This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2563.71 1289.23 2081.51 288.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MM80.20 780.28 879.99 282.19 8260.01 4986.19 1783.93 5473.19 177.08 3491.21 1757.23 3390.73 1083.35 188.12 3489.22 6
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7562.18 1687.60 985.83 1966.69 978.03 2690.98 1854.26 5690.06 1478.42 1989.02 2387.69 39
Skip Steuart: Steuart Systems R&D Blog.
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
No_MVS79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1779.85 591.48 188.19 24
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4567.01 190.33 1273.16 5491.15 488.23 22
DeepC-MVS69.38 278.56 1778.14 2279.83 783.60 6561.62 2384.17 4586.85 663.23 4673.84 6990.25 3557.68 2989.96 1574.62 4389.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+66.72 475.84 4974.57 5979.66 982.40 7959.92 5185.83 2286.32 1666.92 767.80 16589.24 5442.03 20689.38 1964.07 12286.50 5789.69 3
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6388.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 16
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3985.03 3666.96 577.58 2990.06 3959.47 2189.13 2278.67 1489.73 1687.03 59
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3084.42 4566.73 874.67 5889.38 5255.30 4689.18 2174.19 4687.34 4486.38 78
SED-MVS81.56 282.30 279.32 1387.77 458.90 7287.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 22
ZNCC-MVS78.82 1378.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4690.47 2853.96 6188.68 2776.48 2889.63 2087.16 57
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_SECOND79.19 1687.82 359.11 6687.85 587.15 390.84 378.66 1590.61 1187.62 43
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 7290.56 2449.80 11588.24 3374.02 4887.03 4686.32 86
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7490.58 2349.90 11388.21 3473.78 5087.03 4686.29 89
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4683.03 6085.33 2862.86 5480.17 1790.03 4161.76 1488.95 2474.21 4588.67 2688.12 26
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3484.85 4061.98 7473.06 8488.88 5853.72 6689.06 2368.27 8488.04 3787.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 6790.50 2653.20 7288.35 3174.02 4887.05 4586.13 92
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 2158.63 2587.24 5479.00 1290.37 1485.26 132
XVS77.17 3176.56 3679.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 9890.01 4347.95 13688.01 4071.55 7086.74 5386.37 80
X-MVStestdata70.21 12867.28 17779.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 986.49 42047.95 13688.01 4071.55 7086.74 5386.37 80
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 3063.56 4174.29 6490.03 4152.56 7888.53 2974.79 4288.34 2986.63 74
MVS_030478.45 1878.28 1978.98 2680.73 10757.91 8384.68 3581.64 10768.35 275.77 3990.38 2953.98 5990.26 1381.30 387.68 4288.77 11
TSAR-MVS + MP.78.44 1978.28 1978.90 2784.96 5261.41 2684.03 4883.82 6359.34 12679.37 1989.76 4859.84 1687.62 5176.69 2786.74 5387.68 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS76.77 3776.06 4278.88 2886.14 3562.73 982.55 7083.74 6461.71 7672.45 9790.34 3248.48 13288.13 3772.32 6186.85 5185.78 103
APDe-MVScopyleft80.16 880.59 678.86 2986.64 2160.02 4888.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1678.70 1388.32 3186.79 67
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMP_NAP78.77 1578.78 1478.74 3085.44 4561.04 3183.84 5285.16 3162.88 5378.10 2491.26 1652.51 7988.39 3079.34 890.52 1386.78 68
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 7190.60 2254.85 5186.72 7177.20 2588.06 3685.74 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6385.08 3362.57 6073.09 8389.97 4450.90 10687.48 5275.30 3686.85 5187.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7262.44 6472.68 9190.50 2648.18 13487.34 5373.59 5285.71 6084.76 150
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6787.85 585.03 3664.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MTAPA76.90 3476.42 3878.35 3586.08 3763.57 274.92 21480.97 13265.13 1575.77 3990.88 1948.63 12986.66 7377.23 2488.17 3384.81 147
mPP-MVS76.54 3975.93 4478.34 3686.47 2663.50 385.74 2582.28 9762.90 5271.77 10290.26 3446.61 16186.55 7771.71 6885.66 6184.97 143
CDPH-MVS76.31 4275.67 4878.22 3785.35 4859.14 6581.31 8884.02 5156.32 18174.05 6588.98 5753.34 7187.92 4369.23 8288.42 2887.59 44
ACMMPcopyleft76.02 4775.33 5178.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 12889.74 4945.43 17487.16 6072.01 6482.87 8885.14 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet76.46 4075.93 4478.06 3981.29 9757.53 8882.35 7283.31 8067.78 370.09 11886.34 11054.92 5088.90 2572.68 5884.55 6787.76 38
MP-MVS-pluss78.35 2078.46 1778.03 4084.96 5259.52 5682.93 6285.39 2762.15 6776.41 3791.51 1152.47 8186.78 7080.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 9279.05 2190.30 3355.54 4588.32 3273.48 5387.03 4684.83 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3783.87 6060.37 9979.89 1889.38 5254.97 4985.58 10076.12 3184.94 6486.33 84
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
reproduce-ours76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 119
our_new_method76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 119
test1277.76 4584.52 5858.41 7883.36 7672.93 8754.61 5488.05 3988.12 3486.81 66
SF-MVS78.82 1379.22 1277.60 4682.88 7757.83 8484.99 3188.13 261.86 7579.16 2090.75 2057.96 2687.09 6377.08 2690.18 1587.87 32
MCST-MVS77.48 2877.45 2777.54 4786.67 2058.36 7983.22 5886.93 556.91 16874.91 5188.19 6559.15 2387.68 5073.67 5187.45 4386.57 75
reproduce_model76.43 4176.08 4177.49 4883.47 6960.09 4784.60 3682.90 8959.65 11777.31 3091.43 1249.62 11787.24 5471.99 6583.75 7885.14 134
CSCG76.92 3376.75 3177.41 4983.96 6459.60 5482.95 6186.50 1360.78 8975.27 4384.83 14060.76 1586.56 7667.86 8987.87 4186.06 94
PHI-MVS75.87 4875.36 5077.41 4980.62 11255.91 11684.28 4285.78 2056.08 18773.41 7386.58 10250.94 10588.54 2870.79 7489.71 1787.79 37
SR-MVS76.13 4675.70 4777.40 5185.87 4061.20 2985.52 2782.19 9859.99 11175.10 4590.35 3147.66 14186.52 7871.64 6982.99 8384.47 156
TSAR-MVS + GP.74.90 5574.15 6377.17 5282.00 8458.77 7581.80 8078.57 17258.58 13974.32 6384.51 15155.94 4387.22 5767.11 9784.48 7185.52 115
CS-MVS76.25 4475.98 4377.06 5380.15 12155.63 12384.51 3883.90 5763.24 4573.30 7487.27 8455.06 4886.30 8671.78 6784.58 6689.25 5
BP-MVS173.41 7272.25 8276.88 5476.68 21953.70 15179.15 11881.07 12860.66 9171.81 10187.39 8040.93 22387.24 5471.23 7281.29 10689.71 2
DPM-MVS75.47 5375.00 5476.88 5481.38 9659.16 6279.94 10485.71 2256.59 17672.46 9586.76 9256.89 3587.86 4566.36 10388.91 2583.64 188
HPM-MVS_fast74.30 6673.46 7176.80 5684.45 6059.04 6983.65 5581.05 12960.15 10870.43 11489.84 4641.09 22285.59 9967.61 9382.90 8785.77 106
GDP-MVS72.64 8371.28 9876.70 5777.72 18854.22 14479.57 11484.45 4355.30 20471.38 10886.97 8839.94 22887.00 6567.02 10079.20 13288.89 9
test_prior76.69 5884.20 6157.27 9184.88 3986.43 8186.38 78
balanced_conf0376.58 3876.55 3776.68 5981.73 8852.90 16980.94 9185.70 2361.12 8474.90 5287.17 8656.46 3888.14 3672.87 5688.03 3889.00 8
MVSMamba_PlusPlus75.75 5175.44 4976.67 6080.84 10553.06 16678.62 12585.13 3259.65 11771.53 10687.47 7856.92 3488.17 3572.18 6386.63 5688.80 10
APD-MVS_3200maxsize74.96 5474.39 6176.67 6082.20 8158.24 8083.67 5483.29 8158.41 14273.71 7090.14 3645.62 16785.99 9069.64 7882.85 8985.78 103
train_agg76.27 4376.15 4076.64 6285.58 4361.59 2481.62 8381.26 12255.86 18974.93 4988.81 5953.70 6784.68 12375.24 3888.33 3083.65 187
SR-MVS-dyc-post74.57 6273.90 6576.58 6383.49 6759.87 5284.29 4081.36 11558.07 14873.14 8090.07 3744.74 18185.84 9468.20 8581.76 10184.03 166
