This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1786.83 865.51 1083.81 1090.51 2163.71 1289.23 1881.51 188.44 2788.09 19
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP79.48 1079.31 1079.98 283.01 7262.18 1687.60 985.83 1966.69 778.03 2690.98 1454.26 5090.06 1278.42 1789.02 2387.69 31
Skip Steuart: Steuart Systems R&D Blog.
MSC_two_6792asdad79.95 387.24 1461.04 3185.62 2390.96 179.31 790.65 887.85 25
No_MVS79.95 387.24 1461.04 3185.62 2390.96 179.31 790.65 887.85 25
SMA-MVScopyleft80.28 680.39 779.95 386.60 2361.95 1986.33 1385.75 2162.49 6082.20 1592.28 156.53 3389.70 1579.85 391.48 188.19 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
OPU-MVS79.83 687.54 1160.93 3587.82 789.89 4067.01 190.33 1173.16 4191.15 488.23 14
DeepC-MVS69.38 278.56 1678.14 2079.83 683.60 6361.62 2384.17 4086.85 663.23 4473.84 5590.25 3057.68 2789.96 1374.62 3089.03 2287.89 22
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+66.72 475.84 4374.57 5179.66 882.40 7659.92 4785.83 2186.32 1666.92 567.80 14489.24 4942.03 18389.38 1764.07 10386.50 5389.69 2
DVP-MVS++81.67 182.40 179.47 987.24 1459.15 5988.18 187.15 365.04 1484.26 591.86 667.01 190.84 379.48 491.38 288.42 9
CNVR-MVS79.84 979.97 979.45 1087.90 262.17 1784.37 3485.03 3466.96 377.58 2790.06 3459.47 2089.13 2078.67 1289.73 1687.03 51
NCCC78.58 1578.31 1779.39 1187.51 1262.61 1385.20 2984.42 4266.73 674.67 4689.38 4755.30 4189.18 1974.19 3387.34 4186.38 66
SED-MVS81.56 282.30 279.32 1287.77 458.90 6887.82 786.78 1064.18 3085.97 191.84 866.87 390.83 578.63 1590.87 588.23 14
ZNCC-MVS78.82 1278.67 1579.30 1386.43 2862.05 1886.62 1186.01 1863.32 4175.08 3790.47 2453.96 5488.68 2576.48 2389.63 2087.16 49
DPE-MVScopyleft80.56 580.98 579.29 1487.27 1360.56 4185.71 2586.42 1463.28 4283.27 1391.83 1064.96 790.47 1076.41 2489.67 1886.84 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_SECOND79.19 1587.82 359.11 6287.85 587.15 390.84 378.66 1390.61 1187.62 35
ACMMPR77.71 2377.23 2679.16 1686.75 1862.93 786.29 1484.24 4562.82 5373.55 5890.56 2049.80 9688.24 3174.02 3587.03 4386.32 74
region2R77.67 2577.18 2779.15 1786.76 1762.95 686.29 1484.16 4762.81 5573.30 6090.58 1949.90 9488.21 3273.78 3787.03 4386.29 77
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1884.92 5660.32 4483.03 5585.33 2762.86 5280.17 1790.03 3661.76 1488.95 2274.21 3288.67 2688.12 18
DeepC-MVS_fast68.24 377.25 2876.63 3179.12 1986.15 3460.86 3684.71 3184.85 3861.98 7273.06 6788.88 5353.72 5789.06 2168.27 6588.04 3687.42 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS78.01 2277.65 2379.10 2086.71 1962.81 886.29 1484.32 4462.82 5373.96 5390.50 2253.20 6388.35 2974.02 3587.05 4286.13 80
HPM-MVS++copyleft79.88 880.14 879.10 2088.17 164.80 186.59 1283.70 6065.37 1178.78 2290.64 1758.63 2487.24 4979.00 1090.37 1485.26 118
XVS77.17 2976.56 3279.00 2286.32 2962.62 1185.83 2183.92 5164.55 2172.17 7990.01 3847.95 11688.01 3671.55 5286.74 5086.37 68
X-MVStestdata70.21 11067.28 15779.00 2286.32 2962.62 1185.83 2183.92 5164.55 2172.17 796.49 37447.95 11688.01 3671.55 5286.74 5086.37 68
GST-MVS78.14 2077.85 2278.99 2486.05 3861.82 2285.84 2085.21 2963.56 3974.29 5090.03 3652.56 6688.53 2774.79 2988.34 2986.63 63
TSAR-MVS + MP.78.44 1778.28 1878.90 2584.96 5261.41 2684.03 4383.82 5859.34 11579.37 1989.76 4359.84 1687.62 4576.69 2286.74 5087.68 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS76.77 3376.06 3678.88 2686.14 3562.73 982.55 6583.74 5961.71 7472.45 7890.34 2748.48 11288.13 3372.32 4586.85 4885.78 91
APDe-MVS80.16 780.59 678.86 2786.64 2160.02 4588.12 386.42 1462.94 4982.40 1492.12 259.64 1889.76 1478.70 1188.32 3186.79 59
ACMMP_NAP78.77 1478.78 1378.74 2885.44 4561.04 3183.84 4785.16 3062.88 5178.10 2491.26 1352.51 6788.39 2879.34 690.52 1386.78 60
MP-MVScopyleft78.35 1878.26 1978.64 2986.54 2563.47 486.02 1983.55 6463.89 3573.60 5790.60 1854.85 4686.72 6677.20 2088.06 3585.74 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft77.28 2776.85 2878.54 3085.00 5160.81 3882.91 5885.08 3162.57 5873.09 6689.97 3950.90 9087.48 4775.30 2686.85 4887.33 47
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS77.12 3076.68 3078.43 3186.05 3863.18 587.55 1083.45 6762.44 6272.68 7290.50 2248.18 11487.34 4873.59 3985.71 5684.76 133
DVP-MVScopyleft80.84 481.64 378.42 3287.75 759.07 6387.85 585.03 3464.26 2783.82 892.00 364.82 890.75 878.66 1390.61 1185.45 108
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MTAPA76.90 3276.42 3378.35 3386.08 3763.57 274.92 19580.97 12165.13 1375.77 3390.88 1548.63 10986.66 6877.23 1988.17 3384.81 130
mPP-MVS76.54 3475.93 3878.34 3486.47 2663.50 385.74 2482.28 8962.90 5071.77 8290.26 2946.61 13986.55 7271.71 5085.66 5784.97 126
CDPH-MVS76.31 3675.67 4278.22 3585.35 4859.14 6181.31 8584.02 4856.32 16574.05 5188.98 5253.34 6287.92 3969.23 6388.42 2887.59 36
ACMMPcopyleft76.02 4175.33 4478.07 3685.20 4961.91 2085.49 2884.44 4163.04 4769.80 10689.74 4445.43 15287.16 5372.01 4782.87 8185.14 119
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet76.46 3575.93 3878.06 3781.29 9257.53 8382.35 6783.31 7367.78 170.09 9686.34 9354.92 4588.90 2372.68 4484.55 6387.76 30
MP-MVS-pluss78.35 1878.46 1678.03 3884.96 5259.52 5282.93 5785.39 2662.15 6576.41 3191.51 1152.47 6986.78 6580.66 289.64 1987.80 28
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVScopyleft78.02 2178.04 2177.98 3986.44 2760.81 3885.52 2684.36 4360.61 8779.05 2190.30 2855.54 4088.32 3073.48 4087.03 4384.83 129
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS77.70 2477.62 2477.93 4084.47 5961.88 2184.55 3283.87 5660.37 9479.89 1889.38 4754.97 4485.58 9576.12 2584.94 6086.33 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1277.76 4184.52 5858.41 7483.36 7172.93 6954.61 4888.05 3588.12 3486.81 58
SF-MVS78.82 1279.22 1177.60 4282.88 7457.83 7984.99 3088.13 261.86 7379.16 2090.75 1657.96 2587.09 5877.08 2190.18 1587.87 24
MCST-MVS77.48 2677.45 2577.54 4386.67 2058.36 7583.22 5386.93 556.91 15374.91 4188.19 5959.15 2287.68 4473.67 3887.45 4086.57 64
CSCG76.92 3176.75 2977.41 4483.96 6259.60 5082.95 5686.50 1360.78 8575.27 3584.83 12060.76 1586.56 7167.86 7187.87 3986.06 82
PHI-MVS75.87 4275.36 4377.41 4480.62 10555.91 11084.28 3785.78 2056.08 17173.41 5986.58 8850.94 8988.54 2670.79 5589.71 1787.79 29
SR-MVS76.13 4075.70 4177.40 4685.87 4061.20 2985.52 2682.19 9059.99 10375.10 3690.35 2647.66 12086.52 7371.64 5182.99 7684.47 139
TSAR-MVS + GP.74.90 4874.15 5577.17 4782.00 8058.77 7181.80 7778.57 15958.58 12674.32 4984.51 13055.94 3887.22 5067.11 7984.48 6585.52 104
CS-MVS76.25 3875.98 3777.06 4880.15 11455.63 11584.51 3383.90 5363.24 4373.30 6087.27 7455.06 4386.30 8171.78 4984.58 6289.25 4
DPM-MVS75.47 4675.00 4776.88 4981.38 9159.16 5879.94 10085.71 2256.59 16172.46 7686.76 7956.89 3187.86 4166.36 8488.91 2583.64 170
HPM-MVS_fast74.30 5873.46 6376.80 5084.45 6059.04 6583.65 5081.05 11860.15 10070.43 9289.84 4141.09 19885.59 9467.61 7582.90 8085.77 94
test_prior76.69 5184.20 6157.27 8684.88 3786.43 7686.38 66
