This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 6698.87 5797.65 999.73 199.48 697.53 799.94 398.43 2399.81 1099.70 52
DVP-MVS++99.08 298.89 299.64 399.17 10099.23 799.69 198.88 5097.32 3199.53 999.47 897.81 399.94 398.47 1999.72 5299.74 35
DVP-MVScopyleft99.03 398.83 499.63 499.72 1399.25 298.97 7698.58 15297.62 1199.45 1199.46 1197.42 999.94 398.47 1999.81 1099.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS99.02 498.84 399.55 999.57 3598.96 1699.39 898.93 3897.38 2899.41 1399.54 196.66 1699.84 5698.86 299.85 399.87 1
DPE-MVScopyleft98.92 598.67 799.65 299.58 3499.20 998.42 17998.91 4497.58 1499.54 899.46 1197.10 1299.94 397.64 6899.84 899.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP98.90 698.75 599.36 2499.22 9698.43 3899.10 5098.87 5797.38 2899.35 1799.40 1597.78 599.87 4797.77 5799.85 399.78 15
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.98.78 798.62 899.24 4399.69 2698.28 5399.14 4198.66 13596.84 5999.56 699.31 3796.34 2299.70 11898.32 3099.73 4599.73 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS98.78 798.56 1099.45 1799.32 7098.87 1998.47 17198.81 7997.72 698.76 5799.16 6697.05 1399.78 9998.06 3999.66 6199.69 55
MSP-MVS98.74 998.55 1199.29 3499.75 498.23 5499.26 2398.88 5097.52 1699.41 1398.78 12096.00 3799.79 9597.79 5699.59 7599.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xxxxxxxxxxxxxcwj98.70 1098.50 1599.30 3399.46 5398.38 4098.21 20698.52 16397.95 399.32 1899.39 1696.22 2399.84 5697.72 6099.73 4599.67 65
XVS98.70 1098.49 1799.34 2699.70 2498.35 4899.29 1998.88 5097.40 2598.46 7699.20 5795.90 4399.89 3897.85 5299.74 4399.78 15
Regformer-298.69 1298.52 1399.19 4699.35 6298.01 6798.37 18398.81 7997.48 1999.21 2499.21 5396.13 3099.80 8398.40 2799.73 4599.75 30
Regformer-198.66 1398.51 1499.12 6099.35 6297.81 7998.37 18398.76 10297.49 1899.20 2599.21 5396.08 3299.79 9598.42 2599.73 4599.75 30
MCST-MVS98.65 1498.37 2299.48 1399.60 3398.87 1998.41 18098.68 12497.04 5198.52 7498.80 11896.78 1599.83 5997.93 4599.61 7199.74 35
Regformer-498.64 1598.53 1298.99 6699.43 5997.37 9298.40 18198.79 9597.46 2299.09 3499.31 3795.86 4599.80 8398.64 499.76 3499.79 12
SD-MVS98.64 1598.68 698.53 9499.33 6798.36 4798.90 8798.85 6797.28 3499.72 399.39 1696.63 1897.60 33098.17 3399.85 399.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.63 1798.40 1999.32 3199.72 1398.29 5199.23 2698.96 3296.10 9298.94 4399.17 6196.06 3399.92 2497.62 6999.78 2599.75 30
ACMMP_NAP98.61 1898.30 3599.55 999.62 3298.95 1798.82 10698.81 7995.80 10099.16 3099.47 895.37 6099.92 2497.89 4999.75 4099.79 12
region2R98.61 1898.38 2199.29 3499.74 898.16 6099.23 2698.93 3896.15 8798.94 4399.17 6195.91 4299.94 397.55 7699.79 2199.78 15
NCCC98.61 1898.35 2599.38 2099.28 8498.61 2998.45 17298.76 10297.82 598.45 7998.93 10396.65 1799.83 5997.38 8499.41 10399.71 48
SF-MVS98.59 2198.32 3499.41 1999.54 3798.71 2299.04 5898.81 7995.12 13799.32 1899.39 1696.22 2399.84 5697.72 6099.73 4599.67 65
Regformer-398.59 2198.50 1598.86 7699.43 5997.05 10698.40 18198.68 12497.43 2499.06 3599.31 3795.80 4699.77 10498.62 699.76 3499.78 15
ACMMPR98.59 2198.36 2399.29 3499.74 898.15 6199.23 2698.95 3496.10 9298.93 4799.19 6095.70 4799.94 397.62 6999.79 2199.78 15
SMA-MVScopyleft98.58 2498.25 3999.56 899.51 4199.04 1598.95 8098.80 9093.67 20799.37 1699.52 396.52 2099.89 3898.06 3999.81 1099.76 28
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA98.58 2498.29 3699.46 1599.76 298.64 2798.90 8798.74 10797.27 3898.02 10299.39 1694.81 8099.96 197.91 4699.79 2199.77 22
HPM-MVS++copyleft98.58 2498.25 3999.55 999.50 4399.08 1198.72 13098.66 13597.51 1798.15 9198.83 11595.70 4799.92 2497.53 7899.67 5899.66 69
SR-MVS98.57 2798.35 2599.24 4399.53 3898.18 5899.09 5198.82 7396.58 7099.10 3399.32 3595.39 5899.82 6797.70 6599.63 6899.72 44
CP-MVS98.57 2798.36 2399.19 4699.66 2897.86 7399.34 1598.87 5795.96 9598.60 7199.13 7096.05 3599.94 397.77 5799.86 199.77 22
test117298.56 2998.35 2599.16 5399.53 3897.94 7199.09 5198.83 7196.52 7399.05 3699.34 3395.34 6299.82 6797.86 5199.64 6699.73 40
MSLP-MVS++98.56 2998.57 998.55 9099.26 8796.80 11698.71 13199.05 2497.28 3498.84 5199.28 4296.47 2199.40 16198.52 1799.70 5599.47 105
zzz-MVS98.55 3198.25 3999.46 1599.76 298.64 2798.55 16198.74 10797.27 3898.02 10299.39 1694.81 8099.96 197.91 4699.79 2199.77 22
DeepC-MVS_fast96.70 198.55 3198.34 2999.18 5099.25 8898.04 6598.50 16898.78 9897.72 698.92 4899.28 4295.27 6799.82 6797.55 7699.77 2899.69 55
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post98.54 3398.35 2599.13 5799.49 4797.86 7399.11 4798.80 9096.49 7499.17 2899.35 3095.34 6299.82 6797.72 6099.65 6299.71 48
#test#98.54 3398.27 3799.32 3199.72 1398.29 5198.98 7598.96 3295.65 10898.94 4399.17 6196.06 3399.92 2497.21 8999.78 2599.75 30
APD-MVS_3200maxsize98.53 3598.33 3399.15 5699.50 4397.92 7299.15 4098.81 7996.24 8399.20 2599.37 2495.30 6599.80 8397.73 5999.67 5899.72 44
mPP-MVS98.51 3698.26 3899.25 4299.75 498.04 6599.28 2198.81 7996.24 8398.35 8699.23 5095.46 5499.94 397.42 8299.81 1099.77 22
ZNCC-MVS98.49 3798.20 4599.35 2599.73 1298.39 3999.19 3698.86 6395.77 10198.31 8999.10 7595.46 5499.93 1897.57 7599.81 1099.74 35
PGM-MVS98.49 3798.23 4399.27 4199.72 1398.08 6498.99 7299.49 595.43 11899.03 3799.32 3595.56 5099.94 396.80 11599.77 2899.78 15
EI-MVSNet-Vis-set98.47 3998.39 2098.69 8199.46 5396.49 13198.30 19798.69 12197.21 4198.84 5199.36 2895.41 5799.78 9998.62 699.65 6299.80 11
MVS_111021_HR98.47 3998.34 2998.88 7599.22 9697.32 9397.91 24299.58 397.20 4298.33 8799.00 9195.99 3899.64 12998.05 4199.76 3499.69 55
GST-MVS98.43 4198.12 4899.34 2699.72 1398.38 4099.09 5198.82 7395.71 10498.73 6099.06 8495.27 6799.93 1897.07 9399.63 6899.72 44
EI-MVSNet-UG-set98.41 4298.34 2998.61 8699.45 5796.32 14098.28 20098.68 12497.17 4498.74 5899.37 2495.25 6999.79 9598.57 999.54 8899.73 40
DELS-MVS98.40 4398.20 4598.99 6699.00 11797.66 8197.75 25898.89 4797.71 898.33 8798.97 9394.97 7799.88 4698.42 2599.76 3499.42 115
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.98.38 4498.24 4298.81 7799.22 9697.25 10198.11 22598.29 21297.19 4398.99 4299.02 8696.22 2399.67 12598.52 1798.56 14499.51 96
HPM-MVS_fast98.38 4498.13 4799.12 6099.75 497.86 7399.44 798.82 7394.46 16998.94 4399.20 5795.16 7299.74 11097.58 7299.85 399.77 22
HPM-MVScopyleft98.36 4698.10 5099.13 5799.74 897.82 7799.53 498.80 9094.63 16298.61 7098.97 9395.13 7399.77 10497.65 6799.83 999.79 12
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3D-3000-0.198.35 4798.00 5599.38 2099.47 5098.68 2598.67 14198.84 6894.66 16199.11 3299.25 4895.46 5499.81 7496.80 11599.73 4599.63 77
APD-MVScopyleft98.35 4798.00 5599.42 1899.51 4198.72 2198.80 11398.82 7394.52 16699.23 2399.25 4895.54 5299.80 8396.52 12699.77 2899.74 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 4998.23 4398.67 8399.27 8596.90 11297.95 23899.58 397.14 4698.44 8099.01 9095.03 7699.62 13497.91 4699.75 4099.50 98
PHI-MVS98.34 4998.06 5199.18 5099.15 10698.12 6399.04 5899.09 2093.32 22098.83 5399.10 7596.54 1999.83 5997.70 6599.76 3499.59 85
testtj98.33 5197.95 5799.47 1499.49 4798.70 2398.83 10398.86 6395.48 11598.91 4999.17 6195.48 5399.93 1895.80 15199.53 8999.76 28
