This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 21
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MM79.99 260.01 4686.19 1783.93 5173.19 177.08 3091.21 1557.23 3190.73 1083.35 188.12 3589.22 5
SteuartSystems-ACMMP79.48 1079.31 1079.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5390.06 1378.42 1989.02 2387.69 33
Skip Steuart: Steuart Systems R&D Blog.
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3489.70 1679.85 591.48 188.19 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 16
DeepC-MVS69.38 278.56 1778.14 2179.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6390.25 3257.68 2789.96 1474.62 4389.03 2287.89 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+66.72 475.84 4474.57 5279.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 15789.24 5142.03 19789.38 1964.07 11686.50 5589.69 2
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 11
CNVR-MVS79.84 979.97 979.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2089.13 2278.67 1489.73 1687.03 53
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5189.38 4955.30 4289.18 2174.19 4687.34 4386.38 72
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 16
ZNCC-MVS78.82 1278.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4090.47 2653.96 5788.68 2776.48 2889.63 2087.16 51
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 37
ACMMPR77.71 2477.23 2779.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6690.56 2249.80 10988.24 3374.02 4887.03 4586.32 80
region2R77.67 2677.18 2879.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 6890.58 2149.90 10788.21 3473.78 5087.03 4586.29 83
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 20
DeepC-MVS_fast68.24 377.25 2976.63 3279.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 7888.88 5553.72 6289.06 2368.27 7888.04 3887.42 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS78.01 2377.65 2479.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6190.50 2453.20 6888.35 3174.02 4887.05 4486.13 87
HPM-MVS++copyleft79.88 880.14 879.10 2188.17 164.80 186.59 1283.70 6165.37 1378.78 2290.64 1958.63 2487.24 5179.00 1290.37 1485.26 127
XVS77.17 3076.56 3379.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9290.01 4047.95 12988.01 3871.55 6586.74 5286.37 74
X-MVStestdata70.21 11867.28 17079.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 926.49 39647.95 12988.01 3871.55 6586.74 5286.37 74
GST-MVS78.14 2177.85 2378.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5790.03 3852.56 7488.53 2974.79 4288.34 2986.63 68
TSAR-MVS + MP.78.44 1878.28 1978.90 2684.96 5261.41 2684.03 4583.82 5959.34 11779.37 1989.76 4559.84 1687.62 4776.69 2786.74 5287.68 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS76.77 3476.06 3778.88 2786.14 3562.73 982.55 6783.74 6061.71 7672.45 9190.34 2948.48 12588.13 3572.32 5886.85 5085.78 99
APDe-MVScopyleft80.16 780.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1889.76 1578.70 1388.32 3186.79 61
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMP_NAP78.77 1478.78 1378.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7588.39 3079.34 890.52 1386.78 62
MVS_030478.73 1578.75 1478.66 3080.82 10057.62 8385.31 3081.31 11270.51 274.17 5891.24 1454.99 4589.56 1782.29 288.13 3488.80 7
MP-MVScopyleft78.35 1978.26 2078.64 3186.54 2563.47 486.02 2083.55 6563.89 3773.60 6590.60 2054.85 4886.72 6877.20 2588.06 3785.74 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft77.28 2876.85 2978.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7789.97 4150.90 10287.48 4975.30 3686.85 5087.33 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS77.12 3176.68 3178.43 3386.05 3863.18 587.55 1083.45 6862.44 6472.68 8590.50 2448.18 12787.34 5073.59 5285.71 5884.76 143
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MTAPA76.90 3376.42 3478.35 3586.08 3763.57 274.92 20880.97 12365.13 1575.77 3590.88 1748.63 12286.66 7077.23 2488.17 3384.81 140
mPP-MVS76.54 3575.93 3978.34 3686.47 2663.50 385.74 2582.28 9062.90 5271.77 9590.26 3146.61 15386.55 7471.71 6385.66 5984.97 136
CDPH-MVS76.31 3775.67 4378.22 3785.35 4859.14 6281.31 8784.02 4856.32 16974.05 5988.98 5453.34 6787.92 4169.23 7688.42 2887.59 38
ACMMPcopyleft76.02 4275.33 4578.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 11989.74 4645.43 16687.16 5572.01 6082.87 8385.14 129
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet76.46 3675.93 3978.06 3981.29 9257.53 8582.35 6983.31 7467.78 370.09 10986.34 10154.92 4788.90 2572.68 5784.55 6587.76 32
MP-MVS-pluss78.35 1978.46 1778.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3391.51 1152.47 7786.78 6780.66 489.64 1987.80 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVScopyleft78.02 2278.04 2277.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4188.32 3273.48 5387.03 4584.83 139
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS77.70 2577.62 2577.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4685.58 9776.12 3184.94 6286.33 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1277.76 4384.52 5858.41 7583.36 7272.93 8154.61 5188.05 3788.12 3586.81 60
SF-MVS78.82 1279.22 1177.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2587.09 6077.08 2690.18 1587.87 26
MCST-MVS77.48 2777.45 2677.54 4586.67 2058.36 7683.22 5586.93 556.91 15774.91 4588.19 6259.15 2287.68 4673.67 5187.45 4286.57 69
CSCG76.92 3276.75 3077.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3784.83 13360.76 1586.56 7367.86 8487.87 4186.06 89
PHI-MVS75.87 4375.36 4477.41 4680.62 10655.91 11384.28 3985.78 2056.08 17573.41 6786.58 9450.94 10188.54 2870.79 6889.71 1787.79 31
SR-MVS76.13 4175.70 4277.40 4885.87 4061.20 2985.52 2782.19 9159.99 10575.10 3990.35 2847.66 13486.52 7571.64 6482.99 7884.47 149
TSAR-MVS + GP.74.90 4974.15 5677.17 4982.00 8058.77 7281.80 7978.57 16258.58 12874.32 5684.51 14355.94 3987.22 5267.11 9284.48 6785.52 112
CS-MVS76.25 3975.98 3877.06 5080.15 11555.63 12084.51 3583.90 5463.24 4573.30 6887.27 7955.06 4486.30 8371.78 6284.58 6489.25 4
DPM-MVS75.47 4775.00 4876.88 5181.38 9159.16 5979.94 10285.71 2256.59 16572.46 8986.76 8556.89 3287.86 4366.36 9788.91 2583.64 181
HPM-MVS_fast74.30 5973.46 6476.80 5284.45 6059.04 6683.65 5281.05 12060.15 10270.43 10589.84 4341.09 21385.59 9667.61 8882.90 8285.77 102
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7886.38 72
APD-MVS_3200maxsize74.96 4874.39 5476.67 5482.20 7858.24 7783.67 5183.29 7558.41 13173.71 6490.14 3345.62 15985.99 8769.64 7282.85 8485.78 99
train_agg76.27 3876.15 3676.64 5585.58 4361.59 2481.62 8281.26 11555.86 17774.93 4388.81 5653.70 6384.68 11875.24 3888.33 3083.65 180
SR-MVS-dyc-post74.57 5573.90 5876.58 5683.49 6559.87 4984.29 3781.36 10758.07 13773.14 7490.07 3444.74 17385.84 9168.20 7981.76 9484.03 159
CS-MVS-test75.62 4675.31 4676.56 5780.63 10555.13 13083.88 4885.22 2862.05 7171.49 9986.03 11153.83 5986.36 8167.74 8586.91 4988.19 18
h-mvs3372.71 7471.49 8276.40 5881.99 8159.58 5276.92 16676.74 20060.40 9374.81 4785.95 11545.54 16285.76 9370.41 7070.61 23083.86 168
DP-MVS Recon72.15 8670.73 9876.40 5886.57 2457.99 7981.15 8982.96 8157.03 15466.78 17585.56 12344.50 17688.11 3651.77 21580.23 11083.10 195
ETV-MVS74.46 5773.84 6076.33 6079.27 13155.24 12979.22 11585.00 3664.97 2172.65 8679.46 24853.65 6687.87 4267.45 9082.91 8185.89 96
