 | 96.48 23 | 96.42 28 | 96.56 22 | 98.70 27 | 98.31 40 | 97.97 23 | 95.76 22 | 96.31 14 | 92.01 29 | 91.43 41 | 95.42 41 | 96.46 23 | 97.65 11 | 97.69 1 | 98.49 31 | 98.12 49 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap |  | | 95.02 39 | 93.71 52 | 96.54 24 | 98.51 28 | 97.76 59 | 96.69 41 | 95.94 21 | 93.72 48 | 93.50 18 | 89.01 55 | 90.53 67 | 96.49 22 | 94.51 86 | 93.76 84 | 98.07 79 | 96.69 99 |
|
train_agg | | | 96.15 26 | 96.64 26 | 95.58 35 | 98.44 29 | 98.03 50 | 98.14 19 | 95.40 33 | 93.90 47 | 87.72 61 | 96.26 18 | 98.10 10 | 95.75 33 | 96.25 49 | 95.45 56 | 98.01 85 | 98.47 32 |
|
CDPH-MVS | | | 94.80 43 | 95.50 34 | 93.98 49 | 98.34 30 | 98.06 49 | 97.41 32 | 93.23 41 | 92.81 55 | 82.98 100 | 92.51 35 | 94.82 43 | 93.53 61 | 96.08 52 | 96.30 36 | 98.42 41 | 97.94 56 |
|
MSLP-MVS++ | | | 96.05 28 | 95.63 32 | 96.55 23 | 98.33 31 | 98.17 46 | 96.94 38 | 94.61 36 | 94.70 40 | 94.37 12 | 89.20 54 | 95.96 36 | 96.81 14 | 95.57 60 | 97.33 5 | 98.24 63 | 98.47 32 |
|
ACMMP |  | | 95.54 33 | 95.49 35 | 95.61 34 | 98.27 32 | 98.53 27 | 97.16 36 | 94.86 34 | 94.88 36 | 89.34 45 | 95.36 28 | 91.74 56 | 95.50 37 | 95.51 61 | 94.16 75 | 98.50 29 | 98.22 42 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
3Dnovator+ | | 90.56 5 | 95.06 38 | 94.56 46 | 95.65 33 | 98.11 33 | 98.15 47 | 97.19 35 | 91.59 54 | 95.11 32 | 93.23 24 | 81.99 103 | 94.71 44 | 95.43 38 | 96.48 41 | 96.88 18 | 98.35 47 | 98.63 17 |
|
3Dnovator | | 90.28 7 | 94.70 44 | 94.34 50 | 95.11 37 | 98.06 34 | 98.21 44 | 96.89 39 | 91.03 60 | 94.72 39 | 91.45 31 | 82.87 94 | 93.10 51 | 94.61 43 | 96.24 50 | 97.08 13 | 98.63 22 | 98.16 45 |
|
PLC |  | 90.69 4 | 94.32 48 | 92.99 59 | 95.87 30 | 97.91 35 | 96.49 93 | 95.95 52 | 94.12 37 | 94.94 34 | 94.09 14 | 85.90 72 | 90.77 64 | 95.58 35 | 94.52 85 | 93.32 98 | 97.55 115 | 95.00 147 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EPNet | | | 93.92 52 | 94.40 47 | 93.36 57 | 97.89 36 | 96.55 91 | 96.08 48 | 92.14 47 | 91.65 67 | 89.16 47 | 94.07 31 | 90.17 71 | 87.78 126 | 95.24 65 | 94.97 64 | 97.09 134 | 98.15 46 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CPTT-MVS | | | 95.54 33 | 95.07 38 | 96.10 27 | 97.88 37 | 97.98 53 | 97.92 25 | 94.86 34 | 94.56 41 | 92.16 28 | 91.01 43 | 95.71 38 | 96.97 10 | 94.56 84 | 93.50 91 | 96.81 155 | 98.14 47 |
|
QAPM | | | 94.13 51 | 94.33 51 | 93.90 50 | 97.82 38 | 98.37 39 | 96.47 43 | 90.89 61 | 92.73 58 | 85.63 83 | 85.35 76 | 93.87 46 | 94.17 51 | 95.71 59 | 95.90 50 | 98.40 43 | 98.42 35 |
|
DeepC-MVS | | 92.10 3 | 95.22 36 | 94.77 42 | 95.75 32 | 97.77 39 | 98.54 26 | 97.63 29 | 95.96 19 | 95.07 33 | 88.85 50 | 85.35 76 | 91.85 55 | 95.82 32 | 96.88 29 | 97.10 12 | 98.44 38 | 98.63 17 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OpenMVS |  | 88.18 11 | 92.51 63 | 91.61 80 | 93.55 56 | 97.74 40 | 98.02 51 | 95.66 55 | 90.46 64 | 89.14 103 | 86.50 72 | 75.80 136 | 90.38 70 | 92.69 70 | 94.99 68 | 95.30 58 | 98.27 59 | 97.63 67 |
|
TSAR-MVS + ACMM | | | 96.19 24 | 97.39 13 | 94.78 39 | 97.70 41 | 98.41 37 | 97.72 28 | 95.49 29 | 96.47 11 | 86.66 71 | 96.35 16 | 97.85 13 | 93.99 53 | 97.19 21 | 96.37 30 | 97.12 132 | 99.13 7 |
|
MAR-MVS | | | 92.71 62 | 92.63 63 | 92.79 69 | 97.70 41 | 97.15 77 | 93.75 90 | 87.98 98 | 90.71 73 | 85.76 81 | 86.28 69 | 86.38 80 | 94.35 48 | 94.95 69 | 95.49 55 | 97.22 125 | 97.44 76 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PHI-MVS | | | 95.86 29 | 96.93 22 | 94.61 43 | 97.60 43 | 98.65 19 | 96.49 42 | 93.13 42 | 94.07 45 | 87.91 60 | 97.12 8 | 97.17 25 | 93.90 56 | 96.46 42 | 96.93 17 | 98.64 21 | 98.10 51 |
|
abl_6 | | | | | 94.78 39 | 97.46 44 | 97.99 52 | 95.76 53 | 91.80 51 | 93.72 48 | 91.25 32 | 91.33 42 | 96.47 30 | 94.28 50 | | | 98.14 72 | 97.39 78 |
|
DPM-MVS | | | 95.07 37 | 94.84 41 | 95.34 36 | 97.44 45 | 97.49 68 | 97.76 27 | 95.52 26 | 94.88 36 | 88.92 49 | 87.25 61 | 96.44 31 | 94.41 45 | 95.78 57 | 96.11 44 | 97.99 87 | 95.95 126 |
|
SD-MVS | | | 97.35 8 | 97.73 8 | 96.90 16 | 97.35 46 | 98.66 15 | 97.85 26 | 96.25 12 | 96.86 6 | 94.54 10 | 96.75 12 | 99.13 6 | 96.99 7 | 96.94 27 | 96.58 23 | 98.39 45 | 99.20 5 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MVS_111021_HR | | | 94.84 41 | 95.91 31 | 93.60 55 | 97.35 46 | 98.46 35 | 95.08 61 | 91.19 57 | 94.18 44 | 85.97 75 | 95.38 27 | 92.56 53 | 93.61 60 | 96.61 38 | 96.25 37 | 98.40 43 | 97.92 58 |
|
TSAR-MVS + MP. | | | 97.31 9 | 97.64 9 | 96.92 15 | 97.28 48 | 98.56 24 | 98.61 7 | 95.48 30 | 96.72 8 | 94.03 15 | 96.73 13 | 98.29 9 | 97.15 4 | 97.61 12 | 96.42 26 | 98.96 6 | 99.13 7 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CANet | | | 94.85 40 | 94.92 40 | 94.78 39 | 97.25 49 | 98.52 29 | 97.20 34 | 91.81 50 | 93.25 52 | 91.06 34 | 86.29 68 | 94.46 45 | 92.99 67 | 97.02 25 | 96.68 20 | 98.34 49 | 98.20 43 |
|
OMC-MVS | | | 94.49 47 | 94.36 48 | 94.64 42 | 97.17 50 | 97.73 61 | 95.49 57 | 92.25 46 | 96.18 15 | 90.34 41 | 88.51 57 | 92.88 52 | 94.90 42 | 94.92 71 | 94.17 74 | 97.69 108 | 96.15 119 |
|
MVS_111021_LR | | | 94.84 41 | 95.57 33 | 94.00 47 | 97.11 51 | 97.72 63 | 94.88 65 | 91.16 58 | 95.24 29 | 88.74 51 | 96.03 22 | 91.52 60 | 94.33 49 | 95.96 54 | 95.01 63 | 97.79 97 | 97.49 75 |
|
CNLPA | | | 93.69 55 | 92.50 65 | 95.06 38 | 97.11 51 | 97.36 70 | 93.88 87 | 93.30 40 | 95.64 24 | 93.44 20 | 80.32 111 | 90.73 65 | 94.99 41 | 93.58 102 | 93.33 96 | 97.67 110 | 96.57 104 |
|