MP-MVScopyleft98.33 5198.01 5499.28 3899.75 498.18 5899.22 3098.79 9596.13 8997.92 11599.23 5094.54 8799.94 396.74 12099.78 2599.73 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss98.31 5397.92 5999.49 1299.72 1398.88 1898.43 17798.78 9894.10 17797.69 12799.42 1495.25 6999.92 2498.09 3799.80 1799.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
abl_698.30 5498.03 5399.13 5799.56 3697.76 8099.13 4498.82 7396.14 8899.26 2199.37 2493.33 10799.93 1896.96 9899.67 5899.69 55
ACMMPcopyleft98.23 5597.95 5799.09 6299.74 897.62 8499.03 6299.41 695.98 9497.60 13599.36 2894.45 9299.93 1897.14 9098.85 13199.70 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior398.22 5697.90 6099.19 4699.31 7298.22 5597.80 25498.84 6896.12 9097.89 11798.69 12895.96 3999.70 11896.89 10499.60 7299.65 71
DROMVSNet98.21 5798.11 4998.49 9898.34 17197.26 10099.61 398.43 18396.78 6198.87 5098.84 11393.72 10499.01 20698.91 199.50 9299.19 140
CANet98.05 5897.76 6598.90 7498.73 13897.27 9698.35 18698.78 9897.37 3097.72 12598.96 9991.53 14399.92 2498.79 399.65 6299.51 96
train_agg97.97 5997.52 7599.33 3099.31 7298.50 3497.92 24098.73 11192.98 23397.74 12398.68 13096.20 2699.80 8396.59 12299.57 7999.68 61
ETH3D cwj APD-0.1697.96 6097.52 7599.29 3499.05 11098.52 3298.33 18998.68 12493.18 22598.68 6299.13 7094.62 8499.83 5996.45 12899.55 8799.52 92
ETV-MVS97.96 6097.81 6398.40 10698.42 16297.27 9698.73 12698.55 15796.84 5998.38 8397.44 24895.39 5899.35 16497.62 6998.89 12798.58 194
UA-Net97.96 6097.62 6898.98 6898.86 12997.47 8998.89 9199.08 2196.67 6798.72 6199.54 193.15 11099.81 7494.87 17798.83 13299.65 71
agg_prior197.95 6397.51 7799.28 3899.30 7798.38 4097.81 25398.72 11393.16 22797.57 13698.66 13396.14 2999.81 7496.63 12199.56 8499.66 69
CS-MVS97.94 6497.90 6098.06 13098.04 19896.85 11599.04 5898.39 19196.17 8698.50 7598.29 17494.60 8599.02 20398.61 899.43 10198.30 205
CDPH-MVS97.94 6497.49 7899.28 3899.47 5098.44 3697.91 24298.67 13292.57 24898.77 5698.85 11195.93 4199.72 11295.56 16199.69 5699.68 61
DeepPCF-MVS96.37 297.93 6698.48 1896.30 25299.00 11789.54 32597.43 27698.87 5798.16 299.26 2199.38 2396.12 3199.64 12998.30 3199.77 2899.72 44
CS-MVS-test97.90 6797.83 6298.11 12698.14 19096.49 13199.35 1398.40 18896.31 8298.27 9098.31 17194.42 9499.05 19598.07 3899.20 11398.80 177
DeepC-MVS95.98 397.88 6897.58 7098.77 7899.25 8896.93 11098.83 10398.75 10596.96 5596.89 15999.50 490.46 16499.87 4797.84 5499.76 3499.52 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon97.86 6997.46 8099.06 6499.53 3898.35 4898.33 18998.89 4792.62 24598.05 9798.94 10295.34 6299.65 12796.04 14299.42 10299.19 140
CSCG97.85 7097.74 6698.20 11899.67 2795.16 18999.22 3099.32 793.04 23197.02 15298.92 10595.36 6199.91 3397.43 8199.64 6699.52 92
MG-MVS97.81 7197.60 6998.44 10299.12 10895.97 15597.75 25898.78 9896.89 5898.46 7699.22 5293.90 10399.68 12494.81 18199.52 9199.67 65
VNet97.79 7297.40 8498.96 7098.88 12797.55 8698.63 14798.93 3896.74 6499.02 3898.84 11390.33 16799.83 5998.53 1196.66 19699.50 98
EIA-MVS97.75 7397.58 7098.27 11298.38 16496.44 13499.01 6898.60 14595.88 9797.26 14197.53 24194.97 7799.33 16697.38 8499.20 11399.05 159
PS-MVSNAJ97.73 7497.77 6497.62 16298.68 14695.58 17397.34 28598.51 16697.29 3398.66 6797.88 20994.51 8899.90 3697.87 5099.17 11697.39 229
CPTT-MVS97.72 7597.32 8798.92 7299.64 3097.10 10599.12 4698.81 7992.34 25698.09 9599.08 8293.01 11199.92 2496.06 14199.77 2899.75 30
PVSNet_Blended_VisFu97.70 7697.46 8098.44 10299.27 8595.91 16398.63 14799.16 1794.48 16897.67 12898.88 10892.80 11399.91 3397.11 9199.12 11799.50 98
canonicalmvs97.67 7797.23 9098.98 6898.70 14398.38 4099.34 1598.39 19196.76 6397.67 12897.40 25192.26 12199.49 15198.28 3296.28 21299.08 157
xiu_mvs_v2_base97.66 7897.70 6797.56 16698.61 15295.46 17997.44 27498.46 17697.15 4598.65 6898.15 18694.33 9599.80 8397.84 5498.66 14097.41 227
baseline97.64 7997.44 8298.25 11598.35 16696.20 14499.00 7098.32 20296.33 8198.03 10099.17 6191.35 14699.16 17998.10 3698.29 15899.39 116
casdiffmvs97.63 8097.41 8398.28 11198.33 17396.14 14798.82 10698.32 20296.38 7997.95 11099.21 5391.23 15099.23 17398.12 3598.37 15399.48 103
xiu_mvs_v1_base_debu97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
xiu_mvs_v1_base97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
xiu_mvs_v1_base_debi97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
ETH3 D test640097.59 8497.01 9999.34 2699.40 6198.56 3098.20 20998.81 7991.63 27998.44 8098.85 11193.98 10299.82 6794.11 20699.69 5699.64 74
diffmvs97.58 8597.40 8498.13 12398.32 17595.81 16898.06 22898.37 19596.20 8598.74 5898.89 10791.31 14899.25 17098.16 3498.52 14599.34 119
MVSFormer97.57 8697.49 7897.84 14198.07 19495.76 16999.47 598.40 18894.98 14598.79 5498.83 11592.34 11898.41 27696.91 10099.59 7599.34 119
alignmvs97.56 8797.07 9799.01 6598.66 14798.37 4698.83 10398.06 25796.74 6498.00 10897.65 23090.80 15899.48 15598.37 2896.56 20099.19 140
DPM-MVS97.55 8896.99 10199.23 4599.04 11298.55 3197.17 29898.35 19894.85 15297.93 11498.58 14195.07 7599.71 11792.60 24899.34 10899.43 113
OMC-MVS97.55 8897.34 8698.20 11899.33 6795.92 16298.28 20098.59 14795.52 11497.97 10999.10 7593.28 10999.49 15195.09 17498.88 12899.19 140
PAPM_NR97.46 9097.11 9498.50 9699.50 4396.41 13698.63 14798.60 14595.18 13397.06 15098.06 19294.26 9799.57 13893.80 21598.87 13099.52 92
EPP-MVSNet97.46 9097.28 8897.99 13498.64 14995.38 18199.33 1898.31 20493.61 21097.19 14399.07 8394.05 9999.23 17396.89 10498.43 15299.37 118
3Dnovator94.51 597.46 9096.93 10399.07 6397.78 21297.64 8299.35 1399.06 2297.02 5293.75 25899.16 6689.25 18599.92 2497.22 8899.75 4099.64 74
CNLPA97.45 9397.03 9898.73 7999.05 11097.44 9198.07 22798.53 16195.32 12696.80 16498.53 14593.32 10899.72 11294.31 19999.31 11099.02 161
lupinMVS97.44 9497.22 9198.12 12598.07 19495.76 16997.68 26297.76 27394.50 16798.79 5498.61 13692.34 11899.30 16797.58 7299.59 7599.31 125
3Dnovator+94.38 697.43 9596.78 11099.38 2097.83 21098.52 3299.37 1098.71 11797.09 5092.99 28499.13 7089.36 18299.89 3896.97 9699.57 7999.71 48
Vis-MVSNetpermissive97.42 9697.11 9498.34 10998.66 14796.23 14399.22 3099.00 2796.63 6998.04 9999.21 5388.05 21999.35 16496.01 14499.21 11299.45 111
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 9797.25 8997.91 13898.70 14396.80 11698.82 10698.69 12194.53 16498.11 9398.28 17594.50 9199.57 13894.12 20599.49 9397.37 231
sss97.39 9896.98 10298.61 8698.60 15396.61 12498.22 20598.93 3893.97 18598.01 10698.48 15091.98 13199.85 5396.45 12898.15 16099.39 116
PVSNet_Blended97.38 9997.12 9398.14 12199.25 8895.35 18497.28 29099.26 893.13 22897.94 11298.21 18292.74 11499.81 7496.88 10799.40 10599.27 132
112197.37 10096.77 11499.16 5399.34 6497.99 7098.19 21398.68 12490.14 31598.01 10698.97 9394.80 8299.87 4793.36 22799.46 9899.61 80
WTY-MVS97.37 10096.92 10498.72 8098.86 12996.89 11498.31 19598.71 11795.26 12997.67 12898.56 14492.21 12499.78 9995.89 14696.85 19199.48 103
jason97.32 10297.08 9698.06 13097.45 24195.59 17297.87 24897.91 26894.79 15398.55 7398.83 11591.12 15199.23 17397.58 7299.60 7299.34 119
jason: jason.
