| SMA-MVS |  | | 97.53 7 | 97.93 7 | 97.07 10 | 99.21 1 | 99.02 8 | 98.08 19 | 96.25 11 | 96.36 12 | 93.57 15 | 96.56 14 | 99.27 5 | 96.78 16 | 97.91 4 | 97.43 3 | 98.51 26 | 98.94 12 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| APDe-MVS |  | | 97.79 5 | 97.96 6 | 97.60 2 | 99.20 2 | 99.10 6 | 98.88 2 | 96.68 2 | 96.81 7 | 94.64 6 | 97.84 3 | 98.02 11 | 97.24 3 | 97.74 8 | 97.02 14 | 98.97 5 | 99.16 6 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DVP-MVS++ | | | 98.07 1 | 98.46 1 | 97.62 1 | 99.08 3 | 99.29 2 | 98.84 3 | 96.63 4 | 97.89 1 | 95.35 3 | 97.83 4 | 99.48 3 | 96.98 9 | 97.99 2 | 97.14 11 | 98.82 11 | 99.60 1 |
|
| HPM-MVS++ |  | | 97.22 11 | 97.40 12 | 97.01 11 | 99.08 3 | 98.55 24 | 98.19 14 | 96.48 7 | 96.02 19 | 93.28 20 | 96.26 17 | 98.71 8 | 96.76 17 | 97.30 16 | 96.25 38 | 98.30 54 | 98.68 16 |
|
| ACMMP_NAP | | | 96.93 16 | 97.27 15 | 96.53 23 | 99.06 5 | 98.95 9 | 98.24 13 | 96.06 15 | 95.66 21 | 90.96 32 | 95.63 24 | 97.71 16 | 96.53 20 | 97.66 10 | 96.68 20 | 98.30 54 | 98.61 21 |
|
| DVP-MVS |  | | 97.93 3 | 98.23 3 | 97.58 3 | 99.05 6 | 99.31 1 | 98.64 6 | 96.62 5 | 97.56 2 | 95.08 5 | 96.61 13 | 99.64 1 | 97.32 1 | 97.91 4 | 97.31 6 | 98.77 15 | 99.26 2 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| PGM-MVS | | | 96.16 24 | 96.33 28 | 95.95 26 | 99.04 7 | 98.63 19 | 98.32 12 | 92.76 42 | 93.42 48 | 90.49 37 | 96.30 16 | 95.31 41 | 96.71 18 | 96.46 40 | 96.02 47 | 98.38 45 | 98.19 43 |
|
| APD-MVS |  | | 97.12 13 | 97.05 18 | 97.19 7 | 99.04 7 | 98.63 19 | 98.45 8 | 96.54 6 | 94.81 36 | 93.50 16 | 96.10 19 | 97.40 22 | 96.81 13 | 97.05 22 | 96.82 19 | 98.80 12 | 98.56 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| NCCC | | | 96.75 19 | 96.67 24 | 96.85 16 | 99.03 9 | 98.44 34 | 98.15 16 | 96.28 10 | 96.32 13 | 92.39 25 | 92.16 35 | 97.55 20 | 96.68 19 | 97.32 14 | 96.65 22 | 98.55 25 | 98.26 39 |
|
| CNVR-MVS | | | 97.30 10 | 97.41 11 | 97.18 8 | 99.02 10 | 98.60 21 | 98.15 16 | 96.24 13 | 96.12 17 | 94.10 11 | 95.54 25 | 97.99 12 | 96.99 7 | 97.97 3 | 97.17 9 | 98.57 24 | 98.50 30 |
|
| MSP-MVS | | | 97.70 6 | 98.09 5 | 97.24 6 | 99.00 11 | 99.17 5 | 98.76 5 | 96.41 9 | 96.91 5 | 93.88 14 | 97.72 5 | 99.04 7 | 96.93 11 | 97.29 17 | 97.31 6 | 98.45 37 | 99.23 4 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| ACMMPR | | | 96.92 17 | 96.96 19 | 96.87 15 | 98.99 12 | 98.78 11 | 98.38 10 | 95.52 24 | 96.57 10 | 92.81 24 | 96.06 20 | 95.90 36 | 97.07 5 | 96.60 37 | 96.34 35 | 98.46 34 | 98.42 34 |
|
| HFP-MVS | | | 97.11 14 | 97.19 16 | 97.00 12 | 98.97 13 | 98.73 12 | 98.37 11 | 95.69 21 | 96.60 9 | 93.28 20 | 96.87 8 | 96.64 29 | 97.27 2 | 96.64 35 | 96.33 36 | 98.44 38 | 98.56 23 |
|
| SteuartSystems-ACMMP | | | 97.10 15 | 97.49 10 | 96.65 18 | 98.97 13 | 98.95 9 | 98.43 9 | 95.96 17 | 95.12 28 | 91.46 28 | 96.85 9 | 97.60 18 | 96.37 24 | 97.76 6 | 97.16 10 | 98.68 18 | 98.97 11 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SF-MVS | | | 97.20 12 | 97.29 14 | 97.10 9 | 98.95 15 | 98.51 29 | 97.51 29 | 96.48 7 | 96.17 16 | 94.64 6 | 97.32 6 | 97.57 19 | 96.23 26 | 96.78 29 | 96.15 42 | 98.79 14 | 98.55 28 |
|
| SED-MVS | | | 97.98 2 | 98.36 2 | 97.54 4 | 98.94 16 | 99.29 2 | 98.81 4 | 96.64 3 | 97.14 3 | 95.16 4 | 97.96 2 | 99.61 2 | 96.92 12 | 98.00 1 | 97.24 8 | 98.75 17 | 99.25 3 |
|
| X-MVS | | | 96.07 26 | 96.33 28 | 95.77 29 | 98.94 16 | 98.66 14 | 97.94 23 | 95.41 30 | 95.12 28 | 88.03 54 | 93.00 33 | 96.06 32 | 95.85 29 | 96.65 34 | 96.35 32 | 98.47 32 | 98.48 31 |
|
| SR-MVS | | | | | | 98.93 18 | | | 96.00 16 | | | | 97.75 15 | | | | | |
|
| MP-MVS |  | | 96.56 21 | 96.72 23 | 96.37 24 | 98.93 18 | 98.48 30 | 98.04 20 | 95.55 23 | 94.32 40 | 90.95 34 | 95.88 22 | 97.02 26 | 96.29 25 | 96.77 30 | 96.01 48 | 98.47 32 | 98.56 23 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MCST-MVS | | | 96.83 18 | 97.06 17 | 96.57 19 | 98.88 20 | 98.47 32 | 98.02 21 | 96.16 14 | 95.58 23 | 90.96 32 | 95.78 23 | 97.84 14 | 96.46 22 | 97.00 25 | 96.17 40 | 98.94 7 | 98.55 28 |
|
| CP-MVS | | | 96.68 20 | 96.59 26 | 96.77 17 | 98.85 21 | 98.58 22 | 98.18 15 | 95.51 26 | 95.34 25 | 92.94 23 | 95.21 28 | 96.25 31 | 96.79 15 | 96.44 42 | 95.77 50 | 98.35 46 | 98.56 23 |
|
| DPE-MVS |  | | 97.83 4 | 98.13 4 | 97.48 5 | 98.83 22 | 99.19 4 | 98.99 1 | 96.70 1 | 96.05 18 | 94.39 9 | 98.30 1 | 99.47 4 | 97.02 6 | 97.75 7 | 97.02 14 | 98.98 3 | 99.10 9 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| mPP-MVS | | | | | | 98.76 23 | | | | | | | 95.49 39 | | | | | |
|
| CSCG | | | 95.68 30 | 95.46 35 | 95.93 27 | 98.71 24 | 99.07 7 | 97.13 35 | 93.55 37 | 95.48 24 | 93.35 19 | 90.61 45 | 93.82 46 | 95.16 37 | 94.60 82 | 95.57 54 | 97.70 107 | 99.08 10 |
|
| DeepC-MVS_fast | | 93.32 1 | 96.48 22 | 96.42 27 | 96.56 20 | 98.70 25 | 98.31 38 | 97.97 22 | 95.76 20 | 96.31 14 | 92.01 27 | 91.43 40 | 95.42 40 | 96.46 22 | 97.65 11 | 97.69 1 | 98.49 31 | 98.12 48 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| AdaColmap |  | | 95.02 37 | 93.71 50 | 96.54 22 | 98.51 26 | 97.76 58 | 96.69 40 | 95.94 19 | 93.72 47 | 93.50 16 | 89.01 53 | 90.53 66 | 96.49 21 | 94.51 85 | 93.76 84 | 98.07 78 | 96.69 97 |
|
| train_agg | | | 96.15 25 | 96.64 25 | 95.58 33 | 98.44 27 | 98.03 48 | 98.14 18 | 95.40 31 | 93.90 46 | 87.72 59 | 96.26 17 | 98.10 10 | 95.75 31 | 96.25 47 | 95.45 56 | 98.01 85 | 98.47 32 |
|
| CDPH-MVS | | | 94.80 41 | 95.50 33 | 93.98 46 | 98.34 28 | 98.06 47 | 97.41 30 | 93.23 39 | 92.81 53 | 82.98 99 | 92.51 34 | 94.82 42 | 93.53 59 | 96.08 50 | 96.30 37 | 98.42 40 | 97.94 55 |
|
| TPM-MVS | | | | | | 98.33 29 | 97.85 54 | 97.06 36 | | | 89.97 40 | 93.26 31 | 97.16 25 | 93.12 65 | | | 97.79 97 | 95.95 125 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| MSLP-MVS++ | | | 96.05 27 | 95.63 31 | 96.55 21 | 98.33 29 | 98.17 44 | 96.94 37 | 94.61 34 | 94.70 38 | 94.37 10 | 89.20 52 | 95.96 35 | 96.81 13 | 95.57 58 | 97.33 5 | 98.24 63 | 98.47 32 |
|
| ACMMP |  | | 95.54 31 | 95.49 34 | 95.61 32 | 98.27 31 | 98.53 26 | 97.16 34 | 94.86 32 | 94.88 34 | 89.34 43 | 95.36 27 | 91.74 55 | 95.50 35 | 95.51 59 | 94.16 75 | 98.50 29 | 98.22 41 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| 3Dnovator+ | | 90.56 5 | 95.06 36 | 94.56 45 | 95.65 31 | 98.11 32 | 98.15 45 | 97.19 33 | 91.59 51 | 95.11 30 | 93.23 22 | 81.99 102 | 94.71 43 | 95.43 36 | 96.48 39 | 96.88 18 | 98.35 46 | 98.63 18 |