LS3D | | | 91.97 69 | 90.98 88 | 93.12 63 | 97.03 53 | 97.09 80 | 95.33 60 | 95.59 24 | 92.47 59 | 79.26 120 | 81.60 106 | 82.77 101 | 94.39 47 | 94.28 88 | 94.23 73 | 97.14 131 | 94.45 153 |
|
TAPA-MVS | | 90.35 6 | 93.69 55 | 93.52 53 | 93.90 50 | 96.89 54 | 97.62 65 | 96.15 46 | 91.67 53 | 94.94 34 | 85.97 75 | 87.72 60 | 91.96 54 | 94.40 46 | 93.76 100 | 93.06 107 | 98.30 55 | 95.58 135 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DELS-MVS | | | 93.71 54 | 93.47 54 | 94.00 47 | 96.82 55 | 98.39 38 | 96.80 40 | 91.07 59 | 89.51 100 | 89.94 43 | 83.80 86 | 89.29 73 | 90.95 89 | 97.32 14 | 97.65 2 | 98.42 41 | 98.32 38 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
EPNet_dtu | | | 88.32 118 | 90.61 90 | 85.64 148 | 96.79 56 | 92.27 176 | 92.03 123 | 90.31 65 | 89.05 104 | 65.44 191 | 89.43 52 | 85.90 85 | 74.22 200 | 92.76 116 | 92.09 126 | 95.02 189 | 92.76 173 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MSDG | | | 90.42 95 | 88.25 115 | 92.94 67 | 96.67 57 | 94.41 120 | 93.96 82 | 92.91 43 | 89.59 98 | 86.26 73 | 76.74 129 | 80.92 115 | 90.43 97 | 92.60 121 | 92.08 127 | 97.44 120 | 91.41 179 |
|
CS-MVS-test | | | 94.63 45 | 95.28 37 | 93.88 52 | 96.56 58 | 98.67 14 | 93.41 99 | 89.31 81 | 94.27 43 | 89.64 44 | 90.84 45 | 91.64 58 | 95.58 35 | 97.04 24 | 96.17 39 | 98.77 16 | 98.32 38 |
|
DeepPCF-MVS | | 92.65 2 | 95.50 35 | 96.96 19 | 93.79 54 | 96.44 59 | 98.21 44 | 93.51 97 | 94.08 38 | 96.94 4 | 89.29 46 | 93.08 32 | 96.77 28 | 93.82 57 | 97.68 9 | 97.40 4 | 95.59 178 | 98.65 16 |
|
PCF-MVS | | 90.19 8 | 92.98 58 | 92.07 73 | 94.04 46 | 96.39 60 | 97.87 54 | 96.03 49 | 95.47 31 | 87.16 118 | 85.09 93 | 84.81 80 | 93.21 50 | 93.46 63 | 91.98 133 | 91.98 130 | 97.78 98 | 97.51 74 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MVS_0304 | | | 94.30 49 | 94.68 44 | 93.86 53 | 96.33 61 | 98.48 32 | 97.41 32 | 91.20 56 | 92.75 56 | 86.96 68 | 86.03 71 | 93.81 48 | 92.64 71 | 96.89 28 | 96.54 25 | 98.61 23 | 98.24 41 |
|
CS-MVS | | | 94.53 46 | 94.73 43 | 94.31 45 | 96.30 62 | 98.53 27 | 94.98 62 | 89.24 83 | 93.37 51 | 90.24 42 | 88.96 56 | 89.76 72 | 96.09 30 | 97.48 13 | 96.42 26 | 98.99 2 | 98.59 21 |
|
OPM-MVS | | | 91.08 81 | 89.34 101 | 93.11 64 | 96.18 63 | 96.13 102 | 96.39 44 | 92.39 45 | 82.97 157 | 81.74 103 | 82.55 100 | 80.20 118 | 93.97 55 | 94.62 81 | 93.23 99 | 98.00 86 | 95.73 131 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
PVSNet_BlendedMVS | | | 92.80 59 | 92.44 67 | 93.23 58 | 96.02 64 | 97.83 57 | 93.74 91 | 90.58 62 | 91.86 64 | 90.69 38 | 85.87 74 | 82.04 108 | 90.01 99 | 96.39 45 | 95.26 59 | 98.34 49 | 97.81 63 |
|
PVSNet_Blended | | | 92.80 59 | 92.44 67 | 93.23 58 | 96.02 64 | 97.83 57 | 93.74 91 | 90.58 62 | 91.86 64 | 90.69 38 | 85.87 74 | 82.04 108 | 90.01 99 | 96.39 45 | 95.26 59 | 98.34 49 | 97.81 63 |
|
XVS | | | | | | 95.68 66 | 98.66 15 | 94.96 63 | | | 88.03 56 | | 96.06 33 | | | | 98.46 34 | |
|
X-MVStestdata | | | | | | 95.68 66 | 98.66 15 | 94.96 63 | | | 88.03 56 | | 96.06 33 | | | | 98.46 34 | |
|
HQP-MVS | | | 92.39 65 | 92.49 66 | 92.29 75 | 95.65 68 | 95.94 105 | 95.64 56 | 92.12 48 | 92.46 60 | 79.65 118 | 91.97 38 | 82.68 102 | 92.92 69 | 93.47 107 | 92.77 112 | 97.74 102 | 98.12 49 |
|
HyFIR lowres test | | | 87.87 120 | 86.42 137 | 89.57 107 | 95.56 69 | 96.99 83 | 92.37 113 | 84.15 140 | 86.64 123 | 77.17 127 | 57.65 206 | 83.97 92 | 91.08 87 | 92.09 131 | 92.44 117 | 97.09 134 | 95.16 144 |
|
ACMM | | 88.76 10 | 91.70 76 | 90.43 91 | 93.19 60 | 95.56 69 | 95.14 111 | 93.35 101 | 91.48 55 | 92.26 61 | 87.12 66 | 84.02 84 | 79.34 121 | 93.99 53 | 94.07 94 | 92.68 113 | 97.62 114 | 95.50 136 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
COLMAP_ROB |  | 84.39 15 | 87.61 122 | 86.03 141 | 89.46 108 | 95.54 71 | 94.48 117 | 91.77 127 | 90.14 69 | 87.16 118 | 75.50 132 | 73.41 150 | 76.86 142 | 87.33 132 | 90.05 166 | 89.76 176 | 96.48 159 | 90.46 188 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
LGP-MVS_train | | | 91.83 72 | 92.04 74 | 91.58 82 | 95.46 72 | 96.18 101 | 95.97 51 | 89.85 71 | 90.45 80 | 77.76 123 | 91.92 39 | 80.07 119 | 92.34 75 | 94.27 89 | 93.47 92 | 98.11 76 | 97.90 61 |
|
CHOSEN 1792x2688 | | | 88.57 115 | 87.82 122 | 89.44 109 | 95.46 72 | 96.89 86 | 93.74 91 | 85.87 121 | 89.63 97 | 77.42 126 | 61.38 200 | 83.31 96 | 88.80 121 | 93.44 108 | 93.16 103 | 95.37 183 | 96.95 93 |
|
PVSNet_Blended_VisFu | | | 91.92 70 | 92.39 69 | 91.36 90 | 95.45 74 | 97.85 56 | 92.25 116 | 89.54 78 | 88.53 110 | 87.47 63 | 79.82 113 | 90.53 67 | 85.47 151 | 96.31 48 | 95.16 62 | 97.99 87 | 98.56 22 |
|
PatchMatch-RL | | | 90.30 96 | 88.93 108 | 91.89 78 | 95.41 75 | 95.68 107 | 90.94 129 | 88.67 89 | 89.80 95 | 86.95 69 | 85.90 72 | 72.51 151 | 92.46 72 | 93.56 104 | 92.18 122 | 96.93 147 | 92.89 172 |
|
TSAR-MVS + COLMAP | | | 92.39 65 | 92.31 70 | 92.47 71 | 95.35 76 | 96.46 95 | 96.13 47 | 92.04 49 | 95.33 28 | 80.11 116 | 94.95 30 | 77.35 138 | 94.05 52 | 94.49 87 | 93.08 105 | 97.15 129 | 94.53 151 |
|
test2506 | | | 90.93 85 | 89.20 104 | 92.95 66 | 94.97 77 | 98.30 41 | 94.53 67 | 90.25 67 | 89.91 93 | 88.39 55 | 83.23 90 | 64.17 193 | 90.69 92 | 96.75 34 | 96.10 45 | 98.87 8 | 95.97 125 |
|
ECVR-MVS |  | | 90.77 89 | 89.27 102 | 92.52 70 | 94.97 77 | 98.30 41 | 94.53 67 | 90.25 67 | 89.91 93 | 85.80 80 | 73.64 145 | 74.31 148 | 90.69 92 | 96.75 34 | 96.10 45 | 98.87 8 | 95.91 128 |
|