APD-MVS_3200maxsize74.96 4774.39 5376.67 5282.20 7858.24 7683.67 4983.29 7458.41 12973.71 5690.14 3145.62 14585.99 8569.64 5982.85 8285.78 91
train_agg76.27 3776.15 3576.64 5385.58 4361.59 2481.62 8081.26 11355.86 17374.93 3988.81 5453.70 5884.68 11675.24 2888.33 3083.65 169
SR-MVS-dyc-post74.57 5473.90 5776.58 5483.49 6559.87 4884.29 3581.36 10658.07 13573.14 6490.07 3244.74 15985.84 8968.20 6681.76 9284.03 149
CS-MVS-test75.62 4575.31 4576.56 5580.63 10455.13 12383.88 4685.22 2862.05 6971.49 8686.03 10053.83 5686.36 7967.74 7286.91 4788.19 16
h-mvs3372.71 7171.49 7876.40 5681.99 8159.58 5176.92 15676.74 19760.40 9174.81 4285.95 10445.54 14885.76 9170.41 5770.61 21983.86 157
DP-MVS Recon72.15 8270.73 9276.40 5686.57 2457.99 7881.15 8782.96 8057.03 15066.78 16185.56 11144.50 16288.11 3451.77 20080.23 10883.10 183
ETV-MVS74.46 5673.84 5976.33 5879.27 13055.24 12279.22 11385.00 3664.97 1972.65 7379.46 23353.65 6187.87 4067.45 7782.91 7985.89 88
OPM-MVS74.73 5174.25 5476.19 5980.81 10059.01 6682.60 6483.64 6163.74 3772.52 7587.49 6947.18 13085.88 8869.47 6180.78 9783.66 168
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS74.31 5773.73 6076.06 6081.41 8956.31 9984.22 3884.01 4964.52 2369.27 11486.10 9745.26 15687.21 5168.16 6880.58 10184.65 134
mvsmamba71.15 9369.54 10975.99 6177.61 18253.46 14181.95 7675.11 21957.73 14366.95 15985.96 10337.14 23487.56 4667.94 7075.49 16386.97 52
Effi-MVS+-dtu69.64 12667.53 14675.95 6276.10 21062.29 1580.20 9676.06 20459.83 10865.26 19577.09 26341.56 19184.02 12860.60 13571.09 21581.53 207
EPNet73.09 6772.16 7175.90 6375.95 21256.28 10183.05 5472.39 24966.53 865.27 19287.00 7650.40 9285.47 10062.48 11986.32 5485.94 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator64.47 572.49 7471.39 8175.79 6477.70 17458.99 6780.66 9283.15 7862.24 6465.46 18886.59 8742.38 18185.52 9659.59 14484.72 6182.85 188
LPG-MVS_test72.74 7071.74 7575.76 6580.22 10957.51 8482.55 6583.40 6961.32 7766.67 16587.33 7239.15 21186.59 6967.70 7377.30 14683.19 180
LGP-MVS_train75.76 6580.22 10957.51 8483.40 6961.32 7766.67 16587.33 7239.15 21186.59 6967.70 7377.30 14683.19 180
DROMVSNet75.84 4375.87 4075.74 6778.86 14052.65 15583.73 4886.08 1763.47 4072.77 7187.25 7553.13 6487.93 3871.97 4885.57 5886.66 62
MVS_111021_HR74.02 5973.46 6375.69 6883.01 7260.63 4077.29 14778.40 17061.18 8070.58 9185.97 10254.18 5284.00 12967.52 7682.98 7882.45 194
casdiffmvs_mvgpermissive76.14 3976.30 3475.66 6976.46 20651.83 17379.67 10785.08 3165.02 1775.84 3288.58 5859.42 2185.08 10672.75 4383.93 7090.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS74.76 5074.46 5275.65 7077.84 17152.25 16575.59 17984.17 4663.76 3673.15 6382.79 16159.58 1986.80 6467.24 7886.04 5587.89 22
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+73.31 6572.54 6975.62 7177.87 17053.64 13679.62 10979.61 13961.63 7572.02 8182.61 16656.44 3485.97 8663.99 10679.07 12587.25 48
MAR-MVS71.51 8970.15 10175.60 7281.84 8359.39 5481.38 8482.90 8254.90 20168.08 13578.70 24247.73 11885.51 9751.68 20284.17 6881.88 204
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ACMP63.53 672.30 7771.20 8675.59 7380.28 10757.54 8282.74 6182.84 8460.58 8865.24 19686.18 9539.25 20986.03 8466.95 8276.79 15283.22 178
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP-MVS73.45 6372.80 6775.40 7480.66 10154.94 12482.31 6983.90 5362.10 6667.85 13985.54 11345.46 15086.93 6067.04 8080.35 10584.32 141
PCF-MVS61.88 870.95 9769.49 11175.35 7577.63 17755.71 11276.04 17481.81 9650.30 25069.66 10785.40 11652.51 6784.89 11251.82 19980.24 10785.45 108
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-MVSNAJss72.24 7871.21 8575.31 7678.50 14955.93 10981.63 7982.12 9156.24 16870.02 10085.68 11047.05 13284.34 12265.27 9674.41 16985.67 98
EIA-MVS71.78 8570.60 9375.30 7779.85 11853.54 13977.27 14883.26 7657.92 13966.49 16779.39 23452.07 7586.69 6760.05 13879.14 12485.66 99
CLD-MVS73.33 6472.68 6875.29 7878.82 14253.33 14578.23 12584.79 3961.30 7970.41 9381.04 20152.41 7087.12 5664.61 10282.49 8685.41 112
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final69.82 11868.02 13675.23 7979.38 12752.91 15280.11 9773.96 23654.99 19968.04 13683.59 14829.05 30287.16 5365.41 9577.62 14085.63 101
RRT_MVS69.42 13267.49 14975.21 8078.01 16752.56 15982.23 7378.15 17355.84 17565.65 18485.07 11730.86 28986.83 6361.56 13070.00 23086.24 79
PAPM_NR72.63 7271.80 7475.13 8181.72 8453.42 14379.91 10283.28 7559.14 11766.31 17285.90 10551.86 7786.06 8257.45 15280.62 9985.91 86
EI-MVSNet-Vis-set72.42 7671.59 7674.91 8278.47 15154.02 13277.05 15279.33 14565.03 1671.68 8479.35 23652.75 6584.89 11266.46 8374.23 17085.83 90
MVSFormer71.50 9070.38 9874.88 8378.76 14357.15 9282.79 5978.48 16351.26 24169.49 10983.22 15543.99 16783.24 14266.06 8679.37 11784.23 144
CPTT-MVS72.78 6972.08 7374.87 8484.88 5761.41 2684.15 4177.86 17755.27 18867.51 15088.08 6241.93 18581.85 17469.04 6480.01 10981.35 212
iter_conf0569.40 13367.62 14274.73 8577.84 17151.13 17779.28 11273.71 23954.62 20368.17 13183.59 14828.68 30787.16 5365.74 9276.95 14985.91 86
EPP-MVSNet72.16 8171.31 8474.71 8678.68 14649.70 20282.10 7481.65 9860.40 9165.94 17785.84 10651.74 7986.37 7855.93 16179.55 11688.07 21
原ACMM174.69 8785.39 4759.40 5383.42 6851.47 23770.27 9586.61 8648.61 11086.51 7453.85 18287.96 3778.16 253
ET-MVSNet_ETH3D67.96 16165.72 18874.68 8876.67 20055.62 11775.11 18974.74 22452.91 22160.03 25380.12 21933.68 26482.64 16161.86 12576.34 15585.78 91
MSLP-MVS++73.77 6273.47 6274.66 8983.02 7159.29 5782.30 7281.88 9459.34 11571.59 8586.83 7745.94 14383.65 13565.09 9785.22 5981.06 219
PVSNet_Blended_VisFu71.45 9170.39 9774.65 9082.01 7958.82 7079.93 10180.35 13155.09 19365.82 18382.16 17949.17 10382.64 16160.34 13678.62 13382.50 193
114514_t70.83 9869.56 10874.64 9186.21 3154.63 12982.34 6881.81 9648.22 26863.01 22385.83 10740.92 19987.10 5757.91 15079.79 11082.18 197
Vis-MVSNetpermissive72.18 7971.37 8274.61 9281.29 9255.41 12080.90 8878.28 17260.73 8669.23 11788.09 6144.36 16482.65 16057.68 15181.75 9485.77 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
hse-mvs271.04 9569.86 10474.60 9379.58 12257.12 9473.96 21175.25 21460.40 9174.81 4281.95 18445.54 14882.90 14970.41 5766.83 26783.77 162
test_djsdf69.45 13167.74 13874.58 9474.57 23554.92 12682.79 5978.48 16351.26 24165.41 18983.49 15338.37 21883.24 14266.06 8669.25 24685.56 103
AUN-MVS68.45 15266.41 17474.57 9579.53 12457.08 9573.93 21475.23 21554.44 20966.69 16481.85 18637.10 23682.89 15062.07 12266.84 26683.75 163
casdiffmvspermissive74.80 4974.89 4974.53 9675.59 21850.37 19178.17 12685.06 3362.80 5674.40 4887.86 6657.88 2683.61 13669.46 6282.79 8389.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set71.92 8371.06 8874.52 9777.98 16853.56 13876.62 16079.16 14664.40 2571.18 8778.95 24152.19 7384.66 11865.47 9473.57 17885.32 115
API-MVS72.17 8071.41 8074.45 9881.95 8257.22 8784.03 4380.38 13059.89 10768.40 12682.33 17349.64 9787.83 4251.87 19884.16 6978.30 251
PAPR71.72 8770.82 9174.41 9981.20 9651.17 17679.55 11083.33 7255.81 17766.93 16084.61 12650.95 8886.06 8255.79 16479.20 12286.00 83
