This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2999.56 5799.02 1599.88 599.85 2999.18 999.96 1999.22 3999.92 1199.90 1
test_0728_SECOND99.91 299.84 3299.89 399.57 9399.51 10399.96 1998.93 6899.86 5199.88 6
DPE-MVScopyleft99.46 2499.32 3199.91 299.78 4499.88 799.36 19699.51 10398.73 5399.88 599.84 3898.72 6199.96 1998.16 17099.87 4099.88 6
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
zzz-MVS99.49 1599.36 2299.89 499.90 399.86 1099.36 19699.47 16098.79 4999.68 5599.81 6298.43 8299.97 1198.88 7499.90 2399.83 30
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 5099.47 16098.79 4999.68 5599.81 6298.43 8299.97 1198.88 7499.90 2399.83 30
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7599.48 14299.08 1199.91 199.81 6299.20 699.96 1998.91 7199.85 5899.79 55
DVP-MVScopyleft99.57 799.47 999.88 699.85 2599.89 399.57 9399.37 22899.10 899.81 2399.80 7698.94 3299.96 1998.93 6899.86 5199.81 42
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MP-MVS-pluss99.37 4999.20 6299.88 699.90 399.87 999.30 21199.52 9097.18 21299.60 8599.79 8898.79 4899.95 4498.83 8999.91 1699.83 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 3999.27 5299.88 699.89 899.80 2699.67 4699.50 12298.70 5599.77 3499.49 22598.21 9799.95 4498.46 14499.77 9599.88 6
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP99.47 2299.34 2799.88 699.87 1599.86 1099.47 14999.48 14298.05 12599.76 3899.86 2398.82 4599.93 7098.82 9399.91 1699.84 19
No_MVS99.87 1199.51 15299.76 3899.33 24599.96 1998.87 7899.84 6599.89 2
ZNCC-MVS99.47 2299.33 2999.87 1199.87 1599.81 2499.64 6099.67 2298.08 11999.55 9799.64 16898.91 3799.96 1998.72 10499.90 2399.82 37
region2R99.48 1999.35 2599.87 1199.88 1199.80 2699.65 5799.66 2798.13 10899.66 6699.68 14898.96 2699.96 1998.62 11899.87 4099.84 19
HPM-MVS++copyleft99.39 4799.23 6099.87 1199.75 6299.84 1399.43 16399.51 10398.68 5799.27 16099.53 21298.64 6999.96 1998.44 14699.80 8699.79 55
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3899.68 1998.98 2799.37 13899.74 11798.81 4699.94 5598.79 9599.86 5199.84 19
X-MVStestdata96.55 29295.45 30799.87 1199.85 2599.83 1499.69 3899.68 1998.98 2799.37 13864.01 36998.81 4699.94 5598.79 9599.86 5199.84 19
MP-MVScopyleft99.33 5499.15 6699.87 1199.88 1199.82 2099.66 5099.46 17098.09 11599.48 11099.74 11798.29 9499.96 1997.93 18899.87 4099.82 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 8199.51 10398.62 5999.79 2799.83 4299.28 499.97 1198.48 14099.90 2399.84 19
Skip Steuart: Steuart Systems R&D Blog.