test1111 | | | 90.47 94 | 89.10 106 | 92.07 77 | 94.92 79 | 98.30 41 | 94.17 80 | 90.30 66 | 89.56 99 | 83.92 96 | 73.25 152 | 73.66 149 | 90.26 98 | 96.77 32 | 96.14 43 | 98.87 8 | 96.04 123 |
|
ACMP | | 89.13 9 | 92.03 68 | 91.70 79 | 92.41 73 | 94.92 79 | 96.44 97 | 93.95 83 | 89.96 70 | 91.81 66 | 85.48 88 | 90.97 44 | 79.12 122 | 92.42 73 | 93.28 113 | 92.55 116 | 97.76 100 | 97.74 66 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
UA-Net | | | 90.81 86 | 92.58 64 | 88.74 116 | 94.87 81 | 97.44 69 | 92.61 110 | 88.22 94 | 82.35 160 | 78.93 121 | 85.20 78 | 95.61 39 | 79.56 186 | 96.52 40 | 96.57 24 | 98.23 64 | 94.37 154 |
|
IB-MVS | | 85.10 14 | 87.98 119 | 87.97 120 | 87.99 124 | 94.55 82 | 96.86 87 | 84.52 195 | 88.21 95 | 86.48 128 | 88.54 54 | 74.41 143 | 77.74 135 | 74.10 202 | 89.65 172 | 92.85 111 | 98.06 81 | 97.80 65 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CANet_DTU | | | 90.74 91 | 92.93 61 | 88.19 121 | 94.36 83 | 96.61 89 | 94.34 73 | 84.66 133 | 90.66 74 | 68.75 170 | 90.41 48 | 86.89 78 | 89.78 101 | 95.46 62 | 94.87 65 | 97.25 124 | 95.62 133 |
|
canonicalmvs | | | 93.08 57 | 93.09 57 | 93.07 65 | 94.24 84 | 97.86 55 | 95.45 58 | 87.86 104 | 94.00 46 | 87.47 63 | 88.32 58 | 82.37 106 | 95.13 40 | 93.96 99 | 96.41 29 | 98.27 59 | 98.73 13 |
|
UGNet | | | 91.52 77 | 93.41 55 | 89.32 110 | 94.13 85 | 97.15 77 | 91.83 126 | 89.01 84 | 90.62 76 | 85.86 79 | 86.83 62 | 91.73 57 | 77.40 191 | 94.68 80 | 94.43 70 | 97.71 104 | 98.40 37 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
thres600view7 | | | 89.28 112 | 87.47 131 | 91.39 87 | 94.12 86 | 97.25 73 | 93.94 85 | 89.74 73 | 85.62 135 | 80.63 114 | 75.24 140 | 69.33 165 | 91.66 82 | 94.92 71 | 93.23 99 | 98.27 59 | 96.72 98 |
|
IS_MVSNet | | | 91.87 71 | 93.35 56 | 90.14 104 | 94.09 87 | 97.73 61 | 93.09 105 | 88.12 96 | 88.71 107 | 79.98 117 | 84.49 81 | 90.63 66 | 87.49 130 | 97.07 22 | 96.96 16 | 98.07 79 | 97.88 62 |
|
TSAR-MVS + GP. | | | 95.86 29 | 96.95 21 | 94.60 44 | 94.07 88 | 98.11 48 | 96.30 45 | 91.76 52 | 95.67 22 | 91.07 33 | 96.82 11 | 97.69 17 | 95.71 34 | 95.96 54 | 95.75 52 | 98.68 19 | 98.63 17 |
|
thres400 | | | 89.40 108 | 87.58 128 | 91.53 84 | 94.06 89 | 97.21 76 | 94.19 79 | 89.83 72 | 85.69 132 | 81.08 110 | 75.50 138 | 69.76 164 | 91.80 78 | 94.79 78 | 93.51 88 | 98.20 67 | 96.60 102 |
|
ETV-MVS | | | 93.80 53 | 94.57 45 | 92.91 68 | 93.98 90 | 97.50 67 | 93.62 94 | 88.70 88 | 91.95 63 | 87.57 62 | 90.21 49 | 90.79 63 | 94.56 44 | 97.20 19 | 96.35 31 | 99.02 1 | 97.98 53 |
|
ACMH | | 85.51 13 | 87.31 126 | 86.59 135 | 88.14 122 | 93.96 91 | 94.51 116 | 89.00 165 | 87.99 97 | 81.58 163 | 70.15 160 | 78.41 120 | 71.78 156 | 90.60 95 | 91.30 142 | 91.99 129 | 97.17 128 | 96.58 103 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MS-PatchMatch | | | 87.63 121 | 87.61 126 | 87.65 129 | 93.95 92 | 94.09 125 | 92.60 111 | 81.52 172 | 86.64 123 | 76.41 130 | 73.46 149 | 85.94 84 | 85.01 155 | 92.23 129 | 90.00 170 | 96.43 162 | 90.93 185 |
|
thres200 | | | 89.49 107 | 87.72 123 | 91.55 83 | 93.95 92 | 97.25 73 | 94.34 73 | 89.74 73 | 85.66 133 | 81.18 107 | 76.12 135 | 70.19 163 | 91.80 78 | 94.92 71 | 93.51 88 | 98.27 59 | 96.40 109 |
|
CLD-MVS | | | 92.50 64 | 91.96 75 | 93.13 62 | 93.93 94 | 96.24 99 | 95.69 54 | 88.77 87 | 92.92 53 | 89.01 48 | 88.19 59 | 81.74 111 | 93.13 66 | 93.63 101 | 93.08 105 | 98.23 64 | 97.91 60 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
thres100view900 | | | 89.36 109 | 87.61 126 | 91.39 87 | 93.90 95 | 96.86 87 | 94.35 72 | 89.66 77 | 85.87 130 | 81.15 108 | 76.46 131 | 70.38 160 | 91.17 85 | 94.09 93 | 93.43 94 | 98.13 73 | 96.16 118 |
|
tfpn200view9 | | | 89.55 106 | 87.86 121 | 91.53 84 | 93.90 95 | 97.26 72 | 94.31 75 | 89.74 73 | 85.87 130 | 81.15 108 | 76.46 131 | 70.38 160 | 91.76 80 | 94.92 71 | 93.51 88 | 98.28 58 | 96.61 101 |
|
EIA-MVS | | | 92.72 61 | 92.96 60 | 92.44 72 | 93.86 97 | 97.76 59 | 93.13 104 | 88.65 90 | 89.78 96 | 86.68 70 | 86.69 65 | 87.57 74 | 93.74 58 | 96.07 53 | 95.32 57 | 98.58 24 | 97.53 73 |
|
CHOSEN 280x420 | | | 90.77 89 | 92.14 72 | 89.17 112 | 93.86 97 | 92.81 164 | 93.16 103 | 80.22 180 | 90.21 85 | 84.67 95 | 89.89 51 | 91.38 61 | 90.57 96 | 94.94 70 | 92.11 125 | 92.52 200 | 93.65 164 |
|
FC-MVSNet-train | | | 90.55 92 | 90.19 94 | 90.97 93 | 93.78 99 | 95.16 110 | 92.11 121 | 88.85 85 | 87.64 115 | 83.38 99 | 84.36 83 | 78.41 129 | 89.53 103 | 94.69 79 | 93.15 104 | 98.15 70 | 97.92 58 |
|
FA-MVS(training) | | | 90.79 88 | 91.33 83 | 90.17 102 | 93.76 100 | 97.22 75 | 92.74 109 | 77.79 190 | 90.60 78 | 88.03 56 | 78.80 117 | 87.41 75 | 91.00 88 | 95.40 63 | 93.43 94 | 97.70 106 | 96.46 106 |
|
Vis-MVSNet (Re-imp) | | | 90.54 93 | 92.76 62 | 87.94 125 | 93.73 101 | 96.94 85 | 92.17 119 | 87.91 99 | 88.77 106 | 76.12 131 | 83.68 87 | 90.80 62 | 79.49 187 | 96.34 47 | 96.35 31 | 98.21 66 | 96.46 106 |
|
baseline1 | | | 90.81 86 | 90.29 92 | 91.42 86 | 93.67 102 | 95.86 106 | 93.94 85 | 89.69 76 | 89.29 102 | 82.85 101 | 82.91 93 | 80.30 117 | 89.60 102 | 95.05 67 | 94.79 67 | 98.80 12 | 93.82 162 |
|
EPP-MVSNet | | | 92.13 67 | 93.06 58 | 91.05 92 | 93.66 103 | 97.30 71 | 92.18 117 | 87.90 100 | 90.24 84 | 83.63 97 | 86.14 70 | 90.52 69 | 90.76 91 | 94.82 76 | 94.38 71 | 98.18 69 | 97.98 53 |
|
DROMVSNet | | | 94.19 50 | 95.05 39 | 93.18 61 | 93.56 104 | 97.65 64 | 95.34 59 | 86.37 117 | 92.05 62 | 88.71 52 | 89.91 50 | 93.32 49 | 96.14 29 | 97.29 17 | 96.42 26 | 98.98 3 | 98.70 14 |