MVS_Test97.28 10397.00 10098.13 12398.33 17395.97 15598.74 12298.07 25294.27 17398.44 8098.07 19192.48 11699.26 16996.43 13098.19 15999.16 146
EPNet97.28 10396.87 10698.51 9594.98 33996.14 14798.90 8797.02 31998.28 195.99 19399.11 7391.36 14599.89 3896.98 9599.19 11599.50 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl97.22 10596.78 11098.54 9298.73 13896.60 12598.45 17298.31 20494.70 15598.02 10298.42 15690.80 15899.70 11896.81 11396.79 19399.34 119
DCV-MVSNet97.22 10596.78 11098.54 9298.73 13896.60 12598.45 17298.31 20494.70 15598.02 10298.42 15690.80 15899.70 11896.81 11396.79 19399.34 119
IS-MVSNet97.22 10596.88 10598.25 11598.85 13196.36 13899.19 3697.97 26295.39 12097.23 14298.99 9291.11 15298.93 21794.60 18798.59 14299.47 105
PLCcopyleft95.07 497.20 10896.78 11098.44 10299.29 8096.31 14298.14 22098.76 10292.41 25496.39 18398.31 17194.92 7999.78 9994.06 20898.77 13599.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42097.18 10997.18 9297.20 18098.81 13493.27 26695.78 34299.15 1895.25 13096.79 16598.11 18992.29 12099.07 19498.56 1099.85 399.25 134
LS3D97.16 11096.66 11998.68 8298.53 15797.19 10398.93 8498.90 4592.83 24195.99 19399.37 2492.12 12799.87 4793.67 21999.57 7998.97 166
AdaColmapbinary97.15 11196.70 11598.48 9999.16 10496.69 12198.01 23398.89 4794.44 17096.83 16098.68 13090.69 16199.76 10694.36 19599.29 11198.98 165
Effi-MVS+97.12 11296.69 11698.39 10798.19 18496.72 12097.37 28198.43 18393.71 20097.65 13198.02 19492.20 12599.25 17096.87 11097.79 17299.19 140
CHOSEN 1792x268897.12 11296.80 10798.08 12899.30 7794.56 22298.05 22999.71 193.57 21197.09 14698.91 10688.17 21499.89 3896.87 11099.56 8499.81 10
F-COLMAP97.09 11496.80 10797.97 13599.45 5794.95 20398.55 16198.62 14493.02 23296.17 18898.58 14194.01 10099.81 7493.95 21098.90 12699.14 149
TAMVS97.02 11596.79 10997.70 15598.06 19695.31 18698.52 16398.31 20493.95 18697.05 15198.61 13693.49 10698.52 25895.33 16697.81 17199.29 130
CDS-MVSNet96.99 11696.69 11697.90 13998.05 19795.98 15098.20 20998.33 20193.67 20796.95 15398.49 14993.54 10598.42 26995.24 17297.74 17599.31 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU96.96 11796.55 12298.21 11798.17 18896.07 14997.98 23698.21 22097.24 4097.13 14598.93 10386.88 24399.91 3395.00 17699.37 10798.66 188
114514_t96.93 11896.27 13198.92 7299.50 4397.63 8398.85 9998.90 4584.80 35197.77 12099.11 7392.84 11299.66 12694.85 17899.77 2899.47 105
MAR-MVS96.91 11996.40 12798.45 10198.69 14596.90 11298.66 14498.68 12492.40 25597.07 14997.96 20191.54 14299.75 10893.68 21798.92 12598.69 184
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HyFIR lowres test96.90 12096.49 12598.14 12199.33 6795.56 17497.38 27999.65 292.34 25697.61 13498.20 18389.29 18499.10 19196.97 9697.60 18099.77 22
Vis-MVSNet (Re-imp)96.87 12196.55 12297.83 14298.73 13895.46 17999.20 3498.30 21094.96 14796.60 17198.87 10990.05 17098.59 25293.67 21998.60 14199.46 109
PAPR96.84 12296.24 13398.65 8498.72 14296.92 11197.36 28398.57 15393.33 21996.67 16797.57 23894.30 9699.56 14091.05 28398.59 14299.47 105
HY-MVS93.96 896.82 12396.23 13498.57 8898.46 16197.00 10798.14 22098.21 22093.95 18696.72 16697.99 19891.58 13899.76 10694.51 19296.54 20198.95 169
UGNet96.78 12496.30 13098.19 12098.24 17895.89 16598.88 9498.93 3897.39 2796.81 16397.84 21482.60 30299.90 3696.53 12599.49 9398.79 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 12596.60 12097.12 18699.25 8895.35 18498.26 20399.26 894.28 17297.94 11297.46 24592.74 11499.81 7496.88 10793.32 25696.20 322
mvs_anonymous96.70 12696.53 12497.18 18298.19 18493.78 24498.31 19598.19 22394.01 18294.47 22098.27 17892.08 12998.46 26497.39 8397.91 16799.31 125
1112_ss96.63 12796.00 14198.50 9698.56 15496.37 13798.18 21798.10 24392.92 23694.84 20898.43 15492.14 12699.58 13794.35 19696.51 20299.56 91
mvs-test196.60 12896.68 11896.37 24797.89 20791.81 28698.56 15998.10 24396.57 7196.52 17897.94 20390.81 15699.45 15995.72 15498.01 16497.86 217
PMMVS96.60 12896.33 12997.41 17297.90 20693.93 24097.35 28498.41 18692.84 24097.76 12197.45 24791.10 15399.20 17696.26 13497.91 16799.11 152
DP-MVS96.59 13095.93 14298.57 8899.34 6496.19 14698.70 13598.39 19189.45 32694.52 21899.35 3091.85 13399.85 5392.89 24498.88 12899.68 61
PatchMatch-RL96.59 13096.03 14098.27 11299.31 7296.51 13097.91 24299.06 2293.72 19996.92 15798.06 19288.50 20899.65 12791.77 27299.00 12398.66 188
GeoE96.58 13296.07 13798.10 12798.35 16695.89 16599.34 1598.12 23893.12 22996.09 18998.87 10989.71 17698.97 20892.95 24098.08 16399.43 113
XVG-OURS96.55 13396.41 12696.99 19298.75 13793.76 24597.50 27398.52 16395.67 10696.83 16099.30 4088.95 19899.53 14695.88 14796.26 21397.69 223
FIs96.51 13496.12 13697.67 15897.13 26397.54 8799.36 1199.22 1495.89 9694.03 24698.35 16491.98 13198.44 26796.40 13192.76 26397.01 240
XVG-OURS-SEG-HR96.51 13496.34 12897.02 19198.77 13693.76 24597.79 25698.50 17195.45 11796.94 15499.09 8087.87 22499.55 14596.76 11995.83 22297.74 220
PS-MVSNAJss96.43 13696.26 13296.92 20195.84 32395.08 19599.16 3998.50 17195.87 9893.84 25498.34 16894.51 8898.61 24896.88 10793.45 25397.06 238
FC-MVSNet-test96.42 13796.05 13897.53 16896.95 27297.27 9699.36 1199.23 1295.83 9993.93 24898.37 16292.00 13098.32 28596.02 14392.72 26497.00 241
ab-mvs96.42 13795.71 15198.55 9098.63 15096.75 11997.88 24798.74 10793.84 19196.54 17698.18 18585.34 26999.75 10895.93 14596.35 20699.15 147
PVSNet91.96 1896.35 13996.15 13596.96 19699.17 10092.05 28396.08 33598.68 12493.69 20397.75 12297.80 22088.86 19999.69 12394.26 20199.01 12299.15 147
Test_1112_low_res96.34 14095.66 15698.36 10898.56 15495.94 15897.71 26098.07 25292.10 26694.79 21297.29 25691.75 13599.56 14094.17 20396.50 20399.58 89
Effi-MVS+-dtu96.29 14196.56 12195.51 28197.89 20790.22 31698.80 11398.10 24396.57 7196.45 18296.66 30490.81 15698.91 21995.72 15497.99 16597.40 228
QAPM96.29 14195.40 16198.96 7097.85 20997.60 8599.23 2698.93 3889.76 32193.11 28199.02 8689.11 19099.93 1891.99 26799.62 7099.34 119
Fast-Effi-MVS+96.28 14395.70 15398.03 13298.29 17795.97 15598.58 15398.25 21891.74 27495.29 20197.23 26091.03 15599.15 18292.90 24297.96 16698.97 166
nrg03096.28 14395.72 14897.96 13796.90 27798.15 6199.39 898.31 20495.47 11694.42 22698.35 16492.09 12898.69 24097.50 8089.05 31097.04 239
131496.25 14595.73 14797.79 14697.13 26395.55 17698.19 21398.59 14793.47 21492.03 31097.82 21891.33 14799.49 15194.62 18698.44 15098.32 204
h-mvs3396.17 14695.62 15797.81 14599.03 11394.45 22498.64 14698.75 10597.48 1998.67 6398.72 12789.76 17499.86 5297.95 4381.59 35099.11 152
HQP_MVS96.14 14795.90 14396.85 20497.42 24294.60 22098.80 11398.56 15597.28 3495.34 19898.28 17587.09 23899.03 20096.07 13894.27 22996.92 247
tttt051796.07 14895.51 16097.78 14798.41 16394.84 20699.28 2194.33 35994.26 17497.64 13298.64 13584.05 29199.47 15795.34 16597.60 18099.03 160