SPE-MVS-test75.62 5275.31 5276.56 6480.63 11155.13 13383.88 5185.22 2962.05 7171.49 10786.03 12053.83 6386.36 8467.74 9086.91 5088.19 24
h-mvs3372.71 8271.49 9176.40 6581.99 8559.58 5576.92 16976.74 20960.40 9674.81 5485.95 12345.54 17085.76 9670.41 7670.61 24583.86 175
DP-MVS Recon72.15 9670.73 10876.40 6586.57 2457.99 8281.15 9082.96 8757.03 16566.78 18285.56 13144.50 18588.11 3851.77 22580.23 11883.10 202
ETV-MVS74.46 6473.84 6776.33 6779.27 13755.24 13279.22 11785.00 3864.97 2172.65 9279.46 25453.65 7087.87 4467.45 9582.91 8685.89 100
OPM-MVS74.73 5874.25 6276.19 6880.81 10659.01 7082.60 6983.64 6663.74 3972.52 9487.49 7747.18 15285.88 9369.47 8080.78 10783.66 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS74.31 6573.73 6876.06 6981.41 9456.31 10584.22 4384.01 5264.52 2569.27 13686.10 11745.26 17887.21 5868.16 8780.58 11184.65 151
Effi-MVS+-dtu69.64 14367.53 16775.95 7076.10 23062.29 1580.20 10176.06 21759.83 11665.26 21577.09 29341.56 21484.02 13560.60 15571.09 24181.53 228
EPNet73.09 7672.16 8375.90 7175.95 23256.28 10783.05 5972.39 26566.53 1065.27 21287.00 8750.40 11085.47 10562.48 13986.32 5885.94 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator64.47 572.49 8671.39 9475.79 7277.70 18958.99 7180.66 9683.15 8562.24 6665.46 20886.59 10142.38 20485.52 10159.59 16484.72 6582.85 207
LPG-MVS_test72.74 8171.74 8775.76 7380.22 11657.51 8982.55 7083.40 7461.32 7966.67 18687.33 8239.15 24086.59 7467.70 9177.30 16383.19 198
LGP-MVS_train75.76 7380.22 11657.51 8983.40 7461.32 7966.67 18687.33 8239.15 24086.59 7467.70 9177.30 16383.19 198
EC-MVSNet75.84 4975.87 4675.74 7578.86 14852.65 17483.73 5386.08 1763.47 4272.77 9087.25 8553.13 7387.93 4271.97 6685.57 6286.66 72
MVS_111021_HR74.02 6773.46 7175.69 7683.01 7560.63 4077.29 15978.40 18361.18 8370.58 11385.97 12254.18 5884.00 13667.52 9482.98 8582.45 214
casdiffmvs_mvgpermissive76.14 4576.30 3975.66 7776.46 22651.83 19179.67 11185.08 3365.02 1975.84 3888.58 6359.42 2285.08 11172.75 5783.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS74.76 5774.46 6075.65 7877.84 18452.25 18375.59 19784.17 4963.76 3873.15 7982.79 18059.58 2086.80 6967.24 9686.04 5987.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+73.31 7472.54 7975.62 7977.87 18253.64 15379.62 11379.61 15161.63 7772.02 10082.61 18556.44 3985.97 9163.99 12579.07 13687.25 56
MAR-MVS71.51 10470.15 12075.60 8081.84 8759.39 5881.38 8782.90 8954.90 21868.08 15778.70 26447.73 13985.51 10251.68 22784.17 7481.88 225
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ACMP63.53 672.30 9071.20 10075.59 8180.28 11457.54 8782.74 6682.84 9260.58 9365.24 21686.18 11439.25 23886.03 8966.95 10176.79 17083.22 196
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP-MVS73.45 7172.80 7675.40 8280.66 10854.94 13482.31 7483.90 5762.10 6867.85 16085.54 13445.46 17286.93 6667.04 9880.35 11584.32 158
PCF-MVS61.88 870.95 11369.49 12975.35 8377.63 19355.71 12076.04 18981.81 10450.30 27569.66 12985.40 13752.51 7984.89 11851.82 22480.24 11785.45 121
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-MVSNAJss72.24 9171.21 9975.31 8478.50 15755.93 11581.63 8282.12 9956.24 18470.02 12285.68 13047.05 15484.34 12965.27 11474.41 19285.67 110
EIA-MVS71.78 9970.60 11075.30 8579.85 12553.54 15677.27 16083.26 8357.92 15466.49 18879.39 25652.07 8886.69 7260.05 15879.14 13585.66 111
CLD-MVS73.33 7372.68 7775.29 8678.82 15053.33 16178.23 13284.79 4161.30 8170.41 11581.04 22252.41 8287.12 6164.61 12182.49 9385.41 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PAPM_NR72.63 8471.80 8675.13 8781.72 8953.42 15979.91 10683.28 8259.14 12866.31 19385.90 12451.86 9186.06 8757.45 17680.62 10985.91 99
EI-MVSNet-Vis-set72.42 8971.59 8874.91 8878.47 15954.02 14677.05 16579.33 15765.03 1871.68 10479.35 25852.75 7684.89 11866.46 10274.23 19385.83 102
MVSFormer71.50 10570.38 11574.88 8978.76 15157.15 9782.79 6478.48 17651.26 26469.49 13183.22 17543.99 19083.24 14966.06 10579.37 12784.23 161
CPTT-MVS72.78 8072.08 8574.87 9084.88 5761.41 2684.15 4677.86 18955.27 20567.51 17188.08 6841.93 20881.85 18269.04 8380.01 11981.35 235
EPP-MVSNet72.16 9571.31 9774.71 9178.68 15449.70 22082.10 7881.65 10660.40 9665.94 19885.84 12651.74 9486.37 8355.93 18579.55 12688.07 29
原ACMM174.69 9285.39 4759.40 5783.42 7351.47 26070.27 11786.61 10048.61 13086.51 7953.85 20787.96 3978.16 281
ET-MVSNet_ETH3D67.96 18265.72 20974.68 9376.67 22055.62 12575.11 20774.74 23952.91 24360.03 28780.12 24033.68 29882.64 16861.86 14576.34 17485.78 103
MSLP-MVS++73.77 7073.47 7074.66 9483.02 7459.29 6182.30 7781.88 10259.34 12671.59 10586.83 9045.94 16583.65 14265.09 11585.22 6381.06 242
PVSNet_Blended_VisFu71.45 10770.39 11474.65 9582.01 8358.82 7479.93 10580.35 14355.09 21065.82 20482.16 20049.17 12382.64 16860.34 15678.62 14482.50 213
114514_t70.83 11569.56 12774.64 9686.21 3154.63 13982.34 7381.81 10448.22 30363.01 25185.83 12740.92 22487.10 6257.91 17379.79 12082.18 219
Vis-MVSNetpermissive72.18 9271.37 9574.61 9781.29 9755.41 12980.90 9278.28 18560.73 9069.23 13988.09 6744.36 18782.65 16757.68 17481.75 10385.77 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
hse-mvs271.04 11069.86 12374.60 9879.58 13057.12 9973.96 23175.25 23060.40 9674.81 5481.95 20545.54 17082.90 15670.41 7666.83 29783.77 180
test_djsdf69.45 15067.74 16074.58 9974.57 25754.92 13682.79 6478.48 17651.26 26465.41 20983.49 17238.37 24783.24 14966.06 10569.25 27485.56 114
AUN-MVS68.45 17266.41 19574.57 10079.53 13257.08 10073.93 23475.23 23154.44 22766.69 18581.85 20737.10 26582.89 15762.07 14266.84 29683.75 181
casdiffmvspermissive74.80 5674.89 5774.53 10175.59 23850.37 20978.17 13585.06 3562.80 5874.40 6187.86 7357.88 2783.61 14369.46 8182.79 9089.59 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set71.92 9771.06 10374.52 10277.98 18053.56 15576.62 17479.16 15864.40 2771.18 10978.95 26352.19 8684.66 12565.47 11373.57 20485.32 128
API-MVS72.17 9371.41 9374.45 10381.95 8657.22 9284.03 4880.38 14259.89 11568.40 14882.33 19449.64 11687.83 4651.87 22384.16 7578.30 279
PAPR71.72 10270.82 10674.41 10481.20 10151.17 19479.55 11583.33 7955.81 19266.93 18184.61 14750.95 10486.06 8755.79 18879.20 13286.00 95
baseline74.61 6174.70 5874.34 10575.70 23449.99 21777.54 15184.63 4262.73 5973.98 6687.79 7657.67 3083.82 13969.49 7982.74 9189.20 7
thisisatest053067.92 18365.78 20874.33 10676.29 22751.03 19576.89 17074.25 24853.67 23765.59 20681.76 20935.15 28085.50 10355.94 18472.47 22386.47 77
tttt051767.83 18565.66 21074.33 10676.69 21850.82 20077.86 14273.99 25254.54 22564.64 22882.53 19035.06 28185.50 10355.71 18969.91 26186.67 71
test_fmvsmconf_n73.01 7772.59 7874.27 10871.28 30955.88 11778.21 13475.56 22354.31 22974.86 5387.80 7554.72 5280.23 22078.07 2178.48 14586.70 69
test_fmvsmconf0.1_n72.81 7972.33 8174.24 10969.89 33155.81 11878.22 13375.40 22754.17 23175.00 4888.03 7153.82 6480.23 22078.08 2078.34 14886.69 70
mvsmamba68.47 17066.56 18874.21 11079.60 12952.95 16774.94 21375.48 22552.09 25260.10 28583.27 17436.54 27084.70 12259.32 16877.69 15584.99 142
test_fmvsmconf0.01_n72.17 9371.50 9074.16 11167.96 34955.58 12678.06 13874.67 24154.19 23074.54 5988.23 6450.35 11280.24 21978.07 2177.46 15986.65 73
MG-MVS73.96 6873.89 6674.16 11185.65 4249.69 22281.59 8581.29 12161.45 7871.05 11088.11 6651.77 9387.73 4761.05 15183.09 8185.05 139
ACMM61.98 770.80 11769.73 12574.02 11380.59 11358.59 7782.68 6782.02 10155.46 20167.18 17684.39 15338.51 24583.17 15160.65 15476.10 17780.30 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v7n69.01 15867.36 17473.98 11472.51 28652.65 17478.54 12981.30 12060.26 10562.67 25681.62 21143.61 19284.49 12657.01 17868.70 28384.79 148
AdaColmapbinary69.99 13268.66 14573.97 11584.94 5457.83 8482.63 6878.71 16856.28 18364.34 23084.14 15641.57 21387.06 6446.45 26878.88 13777.02 299