|
ACMH+ | | 85.75 12 | 87.19 127 | 86.02 142 | 88.56 117 | 93.42 105 | 94.41 120 | 89.91 149 | 87.66 108 | 83.45 154 | 72.25 147 | 76.42 133 | 71.99 155 | 90.78 90 | 89.86 167 | 90.94 144 | 97.32 121 | 95.11 146 |
|
MVS_Test | | | 91.81 73 | 92.19 71 | 91.37 89 | 93.24 106 | 96.95 84 | 94.43 69 | 86.25 118 | 91.45 70 | 83.45 98 | 86.31 67 | 85.15 88 | 92.93 68 | 93.99 95 | 94.71 68 | 97.92 91 | 96.77 97 |
|
MVSTER | | | 91.73 74 | 91.61 80 | 91.86 79 | 93.18 107 | 94.56 114 | 94.37 71 | 87.90 100 | 90.16 88 | 88.69 53 | 89.23 53 | 81.28 113 | 88.92 119 | 95.75 58 | 93.95 81 | 98.12 74 | 96.37 110 |
|
Anonymous202405211 | | | | 88.00 118 | | 93.16 108 | 96.38 98 | 93.58 95 | 89.34 80 | 87.92 114 | | 65.04 189 | 83.03 98 | 92.07 76 | 92.67 118 | 93.33 96 | 96.96 142 | 97.63 67 |
|
casdiffmvs | | | 91.72 75 | 91.16 86 | 92.38 74 | 93.16 108 | 97.15 77 | 93.95 83 | 89.49 79 | 91.58 69 | 86.03 74 | 80.75 110 | 80.95 114 | 93.16 65 | 95.25 64 | 95.22 61 | 98.50 29 | 97.23 84 |
|
tttt0517 | | | 91.01 84 | 91.71 78 | 90.19 101 | 92.98 110 | 97.07 81 | 91.96 125 | 87.63 109 | 90.61 77 | 81.42 105 | 86.76 64 | 82.26 107 | 89.23 111 | 94.86 75 | 93.03 109 | 97.90 92 | 97.36 79 |
|
Effi-MVS+ | | | 89.79 103 | 89.83 99 | 89.74 106 | 92.98 110 | 96.45 96 | 93.48 98 | 84.24 138 | 87.62 116 | 76.45 129 | 81.76 104 | 77.56 137 | 93.48 62 | 94.61 82 | 93.59 87 | 97.82 96 | 97.22 86 |
|
RPSCF | | | 89.68 104 | 89.24 103 | 90.20 100 | 92.97 112 | 92.93 160 | 92.30 114 | 87.69 106 | 90.44 81 | 85.12 92 | 91.68 40 | 85.84 86 | 90.69 92 | 87.34 189 | 86.07 191 | 92.46 201 | 90.37 189 |
|
TDRefinement | | | 84.97 153 | 83.39 168 | 86.81 137 | 92.97 112 | 94.12 124 | 92.18 117 | 87.77 105 | 82.78 158 | 71.31 152 | 68.43 170 | 68.07 171 | 81.10 182 | 89.70 171 | 89.03 183 | 95.55 180 | 91.62 177 |
|
thisisatest0530 | | | 91.04 83 | 91.74 77 | 90.21 99 | 92.93 114 | 97.00 82 | 92.06 122 | 87.63 109 | 90.74 72 | 81.51 104 | 86.81 63 | 82.48 103 | 89.23 111 | 94.81 77 | 93.03 109 | 97.90 92 | 97.33 81 |
|
DCV-MVSNet | | | 91.24 79 | 91.26 84 | 91.22 91 | 92.84 115 | 93.44 141 | 93.82 88 | 86.75 114 | 91.33 71 | 85.61 84 | 84.00 85 | 85.46 87 | 91.27 83 | 92.91 115 | 93.62 86 | 97.02 138 | 98.05 52 |
|
baseline | | | 91.19 80 | 91.89 76 | 90.38 95 | 92.76 116 | 95.04 112 | 93.55 96 | 84.54 136 | 92.92 53 | 85.71 82 | 86.68 66 | 86.96 77 | 89.28 109 | 92.00 132 | 92.62 115 | 96.46 160 | 96.99 91 |
|
EPMVS | | | 85.77 141 | 86.24 139 | 85.23 153 | 92.76 116 | 93.78 131 | 89.91 149 | 73.60 203 | 90.19 86 | 74.22 135 | 82.18 102 | 78.06 131 | 87.55 129 | 85.61 198 | 85.38 196 | 93.32 194 | 88.48 201 |
|
GeoE | | | 89.29 111 | 88.68 110 | 89.99 105 | 92.75 118 | 96.03 104 | 93.07 107 | 83.79 145 | 86.98 120 | 81.34 106 | 74.72 141 | 78.92 123 | 91.22 84 | 93.31 111 | 93.21 101 | 97.78 98 | 97.60 72 |
|
diffmvs | | | 91.37 78 | 91.09 87 | 91.70 81 | 92.71 119 | 96.47 94 | 94.03 81 | 88.78 86 | 92.74 57 | 85.43 90 | 83.63 88 | 80.37 116 | 91.76 80 | 93.39 109 | 93.78 83 | 97.50 117 | 97.23 84 |
|
DI_MVS_plusplus_trai | | | 91.05 82 | 90.15 95 | 92.11 76 | 92.67 120 | 96.61 89 | 96.03 49 | 88.44 92 | 90.25 83 | 85.92 77 | 73.73 144 | 84.89 90 | 91.92 77 | 94.17 92 | 94.07 79 | 97.68 109 | 97.31 82 |
|
Anonymous20231211 | | | 89.82 102 | 88.18 116 | 91.74 80 | 92.52 121 | 96.09 103 | 93.38 100 | 89.30 82 | 88.95 105 | 85.90 78 | 64.55 193 | 84.39 91 | 92.41 74 | 92.24 128 | 93.06 107 | 96.93 147 | 97.95 55 |
|
tpmrst | | | 83.72 171 | 83.45 165 | 84.03 169 | 92.21 122 | 91.66 188 | 88.74 168 | 73.58 204 | 88.14 112 | 72.67 144 | 77.37 125 | 72.11 154 | 86.34 141 | 82.94 206 | 82.05 205 | 90.63 210 | 89.86 193 |
|
CostFormer | | | 86.78 130 | 86.05 140 | 87.62 131 | 92.15 123 | 93.20 151 | 91.55 128 | 75.83 195 | 88.11 113 | 85.29 91 | 81.76 104 | 76.22 144 | 87.80 125 | 84.45 201 | 85.21 197 | 93.12 195 | 93.42 167 |
|
test_part1 | | | 87.53 123 | 84.97 152 | 90.52 94 | 92.11 124 | 93.31 146 | 93.32 102 | 85.79 122 | 79.56 177 | 87.38 65 | 62.89 197 | 78.60 126 | 89.25 110 | 90.65 155 | 92.17 123 | 95.24 185 | 97.62 69 |
|
Vis-MVSNet |  | | 89.36 109 | 91.49 82 | 86.88 136 | 92.10 125 | 97.60 66 | 92.16 120 | 85.89 120 | 84.21 146 | 75.20 133 | 82.58 98 | 87.13 76 | 77.40 191 | 95.90 56 | 95.63 53 | 98.51 27 | 97.36 79 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
IterMVS-LS | | | 88.60 114 | 88.45 111 | 88.78 115 | 92.02 126 | 92.44 174 | 92.00 124 | 83.57 149 | 86.52 126 | 78.90 122 | 78.61 119 | 81.34 112 | 89.12 114 | 90.68 154 | 93.18 102 | 97.10 133 | 96.35 111 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchmatchNet |  | | 85.70 142 | 86.65 134 | 84.60 160 | 91.79 127 | 93.40 142 | 89.27 158 | 73.62 202 | 90.19 86 | 72.63 145 | 82.74 97 | 81.93 110 | 87.64 127 | 84.99 199 | 84.29 201 | 92.64 199 | 89.00 196 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
tpm cat1 | | | 84.13 164 | 81.99 184 | 86.63 140 | 91.74 128 | 91.50 191 | 90.68 131 | 75.69 196 | 86.12 129 | 85.44 89 | 72.39 155 | 70.72 158 | 85.16 153 | 80.89 210 | 81.56 206 | 91.07 208 | 90.71 186 |
|
USDC | | | 86.73 131 | 85.96 144 | 87.63 130 | 91.64 129 | 93.97 127 | 92.76 108 | 84.58 135 | 88.19 111 | 70.67 157 | 80.10 112 | 67.86 172 | 89.43 104 | 91.81 134 | 89.77 175 | 96.69 157 | 90.05 192 |
|
SCA | | | 86.25 133 | 87.52 129 | 84.77 157 | 91.59 130 | 93.90 128 | 89.11 162 | 73.25 207 | 90.38 82 | 72.84 143 | 83.26 89 | 83.79 94 | 88.49 123 | 86.07 196 | 85.56 194 | 93.33 193 | 89.67 194 |