|
| 3Dnovator | | 90.28 7 | 94.70 42 | 94.34 48 | 95.11 35 | 98.06 33 | 98.21 42 | 96.89 38 | 91.03 57 | 94.72 37 | 91.45 29 | 82.87 93 | 93.10 50 | 94.61 42 | 96.24 48 | 97.08 13 | 98.63 21 | 98.16 44 |
|
| PLC |  | 90.69 4 | 94.32 46 | 92.99 58 | 95.87 28 | 97.91 34 | 96.49 93 | 95.95 51 | 94.12 35 | 94.94 32 | 94.09 12 | 85.90 71 | 90.77 63 | 95.58 33 | 94.52 84 | 93.32 98 | 97.55 116 | 95.00 147 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| EPNet | | | 93.92 50 | 94.40 46 | 93.36 54 | 97.89 35 | 96.55 91 | 96.08 47 | 92.14 45 | 91.65 65 | 89.16 45 | 94.07 30 | 90.17 70 | 87.78 125 | 95.24 64 | 94.97 64 | 97.09 135 | 98.15 45 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CPTT-MVS | | | 95.54 31 | 95.07 37 | 96.10 25 | 97.88 36 | 97.98 50 | 97.92 24 | 94.86 32 | 94.56 39 | 92.16 26 | 91.01 41 | 95.71 37 | 96.97 10 | 94.56 83 | 93.50 91 | 96.81 156 | 98.14 46 |
|
| QAPM | | | 94.13 49 | 94.33 49 | 93.90 47 | 97.82 37 | 98.37 37 | 96.47 42 | 90.89 58 | 92.73 56 | 85.63 82 | 85.35 75 | 93.87 45 | 94.17 49 | 95.71 57 | 95.90 49 | 98.40 42 | 98.42 34 |
|
| DeepC-MVS | | 92.10 3 | 95.22 34 | 94.77 41 | 95.75 30 | 97.77 38 | 98.54 25 | 97.63 28 | 95.96 17 | 95.07 31 | 88.85 48 | 85.35 75 | 91.85 54 | 95.82 30 | 96.88 28 | 97.10 12 | 98.44 38 | 98.63 18 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OpenMVS |  | 88.18 11 | 92.51 62 | 91.61 79 | 93.55 53 | 97.74 39 | 98.02 49 | 95.66 53 | 90.46 61 | 89.14 102 | 86.50 70 | 75.80 136 | 90.38 69 | 92.69 70 | 94.99 67 | 95.30 58 | 98.27 58 | 97.63 66 |
|
| TSAR-MVS + ACMM | | | 96.19 23 | 97.39 13 | 94.78 37 | 97.70 40 | 98.41 35 | 97.72 27 | 95.49 27 | 96.47 11 | 86.66 69 | 96.35 15 | 97.85 13 | 93.99 51 | 97.19 20 | 96.37 31 | 97.12 133 | 99.13 7 |
|
| MAR-MVS | | | 92.71 61 | 92.63 62 | 92.79 67 | 97.70 40 | 97.15 77 | 93.75 90 | 87.98 97 | 90.71 71 | 85.76 80 | 86.28 68 | 86.38 79 | 94.35 47 | 94.95 68 | 95.49 55 | 97.22 126 | 97.44 74 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PHI-MVS | | | 95.86 28 | 96.93 22 | 94.61 40 | 97.60 42 | 98.65 18 | 96.49 41 | 93.13 40 | 94.07 43 | 87.91 58 | 97.12 7 | 97.17 24 | 93.90 54 | 96.46 40 | 96.93 17 | 98.64 20 | 98.10 50 |
|
| DPM-MVS | | | 95.07 35 | 94.84 40 | 95.34 34 | 97.44 43 | 97.49 67 | 97.76 26 | 95.52 24 | 94.88 34 | 88.92 47 | 87.25 60 | 96.44 30 | 94.41 44 | 95.78 55 | 96.11 44 | 97.99 87 | 95.95 125 |
|
| SD-MVS | | | 97.35 8 | 97.73 8 | 96.90 14 | 97.35 44 | 98.66 14 | 97.85 25 | 96.25 11 | 96.86 6 | 94.54 8 | 96.75 11 | 99.13 6 | 96.99 7 | 96.94 26 | 96.58 23 | 98.39 44 | 99.20 5 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| MVS_111021_HR | | | 94.84 39 | 95.91 30 | 93.60 52 | 97.35 44 | 98.46 33 | 95.08 61 | 91.19 54 | 94.18 42 | 85.97 74 | 95.38 26 | 92.56 52 | 93.61 58 | 96.61 36 | 96.25 38 | 98.40 42 | 97.92 57 |
|
| TSAR-MVS + MP. | | | 97.31 9 | 97.64 9 | 96.92 13 | 97.28 46 | 98.56 23 | 98.61 7 | 95.48 28 | 96.72 8 | 94.03 13 | 96.73 12 | 98.29 9 | 97.15 4 | 97.61 12 | 96.42 26 | 98.96 6 | 99.13 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CANet | | | 94.85 38 | 94.92 39 | 94.78 37 | 97.25 47 | 98.52 28 | 97.20 32 | 91.81 48 | 93.25 50 | 91.06 31 | 86.29 67 | 94.46 44 | 92.99 66 | 97.02 24 | 96.68 20 | 98.34 48 | 98.20 42 |
|
| OMC-MVS | | | 94.49 45 | 94.36 47 | 94.64 39 | 97.17 48 | 97.73 60 | 95.49 55 | 92.25 44 | 96.18 15 | 90.34 38 | 88.51 55 | 92.88 51 | 94.90 41 | 94.92 70 | 94.17 74 | 97.69 109 | 96.15 117 |
|
| MVS_111021_LR | | | 94.84 39 | 95.57 32 | 94.00 44 | 97.11 49 | 97.72 62 | 94.88 65 | 91.16 55 | 95.24 27 | 88.74 49 | 96.03 21 | 91.52 59 | 94.33 48 | 95.96 52 | 95.01 63 | 97.79 97 | 97.49 73 |
|
| CNLPA | | | 93.69 53 | 92.50 64 | 95.06 36 | 97.11 49 | 97.36 69 | 93.88 87 | 93.30 38 | 95.64 22 | 93.44 18 | 80.32 111 | 90.73 64 | 94.99 40 | 93.58 102 | 93.33 96 | 97.67 111 | 96.57 102 |
|
| LS3D | | | 91.97 68 | 90.98 88 | 93.12 60 | 97.03 51 | 97.09 80 | 95.33 60 | 95.59 22 | 92.47 57 | 79.26 119 | 81.60 105 | 82.77 100 | 94.39 46 | 94.28 87 | 94.23 73 | 97.14 132 | 94.45 153 |
|
| TAPA-MVS | | 90.35 6 | 93.69 53 | 93.52 51 | 93.90 47 | 96.89 52 | 97.62 64 | 96.15 45 | 91.67 50 | 94.94 32 | 85.97 74 | 87.72 59 | 91.96 53 | 94.40 45 | 93.76 100 | 93.06 108 | 98.30 54 | 95.58 135 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| DELS-MVS | | | 93.71 52 | 93.47 52 | 94.00 44 | 96.82 53 | 98.39 36 | 96.80 39 | 91.07 56 | 89.51 99 | 89.94 41 | 83.80 85 | 89.29 72 | 90.95 89 | 97.32 14 | 97.65 2 | 98.42 40 | 98.32 37 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| EPNet_dtu | | | 88.32 118 | 90.61 90 | 85.64 147 | 96.79 54 | 92.27 176 | 92.03 123 | 90.31 62 | 89.05 103 | 65.44 191 | 89.43 50 | 85.90 84 | 74.22 200 | 92.76 116 | 92.09 126 | 95.02 189 | 92.76 173 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MSDG | | | 90.42 95 | 88.25 115 | 92.94 65 | 96.67 55 | 94.41 120 | 93.96 82 | 92.91 41 | 89.59 97 | 86.26 72 | 76.74 129 | 80.92 116 | 90.43 97 | 92.60 121 | 92.08 127 | 97.44 121 | 91.41 179 |
|
| CS-MVS-test | | | 94.63 43 | 95.28 36 | 93.88 49 | 96.56 56 | 98.67 13 | 93.41 99 | 89.31 80 | 94.27 41 | 89.64 42 | 90.84 43 | 91.64 57 | 95.58 33 | 97.04 23 | 96.17 40 | 98.77 15 | 98.32 37 |
|
| DeepPCF-MVS | | 92.65 2 | 95.50 33 | 96.96 19 | 93.79 51 | 96.44 57 | 98.21 42 | 93.51 97 | 94.08 36 | 96.94 4 | 89.29 44 | 93.08 32 | 96.77 28 | 93.82 55 | 97.68 9 | 97.40 4 | 95.59 179 | 98.65 17 |
|
| PCF-MVS | | 90.19 8 | 92.98 57 | 92.07 72 | 94.04 43 | 96.39 58 | 97.87 51 | 96.03 48 | 95.47 29 | 87.16 117 | 85.09 92 | 84.81 79 | 93.21 49 | 93.46 61 | 91.98 134 | 91.98 130 | 97.78 99 | 97.51 72 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVS_0304 | | | 94.30 47 | 94.68 43 | 93.86 50 | 96.33 59 | 98.48 30 | 97.41 30 | 91.20 53 | 92.75 54 | 86.96 66 | 86.03 70 | 93.81 47 | 92.64 71 | 96.89 27 | 96.54 25 | 98.61 22 | 98.24 40 |
|
| CS-MVS | | | 94.53 44 | 94.73 42 | 94.31 42 | 96.30 60 | 98.53 26 | 94.98 62 | 89.24 82 | 93.37 49 | 90.24 39 | 88.96 54 | 89.76 71 | 96.09 28 | 97.48 13 | 96.42 26 | 98.99 2 | 98.59 22 |
|