v119269.97 13368.68 14473.85 11673.19 27150.94 19677.68 14781.36 11557.51 16068.95 14280.85 22945.28 17785.33 10962.97 13570.37 24985.27 131
FA-MVS(test-final)69.82 13668.48 14873.84 11778.44 16050.04 21575.58 19978.99 16258.16 14667.59 16982.14 20142.66 19985.63 9756.60 18076.19 17685.84 101
v1070.21 12869.02 13773.81 11873.51 26950.92 19878.74 12281.39 11360.05 11066.39 19181.83 20847.58 14385.41 10862.80 13668.86 28185.09 138
QAPM70.05 13068.81 14173.78 11976.54 22453.43 15883.23 5783.48 7052.89 24465.90 20086.29 11141.55 21586.49 8051.01 23078.40 14781.42 229
OMC-MVS71.40 10870.60 11073.78 11976.60 22253.15 16379.74 11079.78 14758.37 14368.75 14386.45 10845.43 17480.60 21062.58 13777.73 15487.58 45
UA-Net73.13 7572.93 7573.76 12183.58 6651.66 19278.75 12177.66 19367.75 472.61 9389.42 5049.82 11483.29 14853.61 20983.14 8086.32 86
v114470.42 12469.31 13273.76 12173.22 27050.64 20377.83 14481.43 11258.58 13969.40 13481.16 21947.53 14585.29 11064.01 12470.64 24385.34 127
VDD-MVS72.50 8572.09 8473.75 12381.58 9049.69 22277.76 14677.63 19463.21 4773.21 7789.02 5642.14 20583.32 14761.72 14682.50 9288.25 21
RRT-MVS71.46 10670.70 10973.74 12477.76 18749.30 22876.60 17580.45 14061.25 8268.17 15384.78 14244.64 18384.90 11764.79 11777.88 15387.03 59
Fast-Effi-MVS+70.28 12769.12 13673.73 12578.50 15751.50 19375.01 21079.46 15556.16 18668.59 14479.55 25253.97 6084.05 13253.34 21177.53 15785.65 112
sasdasda74.67 5974.98 5573.71 12678.94 14650.56 20680.23 9883.87 6060.30 10377.15 3286.56 10359.65 1782.00 17966.01 10782.12 9488.58 14
canonicalmvs74.67 5974.98 5573.71 12678.94 14650.56 20680.23 9883.87 6060.30 10377.15 3286.56 10359.65 1782.00 17966.01 10782.12 9488.58 14
HyFIR lowres test65.67 22263.01 24273.67 12879.97 12455.65 12269.07 29975.52 22442.68 35863.53 24177.95 27640.43 22681.64 18546.01 27271.91 23183.73 182
jajsoiax68.25 17566.45 19173.66 12975.62 23655.49 12880.82 9378.51 17552.33 24964.33 23184.11 15728.28 34781.81 18463.48 13270.62 24483.67 184
v2v48270.50 12269.45 13173.66 12972.62 28250.03 21677.58 14880.51 13959.90 11269.52 13082.14 20147.53 14584.88 12065.07 11670.17 25586.09 93
cascas65.98 21863.42 23573.64 13177.26 20752.58 17772.26 25977.21 20248.56 29761.21 27774.60 32932.57 31885.82 9550.38 23576.75 17182.52 212
FE-MVS65.91 21963.33 23773.63 13277.36 20551.95 19072.62 25275.81 21853.70 23665.31 21078.96 26228.81 34486.39 8243.93 29273.48 20782.55 210
mvs_tets68.18 17766.36 19773.63 13275.61 23755.35 13180.77 9478.56 17352.48 24864.27 23384.10 15827.45 35381.84 18363.45 13370.56 24683.69 183
GeoE71.01 11170.15 12073.60 13479.57 13152.17 18478.93 12078.12 18658.02 15067.76 16883.87 16352.36 8382.72 16556.90 17975.79 18085.92 98
anonymousdsp67.00 20364.82 22073.57 13570.09 32756.13 11076.35 18077.35 20048.43 30164.99 22480.84 23033.01 30680.34 21564.66 11967.64 29184.23 161
test_fmvsm_n_192071.73 10171.14 10173.50 13672.52 28556.53 10475.60 19676.16 21348.11 30577.22 3185.56 13153.10 7477.43 26274.86 4077.14 16586.55 76
v870.33 12669.28 13373.49 13773.15 27250.22 21178.62 12580.78 13560.79 8866.45 19082.11 20349.35 11984.98 11463.58 13168.71 28285.28 130
Fast-Effi-MVS+-dtu67.37 19265.33 21573.48 13872.94 27757.78 8677.47 15376.88 20557.60 15961.97 26776.85 29739.31 23680.49 21454.72 19870.28 25382.17 221
alignmvs73.86 6973.99 6473.45 13978.20 16950.50 20878.57 12782.43 9559.40 12476.57 3586.71 9656.42 4081.23 19665.84 11081.79 10088.62 12
lupinMVS69.57 14568.28 15573.44 14078.76 15157.15 9776.57 17673.29 25846.19 32769.49 13182.18 19743.99 19079.23 23264.66 11979.37 12783.93 170
jason69.65 14268.39 15473.43 14178.27 16856.88 10177.12 16373.71 25546.53 32469.34 13583.22 17543.37 19479.18 23364.77 11879.20 13284.23 161
jason: jason.
IB-MVS56.42 1265.40 22762.73 24673.40 14274.89 24652.78 17373.09 24675.13 23455.69 19558.48 30973.73 33532.86 30886.32 8550.63 23370.11 25681.10 241
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v192192069.47 14968.17 15673.36 14373.06 27450.10 21477.39 15480.56 13756.58 17768.59 14480.37 23444.72 18284.98 11462.47 14069.82 26385.00 140
v14419269.71 13868.51 14773.33 14473.10 27350.13 21377.54 15180.64 13656.65 17068.57 14680.55 23246.87 15984.96 11662.98 13469.66 26884.89 145
IS-MVSNet71.57 10371.00 10473.27 14578.86 14845.63 27280.22 10078.69 16964.14 3566.46 18987.36 8149.30 12085.60 9850.26 23683.71 7988.59 13
VDDNet71.81 9871.33 9673.26 14682.80 7847.60 25278.74 12275.27 22959.59 12272.94 8689.40 5141.51 21683.91 13758.75 16982.99 8388.26 20
v124069.24 15567.91 15973.25 14773.02 27649.82 21877.21 16180.54 13856.43 17968.34 15080.51 23343.33 19584.99 11262.03 14469.77 26684.95 144
UGNet68.81 16067.39 17273.06 14878.33 16654.47 14079.77 10875.40 22760.45 9563.22 24484.40 15232.71 31380.91 20551.71 22680.56 11383.81 176
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-RMVSNet68.81 16067.42 17172.97 14980.11 12252.53 17874.26 22676.29 21258.48 14168.38 14984.20 15442.59 20083.83 13846.53 26775.91 17882.56 209
PS-MVSNAJ70.51 12169.70 12672.93 15081.52 9155.79 11974.92 21479.00 16155.04 21569.88 12678.66 26647.05 15482.19 17661.61 14779.58 12480.83 246
XVG-OURS68.76 16367.37 17372.90 15174.32 26357.22 9270.09 29078.81 16555.24 20667.79 16685.81 12936.54 27078.28 24962.04 14375.74 18183.19 198
xiu_mvs_v2_base70.52 12069.75 12472.84 15281.21 10055.63 12375.11 20778.92 16354.92 21769.96 12579.68 24947.00 15882.09 17861.60 14879.37 12780.81 247
nrg03072.96 7873.01 7472.84 15275.41 24150.24 21080.02 10282.89 9158.36 14474.44 6086.73 9458.90 2480.83 20665.84 11074.46 18987.44 48
thisisatest051565.83 22063.50 23472.82 15473.75 26749.50 22571.32 27073.12 26149.39 28763.82 23876.50 30734.95 28384.84 12153.20 21375.49 18584.13 165
XVG-OURS-SEG-HR68.81 16067.47 17072.82 15474.40 26156.87 10270.59 28279.04 16054.77 22066.99 17986.01 12139.57 23478.21 25062.54 13873.33 21083.37 192
OpenMVScopyleft61.03 968.85 15967.56 16472.70 15674.26 26453.99 14781.21 8981.34 11952.70 24562.75 25585.55 13338.86 24384.14 13148.41 25283.01 8279.97 259
Anonymous2024052969.91 13469.02 13772.56 15780.19 11947.65 25077.56 15080.99 13155.45 20269.88 12686.76 9239.24 23982.18 17754.04 20477.10 16787.85 33
V4268.65 16467.35 17572.56 15768.93 34350.18 21272.90 24879.47 15456.92 16769.45 13380.26 23846.29 16382.99 15364.07 12267.82 28984.53 153
dcpmvs_274.55 6375.23 5372.48 15982.34 8053.34 16077.87 14181.46 11157.80 15875.49 4186.81 9162.22 1377.75 25871.09 7382.02 9786.34 82
xiu_mvs_v1_base_debu68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
xiu_mvs_v1_base68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
xiu_mvs_v1_base_debi68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
MVS_Test72.45 8772.46 8072.42 16374.88 24748.50 24076.28 18283.14 8659.40 12472.46 9584.68 14355.66 4481.12 19765.98 10979.66 12387.63 42
LFMVS71.78 9971.59 8872.32 16483.40 7046.38 26179.75 10971.08 27464.18 3272.80 8988.64 6242.58 20183.72 14057.41 17784.49 7086.86 64
ACMH+57.40 1166.12 21764.06 22472.30 16577.79 18552.83 17280.39 9778.03 18757.30 16157.47 31682.55 18727.68 35184.17 13045.54 27869.78 26479.90 261
test_fmvsmvis_n_192070.84 11470.38 11572.22 16671.16 31055.39 13075.86 19272.21 26749.03 29273.28 7686.17 11551.83 9277.29 26675.80 3278.05 15083.98 169
fmvsm_s_conf0.1_n_a69.32 15268.44 15271.96 16770.91 31353.78 15078.12 13662.30 34549.35 28873.20 7886.55 10551.99 8976.79 27674.83 4168.68 28485.32 128
fmvsm_s_conf0.5_n_a69.54 14668.74 14371.93 16872.47 28753.82 14978.25 13162.26 34649.78 28273.12 8286.21 11352.66 7776.79 27675.02 3968.88 27985.18 133
UniMVSNet (Re)70.63 11970.20 11871.89 16978.55 15645.29 27575.94 19182.92 8863.68 4068.16 15483.59 16953.89 6283.49 14653.97 20571.12 24086.89 63