|
gg-mvs-nofinetune | | | 81.83 190 | 83.58 163 | 79.80 198 | 91.57 131 | 96.54 92 | 93.79 89 | 68.80 214 | 62.71 218 | 43.01 223 | 55.28 209 | 85.06 89 | 83.65 165 | 96.13 51 | 94.86 66 | 97.98 90 | 94.46 152 |
|
Fast-Effi-MVS+ | | | 88.56 116 | 87.99 119 | 89.22 111 | 91.56 132 | 95.21 109 | 92.29 115 | 82.69 156 | 86.82 121 | 77.73 124 | 76.24 134 | 73.39 150 | 93.36 64 | 94.22 91 | 93.64 85 | 97.65 111 | 96.43 108 |
|
CMPMVS |  | 61.19 17 | 79.86 197 | 77.46 205 | 82.66 187 | 91.54 133 | 91.82 186 | 83.25 198 | 81.57 171 | 70.51 211 | 68.64 171 | 59.89 205 | 66.77 178 | 79.63 185 | 84.00 204 | 84.30 200 | 91.34 206 | 84.89 209 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ADS-MVSNet | | | 84.08 165 | 84.95 153 | 83.05 182 | 91.53 134 | 91.75 187 | 88.16 172 | 70.70 211 | 89.96 92 | 69.51 165 | 78.83 116 | 76.97 141 | 86.29 142 | 84.08 203 | 84.60 199 | 92.13 204 | 88.48 201 |
|
test-LLR | | | 86.88 128 | 88.28 113 | 85.24 152 | 91.22 135 | 92.07 180 | 87.41 178 | 83.62 147 | 84.58 139 | 69.33 166 | 83.00 91 | 82.79 99 | 84.24 159 | 92.26 126 | 89.81 173 | 95.64 176 | 93.44 165 |
|
test0.0.03 1 | | | 85.58 144 | 87.69 125 | 83.11 179 | 91.22 135 | 92.54 171 | 85.60 194 | 83.62 147 | 85.66 133 | 67.84 177 | 82.79 96 | 79.70 120 | 73.51 204 | 91.15 146 | 90.79 146 | 96.88 151 | 91.23 182 |
|
baseline2 | | | 88.97 113 | 89.50 100 | 88.36 118 | 91.14 137 | 95.30 108 | 90.13 143 | 85.17 130 | 87.24 117 | 80.80 112 | 84.46 82 | 78.44 128 | 85.60 148 | 93.54 105 | 91.87 131 | 97.31 122 | 95.66 132 |
|
Effi-MVS+-dtu | | | 87.51 124 | 88.13 117 | 86.77 138 | 91.10 138 | 94.90 113 | 90.91 130 | 82.67 157 | 83.47 153 | 71.55 149 | 81.11 109 | 77.04 139 | 89.41 105 | 92.65 120 | 91.68 137 | 95.00 190 | 96.09 121 |
|
RPMNet | | | 84.82 155 | 85.90 145 | 83.56 174 | 91.10 138 | 92.10 178 | 88.73 169 | 71.11 210 | 84.75 137 | 68.79 169 | 73.56 146 | 77.62 136 | 85.33 152 | 90.08 165 | 89.43 179 | 96.32 163 | 93.77 163 |
|
CR-MVSNet | | | 85.48 146 | 86.29 138 | 84.53 162 | 91.08 140 | 92.10 178 | 89.18 160 | 73.30 205 | 84.75 137 | 71.08 154 | 73.12 154 | 77.91 133 | 86.27 143 | 91.48 138 | 90.75 149 | 96.27 164 | 93.94 159 |
|
TinyColmap | | | 84.04 166 | 82.01 183 | 86.42 142 | 90.87 141 | 91.84 185 | 88.89 167 | 84.07 142 | 82.11 162 | 69.89 162 | 71.08 159 | 60.81 206 | 89.04 115 | 90.52 157 | 89.19 181 | 95.76 170 | 88.50 200 |
|
tpm | | | 83.16 177 | 83.64 162 | 82.60 188 | 90.75 142 | 91.05 194 | 88.49 170 | 73.99 200 | 82.36 159 | 67.08 183 | 78.10 121 | 68.79 166 | 84.17 161 | 85.95 197 | 85.96 192 | 91.09 207 | 93.23 169 |
|
dps | | | 85.00 152 | 83.21 172 | 87.08 134 | 90.73 143 | 92.55 170 | 89.34 157 | 75.29 197 | 84.94 136 | 87.01 67 | 79.27 115 | 67.69 173 | 87.27 133 | 84.22 202 | 83.56 202 | 92.83 198 | 90.25 190 |
|
MDTV_nov1_ep13 | | | 86.64 132 | 87.50 130 | 85.65 147 | 90.73 143 | 93.69 135 | 89.96 147 | 78.03 189 | 89.48 101 | 76.85 128 | 84.92 79 | 82.42 105 | 86.14 145 | 86.85 193 | 86.15 190 | 92.17 202 | 88.97 197 |
|
CDS-MVSNet | | | 88.34 117 | 88.71 109 | 87.90 126 | 90.70 145 | 94.54 115 | 92.38 112 | 86.02 119 | 80.37 169 | 79.42 119 | 79.30 114 | 83.43 95 | 82.04 174 | 93.39 109 | 94.01 80 | 96.86 153 | 95.93 127 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IterMVS-SCA-FT | | | 85.44 148 | 86.71 133 | 83.97 170 | 90.59 146 | 90.84 197 | 89.73 153 | 78.34 186 | 84.07 150 | 66.40 186 | 77.27 127 | 78.66 125 | 83.06 167 | 91.20 143 | 90.10 168 | 95.72 173 | 94.78 148 |
|
IterMVS | | | 85.25 150 | 86.49 136 | 83.80 171 | 90.42 147 | 90.77 200 | 90.02 145 | 78.04 188 | 84.10 148 | 66.27 187 | 77.28 126 | 78.41 129 | 83.01 168 | 90.88 148 | 89.72 177 | 95.04 188 | 94.24 155 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Fast-Effi-MVS+-dtu | | | 86.25 133 | 87.70 124 | 84.56 161 | 90.37 148 | 93.70 134 | 90.54 133 | 78.14 187 | 83.50 152 | 65.37 192 | 81.59 107 | 75.83 146 | 86.09 147 | 91.70 136 | 91.70 135 | 96.88 151 | 95.84 129 |
|
FC-MVSNet-test | | | 86.15 136 | 89.10 106 | 82.71 186 | 89.83 149 | 93.18 152 | 87.88 175 | 84.69 132 | 86.54 125 | 62.18 201 | 82.39 101 | 83.31 96 | 74.18 201 | 92.52 123 | 91.86 132 | 97.50 117 | 93.88 161 |
|
GA-MVS | | | 85.08 151 | 85.65 148 | 84.42 163 | 89.77 150 | 94.25 123 | 89.26 159 | 84.62 134 | 81.19 166 | 62.25 200 | 75.72 137 | 68.44 169 | 84.14 162 | 93.57 103 | 91.68 137 | 96.49 158 | 94.71 150 |
|
PMMVS | | | 89.88 101 | 91.19 85 | 88.35 119 | 89.73 151 | 91.97 184 | 90.62 132 | 81.92 167 | 90.57 79 | 80.58 115 | 92.16 36 | 86.85 79 | 91.17 85 | 92.31 125 | 91.35 141 | 96.11 166 | 93.11 171 |
|
tfpnnormal | | | 83.80 170 | 81.26 192 | 86.77 138 | 89.60 152 | 93.26 150 | 89.72 154 | 87.60 111 | 72.78 204 | 70.44 158 | 60.53 203 | 61.15 205 | 85.55 149 | 92.72 117 | 91.44 139 | 97.71 104 | 96.92 94 |
|
CVMVSNet | | | 83.83 169 | 85.53 149 | 81.85 193 | 89.60 152 | 90.92 195 | 87.81 176 | 83.21 153 | 80.11 172 | 60.16 205 | 76.47 130 | 78.57 127 | 76.79 193 | 89.76 168 | 90.13 163 | 93.51 192 | 92.75 174 |
|
testgi | | | 81.94 189 | 84.09 160 | 79.43 199 | 89.53 154 | 90.83 198 | 82.49 201 | 81.75 170 | 80.59 167 | 59.46 207 | 82.82 95 | 65.75 182 | 67.97 206 | 90.10 164 | 89.52 178 | 95.39 182 | 89.03 195 |
|
UniMVSNet_ETH3D | | | 84.57 156 | 81.40 190 | 88.28 120 | 89.34 155 | 94.38 122 | 90.33 135 | 86.50 116 | 74.74 202 | 77.52 125 | 59.90 204 | 62.04 201 | 88.78 122 | 88.82 182 | 92.65 114 | 97.22 125 | 97.24 83 |