| OPM-MVS | | | 91.08 81 | 89.34 101 | 93.11 61 | 96.18 61 | 96.13 102 | 96.39 43 | 92.39 43 | 82.97 156 | 81.74 102 | 82.55 99 | 80.20 119 | 93.97 53 | 94.62 80 | 93.23 99 | 98.00 86 | 95.73 131 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| PVSNet_BlendedMVS | | | 92.80 58 | 92.44 66 | 93.23 55 | 96.02 62 | 97.83 56 | 93.74 91 | 90.58 59 | 91.86 62 | 90.69 35 | 85.87 73 | 82.04 109 | 90.01 99 | 96.39 43 | 95.26 59 | 98.34 48 | 97.81 62 |
|
| PVSNet_Blended | | | 92.80 58 | 92.44 66 | 93.23 55 | 96.02 62 | 97.83 56 | 93.74 91 | 90.58 59 | 91.86 62 | 90.69 35 | 85.87 73 | 82.04 109 | 90.01 99 | 96.39 43 | 95.26 59 | 98.34 48 | 97.81 62 |
|
| XVS | | | | | | 95.68 64 | 98.66 14 | 94.96 63 | | | 88.03 54 | | 96.06 32 | | | | 98.46 34 | |
|
| X-MVStestdata | | | | | | 95.68 64 | 98.66 14 | 94.96 63 | | | 88.03 54 | | 96.06 32 | | | | 98.46 34 | |
|
| HQP-MVS | | | 92.39 64 | 92.49 65 | 92.29 74 | 95.65 66 | 95.94 105 | 95.64 54 | 92.12 46 | 92.46 58 | 79.65 117 | 91.97 37 | 82.68 101 | 92.92 69 | 93.47 107 | 92.77 113 | 97.74 103 | 98.12 48 |
|
| HyFIR lowres test | | | 87.87 120 | 86.42 137 | 89.57 105 | 95.56 67 | 96.99 83 | 92.37 113 | 84.15 139 | 86.64 122 | 77.17 126 | 57.65 207 | 83.97 91 | 91.08 87 | 92.09 132 | 92.44 118 | 97.09 135 | 95.16 144 |
|
| ACMM | | 88.76 10 | 91.70 76 | 90.43 91 | 93.19 57 | 95.56 67 | 95.14 111 | 93.35 101 | 91.48 52 | 92.26 59 | 87.12 64 | 84.02 83 | 79.34 122 | 93.99 51 | 94.07 93 | 92.68 114 | 97.62 115 | 95.50 136 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| COLMAP_ROB |  | 84.39 15 | 87.61 122 | 86.03 142 | 89.46 106 | 95.54 69 | 94.48 117 | 91.77 127 | 90.14 66 | 87.16 117 | 75.50 131 | 73.41 151 | 76.86 141 | 87.33 132 | 90.05 166 | 89.76 176 | 96.48 160 | 90.46 188 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| LGP-MVS_train | | | 91.83 72 | 92.04 73 | 91.58 81 | 95.46 70 | 96.18 101 | 95.97 50 | 89.85 68 | 90.45 78 | 77.76 122 | 91.92 38 | 80.07 120 | 92.34 75 | 94.27 88 | 93.47 92 | 98.11 75 | 97.90 60 |
|
| CHOSEN 1792x2688 | | | 88.57 115 | 87.82 122 | 89.44 107 | 95.46 70 | 96.89 86 | 93.74 91 | 85.87 121 | 89.63 96 | 77.42 125 | 61.38 201 | 83.31 95 | 88.80 120 | 93.44 108 | 93.16 104 | 95.37 184 | 96.95 91 |
|
| PVSNet_Blended_VisFu | | | 91.92 70 | 92.39 68 | 91.36 89 | 95.45 72 | 97.85 54 | 92.25 116 | 89.54 76 | 88.53 109 | 87.47 61 | 79.82 113 | 90.53 66 | 85.47 151 | 96.31 46 | 95.16 62 | 97.99 87 | 98.56 23 |
|
| PatchMatch-RL | | | 90.30 96 | 88.93 108 | 91.89 77 | 95.41 73 | 95.68 107 | 90.94 129 | 88.67 88 | 89.80 94 | 86.95 67 | 85.90 71 | 72.51 150 | 92.46 72 | 93.56 104 | 92.18 123 | 96.93 148 | 92.89 172 |
|
| TSAR-MVS + COLMAP | | | 92.39 64 | 92.31 69 | 92.47 70 | 95.35 74 | 96.46 95 | 96.13 46 | 92.04 47 | 95.33 26 | 80.11 115 | 94.95 29 | 77.35 138 | 94.05 50 | 94.49 86 | 93.08 106 | 97.15 130 | 94.53 151 |
|
| test2506 | | | 90.93 85 | 89.20 104 | 92.95 64 | 94.97 75 | 98.30 39 | 94.53 67 | 90.25 64 | 89.91 91 | 88.39 53 | 83.23 89 | 64.17 193 | 90.69 92 | 96.75 32 | 96.10 45 | 98.87 8 | 95.97 124 |
|
| ECVR-MVS |  | | 90.77 89 | 89.27 102 | 92.52 69 | 94.97 75 | 98.30 39 | 94.53 67 | 90.25 64 | 89.91 91 | 85.80 79 | 73.64 146 | 74.31 147 | 90.69 92 | 96.75 32 | 96.10 45 | 98.87 8 | 95.91 128 |
|
| test1111 | | | 90.47 94 | 89.10 106 | 92.07 76 | 94.92 77 | 98.30 39 | 94.17 80 | 90.30 63 | 89.56 98 | 83.92 95 | 73.25 153 | 73.66 148 | 90.26 98 | 96.77 30 | 96.14 43 | 98.87 8 | 96.04 121 |
|
| ACMP | | 89.13 9 | 92.03 67 | 91.70 78 | 92.41 72 | 94.92 77 | 96.44 97 | 93.95 83 | 89.96 67 | 91.81 64 | 85.48 87 | 90.97 42 | 79.12 123 | 92.42 73 | 93.28 113 | 92.55 117 | 97.76 101 | 97.74 65 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| UA-Net | | | 90.81 86 | 92.58 63 | 88.74 114 | 94.87 79 | 97.44 68 | 92.61 110 | 88.22 93 | 82.35 160 | 78.93 120 | 85.20 77 | 95.61 38 | 79.56 186 | 96.52 38 | 96.57 24 | 98.23 64 | 94.37 154 |
|
| IB-MVS | | 85.10 14 | 87.98 119 | 87.97 120 | 87.99 123 | 94.55 80 | 96.86 87 | 84.52 195 | 88.21 94 | 86.48 127 | 88.54 52 | 74.41 144 | 77.74 135 | 74.10 202 | 89.65 172 | 92.85 112 | 98.06 80 | 97.80 64 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CANet_DTU | | | 90.74 91 | 92.93 60 | 88.19 120 | 94.36 81 | 96.61 89 | 94.34 73 | 84.66 132 | 90.66 72 | 68.75 170 | 90.41 46 | 86.89 77 | 89.78 101 | 95.46 60 | 94.87 65 | 97.25 125 | 95.62 133 |
|
| sasdasda | | | 93.08 55 | 93.09 55 | 93.07 62 | 94.24 82 | 97.86 52 | 95.45 57 | 87.86 103 | 94.00 44 | 87.47 61 | 88.32 56 | 82.37 105 | 95.13 38 | 93.96 98 | 96.41 29 | 98.27 58 | 98.73 13 |
|
| canonicalmvs | | | 93.08 55 | 93.09 55 | 93.07 62 | 94.24 82 | 97.86 52 | 95.45 57 | 87.86 103 | 94.00 44 | 87.47 61 | 88.32 56 | 82.37 105 | 95.13 38 | 93.96 98 | 96.41 29 | 98.27 58 | 98.73 13 |
|
| UGNet | | | 91.52 77 | 93.41 53 | 89.32 108 | 94.13 84 | 97.15 77 | 91.83 126 | 89.01 83 | 90.62 74 | 85.86 78 | 86.83 61 | 91.73 56 | 77.40 191 | 94.68 79 | 94.43 70 | 97.71 105 | 98.40 36 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| thres600view7 | | | 89.28 112 | 87.47 131 | 91.39 86 | 94.12 85 | 97.25 72 | 93.94 85 | 89.74 71 | 85.62 134 | 80.63 113 | 75.24 140 | 69.33 165 | 91.66 82 | 94.92 70 | 93.23 99 | 98.27 58 | 96.72 96 |
|
| IS_MVSNet | | | 91.87 71 | 93.35 54 | 90.14 102 | 94.09 86 | 97.73 60 | 93.09 104 | 88.12 95 | 88.71 106 | 79.98 116 | 84.49 80 | 90.63 65 | 87.49 130 | 97.07 21 | 96.96 16 | 98.07 78 | 97.88 61 |
|
| TSAR-MVS + GP. | | | 95.86 28 | 96.95 21 | 94.60 41 | 94.07 87 | 98.11 46 | 96.30 44 | 91.76 49 | 95.67 20 | 91.07 30 | 96.82 10 | 97.69 17 | 95.71 32 | 95.96 52 | 95.75 51 | 98.68 18 | 98.63 18 |
|
| thres400 | | | 89.40 108 | 87.58 128 | 91.53 83 | 94.06 88 | 97.21 75 | 94.19 79 | 89.83 69 | 85.69 131 | 81.08 109 | 75.50 138 | 69.76 163 | 91.80 78 | 94.79 77 | 93.51 88 | 98.20 67 | 96.60 100 |
|
| ETV-MVS | | | 93.80 51 | 94.57 44 | 92.91 66 | 93.98 89 | 97.50 66 | 93.62 94 | 88.70 87 | 91.95 61 | 87.57 60 | 90.21 47 | 90.79 62 | 94.56 43 | 97.20 19 | 96.35 32 | 99.02 1 | 97.98 52 |
|
| ACMH | | 85.51 13 | 87.31 125 | 86.59 135 | 88.14 121 | 93.96 90 | 94.51 116 | 89.00 165 | 87.99 96 | 81.58 163 | 70.15 160 | 78.41 120 | 71.78 155 | 90.60 95 | 91.30 143 | 91.99 129 | 97.17 129 | 96.58 101 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MS-PatchMatch | | | 87.63 121 | 87.61 126 | 87.65 128 | 93.95 91 | 94.09 126 | 92.60 111 | 81.52 172 | 86.64 122 | 76.41 129 | 73.46 150 | 85.94 83 | 85.01 155 | 92.23 130 | 90.00 170 | 96.43 163 | 90.93 185 |