OPM-MVS74.73 5274.25 5576.19 6180.81 10159.01 6782.60 6683.64 6263.74 3972.52 8887.49 7447.18 14485.88 9069.47 7480.78 9983.66 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS74.31 5873.73 6176.06 6281.41 8956.31 10284.22 4084.01 4964.52 2569.27 12786.10 10845.26 17087.21 5368.16 8180.58 10384.65 144
mvsmamba71.15 9869.54 11775.99 6377.61 18353.46 15281.95 7875.11 22557.73 14766.95 17385.96 11437.14 25187.56 4867.94 8375.49 17286.97 54
Effi-MVS+-dtu69.64 13467.53 15975.95 6476.10 21462.29 1580.20 9876.06 20859.83 11065.26 20977.09 27941.56 20584.02 13060.60 14971.09 22681.53 220
EPNet73.09 6872.16 7475.90 6575.95 21656.28 10483.05 5672.39 25666.53 1065.27 20687.00 8150.40 10485.47 10262.48 13386.32 5685.94 92
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator64.47 572.49 7771.39 8575.79 6677.70 17558.99 6880.66 9483.15 7962.24 6665.46 20286.59 9342.38 19585.52 9859.59 15884.72 6382.85 200
LPG-MVS_test72.74 7371.74 7875.76 6780.22 11057.51 8682.55 6783.40 7061.32 7966.67 17987.33 7739.15 22886.59 7167.70 8677.30 15383.19 191
LGP-MVS_train75.76 6780.22 11057.51 8683.40 7061.32 7966.67 17987.33 7739.15 22886.59 7167.70 8677.30 15383.19 191
EC-MVSNet75.84 4475.87 4175.74 6978.86 14152.65 16883.73 5086.08 1763.47 4272.77 8487.25 8053.13 6987.93 4071.97 6185.57 6086.66 66
MVS_111021_HR74.02 6073.46 6475.69 7083.01 7260.63 4077.29 15678.40 17361.18 8270.58 10485.97 11354.18 5584.00 13167.52 8982.98 8082.45 207
casdiffmvs_mvgpermissive76.14 4076.30 3575.66 7176.46 21051.83 18679.67 10985.08 3165.02 1975.84 3488.58 6059.42 2185.08 10872.75 5683.93 7290.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS74.76 5174.46 5375.65 7277.84 17252.25 17875.59 19284.17 4663.76 3873.15 7382.79 17459.58 1986.80 6667.24 9186.04 5787.89 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+73.31 6672.54 7175.62 7377.87 17153.64 14779.62 11179.61 14161.63 7772.02 9482.61 17956.44 3585.97 8863.99 11979.07 12787.25 50
MAR-MVS71.51 9470.15 10975.60 7481.84 8359.39 5581.38 8682.90 8354.90 20568.08 14878.70 25747.73 13285.51 9951.68 21784.17 7081.88 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ACMP63.53 672.30 8071.20 9075.59 7580.28 10857.54 8482.74 6382.84 8560.58 9065.24 21086.18 10539.25 22686.03 8666.95 9576.79 16183.22 189
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP-MVS73.45 6472.80 6875.40 7680.66 10254.94 13182.31 7183.90 5462.10 6867.85 15285.54 12645.46 16486.93 6267.04 9380.35 10784.32 151
PCF-MVS61.88 870.95 10369.49 11975.35 7777.63 17855.71 11776.04 18581.81 9750.30 26169.66 12085.40 12952.51 7584.89 11451.82 21480.24 10985.45 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-MVSNAJss72.24 8171.21 8975.31 7878.50 15055.93 11281.63 8182.12 9256.24 17270.02 11385.68 12247.05 14684.34 12465.27 10974.41 17885.67 106
EIA-MVS71.78 8970.60 9975.30 7979.85 11953.54 15077.27 15783.26 7757.92 14366.49 18179.39 24952.07 8486.69 6960.05 15279.14 12685.66 107
CLD-MVS73.33 6572.68 6975.29 8078.82 14353.33 15678.23 12884.79 3961.30 8170.41 10681.04 21652.41 7887.12 5864.61 11582.49 8885.41 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final69.82 12668.02 14975.23 8179.38 12852.91 16380.11 9973.96 24354.99 20368.04 14983.59 16129.05 32387.16 5565.41 10877.62 14585.63 109
RRT_MVS69.42 14267.49 16275.21 8278.01 16852.56 17282.23 7578.15 17655.84 17965.65 19885.07 13030.86 30986.83 6561.56 14470.00 24386.24 85
PAPM_NR72.63 7571.80 7775.13 8381.72 8453.42 15479.91 10483.28 7659.14 11966.31 18685.90 11651.86 8786.06 8457.45 16780.62 10185.91 94
EI-MVSNet-Vis-set72.42 7971.59 7974.91 8478.47 15254.02 14177.05 16279.33 14765.03 1871.68 9779.35 25152.75 7284.89 11466.46 9674.23 17985.83 98
MVSFormer71.50 9570.38 10474.88 8578.76 14457.15 9482.79 6178.48 16651.26 24969.49 12283.22 16843.99 18183.24 14466.06 9979.37 11984.23 154
CPTT-MVS72.78 7272.08 7674.87 8684.88 5761.41 2684.15 4377.86 18055.27 19267.51 16388.08 6541.93 19981.85 17669.04 7780.01 11181.35 227
iter_conf0569.40 14467.62 15574.73 8777.84 17251.13 19079.28 11473.71 24654.62 20868.17 14483.59 16128.68 32887.16 5565.74 10576.95 15885.91 94
EPP-MVSNet72.16 8571.31 8874.71 8878.68 14749.70 21582.10 7681.65 9960.40 9365.94 19185.84 11851.74 9086.37 8055.93 17679.55 11888.07 23
原ACMM174.69 8985.39 4759.40 5483.42 6951.47 24570.27 10886.61 9248.61 12386.51 7653.85 19787.96 3978.16 268
ET-MVSNet_ETH3D67.96 17465.72 20174.68 9076.67 20455.62 12275.11 20274.74 23052.91 22960.03 26980.12 23433.68 28382.64 16361.86 13976.34 16485.78 99
MSLP-MVS++73.77 6373.47 6374.66 9183.02 7159.29 5882.30 7481.88 9559.34 11771.59 9886.83 8345.94 15783.65 13765.09 11085.22 6181.06 234
PVSNet_Blended_VisFu71.45 9670.39 10374.65 9282.01 7958.82 7179.93 10380.35 13355.09 19765.82 19782.16 19449.17 11682.64 16360.34 15078.62 13582.50 206
114514_t70.83 10569.56 11674.64 9386.21 3154.63 13682.34 7081.81 9748.22 28563.01 23985.83 11940.92 21487.10 5957.91 16479.79 11282.18 210
Vis-MVSNetpermissive72.18 8271.37 8674.61 9481.29 9255.41 12680.90 9078.28 17560.73 8869.23 13088.09 6444.36 17882.65 16257.68 16581.75 9685.77 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
hse-mvs271.04 10069.86 11274.60 9579.58 12357.12 9673.96 22475.25 22060.40 9374.81 4781.95 19945.54 16282.90 15170.41 7066.83 28283.77 173
test_djsdf69.45 14167.74 15174.58 9674.57 24154.92 13382.79 6178.48 16651.26 24965.41 20383.49 16638.37 23583.24 14466.06 9969.25 25985.56 111
AUN-MVS68.45 16466.41 18774.57 9779.53 12557.08 9773.93 22775.23 22154.44 21466.69 17881.85 20137.10 25382.89 15262.07 13666.84 28183.75 174
casdiffmvspermissive74.80 5074.89 5074.53 9875.59 22250.37 20478.17 13185.06 3362.80 5874.40 5487.86 7057.88 2683.61 13869.46 7582.79 8589.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set71.92 8771.06 9374.52 9977.98 16953.56 14976.62 17179.16 14864.40 2771.18 10078.95 25652.19 8284.66 12065.47 10773.57 18985.32 123
API-MVS72.17 8371.41 8474.45 10081.95 8257.22 8984.03 4580.38 13259.89 10968.40 13982.33 18849.64 11087.83 4451.87 21384.16 7178.30 266
PAPR71.72 9270.82 9674.41 10181.20 9651.17 18979.55 11283.33 7355.81 18166.93 17484.61 13950.95 10086.06 8455.79 17979.20 12486.00 90
baseline74.61 5474.70 5174.34 10275.70 21849.99 21277.54 14884.63 4062.73 5973.98 6087.79 7357.67 2883.82 13469.49 7382.74 8689.20 6
thisisatest053067.92 17565.78 20074.33 10376.29 21151.03 19176.89 16774.25 23953.67 22365.59 20081.76 20335.15 26785.50 10055.94 17572.47 20886.47 71
tttt051767.83 17765.66 20274.33 10376.69 20350.82 19677.86 13973.99 24254.54 21264.64 22282.53 18435.06 26885.50 10055.71 18069.91 24686.67 65
test_fmvsmconf_n73.01 6972.59 7074.27 10571.28 29255.88 11478.21 13075.56 21454.31 21674.86 4687.80 7254.72 4980.23 21478.07 2178.48 13686.70 63
test_fmvsmconf0.1_n72.81 7172.33 7374.24 10669.89 31255.81 11578.22 12975.40 21754.17 21875.00 4288.03 6853.82 6080.23 21478.08 2078.34 13986.69 64
test_fmvsmconf0.01_n72.17 8371.50 8174.16 10767.96 32955.58 12378.06 13574.67 23254.19 21774.54 5288.23 6150.35 10680.24 21378.07 2177.46 14986.65 67
MG-MVS73.96 6173.89 5974.16 10785.65 4249.69 21781.59 8481.29 11461.45 7871.05 10188.11 6351.77 8987.73 4561.05 14683.09 7685.05 133
ACMM61.98 770.80 10769.73 11474.02 10980.59 10758.59 7482.68 6482.02 9455.46 18967.18 16884.39 14538.51 23383.17 14660.65 14876.10 16680.30 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v7n69.01 15167.36 16773.98 11072.51 27052.65 16878.54 12581.30 11360.26 10162.67 24381.62 20543.61 18384.49 12157.01 16968.70 26884.79 141