|
LTVRE_ROB | | 81.71 16 | 82.44 187 | 81.84 185 | 83.13 178 | 89.01 156 | 92.99 157 | 88.90 166 | 82.32 163 | 66.26 215 | 54.02 215 | 74.68 142 | 59.62 212 | 88.87 120 | 90.71 153 | 92.02 128 | 95.68 175 | 96.62 100 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TAMVS | | | 84.94 154 | 84.95 153 | 84.93 156 | 88.82 157 | 93.18 152 | 88.44 171 | 81.28 174 | 77.16 189 | 73.76 139 | 75.43 139 | 76.57 143 | 82.04 174 | 90.59 156 | 90.79 146 | 95.22 186 | 90.94 184 |
|
EG-PatchMatch MVS | | | 81.70 192 | 81.31 191 | 82.15 191 | 88.75 158 | 93.81 130 | 87.14 181 | 78.89 185 | 71.57 207 | 64.12 197 | 61.20 202 | 68.46 168 | 76.73 195 | 91.48 138 | 90.77 148 | 97.28 123 | 91.90 176 |
|
TransMVSNet (Re) | | | 82.67 184 | 80.93 195 | 84.69 159 | 88.71 159 | 91.50 191 | 87.90 174 | 87.15 112 | 71.54 209 | 68.24 174 | 63.69 195 | 64.67 192 | 78.51 190 | 91.65 137 | 90.73 151 | 97.64 112 | 92.73 175 |
|
FMVSNet3 | | | 90.19 99 | 90.06 98 | 90.34 96 | 88.69 160 | 93.85 129 | 94.58 66 | 85.78 123 | 90.03 89 | 85.56 85 | 77.38 122 | 86.13 81 | 89.22 113 | 93.29 112 | 94.36 72 | 98.20 67 | 95.40 141 |
|
GBi-Net | | | 90.21 97 | 90.11 96 | 90.32 97 | 88.66 161 | 93.65 137 | 94.25 76 | 85.78 123 | 90.03 89 | 85.56 85 | 77.38 122 | 86.13 81 | 89.38 106 | 93.97 96 | 94.16 75 | 98.31 52 | 95.47 137 |
|
test1 | | | 90.21 97 | 90.11 96 | 90.32 97 | 88.66 161 | 93.65 137 | 94.25 76 | 85.78 123 | 90.03 89 | 85.56 85 | 77.38 122 | 86.13 81 | 89.38 106 | 93.97 96 | 94.16 75 | 98.31 52 | 95.47 137 |
|
FMVSNet2 | | | 89.61 105 | 89.14 105 | 90.16 103 | 88.66 161 | 93.65 137 | 94.25 76 | 85.44 127 | 88.57 109 | 84.96 94 | 73.53 147 | 83.82 93 | 89.38 106 | 94.23 90 | 94.68 69 | 98.31 52 | 95.47 137 |
|
PatchT | | | 83.86 168 | 85.51 150 | 81.94 192 | 88.41 164 | 91.56 190 | 78.79 209 | 71.57 209 | 84.08 149 | 71.08 154 | 70.62 160 | 76.13 145 | 86.27 143 | 91.48 138 | 90.75 149 | 95.52 181 | 93.94 159 |
|
UniMVSNet (Re) | | | 86.22 135 | 85.46 151 | 87.11 133 | 88.34 165 | 94.42 119 | 89.65 155 | 87.10 113 | 84.39 143 | 74.61 134 | 70.41 164 | 68.10 170 | 85.10 154 | 91.17 145 | 91.79 133 | 97.84 95 | 97.94 56 |
|
NR-MVSNet | | | 85.46 147 | 84.54 157 | 86.52 141 | 88.33 166 | 93.78 131 | 90.45 134 | 87.87 102 | 84.40 141 | 71.61 148 | 70.59 161 | 62.09 200 | 82.79 170 | 91.75 135 | 91.75 134 | 98.10 77 | 97.44 76 |
|
UniMVSNet_NR-MVSNet | | | 86.80 129 | 85.86 146 | 87.89 127 | 88.17 167 | 94.07 126 | 90.15 141 | 88.51 91 | 84.20 147 | 73.45 140 | 72.38 156 | 70.30 162 | 88.95 117 | 90.25 160 | 92.21 121 | 98.12 74 | 97.62 69 |
|
thisisatest0515 | | | 85.70 142 | 87.00 132 | 84.19 166 | 88.16 168 | 93.67 136 | 84.20 197 | 84.14 141 | 83.39 155 | 72.91 142 | 76.79 128 | 74.75 147 | 78.82 189 | 92.57 122 | 91.26 142 | 96.94 144 | 96.56 105 |
|
pm-mvs1 | | | 84.55 157 | 83.46 164 | 85.82 144 | 88.16 168 | 93.39 143 | 89.05 164 | 85.36 129 | 74.03 203 | 72.43 146 | 65.08 188 | 71.11 157 | 82.30 173 | 93.48 106 | 91.70 135 | 97.64 112 | 95.43 140 |
|
gm-plane-assit | | | 77.65 202 | 78.50 200 | 76.66 203 | 87.96 170 | 85.43 213 | 64.70 219 | 74.50 198 | 64.15 217 | 51.26 218 | 61.32 201 | 58.17 214 | 84.11 163 | 95.16 66 | 93.83 82 | 97.45 119 | 91.41 179 |
|
test-mter | | | 86.09 139 | 88.38 112 | 83.43 176 | 87.89 171 | 92.61 168 | 86.89 183 | 77.11 193 | 84.30 144 | 68.62 172 | 82.57 99 | 82.45 104 | 84.34 158 | 92.40 124 | 90.11 167 | 95.74 171 | 94.21 157 |
|
pmmvs4 | | | 86.00 140 | 84.28 159 | 88.00 123 | 87.80 172 | 92.01 183 | 89.94 148 | 84.91 131 | 86.79 122 | 80.98 111 | 73.41 150 | 66.34 181 | 88.12 124 | 89.31 175 | 88.90 184 | 96.24 165 | 93.20 170 |
|
TESTMET0.1,1 | | | 86.11 138 | 88.28 113 | 83.59 173 | 87.80 172 | 92.07 180 | 87.41 178 | 77.12 192 | 84.58 139 | 69.33 166 | 83.00 91 | 82.79 99 | 84.24 159 | 92.26 126 | 89.81 173 | 95.64 176 | 93.44 165 |
|
DU-MVS | | | 86.12 137 | 84.81 155 | 87.66 128 | 87.77 174 | 93.78 131 | 90.15 141 | 87.87 102 | 84.40 141 | 73.45 140 | 70.59 161 | 64.82 190 | 88.95 117 | 90.14 161 | 92.33 118 | 97.76 100 | 97.62 69 |
|
Baseline_NR-MVSNet | | | 85.28 149 | 83.42 167 | 87.46 132 | 87.77 174 | 90.80 199 | 89.90 151 | 87.69 106 | 83.93 151 | 74.16 136 | 64.72 191 | 66.43 180 | 87.48 131 | 90.14 161 | 90.83 145 | 97.73 103 | 97.11 89 |
|
SixPastTwentyTwo | | | 83.12 179 | 83.44 166 | 82.74 185 | 87.71 176 | 93.11 156 | 82.30 202 | 82.33 162 | 79.24 178 | 64.33 195 | 78.77 118 | 62.75 196 | 84.11 163 | 88.11 184 | 87.89 186 | 95.70 174 | 94.21 157 |
|
TranMVSNet+NR-MVSNet | | | 85.57 145 | 84.41 158 | 86.92 135 | 87.67 177 | 93.34 144 | 90.31 137 | 88.43 93 | 83.07 156 | 70.11 161 | 69.99 167 | 65.28 185 | 86.96 135 | 89.73 169 | 92.27 119 | 98.06 81 | 97.17 88 |
|
WR-MVS | | | 83.14 178 | 83.38 169 | 82.87 184 | 87.55 178 | 93.29 147 | 86.36 188 | 84.21 139 | 80.05 173 | 66.41 185 | 66.91 176 | 66.92 177 | 75.66 198 | 88.96 180 | 90.56 154 | 97.05 136 | 96.96 92 |
|
v8 | | | 84.45 162 | 83.30 171 | 85.80 145 | 87.53 179 | 92.95 158 | 90.31 137 | 82.46 161 | 80.46 168 | 71.43 150 | 66.99 175 | 67.16 175 | 86.14 145 | 89.26 176 | 90.22 162 | 96.94 144 | 96.06 122 |
|
WR-MVS_H | | | 82.86 183 | 82.66 177 | 83.10 180 | 87.44 180 | 93.33 145 | 85.71 193 | 83.20 154 | 77.36 188 | 68.20 175 | 66.37 179 | 65.23 186 | 76.05 197 | 89.35 173 | 90.13 163 | 97.99 87 | 96.89 95 |
|