MVSTER96.06 14995.72 14897.08 18998.23 17995.93 16198.73 12698.27 21394.86 15195.07 20298.09 19088.21 21298.54 25696.59 12293.46 25196.79 265
RRT_MVS96.04 15095.53 15897.56 16697.07 26797.32 9398.57 15898.09 24895.15 13595.02 20498.44 15388.20 21398.58 25496.17 13793.09 26096.79 265
thisisatest053096.01 15195.36 16697.97 13598.38 16495.52 17798.88 9494.19 36194.04 17997.64 13298.31 17183.82 29899.46 15895.29 16997.70 17798.93 170
test_djsdf96.00 15295.69 15496.93 19895.72 32595.49 17899.47 598.40 18894.98 14594.58 21697.86 21189.16 18898.41 27696.91 10094.12 23796.88 256
EI-MVSNet95.96 15395.83 14596.36 24897.93 20493.70 25198.12 22398.27 21393.70 20295.07 20299.02 8692.23 12398.54 25694.68 18393.46 25196.84 261
ECVR-MVScopyleft95.95 15495.71 15196.65 21699.02 11490.86 30599.03 6291.80 36896.96 5598.10 9499.26 4581.31 31099.51 15096.90 10399.04 11999.59 85
BH-untuned95.95 15495.72 14896.65 21698.55 15692.26 27998.23 20497.79 27293.73 19894.62 21598.01 19688.97 19799.00 20793.04 23798.51 14698.68 185
test111195.94 15695.78 14696.41 24498.99 12090.12 31799.04 5892.45 36796.99 5498.03 10099.27 4481.40 30999.48 15596.87 11099.04 11999.63 77
MSDG95.93 15795.30 17297.83 14298.90 12595.36 18296.83 32298.37 19591.32 29094.43 22598.73 12690.27 16899.60 13590.05 29798.82 13398.52 195
BH-RMVSNet95.92 15895.32 17097.69 15698.32 17594.64 21498.19 21397.45 29894.56 16396.03 19198.61 13685.02 27299.12 18590.68 28899.06 11899.30 128
Fast-Effi-MVS+-dtu95.87 15995.85 14495.91 26897.74 21691.74 29098.69 13798.15 23495.56 11194.92 20697.68 22988.98 19698.79 23593.19 23297.78 17397.20 235
LFMVS95.86 16094.98 18698.47 10098.87 12896.32 14098.84 10296.02 34093.40 21798.62 6999.20 5774.99 35099.63 13297.72 6097.20 18699.46 109
baseline195.84 16195.12 17998.01 13398.49 16095.98 15098.73 12697.03 31795.37 12396.22 18698.19 18489.96 17299.16 17994.60 18787.48 32798.90 172
OpenMVScopyleft93.04 1395.83 16295.00 18498.32 11097.18 26097.32 9399.21 3398.97 3089.96 31791.14 31899.05 8586.64 24699.92 2493.38 22599.47 9597.73 221
VDD-MVS95.82 16395.23 17497.61 16398.84 13293.98 23998.68 13897.40 30295.02 14497.95 11099.34 3374.37 35499.78 9998.64 496.80 19299.08 157
UniMVSNet (Re)95.78 16495.19 17697.58 16496.99 27197.47 8998.79 11799.18 1695.60 10993.92 24997.04 27991.68 13698.48 26095.80 15187.66 32696.79 265
VPA-MVSNet95.75 16595.11 18097.69 15697.24 25297.27 9698.94 8299.23 1295.13 13695.51 19797.32 25485.73 26198.91 21997.33 8689.55 30296.89 255
HQP-MVS95.72 16695.40 16196.69 21497.20 25694.25 23498.05 22998.46 17696.43 7694.45 22197.73 22386.75 24498.96 21295.30 16794.18 23396.86 260
hse-mvs295.71 16795.30 17296.93 19898.50 15893.53 25698.36 18598.10 24397.48 1998.67 6397.99 19889.76 17499.02 20397.95 4380.91 35498.22 207
UniMVSNet_NR-MVSNet95.71 16795.15 17797.40 17496.84 28096.97 10898.74 12299.24 1095.16 13493.88 25197.72 22591.68 13698.31 28795.81 14987.25 33196.92 247
PatchmatchNetpermissive95.71 16795.52 15996.29 25397.58 22690.72 31096.84 32197.52 29194.06 17897.08 14796.96 28889.24 18698.90 22292.03 26698.37 15399.26 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS95.69 17095.33 16996.76 20896.16 31294.63 21598.43 17798.39 19196.64 6895.02 20498.78 12085.15 27199.05 19595.21 17394.20 23296.60 289
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM93.85 995.69 17095.38 16596.61 22297.61 22393.84 24398.91 8698.44 18095.25 13094.28 23298.47 15186.04 25999.12 18595.50 16393.95 24296.87 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 17295.69 15495.44 28597.54 23188.54 34196.97 30797.56 28493.50 21397.52 13896.93 29289.49 17899.16 17995.25 17196.42 20598.64 190
LPG-MVS_test95.62 17395.34 16796.47 23897.46 23793.54 25498.99 7298.54 15994.67 15994.36 22898.77 12285.39 26699.11 18895.71 15694.15 23596.76 269
CLD-MVS95.62 17395.34 16796.46 24197.52 23493.75 24797.27 29198.46 17695.53 11294.42 22698.00 19786.21 25498.97 20896.25 13594.37 22796.66 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051595.61 17594.89 19097.76 14998.15 18995.15 19196.77 32394.41 35792.95 23597.18 14497.43 24984.78 27799.45 15994.63 18497.73 17698.68 185
thres600view795.49 17694.77 19397.67 15898.98 12195.02 19698.85 9996.90 32595.38 12196.63 16996.90 29384.29 28499.59 13688.65 31796.33 20798.40 199
SCA95.46 17795.13 17896.46 24197.67 21991.29 30097.33 28697.60 28294.68 15896.92 15797.10 26683.97 29398.89 22392.59 25098.32 15799.20 137
IterMVS-LS95.46 17795.21 17596.22 25598.12 19193.72 25098.32 19498.13 23793.71 20094.26 23397.31 25592.24 12298.10 30494.63 18490.12 29396.84 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 17995.03 18396.73 21095.42 33694.63 21599.14 4198.52 16395.74 10293.22 27598.36 16383.87 29698.65 24696.95 9994.04 23896.91 252
CVMVSNet95.43 18096.04 13993.57 32497.93 20483.62 35998.12 22398.59 14795.68 10596.56 17299.02 8687.51 23097.51 33493.56 22397.44 18299.60 83
anonymousdsp95.42 18194.91 18996.94 19795.10 33895.90 16499.14 4198.41 18693.75 19593.16 27797.46 24587.50 23298.41 27695.63 16094.03 23996.50 308
DU-MVS95.42 18194.76 19497.40 17496.53 29596.97 10898.66 14498.99 2995.43 11893.88 25197.69 22688.57 20498.31 28795.81 14987.25 33196.92 247
mvs_tets95.41 18395.00 18496.65 21695.58 32994.42 22699.00 7098.55 15795.73 10393.21 27698.38 16183.45 30098.63 24797.09 9294.00 24096.91 252
thres100view90095.38 18494.70 19797.41 17298.98 12194.92 20498.87 9696.90 32595.38 12196.61 17096.88 29484.29 28499.56 14088.11 31896.29 20997.76 218
thres40095.38 18494.62 20097.65 16198.94 12394.98 20098.68 13896.93 32395.33 12496.55 17496.53 31084.23 28799.56 14088.11 31896.29 20998.40 199
BH-w/o95.38 18495.08 18196.26 25498.34 17191.79 28797.70 26197.43 30092.87 23994.24 23597.22 26188.66 20298.84 22991.55 27697.70 17798.16 210
VDDNet95.36 18794.53 20497.86 14098.10 19395.13 19398.85 9997.75 27490.46 30798.36 8499.39 1673.27 35699.64 12997.98 4296.58 19998.81 176
TAPA-MVS93.98 795.35 18894.56 20397.74 15199.13 10794.83 20898.33 18998.64 14086.62 34096.29 18598.61 13694.00 10199.29 16880.00 35599.41 10399.09 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 18994.98 18696.43 24397.67 21993.48 25898.73 12698.44 18094.94 15092.53 29798.53 14584.50 28399.14 18395.48 16494.00 24096.66 284
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 19094.87 19196.71 21199.29 8093.24 26898.58 15398.11 24189.92 31893.57 26299.10 7586.37 25299.79 9590.78 28698.10 16297.09 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpn200view995.32 19194.62 20097.43 17198.94 12394.98 20098.68 13896.93 32395.33 12496.55 17496.53 31084.23 28799.56 14088.11 31896.29 20997.76 218
Anonymous20240521195.28 19294.49 20697.67 15899.00 11793.75 24798.70 13597.04 31690.66 30396.49 17998.80 11878.13 33399.83 5996.21 13695.36 22599.44 112
thres20095.25 19394.57 20297.28 17798.81 13494.92 20498.20 20997.11 31295.24 13296.54 17696.22 32284.58 28199.53 14687.93 32296.50 20397.39 229