AdaColmapbinary69.99 12268.66 13573.97 11184.94 5457.83 8082.63 6578.71 15856.28 17164.34 22484.14 14841.57 20487.06 6146.45 25678.88 12877.02 283
v119269.97 12368.68 13473.85 11273.19 25550.94 19277.68 14481.36 10757.51 14968.95 13380.85 22345.28 16985.33 10662.97 12970.37 23485.27 126
FA-MVS(test-final)69.82 12668.48 13873.84 11378.44 15350.04 21075.58 19478.99 15258.16 13567.59 16182.14 19542.66 19085.63 9456.60 17176.19 16585.84 97
v1070.21 11869.02 12773.81 11473.51 25350.92 19478.74 11981.39 10560.05 10466.39 18481.83 20247.58 13685.41 10562.80 13068.86 26685.09 132
QAPM70.05 12068.81 13173.78 11576.54 20853.43 15383.23 5483.48 6652.89 23065.90 19386.29 10241.55 20686.49 7751.01 22078.40 13881.42 221
OMC-MVS71.40 9770.60 9973.78 11576.60 20653.15 15979.74 10879.78 13758.37 13268.75 13486.45 9945.43 16680.60 20462.58 13177.73 14487.58 39
UA-Net73.13 6772.93 6773.76 11783.58 6451.66 18778.75 11877.66 18467.75 472.61 8789.42 4749.82 10883.29 14353.61 19983.14 7586.32 80
v114470.42 11469.31 12273.76 11773.22 25450.64 19977.83 14181.43 10458.58 12869.40 12581.16 21347.53 13785.29 10764.01 11870.64 22885.34 122
VDD-MVS72.50 7672.09 7573.75 11981.58 8549.69 21777.76 14377.63 18563.21 4773.21 7189.02 5342.14 19683.32 14261.72 14082.50 8788.25 15
Fast-Effi-MVS+70.28 11769.12 12673.73 12078.50 15051.50 18875.01 20579.46 14556.16 17468.59 13579.55 24653.97 5684.05 12753.34 20177.53 14785.65 108
canonicalmvs74.67 5374.98 4973.71 12178.94 14050.56 20280.23 9683.87 5760.30 10077.15 2986.56 9559.65 1782.00 17466.01 10182.12 8988.58 10
HyFIR lowres test65.67 21463.01 23273.67 12279.97 11855.65 11969.07 28975.52 21542.68 33963.53 23477.95 26640.43 21581.64 17946.01 26071.91 21783.73 175
jajsoiax68.25 16766.45 18373.66 12375.62 22055.49 12580.82 9178.51 16552.33 23564.33 22584.11 14928.28 33081.81 17863.48 12570.62 22983.67 177
v2v48270.50 11269.45 12173.66 12372.62 26650.03 21177.58 14580.51 13059.90 10669.52 12182.14 19547.53 13784.88 11665.07 11170.17 23986.09 88
cascas65.98 21063.42 22673.64 12577.26 19252.58 17172.26 25277.21 19348.56 28061.21 26274.60 30932.57 30285.82 9250.38 22576.75 16282.52 205
FE-MVS65.91 21163.33 22873.63 12677.36 19051.95 18572.62 24575.81 20953.70 22265.31 20478.96 25528.81 32786.39 7943.93 27973.48 19282.55 203
mvs_tets68.18 16966.36 18973.63 12675.61 22155.35 12880.77 9278.56 16352.48 23464.27 22784.10 15027.45 33681.84 17763.45 12670.56 23183.69 176
GeoE71.01 10170.15 10973.60 12879.57 12452.17 17978.93 11778.12 17758.02 13967.76 16083.87 15552.36 7982.72 16056.90 17075.79 16885.92 93
anonymousdsp67.00 19564.82 21273.57 12970.09 30856.13 10776.35 17677.35 19148.43 28364.99 21880.84 22433.01 29080.34 20964.66 11367.64 27684.23 154
test_fmvsm_n_192071.73 9171.14 9173.50 13072.52 26956.53 10175.60 19176.16 20448.11 28777.22 2885.56 12353.10 7077.43 25574.86 4077.14 15586.55 70
v870.33 11669.28 12373.49 13173.15 25650.22 20678.62 12280.78 12660.79 8666.45 18382.11 19749.35 11284.98 11163.58 12468.71 26785.28 125
Fast-Effi-MVS+-dtu67.37 18465.33 20773.48 13272.94 26157.78 8277.47 15076.88 19657.60 14861.97 25476.85 28339.31 22480.49 20854.72 18970.28 23782.17 212
alignmvs73.86 6273.99 5773.45 13378.20 16050.50 20378.57 12382.43 8859.40 11576.57 3186.71 8956.42 3681.23 19065.84 10381.79 9388.62 8
lupinMVS69.57 13668.28 14573.44 13478.76 14457.15 9476.57 17273.29 25046.19 30869.49 12282.18 19143.99 18179.23 22664.66 11379.37 11983.93 163
jason69.65 13368.39 14473.43 13578.27 15956.88 9877.12 16073.71 24646.53 30569.34 12683.22 16843.37 18579.18 22764.77 11279.20 12484.23 154
jason: jason.
IB-MVS56.42 1265.40 21962.73 23673.40 13674.89 22952.78 16773.09 23975.13 22455.69 18458.48 29173.73 31432.86 29286.32 8250.63 22370.11 24081.10 233
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v192192069.47 14068.17 14673.36 13773.06 25850.10 20977.39 15180.56 12856.58 16668.59 13580.37 22844.72 17484.98 11162.47 13469.82 24885.00 134
v14419269.71 12968.51 13773.33 13873.10 25750.13 20877.54 14880.64 12756.65 15968.57 13780.55 22646.87 15184.96 11362.98 12869.66 25384.89 138
IS-MVSNet71.57 9371.00 9473.27 13978.86 14145.63 26580.22 9778.69 15964.14 3566.46 18287.36 7649.30 11385.60 9550.26 22683.71 7488.59 9
VDDNet71.81 8871.33 8773.26 14082.80 7547.60 24578.74 11975.27 21959.59 11472.94 8089.40 4841.51 20783.91 13258.75 16282.99 7888.26 14
v124069.24 14867.91 15073.25 14173.02 26049.82 21377.21 15880.54 12956.43 16868.34 14180.51 22743.33 18684.99 10962.03 13869.77 25184.95 137
UGNet68.81 15367.39 16573.06 14278.33 15754.47 13779.77 10675.40 21760.45 9263.22 23684.40 14432.71 29780.91 19951.71 21680.56 10583.81 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-RMVSNet68.81 15367.42 16472.97 14380.11 11652.53 17374.26 21976.29 20358.48 13068.38 14084.20 14642.59 19183.83 13346.53 25575.91 16782.56 202
PS-MVSNAJ70.51 11169.70 11572.93 14481.52 8655.79 11674.92 20879.00 15155.04 20269.88 11778.66 25847.05 14682.19 17161.61 14179.58 11680.83 237
XVG-OURS68.76 15667.37 16672.90 14574.32 24757.22 8970.09 28178.81 15555.24 19367.79 15885.81 12136.54 25878.28 24362.04 13775.74 16983.19 191
xiu_mvs_v2_base70.52 11069.75 11372.84 14681.21 9555.63 12075.11 20278.92 15354.92 20469.96 11679.68 24347.00 15082.09 17361.60 14279.37 11980.81 238
nrg03072.96 7073.01 6672.84 14675.41 22550.24 20580.02 10082.89 8458.36 13374.44 5386.73 8758.90 2380.83 20065.84 10374.46 17687.44 42
thisisatest051565.83 21263.50 22572.82 14873.75 25149.50 22071.32 26373.12 25249.39 27063.82 23176.50 29134.95 27084.84 11753.20 20375.49 17284.13 158
XVG-OURS-SEG-HR68.81 15367.47 16372.82 14874.40 24556.87 9970.59 27479.04 15054.77 20666.99 17186.01 11239.57 22278.21 24462.54 13273.33 19583.37 185
OpenMVScopyleft61.03 968.85 15267.56 15672.70 15074.26 24853.99 14281.21 8881.34 11152.70 23162.75 24285.55 12538.86 23184.14 12648.41 24283.01 7779.97 250
Anonymous2024052969.91 12469.02 12772.56 15180.19 11347.65 24377.56 14780.99 12255.45 19069.88 11786.76 8539.24 22782.18 17254.04 19477.10 15787.85 27
V4268.65 15767.35 16872.56 15168.93 32350.18 20772.90 24179.47 14456.92 15669.45 12480.26 23246.29 15582.99 14864.07 11667.82 27484.53 146
dcpmvs_274.55 5675.23 4772.48 15382.34 7753.34 15577.87 13881.46 10357.80 14675.49 3686.81 8462.22 1377.75 25171.09 6782.02 9186.34 76
xiu_mvs_v1_base_debu68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
xiu_mvs_v1_base68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
xiu_mvs_v1_base_debi68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
MVS_Test72.45 7872.46 7272.42 15774.88 23048.50 23376.28 17883.14 8059.40 11572.46 8984.68 13555.66 4081.12 19165.98 10279.66 11587.63 36
LFMVS71.78 8971.59 7972.32 15883.40 6746.38 25479.75 10771.08 26564.18 3272.80 8388.64 5942.58 19283.72 13557.41 16884.49 6686.86 58
ACMH+57.40 1166.12 20964.06 21672.30 15977.79 17452.83 16680.39 9578.03 17857.30 15057.47 29782.55 18127.68 33484.17 12545.54 26669.78 24979.90 251
test_fmvsmvis_n_192070.84 10470.38 10472.22 16071.16 29355.39 12775.86 18872.21 25849.03 27573.28 7086.17 10651.83 8877.29 25875.80 3278.05 14183.98 162