v148 | | | 83.61 172 | 82.10 181 | 85.37 149 | 87.34 181 | 92.94 159 | 87.48 177 | 85.72 126 | 78.92 179 | 73.87 138 | 65.71 185 | 64.69 191 | 81.78 178 | 87.82 185 | 89.35 180 | 96.01 167 | 95.26 143 |
|
v10 | | | 84.18 163 | 83.17 173 | 85.37 149 | 87.34 181 | 92.68 166 | 90.32 136 | 81.33 173 | 79.93 176 | 69.23 168 | 66.33 180 | 65.74 183 | 87.03 134 | 90.84 149 | 90.38 157 | 96.97 140 | 96.29 115 |
|
v2v482 | | | 84.51 158 | 83.05 174 | 86.20 143 | 87.25 183 | 93.28 148 | 90.22 139 | 85.40 128 | 79.94 175 | 69.78 163 | 67.74 172 | 65.15 187 | 87.57 128 | 89.12 178 | 90.55 155 | 96.97 140 | 95.60 134 |
|
CP-MVSNet | | | 83.11 180 | 82.15 180 | 84.23 165 | 87.20 184 | 92.70 165 | 86.42 187 | 83.53 150 | 77.83 186 | 67.67 178 | 66.89 178 | 60.53 208 | 82.47 171 | 89.23 177 | 90.65 153 | 98.08 78 | 97.20 87 |
|
v1144 | | | 84.03 167 | 82.88 175 | 85.37 149 | 87.17 185 | 93.15 155 | 90.18 140 | 83.31 152 | 78.83 180 | 67.85 176 | 65.99 182 | 64.99 188 | 86.79 137 | 90.75 151 | 90.33 159 | 96.90 149 | 96.15 119 |
|
V42 | | | 84.48 160 | 83.36 170 | 85.79 146 | 87.14 186 | 93.28 148 | 90.03 144 | 83.98 143 | 80.30 170 | 71.20 153 | 66.90 177 | 67.17 174 | 85.55 149 | 89.35 173 | 90.27 160 | 96.82 154 | 96.27 116 |
|
pmmvs5 | | | 83.37 175 | 82.68 176 | 84.18 167 | 87.13 187 | 93.18 152 | 86.74 184 | 82.08 166 | 76.48 193 | 67.28 181 | 71.26 158 | 62.70 197 | 84.71 156 | 90.77 150 | 90.12 166 | 97.15 129 | 94.24 155 |
|
FMVSNet1 | | | 87.33 125 | 86.00 143 | 88.89 113 | 87.13 187 | 92.83 163 | 93.08 106 | 84.46 137 | 81.35 165 | 82.20 102 | 66.33 180 | 77.96 132 | 88.96 116 | 93.97 96 | 94.16 75 | 97.54 116 | 95.38 142 |
|
PS-CasMVS | | | 82.53 185 | 81.54 188 | 83.68 172 | 87.08 189 | 92.54 171 | 86.20 189 | 83.46 151 | 76.46 194 | 65.73 190 | 65.71 185 | 59.41 213 | 81.61 179 | 89.06 179 | 90.55 155 | 98.03 83 | 97.07 90 |
|
our_test_3 | | | | | | 86.93 190 | 89.77 201 | 81.61 203 | | | | | | | | | | |
|
PEN-MVS | | | 82.49 186 | 81.58 187 | 83.56 174 | 86.93 190 | 92.05 182 | 86.71 185 | 83.84 144 | 76.94 191 | 64.68 194 | 67.24 173 | 60.11 209 | 81.17 181 | 87.78 186 | 90.70 152 | 98.02 84 | 96.21 117 |
|
v1192 | | | 83.56 173 | 82.35 178 | 84.98 154 | 86.84 192 | 92.84 161 | 90.01 146 | 82.70 155 | 78.54 181 | 66.48 184 | 64.88 190 | 62.91 195 | 86.91 136 | 90.72 152 | 90.25 161 | 96.94 144 | 96.32 113 |
|
v144192 | | | 83.48 174 | 82.23 179 | 84.94 155 | 86.65 193 | 92.84 161 | 89.63 156 | 82.48 160 | 77.87 185 | 67.36 180 | 65.33 187 | 63.50 194 | 86.51 139 | 89.72 170 | 89.99 171 | 97.03 137 | 96.35 111 |
|
DTE-MVSNet | | | 81.76 191 | 81.04 193 | 82.60 188 | 86.63 194 | 91.48 193 | 85.97 191 | 83.70 146 | 76.45 195 | 62.44 199 | 67.16 174 | 59.98 210 | 78.98 188 | 87.15 190 | 89.93 172 | 97.88 94 | 95.12 145 |
|
pmnet_mix02 | | | 80.14 196 | 80.21 197 | 80.06 196 | 86.61 195 | 89.66 202 | 80.40 206 | 82.20 165 | 82.29 161 | 61.35 202 | 71.52 157 | 66.67 179 | 76.75 194 | 82.55 207 | 80.18 210 | 93.05 196 | 88.62 198 |
|
v1921920 | | | 83.30 176 | 82.09 182 | 84.70 158 | 86.59 196 | 92.67 167 | 89.82 152 | 82.23 164 | 78.32 182 | 65.76 189 | 64.64 192 | 62.35 198 | 86.78 138 | 90.34 159 | 90.02 169 | 97.02 138 | 96.31 114 |
|
v1240 | | | 82.88 182 | 81.66 186 | 84.29 164 | 86.46 197 | 92.52 173 | 89.06 163 | 81.82 169 | 77.16 189 | 65.09 193 | 64.17 194 | 61.50 203 | 86.36 140 | 90.12 163 | 90.13 163 | 96.95 143 | 96.04 123 |
|
anonymousdsp | | | 84.51 158 | 85.85 147 | 82.95 183 | 86.30 198 | 93.51 140 | 85.77 192 | 80.38 179 | 78.25 184 | 63.42 198 | 73.51 148 | 72.20 153 | 84.64 157 | 93.21 114 | 92.16 124 | 97.19 127 | 98.14 47 |
|
pmmvs6 | | | 80.90 193 | 78.77 199 | 83.38 177 | 85.84 199 | 91.61 189 | 86.01 190 | 82.54 159 | 64.17 216 | 70.43 159 | 54.14 213 | 67.06 176 | 80.73 183 | 90.50 158 | 89.17 182 | 94.74 191 | 94.75 149 |
|
MVS-HIRNet | | | 78.16 200 | 77.57 204 | 78.83 200 | 85.83 200 | 87.76 207 | 76.67 210 | 70.22 212 | 75.82 199 | 67.39 179 | 55.61 208 | 70.52 159 | 81.96 176 | 86.67 194 | 85.06 198 | 90.93 209 | 81.58 212 |
|
test20.03 | | | 76.41 204 | 78.49 201 | 73.98 206 | 85.64 201 | 87.50 208 | 75.89 211 | 80.71 178 | 70.84 210 | 51.07 219 | 68.06 171 | 61.40 204 | 54.99 215 | 88.28 183 | 87.20 188 | 95.58 179 | 86.15 205 |
|
v7n | | | 82.25 188 | 81.54 188 | 83.07 181 | 85.55 202 | 92.58 169 | 86.68 186 | 81.10 177 | 76.54 192 | 65.97 188 | 62.91 196 | 60.56 207 | 82.36 172 | 91.07 147 | 90.35 158 | 96.77 156 | 96.80 96 |
|
N_pmnet | | | 77.55 203 | 76.68 206 | 78.56 201 | 85.43 203 | 87.30 210 | 78.84 208 | 81.88 168 | 78.30 183 | 60.61 203 | 61.46 199 | 62.15 199 | 74.03 203 | 82.04 208 | 80.69 209 | 90.59 211 | 84.81 210 |
|
Anonymous20231206 | | | 78.09 201 | 78.11 202 | 78.07 202 | 85.19 204 | 89.17 203 | 80.99 204 | 81.24 176 | 75.46 200 | 58.25 209 | 54.78 212 | 59.90 211 | 66.73 209 | 88.94 181 | 88.26 185 | 96.01 167 | 90.25 190 |
|
MDTV_nov1_ep13_2view | | | 80.43 194 | 80.94 194 | 79.84 197 | 84.82 205 | 90.87 196 | 84.23 196 | 73.80 201 | 80.28 171 | 64.33 195 | 70.05 166 | 68.77 167 | 79.67 184 | 84.83 200 | 83.50 203 | 92.17 202 | 88.25 203 |
|
FPMVS | | | 69.87 210 | 67.10 213 | 73.10 208 | 84.09 206 | 78.35 218 | 79.40 207 | 76.41 194 | 71.92 205 | 57.71 210 | 54.06 214 | 50.04 219 | 56.72 213 | 71.19 215 | 68.70 215 | 84.25 216 | 75.43 216 |
|
EU-MVSNet | | | 78.43 199 | 80.25 196 | 76.30 204 | 83.81 207 | 87.27 211 | 80.99 204 | 79.52 182 | 76.01 196 | 54.12 214 | 70.44 163 | 64.87 189 | 67.40 208 | 86.23 195 | 85.54 195 | 91.95 205 | 91.41 179 |