AllTest95.24 19494.65 19996.99 19299.25 8893.21 26998.59 15198.18 22691.36 28693.52 26498.77 12284.67 27999.72 11289.70 30497.87 16998.02 213
LCM-MVSNet-Re95.22 19595.32 17094.91 29998.18 18687.85 35098.75 11995.66 34695.11 13888.96 33696.85 29790.26 16997.65 32895.65 15998.44 15099.22 136
EPNet_dtu95.21 19694.95 18895.99 26396.17 31090.45 31498.16 21997.27 30896.77 6293.14 28098.33 16990.34 16698.42 26985.57 33598.81 13499.09 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 19794.45 21197.46 16996.75 28596.56 12898.86 9898.65 13993.30 22293.27 27498.27 17884.85 27698.87 22694.82 18091.26 28196.96 244
D2MVS95.18 19895.08 18195.48 28297.10 26592.07 28298.30 19799.13 1994.02 18192.90 28596.73 30189.48 17998.73 23994.48 19393.60 25095.65 335
WR-MVS95.15 19994.46 20997.22 17996.67 29096.45 13398.21 20698.81 7994.15 17593.16 27797.69 22687.51 23098.30 28995.29 16988.62 31696.90 254
TranMVSNet+NR-MVSNet95.14 20094.48 20797.11 18796.45 30096.36 13899.03 6299.03 2595.04 14393.58 26197.93 20488.27 21198.03 31194.13 20486.90 33696.95 246
baseline295.11 20194.52 20596.87 20396.65 29193.56 25398.27 20294.10 36393.45 21592.02 31197.43 24987.45 23499.19 17793.88 21297.41 18497.87 216
miper_enhance_ethall95.10 20294.75 19596.12 26097.53 23393.73 24996.61 32998.08 25092.20 26593.89 25096.65 30692.44 11798.30 28994.21 20291.16 28296.34 316
Anonymous2024052995.10 20294.22 22197.75 15099.01 11694.26 23398.87 9698.83 7185.79 34896.64 16898.97 9378.73 32899.85 5396.27 13394.89 22699.12 151
test-LLR95.10 20294.87 19195.80 27396.77 28289.70 32196.91 31295.21 34995.11 13894.83 21095.72 33387.71 22698.97 20893.06 23598.50 14798.72 181
WR-MVS_H95.05 20594.46 20996.81 20696.86 27995.82 16799.24 2599.24 1093.87 19092.53 29796.84 29890.37 16598.24 29693.24 23087.93 32396.38 315
miper_ehance_all_eth95.01 20694.69 19895.97 26597.70 21893.31 26597.02 30598.07 25292.23 26293.51 26696.96 28891.85 13398.15 30093.68 21791.16 28296.44 313
ADS-MVSNet95.00 20794.45 21196.63 22098.00 19991.91 28596.04 33697.74 27590.15 31396.47 18096.64 30787.89 22298.96 21290.08 29597.06 18799.02 161
VPNet94.99 20894.19 22397.40 17497.16 26196.57 12798.71 13198.97 3095.67 10694.84 20898.24 18180.36 31998.67 24496.46 12787.32 33096.96 244
EPMVS94.99 20894.48 20796.52 23497.22 25491.75 28997.23 29291.66 36994.11 17697.28 14096.81 29985.70 26298.84 22993.04 23797.28 18598.97 166
NR-MVSNet94.98 21094.16 22697.44 17096.53 29597.22 10298.74 12298.95 3494.96 14789.25 33597.69 22689.32 18398.18 29894.59 18987.40 32996.92 247
FMVSNet394.97 21194.26 22097.11 18798.18 18696.62 12298.56 15998.26 21793.67 20794.09 24297.10 26684.25 28698.01 31292.08 26292.14 26796.70 278
CostFormer94.95 21294.73 19695.60 28097.28 25089.06 33297.53 27296.89 32789.66 32396.82 16296.72 30286.05 25798.95 21695.53 16296.13 21898.79 178
PAPM94.95 21294.00 23697.78 14797.04 26895.65 17196.03 33898.25 21891.23 29594.19 23897.80 22091.27 14998.86 22882.61 34997.61 17998.84 175
CP-MVSNet94.94 21494.30 21896.83 20596.72 28795.56 17499.11 4798.95 3493.89 18892.42 30397.90 20687.19 23698.12 30394.32 19888.21 32096.82 264
TR-MVS94.94 21494.20 22297.17 18397.75 21394.14 23697.59 26997.02 31992.28 26195.75 19697.64 23283.88 29598.96 21289.77 30196.15 21798.40 199
bset_n11_16_dypcd94.89 21694.27 21996.76 20894.41 34795.15 19195.67 34395.64 34795.53 11294.65 21497.52 24287.10 23798.29 29296.58 12491.35 27796.83 263
RPSCF94.87 21795.40 16193.26 33098.89 12682.06 36498.33 18998.06 25790.30 31296.56 17299.26 4587.09 23899.49 15193.82 21496.32 20898.24 206
test_part194.82 21893.82 24997.82 14498.84 13297.82 7799.03 6298.81 7992.31 26092.51 29997.89 20881.96 30598.67 24494.80 18288.24 31996.98 242
DWT-MVSNet_test94.82 21894.36 21696.20 25697.35 24790.79 30898.34 18796.57 33892.91 23795.33 20096.44 31482.00 30499.12 18594.52 19195.78 22398.70 183
GA-MVS94.81 22094.03 23297.14 18497.15 26293.86 24296.76 32497.58 28394.00 18394.76 21397.04 27980.91 31498.48 26091.79 27196.25 21499.09 154
c3_l94.79 22194.43 21395.89 27097.75 21393.12 27297.16 29998.03 25992.23 26293.46 26997.05 27891.39 14498.01 31293.58 22289.21 30896.53 300
V4294.78 22294.14 22896.70 21396.33 30595.22 18898.97 7698.09 24892.32 25894.31 23197.06 27688.39 20998.55 25592.90 24288.87 31496.34 316
CR-MVSNet94.76 22394.15 22796.59 22597.00 26993.43 25994.96 34997.56 28492.46 24996.93 15596.24 31888.15 21597.88 32487.38 32496.65 19798.46 197
v2v48294.69 22494.03 23296.65 21696.17 31094.79 21198.67 14198.08 25092.72 24294.00 24797.16 26487.69 22998.45 26592.91 24188.87 31496.72 274
pmmvs494.69 22493.99 23896.81 20695.74 32495.94 15897.40 27797.67 27790.42 30993.37 27197.59 23689.08 19198.20 29792.97 23991.67 27496.30 320
cl2294.68 22694.19 22396.13 25998.11 19293.60 25296.94 30998.31 20492.43 25393.32 27396.87 29686.51 24798.28 29494.10 20791.16 28296.51 306
eth_miper_zixun_eth94.68 22694.41 21495.47 28397.64 22191.71 29196.73 32698.07 25292.71 24393.64 25997.21 26290.54 16398.17 29993.38 22589.76 29796.54 298
PCF-MVS93.45 1194.68 22693.43 27198.42 10598.62 15196.77 11895.48 34798.20 22284.63 35293.34 27298.32 17088.55 20699.81 7484.80 34298.96 12498.68 185
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS94.67 22993.54 26798.08 12896.88 27896.56 12898.19 21398.50 17178.05 36092.69 29298.02 19491.07 15499.63 13290.09 29498.36 15598.04 212
PS-CasMVS94.67 22993.99 23896.71 21196.68 28995.26 18799.13 4499.03 2593.68 20592.33 30497.95 20285.35 26898.10 30493.59 22188.16 32296.79 265
cascas94.63 23193.86 24796.93 19896.91 27694.27 23296.00 33998.51 16685.55 34994.54 21796.23 32084.20 28998.87 22695.80 15196.98 19097.66 224
tpmvs94.60 23294.36 21695.33 28897.46 23788.60 34096.88 31897.68 27691.29 29293.80 25696.42 31588.58 20399.24 17291.06 28196.04 22098.17 209
LTVRE_ROB92.95 1594.60 23293.90 24496.68 21597.41 24594.42 22698.52 16398.59 14791.69 27791.21 31798.35 16484.87 27599.04 19991.06 28193.44 25496.60 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 23493.92 24196.60 22496.21 30794.78 21298.59 15198.14 23691.86 27394.21 23797.02 28187.97 22098.41 27691.72 27389.57 30096.61 288
ADS-MVSNet294.58 23594.40 21595.11 29498.00 19988.74 33896.04 33697.30 30590.15 31396.47 18096.64 30787.89 22297.56 33290.08 29597.06 18799.02 161
RRT_test8_iter0594.56 23694.19 22395.67 27897.60 22491.34 29698.93 8498.42 18594.75 15493.39 27097.87 21079.00 32798.61 24896.78 11790.99 28597.07 237
ACMH92.88 1694.55 23793.95 24096.34 25097.63 22293.26 26798.81 11298.49 17593.43 21689.74 33098.53 14581.91 30699.08 19393.69 21693.30 25796.70 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-ACMP-BASELINE94.54 23894.14 22895.75 27696.55 29491.65 29298.11 22598.44 18094.96 14794.22 23697.90 20679.18 32699.11 18894.05 20993.85 24496.48 310