fmvsm_s_conf0.1_n_a69.32 14568.44 14271.96 16170.91 29653.78 14578.12 13362.30 32749.35 27173.20 7286.55 9651.99 8576.79 26674.83 4168.68 26985.32 123
fmvsm_s_conf0.5_n_a69.54 13768.74 13371.93 16272.47 27153.82 14478.25 12762.26 32849.78 26773.12 7686.21 10452.66 7376.79 26675.02 3968.88 26485.18 128
UniMVSNet (Re)70.63 10970.20 10771.89 16378.55 14945.29 26875.94 18782.92 8263.68 4068.16 14583.59 16153.89 5883.49 14153.97 19571.12 22586.89 57
MVSTER67.16 19165.58 20471.88 16470.37 30449.70 21570.25 28078.45 16951.52 24369.16 13180.37 22838.45 23482.50 16660.19 15171.46 22283.44 184
fmvsm_s_conf0.1_n69.41 14368.60 13671.83 16571.07 29452.88 16577.85 14062.44 32549.58 26972.97 7986.22 10351.68 9176.48 27275.53 3470.10 24186.14 86
CHOSEN 1792x268865.08 22462.84 23471.82 16681.49 8856.26 10566.32 30174.20 24040.53 35063.16 23878.65 25941.30 20877.80 25045.80 26274.09 18081.40 224
fmvsm_s_conf0.5_n69.58 13568.84 13071.79 16772.31 27552.90 16477.90 13762.43 32649.97 26572.85 8285.90 11652.21 8176.49 27175.75 3370.26 23885.97 91
DP-MVS65.68 21363.66 22371.75 16884.93 5556.87 9980.74 9373.16 25153.06 22759.09 28382.35 18736.79 25785.94 8932.82 34569.96 24572.45 327
Anonymous2023121169.28 14668.47 14071.73 16980.28 10847.18 24979.98 10182.37 8954.61 20967.24 16684.01 15239.43 22382.41 16955.45 18472.83 20385.62 110
EI-MVSNet69.27 14768.44 14271.73 16974.47 24249.39 22275.20 20078.45 16959.60 11169.16 13176.51 28951.29 9482.50 16659.86 15771.45 22383.30 186
eth_miper_zixun_eth67.63 18066.28 19371.67 17171.60 28348.33 23573.68 23377.88 17955.80 18265.91 19278.62 26147.35 14382.88 15359.45 15966.25 28683.81 169
MVS_111021_LR69.50 13968.78 13271.65 17278.38 15459.33 5674.82 21070.11 27358.08 13667.83 15684.68 13541.96 19876.34 27565.62 10677.54 14679.30 260
PAPM67.92 17566.69 18071.63 17378.09 16449.02 22577.09 16181.24 11751.04 25360.91 26383.98 15347.71 13384.99 10940.81 30279.32 12280.90 236
NR-MVSNet69.54 13768.85 12971.59 17478.05 16643.81 28174.20 22080.86 12565.18 1462.76 24184.52 14152.35 8083.59 13950.96 22270.78 22787.37 46
fmvsm_l_conf0.5_n70.99 10270.82 9671.48 17571.45 28554.40 13877.18 15970.46 27148.67 27975.17 3886.86 8253.77 6176.86 26476.33 3077.51 14883.17 194
diffmvspermissive70.69 10870.43 10271.46 17669.45 31748.95 22772.93 24078.46 16857.27 15171.69 9683.97 15451.48 9377.92 24870.70 6977.95 14387.53 40
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet71.11 9971.00 9471.44 17779.20 13344.13 27776.02 18682.60 8766.48 1168.20 14284.60 14056.82 3382.82 15854.62 19070.43 23287.36 48
DU-MVS70.01 12169.53 11871.44 17778.05 16644.13 27775.01 20581.51 10264.37 2868.20 14284.52 14149.12 11982.82 15854.62 19070.43 23287.37 46
IterMVS-LS69.22 14968.48 13871.43 17974.44 24449.40 22176.23 17977.55 18659.60 11165.85 19681.59 20851.28 9581.58 18259.87 15669.90 24783.30 186
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14868.24 16867.19 17671.40 18070.43 30247.77 24275.76 19077.03 19558.91 12167.36 16480.10 23548.60 12481.89 17560.01 15366.52 28584.53 146
test_yl69.69 13069.13 12471.36 18178.37 15545.74 26174.71 21280.20 13457.91 14470.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
DCV-MVSNet69.69 13069.13 12471.36 18178.37 15545.74 26174.71 21280.20 13457.91 14470.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
LS3D64.71 22762.50 23871.34 18379.72 12255.71 11779.82 10574.72 23148.50 28256.62 30284.62 13833.59 28582.34 17029.65 36475.23 17475.97 291
TAMVS66.78 20065.27 20871.33 18479.16 13653.67 14673.84 23169.59 27852.32 23665.28 20581.72 20444.49 17777.40 25742.32 29478.66 13482.92 197
BH-untuned68.27 16667.29 16971.21 18579.74 12053.22 15876.06 18377.46 18957.19 15266.10 18881.61 20645.37 16883.50 14045.42 27076.68 16376.91 287
PVSNet_Blended68.59 15867.72 15271.19 18677.03 19850.57 20072.51 24881.52 10051.91 23864.22 22977.77 27549.13 11782.87 15455.82 17779.58 11680.14 248
fmvsm_l_conf0.5_n_a70.50 11270.27 10671.18 18771.30 29154.09 14076.89 16769.87 27447.90 29174.37 5586.49 9753.07 7176.69 26875.41 3577.11 15682.76 201
TranMVSNet+NR-MVSNet70.36 11570.10 11171.17 18878.64 14842.97 28976.53 17381.16 11966.95 668.53 13885.42 12851.61 9283.07 14752.32 20769.70 25287.46 41
TR-MVS66.59 20565.07 21071.17 18879.18 13449.63 21973.48 23475.20 22352.95 22867.90 15080.33 23139.81 22083.68 13643.20 28773.56 19080.20 246
CDS-MVSNet66.80 19965.37 20571.10 19078.98 13953.13 16173.27 23771.07 26652.15 23764.72 22080.23 23343.56 18477.10 26045.48 26878.88 12883.05 196
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_BlendedMVS68.56 16267.72 15271.07 19177.03 19850.57 20074.50 21681.52 10053.66 22464.22 22979.72 24249.13 11782.87 15455.82 17773.92 18279.77 255
GA-MVS65.53 21663.70 22271.02 19270.87 29748.10 23770.48 27674.40 23556.69 15864.70 22176.77 28433.66 28481.10 19255.42 18570.32 23683.87 167
RPMNet61.53 25958.42 27070.86 19369.96 31052.07 18165.31 31381.36 10743.20 33559.36 27970.15 34035.37 26585.47 10236.42 33064.65 29875.06 301
TAPA-MVS59.36 1066.60 20365.20 20970.81 19476.63 20548.75 22976.52 17480.04 13650.64 25865.24 21084.93 13239.15 22878.54 24036.77 32376.88 16085.14 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何170.76 19585.66 4161.13 3066.43 29944.68 32070.29 10786.64 9041.29 20975.23 27949.72 23081.75 9675.93 292
XVG-ACMP-BASELINE64.36 23262.23 24170.74 19672.35 27352.45 17670.80 27378.45 16953.84 22159.87 27281.10 21516.24 37179.32 22555.64 18371.76 21880.47 241
PLCcopyleft56.13 1465.09 22363.21 23070.72 19781.04 9854.87 13478.57 12377.47 18748.51 28155.71 30981.89 20033.71 28279.71 21841.66 29970.37 23477.58 275
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
c3_l68.33 16567.56 15670.62 19870.87 29746.21 25774.47 21778.80 15656.22 17366.19 18778.53 26351.88 8681.40 18462.08 13569.04 26284.25 153
K. test v360.47 26657.11 27870.56 19973.74 25248.22 23675.10 20462.55 32358.27 13453.62 33476.31 29227.81 33381.59 18147.42 24639.18 37981.88 217
cl2267.47 18366.45 18370.54 20069.85 31346.49 25373.85 23077.35 19155.07 20065.51 20177.92 26847.64 13581.10 19261.58 14369.32 25684.01 161
MVS67.37 18466.33 19070.51 20175.46 22450.94 19273.95 22581.85 9641.57 34562.54 24778.57 26247.98 12885.47 10252.97 20482.05 9075.14 300
miper_ehance_all_eth68.03 17167.24 17470.40 20270.54 30046.21 25773.98 22378.68 16055.07 20066.05 18977.80 27252.16 8381.31 18761.53 14569.32 25683.67 177
MVP-Stereo65.41 21863.80 22170.22 20377.62 18255.53 12476.30 17778.53 16450.59 25956.47 30678.65 25939.84 21982.68 16144.10 27872.12 21672.44 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EG-PatchMatch MVS64.71 22762.87 23370.22 20377.68 17653.48 15177.99 13678.82 15453.37 22656.03 30877.41 27824.75 35384.04 12846.37 25773.42 19473.14 319
SixPastTwentyTwo61.65 25858.80 26770.20 20575.80 21747.22 24875.59 19269.68 27654.61 20954.11 32879.26 25227.07 33982.96 14943.27 28549.79 36680.41 243
miper_enhance_ethall67.11 19266.09 19670.17 20669.21 32045.98 25972.85 24278.41 17251.38 24665.65 19875.98 29751.17 9781.25 18860.82 14769.32 25683.29 188
ACMH55.70 1565.20 22263.57 22470.07 20778.07 16552.01 18479.48 11379.69 13855.75 18356.59 30380.98 21827.12 33880.94 19642.90 29171.58 22177.25 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_040263.25 24261.01 25569.96 20880.00 11754.37 13976.86 16972.02 26054.58 21158.71 28680.79 22535.00 26984.36 12326.41 37564.71 29771.15 345