testtj99.12 8798.87 10699.86 1999.72 8099.79 3099.44 15799.51 10397.29 20299.59 8899.74 11798.15 10399.96 1996.74 27699.69 11399.81 42
SR-MVS99.43 3499.29 4699.86 1999.75 6299.83 1499.59 8199.62 3398.21 10099.73 4499.79 8898.68 6499.96 1998.44 14699.77 9599.79 55
HFP-MVS99.49 1599.37 2099.86 1999.87 1599.80 2699.66 5099.67 2298.15 10699.68 5599.69 14199.06 1499.96 1998.69 10999.87 4099.84 19
#test#99.43 3499.29 4699.86 1999.87 1599.80 2699.55 10999.67 2297.83 14399.68 5599.69 14199.06 1499.96 1998.39 14899.87 4099.84 19
ACMMPR99.49 1599.36 2299.86 1999.87 1599.79 3099.66 5099.67 2298.15 10699.67 6199.69 14198.95 2999.96 1998.69 10999.87 4099.84 19
PGM-MVS99.45 2699.31 3899.86 1999.87 1599.78 3799.58 8899.65 3297.84 14299.71 4899.80 7699.12 1299.97 1198.33 15699.87 4099.83 30
mPP-MVS99.44 3099.30 4299.86 1999.88 1199.79 3099.69 3899.48 14298.12 11099.50 10699.75 11198.78 4999.97 1198.57 12999.89 3399.83 30
test117299.43 3499.29 4699.85 2699.75 6299.82 2099.60 7599.56 5798.28 9099.74 4299.79 8898.53 7399.95 4498.55 13599.78 9299.79 55
SR-MVS-dyc-post99.45 2699.31 3899.85 2699.76 5299.82 2099.63 6299.52 9098.38 7899.76 3899.82 4998.53 7399.95 4498.61 12199.81 8299.77 65
GST-MVS99.40 4699.24 5899.85 2699.86 2199.79 3099.60 7599.67 2297.97 13199.63 7499.68 14898.52 7599.95 4498.38 15099.86 5199.81 42
SMA-MVScopyleft99.44 3099.30 4299.85 2699.73 7599.83 1499.56 10099.47 16097.45 18699.78 3299.82 4999.18 999.91 9298.79 9599.89 3399.81 42
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVS_3200maxsize99.48 1999.35 2599.85 2699.76 5299.83 1499.63 6299.54 7398.36 8299.79 2799.82 4998.86 4199.95 4498.62 11899.81 8299.78 63
HPM-MVS_fast99.51 1499.40 1699.85 2699.91 199.79 3099.76 2899.56 5797.72 15799.76 3899.75 11199.13 1199.92 8199.07 5599.92 1199.85 15
CP-MVS99.45 2699.32 3199.85 2699.83 3699.75 3999.69 3899.52 9098.07 12099.53 10099.63 17498.93 3699.97 1198.74 10099.91 1699.83 30
APD-MVScopyleft99.27 6399.08 7499.84 3399.75 6299.79 3099.50 12899.50 12297.16 21499.77 3499.82 4998.78 4999.94 5597.56 22499.86 5199.80 51
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
abl_699.44 3099.31 3899.83 3499.85 2599.75 3999.66 5099.59 4398.13 10899.82 2199.81 6298.60 7099.96 1998.46 14499.88 3699.79 55
HPM-MVScopyleft99.42 3999.28 5099.83 3499.90 399.72 4399.81 1399.54 7397.59 16999.68 5599.63 17498.91 3799.94 5598.58 12799.91 1699.84 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MCST-MVS99.43 3499.30 4299.82 3699.79 4299.74 4299.29 21599.40 20998.79 4999.52 10399.62 18098.91 3799.90 10798.64 11699.75 10099.82 37
ACMMPcopyleft99.45 2699.32 3199.82 3699.89 899.67 5399.62 6899.69 1898.12 11099.63 7499.84 3898.73 6099.96 1998.55 13599.83 7399.81 42
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+97.12 1399.18 7398.97 9399.82 3699.17 24799.68 5099.81 1399.51 10399.20 498.72 25599.89 1095.68 18099.97 1198.86 8299.86 5199.81 42
TSAR-MVS + MP.99.58 499.50 899.81 3999.91 199.66 5599.63 6299.39 21398.91 3899.78 3299.85 2999.36 299.94 5598.84 8699.88 3699.82 37