AUN-MVS94.53 23993.73 25896.92 20198.50 15893.52 25798.34 18798.10 24393.83 19395.94 19597.98 20085.59 26499.03 20094.35 19680.94 35398.22 207
DIV-MVS_self_test94.52 24094.03 23295.99 26397.57 23093.38 26397.05 30397.94 26591.74 27492.81 28797.10 26689.12 18998.07 30892.60 24890.30 29196.53 300
cl____94.51 24194.01 23596.02 26297.58 22693.40 26297.05 30397.96 26491.73 27692.76 28997.08 27289.06 19298.13 30292.61 24790.29 29296.52 303
GBi-Net94.49 24293.80 25196.56 22998.21 18195.00 19798.82 10698.18 22692.46 24994.09 24297.07 27381.16 31197.95 31692.08 26292.14 26796.72 274
test194.49 24293.80 25196.56 22998.21 18195.00 19798.82 10698.18 22692.46 24994.09 24297.07 27381.16 31197.95 31692.08 26292.14 26796.72 274
v894.47 24493.77 25496.57 22896.36 30394.83 20899.05 5798.19 22391.92 27093.16 27796.97 28688.82 20198.48 26091.69 27487.79 32496.39 314
FMVSNet294.47 24493.61 26497.04 19098.21 18196.43 13598.79 11798.27 21392.46 24993.50 26797.09 27081.16 31198.00 31491.09 27991.93 27096.70 278
test250694.44 24693.91 24396.04 26199.02 11488.99 33599.06 5579.47 37896.96 5598.36 8499.26 4577.21 34199.52 14996.78 11799.04 11999.59 85
Patchmatch-test94.42 24793.68 26296.63 22097.60 22491.76 28894.83 35397.49 29589.45 32694.14 24097.10 26688.99 19398.83 23185.37 33898.13 16199.29 130
PEN-MVS94.42 24793.73 25896.49 23696.28 30694.84 20699.17 3899.00 2793.51 21292.23 30697.83 21786.10 25697.90 32092.55 25386.92 33596.74 271
v14419294.39 24993.70 26096.48 23796.06 31594.35 23098.58 15398.16 23391.45 28394.33 23097.02 28187.50 23298.45 26591.08 28089.11 30996.63 286
Baseline_NR-MVSNet94.35 25093.81 25095.96 26696.20 30894.05 23898.61 15096.67 33691.44 28493.85 25397.60 23588.57 20498.14 30194.39 19486.93 33495.68 334
miper_lstm_enhance94.33 25194.07 23195.11 29497.75 21390.97 30497.22 29398.03 25991.67 27892.76 28996.97 28690.03 17197.78 32692.51 25589.64 29996.56 295
v119294.32 25293.58 26596.53 23396.10 31394.45 22498.50 16898.17 23191.54 28194.19 23897.06 27686.95 24298.43 26890.14 29389.57 30096.70 278
ACMH+92.99 1494.30 25393.77 25495.88 27197.81 21192.04 28498.71 13198.37 19593.99 18490.60 32498.47 15180.86 31699.05 19592.75 24692.40 26696.55 297
v14894.29 25493.76 25695.91 26896.10 31392.93 27498.58 15397.97 26292.59 24793.47 26896.95 29088.53 20798.32 28592.56 25287.06 33396.49 309
v1094.29 25493.55 26696.51 23596.39 30294.80 21098.99 7298.19 22391.35 28893.02 28396.99 28488.09 21798.41 27690.50 29088.41 31896.33 318
MVP-Stereo94.28 25693.92 24195.35 28794.95 34092.60 27797.97 23797.65 27891.61 28090.68 32397.09 27086.32 25398.42 26989.70 30499.34 10895.02 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UniMVSNet_ETH3D94.24 25793.33 27396.97 19597.19 25993.38 26398.74 12298.57 15391.21 29793.81 25598.58 14172.85 35798.77 23795.05 17593.93 24398.77 180
OurMVSNet-221017-094.21 25894.00 23694.85 30295.60 32889.22 33098.89 9197.43 30095.29 12792.18 30798.52 14882.86 30198.59 25293.46 22491.76 27296.74 271
v192192094.20 25993.47 27096.40 24695.98 31894.08 23798.52 16398.15 23491.33 28994.25 23497.20 26386.41 25198.42 26990.04 29889.39 30696.69 283
v7n94.19 26093.43 27196.47 23895.90 32094.38 22999.26 2398.34 20091.99 26892.76 28997.13 26588.31 21098.52 25889.48 30987.70 32596.52 303
tpm294.19 26093.76 25695.46 28497.23 25389.04 33397.31 28896.85 33187.08 33996.21 18796.79 30083.75 29998.74 23892.43 25896.23 21598.59 192
TESTMET0.1,194.18 26293.69 26195.63 27996.92 27489.12 33196.91 31294.78 35493.17 22694.88 20796.45 31378.52 32998.92 21893.09 23498.50 14798.85 173
dp94.15 26393.90 24494.90 30097.31 24986.82 35596.97 30797.19 31191.22 29696.02 19296.61 30985.51 26599.02 20390.00 29994.30 22898.85 173
ET-MVSNet_ETH3D94.13 26492.98 27997.58 16498.22 18096.20 14497.31 28895.37 34894.53 16479.56 36097.63 23486.51 24797.53 33396.91 10090.74 28799.02 161
tpm94.13 26493.80 25195.12 29396.50 29787.91 34997.44 27495.89 34592.62 24596.37 18496.30 31784.13 29098.30 28993.24 23091.66 27599.14 149
IterMVS-SCA-FT94.11 26693.87 24694.85 30297.98 20390.56 31397.18 29698.11 24193.75 19592.58 29597.48 24483.97 29397.41 33592.48 25791.30 27996.58 291
Anonymous2023121194.10 26793.26 27696.61 22299.11 10994.28 23199.01 6898.88 5086.43 34292.81 28797.57 23881.66 30898.68 24394.83 17989.02 31296.88 256
IterMVS94.09 26893.85 24894.80 30597.99 20190.35 31597.18 29698.12 23893.68 20592.46 30297.34 25284.05 29197.41 33592.51 25591.33 27896.62 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 26993.51 26895.80 27396.77 28289.70 32196.91 31295.21 34992.89 23894.83 21095.72 33377.69 33698.97 20893.06 23598.50 14798.72 181
test0.0.03 194.08 26993.51 26895.80 27395.53 33192.89 27597.38 27995.97 34295.11 13892.51 29996.66 30487.71 22696.94 34287.03 32693.67 24697.57 225
v124094.06 27193.29 27596.34 25096.03 31793.90 24198.44 17598.17 23191.18 29894.13 24197.01 28386.05 25798.42 26989.13 31489.50 30496.70 278
X-MVStestdata94.06 27192.30 29199.34 2699.70 2498.35 4899.29 1998.88 5097.40 2598.46 7643.50 37195.90 4399.89 3897.85 5299.74 4399.78 15
DTE-MVSNet93.98 27393.26 27696.14 25896.06 31594.39 22899.20 3498.86 6393.06 23091.78 31297.81 21985.87 26097.58 33190.53 28986.17 34096.46 312
pm-mvs193.94 27493.06 27896.59 22596.49 29895.16 18998.95 8098.03 25992.32 25891.08 31997.84 21484.54 28298.41 27692.16 26086.13 34296.19 323
MS-PatchMatch93.84 27593.63 26394.46 31696.18 30989.45 32697.76 25798.27 21392.23 26292.13 30897.49 24379.50 32398.69 24089.75 30299.38 10695.25 339
tfpnnormal93.66 27692.70 28596.55 23296.94 27395.94 15898.97 7699.19 1591.04 30091.38 31697.34 25284.94 27498.61 24885.45 33789.02 31295.11 343
EU-MVSNet93.66 27694.14 22892.25 33795.96 31983.38 36098.52 16398.12 23894.69 15792.61 29498.13 18887.36 23596.39 35391.82 27090.00 29596.98 242
our_test_393.65 27893.30 27494.69 30795.45 33489.68 32396.91 31297.65 27891.97 26991.66 31496.88 29489.67 17797.93 31988.02 32191.49 27696.48 310
pmmvs593.65 27892.97 28095.68 27795.49 33292.37 27898.20 20997.28 30789.66 32392.58 29597.26 25782.14 30398.09 30693.18 23390.95 28696.58 291
tpm cat193.36 28092.80 28295.07 29697.58 22687.97 34896.76 32497.86 27082.17 35693.53 26396.04 32686.13 25599.13 18489.24 31295.87 22198.10 211
JIA-IIPM93.35 28192.49 28895.92 26796.48 29990.65 31195.01 34896.96 32185.93 34696.08 19087.33 36287.70 22898.78 23691.35 27895.58 22498.34 202
SixPastTwentyTwo93.34 28292.86 28194.75 30695.67 32689.41 32898.75 11996.67 33693.89 18890.15 32898.25 18080.87 31598.27 29590.90 28490.64 28896.57 293
USDC93.33 28392.71 28495.21 29096.83 28190.83 30796.91 31297.50 29393.84 19190.72 32298.14 18777.69 33698.82 23289.51 30893.21 25995.97 328
IB-MVS91.98 1793.27 28491.97 29597.19 18197.47 23693.41 26197.09 30295.99 34193.32 22092.47 30195.73 33178.06 33499.53 14694.59 18982.98 34598.62 191
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 28592.21 29296.41 24497.73 21793.13 27195.65 34497.03 31791.27 29494.04 24596.06 32575.33 34897.19 33886.56 32896.23 21598.92 171