baseline74.61 5374.70 5074.34 10075.70 21449.99 19977.54 13984.63 4062.73 5773.98 5287.79 6857.67 2883.82 13269.49 6082.74 8489.20 5
thisisatest053067.92 16265.78 18774.33 10176.29 20751.03 17876.89 15774.25 23253.67 21565.59 18681.76 18835.15 24985.50 9855.94 16072.47 19786.47 65
tttt051767.83 16465.66 18974.33 10176.69 19950.82 18377.86 13173.99 23554.54 20764.64 20682.53 16935.06 25085.50 9855.71 16569.91 23386.67 61
MG-MVS73.96 6073.89 5874.16 10385.65 4249.69 20481.59 8281.29 11261.45 7671.05 8888.11 6051.77 7887.73 4361.05 13283.09 7485.05 123
ACMM61.98 770.80 10069.73 10674.02 10480.59 10658.59 7382.68 6282.02 9355.46 18567.18 15584.39 13238.51 21683.17 14460.65 13476.10 15780.30 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v7n69.01 13967.36 15473.98 10572.51 26352.65 15578.54 12381.30 11160.26 9962.67 22781.62 19043.61 16984.49 11957.01 15468.70 25484.79 131
AdaColmapbinary69.99 11468.66 12573.97 10684.94 5457.83 7982.63 6378.71 15556.28 16764.34 20884.14 13541.57 19087.06 5946.45 24078.88 12677.02 268
v119269.97 11568.68 12473.85 10773.19 24950.94 17977.68 13581.36 10657.51 14568.95 12080.85 20845.28 15585.33 10462.97 11570.37 22385.27 117
FA-MVS(test-final)69.82 11868.48 12773.84 10878.44 15250.04 19775.58 18178.99 14958.16 13367.59 14882.14 18042.66 17685.63 9256.60 15676.19 15685.84 89
v1070.21 11069.02 11973.81 10973.51 24750.92 18178.74 11781.39 10460.05 10266.39 17081.83 18747.58 12285.41 10362.80 11668.86 25285.09 122
QAPM70.05 11268.81 12273.78 11076.54 20453.43 14283.23 5283.48 6552.89 22265.90 17986.29 9441.55 19286.49 7551.01 20578.40 13581.42 208
OMC-MVS71.40 9270.60 9373.78 11076.60 20253.15 14879.74 10679.78 13558.37 13068.75 12186.45 9145.43 15280.60 20262.58 11777.73 13987.58 37
UA-Net73.13 6672.93 6673.76 11283.58 6451.66 17478.75 11677.66 18167.75 272.61 7489.42 4549.82 9583.29 14153.61 18483.14 7386.32 74
v114470.42 10669.31 11473.76 11273.22 24850.64 18677.83 13281.43 10358.58 12669.40 11281.16 19847.53 12385.29 10564.01 10570.64 21785.34 114
VDD-MVS72.50 7372.09 7273.75 11481.58 8549.69 20477.76 13477.63 18263.21 4573.21 6289.02 5142.14 18283.32 14061.72 12682.50 8588.25 13
Fast-Effi-MVS+70.28 10969.12 11873.73 11578.50 14951.50 17575.01 19279.46 14356.16 17068.59 12279.55 23153.97 5384.05 12553.34 18677.53 14285.65 100
canonicalmvs74.67 5274.98 4873.71 11678.94 13950.56 18980.23 9483.87 5660.30 9877.15 2886.56 8959.65 1782.00 17266.01 8882.12 8788.58 8
HyFIR lowres test65.67 20163.01 21873.67 11779.97 11755.65 11469.07 27675.52 21042.68 31863.53 21877.95 25140.43 20081.64 17746.01 24471.91 20683.73 164
jajsoiax68.25 15566.45 17073.66 11875.62 21655.49 11980.82 8978.51 16252.33 22764.33 20984.11 13628.28 30981.81 17663.48 11170.62 21883.67 166
v2v48270.50 10569.45 11373.66 11872.62 26050.03 19877.58 13680.51 12859.90 10469.52 10882.14 18047.53 12384.88 11465.07 9870.17 22786.09 81
cascas65.98 19763.42 21273.64 12077.26 19052.58 15872.26 23977.21 19048.56 26361.21 24674.60 29332.57 28285.82 9050.38 21076.75 15382.52 192
FE-MVS65.91 19863.33 21473.63 12177.36 18851.95 17272.62 23275.81 20553.70 21465.31 19078.96 24028.81 30686.39 7743.93 26373.48 18182.55 190
mvs_tets68.18 15766.36 17673.63 12175.61 21755.35 12180.77 9078.56 16052.48 22664.27 21184.10 13727.45 31581.84 17563.45 11270.56 22083.69 165
GeoE71.01 9670.15 10173.60 12379.57 12352.17 16678.93 11578.12 17458.02 13767.76 14783.87 14252.36 7182.72 15856.90 15575.79 15985.92 85
anonymousdsp67.00 18264.82 19973.57 12470.09 29356.13 10476.35 16577.35 18848.43 26664.99 20280.84 20933.01 27180.34 20764.66 10067.64 26284.23 144
v870.33 10869.28 11573.49 12573.15 25050.22 19378.62 12080.78 12460.79 8466.45 16982.11 18249.35 9984.98 10963.58 11068.71 25385.28 116
Fast-Effi-MVS+-dtu67.37 17165.33 19473.48 12672.94 25557.78 8177.47 14176.88 19357.60 14461.97 23876.85 26739.31 20880.49 20654.72 17470.28 22682.17 199
alignmvs73.86 6173.99 5673.45 12778.20 15950.50 19078.57 12182.43 8759.40 11376.57 2986.71 8356.42 3581.23 18865.84 9081.79 9188.62 6
lupinMVS69.57 12768.28 13373.44 12878.76 14357.15 9276.57 16173.29 24346.19 28969.49 10982.18 17643.99 16779.23 22164.66 10079.37 11783.93 152
jason69.65 12568.39 13273.43 12978.27 15856.88 9677.12 15073.71 23946.53 28669.34 11383.22 15543.37 17179.18 22264.77 9979.20 12284.23 144
jason: jason.
IB-MVS56.42 1265.40 20662.73 22273.40 13074.89 22552.78 15473.09 22675.13 21855.69 18058.48 27473.73 29932.86 27386.32 8050.63 20870.11 22881.10 218
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v192192069.47 13068.17 13473.36 13173.06 25250.10 19677.39 14280.56 12656.58 16268.59 12280.37 21344.72 16084.98 10962.47 12069.82 23585.00 124
v14419269.71 12168.51 12673.33 13273.10 25150.13 19577.54 13980.64 12556.65 15568.57 12480.55 21146.87 13784.96 11162.98 11469.66 24084.89 128
IS-MVSNet71.57 8871.00 8973.27 13378.86 14045.63 25180.22 9578.69 15664.14 3366.46 16887.36 7149.30 10085.60 9350.26 21183.71 7288.59 7
VDDNet71.81 8471.33 8373.26 13482.80 7547.60 23178.74 11775.27 21359.59 11272.94 6889.40 4641.51 19383.91 13058.75 14882.99 7688.26 12
v124069.24 13667.91 13773.25 13573.02 25449.82 20077.21 14980.54 12756.43 16468.34 12880.51 21243.33 17284.99 10762.03 12469.77 23884.95 127
UGNet68.81 14167.39 15273.06 13678.33 15654.47 13079.77 10475.40 21260.45 9063.22 22084.40 13132.71 27880.91 19751.71 20180.56 10383.81 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-RMVSNet68.81 14167.42 15172.97 13780.11 11552.53 16074.26 20676.29 20058.48 12868.38 12784.20 13342.59 17783.83 13146.53 23975.91 15882.56 189
PS-MVSNAJ70.51 10469.70 10772.93 13881.52 8655.79 11174.92 19579.00 14855.04 19869.88 10478.66 24347.05 13282.19 16961.61 12779.58 11480.83 222
XVG-OURS68.76 14467.37 15372.90 13974.32 24157.22 8770.09 26878.81 15255.24 18967.79 14585.81 10936.54 24178.28 23862.04 12375.74 16083.19 180
xiu_mvs_v2_base70.52 10369.75 10572.84 14081.21 9555.63 11575.11 18978.92 15054.92 20069.96 10379.68 22847.00 13682.09 17161.60 12879.37 11780.81 223
nrg03072.96 6873.01 6572.84 14075.41 22150.24 19280.02 9882.89 8358.36 13174.44 4786.73 8158.90 2380.83 19865.84 9074.46 16787.44 40
thisisatest051565.83 19963.50 21172.82 14273.75 24549.50 20771.32 25073.12 24549.39 25663.82 21576.50 27534.95 25284.84 11553.20 18875.49 16384.13 148
XVG-OURS-SEG-HR68.81 14167.47 15072.82 14274.40 23956.87 9770.59 26179.04 14754.77 20266.99 15786.01 10139.57 20678.21 23962.54 11873.33 18483.37 174
OpenMVScopyleft61.03 968.85 14067.56 14372.70 14474.26 24253.99 13381.21 8681.34 11052.70 22362.75 22685.55 11238.86 21484.14 12448.41 22783.01 7579.97 235
Anonymous2024052969.91 11669.02 11972.56 14580.19 11247.65 22977.56 13880.99 12055.45 18669.88 10486.76 7939.24 21082.18 17054.04 17977.10 14887.85 25
V4268.65 14567.35 15572.56 14568.93 30750.18 19472.90 22879.47 14256.92 15269.45 11180.26 21746.29 14182.99 14664.07 10367.82 26084.53 136
dcpmvs_274.55 5575.23 4672.48 14782.34 7753.34 14477.87 13081.46 10257.80 14275.49 3486.81 7862.22 1377.75 24671.09 5482.02 8986.34 70