MVSTER67.16 19965.58 21271.88 17070.37 32349.70 22070.25 28878.45 17951.52 25869.16 14080.37 23438.45 24682.50 17160.19 15771.46 23683.44 191
fmvsm_s_conf0.1_n69.41 15168.60 14671.83 17171.07 31152.88 17177.85 14362.44 34349.58 28572.97 8586.22 11251.68 9576.48 28375.53 3470.10 25786.14 91
CHOSEN 1792x268865.08 23262.84 24471.82 17281.49 9356.26 10866.32 31674.20 25040.53 37063.16 24778.65 26741.30 21777.80 25745.80 27474.09 19481.40 232
fmvsm_s_conf0.5_n69.58 14468.84 14071.79 17372.31 29252.90 16977.90 14062.43 34449.97 28072.85 8885.90 12452.21 8576.49 28275.75 3370.26 25485.97 96
DP-MVS65.68 22163.66 23271.75 17484.93 5556.87 10280.74 9573.16 25953.06 24159.09 30182.35 19336.79 26985.94 9232.82 36369.96 26072.45 346
Anonymous2023121169.28 15368.47 15071.73 17580.28 11447.18 25679.98 10382.37 9654.61 22267.24 17484.01 16039.43 23582.41 17455.45 19372.83 21885.62 113
EI-MVSNet69.27 15468.44 15271.73 17574.47 25849.39 22775.20 20578.45 17959.60 11969.16 14076.51 30551.29 9882.50 17159.86 16371.45 23783.30 193
eth_miper_zixun_eth67.63 18866.28 20171.67 17771.60 30048.33 24273.68 24077.88 18855.80 19365.91 19978.62 26947.35 15182.88 15859.45 16566.25 30183.81 176
MVS_111021_LR69.50 14868.78 14271.65 17878.38 16259.33 5974.82 21670.11 28258.08 14767.83 16484.68 14341.96 20776.34 28665.62 11277.54 15679.30 271
PAPM67.92 18366.69 18771.63 17978.09 17549.02 23177.09 16481.24 12451.04 26760.91 28083.98 16147.71 14084.99 11240.81 31779.32 13080.90 245
NR-MVSNet69.54 14668.85 13971.59 18078.05 17743.81 29074.20 22780.86 13465.18 1462.76 25484.52 14952.35 8483.59 14450.96 23270.78 24287.37 52
fmvsm_l_conf0.5_n70.99 11270.82 10671.48 18171.45 30254.40 14277.18 16270.46 28048.67 29675.17 4486.86 8953.77 6576.86 27476.33 3077.51 15883.17 201
diffmvspermissive70.69 11870.43 11371.46 18269.45 33748.95 23472.93 24778.46 17857.27 16271.69 10383.97 16251.48 9777.92 25570.70 7577.95 15287.53 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet71.11 10971.00 10471.44 18379.20 13944.13 28576.02 19082.60 9466.48 1168.20 15184.60 14856.82 3682.82 16354.62 19970.43 24787.36 54
DU-MVS70.01 13169.53 12871.44 18378.05 17744.13 28575.01 21081.51 11064.37 2868.20 15184.52 14949.12 12682.82 16354.62 19970.43 24787.37 52
IterMVS-LS69.22 15668.48 14871.43 18574.44 26049.40 22676.23 18377.55 19559.60 11965.85 20381.59 21451.28 9981.58 18859.87 16269.90 26283.30 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14868.24 17667.19 18371.40 18670.43 32147.77 24975.76 19577.03 20458.91 13167.36 17280.10 24148.60 13181.89 18160.01 15966.52 30084.53 153
test_yl69.69 13969.13 13471.36 18778.37 16445.74 26874.71 21880.20 14457.91 15570.01 12383.83 16442.44 20282.87 15954.97 19579.72 12185.48 117
DCV-MVSNet69.69 13969.13 13471.36 18778.37 16445.74 26874.71 21880.20 14457.91 15570.01 12383.83 16442.44 20282.87 15954.97 19579.72 12185.48 117
LS3D64.71 23462.50 24871.34 18979.72 12855.71 12079.82 10774.72 24048.50 30056.62 32284.62 14633.59 30082.34 17529.65 38475.23 18675.97 309
TAMVS66.78 20865.27 21671.33 19079.16 14253.67 15273.84 23869.59 28852.32 25065.28 21181.72 21044.49 18677.40 26442.32 30878.66 14382.92 204
BH-untuned68.27 17467.29 17671.21 19179.74 12653.22 16276.06 18777.46 19857.19 16366.10 19581.61 21245.37 17683.50 14545.42 28376.68 17276.91 303
PVSNet_Blended68.59 16567.72 16171.19 19277.03 21350.57 20472.51 25581.52 10851.91 25364.22 23677.77 28549.13 12482.87 15955.82 18679.58 12480.14 257
fmvsm_l_conf0.5_n_a70.50 12270.27 11771.18 19371.30 30854.09 14576.89 17069.87 28447.90 30974.37 6286.49 10653.07 7576.69 27975.41 3577.11 16682.76 208
TranMVSNet+NR-MVSNet70.36 12570.10 12271.17 19478.64 15542.97 29976.53 17781.16 12766.95 668.53 14785.42 13651.61 9683.07 15252.32 21769.70 26787.46 47
TR-MVS66.59 21365.07 21871.17 19479.18 14049.63 22473.48 24175.20 23352.95 24267.90 15880.33 23739.81 23283.68 14143.20 30173.56 20580.20 255
CDS-MVSNet66.80 20765.37 21371.10 19678.98 14553.13 16573.27 24471.07 27552.15 25164.72 22680.23 23943.56 19377.10 26845.48 28178.88 13783.05 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_BlendedMVS68.56 16967.72 16171.07 19777.03 21350.57 20474.50 22281.52 10853.66 23864.22 23679.72 24849.13 12482.87 15955.82 18673.92 19779.77 266
GA-MVS65.53 22463.70 23171.02 19870.87 31448.10 24470.48 28474.40 24456.69 16964.70 22776.77 29833.66 29981.10 19855.42 19470.32 25283.87 174
RPMNet61.53 27258.42 28970.86 19969.96 32952.07 18665.31 32981.36 11543.20 35459.36 29770.15 36235.37 27885.47 10536.42 34764.65 31375.06 319
TAPA-MVS59.36 1066.60 21165.20 21770.81 20076.63 22148.75 23676.52 17880.04 14650.64 27265.24 21684.93 13939.15 24078.54 24636.77 34076.88 16985.14 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何170.76 20185.66 4161.13 3066.43 31344.68 33970.29 11686.64 9741.29 21875.23 29249.72 24081.75 10375.93 310
XVG-ACMP-BASELINE64.36 24062.23 25170.74 20272.35 29052.45 18170.80 28078.45 17953.84 23559.87 29081.10 22116.24 39279.32 23155.64 19271.76 23280.47 250
PLCcopyleft56.13 1465.09 23163.21 24070.72 20381.04 10354.87 13778.57 12777.47 19648.51 29955.71 32981.89 20633.71 29779.71 22441.66 31470.37 24977.58 290
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
c3_l68.33 17367.56 16470.62 20470.87 31446.21 26474.47 22378.80 16656.22 18566.19 19478.53 27151.88 9081.40 19062.08 14169.04 27784.25 160
K. test v360.47 28057.11 29870.56 20573.74 26848.22 24375.10 20962.55 34158.27 14553.62 35476.31 30927.81 35081.59 18747.42 25839.18 39981.88 225
cl2267.47 19166.45 19170.54 20669.85 33246.49 26073.85 23777.35 20055.07 21365.51 20777.92 27847.64 14281.10 19861.58 14969.32 27184.01 168
MVS67.37 19266.33 19870.51 20775.46 24050.94 19673.95 23281.85 10341.57 36462.54 26078.57 27047.98 13585.47 10552.97 21482.05 9675.14 318
miper_ehance_all_eth68.03 17967.24 18170.40 20870.54 31846.21 26473.98 23078.68 17055.07 21366.05 19677.80 28252.16 8781.31 19361.53 15069.32 27183.67 184
MVP-Stereo65.41 22663.80 22970.22 20977.62 19755.53 12776.30 18178.53 17450.59 27356.47 32678.65 26739.84 23182.68 16644.10 29172.12 23072.44 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EG-PatchMatch MVS64.71 23462.87 24370.22 20977.68 19053.48 15777.99 13978.82 16453.37 24056.03 32877.41 29024.75 37384.04 13346.37 26973.42 20973.14 338
SixPastTwentyTwo61.65 27158.80 28670.20 21175.80 23347.22 25575.59 19769.68 28654.61 22254.11 34879.26 25927.07 35782.96 15443.27 29949.79 38480.41 252
miper_enhance_ethall67.11 20066.09 20470.17 21269.21 34045.98 26672.85 24978.41 18251.38 26165.65 20575.98 31451.17 10181.25 19460.82 15369.32 27183.29 195
ACMH55.70 1565.20 23063.57 23370.07 21378.07 17652.01 18979.48 11679.69 14855.75 19456.59 32380.98 22427.12 35680.94 20242.90 30571.58 23577.25 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_040263.25 25261.01 26869.96 21480.00 12354.37 14376.86 17272.02 26954.58 22458.71 30480.79 23135.00 28284.36 12826.41 39664.71 31271.15 365
cl____67.18 19766.26 20269.94 21570.20 32445.74 26873.30 24276.83 20755.10 20865.27 21279.57 25147.39 14980.53 21159.41 16769.22 27583.53 190
DIV-MVS_self_test67.18 19766.26 20269.94 21570.20 32445.74 26873.29 24376.83 20755.10 20865.27 21279.58 25047.38 15080.53 21159.43 16669.22 27583.54 189
lessismore_v069.91 21771.42 30547.80 24750.90 38950.39 37075.56 31827.43 35481.33 19245.91 27334.10 40580.59 249
BH-w/o66.85 20565.83 20769.90 21879.29 13552.46 18074.66 22076.65 21054.51 22664.85 22578.12 27245.59 16982.95 15543.26 30075.54 18474.27 332
baseline263.42 24861.26 26469.89 21972.55 28447.62 25171.54 26768.38 29950.11 27754.82 34075.55 31943.06 19780.96 20148.13 25567.16 29581.11 240
MGCFI-Net72.45 8773.34 7369.81 22077.77 18643.21 29675.84 19481.18 12559.59 12275.45 4286.64 9757.74 2877.94 25363.92 12681.90 9988.30 19