|
| thres200 | | | 89.49 107 | 87.72 123 | 91.55 82 | 93.95 91 | 97.25 72 | 94.34 73 | 89.74 71 | 85.66 132 | 81.18 106 | 76.12 135 | 70.19 162 | 91.80 78 | 94.92 70 | 93.51 88 | 98.27 58 | 96.40 107 |
|
| CLD-MVS | | | 92.50 63 | 91.96 74 | 93.13 59 | 93.93 93 | 96.24 99 | 95.69 52 | 88.77 86 | 92.92 51 | 89.01 46 | 88.19 58 | 81.74 112 | 93.13 64 | 93.63 101 | 93.08 106 | 98.23 64 | 97.91 59 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| thres100view900 | | | 89.36 109 | 87.61 126 | 91.39 86 | 93.90 94 | 96.86 87 | 94.35 72 | 89.66 75 | 85.87 129 | 81.15 107 | 76.46 131 | 70.38 159 | 91.17 85 | 94.09 92 | 93.43 94 | 98.13 72 | 96.16 116 |
|
| tfpn200view9 | | | 89.55 106 | 87.86 121 | 91.53 83 | 93.90 94 | 97.26 71 | 94.31 75 | 89.74 71 | 85.87 129 | 81.15 107 | 76.46 131 | 70.38 159 | 91.76 80 | 94.92 70 | 93.51 88 | 98.28 57 | 96.61 99 |
|
| EIA-MVS | | | 92.72 60 | 92.96 59 | 92.44 71 | 93.86 96 | 97.76 58 | 93.13 103 | 88.65 89 | 89.78 95 | 86.68 68 | 86.69 64 | 87.57 73 | 93.74 56 | 96.07 51 | 95.32 57 | 98.58 23 | 97.53 71 |
|
| CHOSEN 280x420 | | | 90.77 89 | 92.14 71 | 89.17 110 | 93.86 96 | 92.81 164 | 93.16 102 | 80.22 180 | 90.21 83 | 84.67 94 | 89.89 49 | 91.38 60 | 90.57 96 | 94.94 69 | 92.11 125 | 92.52 200 | 93.65 164 |
|
| FC-MVSNet-train | | | 90.55 92 | 90.19 94 | 90.97 92 | 93.78 98 | 95.16 110 | 92.11 121 | 88.85 84 | 87.64 114 | 83.38 98 | 84.36 82 | 78.41 129 | 89.53 103 | 94.69 78 | 93.15 105 | 98.15 70 | 97.92 57 |
|
| FA-MVS(training) | | | 90.79 88 | 91.33 82 | 90.17 100 | 93.76 99 | 97.22 74 | 92.74 108 | 77.79 190 | 90.60 76 | 88.03 54 | 78.80 117 | 87.41 74 | 91.00 88 | 95.40 62 | 93.43 94 | 97.70 107 | 96.46 104 |
|
| Vis-MVSNet (Re-imp) | | | 90.54 93 | 92.76 61 | 87.94 124 | 93.73 100 | 96.94 85 | 92.17 119 | 87.91 98 | 88.77 105 | 76.12 130 | 83.68 86 | 90.80 61 | 79.49 187 | 96.34 45 | 96.35 32 | 98.21 66 | 96.46 104 |
|
| baseline1 | | | 90.81 86 | 90.29 92 | 91.42 85 | 93.67 101 | 95.86 106 | 93.94 85 | 89.69 74 | 89.29 101 | 82.85 100 | 82.91 92 | 80.30 118 | 89.60 102 | 95.05 66 | 94.79 67 | 98.80 12 | 93.82 162 |
|
| EPP-MVSNet | | | 92.13 66 | 93.06 57 | 91.05 91 | 93.66 102 | 97.30 70 | 92.18 117 | 87.90 99 | 90.24 82 | 83.63 96 | 86.14 69 | 90.52 68 | 90.76 91 | 94.82 75 | 94.38 71 | 98.18 69 | 97.98 52 |
|
| EC-MVSNet | | | 94.19 48 | 95.05 38 | 93.18 58 | 93.56 103 | 97.65 63 | 95.34 59 | 86.37 117 | 92.05 60 | 88.71 50 | 89.91 48 | 93.32 48 | 96.14 27 | 97.29 17 | 96.42 26 | 98.98 3 | 98.70 15 |
|
| ACMH+ | | 85.75 12 | 87.19 127 | 86.02 143 | 88.56 116 | 93.42 104 | 94.41 120 | 89.91 149 | 87.66 108 | 83.45 153 | 72.25 147 | 76.42 133 | 71.99 154 | 90.78 90 | 89.86 167 | 90.94 144 | 97.32 122 | 95.11 146 |
|
| casdiffmvs_mvg |  | | 91.94 69 | 91.25 84 | 92.75 68 | 93.41 105 | 97.19 76 | 95.48 56 | 89.77 70 | 89.86 93 | 86.41 71 | 81.02 109 | 82.23 108 | 92.93 67 | 95.44 61 | 95.61 53 | 98.51 26 | 97.40 76 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_Test | | | 91.81 73 | 92.19 70 | 91.37 88 | 93.24 106 | 96.95 84 | 94.43 69 | 86.25 118 | 91.45 68 | 83.45 97 | 86.31 66 | 85.15 87 | 92.93 67 | 93.99 94 | 94.71 68 | 97.92 91 | 96.77 95 |
|
| MVSTER | | | 91.73 74 | 91.61 79 | 91.86 78 | 93.18 107 | 94.56 114 | 94.37 71 | 87.90 99 | 90.16 86 | 88.69 51 | 89.23 51 | 81.28 114 | 88.92 118 | 95.75 56 | 93.95 81 | 98.12 73 | 96.37 108 |
|
| Anonymous202405211 | | | | 88.00 118 | | 93.16 108 | 96.38 98 | 93.58 95 | 89.34 79 | 87.92 113 | | 65.04 190 | 83.03 97 | 92.07 76 | 92.67 118 | 93.33 96 | 96.96 143 | 97.63 66 |
|
| casdiffmvs |  | | 91.72 75 | 91.16 86 | 92.38 73 | 93.16 108 | 97.15 77 | 93.95 83 | 89.49 77 | 91.58 67 | 86.03 73 | 80.75 110 | 80.95 115 | 93.16 63 | 95.25 63 | 95.22 61 | 98.50 29 | 97.23 82 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tttt0517 | | | 91.01 84 | 91.71 77 | 90.19 99 | 92.98 110 | 97.07 81 | 91.96 125 | 87.63 109 | 90.61 75 | 81.42 104 | 86.76 63 | 82.26 107 | 89.23 110 | 94.86 74 | 93.03 110 | 97.90 92 | 97.36 77 |
|
| Effi-MVS+ | | | 89.79 103 | 89.83 99 | 89.74 104 | 92.98 110 | 96.45 96 | 93.48 98 | 84.24 137 | 87.62 115 | 76.45 128 | 81.76 103 | 77.56 137 | 93.48 60 | 94.61 81 | 93.59 87 | 97.82 96 | 97.22 84 |
|
| RPSCF | | | 89.68 104 | 89.24 103 | 90.20 98 | 92.97 112 | 92.93 160 | 92.30 114 | 87.69 106 | 90.44 79 | 85.12 91 | 91.68 39 | 85.84 85 | 90.69 92 | 87.34 189 | 86.07 191 | 92.46 201 | 90.37 189 |
|
| TDRefinement | | | 84.97 153 | 83.39 168 | 86.81 136 | 92.97 112 | 94.12 125 | 92.18 117 | 87.77 105 | 82.78 157 | 71.31 152 | 68.43 171 | 68.07 171 | 81.10 182 | 89.70 171 | 89.03 183 | 95.55 181 | 91.62 177 |
|
| thisisatest0530 | | | 91.04 83 | 91.74 76 | 90.21 97 | 92.93 114 | 97.00 82 | 92.06 122 | 87.63 109 | 90.74 70 | 81.51 103 | 86.81 62 | 82.48 102 | 89.23 110 | 94.81 76 | 93.03 110 | 97.90 92 | 97.33 79 |
|
| DCV-MVSNet | | | 91.24 79 | 91.26 83 | 91.22 90 | 92.84 115 | 93.44 142 | 93.82 88 | 86.75 114 | 91.33 69 | 85.61 83 | 84.00 84 | 85.46 86 | 91.27 83 | 92.91 115 | 93.62 86 | 97.02 139 | 98.05 51 |
|
| baseline | | | 91.19 80 | 91.89 75 | 90.38 93 | 92.76 116 | 95.04 112 | 93.55 96 | 84.54 135 | 92.92 51 | 85.71 81 | 86.68 65 | 86.96 76 | 89.28 109 | 92.00 133 | 92.62 116 | 96.46 161 | 96.99 89 |
|
| EPMVS | | | 85.77 141 | 86.24 139 | 85.23 152 | 92.76 116 | 93.78 132 | 89.91 149 | 73.60 203 | 90.19 84 | 74.22 135 | 82.18 101 | 78.06 131 | 87.55 129 | 85.61 198 | 85.38 196 | 93.32 194 | 88.48 201 |
|
| GeoE | | | 89.29 111 | 88.68 110 | 89.99 103 | 92.75 118 | 96.03 104 | 93.07 106 | 83.79 144 | 86.98 119 | 81.34 105 | 74.72 141 | 78.92 124 | 91.22 84 | 93.31 111 | 93.21 102 | 97.78 99 | 97.60 70 |
|
| diffmvs |  | | 91.37 78 | 91.09 87 | 91.70 80 | 92.71 119 | 96.47 94 | 94.03 81 | 88.78 85 | 92.74 55 | 85.43 89 | 83.63 87 | 80.37 117 | 91.76 80 | 93.39 109 | 93.78 83 | 97.50 118 | 97.23 82 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DI_MVS_plusplus_trai | | | 91.05 82 | 90.15 95 | 92.11 75 | 92.67 120 | 96.61 89 | 96.03 48 | 88.44 91 | 90.25 81 | 85.92 76 | 73.73 145 | 84.89 89 | 91.92 77 | 94.17 91 | 94.07 79 | 97.68 110 | 97.31 80 |