ppachtmachnet_test93.22 28692.63 28694.97 29895.45 33490.84 30696.88 31897.88 26990.60 30492.08 30997.26 25788.08 21897.86 32585.12 33990.33 29096.22 321
Patchmtry93.22 28692.35 29095.84 27296.77 28293.09 27394.66 35497.56 28487.37 33892.90 28596.24 31888.15 21597.90 32087.37 32590.10 29496.53 300
FMVSNet193.19 28892.07 29396.56 22997.54 23195.00 19798.82 10698.18 22690.38 31092.27 30597.07 27373.68 35597.95 31689.36 31191.30 27996.72 274
LF4IMVS93.14 28992.79 28394.20 31995.88 32188.67 33997.66 26497.07 31493.81 19491.71 31397.65 23077.96 33598.81 23391.47 27791.92 27195.12 342
testgi93.06 29092.45 28994.88 30196.43 30189.90 31898.75 11997.54 29095.60 10991.63 31597.91 20574.46 35397.02 34086.10 33193.67 24697.72 222
PatchT93.06 29091.97 29596.35 24996.69 28892.67 27694.48 35597.08 31386.62 34097.08 14792.23 35787.94 22197.90 32078.89 35996.69 19598.49 196
MVS_030492.81 29292.01 29495.23 28997.46 23791.33 29898.17 21898.81 7991.13 29993.80 25695.68 33666.08 36498.06 30990.79 28596.13 21896.32 319
RPMNet92.81 29291.34 30097.24 17897.00 26993.43 25994.96 34998.80 9082.27 35596.93 15592.12 35886.98 24199.82 6776.32 36396.65 19798.46 197
TransMVSNet (Re)92.67 29491.51 29996.15 25796.58 29394.65 21398.90 8796.73 33290.86 30289.46 33497.86 21185.62 26398.09 30686.45 32981.12 35195.71 333
K. test v392.55 29591.91 29794.48 31495.64 32789.24 32999.07 5494.88 35394.04 17986.78 34697.59 23677.64 33997.64 32992.08 26289.43 30596.57 293
DSMNet-mixed92.52 29692.58 28792.33 33594.15 34982.65 36298.30 19794.26 36089.08 33092.65 29395.73 33185.01 27395.76 35686.24 33097.76 17498.59 192
TinyColmap92.31 29791.53 29894.65 30996.92 27489.75 32096.92 31096.68 33590.45 30889.62 33197.85 21376.06 34698.81 23386.74 32792.51 26595.41 337
gg-mvs-nofinetune92.21 29890.58 30597.13 18596.75 28595.09 19495.85 34089.40 37285.43 35094.50 21981.98 36580.80 31798.40 28292.16 26098.33 15697.88 215
FMVSNet591.81 29990.92 30294.49 31397.21 25592.09 28198.00 23597.55 28989.31 32890.86 32195.61 33774.48 35295.32 35985.57 33589.70 29896.07 326
pmmvs691.77 30090.63 30495.17 29294.69 34691.24 30198.67 14197.92 26786.14 34489.62 33197.56 24075.79 34798.34 28390.75 28784.56 34495.94 329
Anonymous2023120691.66 30191.10 30193.33 32894.02 35387.35 35298.58 15397.26 30990.48 30690.16 32796.31 31683.83 29796.53 35179.36 35789.90 29696.12 324
Patchmatch-RL test91.49 30290.85 30393.41 32691.37 36284.40 35792.81 35995.93 34491.87 27287.25 34494.87 34388.99 19396.53 35192.54 25482.00 34799.30 128
test_040291.32 30390.27 30894.48 31496.60 29291.12 30298.50 16897.22 31086.10 34588.30 34196.98 28577.65 33897.99 31578.13 36192.94 26294.34 350
PVSNet_088.72 1991.28 30490.03 31095.00 29797.99 20187.29 35394.84 35298.50 17192.06 26789.86 32995.19 33979.81 32299.39 16292.27 25969.79 36498.33 203
Anonymous2024052191.18 30590.44 30693.42 32593.70 35488.47 34298.94 8297.56 28488.46 33389.56 33395.08 34277.15 34396.97 34183.92 34589.55 30294.82 348
EG-PatchMatch MVS91.13 30690.12 30994.17 32194.73 34589.00 33498.13 22297.81 27189.22 32985.32 35396.46 31267.71 36198.42 26987.89 32393.82 24595.08 344
TDRefinement91.06 30789.68 31295.21 29085.35 36991.49 29598.51 16797.07 31491.47 28288.83 33997.84 21477.31 34099.09 19292.79 24577.98 35795.04 345
UnsupCasMVSNet_eth90.99 30889.92 31194.19 32094.08 35089.83 31997.13 30198.67 13293.69 20385.83 35196.19 32375.15 34996.74 34589.14 31379.41 35596.00 327
test20.0390.89 30990.38 30792.43 33493.48 35588.14 34798.33 18997.56 28493.40 21787.96 34296.71 30380.69 31894.13 36479.15 35886.17 34095.01 347
MDA-MVSNet_test_wron90.71 31089.38 31594.68 30894.83 34290.78 30997.19 29597.46 29687.60 33672.41 36595.72 33386.51 24796.71 34885.92 33386.80 33796.56 295
YYNet190.70 31189.39 31494.62 31094.79 34490.65 31197.20 29497.46 29687.54 33772.54 36495.74 32986.51 24796.66 34986.00 33286.76 33896.54 298
KD-MVS_self_test90.38 31289.38 31593.40 32792.85 35888.94 33697.95 23897.94 26590.35 31190.25 32693.96 35079.82 32195.94 35584.62 34476.69 35995.33 338
pmmvs-eth3d90.36 31389.05 31894.32 31891.10 36392.12 28097.63 26896.95 32288.86 33184.91 35493.13 35378.32 33096.74 34588.70 31681.81 34994.09 354
CL-MVSNet_self_test90.11 31489.14 31793.02 33291.86 36188.23 34696.51 33298.07 25290.49 30590.49 32594.41 34584.75 27895.34 35880.79 35374.95 36195.50 336
new_pmnet90.06 31589.00 31993.22 33194.18 34888.32 34596.42 33496.89 32786.19 34385.67 35293.62 35177.18 34297.10 33981.61 35189.29 30794.23 351
MDA-MVSNet-bldmvs89.97 31688.35 32194.83 30495.21 33791.34 29697.64 26597.51 29288.36 33471.17 36696.13 32479.22 32596.63 35083.65 34686.27 33996.52 303
CMPMVSbinary66.06 2189.70 31789.67 31389.78 34193.19 35676.56 36697.00 30698.35 19880.97 35781.57 35897.75 22274.75 35198.61 24889.85 30093.63 24894.17 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 31888.28 32293.82 32292.81 35991.08 30398.01 23397.45 29887.95 33587.90 34395.87 32867.63 36294.56 36378.73 36088.18 32195.83 331
KD-MVS_2432*160089.61 31987.96 32394.54 31194.06 35191.59 29395.59 34597.63 28089.87 31988.95 33794.38 34778.28 33196.82 34384.83 34068.05 36595.21 340
miper_refine_blended89.61 31987.96 32394.54 31194.06 35191.59 29395.59 34597.63 28089.87 31988.95 33794.38 34778.28 33196.82 34384.83 34068.05 36595.21 340
MVS-HIRNet89.46 32188.40 32092.64 33397.58 22682.15 36394.16 35893.05 36675.73 36290.90 32082.52 36479.42 32498.33 28483.53 34798.68 13697.43 226
OpenMVS_ROBcopyleft86.42 2089.00 32287.43 32793.69 32393.08 35789.42 32797.91 24296.89 32778.58 35985.86 35094.69 34469.48 35998.29 29277.13 36293.29 25893.36 359
new-patchmatchnet88.50 32387.45 32691.67 33990.31 36585.89 35697.16 29997.33 30489.47 32583.63 35692.77 35476.38 34495.06 36182.70 34877.29 35894.06 355
PM-MVS87.77 32486.55 32891.40 34091.03 36483.36 36196.92 31095.18 35191.28 29386.48 34993.42 35253.27 36896.74 34589.43 31081.97 34894.11 353
UnsupCasMVSNet_bld87.17 32585.12 32993.31 32991.94 36088.77 33794.92 35198.30 21084.30 35382.30 35790.04 35963.96 36697.25 33785.85 33474.47 36393.93 357
N_pmnet87.12 32687.77 32585.17 34695.46 33361.92 37397.37 28170.66 37985.83 34788.73 34096.04 32685.33 27097.76 32780.02 35490.48 28995.84 330
pmmvs386.67 32784.86 33092.11 33888.16 36687.19 35496.63 32894.75 35579.88 35887.22 34592.75 35566.56 36395.20 36081.24 35276.56 36093.96 356
test_method79.03 32878.17 33181.63 34886.06 36854.40 37882.75 36796.89 32739.54 37180.98 35995.57 33858.37 36794.73 36284.74 34378.61 35695.75 332
LCM-MVSNet78.70 32976.24 33486.08 34477.26 37571.99 37094.34 35696.72 33361.62 36676.53 36189.33 36033.91 37592.78 36681.85 35074.60 36293.46 358
Gipumacopyleft78.40 33076.75 33383.38 34795.54 33080.43 36579.42 36897.40 30264.67 36573.46 36380.82 36645.65 37093.14 36566.32 36787.43 32876.56 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 33175.44 33585.46 34582.54 37074.95 36894.23 35793.08 36572.80 36374.68 36287.38 36136.36 37491.56 36773.95 36463.94 36789.87 362