|
FMVSNet5 | | | 84.47 161 | 84.72 156 | 84.18 167 | 83.30 208 | 88.43 205 | 88.09 173 | 79.42 183 | 84.25 145 | 74.14 137 | 73.15 153 | 78.74 124 | 83.65 165 | 91.19 144 | 91.19 143 | 96.46 160 | 86.07 206 |
|
MIMVSNet | | | 82.97 181 | 84.00 161 | 81.77 194 | 82.23 209 | 92.25 177 | 87.40 180 | 72.73 208 | 81.48 164 | 69.55 164 | 68.79 169 | 72.42 152 | 81.82 177 | 92.23 129 | 92.25 120 | 96.89 150 | 88.61 199 |
|
PM-MVS | | | 80.29 195 | 79.30 198 | 81.45 195 | 81.91 210 | 88.23 206 | 82.61 200 | 79.01 184 | 79.99 174 | 67.15 182 | 69.07 168 | 51.39 218 | 82.92 169 | 87.55 188 | 85.59 193 | 95.08 187 | 93.28 168 |
|
pmmvs-eth3d | | | 79.78 198 | 77.58 203 | 82.34 190 | 81.57 211 | 87.46 209 | 82.92 199 | 81.28 174 | 75.33 201 | 71.34 151 | 61.88 198 | 52.41 217 | 81.59 180 | 87.56 187 | 86.90 189 | 95.36 184 | 91.48 178 |
|
new-patchmatchnet | | | 72.32 207 | 71.09 210 | 73.74 207 | 81.17 212 | 84.86 214 | 72.21 216 | 77.48 191 | 68.32 213 | 54.89 213 | 55.10 210 | 49.31 221 | 63.68 212 | 79.30 212 | 76.46 213 | 93.03 197 | 84.32 211 |
|
ET-MVSNet_ETH3D | | | 89.93 100 | 90.84 89 | 88.87 114 | 79.60 213 | 96.19 100 | 94.43 69 | 86.56 115 | 90.63 75 | 80.75 113 | 90.71 46 | 77.78 134 | 93.73 59 | 91.36 141 | 93.45 93 | 98.15 70 | 95.77 130 |
|
PMVS |  | 56.77 18 | 61.27 212 | 58.64 215 | 64.35 212 | 75.66 214 | 54.60 222 | 53.62 222 | 74.23 199 | 53.69 220 | 58.37 208 | 44.27 218 | 49.38 220 | 44.16 219 | 69.51 217 | 65.35 217 | 80.07 218 | 73.66 217 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 72.29 208 | 73.25 208 | 71.16 211 | 75.35 215 | 81.38 215 | 73.72 215 | 69.27 213 | 75.97 197 | 49.84 220 | 56.27 207 | 56.12 216 | 69.08 205 | 81.73 209 | 80.86 208 | 89.72 214 | 80.44 214 |
|
ambc | | | | 67.96 212 | | 73.69 216 | 79.79 217 | 73.82 214 | | 71.61 206 | 59.80 206 | 46.00 216 | 20.79 226 | 66.15 210 | 86.92 192 | 80.11 211 | 89.13 215 | 90.50 187 |
|
pmmvs3 | | | 71.13 209 | 71.06 211 | 71.21 210 | 73.54 217 | 80.19 216 | 71.69 217 | 64.86 216 | 62.04 219 | 52.10 216 | 54.92 211 | 48.00 222 | 75.03 199 | 83.75 205 | 83.24 204 | 90.04 213 | 85.27 207 |
|
MDA-MVSNet-bldmvs | | | 73.81 205 | 72.56 209 | 75.28 205 | 72.52 218 | 88.87 204 | 74.95 213 | 82.67 157 | 71.57 207 | 55.02 212 | 65.96 183 | 42.84 224 | 76.11 196 | 70.61 216 | 81.47 207 | 90.38 212 | 86.59 204 |
|
tmp_tt | | | | | 50.24 216 | 68.55 219 | 46.86 224 | 48.90 224 | 18.28 223 | 86.51 127 | 68.32 173 | 70.19 165 | 65.33 184 | 26.69 222 | 74.37 214 | 66.80 216 | 70.72 222 | |
|
Gipuma |  | | 58.52 213 | 56.17 216 | 61.27 213 | 67.14 220 | 58.06 221 | 52.16 223 | 68.40 215 | 69.00 212 | 45.02 222 | 22.79 220 | 20.57 227 | 55.11 214 | 76.27 213 | 79.33 212 | 79.80 219 | 67.16 219 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MIMVSNet1 | | | 73.19 206 | 73.70 207 | 72.60 209 | 65.42 221 | 86.69 212 | 75.56 212 | 79.65 181 | 67.87 214 | 55.30 211 | 45.24 217 | 56.41 215 | 63.79 211 | 86.98 191 | 87.66 187 | 95.85 169 | 85.04 208 |
|
PMMVS2 | | | 53.68 215 | 55.72 217 | 51.30 214 | 58.84 222 | 67.02 220 | 54.23 221 | 60.97 219 | 47.50 221 | 19.42 225 | 34.81 219 | 31.97 225 | 30.88 221 | 65.84 218 | 69.99 214 | 83.47 217 | 72.92 218 |
|
EMVS | | | 39.04 218 | 34.32 220 | 44.54 218 | 58.25 223 | 39.35 226 | 27.61 226 | 62.55 218 | 35.99 222 | 16.40 227 | 20.04 223 | 14.77 228 | 44.80 217 | 33.12 222 | 44.10 221 | 57.61 224 | 52.89 222 |
|
E-PMN | | | 40.00 216 | 35.74 219 | 44.98 217 | 57.69 224 | 39.15 227 | 28.05 225 | 62.70 217 | 35.52 223 | 17.78 226 | 20.90 221 | 14.36 229 | 44.47 218 | 35.89 221 | 47.86 220 | 59.15 223 | 56.47 221 |
|
MVE |  | 39.81 19 | 39.52 217 | 41.58 218 | 37.11 219 | 33.93 225 | 49.06 223 | 26.45 227 | 54.22 220 | 29.46 224 | 24.15 224 | 20.77 222 | 10.60 230 | 34.42 220 | 51.12 220 | 65.27 218 | 49.49 225 | 64.81 220 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 58.10 214 | 64.61 214 | 50.51 215 | 28.26 226 | 41.71 225 | 61.28 220 | 32.07 222 | 75.92 198 | 52.04 217 | 47.94 215 | 61.83 202 | 51.80 216 | 79.83 211 | 63.95 219 | 77.60 220 | 81.05 213 |
|
testmvs | | | 4.35 219 | 6.54 221 | 1.79 221 | 0.60 227 | 1.82 228 | 3.06 229 | 0.95 224 | 7.22 225 | 0.88 229 | 12.38 224 | 1.25 231 | 3.87 224 | 6.09 223 | 5.58 222 | 1.40 226 | 11.42 224 |
|
GG-mvs-BLEND | | | 62.84 211 | 90.21 93 | 30.91 220 | 0.57 228 | 94.45 118 | 86.99 182 | 0.34 226 | 88.71 107 | 0.98 228 | 81.55 108 | 91.58 59 | 0.86 225 | 92.66 119 | 91.43 140 | 95.73 172 | 91.11 183 |
|
test123 | | | 3.48 220 | 5.31 222 | 1.34 222 | 0.20 229 | 1.52 229 | 2.17 230 | 0.58 225 | 6.13 226 | 0.31 230 | 9.85 225 | 0.31 232 | 3.90 223 | 2.65 224 | 5.28 223 | 0.87 227 | 11.46 223 |
|
uanet_test | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
RE-MVS-def | | | | | | | | | | | 60.19 204 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 97.28 24 | | | | | |
|
MTAPA | | | | | | | | | | | 95.36 2 | | 97.46 21 | | | | | |
|
MTMP | | | | | | | | | | | 95.70 1 | | 96.90 27 | | | | | |
|
Patchmatch-RL test | | | | | | | | 18.47 228 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 91.63 68 | | | | | | | | |
|
Patchmtry | | | | | | | 92.39 175 | 89.18 160 | 73.30 205 | | 71.08 154 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 71.82 219 | 68.37 218 | 48.05 221 | 77.38 187 | 46.88 221 | 65.77 184 | 47.03 223 | 67.48 207 | 64.27 219 | | 76.89 221 | 76.72 215 |
|