cl____67.18 18966.26 19469.94 20970.20 30545.74 26173.30 23576.83 19855.10 19565.27 20679.57 24547.39 14180.53 20559.41 16169.22 26083.53 183
DIV-MVS_self_test67.18 18966.26 19469.94 20970.20 30545.74 26173.29 23676.83 19855.10 19565.27 20679.58 24447.38 14280.53 20559.43 16069.22 26083.54 182
lessismore_v069.91 21171.42 28847.80 24050.90 36950.39 35075.56 30027.43 33781.33 18645.91 26134.10 38580.59 240
BH-w/o66.85 19765.83 19969.90 21279.29 12952.46 17574.66 21476.65 20154.51 21364.85 21978.12 26445.59 16182.95 15043.26 28675.54 17174.27 313
baseline263.42 23861.26 25269.89 21372.55 26847.62 24471.54 26068.38 28850.11 26254.82 32075.55 30143.06 18880.96 19548.13 24367.16 28081.11 232
bld_raw_dy_0_6464.87 22563.22 22969.83 21474.79 23453.32 15778.15 13262.02 33151.20 25160.17 26783.12 17224.15 35574.20 28663.08 12772.33 21181.96 214
CNLPA65.43 21764.02 21769.68 21578.73 14658.07 7877.82 14270.71 26951.49 24461.57 26083.58 16438.23 23870.82 29943.90 28070.10 24180.16 247
OurMVSNet-221017-061.37 26258.63 26969.61 21672.05 27848.06 23873.93 22772.51 25547.23 30154.74 32180.92 22021.49 36481.24 18948.57 24156.22 34879.53 257
CANet_DTU68.18 16967.71 15469.59 21774.83 23246.24 25678.66 12176.85 19759.60 11163.45 23582.09 19835.25 26677.41 25659.88 15578.76 13285.14 129
mvs_anonymous68.03 17167.51 16069.59 21772.08 27744.57 27571.99 25575.23 22151.67 23967.06 17082.57 18054.68 5077.94 24756.56 17275.71 17086.26 84
F-COLMAP63.05 24560.87 25869.58 21976.99 20053.63 14878.12 13376.16 20447.97 29052.41 33981.61 20627.87 33278.11 24540.07 30566.66 28377.00 284
MSDG61.81 25759.23 26369.55 22072.64 26552.63 17070.45 27775.81 20951.38 24653.70 33176.11 29329.52 31981.08 19437.70 31765.79 29074.93 305
Anonymous20240521166.84 19865.99 19769.40 22180.19 11342.21 29571.11 26971.31 26458.80 12367.90 15086.39 10029.83 31879.65 21949.60 23378.78 13186.33 78
tt080567.77 17867.24 17469.34 22274.87 23140.08 30977.36 15281.37 10655.31 19166.33 18584.65 13737.35 24682.55 16555.65 18272.28 21485.39 121
GBi-Net67.21 18666.55 18169.19 22377.63 17843.33 28477.31 15377.83 18156.62 16265.04 21582.70 17541.85 20080.33 21047.18 25072.76 20483.92 164
test167.21 18666.55 18169.19 22377.63 17843.33 28477.31 15377.83 18156.62 16265.04 21582.70 17541.85 20080.33 21047.18 25072.76 20483.92 164
FMVSNet166.70 20165.87 19869.19 22377.49 18743.33 28477.31 15377.83 18156.45 16764.60 22382.70 17538.08 24080.33 21046.08 25972.31 21383.92 164
UniMVSNet_ETH3D67.60 18167.07 17869.18 22677.39 18942.29 29374.18 22175.59 21360.37 9666.77 17686.06 11037.64 24278.93 23952.16 20973.49 19186.32 80
FIs70.82 10671.43 8368.98 22778.33 15738.14 32576.96 16483.59 6461.02 8367.33 16586.73 8755.07 4381.64 17954.61 19279.22 12387.14 52
LTVRE_ROB55.42 1663.15 24461.23 25368.92 22876.57 20747.80 24059.92 34176.39 20254.35 21558.67 28782.46 18629.44 32181.49 18342.12 29571.14 22477.46 276
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
131464.61 22963.21 23068.80 22971.87 28147.46 24673.95 22578.39 17442.88 33859.97 27076.60 28838.11 23979.39 22454.84 18872.32 21279.55 256
FMVSNet266.93 19666.31 19268.79 23077.63 17842.98 28876.11 18177.47 18756.62 16265.22 21282.17 19341.85 20080.18 21647.05 25372.72 20783.20 190
COLMAP_ROBcopyleft52.97 1761.27 26358.81 26668.64 23174.63 23952.51 17478.42 12673.30 24949.92 26650.96 34481.51 20923.06 35779.40 22331.63 35365.85 28874.01 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CostFormer64.04 23362.51 23768.61 23271.88 28045.77 26071.30 26470.60 27047.55 29564.31 22676.61 28741.63 20379.62 22149.74 22969.00 26380.42 242
FMVSNet366.32 20865.61 20368.46 23376.48 20942.34 29274.98 20777.15 19455.83 18065.04 21581.16 21339.91 21780.14 21747.18 25072.76 20482.90 199
WR-MVS68.47 16368.47 14068.44 23480.20 11239.84 31173.75 23276.07 20764.68 2268.11 14783.63 16050.39 10579.14 23249.78 22769.66 25386.34 76
ECVR-MVScopyleft67.72 17967.51 16068.35 23579.46 12636.29 34874.79 21166.93 29658.72 12467.19 16788.05 6636.10 25981.38 18552.07 21084.25 6887.39 44
D2MVS62.30 25160.29 26068.34 23666.46 34048.42 23465.70 30473.42 24847.71 29358.16 29375.02 30530.51 31177.71 25253.96 19671.68 22078.90 264
VNet69.68 13270.19 10868.16 23779.73 12141.63 30270.53 27577.38 19060.37 9670.69 10386.63 9151.08 9877.09 26153.61 19981.69 9885.75 104
tpm262.07 25360.10 26167.99 23872.79 26343.86 28071.05 27166.85 29743.14 33662.77 24075.39 30338.32 23680.80 20141.69 29868.88 26479.32 259
SDMVSNet68.03 17168.10 14867.84 23977.13 19448.72 23165.32 31279.10 14958.02 13965.08 21382.55 18147.83 13173.40 28763.92 12073.92 18281.41 222
pmmvs461.48 26159.39 26267.76 24071.57 28453.86 14371.42 26165.34 30544.20 32559.46 27877.92 26835.90 26174.71 28143.87 28164.87 29674.71 309
VPA-MVSNet69.02 15069.47 12067.69 24177.42 18841.00 30774.04 22279.68 13960.06 10369.26 12984.81 13451.06 9977.58 25354.44 19374.43 17784.48 148
test250665.33 22064.61 21367.50 24279.46 12634.19 35874.43 21851.92 36458.72 12466.75 17788.05 6625.99 34680.92 19851.94 21284.25 6887.39 44
FC-MVSNet-test69.80 12870.58 10167.46 24377.61 18334.73 35476.05 18483.19 7860.84 8565.88 19586.46 9854.52 5280.76 20352.52 20678.12 14086.91 56
test111167.21 18667.14 17767.42 24479.24 13234.76 35373.89 22965.65 30358.71 12666.96 17287.95 6936.09 26080.53 20552.03 21183.79 7386.97 54
ab-mvs66.65 20266.42 18667.37 24576.17 21341.73 29970.41 27876.14 20653.99 21965.98 19083.51 16549.48 11176.24 27648.60 24073.46 19384.14 157
IterMVS62.79 24661.27 25167.35 24669.37 31852.04 18371.17 26668.24 28952.63 23359.82 27376.91 28237.32 24772.36 29152.80 20563.19 31277.66 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS_H67.02 19466.92 17967.33 24777.95 17037.75 32977.57 14682.11 9362.03 7362.65 24482.48 18550.57 10379.46 22242.91 29064.01 30384.79 141
PEN-MVS66.60 20366.45 18367.04 24877.11 19636.56 34277.03 16380.42 13162.95 5062.51 24984.03 15146.69 15279.07 23344.22 27463.08 31385.51 113
SCA60.49 26558.38 27166.80 24974.14 25048.06 23863.35 32263.23 31949.13 27459.33 28272.10 32337.45 24474.27 28444.17 27562.57 31678.05 270
thres40063.31 23962.18 24266.72 25076.85 20139.62 31371.96 25769.44 28056.63 16062.61 24579.83 23837.18 24879.17 22831.84 34973.25 19781.36 225
CP-MVSNet66.49 20666.41 18766.72 25077.67 17736.33 34576.83 17079.52 14362.45 6362.54 24783.47 16746.32 15478.37 24145.47 26963.43 31085.45 116
PS-CasMVS66.42 20766.32 19166.70 25277.60 18536.30 34776.94 16579.61 14162.36 6562.43 25183.66 15945.69 15878.37 24145.35 27163.26 31185.42 119
HY-MVS56.14 1364.55 23063.89 21866.55 25374.73 23641.02 30469.96 28274.43 23449.29 27261.66 25880.92 22047.43 14076.68 26944.91 27371.69 21981.94 215
thres600view763.30 24062.27 24066.41 25477.18 19338.87 31972.35 25069.11 28456.98 15562.37 25280.96 21937.01 25579.00 23731.43 35673.05 20181.36 225
DTE-MVSNet65.58 21565.34 20666.31 25576.06 21534.79 35176.43 17579.38 14662.55 6161.66 25883.83 15645.60 16079.15 23141.64 30160.88 32885.00 134
pmmvs-eth3d58.81 27456.31 28866.30 25667.61 33152.42 17772.30 25164.76 30943.55 33154.94 31974.19 31228.95 32472.60 29043.31 28457.21 34373.88 317
pmmvs663.69 23662.82 23566.27 25770.63 29939.27 31773.13 23875.47 21652.69 23259.75 27682.30 18939.71 22177.03 26247.40 24764.35 30282.53 204
tfpn200view963.18 24362.18 24266.21 25876.85 20139.62 31371.96 25769.44 28056.63 16062.61 24579.83 23837.18 24879.17 22831.84 34973.25 19779.83 253