|
| Anonymous20231211 | | | 89.82 102 | 88.18 116 | 91.74 79 | 92.52 121 | 96.09 103 | 93.38 100 | 89.30 81 | 88.95 104 | 85.90 77 | 64.55 195 | 84.39 90 | 92.41 74 | 92.24 129 | 93.06 108 | 96.93 148 | 97.95 54 |
|
| tpmrst | | | 83.72 171 | 83.45 165 | 84.03 168 | 92.21 122 | 91.66 188 | 88.74 168 | 73.58 204 | 88.14 111 | 72.67 144 | 77.37 125 | 72.11 153 | 86.34 141 | 82.94 206 | 82.05 205 | 90.63 210 | 89.86 193 |
|
| CostFormer | | | 86.78 130 | 86.05 141 | 87.62 130 | 92.15 123 | 93.20 151 | 91.55 128 | 75.83 195 | 88.11 112 | 85.29 90 | 81.76 103 | 76.22 143 | 87.80 124 | 84.45 201 | 85.21 197 | 93.12 195 | 93.42 167 |
|
| Vis-MVSNet |  | | 89.36 109 | 91.49 81 | 86.88 135 | 92.10 124 | 97.60 65 | 92.16 120 | 85.89 120 | 84.21 145 | 75.20 132 | 82.58 97 | 87.13 75 | 77.40 191 | 95.90 54 | 95.63 52 | 98.51 26 | 97.36 77 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| IterMVS-LS | | | 88.60 114 | 88.45 111 | 88.78 113 | 92.02 125 | 92.44 174 | 92.00 124 | 83.57 148 | 86.52 125 | 78.90 121 | 78.61 119 | 81.34 113 | 89.12 113 | 90.68 155 | 93.18 103 | 97.10 134 | 96.35 109 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PatchmatchNet |  | | 85.70 142 | 86.65 134 | 84.60 159 | 91.79 126 | 93.40 143 | 89.27 158 | 73.62 202 | 90.19 84 | 72.63 145 | 82.74 96 | 81.93 111 | 87.64 127 | 84.99 199 | 84.29 201 | 92.64 199 | 89.00 196 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| tpm cat1 | | | 84.13 164 | 81.99 184 | 86.63 139 | 91.74 127 | 91.50 191 | 90.68 131 | 75.69 196 | 86.12 128 | 85.44 88 | 72.39 156 | 70.72 157 | 85.16 153 | 80.89 210 | 81.56 206 | 91.07 208 | 90.71 186 |
|
| USDC | | | 86.73 131 | 85.96 145 | 87.63 129 | 91.64 128 | 93.97 128 | 92.76 107 | 84.58 134 | 88.19 110 | 70.67 157 | 80.10 112 | 67.86 172 | 89.43 104 | 91.81 135 | 89.77 175 | 96.69 158 | 90.05 192 |
|
| SCA | | | 86.25 133 | 87.52 129 | 84.77 156 | 91.59 129 | 93.90 129 | 89.11 162 | 73.25 207 | 90.38 80 | 72.84 143 | 83.26 88 | 83.79 93 | 88.49 122 | 86.07 196 | 85.56 194 | 93.33 193 | 89.67 194 |
|
| gg-mvs-nofinetune | | | 81.83 190 | 83.58 163 | 79.80 197 | 91.57 130 | 96.54 92 | 93.79 89 | 68.80 214 | 62.71 218 | 43.01 223 | 55.28 210 | 85.06 88 | 83.65 165 | 96.13 49 | 94.86 66 | 97.98 90 | 94.46 152 |
|
| Fast-Effi-MVS+ | | | 88.56 116 | 87.99 119 | 89.22 109 | 91.56 131 | 95.21 109 | 92.29 115 | 82.69 155 | 86.82 120 | 77.73 123 | 76.24 134 | 73.39 149 | 93.36 62 | 94.22 90 | 93.64 85 | 97.65 112 | 96.43 106 |
|
| CMPMVS |  | 61.19 17 | 79.86 197 | 77.46 205 | 82.66 186 | 91.54 132 | 91.82 186 | 83.25 198 | 81.57 171 | 70.51 210 | 68.64 171 | 59.89 206 | 66.77 178 | 79.63 185 | 84.00 204 | 84.30 200 | 91.34 206 | 84.89 209 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ADS-MVSNet | | | 84.08 165 | 84.95 153 | 83.05 181 | 91.53 133 | 91.75 187 | 88.16 172 | 70.70 211 | 89.96 90 | 69.51 165 | 78.83 116 | 76.97 140 | 86.29 142 | 84.08 203 | 84.60 199 | 92.13 204 | 88.48 201 |
|
| test-LLR | | | 86.88 128 | 88.28 113 | 85.24 151 | 91.22 134 | 92.07 180 | 87.41 178 | 83.62 146 | 84.58 138 | 69.33 166 | 83.00 90 | 82.79 98 | 84.24 159 | 92.26 127 | 89.81 173 | 95.64 177 | 93.44 165 |
|
| test0.0.03 1 | | | 85.58 144 | 87.69 125 | 83.11 178 | 91.22 134 | 92.54 171 | 85.60 194 | 83.62 146 | 85.66 132 | 67.84 177 | 82.79 95 | 79.70 121 | 73.51 204 | 91.15 147 | 90.79 146 | 96.88 152 | 91.23 182 |
|
| baseline2 | | | 88.97 113 | 89.50 100 | 88.36 117 | 91.14 136 | 95.30 108 | 90.13 143 | 85.17 129 | 87.24 116 | 80.80 111 | 84.46 81 | 78.44 128 | 85.60 148 | 93.54 105 | 91.87 131 | 97.31 123 | 95.66 132 |
|
| Effi-MVS+-dtu | | | 87.51 123 | 88.13 117 | 86.77 137 | 91.10 137 | 94.90 113 | 90.91 130 | 82.67 156 | 83.47 152 | 71.55 149 | 81.11 108 | 77.04 139 | 89.41 105 | 92.65 120 | 91.68 137 | 95.00 190 | 96.09 119 |
|
| RPMNet | | | 84.82 155 | 85.90 146 | 83.56 173 | 91.10 137 | 92.10 178 | 88.73 169 | 71.11 210 | 84.75 136 | 68.79 169 | 73.56 147 | 77.62 136 | 85.33 152 | 90.08 165 | 89.43 179 | 96.32 164 | 93.77 163 |
|
| CR-MVSNet | | | 85.48 146 | 86.29 138 | 84.53 161 | 91.08 139 | 92.10 178 | 89.18 160 | 73.30 205 | 84.75 136 | 71.08 154 | 73.12 155 | 77.91 133 | 86.27 143 | 91.48 139 | 90.75 149 | 96.27 165 | 93.94 159 |
|
| TinyColmap | | | 84.04 166 | 82.01 183 | 86.42 141 | 90.87 140 | 91.84 185 | 88.89 167 | 84.07 141 | 82.11 162 | 69.89 162 | 71.08 160 | 60.81 206 | 89.04 114 | 90.52 157 | 89.19 181 | 95.76 171 | 88.50 200 |
|
| tpm | | | 83.16 177 | 83.64 162 | 82.60 187 | 90.75 141 | 91.05 194 | 88.49 170 | 73.99 200 | 82.36 159 | 67.08 183 | 78.10 121 | 68.79 166 | 84.17 161 | 85.95 197 | 85.96 192 | 91.09 207 | 93.23 169 |
|
| dps | | | 85.00 152 | 83.21 172 | 87.08 133 | 90.73 142 | 92.55 170 | 89.34 157 | 75.29 197 | 84.94 135 | 87.01 65 | 79.27 115 | 67.69 173 | 87.27 133 | 84.22 202 | 83.56 202 | 92.83 198 | 90.25 190 |
|
| MDTV_nov1_ep13 | | | 86.64 132 | 87.50 130 | 85.65 146 | 90.73 142 | 93.69 136 | 89.96 147 | 78.03 189 | 89.48 100 | 76.85 127 | 84.92 78 | 82.42 104 | 86.14 145 | 86.85 193 | 86.15 190 | 92.17 202 | 88.97 197 |
|
| CDS-MVSNet | | | 88.34 117 | 88.71 109 | 87.90 125 | 90.70 144 | 94.54 115 | 92.38 112 | 86.02 119 | 80.37 169 | 79.42 118 | 79.30 114 | 83.43 94 | 82.04 174 | 93.39 109 | 94.01 80 | 96.86 154 | 95.93 127 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| IterMVS-SCA-FT | | | 85.44 148 | 86.71 133 | 83.97 169 | 90.59 145 | 90.84 197 | 89.73 153 | 78.34 186 | 84.07 149 | 66.40 186 | 77.27 127 | 78.66 126 | 83.06 167 | 91.20 144 | 90.10 168 | 95.72 174 | 94.78 148 |
|
| IterMVS | | | 85.25 150 | 86.49 136 | 83.80 170 | 90.42 146 | 90.77 200 | 90.02 145 | 78.04 188 | 84.10 147 | 66.27 187 | 77.28 126 | 78.41 129 | 83.01 168 | 90.88 149 | 89.72 177 | 95.04 188 | 94.24 155 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Fast-Effi-MVS+-dtu | | | 86.25 133 | 87.70 124 | 84.56 160 | 90.37 147 | 93.70 135 | 90.54 133 | 78.14 187 | 83.50 151 | 65.37 192 | 81.59 106 | 75.83 145 | 86.09 147 | 91.70 137 | 91.70 135 | 96.88 152 | 95.84 129 |
|