CNLPA65.43 22564.02 22569.68 22178.73 15358.07 8177.82 14570.71 27851.49 25961.57 27483.58 17038.23 25170.82 31243.90 29370.10 25780.16 256
OurMVSNet-221017-061.37 27558.63 28869.61 22272.05 29548.06 24573.93 23472.51 26447.23 31954.74 34180.92 22621.49 38381.24 19548.57 25156.22 36579.53 268
CANet_DTU68.18 17767.71 16369.59 22374.83 24946.24 26378.66 12476.85 20659.60 11963.45 24282.09 20435.25 27977.41 26359.88 16178.76 14185.14 134
mvs_anonymous68.03 17967.51 16869.59 22372.08 29444.57 28271.99 26275.23 23151.67 25467.06 17882.57 18654.68 5377.94 25356.56 18175.71 18286.26 90
F-COLMAP63.05 25560.87 27169.58 22576.99 21553.63 15478.12 13676.16 21347.97 30852.41 35981.61 21227.87 34978.11 25140.07 32066.66 29877.00 300
MSDG61.81 27059.23 28069.55 22672.64 28152.63 17670.45 28575.81 21851.38 26153.70 35176.11 31029.52 33781.08 20037.70 33365.79 30574.93 323
Anonymous20240521166.84 20665.99 20569.40 22780.19 11942.21 30571.11 27671.31 27358.80 13367.90 15886.39 10929.83 33579.65 22549.60 24378.78 14086.33 84
tt080567.77 18667.24 18169.34 22874.87 24840.08 32177.36 15581.37 11455.31 20366.33 19284.65 14537.35 25982.55 17055.65 19172.28 22885.39 126
GBi-Net67.21 19466.55 18969.19 22977.63 19343.33 29377.31 15677.83 19056.62 17365.04 22182.70 18141.85 20980.33 21647.18 26272.76 21983.92 171
test167.21 19466.55 18969.19 22977.63 19343.33 29377.31 15677.83 19056.62 17365.04 22182.70 18141.85 20980.33 21647.18 26272.76 21983.92 171
FMVSNet166.70 20965.87 20669.19 22977.49 20143.33 29377.31 15677.83 19056.45 17864.60 22982.70 18138.08 25380.33 21646.08 27172.31 22783.92 171
UniMVSNet_ETH3D67.60 18967.07 18569.18 23277.39 20442.29 30374.18 22875.59 22260.37 9966.77 18386.06 11937.64 25578.93 24552.16 21973.49 20686.32 86
FIs70.82 11671.43 9268.98 23378.33 16638.14 34076.96 16783.59 6861.02 8567.33 17386.73 9455.07 4781.64 18554.61 20179.22 13187.14 58
LTVRE_ROB55.42 1663.15 25461.23 26568.92 23476.57 22347.80 24759.92 36076.39 21154.35 22858.67 30582.46 19229.44 33981.49 18942.12 30971.14 23977.46 291
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
131464.61 23663.21 24068.80 23571.87 29847.46 25373.95 23278.39 18442.88 35759.97 28876.60 30438.11 25279.39 23054.84 19772.32 22679.55 267
FMVSNet266.93 20466.31 20068.79 23677.63 19342.98 29876.11 18577.47 19656.62 17365.22 21882.17 19941.85 20980.18 22247.05 26572.72 22283.20 197
COLMAP_ROBcopyleft52.97 1761.27 27658.81 28468.64 23774.63 25552.51 17978.42 13073.30 25749.92 28150.96 36481.51 21523.06 37679.40 22931.63 37365.85 30374.01 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CostFormer64.04 24362.51 24768.61 23871.88 29745.77 26771.30 27170.60 27947.55 31364.31 23276.61 30341.63 21279.62 22749.74 23969.00 27880.42 251
FMVSNet366.32 21665.61 21168.46 23976.48 22542.34 30274.98 21277.15 20355.83 19165.04 22181.16 21939.91 22980.14 22347.18 26272.76 21982.90 206
WR-MVS68.47 17068.47 15068.44 24080.20 11839.84 32473.75 23976.07 21664.68 2268.11 15683.63 16850.39 11179.14 23849.78 23769.66 26886.34 82
ECVR-MVScopyleft67.72 18767.51 16868.35 24179.46 13336.29 36374.79 21766.93 30958.72 13467.19 17588.05 6936.10 27281.38 19152.07 22084.25 7287.39 50
D2MVS62.30 26360.29 27468.34 24266.46 36048.42 24165.70 32073.42 25647.71 31158.16 31175.02 32530.51 32877.71 25953.96 20671.68 23478.90 276
VNet69.68 14170.19 11968.16 24379.73 12741.63 31270.53 28377.38 19960.37 9970.69 11286.63 9951.08 10277.09 26953.61 20981.69 10585.75 108
tpm262.07 26660.10 27567.99 24472.79 27943.86 28971.05 27866.85 31043.14 35562.77 25375.39 32338.32 24980.80 20741.69 31368.88 27979.32 270
SDMVSNet68.03 17968.10 15867.84 24577.13 20948.72 23865.32 32879.10 15958.02 15065.08 21982.55 18747.83 13873.40 29963.92 12673.92 19781.41 230
pmmvs461.48 27459.39 27967.76 24671.57 30153.86 14871.42 26865.34 32044.20 34459.46 29677.92 27835.90 27474.71 29443.87 29464.87 31174.71 328
VPA-MVSNet69.02 15769.47 13067.69 24777.42 20341.00 31774.04 22979.68 14960.06 10969.26 13884.81 14151.06 10377.58 26054.44 20274.43 19184.48 155
test250665.33 22864.61 22167.50 24879.46 13334.19 37874.43 22551.92 38458.72 13466.75 18488.05 6925.99 36580.92 20451.94 22284.25 7287.39 50
FC-MVSNet-test69.80 13770.58 11267.46 24977.61 19834.73 37376.05 18883.19 8460.84 8765.88 20286.46 10754.52 5580.76 20952.52 21678.12 14986.91 62
test111167.21 19467.14 18467.42 25079.24 13834.76 37273.89 23665.65 31858.71 13666.96 18087.95 7236.09 27380.53 21152.03 22183.79 7786.97 61
ab-mvs66.65 21066.42 19467.37 25176.17 22941.73 30970.41 28676.14 21553.99 23365.98 19783.51 17149.48 11876.24 28748.60 25073.46 20884.14 164
IterMVS62.79 25761.27 26367.35 25269.37 33852.04 18871.17 27368.24 30152.63 24759.82 29176.91 29637.32 26072.36 30352.80 21563.19 32777.66 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS_H67.02 20266.92 18667.33 25377.95 18137.75 34477.57 14982.11 10062.03 7362.65 25782.48 19150.57 10979.46 22842.91 30464.01 31884.79 148
PEN-MVS66.60 21166.45 19167.04 25477.11 21136.56 35777.03 16680.42 14162.95 5062.51 26284.03 15946.69 16079.07 23944.22 28763.08 32885.51 116
SCA60.49 27958.38 29066.80 25574.14 26648.06 24563.35 34163.23 33749.13 29159.33 30072.10 34537.45 25774.27 29744.17 28862.57 33178.05 283
thres40063.31 24962.18 25266.72 25676.85 21639.62 32771.96 26469.44 29156.63 17162.61 25879.83 24437.18 26179.17 23431.84 36973.25 21281.36 233
CP-MVSNet66.49 21466.41 19566.72 25677.67 19136.33 36076.83 17379.52 15362.45 6362.54 26083.47 17346.32 16278.37 24745.47 28263.43 32585.45 121
PS-CasMVS66.42 21566.32 19966.70 25877.60 19936.30 36276.94 16879.61 15162.36 6562.43 26483.66 16745.69 16678.37 24745.35 28463.26 32685.42 124
MonoMVSNet64.15 24163.31 23866.69 25970.51 31944.12 28774.47 22374.21 24957.81 15763.03 24976.62 30138.33 24877.31 26554.22 20360.59 34878.64 277
reproduce_monomvs62.56 25861.20 26666.62 26070.62 31744.30 28470.13 28973.13 26054.78 21961.13 27876.37 30825.63 36875.63 29058.75 16960.29 34979.93 260
HY-MVS56.14 1364.55 23763.89 22666.55 26174.73 25241.02 31469.96 29174.43 24349.29 28961.66 27280.92 22647.43 14876.68 28044.91 28671.69 23381.94 223
testing9164.46 23863.80 22966.47 26278.43 16140.06 32267.63 30769.59 28859.06 12963.18 24678.05 27434.05 29176.99 27148.30 25375.87 17982.37 216
thres600view763.30 25062.27 25066.41 26377.18 20838.87 33372.35 25769.11 29556.98 16662.37 26580.96 22537.01 26779.00 24331.43 37673.05 21681.36 233
testing9964.05 24263.29 23966.34 26478.17 17339.76 32667.33 31268.00 30258.60 13863.03 24978.10 27332.57 31876.94 27348.22 25475.58 18382.34 217
DTE-MVSNet65.58 22365.34 21466.31 26576.06 23134.79 37076.43 17979.38 15662.55 6161.66 27283.83 16445.60 16879.15 23741.64 31660.88 34385.00 140
pmmvs-eth3d58.81 29356.31 30866.30 26667.61 35152.42 18272.30 25864.76 32543.55 35054.94 33974.19 33228.95 34172.60 30243.31 29857.21 36073.88 336
pmmvs663.69 24662.82 24566.27 26770.63 31639.27 33173.13 24575.47 22652.69 24659.75 29482.30 19539.71 23377.03 27047.40 25964.35 31782.53 211
tfpn200view963.18 25362.18 25266.21 26876.85 21639.62 32771.96 26469.44 29156.63 17162.61 25879.83 24437.18 26179.17 23431.84 36973.25 21279.83 263
patch_mono-269.85 13571.09 10266.16 26979.11 14354.80 13871.97 26374.31 24653.50 23970.90 11184.17 15557.63 3163.31 35266.17 10482.02 9780.38 253
Patchmatch-RL test58.16 29755.49 31466.15 27067.92 35048.89 23560.66 35851.07 38847.86 31059.36 29762.71 39234.02 29372.27 30556.41 18259.40 35277.30 294
tpm cat159.25 29156.95 30166.15 27072.19 29346.96 25768.09 30465.76 31740.03 37457.81 31470.56 35738.32 24974.51 29538.26 33161.50 34077.00 300
ppachtmachnet_test58.06 29955.38 31566.10 27269.51 33548.99 23268.01 30566.13 31644.50 34154.05 34970.74 35632.09 32272.34 30436.68 34356.71 36476.99 302
pm-mvs165.24 22964.97 21966.04 27372.38 28939.40 33072.62 25275.63 22155.53 19962.35 26683.18 17747.45 14776.47 28449.06 24766.54 29982.24 218