patch_mono-269.85 12571.09 9266.16 25979.11 13754.80 13571.97 25674.31 23753.50 22570.90 10284.17 14757.63 2963.31 33366.17 9882.02 9180.38 244
Patchmatch-RL test58.16 27855.49 29466.15 26067.92 33048.89 22860.66 33951.07 36847.86 29259.36 27962.71 37034.02 27972.27 29356.41 17359.40 33577.30 278
tpm cat159.25 27256.95 28166.15 26072.19 27646.96 25068.09 29265.76 30240.03 35457.81 29570.56 33538.32 23674.51 28238.26 31561.50 32577.00 284
ppachtmachnet_test58.06 28055.38 29566.10 26269.51 31548.99 22668.01 29366.13 30144.50 32254.05 32970.74 33432.09 30572.34 29236.68 32656.71 34776.99 286
pm-mvs165.24 22164.97 21166.04 26372.38 27239.40 31672.62 24575.63 21255.53 18862.35 25383.18 17047.45 13976.47 27349.06 23766.54 28482.24 209
CR-MVSNet59.91 26857.90 27665.96 26469.96 31052.07 18165.31 31363.15 32042.48 34059.36 27974.84 30635.83 26270.75 30045.50 26764.65 29875.06 301
1112_ss64.00 23463.36 22765.93 26579.28 13042.58 29171.35 26272.36 25746.41 30660.55 26577.89 27046.27 15673.28 28846.18 25869.97 24481.92 216
thres100view90063.28 24162.41 23965.89 26677.31 19138.66 32172.65 24369.11 28457.07 15362.45 25081.03 21737.01 25579.17 22831.84 34973.25 19779.83 253
TransMVSNet (Re)64.72 22664.33 21565.87 26775.22 22738.56 32274.66 21475.08 22958.90 12261.79 25782.63 17851.18 9678.07 24643.63 28355.87 34980.99 235
VPNet67.52 18268.11 14765.74 26879.18 13436.80 34072.17 25372.83 25362.04 7267.79 15885.83 11948.88 12176.60 27051.30 21872.97 20283.81 169
OpenMVS_ROBcopyleft52.78 1860.03 26758.14 27465.69 26970.47 30144.82 27075.33 19670.86 26845.04 31756.06 30776.00 29426.89 34179.65 21935.36 33567.29 27872.60 324
Baseline_NR-MVSNet67.05 19367.56 15665.50 27075.65 21937.70 33175.42 19574.65 23359.90 10668.14 14683.15 17149.12 11977.20 25952.23 20869.78 24981.60 219
miper_lstm_enhance62.03 25460.88 25765.49 27166.71 33746.25 25556.29 35775.70 21150.68 25661.27 26175.48 30240.21 21668.03 31556.31 17465.25 29382.18 210
IterMVS-SCA-FT62.49 24761.52 24865.40 27271.99 27950.80 19771.15 26869.63 27745.71 31460.61 26477.93 26737.45 24465.99 32655.67 18163.50 30979.42 258
thres20062.20 25261.16 25465.34 27375.38 22639.99 31069.60 28569.29 28255.64 18761.87 25676.99 28037.07 25478.96 23831.28 35773.28 19677.06 282
MS-PatchMatch62.42 24961.46 24965.31 27475.21 22852.10 18072.05 25474.05 24146.41 30657.42 29974.36 31034.35 27677.57 25445.62 26573.67 18666.26 362
ambc65.13 27563.72 35437.07 33747.66 37578.78 15754.37 32771.42 32911.24 38280.94 19645.64 26453.85 35677.38 277
tfpnnormal62.47 24861.63 24764.99 27674.81 23339.01 31871.22 26573.72 24555.22 19460.21 26680.09 23641.26 21176.98 26330.02 36268.09 27278.97 263
testdata64.66 27781.52 8652.93 16265.29 30646.09 30973.88 6287.46 7538.08 24066.26 32553.31 20278.48 13674.78 308
PatchmatchNetpermissive59.84 26958.24 27264.65 27873.05 25946.70 25269.42 28762.18 32947.55 29558.88 28571.96 32534.49 27469.16 30842.99 28963.60 30778.07 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sd_testset64.46 23164.45 21464.51 27977.13 19442.25 29462.67 32572.11 25958.02 13965.08 21382.55 18141.22 21269.88 30647.32 24873.92 18281.41 222
AllTest57.08 28654.65 29964.39 28071.44 28649.03 22369.92 28367.30 29145.97 31147.16 35879.77 24017.47 36767.56 31733.65 34059.16 33676.57 288
TestCases64.39 28071.44 28649.03 22367.30 29145.97 31147.16 35879.77 24017.47 36767.56 31733.65 34059.16 33676.57 288
Test_1112_low_res62.32 25061.77 24564.00 28279.08 13839.53 31568.17 29170.17 27243.25 33459.03 28479.90 23744.08 17971.24 29843.79 28268.42 27081.25 228
baseline163.81 23563.87 22063.62 28376.29 21136.36 34371.78 25967.29 29356.05 17664.23 22882.95 17347.11 14574.41 28347.30 24961.85 32280.10 249
LCM-MVSNet-Re61.88 25661.35 25063.46 28474.58 24031.48 37061.42 33258.14 34358.71 12653.02 33879.55 24643.07 18776.80 26545.69 26377.96 14282.11 213
CMPMVSbinary42.80 2157.81 28255.97 29063.32 28560.98 36747.38 24764.66 31769.50 27932.06 36646.83 36077.80 27229.50 32071.36 29748.68 23973.75 18571.21 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CL-MVSNet_self_test61.53 25960.94 25663.30 28668.95 32236.93 33967.60 29572.80 25455.67 18559.95 27176.63 28545.01 17272.22 29439.74 30962.09 32180.74 239
JIA-IIPM51.56 32047.68 33463.21 28764.61 34950.73 19847.71 37458.77 34142.90 33748.46 35551.72 38024.97 35170.24 30536.06 33253.89 35568.64 360
Vis-MVSNet (Re-imp)63.69 23663.88 21963.14 28874.75 23531.04 37171.16 26763.64 31656.32 16959.80 27484.99 13144.51 17575.46 27839.12 31180.62 10182.92 197
MDA-MVSNet-bldmvs53.87 30950.81 32163.05 28966.25 34148.58 23256.93 35563.82 31548.09 28841.22 37370.48 33830.34 31368.00 31634.24 33845.92 37172.57 325
tpmvs58.47 27556.95 28163.03 29070.20 30541.21 30367.90 29467.23 29449.62 26854.73 32270.84 33334.14 27776.24 27636.64 32761.29 32671.64 337
USDC56.35 29354.24 30662.69 29164.74 34840.31 30865.05 31573.83 24443.93 32947.58 35677.71 27615.36 37375.05 28038.19 31661.81 32372.70 323
our_test_356.49 29054.42 30262.68 29269.51 31545.48 26666.08 30261.49 33344.11 32850.73 34869.60 34533.05 28968.15 31238.38 31456.86 34474.40 311
GG-mvs-BLEND62.34 29371.36 29037.04 33869.20 28857.33 34954.73 32265.48 36430.37 31277.82 24934.82 33674.93 17572.17 333
gg-mvs-nofinetune57.86 28156.43 28762.18 29472.62 26635.35 35066.57 29856.33 35350.65 25757.64 29657.10 37630.65 31076.36 27437.38 31978.88 12874.82 307
ITE_SJBPF62.09 29566.16 34244.55 27664.32 31247.36 29855.31 31480.34 23019.27 36662.68 33636.29 33162.39 31879.04 261
EPNet_dtu61.90 25561.97 24461.68 29672.89 26239.78 31275.85 18965.62 30455.09 19754.56 32479.36 25037.59 24367.02 32039.80 30876.95 15878.25 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement53.44 31350.72 32261.60 29764.31 35146.96 25070.89 27265.27 30741.78 34144.61 36777.98 26511.52 38166.36 32428.57 36851.59 36071.49 340
PVSNet50.76 1958.40 27657.39 27761.42 29875.53 22344.04 27961.43 33163.45 31747.04 30356.91 30073.61 31527.00 34064.76 32939.12 31172.40 20975.47 298
TinyColmap54.14 30651.72 31761.40 29966.84 33641.97 29666.52 29968.51 28744.81 31842.69 37275.77 29811.66 37972.94 28931.96 34756.77 34669.27 358
PatchMatch-RL56.25 29454.55 30161.32 30077.06 19756.07 10965.57 30654.10 36144.13 32753.49 33771.27 33225.20 35066.78 32136.52 32963.66 30661.12 366
CVMVSNet59.63 27159.14 26461.08 30174.47 24238.84 32075.20 20068.74 28631.15 36758.24 29276.51 28932.39 30368.58 31149.77 22865.84 28975.81 293
RPSCF55.80 29854.22 30760.53 30265.13 34742.91 29064.30 31857.62 34636.84 36058.05 29482.28 19028.01 33156.24 36537.14 32158.61 33882.44 208
KD-MVS_2432*160053.45 31151.50 31959.30 30362.82 35637.14 33555.33 35871.79 26247.34 29955.09 31770.52 33621.91 36170.45 30235.72 33342.97 37470.31 350
miper_refine_blended53.45 31151.50 31959.30 30362.82 35637.14 33555.33 35871.79 26247.34 29955.09 31770.52 33621.91 36170.45 30235.72 33342.97 37470.31 350
Patchmtry57.16 28556.47 28659.23 30569.17 32134.58 35562.98 32363.15 32044.53 32156.83 30174.84 30635.83 26268.71 31040.03 30660.91 32774.39 312
KD-MVS_self_test55.22 30253.89 30959.21 30657.80 37527.47 38157.75 35174.32 23647.38 29750.90 34570.00 34128.45 32970.30 30440.44 30457.92 34079.87 252
EU-MVSNet55.61 29954.41 30359.19 30765.41 34633.42 36272.44 24971.91 26128.81 36951.27 34273.87 31324.76 35269.08 30943.04 28858.20 33975.06 301