| dmvs_re | | | 87.31 125 | 86.10 140 | 88.74 114 | 89.84 148 | 94.28 123 | 92.66 109 | 89.41 78 | 82.61 158 | 74.69 133 | 74.69 142 | 69.47 164 | 87.78 125 | 92.38 125 | 93.23 99 | 98.03 82 | 96.02 123 |
|
| FC-MVSNet-test | | | 86.15 136 | 89.10 106 | 82.71 185 | 89.83 149 | 93.18 152 | 87.88 175 | 84.69 131 | 86.54 124 | 62.18 201 | 82.39 100 | 83.31 95 | 74.18 201 | 92.52 123 | 91.86 132 | 97.50 118 | 93.88 161 |
|
| GA-MVS | | | 85.08 151 | 85.65 149 | 84.42 162 | 89.77 150 | 94.25 124 | 89.26 159 | 84.62 133 | 81.19 166 | 62.25 200 | 75.72 137 | 68.44 169 | 84.14 162 | 93.57 103 | 91.68 137 | 96.49 159 | 94.71 150 |
|
| PMMVS | | | 89.88 101 | 91.19 85 | 88.35 118 | 89.73 151 | 91.97 184 | 90.62 132 | 81.92 167 | 90.57 77 | 80.58 114 | 92.16 35 | 86.85 78 | 91.17 85 | 92.31 126 | 91.35 141 | 96.11 167 | 93.11 171 |
|
| tfpnnormal | | | 83.80 170 | 81.26 192 | 86.77 137 | 89.60 152 | 93.26 150 | 89.72 154 | 87.60 111 | 72.78 203 | 70.44 158 | 60.53 204 | 61.15 205 | 85.55 149 | 92.72 117 | 91.44 139 | 97.71 105 | 96.92 92 |
|
| CVMVSNet | | | 83.83 169 | 85.53 150 | 81.85 192 | 89.60 152 | 90.92 195 | 87.81 176 | 83.21 152 | 80.11 172 | 60.16 205 | 76.47 130 | 78.57 127 | 76.79 193 | 89.76 168 | 90.13 163 | 93.51 192 | 92.75 174 |
|
| testgi | | | 81.94 189 | 84.09 160 | 79.43 198 | 89.53 154 | 90.83 198 | 82.49 201 | 81.75 170 | 80.59 167 | 59.46 207 | 82.82 94 | 65.75 182 | 67.97 206 | 90.10 164 | 89.52 178 | 95.39 183 | 89.03 195 |
|
| UniMVSNet_ETH3D | | | 84.57 156 | 81.40 190 | 88.28 119 | 89.34 155 | 94.38 122 | 90.33 135 | 86.50 116 | 74.74 201 | 77.52 124 | 59.90 205 | 62.04 201 | 88.78 121 | 88.82 182 | 92.65 115 | 97.22 126 | 97.24 81 |
|
| LTVRE_ROB | | 81.71 16 | 82.44 187 | 81.84 185 | 83.13 177 | 89.01 156 | 92.99 157 | 88.90 166 | 82.32 162 | 66.26 214 | 54.02 215 | 74.68 143 | 59.62 212 | 88.87 119 | 90.71 154 | 92.02 128 | 95.68 176 | 96.62 98 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TAMVS | | | 84.94 154 | 84.95 153 | 84.93 155 | 88.82 157 | 93.18 152 | 88.44 171 | 81.28 174 | 77.16 188 | 73.76 139 | 75.43 139 | 76.57 142 | 82.04 174 | 90.59 156 | 90.79 146 | 95.22 186 | 90.94 184 |
|
| EG-PatchMatch MVS | | | 81.70 192 | 81.31 191 | 82.15 190 | 88.75 158 | 93.81 131 | 87.14 181 | 78.89 185 | 71.57 206 | 64.12 197 | 61.20 203 | 68.46 168 | 76.73 195 | 91.48 139 | 90.77 148 | 97.28 124 | 91.90 176 |
|
| TransMVSNet (Re) | | | 82.67 184 | 80.93 195 | 84.69 158 | 88.71 159 | 91.50 191 | 87.90 174 | 87.15 112 | 71.54 208 | 68.24 174 | 63.69 197 | 64.67 192 | 78.51 190 | 91.65 138 | 90.73 151 | 97.64 113 | 92.73 175 |
|
| FMVSNet3 | | | 90.19 99 | 90.06 98 | 90.34 94 | 88.69 160 | 93.85 130 | 94.58 66 | 85.78 122 | 90.03 87 | 85.56 84 | 77.38 122 | 86.13 80 | 89.22 112 | 93.29 112 | 94.36 72 | 98.20 67 | 95.40 141 |
|
| GBi-Net | | | 90.21 97 | 90.11 96 | 90.32 95 | 88.66 161 | 93.65 138 | 94.25 76 | 85.78 122 | 90.03 87 | 85.56 84 | 77.38 122 | 86.13 80 | 89.38 106 | 93.97 95 | 94.16 75 | 98.31 51 | 95.47 137 |
|
| test1 | | | 90.21 97 | 90.11 96 | 90.32 95 | 88.66 161 | 93.65 138 | 94.25 76 | 85.78 122 | 90.03 87 | 85.56 84 | 77.38 122 | 86.13 80 | 89.38 106 | 93.97 95 | 94.16 75 | 98.31 51 | 95.47 137 |
|
| FMVSNet2 | | | 89.61 105 | 89.14 105 | 90.16 101 | 88.66 161 | 93.65 138 | 94.25 76 | 85.44 126 | 88.57 108 | 84.96 93 | 73.53 148 | 83.82 92 | 89.38 106 | 94.23 89 | 94.68 69 | 98.31 51 | 95.47 137 |
|
| PatchT | | | 83.86 168 | 85.51 151 | 81.94 191 | 88.41 164 | 91.56 190 | 78.79 209 | 71.57 209 | 84.08 148 | 71.08 154 | 70.62 161 | 76.13 144 | 86.27 143 | 91.48 139 | 90.75 149 | 95.52 182 | 93.94 159 |
|
| UniMVSNet (Re) | | | 86.22 135 | 85.46 152 | 87.11 132 | 88.34 165 | 94.42 119 | 89.65 155 | 87.10 113 | 84.39 142 | 74.61 134 | 70.41 165 | 68.10 170 | 85.10 154 | 91.17 146 | 91.79 133 | 97.84 95 | 97.94 55 |
|
| NR-MVSNet | | | 85.46 147 | 84.54 157 | 86.52 140 | 88.33 166 | 93.78 132 | 90.45 134 | 87.87 101 | 84.40 140 | 71.61 148 | 70.59 162 | 62.09 200 | 82.79 170 | 91.75 136 | 91.75 134 | 98.10 76 | 97.44 74 |
|
| UniMVSNet_NR-MVSNet | | | 86.80 129 | 85.86 147 | 87.89 126 | 88.17 167 | 94.07 127 | 90.15 141 | 88.51 90 | 84.20 146 | 73.45 140 | 72.38 157 | 70.30 161 | 88.95 116 | 90.25 160 | 92.21 122 | 98.12 73 | 97.62 68 |
|
| thisisatest0515 | | | 85.70 142 | 87.00 132 | 84.19 165 | 88.16 168 | 93.67 137 | 84.20 197 | 84.14 140 | 83.39 154 | 72.91 142 | 76.79 128 | 74.75 146 | 78.82 189 | 92.57 122 | 91.26 142 | 96.94 145 | 96.56 103 |
|
| pm-mvs1 | | | 84.55 157 | 83.46 164 | 85.82 143 | 88.16 168 | 93.39 144 | 89.05 164 | 85.36 128 | 74.03 202 | 72.43 146 | 65.08 189 | 71.11 156 | 82.30 173 | 93.48 106 | 91.70 135 | 97.64 113 | 95.43 140 |
|
| gm-plane-assit | | | 77.65 202 | 78.50 200 | 76.66 202 | 87.96 170 | 85.43 213 | 64.70 219 | 74.50 198 | 64.15 216 | 51.26 218 | 61.32 202 | 58.17 214 | 84.11 163 | 95.16 65 | 93.83 82 | 97.45 120 | 91.41 179 |
|
| test-mter | | | 86.09 139 | 88.38 112 | 83.43 175 | 87.89 171 | 92.61 168 | 86.89 183 | 77.11 193 | 84.30 143 | 68.62 172 | 82.57 98 | 82.45 103 | 84.34 158 | 92.40 124 | 90.11 167 | 95.74 172 | 94.21 157 |
|
| pmmvs4 | | | 86.00 140 | 84.28 159 | 88.00 122 | 87.80 172 | 92.01 183 | 89.94 148 | 84.91 130 | 86.79 121 | 80.98 110 | 73.41 151 | 66.34 181 | 88.12 123 | 89.31 175 | 88.90 184 | 96.24 166 | 93.20 170 |
|
| TESTMET0.1,1 | | | 86.11 138 | 88.28 113 | 83.59 172 | 87.80 172 | 92.07 180 | 87.41 178 | 77.12 192 | 84.58 138 | 69.33 166 | 83.00 90 | 82.79 98 | 84.24 159 | 92.26 127 | 89.81 173 | 95.64 177 | 93.44 165 |
|
| DU-MVS | | | 86.12 137 | 84.81 155 | 87.66 127 | 87.77 174 | 93.78 132 | 90.15 141 | 87.87 101 | 84.40 140 | 73.45 140 | 70.59 162 | 64.82 190 | 88.95 116 | 90.14 161 | 92.33 119 | 97.76 101 | 97.62 68 |
|
| Baseline_NR-MVSNet | | | 85.28 149 | 83.42 167 | 87.46 131 | 87.77 174 | 90.80 199 | 89.90 151 | 87.69 106 | 83.93 150 | 74.16 136 | 64.72 193 | 66.43 180 | 87.48 131 | 90.14 161 | 90.83 145 | 97.73 104 | 97.11 87 |
|
| SixPastTwentyTwo | | | 83.12 179 | 83.44 166 | 82.74 184 | 87.71 176 | 93.11 156 | 82.30 202 | 82.33 161 | 79.24 177 | 64.33 195 | 78.77 118 | 62.75 196 | 84.11 163 | 88.11 184 | 87.89 186 | 95.70 175 | 94.21 157 |
|
| TranMVSNet+NR-MVSNet | | | 85.57 145 | 84.41 158 | 86.92 134 | 87.67 177 | 93.34 145 | 90.31 137 | 88.43 92 | 83.07 155 | 70.11 161 | 69.99 168 | 65.28 185 | 86.96 135 | 89.73 169 | 92.27 120 | 98.06 80 | 97.17 86 |