CR-MVSNet59.91 28457.90 29665.96 27469.96 32952.07 18665.31 32963.15 33842.48 35959.36 29774.84 32635.83 27570.75 31345.50 28064.65 31375.06 319
1112_ss64.00 24463.36 23665.93 27579.28 13642.58 30171.35 26972.36 26646.41 32560.55 28277.89 28046.27 16473.28 30046.18 27069.97 25981.92 224
thres100view90063.28 25162.41 24965.89 27677.31 20638.66 33572.65 25069.11 29557.07 16462.45 26381.03 22337.01 26779.17 23431.84 36973.25 21279.83 263
TransMVSNet (Re)64.72 23364.33 22365.87 27775.22 24338.56 33674.66 22075.08 23858.90 13261.79 27082.63 18451.18 10078.07 25243.63 29755.87 36680.99 244
VPNet67.52 19068.11 15765.74 27879.18 14036.80 35572.17 26072.83 26262.04 7267.79 16685.83 12748.88 12876.60 28151.30 22872.97 21783.81 176
OpenMVS_ROBcopyleft52.78 1860.03 28358.14 29365.69 27970.47 32044.82 27775.33 20170.86 27745.04 33656.06 32776.00 31126.89 36079.65 22535.36 35267.29 29372.60 343
testing1162.81 25661.90 25565.54 28078.38 16240.76 31967.59 30966.78 31155.48 20060.13 28477.11 29231.67 32476.79 27645.53 27974.45 19079.06 272
Baseline_NR-MVSNet67.05 20167.56 16465.50 28175.65 23537.70 34675.42 20074.65 24259.90 11268.14 15583.15 17849.12 12677.20 26752.23 21869.78 26481.60 227
miper_lstm_enhance62.03 26760.88 27065.49 28266.71 35746.25 26256.29 37875.70 22050.68 27061.27 27675.48 32140.21 22768.03 32956.31 18365.25 30882.18 219
IterMVS-SCA-FT62.49 25961.52 25965.40 28371.99 29650.80 20171.15 27569.63 28745.71 33360.61 28177.93 27737.45 25765.99 34455.67 19063.50 32479.42 269
thres20062.20 26561.16 26765.34 28475.38 24239.99 32369.60 29469.29 29355.64 19861.87 26976.99 29437.07 26678.96 24431.28 37773.28 21177.06 298
MS-PatchMatch62.42 26161.46 26065.31 28575.21 24452.10 18572.05 26174.05 25146.41 32557.42 31874.36 33034.35 28977.57 26145.62 27773.67 20166.26 384
testing22262.29 26461.31 26265.25 28677.87 18238.53 33768.34 30266.31 31556.37 18063.15 24877.58 28828.47 34576.18 28937.04 33876.65 17381.05 243
ambc65.13 28763.72 37437.07 35247.66 39978.78 16754.37 34771.42 35111.24 40580.94 20245.64 27653.85 37377.38 293
tfpnnormal62.47 26061.63 25864.99 28874.81 25039.01 33271.22 27273.72 25455.22 20760.21 28380.09 24241.26 22076.98 27230.02 38268.09 28778.97 275
testdata64.66 28981.52 9152.93 16865.29 32146.09 32873.88 6887.46 7938.08 25366.26 34353.31 21278.48 14574.78 326
PatchmatchNetpermissive59.84 28558.24 29164.65 29073.05 27546.70 25969.42 29662.18 34747.55 31358.88 30371.96 34734.49 28769.16 32242.99 30363.60 32278.07 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sd_testset64.46 23864.45 22264.51 29177.13 20942.25 30462.67 34472.11 26858.02 15065.08 21982.55 18741.22 22169.88 32047.32 26073.92 19781.41 230
AllTest57.08 30554.65 31964.39 29271.44 30349.03 22969.92 29267.30 30445.97 33047.16 37979.77 24617.47 38667.56 33433.65 35759.16 35376.57 304
TestCases64.39 29271.44 30349.03 22967.30 30445.97 33047.16 37979.77 24617.47 38667.56 33433.65 35759.16 35376.57 304
mmtdpeth60.40 28159.12 28264.27 29469.59 33448.99 23270.67 28170.06 28354.96 21662.78 25273.26 33927.00 35867.66 33158.44 17245.29 39176.16 308
Test_1112_low_res62.32 26261.77 25664.00 29579.08 14439.53 32968.17 30370.17 28143.25 35359.03 30279.90 24344.08 18871.24 31143.79 29568.42 28581.25 236
baseline163.81 24563.87 22863.62 29676.29 22736.36 35871.78 26667.29 30656.05 18864.23 23582.95 17947.11 15374.41 29647.30 26161.85 33780.10 258
LCM-MVSNet-Re61.88 26961.35 26163.46 29774.58 25631.48 39161.42 35158.14 36258.71 13653.02 35879.55 25243.07 19676.80 27545.69 27577.96 15182.11 222
CMPMVSbinary42.80 2157.81 30155.97 31063.32 29860.98 38847.38 25464.66 33469.50 29032.06 38846.83 38177.80 28229.50 33871.36 31048.68 24973.75 20071.21 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CL-MVSNet_self_test61.53 27260.94 26963.30 29968.95 34236.93 35467.60 30872.80 26355.67 19659.95 28976.63 30045.01 18072.22 30639.74 32462.09 33680.74 248
JIA-IIPM51.56 34147.68 35563.21 30064.61 36950.73 20247.71 39858.77 36042.90 35648.46 37651.72 40224.97 37170.24 31936.06 34953.89 37268.64 380
Vis-MVSNet (Re-imp)63.69 24663.88 22763.14 30174.75 25131.04 39271.16 27463.64 33456.32 18159.80 29284.99 13844.51 18475.46 29139.12 32680.62 10982.92 204
MDA-MVSNet-bldmvs53.87 33050.81 34263.05 30266.25 36148.58 23956.93 37663.82 33248.09 30641.22 39470.48 36030.34 33068.00 33034.24 35545.92 39072.57 344
tpmvs58.47 29456.95 30163.03 30370.20 32441.21 31367.90 30667.23 30749.62 28454.73 34270.84 35534.14 29076.24 28736.64 34461.29 34171.64 357
USDC56.35 31354.24 32662.69 30464.74 36840.31 32065.05 33173.83 25343.93 34847.58 37777.71 28615.36 39575.05 29338.19 33261.81 33872.70 342
our_test_356.49 31054.42 32262.68 30569.51 33545.48 27366.08 31761.49 35044.11 34750.73 36869.60 36733.05 30468.15 32638.38 33056.86 36174.40 330
GG-mvs-BLEND62.34 30671.36 30737.04 35369.20 29857.33 36854.73 34265.48 38630.37 32977.82 25634.82 35374.93 18772.17 352
gg-mvs-nofinetune57.86 30056.43 30762.18 30772.62 28235.35 36866.57 31356.33 37250.65 27157.64 31557.10 39830.65 32776.36 28537.38 33578.88 13774.82 325
ITE_SJBPF62.09 30866.16 36244.55 28364.32 32847.36 31655.31 33480.34 23619.27 38562.68 35536.29 34862.39 33379.04 273
EPNet_dtu61.90 26861.97 25461.68 30972.89 27839.78 32575.85 19365.62 31955.09 21054.56 34479.36 25737.59 25667.02 33839.80 32376.95 16878.25 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement53.44 33450.72 34361.60 31064.31 37146.96 25770.89 27965.27 32241.78 36044.61 38877.98 27511.52 40466.36 34228.57 38851.59 37871.49 360
ETVMVS59.51 29058.81 28461.58 31177.46 20234.87 36964.94 33359.35 35754.06 23261.08 27976.67 29929.54 33671.87 30832.16 36574.07 19578.01 287
PVSNet50.76 1958.40 29557.39 29761.42 31275.53 23944.04 28861.43 35063.45 33547.04 32156.91 32073.61 33627.00 35864.76 34839.12 32672.40 22475.47 316
TinyColmap54.14 32751.72 33861.40 31366.84 35641.97 30666.52 31468.51 29844.81 33742.69 39375.77 31611.66 40272.94 30131.96 36756.77 36369.27 378
UWE-MVS60.18 28259.78 27661.39 31477.67 19133.92 38169.04 30063.82 33248.56 29764.27 23377.64 28727.20 35570.40 31733.56 36076.24 17579.83 263
PatchMatch-RL56.25 31454.55 32161.32 31577.06 21256.07 11265.57 32254.10 38144.13 34653.49 35771.27 35425.20 37066.78 33936.52 34663.66 32161.12 388
mvs5depth55.64 31953.81 33061.11 31659.39 39340.98 31865.89 31868.28 30050.21 27658.11 31275.42 32217.03 38867.63 33343.79 29546.21 38874.73 327
CVMVSNet59.63 28859.14 28161.08 31774.47 25838.84 33475.20 20568.74 29731.15 39058.24 31076.51 30532.39 32068.58 32549.77 23865.84 30475.81 311
RPSCF55.80 31854.22 32760.53 31865.13 36742.91 30064.30 33657.62 36536.84 38158.05 31382.28 19628.01 34856.24 38537.14 33758.61 35582.44 215
WBMVS60.54 27860.61 27260.34 31978.00 17935.95 36564.55 33564.89 32349.63 28363.39 24378.70 26433.85 29667.65 33242.10 31070.35 25177.43 292
UBG59.62 28959.53 27859.89 32078.12 17435.92 36664.11 33960.81 35449.45 28661.34 27575.55 31933.05 30467.39 33638.68 32874.62 18876.35 307
WB-MVSnew59.66 28759.69 27759.56 32175.19 24535.78 36769.34 29764.28 32946.88 32261.76 27175.79 31540.61 22565.20 34732.16 36571.21 23877.70 288
KD-MVS_2432*160053.45 33251.50 34059.30 32262.82 37637.14 35055.33 37971.79 27147.34 31755.09 33770.52 35821.91 38070.45 31535.72 35042.97 39470.31 370
miper_refine_blended53.45 33251.50 34059.30 32262.82 37637.14 35055.33 37971.79 27147.34 31755.09 33770.52 35821.91 38070.45 31535.72 35042.97 39470.31 370
Patchmtry57.16 30456.47 30659.23 32469.17 34134.58 37462.98 34263.15 33844.53 34056.83 32174.84 32635.83 27568.71 32440.03 32160.91 34274.39 331
KD-MVS_self_test55.22 32353.89 32959.21 32557.80 39727.47 40357.75 37174.32 24547.38 31550.90 36570.00 36328.45 34670.30 31840.44 31957.92 35779.87 262