xiu_mvs_v1_base_debu68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
xiu_mvs_v1_base68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
xiu_mvs_v1_base_debi68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
MVS_Test72.45 7572.46 7072.42 15174.88 22648.50 21976.28 16783.14 7959.40 11372.46 7684.68 12255.66 3981.12 18965.98 8979.66 11387.63 34
LFMVS71.78 8571.59 7672.32 15283.40 6746.38 24079.75 10571.08 25664.18 3072.80 7088.64 5742.58 17883.72 13357.41 15384.49 6486.86 56
ACMH+57.40 1166.12 19664.06 20272.30 15377.79 17352.83 15380.39 9378.03 17557.30 14657.47 28082.55 16827.68 31384.17 12345.54 25069.78 23679.90 236
UniMVSNet (Re)70.63 10270.20 9971.89 15478.55 14845.29 25375.94 17682.92 8163.68 3868.16 13283.59 14853.89 5583.49 13953.97 18071.12 21486.89 55
MVSTER67.16 17865.58 19171.88 15570.37 28949.70 20270.25 26778.45 16651.52 23569.16 11880.37 21338.45 21782.50 16460.19 13771.46 21183.44 173
CHOSEN 1792x268865.08 21162.84 22071.82 15681.49 8856.26 10266.32 28874.20 23340.53 32963.16 22278.65 24441.30 19477.80 24545.80 24674.09 17181.40 209
DP-MVS65.68 20063.66 20971.75 15784.93 5556.87 9780.74 9173.16 24453.06 21959.09 26782.35 17236.79 24085.94 8732.82 32969.96 23272.45 312
Anonymous2023121169.28 13468.47 12971.73 15880.28 10747.18 23579.98 9982.37 8854.61 20467.24 15384.01 13939.43 20782.41 16755.45 16972.83 19285.62 102
EI-MVSNet69.27 13568.44 13171.73 15874.47 23649.39 20975.20 18778.45 16659.60 10969.16 11876.51 27351.29 8282.50 16459.86 14371.45 21283.30 175
eth_miper_zixun_eth67.63 16766.28 18071.67 16071.60 27448.33 22173.68 22077.88 17655.80 17865.91 17878.62 24647.35 12982.88 15159.45 14566.25 27183.81 158
MVS_111021_LR69.50 12968.78 12371.65 16178.38 15359.33 5574.82 19770.11 26358.08 13467.83 14384.68 12241.96 18476.34 26265.62 9377.54 14179.30 245
PAPM67.92 16266.69 16771.63 16278.09 16349.02 21277.09 15181.24 11551.04 24460.91 24783.98 14047.71 11984.99 10740.81 28779.32 12080.90 221
NR-MVSNet69.54 12868.85 12171.59 16378.05 16543.81 26674.20 20780.86 12365.18 1262.76 22584.52 12852.35 7283.59 13750.96 20770.78 21687.37 44
diffmvspermissive70.69 10170.43 9671.46 16469.45 30248.95 21472.93 22778.46 16557.27 14771.69 8383.97 14151.48 8177.92 24370.70 5677.95 13887.53 38
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet71.11 9471.00 8971.44 16579.20 13244.13 26276.02 17582.60 8666.48 968.20 12984.60 12756.82 3282.82 15654.62 17570.43 22187.36 46
DU-MVS70.01 11369.53 11071.44 16578.05 16544.13 26275.01 19281.51 10164.37 2668.20 12984.52 12849.12 10682.82 15654.62 17570.43 22187.37 44
IterMVS-LS69.22 13768.48 12771.43 16774.44 23849.40 20876.23 16877.55 18359.60 10965.85 18281.59 19351.28 8381.58 18059.87 14269.90 23483.30 175
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14868.24 15667.19 16371.40 16870.43 28747.77 22875.76 17877.03 19258.91 11967.36 15180.10 22048.60 11181.89 17360.01 13966.52 27084.53 136
test_yl69.69 12269.13 11671.36 16978.37 15445.74 24774.71 19980.20 13257.91 14070.01 10183.83 14342.44 17982.87 15254.97 17179.72 11185.48 106
DCV-MVSNet69.69 12269.13 11671.36 16978.37 15445.74 24774.71 19980.20 13257.91 14070.01 10183.83 14342.44 17982.87 15254.97 17179.72 11185.48 106
LS3D64.71 21462.50 22471.34 17179.72 12155.71 11279.82 10374.72 22548.50 26556.62 28484.62 12533.59 26682.34 16829.65 34875.23 16575.97 276
TAMVS66.78 18765.27 19571.33 17279.16 13553.67 13573.84 21869.59 26752.32 22865.28 19181.72 18944.49 16377.40 25142.32 27878.66 13282.92 185
BH-untuned68.27 15467.29 15671.21 17379.74 11953.22 14776.06 17277.46 18657.19 14866.10 17481.61 19145.37 15483.50 13845.42 25476.68 15476.91 272
PVSNet_Blended68.59 14667.72 13971.19 17477.03 19450.57 18772.51 23581.52 9951.91 23064.22 21377.77 25949.13 10482.87 15255.82 16279.58 11480.14 233
TranMVSNet+NR-MVSNet70.36 10770.10 10371.17 17578.64 14742.97 27476.53 16281.16 11766.95 468.53 12585.42 11551.61 8083.07 14552.32 19269.70 23987.46 39
TR-MVS66.59 19265.07 19771.17 17579.18 13349.63 20673.48 22175.20 21752.95 22067.90 13780.33 21639.81 20483.68 13443.20 27173.56 17980.20 231
CDS-MVSNet66.80 18665.37 19271.10 17778.98 13853.13 15073.27 22471.07 25752.15 22964.72 20480.23 21843.56 17077.10 25345.48 25278.88 12683.05 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_BlendedMVS68.56 15067.72 13971.07 17877.03 19450.57 18774.50 20381.52 9953.66 21664.22 21379.72 22749.13 10482.87 15255.82 16273.92 17379.77 240
GA-MVS65.53 20363.70 20871.02 17970.87 28248.10 22370.48 26374.40 22856.69 15464.70 20576.77 26833.66 26581.10 19055.42 17070.32 22583.87 156
RPMNet61.53 24558.42 25670.86 18069.96 29652.07 16865.31 29781.36 10643.20 31459.36 26370.15 32135.37 24785.47 10036.42 31464.65 28375.06 285
TAPA-MVS59.36 1066.60 19065.20 19670.81 18176.63 20148.75 21676.52 16380.04 13450.64 24865.24 19684.93 11939.15 21178.54 23536.77 30776.88 15185.14 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何170.76 18285.66 4161.13 3066.43 28844.68 30070.29 9486.64 8441.29 19575.23 26649.72 21581.75 9475.93 277
XVG-ACMP-BASELINE64.36 21862.23 22770.74 18372.35 26552.45 16370.80 26078.45 16653.84 21359.87 25681.10 20016.24 34979.32 22055.64 16871.76 20780.47 226
PLCcopyleft56.13 1465.09 21063.21 21670.72 18481.04 9854.87 12778.57 12177.47 18448.51 26455.71 28981.89 18533.71 26379.71 21341.66 28470.37 22377.58 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
c3_l68.33 15367.56 14370.62 18570.87 28246.21 24374.47 20478.80 15356.22 16966.19 17378.53 24851.88 7681.40 18262.08 12169.04 24984.25 143
K. test v360.47 25257.11 26570.56 18673.74 24648.22 22275.10 19162.55 31258.27 13253.62 31476.31 27627.81 31281.59 17947.42 23139.18 35981.88 204
cl2267.47 17066.45 17070.54 18769.85 29846.49 23973.85 21777.35 18855.07 19665.51 18777.92 25347.64 12181.10 19061.58 12969.32 24384.01 151
MVS67.37 17166.33 17770.51 18875.46 22050.94 17973.95 21281.85 9541.57 32462.54 23178.57 24747.98 11585.47 10052.97 18982.05 8875.14 284
miper_ehance_all_eth68.03 15967.24 16170.40 18970.54 28546.21 24373.98 21078.68 15755.07 19666.05 17577.80 25752.16 7481.31 18561.53 13169.32 24383.67 166
MVP-Stereo65.41 20563.80 20770.22 19077.62 18155.53 11876.30 16678.53 16150.59 24956.47 28678.65 24439.84 20382.68 15944.10 26272.12 20572.44 313
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EG-PatchMatch MVS64.71 21462.87 21970.22 19077.68 17553.48 14077.99 12978.82 15153.37 21856.03 28877.41 26224.75 33284.04 12646.37 24173.42 18373.14 304
SixPastTwentyTwo61.65 24458.80 25370.20 19275.80 21347.22 23475.59 17969.68 26554.61 20454.11 30879.26 23727.07 31882.96 14743.27 26949.79 34680.41 228
miper_enhance_ethall67.11 17966.09 18370.17 19369.21 30445.98 24572.85 22978.41 16951.38 23865.65 18475.98 28151.17 8581.25 18660.82 13369.32 24383.29 177
ACMH55.70 1565.20 20963.57 21070.07 19478.07 16452.01 17179.48 11179.69 13655.75 17956.59 28580.98 20327.12 31780.94 19442.90 27571.58 21077.25 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_040263.25 22861.01 24169.96 19580.00 11654.37 13176.86 15872.02 25154.58 20658.71 27080.79 21035.00 25184.36 12126.41 35764.71 28271.15 328