ADS-MVSNet251.33 32248.76 32959.07 30866.02 34444.60 27450.90 36859.76 33836.90 35850.74 34666.18 36226.38 34263.11 33427.17 37154.76 35269.50 356
pmmvs556.47 29155.68 29358.86 30961.41 36436.71 34166.37 30062.75 32240.38 35153.70 33176.62 28634.56 27267.05 31940.02 30765.27 29272.83 322
PM-MVS52.33 31750.19 32558.75 31062.10 36145.14 26965.75 30340.38 38743.60 33053.52 33572.65 3189.16 38765.87 32750.41 22454.18 35465.24 364
FMVSNet555.86 29754.93 29758.66 31171.05 29536.35 34464.18 32062.48 32446.76 30450.66 34974.73 30825.80 34764.04 33133.11 34365.57 29175.59 296
testing356.54 28955.92 29158.41 31277.52 18627.93 37969.72 28456.36 35254.75 20758.63 28977.80 27220.88 36571.75 29625.31 37762.25 31975.53 297
test_vis1_n_192058.86 27359.06 26558.25 31363.76 35243.14 28767.49 29666.36 30040.22 35265.89 19471.95 32631.04 30759.75 34759.94 15464.90 29571.85 336
test-LLR58.15 27958.13 27558.22 31468.57 32444.80 27165.46 30957.92 34450.08 26355.44 31269.82 34232.62 29957.44 35749.66 23173.62 18772.41 329
test-mter56.42 29255.82 29258.22 31468.57 32444.80 27165.46 30957.92 34439.94 35555.44 31269.82 34221.92 36057.44 35749.66 23173.62 18772.41 329
MIMVSNet57.35 28357.07 27958.22 31474.21 24937.18 33462.46 32660.88 33648.88 27755.29 31575.99 29631.68 30662.04 33831.87 34872.35 21075.43 299
Anonymous2024052155.30 30054.41 30357.96 31760.92 36941.73 29971.09 27071.06 26741.18 34648.65 35473.31 31616.93 36959.25 34942.54 29264.01 30372.90 321
WTY-MVS59.75 27060.39 25957.85 31872.32 27437.83 32861.05 33764.18 31345.95 31361.91 25579.11 25447.01 14960.88 34142.50 29369.49 25574.83 306
MIMVSNet155.17 30354.31 30557.77 31970.03 30932.01 36865.68 30564.81 30849.19 27346.75 36176.00 29425.53 34964.04 33128.65 36762.13 32077.26 280
XXY-MVS60.68 26461.67 24657.70 32070.43 30238.45 32364.19 31966.47 29848.05 28963.22 23680.86 22249.28 11460.47 34245.25 27267.28 27974.19 314
test_cas_vis1_n_192056.91 28756.71 28457.51 32159.13 37245.40 26763.58 32161.29 33436.24 36167.14 16971.85 32729.89 31756.69 36157.65 16663.58 30870.46 349
tpmrst58.24 27758.70 26856.84 32266.97 33434.32 35669.57 28661.14 33547.17 30258.58 29071.60 32841.28 21060.41 34349.20 23562.84 31475.78 294
dmvs_re56.77 28856.83 28356.61 32369.23 31941.02 30458.37 34664.18 31350.59 25957.45 29871.42 32935.54 26458.94 35137.23 32067.45 27769.87 354
TESTMET0.1,155.28 30154.90 29856.42 32466.56 33843.67 28265.46 30956.27 35439.18 35753.83 33067.44 35424.21 35455.46 36848.04 24473.11 20070.13 352
PMMVS53.96 30753.26 31356.04 32562.60 35950.92 19461.17 33556.09 35532.81 36553.51 33666.84 35934.04 27859.93 34644.14 27768.18 27157.27 374
YYNet150.73 32448.96 32656.03 32661.10 36641.78 29851.94 36656.44 35140.94 34944.84 36567.80 35230.08 31555.08 36936.77 32350.71 36271.22 343
MDA-MVSNet_test_wron50.71 32548.95 32756.00 32761.17 36541.84 29751.90 36756.45 35040.96 34844.79 36667.84 35130.04 31655.07 37036.71 32550.69 36371.11 346
myMVS_eth3d54.86 30554.61 30055.61 32874.69 23727.31 38265.52 30757.49 34750.97 25456.52 30472.18 32121.87 36368.09 31327.70 37064.59 30071.44 341
Syy-MVS56.00 29656.23 28955.32 32974.69 23726.44 38565.52 30757.49 34750.97 25456.52 30472.18 32139.89 21868.09 31324.20 37864.59 30071.44 341
UnsupCasMVSNet_eth53.16 31652.47 31455.23 33059.45 37133.39 36359.43 34369.13 28345.98 31050.35 35172.32 32029.30 32258.26 35542.02 29744.30 37274.05 315
sss56.17 29556.57 28554.96 33166.93 33536.32 34657.94 34961.69 33241.67 34358.64 28875.32 30438.72 23256.25 36442.04 29666.19 28772.31 332
tpm57.34 28458.16 27354.86 33271.80 28234.77 35267.47 29756.04 35648.20 28660.10 26876.92 28137.17 25053.41 37340.76 30365.01 29476.40 290
EPMVS53.96 30753.69 31054.79 33366.12 34331.96 36962.34 32849.05 37144.42 32455.54 31071.33 33130.22 31456.70 36041.65 30062.54 31775.71 295
Anonymous2023120655.10 30455.30 29654.48 33469.81 31433.94 36062.91 32462.13 33041.08 34755.18 31675.65 29932.75 29656.59 36330.32 36167.86 27372.91 320
EGC-MVSNET42.47 34038.48 34854.46 33574.33 24648.73 23070.33 27951.10 3670.03 3990.18 40067.78 35313.28 37666.49 32318.91 38450.36 36448.15 381
test_fmvs1_n51.37 32150.35 32454.42 33652.85 37837.71 33061.16 33651.93 36328.15 37163.81 23269.73 34413.72 37453.95 37151.16 21960.65 33171.59 338
pmmvs344.92 33641.95 34353.86 33752.58 38043.55 28362.11 32946.90 37926.05 37640.63 37460.19 37211.08 38457.91 35631.83 35246.15 37060.11 367
test_fmvs151.32 32350.48 32353.81 33853.57 37737.51 33260.63 34051.16 36628.02 37363.62 23369.23 34716.41 37053.93 37251.01 22060.70 33069.99 353
UnsupCasMVSNet_bld50.07 32748.87 32853.66 33960.97 36833.67 36157.62 35264.56 31139.47 35647.38 35764.02 36827.47 33559.32 34834.69 33743.68 37367.98 361
LCM-MVSNet40.30 34535.88 35153.57 34042.24 38929.15 37545.21 38060.53 33722.23 38328.02 38550.98 3833.72 39661.78 33931.22 35838.76 38069.78 355
test_vis1_n49.89 32848.69 33053.50 34153.97 37637.38 33361.53 33047.33 37728.54 37059.62 27767.10 35813.52 37552.27 37649.07 23657.52 34170.84 347
test20.0353.87 30954.02 30853.41 34261.47 36328.11 37861.30 33359.21 33951.34 24852.09 34077.43 27733.29 28858.55 35329.76 36360.27 33373.58 318
ANet_high41.38 34337.47 35053.11 34339.73 39424.45 39056.94 35469.69 27547.65 29426.04 38752.32 37912.44 37762.38 33721.80 38110.61 39672.49 326
PVSNet_043.31 2047.46 33445.64 33752.92 34467.60 33244.65 27354.06 36254.64 35741.59 34446.15 36358.75 37330.99 30858.66 35232.18 34624.81 38855.46 376
dp51.89 31951.60 31852.77 34568.44 32732.45 36762.36 32754.57 35844.16 32649.31 35367.91 35028.87 32656.61 36233.89 33954.89 35169.24 359
test0.0.03 153.32 31453.59 31152.50 34662.81 35829.45 37459.51 34254.11 36050.08 26354.40 32674.31 31132.62 29955.92 36630.50 36063.95 30572.15 334
PatchT53.17 31553.44 31252.33 34768.29 32825.34 38958.21 34754.41 35944.46 32354.56 32469.05 34833.32 28760.94 34036.93 32261.76 32470.73 348
test_fmvs248.69 33047.49 33552.29 34848.63 38433.06 36557.76 35048.05 37525.71 37759.76 27569.60 34511.57 38052.23 37749.45 23456.86 34471.58 339
CHOSEN 280x42047.83 33246.36 33652.24 34967.37 33349.78 21438.91 38643.11 38535.00 36343.27 37163.30 36928.95 32449.19 38036.53 32860.80 32957.76 373
Patchmatch-test49.08 32948.28 33151.50 35064.40 35030.85 37245.68 37848.46 37435.60 36246.10 36472.10 32334.47 27546.37 38327.08 37360.65 33177.27 279
ADS-MVSNet48.48 33147.77 33250.63 35166.02 34429.92 37350.90 36850.87 37036.90 35850.74 34666.18 36226.38 34252.47 37527.17 37154.76 35269.50 356
testgi51.90 31852.37 31550.51 35260.39 37023.55 39258.42 34558.15 34249.03 27551.83 34179.21 25322.39 35855.59 36729.24 36662.64 31572.40 331
test_fmvs344.30 33742.55 34049.55 35342.83 38827.15 38453.03 36444.93 38122.03 38453.69 33364.94 3654.21 39449.63 37947.47 24549.82 36571.88 335
MVS-HIRNet45.52 33544.48 33848.65 35468.49 32634.05 35959.41 34444.50 38227.03 37437.96 38150.47 38426.16 34564.10 33026.74 37459.52 33447.82 383
new-patchmatchnet47.56 33347.73 33347.06 35558.81 3739.37 40148.78 37259.21 33943.28 33344.22 36868.66 34925.67 34857.20 35931.57 35549.35 36774.62 310
test_vis1_rt41.35 34439.45 34647.03 35646.65 38737.86 32747.76 37338.65 38823.10 38044.21 36951.22 38211.20 38344.08 38539.27 31053.02 35759.14 369