EU-MVSNet55.61 32054.41 32359.19 32665.41 36633.42 38372.44 25671.91 27028.81 39251.27 36273.87 33424.76 37269.08 32343.04 30258.20 35675.06 319
ADS-MVSNet251.33 34348.76 35059.07 32766.02 36444.60 28150.90 39259.76 35636.90 37950.74 36666.18 38426.38 36163.11 35327.17 39254.76 36969.50 376
pmmvs556.47 31155.68 31358.86 32861.41 38436.71 35666.37 31562.75 34040.38 37153.70 35176.62 30134.56 28567.05 33740.02 32265.27 30772.83 341
PM-MVS52.33 33850.19 34658.75 32962.10 38145.14 27665.75 31940.38 40943.60 34953.52 35572.65 3409.16 41065.87 34550.41 23454.18 37165.24 386
FMVSNet555.86 31754.93 31758.66 33071.05 31236.35 35964.18 33862.48 34246.76 32350.66 36974.73 32825.80 36664.04 35033.11 36165.57 30675.59 314
testing356.54 30955.92 31158.41 33177.52 20027.93 40169.72 29356.36 37154.75 22158.63 30777.80 28220.88 38471.75 30925.31 39862.25 33475.53 315
test_vis1_n_192058.86 29259.06 28358.25 33263.76 37243.14 29767.49 31066.36 31440.22 37265.89 20171.95 34831.04 32559.75 36659.94 16064.90 31071.85 355
test-LLR58.15 29858.13 29458.22 33368.57 34444.80 27865.46 32557.92 36350.08 27855.44 33269.82 36432.62 31557.44 37749.66 24173.62 20272.41 348
test-mter56.42 31255.82 31258.22 33368.57 34444.80 27865.46 32557.92 36339.94 37555.44 33269.82 36421.92 37957.44 37749.66 24173.62 20272.41 348
MIMVSNet57.35 30257.07 29958.22 33374.21 26537.18 34962.46 34560.88 35348.88 29455.29 33575.99 31331.68 32362.04 35731.87 36872.35 22575.43 317
Anonymous2024052155.30 32154.41 32357.96 33660.92 39041.73 30971.09 27771.06 27641.18 36548.65 37573.31 33716.93 38959.25 36842.54 30664.01 31872.90 340
WTY-MVS59.75 28660.39 27357.85 33772.32 29137.83 34361.05 35664.18 33045.95 33261.91 26879.11 26147.01 15760.88 36042.50 30769.49 27074.83 324
MIMVSNet155.17 32454.31 32557.77 33870.03 32832.01 38965.68 32164.81 32449.19 29046.75 38276.00 31125.53 36964.04 35028.65 38762.13 33577.26 296
XXY-MVS60.68 27761.67 25757.70 33970.43 32138.45 33864.19 33766.47 31248.05 30763.22 24480.86 22849.28 12160.47 36145.25 28567.28 29474.19 333
test_cas_vis1_n_192056.91 30656.71 30457.51 34059.13 39445.40 27463.58 34061.29 35136.24 38267.14 17771.85 34929.89 33456.69 38157.65 17563.58 32370.46 369
tpmrst58.24 29658.70 28756.84 34166.97 35434.32 37669.57 29561.14 35247.17 32058.58 30871.60 35041.28 21960.41 36249.20 24562.84 32975.78 312
dmvs_re56.77 30856.83 30356.61 34269.23 33941.02 31458.37 36564.18 33050.59 27357.45 31771.42 35135.54 27758.94 37137.23 33667.45 29269.87 374
TESTMET0.1,155.28 32254.90 31856.42 34366.56 35843.67 29165.46 32556.27 37339.18 37753.83 35067.44 37624.21 37455.46 38848.04 25673.11 21570.13 372
PMMVS53.96 32853.26 33456.04 34462.60 37950.92 19861.17 35456.09 37432.81 38753.51 35666.84 38134.04 29259.93 36544.14 29068.18 28657.27 396
YYNet150.73 34548.96 34756.03 34561.10 38641.78 30851.94 38956.44 37040.94 36844.84 38667.80 37430.08 33255.08 39036.77 34050.71 38071.22 363
MDA-MVSNet_test_wron50.71 34648.95 34856.00 34661.17 38541.84 30751.90 39056.45 36940.96 36744.79 38767.84 37330.04 33355.07 39136.71 34250.69 38171.11 366
myMVS_eth3d54.86 32654.61 32055.61 34774.69 25327.31 40465.52 32357.49 36650.97 26856.52 32472.18 34321.87 38268.09 32727.70 39064.59 31571.44 361
Syy-MVS56.00 31656.23 30955.32 34874.69 25326.44 40765.52 32357.49 36650.97 26856.52 32472.18 34339.89 23068.09 32724.20 39964.59 31571.44 361
UnsupCasMVSNet_eth53.16 33752.47 33555.23 34959.45 39233.39 38459.43 36269.13 29445.98 32950.35 37172.32 34229.30 34058.26 37542.02 31244.30 39274.05 334
sss56.17 31556.57 30554.96 35066.93 35536.32 36157.94 36861.69 34941.67 36258.64 30675.32 32438.72 24456.25 38442.04 31166.19 30272.31 351
tpm57.34 30358.16 29254.86 35171.80 29934.77 37167.47 31156.04 37548.20 30460.10 28576.92 29537.17 26353.41 39440.76 31865.01 30976.40 306
EPMVS53.96 32853.69 33154.79 35266.12 36331.96 39062.34 34749.05 39244.42 34355.54 33071.33 35330.22 33156.70 38041.65 31562.54 33275.71 313
Anonymous2023120655.10 32555.30 31654.48 35369.81 33333.94 38062.91 34362.13 34841.08 36655.18 33675.65 31732.75 31256.59 38330.32 38167.86 28872.91 339
EGC-MVSNET42.47 36338.48 37154.46 35474.33 26248.73 23770.33 28751.10 3870.03 4230.18 42467.78 37513.28 39866.49 34118.91 40650.36 38248.15 403
test_fmvs1_n51.37 34250.35 34554.42 35552.85 40137.71 34561.16 35551.93 38328.15 39463.81 23969.73 36613.72 39653.95 39251.16 22960.65 34671.59 358
pmmvs344.92 35841.95 36553.86 35652.58 40343.55 29262.11 34846.90 40126.05 39940.63 39560.19 39411.08 40757.91 37631.83 37246.15 38960.11 389
test_fmvs151.32 34450.48 34453.81 35753.57 39937.51 34760.63 35951.16 38628.02 39663.62 24069.23 36916.41 39153.93 39351.01 23060.70 34569.99 373
UnsupCasMVSNet_bld50.07 34848.87 34953.66 35860.97 38933.67 38257.62 37264.56 32739.47 37647.38 37864.02 39027.47 35259.32 36734.69 35443.68 39367.98 382
LCM-MVSNet40.30 36835.88 37453.57 35942.24 41429.15 39645.21 40460.53 35522.23 40728.02 40950.98 4053.72 42061.78 35831.22 37838.76 40069.78 375
test_vis1_n49.89 34948.69 35153.50 36053.97 39837.38 34861.53 34947.33 39928.54 39359.62 29567.10 38013.52 39752.27 39749.07 24657.52 35870.84 367
mamv456.85 30758.00 29553.43 36172.46 28854.47 14057.56 37354.74 37638.81 37857.42 31879.45 25547.57 14438.70 41360.88 15253.07 37467.11 383
test20.0353.87 33054.02 32853.41 36261.47 38328.11 40061.30 35259.21 35851.34 26352.09 36077.43 28933.29 30358.55 37329.76 38360.27 35073.58 337
ttmdpeth45.56 35642.95 36153.39 36352.33 40429.15 39657.77 36948.20 39631.81 38949.86 37377.21 2918.69 41159.16 36927.31 39133.40 40671.84 356
ANet_high41.38 36637.47 37353.11 36439.73 41924.45 41256.94 37569.69 28547.65 31226.04 41152.32 40112.44 40062.38 35621.80 40310.61 42072.49 345
PVSNet_043.31 2047.46 35545.64 35852.92 36567.60 35244.65 28054.06 38454.64 37741.59 36346.15 38458.75 39530.99 32658.66 37232.18 36424.81 41055.46 398
dp51.89 34051.60 33952.77 36668.44 34732.45 38862.36 34654.57 37844.16 34549.31 37467.91 37228.87 34356.61 38233.89 35654.89 36869.24 379
MVStest142.65 36239.29 36952.71 36747.26 41134.58 37454.41 38350.84 39123.35 40239.31 40274.08 33312.57 39955.09 38923.32 40028.47 40868.47 381
test0.0.03 153.32 33553.59 33252.50 36862.81 37829.45 39559.51 36154.11 38050.08 27854.40 34674.31 33132.62 31555.92 38630.50 38063.95 32072.15 353
PatchT53.17 33653.44 33352.33 36968.29 34825.34 41158.21 36654.41 37944.46 34254.56 34469.05 37033.32 30260.94 35936.93 33961.76 33970.73 368
test_fmvs248.69 35147.49 35652.29 37048.63 40833.06 38657.76 37048.05 39725.71 40059.76 29369.60 36711.57 40352.23 39849.45 24456.86 36171.58 359
CHOSEN 280x42047.83 35346.36 35752.24 37167.37 35349.78 21938.91 41043.11 40735.00 38443.27 39263.30 39128.95 34149.19 40136.53 34560.80 34457.76 395
Patchmatch-test49.08 35048.28 35251.50 37264.40 37030.85 39345.68 40248.46 39535.60 38346.10 38572.10 34534.47 28846.37 40527.08 39460.65 34677.27 295
ADS-MVSNet48.48 35247.77 35350.63 37366.02 36429.92 39450.90 39250.87 39036.90 37950.74 36666.18 38426.38 36152.47 39627.17 39254.76 36969.50 376
testgi51.90 33952.37 33650.51 37460.39 39123.55 41458.42 36458.15 36149.03 29251.83 36179.21 26022.39 37755.59 38729.24 38662.64 33072.40 350
test_fmvs344.30 35942.55 36249.55 37542.83 41327.15 40653.03 38644.93 40322.03 40853.69 35364.94 3874.21 41849.63 40047.47 25749.82 38371.88 354
MVS-HIRNet45.52 35744.48 35948.65 37668.49 34634.05 37959.41 36344.50 40427.03 39737.96 40450.47 40626.16 36464.10 34926.74 39559.52 35147.82 405
new-patchmatchnet47.56 35447.73 35447.06 37758.81 3959.37 42548.78 39659.21 35843.28 35244.22 38968.66 37125.67 36757.20 37931.57 37549.35 38574.62 329
test_vis1_rt41.35 36739.45 36847.03 37846.65 41237.86 34247.76 39738.65 41023.10 40444.21 39051.22 40411.20 40644.08 40739.27 32553.02 37559.14 391