cl____67.18 17666.26 18169.94 19670.20 29045.74 24773.30 22276.83 19555.10 19165.27 19279.57 23047.39 12780.53 20359.41 14769.22 24783.53 172
DIV-MVS_self_test67.18 17666.26 18169.94 19670.20 29045.74 24773.29 22376.83 19555.10 19165.27 19279.58 22947.38 12880.53 20359.43 14669.22 24783.54 171
lessismore_v069.91 19871.42 27847.80 22650.90 34950.39 33175.56 28427.43 31681.33 18445.91 24534.10 36580.59 225
BH-w/o66.85 18465.83 18669.90 19979.29 12852.46 16274.66 20176.65 19854.51 20864.85 20378.12 24945.59 14782.95 14843.26 27075.54 16274.27 297
baseline263.42 22461.26 23869.89 20072.55 26247.62 23071.54 24768.38 27750.11 25154.82 30075.55 28543.06 17480.96 19348.13 22867.16 26581.11 217
bld_raw_dy_0_6464.87 21263.22 21569.83 20174.79 23053.32 14678.15 12762.02 31651.20 24360.17 25183.12 15924.15 33474.20 27363.08 11372.33 20081.96 201
CNLPA65.43 20464.02 20369.68 20278.73 14558.07 7777.82 13370.71 26051.49 23661.57 24483.58 15138.23 22170.82 28443.90 26470.10 22980.16 232
OurMVSNet-221017-061.37 24858.63 25569.61 20372.05 26948.06 22473.93 21472.51 24847.23 28254.74 30180.92 20521.49 34381.24 18748.57 22656.22 32879.53 242
CANet_DTU68.18 15767.71 14169.59 20474.83 22846.24 24278.66 11976.85 19459.60 10963.45 21982.09 18335.25 24877.41 25059.88 14178.76 13085.14 119
mvs_anonymous68.03 15967.51 14769.59 20472.08 26844.57 26071.99 24275.23 21551.67 23167.06 15682.57 16754.68 4777.94 24256.56 15775.71 16186.26 78
F-COLMAP63.05 23160.87 24469.58 20676.99 19653.63 13778.12 12876.16 20147.97 27252.41 32081.61 19127.87 31178.11 24040.07 29066.66 26877.00 269
MSDG61.81 24359.23 24969.55 20772.64 25952.63 15770.45 26475.81 20551.38 23853.70 31176.11 27729.52 29881.08 19237.70 30265.79 27574.93 289
Anonymous20240521166.84 18565.99 18469.40 20880.19 11242.21 27971.11 25671.31 25558.80 12167.90 13786.39 9229.83 29779.65 21449.60 21878.78 12986.33 72
tt080567.77 16567.24 16169.34 20974.87 22740.08 29377.36 14381.37 10555.31 18766.33 17184.65 12437.35 22982.55 16355.65 16772.28 20385.39 113
GBi-Net67.21 17366.55 16869.19 21077.63 17743.33 26977.31 14477.83 17856.62 15865.04 19982.70 16241.85 18680.33 20847.18 23472.76 19383.92 153
test167.21 17366.55 16869.19 21077.63 17743.33 26977.31 14477.83 17856.62 15865.04 19982.70 16241.85 18680.33 20847.18 23472.76 19383.92 153
FMVSNet166.70 18865.87 18569.19 21077.49 18543.33 26977.31 14477.83 17856.45 16364.60 20782.70 16238.08 22380.33 20846.08 24372.31 20283.92 153
UniMVSNet_ETH3D67.60 16867.07 16569.18 21377.39 18742.29 27874.18 20875.59 20960.37 9466.77 16286.06 9937.64 22578.93 23452.16 19473.49 18086.32 74
FIs70.82 9971.43 7968.98 21478.33 15638.14 30976.96 15483.59 6361.02 8167.33 15286.73 8155.07 4281.64 17754.61 17779.22 12187.14 50
LTVRE_ROB55.42 1663.15 23061.23 23968.92 21576.57 20347.80 22659.92 32276.39 19954.35 21058.67 27182.46 17129.44 30081.49 18142.12 28071.14 21377.46 261
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
131464.61 21663.21 21668.80 21671.87 27247.46 23273.95 21278.39 17142.88 31759.97 25476.60 27238.11 22279.39 21954.84 17372.32 20179.55 241
FMVSNet266.93 18366.31 17968.79 21777.63 17742.98 27376.11 17077.47 18456.62 15865.22 19882.17 17841.85 18680.18 21147.05 23772.72 19683.20 179
COLMAP_ROBcopyleft52.97 1761.27 24958.81 25268.64 21874.63 23352.51 16178.42 12473.30 24249.92 25450.96 32581.51 19423.06 33679.40 21831.63 33765.85 27374.01 300
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CostFormer64.04 21962.51 22368.61 21971.88 27145.77 24671.30 25170.60 26147.55 27664.31 21076.61 27141.63 18979.62 21649.74 21469.00 25080.42 227
FMVSNet366.32 19565.61 19068.46 22076.48 20542.34 27774.98 19477.15 19155.83 17665.04 19981.16 19839.91 20280.14 21247.18 23472.76 19382.90 187
WR-MVS68.47 15168.47 12968.44 22180.20 11139.84 29573.75 21976.07 20364.68 2068.11 13483.63 14750.39 9379.14 22749.78 21269.66 24086.34 70
ECVR-MVScopyleft67.72 16667.51 14768.35 22279.46 12536.29 33274.79 19866.93 28558.72 12267.19 15488.05 6336.10 24281.38 18352.07 19584.25 6687.39 42
D2MVS62.30 23760.29 24668.34 22366.46 32248.42 22065.70 29173.42 24147.71 27458.16 27675.02 28930.51 29177.71 24753.96 18171.68 20978.90 249
VNet69.68 12470.19 10068.16 22479.73 12041.63 28770.53 26277.38 18760.37 9470.69 9086.63 8551.08 8677.09 25453.61 18481.69 9685.75 96
tpm262.07 23960.10 24767.99 22572.79 25743.86 26571.05 25866.85 28643.14 31562.77 22475.39 28738.32 21980.80 19941.69 28368.88 25179.32 244
pmmvs461.48 24759.39 24867.76 22671.57 27553.86 13471.42 24865.34 29544.20 30559.46 26277.92 25335.90 24474.71 26843.87 26564.87 28174.71 293
VPA-MVSNet69.02 13869.47 11267.69 22777.42 18641.00 29174.04 20979.68 13760.06 10169.26 11684.81 12151.06 8777.58 24854.44 17874.43 16884.48 138
test250665.33 20764.61 20067.50 22879.46 12534.19 34274.43 20551.92 34558.72 12266.75 16388.05 6325.99 32580.92 19651.94 19784.25 6687.39 42
FC-MVSNet-test69.80 12070.58 9567.46 22977.61 18234.73 33876.05 17383.19 7760.84 8365.88 18186.46 9054.52 4980.76 20152.52 19178.12 13686.91 54
test111167.21 17367.14 16467.42 23079.24 13134.76 33773.89 21665.65 29258.71 12466.96 15887.95 6536.09 24380.53 20352.03 19683.79 7186.97 52
ab-mvs66.65 18966.42 17367.37 23176.17 20941.73 28470.41 26576.14 20253.99 21165.98 17683.51 15249.48 9876.24 26348.60 22573.46 18284.14 147
IterMVS62.79 23261.27 23767.35 23269.37 30352.04 17071.17 25368.24 27852.63 22559.82 25776.91 26637.32 23072.36 27752.80 19063.19 29477.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS_H67.02 18166.92 16667.33 23377.95 16937.75 31377.57 13782.11 9262.03 7162.65 22882.48 17050.57 9179.46 21742.91 27464.01 28684.79 131
PEN-MVS66.60 19066.45 17067.04 23477.11 19236.56 32677.03 15380.42 12962.95 4862.51 23384.03 13846.69 13879.07 22844.22 25863.08 29585.51 105
SCA60.49 25158.38 25766.80 23574.14 24448.06 22463.35 30563.23 30849.13 25959.33 26672.10 30637.45 22774.27 27144.17 25962.57 29878.05 255
thres40063.31 22562.18 22866.72 23676.85 19739.62 29771.96 24469.44 26956.63 15662.61 22979.83 22337.18 23179.17 22331.84 33373.25 18681.36 210
CP-MVSNet66.49 19366.41 17466.72 23677.67 17636.33 32976.83 15979.52 14162.45 6162.54 23183.47 15446.32 14078.37 23645.47 25363.43 29285.45 108
PS-CasMVS66.42 19466.32 17866.70 23877.60 18436.30 33176.94 15579.61 13962.36 6362.43 23583.66 14645.69 14478.37 23645.35 25563.26 29385.42 111
HY-MVS56.14 1364.55 21763.89 20466.55 23974.73 23241.02 28969.96 26974.43 22749.29 25761.66 24280.92 20547.43 12676.68 25844.91 25771.69 20881.94 202
thres600view763.30 22662.27 22666.41 24077.18 19138.87 30372.35 23769.11 27356.98 15162.37 23680.96 20437.01 23879.00 23231.43 34073.05 19081.36 210
DTE-MVSNet65.58 20265.34 19366.31 24176.06 21134.79 33576.43 16479.38 14462.55 5961.66 24283.83 14345.60 14679.15 22641.64 28660.88 30985.00 124
pmmvs-eth3d58.81 26056.31 27366.30 24267.61 31452.42 16472.30 23864.76 29943.55 31154.94 29974.19 29628.95 30372.60 27643.31 26857.21 32373.88 301