FPMVS42.18 34141.11 34445.39 35758.03 37441.01 30649.50 37053.81 36230.07 36833.71 38264.03 36611.69 37852.08 37814.01 38855.11 35043.09 385
LF4IMVS42.95 33942.26 34145.04 35848.30 38532.50 36654.80 36048.49 37328.03 37240.51 37570.16 3399.24 38643.89 38631.63 35349.18 36858.72 370
PMVScopyleft28.69 2236.22 35033.29 35445.02 35936.82 39635.98 34954.68 36148.74 37226.31 37521.02 39051.61 3812.88 39960.10 3459.99 39647.58 36938.99 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dmvs_testset50.16 32651.90 31644.94 36066.49 33911.78 39861.01 33851.50 36551.17 25250.30 35267.44 35439.28 22560.29 34422.38 38057.49 34262.76 365
APD_test137.39 34934.94 35244.72 36148.88 38333.19 36452.95 36544.00 38419.49 38527.28 38658.59 3743.18 39852.84 37418.92 38341.17 37748.14 382
Gipumacopyleft34.77 35131.91 35543.33 36262.05 36237.87 32620.39 39167.03 29523.23 37918.41 39225.84 3924.24 39362.73 33514.71 38751.32 36129.38 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test139.38 34638.16 34943.02 36349.05 38234.28 35744.16 38225.94 39822.74 38246.57 36262.21 37123.85 35641.16 39033.01 34435.91 38253.63 377
WB-MVS43.26 33843.41 33942.83 36463.32 35510.32 40058.17 34845.20 38045.42 31540.44 37667.26 35734.01 28058.98 35011.96 39224.88 38759.20 368
SSC-MVS41.96 34241.99 34241.90 36562.46 3609.28 40257.41 35344.32 38343.38 33238.30 38066.45 36032.67 29858.42 35410.98 39321.91 39057.99 372
DSMNet-mixed39.30 34838.72 34741.03 36651.22 38119.66 39545.53 37931.35 39415.83 39139.80 37867.42 35622.19 35945.13 38422.43 37952.69 35858.31 371
testf131.46 35628.89 35939.16 36741.99 39128.78 37646.45 37637.56 38914.28 39221.10 38848.96 3851.48 40247.11 38113.63 38934.56 38341.60 386
APD_test231.46 35628.89 35939.16 36741.99 39128.78 37646.45 37637.56 38914.28 39221.10 38848.96 3851.48 40247.11 38113.63 38934.56 38341.60 386
mvsany_test332.62 35330.57 35738.77 36936.16 39724.20 39138.10 38720.63 40019.14 38640.36 37757.43 3755.06 39136.63 39329.59 36528.66 38655.49 375
test_vis3_rt32.09 35430.20 35837.76 37035.36 39827.48 38040.60 38528.29 39716.69 38932.52 38340.53 3881.96 40037.40 39233.64 34242.21 37648.39 380
N_pmnet39.35 34740.28 34536.54 37163.76 3521.62 40649.37 3710.76 40534.62 36443.61 37066.38 36126.25 34442.57 38726.02 37651.77 35965.44 363
test_f31.86 35531.05 35634.28 37232.33 40021.86 39332.34 38830.46 39516.02 39039.78 37955.45 3774.80 39232.36 39530.61 35937.66 38148.64 379
new_pmnet34.13 35234.29 35333.64 37352.63 37918.23 39744.43 38133.90 39322.81 38130.89 38453.18 37810.48 38535.72 39420.77 38239.51 37846.98 384
MVEpermissive17.77 2321.41 36117.77 36632.34 37434.34 39925.44 38816.11 39224.11 39911.19 39413.22 39431.92 3901.58 40130.95 39610.47 39417.03 39240.62 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS227.40 35825.91 36131.87 37539.46 3956.57 40331.17 38928.52 39623.96 37820.45 39148.94 3874.20 39537.94 39116.51 38519.97 39151.09 378
E-PMN23.77 35922.73 36326.90 37642.02 39020.67 39442.66 38335.70 39117.43 38710.28 39725.05 3936.42 38942.39 38810.28 39514.71 39317.63 392
EMVS22.97 36021.84 36426.36 37740.20 39319.53 39641.95 38434.64 39217.09 3889.73 39822.83 3947.29 38842.22 3899.18 39713.66 39417.32 393
test_method19.68 36218.10 36524.41 37813.68 4023.11 40512.06 39442.37 3862.00 39711.97 39536.38 3895.77 39029.35 39715.06 38623.65 38940.76 388
wuyk23d13.32 36412.52 36715.71 37947.54 38626.27 38631.06 3901.98 4044.93 3965.18 3991.94 3990.45 40418.54 3986.81 39912.83 3952.33 396
DeepMVS_CXcopyleft12.03 38017.97 40110.91 39910.60 4037.46 39511.07 39628.36 3913.28 39711.29 3998.01 3989.74 39813.89 394
tmp_tt9.43 36511.14 3684.30 3812.38 4034.40 40413.62 39316.08 4020.39 39815.89 39313.06 39515.80 3725.54 40012.63 39110.46 3972.95 395
test1234.73 3676.30 3700.02 3820.01 4040.01 40756.36 3560.00 4060.01 4000.04 4010.21 4010.01 4050.00 4010.03 4010.00 3990.04 397
testmvs4.52 3686.03 3710.01 3830.01 4040.00 40853.86 3630.00 4060.01 4000.04 4010.27 4000.00 4060.00 4010.04 4000.00 3990.03 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
cdsmvs_eth3d_5k17.50 36323.34 3620.00 3840.00 4060.00 4080.00 39578.63 1610.00 4020.00 40382.18 19149.25 1150.00 4010.00 4020.00 3990.00 399
pcd_1.5k_mvsjas3.92 3695.23 3720.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 40247.05 1460.00 4010.00 4020.00 3990.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
ab-mvs-re6.49 3668.65 3690.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 40377.89 2700.00 4060.00 4010.00 4020.00 3990.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
WAC-MVS27.31 38227.77 369
FOURS186.12 3660.82 3788.18 183.61 6360.87 8481.50 16
PC_three_145255.09 19784.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 11
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 406
eth-test0.00 406
ZD-MVS86.64 2160.38 4382.70 8657.95 14278.10 2490.06 3656.12 3888.84 2674.05 4787.00 48
RE-MVS-def73.71 6283.49 6559.87 4984.29 3781.36 10758.07 13773.14 7490.07 3443.06 18868.20 7981.76 9484.03 159
IU-MVS87.77 459.15 6085.53 2553.93 22084.64 379.07 1190.87 588.37 13
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 35
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
9.1478.75 1483.10 6984.15 4388.26 159.90 10678.57 2390.36 2757.51 3086.86 6477.39 2389.52 21
save fliter86.17 3361.30 2883.98 4779.66 14059.00 120
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 21
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 270
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27178.05 270
sam_mvs33.43 286
MTGPAbinary80.97 123
test_post168.67 2903.64 39732.39 30369.49 30744.17 275
test_post3.55 39833.90 28166.52 322
patchmatchnet-post64.03 36634.50 27374.27 284
MTMP86.03 1917.08 401
gm-plane-assit71.40 28941.72 30148.85 27873.31 31682.48 16848.90 238
test9_res75.28 3788.31 3283.81 169
TEST985.58 4361.59 2481.62 8281.26 11555.65 18674.93 4388.81 5653.70 6384.68 118
test_885.40 4660.96 3481.54 8581.18 11855.86 17774.81 4788.80 5853.70 6384.45 122
agg_prior273.09 5587.93 4084.33 150
agg_prior85.04 5059.96 4781.04 12174.68 5084.04 128
test_prior462.51 1482.08 77
test_prior281.75 8060.37 9675.01 4189.06 5256.22 3772.19 5988.96 24
旧先验276.08 18245.32 31676.55 3265.56 32858.75 162
新几何276.12 180
旧先验183.04 7053.15 15967.52 29087.85 7144.08 17980.76 10078.03 273
无先验79.66 11074.30 23848.40 28480.78 20253.62 19879.03 262
原ACMM279.02 116
test22283.14 6858.68 7372.57 24763.45 31741.78 34167.56 16286.12 10737.13 25278.73 13374.98 304
testdata272.18 29546.95 254
segment_acmp54.23 54
testdata172.65 24360.50 91
plane_prior781.41 8955.96 111
plane_prior681.20 9656.24 10645.26 170
plane_prior584.01 4987.21 5368.16 8180.58 10384.65 144
plane_prior486.10 108
plane_prior356.09 10863.92 3669.27 127
plane_prior284.22 4064.52 25
plane_prior181.27 94
plane_prior56.31 10283.58 5363.19 4880.48 106
n20.00 406
nn0.00 406
door-mid47.19 378
test1183.47 67
door47.60 376
HQP5-MVS54.94 131
HQP-NCC80.66 10282.31 7162.10 6867.85 152
ACMP_Plane80.66 10282.31 7162.10 6867.85 152
BP-MVS67.04 93
HQP4-MVS67.85 15286.93 6284.32 151
HQP3-MVS83.90 5480.35 107
HQP2-MVS45.46 164
NP-MVS80.98 9956.05 11085.54 126
MDTV_nov1_ep13_2view25.89 38761.22 33440.10 35351.10 34332.97 29138.49 31378.61 265
MDTV_nov1_ep1357.00 28072.73 26438.26 32465.02 31664.73 31044.74 31955.46 31172.48 31932.61 30170.47 30137.47 31867.75 275
ACMMP++_ref74.07 181
ACMMP++72.16 215
Test By Simon48.33 126