|
| WR-MVS | | | 83.14 178 | 83.38 169 | 82.87 183 | 87.55 178 | 93.29 147 | 86.36 188 | 84.21 138 | 80.05 173 | 66.41 185 | 66.91 177 | 66.92 177 | 75.66 198 | 88.96 180 | 90.56 154 | 97.05 137 | 96.96 90 |
|
| v8 | | | 84.45 162 | 83.30 171 | 85.80 144 | 87.53 179 | 92.95 158 | 90.31 137 | 82.46 160 | 80.46 168 | 71.43 150 | 66.99 176 | 67.16 175 | 86.14 145 | 89.26 176 | 90.22 162 | 96.94 145 | 96.06 120 |
|
| WR-MVS_H | | | 82.86 183 | 82.66 177 | 83.10 179 | 87.44 180 | 93.33 146 | 85.71 193 | 83.20 153 | 77.36 187 | 68.20 175 | 66.37 180 | 65.23 186 | 76.05 197 | 89.35 173 | 90.13 163 | 97.99 87 | 96.89 93 |
|
| v148 | | | 83.61 172 | 82.10 181 | 85.37 148 | 87.34 181 | 92.94 159 | 87.48 177 | 85.72 125 | 78.92 178 | 73.87 138 | 65.71 186 | 64.69 191 | 81.78 178 | 87.82 185 | 89.35 180 | 96.01 168 | 95.26 143 |
|
| v10 | | | 84.18 163 | 83.17 173 | 85.37 148 | 87.34 181 | 92.68 166 | 90.32 136 | 81.33 173 | 79.93 176 | 69.23 168 | 66.33 181 | 65.74 183 | 87.03 134 | 90.84 150 | 90.38 157 | 96.97 141 | 96.29 113 |
|
| v2v482 | | | 84.51 158 | 83.05 174 | 86.20 142 | 87.25 183 | 93.28 148 | 90.22 139 | 85.40 127 | 79.94 175 | 69.78 163 | 67.74 173 | 65.15 187 | 87.57 128 | 89.12 178 | 90.55 155 | 96.97 141 | 95.60 134 |
|
| CP-MVSNet | | | 83.11 180 | 82.15 180 | 84.23 164 | 87.20 184 | 92.70 165 | 86.42 187 | 83.53 149 | 77.83 185 | 67.67 178 | 66.89 179 | 60.53 208 | 82.47 171 | 89.23 177 | 90.65 153 | 98.08 77 | 97.20 85 |
|
| v1144 | | | 84.03 167 | 82.88 175 | 85.37 148 | 87.17 185 | 93.15 155 | 90.18 140 | 83.31 151 | 78.83 179 | 67.85 176 | 65.99 183 | 64.99 188 | 86.79 137 | 90.75 152 | 90.33 159 | 96.90 150 | 96.15 117 |
|
| V42 | | | 84.48 160 | 83.36 170 | 85.79 145 | 87.14 186 | 93.28 148 | 90.03 144 | 83.98 142 | 80.30 170 | 71.20 153 | 66.90 178 | 67.17 174 | 85.55 149 | 89.35 173 | 90.27 160 | 96.82 155 | 96.27 114 |
|
| pmmvs5 | | | 83.37 175 | 82.68 176 | 84.18 166 | 87.13 187 | 93.18 152 | 86.74 184 | 82.08 165 | 76.48 192 | 67.28 181 | 71.26 159 | 62.70 197 | 84.71 156 | 90.77 151 | 90.12 166 | 97.15 130 | 94.24 155 |
|
| FMVSNet1 | | | 87.33 124 | 86.00 144 | 88.89 111 | 87.13 187 | 92.83 163 | 93.08 105 | 84.46 136 | 81.35 165 | 82.20 101 | 66.33 181 | 77.96 132 | 88.96 115 | 93.97 95 | 94.16 75 | 97.54 117 | 95.38 142 |
|
| PS-CasMVS | | | 82.53 185 | 81.54 188 | 83.68 171 | 87.08 189 | 92.54 171 | 86.20 189 | 83.46 150 | 76.46 193 | 65.73 190 | 65.71 186 | 59.41 213 | 81.61 179 | 89.06 179 | 90.55 155 | 98.03 82 | 97.07 88 |
|
| our_test_3 | | | | | | 86.93 190 | 89.77 201 | 81.61 203 | | | | | | | | | | |
|
| PEN-MVS | | | 82.49 186 | 81.58 187 | 83.56 173 | 86.93 190 | 92.05 182 | 86.71 185 | 83.84 143 | 76.94 190 | 64.68 194 | 67.24 174 | 60.11 209 | 81.17 181 | 87.78 186 | 90.70 152 | 98.02 84 | 96.21 115 |
|
| v1192 | | | 83.56 173 | 82.35 178 | 84.98 153 | 86.84 192 | 92.84 161 | 90.01 146 | 82.70 154 | 78.54 180 | 66.48 184 | 64.88 191 | 62.91 195 | 86.91 136 | 90.72 153 | 90.25 161 | 96.94 145 | 96.32 111 |
|
| v144192 | | | 83.48 174 | 82.23 179 | 84.94 154 | 86.65 193 | 92.84 161 | 89.63 156 | 82.48 159 | 77.87 184 | 67.36 180 | 65.33 188 | 63.50 194 | 86.51 139 | 89.72 170 | 89.99 171 | 97.03 138 | 96.35 109 |
|
| DTE-MVSNet | | | 81.76 191 | 81.04 193 | 82.60 187 | 86.63 194 | 91.48 193 | 85.97 191 | 83.70 145 | 76.45 194 | 62.44 199 | 67.16 175 | 59.98 210 | 78.98 188 | 87.15 190 | 89.93 172 | 97.88 94 | 95.12 145 |
|
| pmnet_mix02 | | | 80.14 196 | 80.21 197 | 80.06 195 | 86.61 195 | 89.66 202 | 80.40 206 | 82.20 164 | 82.29 161 | 61.35 202 | 71.52 158 | 66.67 179 | 76.75 194 | 82.55 207 | 80.18 210 | 93.05 196 | 88.62 198 |
|
| v1921920 | | | 83.30 176 | 82.09 182 | 84.70 157 | 86.59 196 | 92.67 167 | 89.82 152 | 82.23 163 | 78.32 181 | 65.76 189 | 64.64 194 | 62.35 198 | 86.78 138 | 90.34 159 | 90.02 169 | 97.02 139 | 96.31 112 |
|
| v1240 | | | 82.88 182 | 81.66 186 | 84.29 163 | 86.46 197 | 92.52 173 | 89.06 163 | 81.82 169 | 77.16 188 | 65.09 193 | 64.17 196 | 61.50 203 | 86.36 140 | 90.12 163 | 90.13 163 | 96.95 144 | 96.04 121 |
|
| anonymousdsp | | | 84.51 158 | 85.85 148 | 82.95 182 | 86.30 198 | 93.51 141 | 85.77 192 | 80.38 179 | 78.25 183 | 63.42 198 | 73.51 149 | 72.20 152 | 84.64 157 | 93.21 114 | 92.16 124 | 97.19 128 | 98.14 46 |
|
| pmmvs6 | | | 80.90 193 | 78.77 199 | 83.38 176 | 85.84 199 | 91.61 189 | 86.01 190 | 82.54 158 | 64.17 215 | 70.43 159 | 54.14 214 | 67.06 176 | 80.73 183 | 90.50 158 | 89.17 182 | 94.74 191 | 94.75 149 |
|
| MVS-HIRNet | | | 78.16 200 | 77.57 204 | 78.83 199 | 85.83 200 | 87.76 207 | 76.67 210 | 70.22 212 | 75.82 198 | 67.39 179 | 55.61 209 | 70.52 158 | 81.96 176 | 86.67 194 | 85.06 198 | 90.93 209 | 81.58 212 |
|
| test20.03 | | | 76.41 204 | 78.49 201 | 73.98 205 | 85.64 201 | 87.50 208 | 75.89 211 | 80.71 178 | 70.84 209 | 51.07 219 | 68.06 172 | 61.40 204 | 54.99 215 | 88.28 183 | 87.20 188 | 95.58 180 | 86.15 205 |
|
| v7n | | | 82.25 188 | 81.54 188 | 83.07 180 | 85.55 202 | 92.58 169 | 86.68 186 | 81.10 177 | 76.54 191 | 65.97 188 | 62.91 198 | 60.56 207 | 82.36 172 | 91.07 148 | 90.35 158 | 96.77 157 | 96.80 94 |
|
| N_pmnet | | | 77.55 203 | 76.68 206 | 78.56 200 | 85.43 203 | 87.30 210 | 78.84 208 | 81.88 168 | 78.30 182 | 60.61 203 | 61.46 200 | 62.15 199 | 74.03 203 | 82.04 208 | 80.69 209 | 90.59 211 | 84.81 210 |
|
| Anonymous20231206 | | | 78.09 201 | 78.11 202 | 78.07 201 | 85.19 204 | 89.17 203 | 80.99 204 | 81.24 176 | 75.46 199 | 58.25 209 | 54.78 213 | 59.90 211 | 66.73 209 | 88.94 181 | 88.26 185 | 96.01 168 | 90.25 190 |
|
| MDTV_nov1_ep13_2view | | | 80.43 194 | 80.94 194 | 79.84 196 | 84.82 205 | 90.87 196 | 84.23 196 | 73.80 201 | 80.28 171 | 64.33 195 | 70.05 167 | 68.77 167 | 79.67 184 | 84.83 200 | 83.50 203 | 92.17 202 | 88.25 203 |
|
| FPMVS | | | 69.87 210 | 67.10 213 | 73.10 207 | 84.09 206 | 78.35 218 | 79.40 207 | 76.41 194 | 71.92 204 | 57.71 210 | 54.06 215 | 50.04 219 | 56.72 213 | 71.19 216 | 68.70 216 | 84.25 216 | 75.43 216 |
|
| EU-MVSNet | | | 78.43 199 | 80.25 196 | 76.30 203 | 83.81 207 | 87.27 211 | 80.99 204 | 79.52 182 | 76.01 195 | 54.12 214 | 70.44 164 | 64.87 189 | 67.40 208 | 86.23 195 | 85.54 195 | 91.95 205 | 91.41 179 |