pmmvs663.69 22262.82 22166.27 24370.63 28439.27 30173.13 22575.47 21152.69 22459.75 26082.30 17439.71 20577.03 25547.40 23264.35 28582.53 191
tfpn200view963.18 22962.18 22866.21 24476.85 19739.62 29771.96 24469.44 26956.63 15662.61 22979.83 22337.18 23179.17 22331.84 33373.25 18679.83 238
patch_mono-269.85 11771.09 8766.16 24579.11 13654.80 12871.97 24374.31 23053.50 21770.90 8984.17 13457.63 2963.31 31666.17 8582.02 8980.38 229
Patchmatch-RL test58.16 26555.49 27766.15 24667.92 31348.89 21560.66 32051.07 34847.86 27359.36 26362.71 34834.02 26172.27 27956.41 15859.40 31677.30 263
tpm cat159.25 25856.95 26866.15 24672.19 26746.96 23668.09 27965.76 29140.03 33357.81 27870.56 31638.32 21974.51 26938.26 30061.50 30677.00 269
ppachtmachnet_test58.06 26755.38 27866.10 24869.51 30048.99 21368.01 28066.13 29044.50 30254.05 30970.74 31532.09 28572.34 27836.68 31056.71 32776.99 271
pm-mvs165.24 20864.97 19866.04 24972.38 26439.40 30072.62 23275.63 20855.53 18462.35 23783.18 15747.45 12576.47 26049.06 22266.54 26982.24 196
CR-MVSNet59.91 25457.90 26265.96 25069.96 29652.07 16865.31 29763.15 30942.48 31959.36 26374.84 29035.83 24570.75 28545.50 25164.65 28375.06 285
1112_ss64.00 22063.36 21365.93 25179.28 12942.58 27671.35 24972.36 25046.41 28760.55 24977.89 25546.27 14273.28 27446.18 24269.97 23181.92 203
thres100view90063.28 22762.41 22565.89 25277.31 18938.66 30572.65 23069.11 27357.07 14962.45 23481.03 20237.01 23879.17 22331.84 33373.25 18679.83 238
TransMVSNet (Re)64.72 21364.33 20165.87 25375.22 22338.56 30674.66 20175.08 22358.90 12061.79 24182.63 16551.18 8478.07 24143.63 26755.87 32980.99 220
VPNet67.52 16968.11 13565.74 25479.18 13336.80 32472.17 24072.83 24662.04 7067.79 14585.83 10748.88 10876.60 25951.30 20372.97 19183.81 158
OpenMVS_ROBcopyleft52.78 1860.03 25358.14 26065.69 25570.47 28644.82 25575.33 18370.86 25945.04 29756.06 28776.00 27826.89 32079.65 21435.36 31967.29 26372.60 309
Baseline_NR-MVSNet67.05 18067.56 14365.50 25675.65 21537.70 31575.42 18274.65 22659.90 10468.14 13383.15 15849.12 10677.20 25252.23 19369.78 23681.60 206
miper_lstm_enhance62.03 24060.88 24365.49 25766.71 32046.25 24156.29 33575.70 20750.68 24661.27 24575.48 28640.21 20168.03 29856.31 15965.25 27882.18 197
IterMVS-SCA-FT62.49 23361.52 23465.40 25871.99 27050.80 18471.15 25569.63 26645.71 29560.61 24877.93 25237.45 22765.99 30955.67 16663.50 29179.42 243
thres20062.20 23861.16 24065.34 25975.38 22239.99 29469.60 27169.29 27155.64 18361.87 24076.99 26437.07 23778.96 23331.28 34173.28 18577.06 267
MS-PatchMatch62.42 23561.46 23565.31 26075.21 22452.10 16772.05 24174.05 23446.41 28757.42 28174.36 29434.35 25877.57 24945.62 24973.67 17566.26 343
ambc65.13 26163.72 33637.07 32147.66 35378.78 15454.37 30771.42 31111.24 36080.94 19445.64 24853.85 33677.38 262
tfpnnormal62.47 23461.63 23364.99 26274.81 22939.01 30271.22 25273.72 23855.22 19060.21 25080.09 22141.26 19776.98 25630.02 34668.09 25878.97 248
testdata64.66 26381.52 8652.93 15165.29 29646.09 29073.88 5487.46 7038.08 22366.26 30853.31 18778.48 13474.78 292
PatchmatchNetpermissive59.84 25558.24 25864.65 26473.05 25346.70 23869.42 27362.18 31447.55 27658.88 26971.96 30834.49 25669.16 29342.99 27363.60 29078.07 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AllTest57.08 27354.65 28264.39 26571.44 27649.03 21069.92 27067.30 28045.97 29247.16 33879.77 22517.47 34567.56 30033.65 32459.16 31776.57 273
TestCases64.39 26571.44 27649.03 21067.30 28045.97 29247.16 33879.77 22517.47 34567.56 30033.65 32459.16 31776.57 273
Test_1112_low_res62.32 23661.77 23164.00 26779.08 13739.53 29968.17 27870.17 26243.25 31359.03 26879.90 22244.08 16571.24 28343.79 26668.42 25681.25 213
baseline163.81 22163.87 20663.62 26876.29 20736.36 32771.78 24667.29 28256.05 17264.23 21282.95 16047.11 13174.41 27047.30 23361.85 30380.10 234
LCM-MVSNet-Re61.88 24261.35 23663.46 26974.58 23431.48 35461.42 31458.14 32758.71 12453.02 31979.55 23143.07 17376.80 25745.69 24777.96 13782.11 200
CMPMVSbinary42.80 2157.81 26955.97 27463.32 27060.98 34747.38 23364.66 30169.50 26832.06 34446.83 34077.80 25729.50 29971.36 28248.68 22473.75 17471.21 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CL-MVSNet_self_test61.53 24560.94 24263.30 27168.95 30636.93 32367.60 28272.80 24755.67 18159.95 25576.63 26945.01 15872.22 28039.74 29462.09 30280.74 224
JIA-IIPM51.56 30247.68 31563.21 27264.61 33150.73 18547.71 35258.77 32542.90 31648.46 33551.72 35824.97 33070.24 29036.06 31653.89 33568.64 341
Vis-MVSNet (Re-imp)63.69 22263.88 20563.14 27374.75 23131.04 35571.16 25463.64 30556.32 16559.80 25884.99 11844.51 16175.46 26539.12 29680.62 9982.92 185
MDA-MVSNet-bldmvs53.87 29150.81 30263.05 27466.25 32348.58 21856.93 33363.82 30448.09 27041.22 35370.48 31930.34 29368.00 29934.24 32245.92 35172.57 310
tpmvs58.47 26256.95 26863.03 27570.20 29041.21 28867.90 28167.23 28349.62 25554.73 30270.84 31434.14 25976.24 26336.64 31161.29 30771.64 322
USDC56.35 27754.24 28862.69 27664.74 33040.31 29265.05 29973.83 23743.93 30947.58 33677.71 26015.36 35175.05 26738.19 30161.81 30472.70 308
our_test_356.49 27454.42 28462.68 27769.51 30045.48 25266.08 28961.49 31844.11 30850.73 32969.60 32633.05 27068.15 29738.38 29956.86 32474.40 295
GG-mvs-BLEND62.34 27871.36 28037.04 32269.20 27557.33 33154.73 30265.48 34230.37 29277.82 24434.82 32074.93 16672.17 318
gg-mvs-nofinetune57.86 26856.43 27262.18 27972.62 26035.35 33466.57 28556.33 33450.65 24757.64 27957.10 35430.65 29076.36 26137.38 30478.88 12674.82 291
ITE_SJBPF62.09 28066.16 32444.55 26164.32 30247.36 27955.31 29480.34 21519.27 34462.68 31936.29 31562.39 30079.04 246
MVS_030458.51 26157.36 26461.96 28170.04 29441.83 28269.40 27465.46 29450.73 24553.30 31874.06 29722.65 33770.18 29142.16 27968.44 25573.86 302
EPNet_dtu61.90 24161.97 23061.68 28272.89 25639.78 29675.85 17765.62 29355.09 19354.56 30479.36 23537.59 22667.02 30339.80 29376.95 14978.25 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement53.44 29550.72 30361.60 28364.31 33346.96 23670.89 25965.27 29741.78 32044.61 34777.98 25011.52 35966.36 30728.57 35251.59 34071.49 325
PVSNet50.76 1958.40 26357.39 26361.42 28475.53 21944.04 26461.43 31363.45 30647.04 28456.91 28273.61 30027.00 31964.76 31239.12 29672.40 19875.47 282
TinyColmap54.14 28851.72 29861.40 28566.84 31941.97 28066.52 28668.51 27644.81 29842.69 35275.77 28211.66 35772.94 27531.96 33156.77 32669.27 339
PatchMatch-RL56.25 27854.55 28361.32 28677.06 19356.07 10665.57 29354.10 34244.13 30753.49 31771.27 31325.20 32966.78 30436.52 31363.66 28961.12 346
CVMVSNet59.63 25759.14 25061.08 28774.47 23638.84 30475.20 18768.74 27531.15 34558.24 27576.51 27332.39 28368.58 29649.77 21365.84 27475.81 278
RPSCF55.80 28154.22 28960.53 28865.13 32942.91 27564.30 30257.62 33036.84 33958.05 27782.28 17528.01 31056.24 34337.14 30558.61 31982.44 195
KD-MVS_2432*160053.45 29351.50 30059.30 28962.82 33737.14 31955.33 33671.79 25347.34 28055.09 29770.52 31721.91 34170.45 28735.72 31742.97 35470.31 332