FPMVS42.18 36441.11 36645.39 37958.03 39641.01 31649.50 39453.81 38230.07 39133.71 40664.03 38811.69 40152.08 39914.01 41055.11 36743.09 407
LF4IMVS42.95 36142.26 36345.04 38048.30 40932.50 38754.80 38148.49 39428.03 39540.51 39670.16 3619.24 40943.89 40831.63 37349.18 38658.72 392
PMVScopyleft28.69 2236.22 37333.29 37845.02 38136.82 42135.98 36454.68 38248.74 39326.31 39821.02 41451.61 4032.88 42360.10 3649.99 41947.58 38738.99 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dmvs_testset50.16 34751.90 33744.94 38266.49 35911.78 42261.01 35751.50 38551.17 26650.30 37267.44 37639.28 23760.29 36322.38 40257.49 35962.76 387
APD_test137.39 37234.94 37544.72 38348.88 40733.19 38552.95 38744.00 40619.49 40927.28 41058.59 3963.18 42252.84 39518.92 40541.17 39748.14 404
Gipumacopyleft34.77 37431.91 37943.33 38462.05 38237.87 34120.39 41567.03 30823.23 40318.41 41625.84 4164.24 41762.73 35414.71 40951.32 37929.38 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test139.38 36938.16 37243.02 38549.05 40634.28 37744.16 40625.94 42022.74 40646.57 38362.21 39323.85 37541.16 41233.01 36235.91 40253.63 399
WB-MVS43.26 36043.41 36042.83 38663.32 37510.32 42458.17 36745.20 40245.42 33440.44 39767.26 37934.01 29458.98 37011.96 41524.88 40959.20 390
SSC-MVS41.96 36541.99 36441.90 38762.46 3809.28 42657.41 37444.32 40543.38 35138.30 40366.45 38232.67 31458.42 37410.98 41621.91 41257.99 394
DSMNet-mixed39.30 37138.72 37041.03 38851.22 40519.66 41745.53 40331.35 41615.83 41539.80 39967.42 37822.19 37845.13 40622.43 40152.69 37658.31 393
testf131.46 38028.89 38439.16 38941.99 41628.78 39846.45 40037.56 41114.28 41621.10 41248.96 4071.48 42647.11 40313.63 41134.56 40341.60 408
APD_test231.46 38028.89 38439.16 38941.99 41628.78 39846.45 40037.56 41114.28 41621.10 41248.96 4071.48 42647.11 40313.63 41134.56 40341.60 408
mvsany_test332.62 37730.57 38238.77 39136.16 42224.20 41338.10 41120.63 42419.14 41040.36 39857.43 3975.06 41536.63 41629.59 38528.66 40755.49 397
test_vis3_rt32.09 37830.20 38337.76 39235.36 42327.48 40240.60 40928.29 41916.69 41332.52 40740.53 4121.96 42437.40 41533.64 35942.21 39648.39 402
N_pmnet39.35 37040.28 36736.54 39363.76 3721.62 43049.37 3950.76 42934.62 38543.61 39166.38 38326.25 36342.57 40926.02 39751.77 37765.44 385
test_f31.86 37931.05 38034.28 39432.33 42521.86 41532.34 41230.46 41716.02 41439.78 40055.45 3994.80 41632.36 41930.61 37937.66 40148.64 401
new_pmnet34.13 37634.29 37733.64 39552.63 40218.23 41944.43 40533.90 41522.81 40530.89 40853.18 40010.48 40835.72 41720.77 40439.51 39846.98 406
dongtai34.52 37534.94 37533.26 39661.06 38716.00 42152.79 38823.78 42240.71 36939.33 40148.65 41016.91 39048.34 40212.18 41419.05 41435.44 413
MVEpermissive17.77 2321.41 38617.77 39132.34 39734.34 42425.44 41016.11 41624.11 42111.19 41813.22 41831.92 4141.58 42530.95 42010.47 41717.03 41640.62 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS227.40 38325.91 38631.87 39839.46 4206.57 42731.17 41328.52 41823.96 40120.45 41548.94 4094.20 41937.94 41416.51 40719.97 41351.09 400
E-PMN23.77 38422.73 38826.90 39942.02 41520.67 41642.66 40735.70 41317.43 41110.28 42125.05 4176.42 41342.39 41010.28 41814.71 41717.63 416
EMVS22.97 38521.84 38926.36 40040.20 41819.53 41841.95 40834.64 41417.09 4129.73 42222.83 4187.29 41242.22 4119.18 42013.66 41817.32 417
kuosan29.62 38230.82 38126.02 40152.99 40016.22 42051.09 39122.71 42333.91 38633.99 40540.85 41115.89 39333.11 4187.59 42218.37 41528.72 415
test_method19.68 38718.10 39024.41 40213.68 4273.11 42912.06 41842.37 4082.00 42111.97 41936.38 4135.77 41429.35 42115.06 40823.65 41140.76 410
wuyk23d13.32 38912.52 39215.71 40347.54 41026.27 40831.06 4141.98 4284.93 4205.18 4231.94 4230.45 42818.54 4226.81 42312.83 4192.33 420
DeepMVS_CXcopyleft12.03 40417.97 42610.91 42310.60 4277.46 41911.07 42028.36 4153.28 42111.29 4238.01 4219.74 42213.89 418
tmp_tt9.43 39011.14 3934.30 4052.38 4284.40 42813.62 41716.08 4260.39 42215.89 41713.06 41915.80 3945.54 42412.63 41310.46 4212.95 419
test1234.73 3926.30 3950.02 4060.01 4290.01 43156.36 3770.00 4300.01 4240.04 4250.21 4250.01 4290.00 4250.03 4250.00 4230.04 421
testmvs4.52 3936.03 3960.01 4070.01 4290.00 43253.86 3850.00 4300.01 4240.04 4250.27 4240.00 4300.00 4250.04 4240.00 4230.03 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
cdsmvs_eth3d_5k17.50 38823.34 3870.00 4080.00 4310.00 4320.00 41978.63 1710.00 4260.00 42782.18 19749.25 1220.00 4250.00 4260.00 4230.00 423
pcd_1.5k_mvsjas3.92 3945.23 3970.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 42647.05 1540.00 4250.00 4260.00 4230.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
ab-mvs-re6.49 3918.65 3940.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 42777.89 2800.00 4300.00 4250.00 4260.00 4230.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
WAC-MVS27.31 40427.77 389
FOURS186.12 3660.82 3788.18 183.61 6760.87 8681.50 16
PC_three_145255.09 21084.46 489.84 4666.68 589.41 1874.24 4491.38 288.42 16
test_one_060187.58 959.30 6086.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 431
eth-test0.00 431
ZD-MVS86.64 2160.38 4582.70 9357.95 15378.10 2490.06 3956.12 4288.84 2674.05 4787.00 49
RE-MVS-def73.71 6983.49 6759.87 5284.29 4081.36 11558.07 14873.14 8090.07 3743.06 19768.20 8581.76 10184.03 166
IU-MVS87.77 459.15 6385.53 2653.93 23484.64 379.07 1190.87 588.37 18
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 41
test_241102_ONE87.77 458.90 7286.78 1064.20 3185.97 191.34 1566.87 390.78 7
9.1478.75 1583.10 7284.15 4688.26 159.90 11278.57 2390.36 3057.51 3286.86 6877.39 2389.52 21
save fliter86.17 3361.30 2883.98 5079.66 15059.00 130
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
test072687.75 759.07 6787.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 283
test_part287.58 960.47 4283.42 12
sam_mvs134.74 28478.05 283
sam_mvs33.43 301
MTGPAbinary80.97 132
test_post168.67 3013.64 42132.39 32069.49 32144.17 288
test_post3.55 42233.90 29566.52 340
patchmatchnet-post64.03 38834.50 28674.27 297
MTMP86.03 1917.08 425
gm-plane-assit71.40 30641.72 31148.85 29573.31 33782.48 17348.90 248
test9_res75.28 3788.31 3283.81 176
TEST985.58 4361.59 2481.62 8381.26 12255.65 19774.93 4988.81 5953.70 6784.68 123
test_885.40 4660.96 3481.54 8681.18 12555.86 18974.81 5488.80 6153.70 6784.45 127
agg_prior273.09 5587.93 4084.33 157
agg_prior85.04 5059.96 5081.04 13074.68 5784.04 133
test_prior462.51 1482.08 79
test_prior281.75 8160.37 9975.01 4789.06 5556.22 4172.19 6288.96 24
旧先验276.08 18645.32 33576.55 3665.56 34658.75 169
新几何276.12 184
旧先验183.04 7353.15 16367.52 30387.85 7444.08 18880.76 10878.03 286
无先验79.66 11274.30 24748.40 30280.78 20853.62 20879.03 274
原ACMM279.02 119
test22283.14 7158.68 7672.57 25463.45 33541.78 36067.56 17086.12 11637.13 26478.73 14274.98 322
testdata272.18 30746.95 266
segment_acmp54.23 57
testdata172.65 25060.50 94
plane_prior781.41 9455.96 114
plane_prior681.20 10156.24 10945.26 178
plane_prior584.01 5287.21 5868.16 8780.58 11184.65 151
plane_prior486.10 117
plane_prior356.09 11163.92 3669.27 136
plane_prior284.22 4364.52 25
plane_prior181.27 99
plane_prior56.31 10583.58 5663.19 4880.48 114
n20.00 430
nn0.00 430
door-mid47.19 400
test1183.47 71
door47.60 398
HQP5-MVS54.94 134
HQP-NCC80.66 10882.31 7462.10 6867.85 160
ACMP_Plane80.66 10882.31 7462.10 6867.85 160
BP-MVS67.04 98
HQP4-MVS67.85 16086.93 6684.32 158
HQP3-MVS83.90 5780.35 115
HQP2-MVS45.46 172
NP-MVS80.98 10456.05 11385.54 134
MDTV_nov1_ep13_2view25.89 40961.22 35340.10 37351.10 36332.97 30738.49 32978.61 278
MDTV_nov1_ep1357.00 30072.73 28038.26 33965.02 33264.73 32644.74 33855.46 33172.48 34132.61 31770.47 31437.47 33467.75 290
ACMMP++_ref74.07 195
ACMMP++72.16 229
Test By Simon48.33 133