|
| FMVSNet5 | | | 84.47 161 | 84.72 156 | 84.18 166 | 83.30 208 | 88.43 205 | 88.09 173 | 79.42 183 | 84.25 144 | 74.14 137 | 73.15 154 | 78.74 125 | 83.65 165 | 91.19 145 | 91.19 143 | 96.46 161 | 86.07 206 |
|
| WB-MVS | | | 60.76 213 | 66.86 214 | 53.64 213 | 82.24 209 | 72.70 219 | 48.70 225 | 82.04 166 | 63.91 217 | 12.91 228 | 64.77 192 | 49.00 222 | 22.74 223 | 75.95 214 | 75.36 214 | 73.22 222 | 66.33 220 |
|
| MIMVSNet | | | 82.97 181 | 84.00 161 | 81.77 193 | 82.23 210 | 92.25 177 | 87.40 180 | 72.73 208 | 81.48 164 | 69.55 164 | 68.79 170 | 72.42 151 | 81.82 177 | 92.23 130 | 92.25 121 | 96.89 151 | 88.61 199 |
|
| PM-MVS | | | 80.29 195 | 79.30 198 | 81.45 194 | 81.91 211 | 88.23 206 | 82.61 200 | 79.01 184 | 79.99 174 | 67.15 182 | 69.07 169 | 51.39 218 | 82.92 169 | 87.55 188 | 85.59 193 | 95.08 187 | 93.28 168 |
|
| pmmvs-eth3d | | | 79.78 198 | 77.58 203 | 82.34 189 | 81.57 212 | 87.46 209 | 82.92 199 | 81.28 174 | 75.33 200 | 71.34 151 | 61.88 199 | 52.41 217 | 81.59 180 | 87.56 187 | 86.90 189 | 95.36 185 | 91.48 178 |
|
| new-patchmatchnet | | | 72.32 207 | 71.09 210 | 73.74 206 | 81.17 213 | 84.86 214 | 72.21 216 | 77.48 191 | 68.32 212 | 54.89 213 | 55.10 211 | 49.31 221 | 63.68 212 | 79.30 212 | 76.46 213 | 93.03 197 | 84.32 211 |
|
| ET-MVSNet_ETH3D | | | 89.93 100 | 90.84 89 | 88.87 112 | 79.60 214 | 96.19 100 | 94.43 69 | 86.56 115 | 90.63 73 | 80.75 112 | 90.71 44 | 77.78 134 | 93.73 57 | 91.36 142 | 93.45 93 | 98.15 70 | 95.77 130 |
|
| PMVS |  | 56.77 18 | 61.27 212 | 58.64 216 | 64.35 211 | 75.66 215 | 54.60 223 | 53.62 222 | 74.23 199 | 53.69 220 | 58.37 208 | 44.27 219 | 49.38 220 | 44.16 219 | 69.51 218 | 65.35 218 | 80.07 218 | 73.66 217 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| new_pmnet | | | 72.29 208 | 73.25 208 | 71.16 210 | 75.35 216 | 81.38 215 | 73.72 215 | 69.27 213 | 75.97 196 | 49.84 220 | 56.27 208 | 56.12 216 | 69.08 205 | 81.73 209 | 80.86 208 | 89.72 214 | 80.44 214 |
|
| ambc | | | | 67.96 212 | | 73.69 217 | 79.79 217 | 73.82 214 | | 71.61 205 | 59.80 206 | 46.00 217 | 20.79 227 | 66.15 210 | 86.92 192 | 80.11 211 | 89.13 215 | 90.50 187 |
|
| pmmvs3 | | | 71.13 209 | 71.06 211 | 71.21 209 | 73.54 218 | 80.19 216 | 71.69 217 | 64.86 216 | 62.04 219 | 52.10 216 | 54.92 212 | 48.00 223 | 75.03 199 | 83.75 205 | 83.24 204 | 90.04 213 | 85.27 207 |
|
| MDA-MVSNet-bldmvs | | | 73.81 205 | 72.56 209 | 75.28 204 | 72.52 219 | 88.87 204 | 74.95 213 | 82.67 156 | 71.57 206 | 55.02 212 | 65.96 184 | 42.84 225 | 76.11 196 | 70.61 217 | 81.47 207 | 90.38 212 | 86.59 204 |
|
| tmp_tt | | | | | 50.24 216 | 68.55 220 | 46.86 225 | 48.90 224 | 18.28 223 | 86.51 126 | 68.32 173 | 70.19 166 | 65.33 184 | 26.69 222 | 74.37 215 | 66.80 217 | 70.72 223 | |
|
| Gipuma |  | | 58.52 214 | 56.17 217 | 61.27 212 | 67.14 221 | 58.06 222 | 52.16 223 | 68.40 215 | 69.00 211 | 45.02 222 | 22.79 221 | 20.57 228 | 55.11 214 | 76.27 213 | 79.33 212 | 79.80 219 | 67.16 219 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MIMVSNet1 | | | 73.19 206 | 73.70 207 | 72.60 208 | 65.42 222 | 86.69 212 | 75.56 212 | 79.65 181 | 67.87 213 | 55.30 211 | 45.24 218 | 56.41 215 | 63.79 211 | 86.98 191 | 87.66 187 | 95.85 170 | 85.04 208 |
|
| PMMVS2 | | | 53.68 216 | 55.72 218 | 51.30 214 | 58.84 223 | 67.02 221 | 54.23 221 | 60.97 219 | 47.50 221 | 19.42 225 | 34.81 220 | 31.97 226 | 30.88 221 | 65.84 219 | 69.99 215 | 83.47 217 | 72.92 218 |
|
| EMVS | | | 39.04 219 | 34.32 221 | 44.54 218 | 58.25 224 | 39.35 227 | 27.61 227 | 62.55 218 | 35.99 222 | 16.40 227 | 20.04 224 | 14.77 229 | 44.80 217 | 33.12 223 | 44.10 222 | 57.61 225 | 52.89 223 |
|
| E-PMN | | | 40.00 217 | 35.74 220 | 44.98 217 | 57.69 225 | 39.15 228 | 28.05 226 | 62.70 217 | 35.52 223 | 17.78 226 | 20.90 222 | 14.36 230 | 44.47 218 | 35.89 222 | 47.86 221 | 59.15 224 | 56.47 222 |
|
| MVE |  | 39.81 19 | 39.52 218 | 41.58 219 | 37.11 219 | 33.93 226 | 49.06 224 | 26.45 228 | 54.22 220 | 29.46 224 | 24.15 224 | 20.77 223 | 10.60 231 | 34.42 220 | 51.12 221 | 65.27 219 | 49.49 226 | 64.81 221 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 58.10 215 | 64.61 215 | 50.51 215 | 28.26 227 | 41.71 226 | 61.28 220 | 32.07 222 | 75.92 197 | 52.04 217 | 47.94 216 | 61.83 202 | 51.80 216 | 79.83 211 | 63.95 220 | 77.60 220 | 81.05 213 |
|
| testmvs | | | 4.35 220 | 6.54 222 | 1.79 221 | 0.60 228 | 1.82 229 | 3.06 230 | 0.95 224 | 7.22 225 | 0.88 230 | 12.38 225 | 1.25 232 | 3.87 225 | 6.09 224 | 5.58 223 | 1.40 227 | 11.42 225 |
|
| GG-mvs-BLEND | | | 62.84 211 | 90.21 93 | 30.91 220 | 0.57 229 | 94.45 118 | 86.99 182 | 0.34 226 | 88.71 106 | 0.98 229 | 81.55 107 | 91.58 58 | 0.86 226 | 92.66 119 | 91.43 140 | 95.73 173 | 91.11 183 |
|
| test123 | | | 3.48 221 | 5.31 223 | 1.34 222 | 0.20 230 | 1.52 230 | 2.17 231 | 0.58 225 | 6.13 226 | 0.31 231 | 9.85 226 | 0.31 233 | 3.90 224 | 2.65 225 | 5.28 224 | 0.87 228 | 11.46 224 |
|
| uanet_test | | | 0.00 222 | 0.00 224 | 0.00 223 | 0.00 231 | 0.00 231 | 0.00 232 | 0.00 227 | 0.00 227 | 0.00 232 | 0.00 227 | 0.00 234 | 0.00 227 | 0.00 226 | 0.00 225 | 0.00 229 | 0.00 226 |
|
| sosnet-low-res | | | 0.00 222 | 0.00 224 | 0.00 223 | 0.00 231 | 0.00 231 | 0.00 232 | 0.00 227 | 0.00 227 | 0.00 232 | 0.00 227 | 0.00 234 | 0.00 227 | 0.00 226 | 0.00 225 | 0.00 229 | 0.00 226 |
|
| sosnet | | | 0.00 222 | 0.00 224 | 0.00 223 | 0.00 231 | 0.00 231 | 0.00 232 | 0.00 227 | 0.00 227 | 0.00 232 | 0.00 227 | 0.00 234 | 0.00 227 | 0.00 226 | 0.00 225 | 0.00 229 | 0.00 226 |
|
| RE-MVS-def | | | | | | | | | | | 60.19 204 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 97.28 23 | | | | | |
|
| MTAPA | | | | | | | | | | | 95.36 2 | | 97.46 21 | | | | | |
|
| MTMP | | | | | | | | | | | 95.70 1 | | 96.90 27 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 18.47 229 | | | | | | | | | | |
|
| NP-MVS | | | | | | | | | | 91.63 66 | | | | | | | | |
|
| Patchmtry | | | | | | | 92.39 175 | 89.18 160 | 73.30 205 | | 71.08 154 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 71.82 220 | 68.37 218 | 48.05 221 | 77.38 186 | 46.88 221 | 65.77 185 | 47.03 224 | 67.48 207 | 64.27 220 | | 76.89 221 | 76.72 215 |
|