miper_refine_blended53.45 29351.50 30059.30 28962.82 33737.14 31955.33 33671.79 25347.34 28055.09 29770.52 31721.91 34170.45 28735.72 31742.97 35470.31 332
Patchmtry57.16 27256.47 27159.23 29169.17 30534.58 33962.98 30663.15 30944.53 30156.83 28374.84 29035.83 24568.71 29540.03 29160.91 30874.39 296
KD-MVS_self_test55.22 28553.89 29159.21 29257.80 35427.47 36457.75 33074.32 22947.38 27850.90 32670.00 32228.45 30870.30 28940.44 28957.92 32179.87 237
EU-MVSNet55.61 28254.41 28559.19 29365.41 32833.42 34672.44 23671.91 25228.81 34751.27 32373.87 29824.76 33169.08 29443.04 27258.20 32075.06 285
ADS-MVSNet251.33 30448.76 31059.07 29466.02 32644.60 25950.90 34659.76 32236.90 33750.74 32766.18 34026.38 32163.11 31727.17 35354.76 33269.50 337
pmmvs556.47 27555.68 27658.86 29561.41 34436.71 32566.37 28762.75 31140.38 33053.70 31176.62 27034.56 25467.05 30240.02 29265.27 27772.83 307
PM-MVS52.33 29950.19 30658.75 29662.10 34145.14 25465.75 29040.38 36543.60 31053.52 31572.65 3039.16 36565.87 31050.41 20954.18 33465.24 345
FMVSNet555.86 28054.93 28058.66 29771.05 28136.35 32864.18 30462.48 31346.76 28550.66 33074.73 29225.80 32664.04 31433.11 32765.57 27675.59 281
test_vis1_n_192058.86 25959.06 25158.25 29863.76 33443.14 27267.49 28366.36 28940.22 33165.89 18071.95 30931.04 28759.75 32959.94 14064.90 28071.85 321
test-LLR58.15 26658.13 26158.22 29968.57 30844.80 25665.46 29457.92 32850.08 25255.44 29269.82 32332.62 27957.44 33649.66 21673.62 17672.41 314
test-mter56.42 27655.82 27558.22 29968.57 30844.80 25665.46 29457.92 32839.94 33455.44 29269.82 32321.92 34057.44 33649.66 21673.62 17672.41 314
MIMVSNet57.35 27057.07 26658.22 29974.21 24337.18 31862.46 30860.88 32048.88 26155.29 29575.99 28031.68 28662.04 32131.87 33272.35 19975.43 283
Anonymous2024052155.30 28354.41 28557.96 30260.92 34941.73 28471.09 25771.06 25841.18 32548.65 33473.31 30116.93 34759.25 33142.54 27664.01 28672.90 306
WTY-MVS59.75 25660.39 24557.85 30372.32 26637.83 31261.05 31964.18 30345.95 29461.91 23979.11 23947.01 13560.88 32442.50 27769.49 24274.83 290
MIMVSNet155.17 28654.31 28757.77 30470.03 29532.01 35265.68 29264.81 29849.19 25846.75 34176.00 27825.53 32864.04 31428.65 35162.13 30177.26 265
XXY-MVS60.68 25061.67 23257.70 30570.43 28738.45 30764.19 30366.47 28748.05 27163.22 22080.86 20749.28 10160.47 32545.25 25667.28 26474.19 298
tpmrst58.24 26458.70 25456.84 30666.97 31734.32 34069.57 27261.14 31947.17 28358.58 27371.60 31041.28 19660.41 32649.20 22062.84 29675.78 279
TESTMET0.1,155.28 28454.90 28156.42 30766.56 32143.67 26765.46 29456.27 33539.18 33653.83 31067.44 33524.21 33355.46 34648.04 22973.11 18970.13 334
PMMVS53.96 28953.26 29556.04 30862.60 34050.92 18161.17 31756.09 33632.81 34353.51 31666.84 33834.04 26059.93 32844.14 26168.18 25757.27 352
YYNet150.73 30648.96 30756.03 30961.10 34641.78 28351.94 34456.44 33340.94 32844.84 34567.80 33330.08 29555.08 34736.77 30750.71 34271.22 326
MDA-MVSNet_test_wron50.71 30748.95 30856.00 31061.17 34541.84 28151.90 34556.45 33240.96 32744.79 34667.84 33230.04 29655.07 34836.71 30950.69 34371.11 329
UnsupCasMVSNet_eth53.16 29852.47 29655.23 31159.45 35133.39 34759.43 32469.13 27245.98 29150.35 33272.32 30529.30 30158.26 33442.02 28244.30 35274.05 299
sss56.17 27956.57 27054.96 31266.93 31836.32 33057.94 32861.69 31741.67 32258.64 27275.32 28838.72 21556.25 34242.04 28166.19 27272.31 317
tpm57.34 27158.16 25954.86 31371.80 27334.77 33667.47 28456.04 33748.20 26960.10 25276.92 26537.17 23353.41 35140.76 28865.01 27976.40 275
EPMVS53.96 28953.69 29254.79 31466.12 32531.96 35362.34 31049.05 35144.42 30455.54 29071.33 31230.22 29456.70 33941.65 28562.54 29975.71 280
Anonymous2023120655.10 28755.30 27954.48 31569.81 29933.94 34462.91 30762.13 31541.08 32655.18 29675.65 28332.75 27756.59 34130.32 34567.86 25972.91 305
EGC-MVSNET42.47 32038.48 32754.46 31674.33 24048.73 21770.33 26651.10 3470.03 3770.18 37867.78 33413.28 35466.49 30618.91 36350.36 34448.15 359
test_fmvs1_n51.37 30350.35 30554.42 31752.85 35737.71 31461.16 31851.93 34428.15 34963.81 21669.73 32513.72 35253.95 34951.16 20460.65 31271.59 323
pmmvs344.92 31741.95 32253.86 31852.58 35943.55 26862.11 31146.90 35926.05 35440.63 35460.19 35011.08 36257.91 33531.83 33646.15 35060.11 347
test_fmvs151.32 30550.48 30453.81 31953.57 35637.51 31660.63 32151.16 34628.02 35163.62 21769.23 32816.41 34853.93 35051.01 20560.70 31169.99 335
UnsupCasMVSNet_bld50.07 30848.87 30953.66 32060.97 34833.67 34557.62 33164.56 30139.47 33547.38 33764.02 34627.47 31459.32 33034.69 32143.68 35367.98 342
LCM-MVSNet40.30 32435.88 33053.57 32142.24 36829.15 35945.21 35860.53 32122.23 36128.02 36350.98 3613.72 37461.78 32231.22 34238.76 36069.78 336
test_vis1_n49.89 30948.69 31153.50 32253.97 35537.38 31761.53 31247.33 35728.54 34859.62 26167.10 33713.52 35352.27 35449.07 22157.52 32270.84 330
test20.0353.87 29154.02 29053.41 32361.47 34328.11 36261.30 31559.21 32351.34 24052.09 32177.43 26133.29 26958.55 33329.76 34760.27 31473.58 303
ANet_high41.38 32237.47 32953.11 32439.73 37324.45 37056.94 33269.69 26447.65 27526.04 36552.32 35712.44 35562.38 32021.80 36010.61 37472.49 311
PVSNet_043.31 2047.46 31545.64 31852.92 32567.60 31544.65 25854.06 34054.64 33841.59 32346.15 34358.75 35130.99 28858.66 33232.18 33024.81 36755.46 354
dp51.89 30151.60 29952.77 32668.44 31132.45 35162.36 30954.57 33944.16 30649.31 33367.91 33128.87 30556.61 34033.89 32354.89 33169.24 340
test0.0.03 153.32 29653.59 29352.50 32762.81 33929.45 35859.51 32354.11 34150.08 25254.40 30674.31 29532.62 27955.92 34430.50 34463.95 28872.15 319
PatchT53.17 29753.44 29452.33 32868.29 31225.34 36958.21 32754.41 34044.46 30354.56 30469.05 32933.32 26860.94 32336.93 30661.76 30570.73 331
test_fmvs248.69 31147.49 31652.29 32948.63 36333.06 34957.76 32948.05 35525.71 35559.76 25969.60 32611.57 35852.23 35549.45 21956.86 32471.58 324
CHOSEN 280x42047.83 31346.36 31752.24 33067.37 31649.78 20138.91 36443.11 36335.00 34143.27 35163.30 34728.95 30349.19 35836.53 31260.80 31057.76 351
Patchmatch-test49.08 31048.28 31251.50 33164.40 33230.85 35645.68 35648.46 35435.60 34046.10 34472.10 30634.47 25746.37 36127.08 35560.65 31277.27 264
ADS-MVSNet48.48 31247.77 31350.63 33266.02 32629.92 35750.90 34650.87 35036.90 33750.74 32766.18 34026.38 32152.47 35327.17 35354.76 33269.50 337
testgi51.90 30052.37 29750.51 33360.39 35023.55 37258.42 32658.15 32649.03 26051.83 32279.21 23822.39 33855.59 34529.24 35062.64 29772.40 316
test_fmvs344.30 31842.55 32049.55 33442.83 36727.15 36553.03 34244.93 36022.03 36253.69 31364.94 3434.21 37249.63 35747.47 23049.82 34571.88 320
MVS-HIRNet45.52 31644.48 31948.65 33568.49 31034.05 34359.41 32544.50 36127.03 35237.96 35950.47 36226.16 32464.10 31326.74 35659.52 31547.82 361
new-patchmatchnet47.56 31447.73 31447.06 33658.81 3529.37 37948.78 35059.21 32343.28 31244.22 34868.66 33025.67 32757.20 33831.57 33949.35 34774.62 294
test_vis1_rt41.35 32339.45 32547.03 33746.65 36637.86 31147.76 35138.65 36623.10 35844.21 34951.22 36011.20 36144.08 36339.27 29553.02 33759.14 348