FPMVS77.62 33277.14 33279.05 35079.25 37360.97 37495.79 34195.94 34365.96 36467.93 36794.40 34637.73 37388.88 36968.83 36688.46 31787.29 363
EGC-MVSNET75.22 33369.54 33692.28 33694.81 34389.58 32497.64 26596.50 3391.82 3765.57 37795.74 32968.21 36096.26 35473.80 36591.71 27390.99 361
ANet_high69.08 33465.37 33880.22 34965.99 37771.96 37190.91 36390.09 37182.62 35449.93 37278.39 36729.36 37681.75 37062.49 36838.52 37186.95 365
tmp_tt68.90 33566.97 33774.68 35250.78 37959.95 37587.13 36483.47 37638.80 37262.21 36896.23 32064.70 36576.91 37488.91 31530.49 37287.19 364
PMVScopyleft61.03 2365.95 33663.57 34073.09 35357.90 37851.22 37985.05 36693.93 36454.45 36744.32 37383.57 36313.22 37789.15 36858.68 36981.00 35278.91 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 33764.25 33967.02 35482.28 37159.36 37691.83 36285.63 37452.69 36860.22 36977.28 36841.06 37280.12 37246.15 37141.14 36961.57 370
EMVS64.07 33863.26 34166.53 35581.73 37258.81 37791.85 36184.75 37551.93 37059.09 37075.13 36943.32 37179.09 37342.03 37239.47 37061.69 369
MVEpermissive62.14 2263.28 33959.38 34274.99 35174.33 37665.47 37285.55 36580.50 37752.02 36951.10 37175.00 37010.91 38080.50 37151.60 37053.40 36878.99 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d30.17 34030.18 34430.16 35678.61 37443.29 38066.79 36914.21 38017.31 37314.82 37611.93 37611.55 37941.43 37537.08 37319.30 3735.76 373
cdsmvs_eth3d_5k23.98 34131.98 3430.00 3590.00 3820.00 3830.00 37098.59 1470.00 3770.00 37898.61 13690.60 1620.00 3780.00 3760.00 3760.00 374
testmvs21.48 34224.95 34511.09 35814.89 3806.47 38296.56 3309.87 3817.55 37417.93 37439.02 3729.43 3815.90 37716.56 37512.72 37420.91 372
test12320.95 34323.72 34612.64 35713.54 3818.19 38196.55 3316.13 3827.48 37516.74 37537.98 37312.97 3786.05 37616.69 3745.43 37523.68 371
ab-mvs-re8.20 34410.94 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37898.43 1540.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.88 34510.50 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37794.51 880.00 3780.00 3760.00 3760.00 374
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.82 198.66 2699.69 198.95 3497.46 2299.39 15
MSC_two_6792asdad99.62 699.17 10099.08 1198.63 14299.94 398.53 1199.80 1799.86 2
PC_three_145295.08 14299.60 599.16 6697.86 298.47 26397.52 7999.72 5299.74 35
No_MVS99.62 699.17 10099.08 1198.63 14299.94 398.53 1199.80 1799.86 2
test_one_060199.66 2899.25 298.86 6397.55 1599.20 2599.47 897.57 6
eth-test20.00 382
eth-test0.00 382
ZD-MVS99.46 5398.70 2398.79 9593.21 22498.67 6398.97 9395.70 4799.83 5996.07 13899.58 78
RE-MVS-def98.34 2999.49 4797.86 7399.11 4798.80 9096.49 7499.17 2899.35 3095.29 6697.72 6099.65 6299.71 48
IU-MVS99.71 2199.23 798.64 14095.28 12899.63 498.35 2999.81 1099.83 7
OPU-MVS99.37 2399.24 9499.05 1499.02 6699.16 6697.81 399.37 16397.24 8799.73 4599.70 52
test_241102_TWO98.87 5797.65 999.53 999.48 697.34 1199.94 398.43 2399.80 1799.83 7
test_241102_ONE99.71 2199.24 598.87 5797.62 1199.73 199.39 1697.53 799.74 110
9.1498.06 5199.47 5098.71 13198.82 7394.36 17199.16 3099.29 4196.05 3599.81 7497.00 9499.71 54
save fliter99.46 5398.38 4098.21 20698.71 11797.95 3
test_0728_THIRD97.32 3199.45 1199.46 1197.88 199.94 398.47 1999.86 199.85 4
test_0728_SECOND99.71 199.72 1399.35 198.97 7698.88 5099.94 398.47 1999.81 1099.84 6
test072699.72 1399.25 299.06 5598.88 5097.62 1199.56 699.50 497.42 9
GSMVS99.20 137
test_part299.63 3199.18 1099.27 20
sam_mvs189.45 18099.20 137
sam_mvs88.99 193
ambc89.49 34286.66 36775.78 36792.66 36096.72 33386.55 34892.50 35646.01 36997.90 32090.32 29182.09 34694.80 349
MTGPAbinary98.74 107
test_post196.68 32730.43 37587.85 22598.69 24092.59 250
test_post31.83 37488.83 20098.91 219
patchmatchnet-post95.10 34189.42 18198.89 223
GG-mvs-BLEND96.59 22596.34 30494.98 20096.51 33288.58 37393.10 28294.34 34980.34 32098.05 31089.53 30796.99 18996.74 271
MTMP98.89 9194.14 362
gm-plane-assit95.88 32187.47 35189.74 32296.94 29199.19 17793.32 229
test9_res96.39 13299.57 7999.69 55
TEST999.31 7298.50 3497.92 24098.73 11192.63 24497.74 12398.68 13096.20 2699.80 83
test_899.29 8098.44 3697.89 24698.72 11392.98 23397.70 12698.66 13396.20 2699.80 83
agg_prior295.87 14899.57 7999.68 61
agg_prior99.30 7798.38 4098.72 11397.57 13699.81 74
TestCases96.99 19299.25 8893.21 26998.18 22691.36 28693.52 26498.77 12284.67 27999.72 11289.70 30497.87 16998.02 213
test_prior498.01 6797.86 249
test_prior297.80 25496.12 9097.89 11798.69 12895.96 3996.89 10499.60 72
test_prior99.19 4699.31 7298.22 5598.84 6899.70 11899.65 71
旧先验297.57 27191.30 29198.67 6399.80 8395.70 158
新几何297.64 265
新几何199.16 5399.34 6498.01 6798.69 12190.06 31698.13 9298.95 10194.60 8599.89 3891.97 26899.47 9599.59 85
旧先验199.29 8097.48 8898.70 12099.09 8095.56 5099.47 9599.61 80
无先验97.58 27098.72 11391.38 28599.87 4793.36 22799.60 83
原ACMM297.67 263
原ACMM198.65 8499.32 7096.62 12298.67 13293.27 22397.81 11998.97 9395.18 7199.83 5993.84 21399.46 9899.50 98
test22299.23 9597.17 10497.40 27798.66 13588.68 33298.05 9798.96 9994.14 9899.53 8999.61 80
testdata299.89 3891.65 275
segment_acmp96.85 14
testdata98.26 11499.20 9995.36 18298.68 12491.89 27198.60 7199.10 7594.44 9399.82 6794.27 20099.44 10099.58 89
testdata197.32 28796.34 80
test1299.18 5099.16 10498.19 5798.53 16198.07 9695.13 7399.72 11299.56 8499.63 77
plane_prior797.42 24294.63 215
plane_prior697.35 24794.61 21887.09 238
plane_prior598.56 15599.03 20096.07 13894.27 22996.92 247
plane_prior498.28 175
plane_prior394.61 21897.02 5295.34 198
plane_prior298.80 11397.28 34
plane_prior197.37 246
plane_prior94.60 22098.44 17596.74 6494.22 231
n20.00 383
nn0.00 383
door-mid94.37 358
lessismore_v094.45 31794.93 34188.44 34391.03 37086.77 34797.64 23276.23 34598.42 26990.31 29285.64 34396.51 306
LGP-MVS_train96.47 23897.46 23793.54 25498.54 15994.67 15994.36 22898.77 12285.39 26699.11 18895.71 15694.15 23596.76 269
test1198.66 135
door94.64 356
HQP5-MVS94.25 234
HQP-NCC97.20 25698.05 22996.43 7694.45 221
ACMP_Plane97.20 25698.05 22996.43 7694.45 221
BP-MVS95.30 167
HQP4-MVS94.45 22198.96 21296.87 258
HQP3-MVS98.46 17694.18 233
HQP2-MVS86.75 244
NP-MVS97.28 25094.51 22397.73 223
MDTV_nov1_ep13_2view84.26 35896.89 31790.97 30197.90 11689.89 17393.91 21199.18 145
MDTV_nov1_ep1395.40 16197.48 23588.34 34496.85 32097.29 30693.74 19797.48 13997.26 25789.18 18799.05 19591.92 26997.43 183
ACMMP++_ref92.97 261
ACMMP++93.61 249
Test By Simon94.64 83
ITE_SJBPF95.44 28597.42 24291.32 29997.50 29395.09 14193.59 26098.35 16481.70 30798.88 22589.71 30393.39 25596.12 324
DeepMVS_CXcopyleft86.78 34397.09 26672.30 36995.17 35275.92 36184.34 35595.19 33970.58 35895.35 35779.98 35689.04 31192.68 360