FPMVS42.18 32141.11 32345.39 33858.03 35341.01 29049.50 34853.81 34330.07 34633.71 36064.03 34411.69 35652.08 35614.01 36755.11 33043.09 363
LF4IMVS42.95 31942.26 32145.04 33948.30 36432.50 35054.80 33848.49 35328.03 35040.51 35570.16 3209.24 36443.89 36431.63 33749.18 34858.72 349
PMVScopyleft28.69 2236.22 32933.29 33345.02 34036.82 37535.98 33354.68 33948.74 35226.31 35321.02 36851.61 3592.88 37760.10 3279.99 37347.58 34938.99 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test137.39 32834.94 33144.72 34148.88 36233.19 34852.95 34344.00 36219.49 36327.28 36458.59 3523.18 37652.84 35218.92 36241.17 35748.14 360
Gipumacopyleft34.77 33031.91 33443.33 34262.05 34237.87 31020.39 36967.03 28423.23 35718.41 37025.84 3704.24 37162.73 31814.71 36651.32 34129.38 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test139.38 32538.16 32843.02 34349.05 36134.28 34144.16 36025.94 37622.74 36046.57 34262.21 34923.85 33541.16 36833.01 32835.91 36253.63 355
DSMNet-mixed39.30 32738.72 32641.03 34451.22 36019.66 37545.53 35731.35 37215.83 36939.80 35767.42 33622.19 33945.13 36222.43 35952.69 33858.31 350
testf131.46 33528.89 33839.16 34541.99 37028.78 36046.45 35437.56 36714.28 37021.10 36648.96 3631.48 38047.11 35913.63 36834.56 36341.60 364
APD_test231.46 33528.89 33839.16 34541.99 37028.78 36046.45 35437.56 36714.28 37021.10 36648.96 3631.48 38047.11 35913.63 36834.56 36341.60 364
mvsany_test332.62 33230.57 33638.77 34736.16 37624.20 37138.10 36520.63 37819.14 36440.36 35657.43 3535.06 36936.63 37129.59 34928.66 36655.49 353
test_vis3_rt32.09 33330.20 33737.76 34835.36 37727.48 36340.60 36328.29 37516.69 36732.52 36140.53 3661.96 37837.40 37033.64 32642.21 35648.39 358
N_pmnet39.35 32640.28 32436.54 34963.76 3341.62 38349.37 3490.76 38334.62 34243.61 35066.38 33926.25 32342.57 36526.02 35851.77 33965.44 344
test_f31.86 33431.05 33534.28 35032.33 37921.86 37332.34 36630.46 37316.02 36839.78 35855.45 3554.80 37032.36 37330.61 34337.66 36148.64 357
new_pmnet34.13 33134.29 33233.64 35152.63 35818.23 37744.43 35933.90 37122.81 35930.89 36253.18 35610.48 36335.72 37220.77 36139.51 35846.98 362
MVEpermissive17.77 2321.41 34017.77 34532.34 35234.34 37825.44 36816.11 37024.11 37711.19 37213.22 37231.92 3681.58 37930.95 37410.47 37117.03 37040.62 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS227.40 33725.91 34031.87 35339.46 3746.57 38031.17 36728.52 37423.96 35620.45 36948.94 3654.20 37337.94 36916.51 36419.97 36951.09 356
E-PMN23.77 33822.73 34226.90 35442.02 36920.67 37442.66 36135.70 36917.43 36510.28 37525.05 3716.42 36742.39 36610.28 37214.71 37117.63 370
EMVS22.97 33921.84 34326.36 35540.20 37219.53 37641.95 36234.64 37017.09 3669.73 37622.83 3727.29 36642.22 3679.18 37413.66 37217.32 371
test_method19.68 34118.10 34424.41 35613.68 3813.11 38212.06 37242.37 3642.00 37511.97 37336.38 3675.77 36829.35 37515.06 36523.65 36840.76 366
wuyk23d13.32 34312.52 34615.71 35747.54 36526.27 36631.06 3681.98 3824.93 3745.18 3771.94 3770.45 38218.54 3766.81 37612.83 3732.33 374
DeepMVS_CXcopyleft12.03 35817.97 38010.91 37810.60 3817.46 37311.07 37428.36 3693.28 37511.29 3778.01 3759.74 37613.89 372
tmp_tt9.43 34411.14 3474.30 3592.38 3824.40 38113.62 37116.08 3800.39 37615.89 37113.06 37315.80 3505.54 37812.63 37010.46 3752.95 373
test1234.73 3466.30 3490.02 3600.01 3830.01 38456.36 3340.00 3840.01 3780.04 3790.21 3790.01 3830.00 3790.03 3780.00 3770.04 375
testmvs4.52 3476.03 3500.01 3610.01 3830.00 38553.86 3410.00 3840.01 3780.04 3790.27 3780.00 3840.00 3790.04 3770.00 3770.03 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
cdsmvs_eth3d_5k17.50 34223.34 3410.00 3620.00 3850.00 3850.00 37378.63 1580.00 3800.00 38182.18 17649.25 1020.00 3790.00 3790.00 3770.00 377
pcd_1.5k_mvsjas3.92 3485.23 3510.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 38047.05 1320.00 3790.00 3790.00 3770.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
ab-mvs-re6.49 3458.65 3480.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 38177.89 2550.00 3840.00 3790.00 3790.00 3770.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
FOURS186.12 3660.82 3788.18 183.61 6260.87 8281.50 16
PC_three_145255.09 19384.46 489.84 4166.68 589.41 1674.24 3191.38 288.42 9
test_one_060187.58 959.30 5686.84 765.01 1883.80 1191.86 664.03 11
eth-test20.00 385
eth-test0.00 385
ZD-MVS86.64 2160.38 4382.70 8557.95 13878.10 2490.06 3456.12 3788.84 2474.05 3487.00 46
RE-MVS-def73.71 6183.49 6559.87 4884.29 3581.36 10658.07 13573.14 6490.07 3243.06 17468.20 6681.76 9284.03 149
IU-MVS87.77 459.15 5985.53 2553.93 21284.64 379.07 990.87 588.37 11
test_241102_TWO86.73 1264.18 3084.26 591.84 865.19 690.83 578.63 1590.70 787.65 33
test_241102_ONE87.77 458.90 6886.78 1064.20 2985.97 191.34 1266.87 390.78 7
9.1478.75 1483.10 6984.15 4188.26 159.90 10478.57 2390.36 2557.51 3086.86 6277.39 1889.52 21
save fliter86.17 3361.30 2883.98 4579.66 13859.00 118
test_0728_THIRD65.04 1483.82 892.00 364.69 1090.75 879.48 490.63 1088.09 19
test072687.75 759.07 6387.86 486.83 864.26 2784.19 791.92 564.82 8
GSMVS78.05 255
test_part287.58 960.47 4283.42 12
sam_mvs134.74 25378.05 255
sam_mvs33.43 267
MTGPAbinary80.97 121
test_post168.67 2773.64 37532.39 28369.49 29244.17 259
test_post3.55 37633.90 26266.52 305
patchmatchnet-post64.03 34434.50 25574.27 271
MTMP86.03 1817.08 379
gm-plane-assit71.40 27941.72 28648.85 26273.31 30182.48 16648.90 223
test9_res75.28 2788.31 3283.81 158
TEST985.58 4361.59 2481.62 8081.26 11355.65 18274.93 3988.81 5453.70 5884.68 116
test_885.40 4660.96 3481.54 8381.18 11655.86 17374.81 4288.80 5653.70 5884.45 120
agg_prior273.09 4287.93 3884.33 140
agg_prior85.04 5059.96 4681.04 11974.68 4584.04 126
test_prior462.51 1482.08 75
test_prior281.75 7860.37 9475.01 3889.06 5056.22 3672.19 4688.96 24
旧先验276.08 17145.32 29676.55 3065.56 31158.75 148
新几何276.12 169
旧先验183.04 7053.15 14867.52 27987.85 6744.08 16580.76 9878.03 258
无先验79.66 10874.30 23148.40 26780.78 20053.62 18379.03 247
原ACMM279.02 114
test22283.14 6858.68 7272.57 23463.45 30641.78 32067.56 14986.12 9637.13 23578.73 13174.98 288
testdata272.18 28146.95 238
segment_acmp54.23 51
testdata172.65 23060.50 89
plane_prior781.41 8955.96 108
plane_prior681.20 9656.24 10345.26 156
plane_prior584.01 4987.21 5168.16 6880.58 10184.65 134
plane_prior486.10 97
plane_prior356.09 10563.92 3469.27 114
plane_prior284.22 3864.52 23
plane_prior181.27 94
plane_prior56.31 9983.58 5163.19 4680.48 104
n20.00 384
nn0.00 384
door-mid47.19 358
test1183.47 66
door47.60 356
HQP5-MVS54.94 124
HQP-NCC80.66 10182.31 6962.10 6667.85 139
ACMP_Plane80.66 10182.31 6962.10 6667.85 139
BP-MVS67.04 80
HQP4-MVS67.85 13986.93 6084.32 141
HQP3-MVS83.90 5380.35 105
HQP2-MVS45.46 150
NP-MVS80.98 9956.05 10785.54 113
MDTV_nov1_ep13_2view25.89 36761.22 31640.10 33251.10 32432.97 27238.49 29878.61 250
MDTV_nov1_ep1357.00 26772.73 25838.26 30865.02 30064.73 30044.74 29955.46 29172.48 30432.61 28170.47 28637.47 30367.75 261
ACMMP++_ref74.07 172
ACMMP++72.16 204
Test By Simon48.33 113