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator97.25 999.24 6899.05 7699.81 3999.12 25499.66 5599.84 799.74 1099.09 1098.92 22999.90 795.94 16999.98 698.95 6599.92 1199.79 55
UA-Net99.42 3999.29 4699.80 4199.62 12699.55 7699.50 12899.70 1598.79 4999.77 3499.96 197.45 11999.96 1998.92 7099.90 2399.89 2
CDPH-MVS99.13 8198.91 10199.80 4199.75 6299.71 4599.15 25199.41 20396.60 26099.60 8599.55 20398.83 4499.90 10797.48 23199.83 7399.78 63
QAPM98.67 14698.30 16399.80 4199.20 23699.67 5399.77 2599.72 1194.74 32298.73 25499.90 795.78 17699.98 696.96 26599.88 3699.76 70
SF-MVS99.38 4899.24 5899.79 4499.79 4299.68 5099.57 9399.54 7397.82 14899.71 4899.80 7698.95 2999.93 7098.19 16599.84 6599.74 76
NCCC99.34 5299.19 6399.79 4499.61 13099.65 5899.30 21199.48 14298.86 4099.21 17699.63 17498.72 6199.90 10798.25 16199.63 12699.80 51
CNVR-MVS99.42 3999.30 4299.78 4699.62 12699.71 4599.26 23199.52 9098.82 4499.39 13399.71 12998.96 2699.85 13298.59 12699.80 8699.77 65
DP-MVS99.16 7798.95 9799.78 4699.77 4999.53 8199.41 17299.50 12297.03 22999.04 21099.88 1597.39 12099.92 8198.66 11499.90 2399.87 11
ETH3D-3000-0.199.21 6999.02 8499.77 4899.73 7599.69 4899.38 18999.51 10397.45 18699.61 8199.75 11198.51 7699.91 9297.45 23699.83 7399.71 96
train_agg99.02 10698.77 12099.77 4899.67 10199.65 5899.05 27099.41 20396.28 28198.95 22499.49 22598.76 5499.91 9297.63 21599.72 10799.75 71
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4899.63 12099.59 6999.36 19699.46 17099.07 1399.79 2799.82 4998.85 4299.92 8198.68 11199.87 4099.82 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior199.01 10998.76 12299.76 5199.67 10199.62 6298.99 28699.40 20996.26 28498.87 23799.49 22598.77 5299.91 9297.69 21299.72 10799.75 71
xxxxxxxxxxxxxcwj99.43 3499.32 3199.75 5299.76 5299.59 6999.14 25399.53 8499.00 2299.71 4899.80 7698.95 2999.93 7098.19 16599.84 6599.74 76
Regformer-299.54 999.47 999.75 5299.71 8699.52 8499.49 13899.49 13098.94 3399.83 1899.76 10699.01 1799.94 5599.15 4899.87 4099.80 51
新几何199.75 5299.75 6299.59 6999.54 7396.76 24699.29 15599.64 16898.43 8299.94 5596.92 27099.66 12199.72 89
112199.09 9698.87 10699.75 5299.74 7099.60 6699.27 22299.48 14296.82 24599.25 16799.65 16198.38 8799.93 7097.53 22799.67 12099.73 83
test1299.75 5299.64 11799.61 6499.29 26699.21 17698.38 8799.89 11599.74 10399.74 76
CPTT-MVS99.11 9298.90 10299.74 5799.80 4199.46 9399.59 8199.49 13097.03 22999.63 7499.69 14197.27 12799.96 1997.82 19799.84 6599.81 42
LS3D99.27 6399.12 6999.74 5799.18 24199.75 3999.56 10099.57 5198.45 7199.49 10999.85 2997.77 11399.94 5598.33 15699.84 6599.52 151
ETH3 D test640098.70 14298.35 15899.73 5999.69 9699.60 6699.16 24799.45 18295.42 31099.27 16099.60 18797.39 12099.91 9295.36 30999.83 7399.70 98
Regformer-499.59 399.54 499.73 5999.76 5299.41 9899.58 8899.49 13099.02 1599.88 599.80 7699.00 2399.94 5599.45 1999.92 1199.84 19
VNet99.11 9298.90 10299.73 5999.52 15099.56 7499.41 17299.39 21399.01 1899.74 4299.78 9595.56 18399.92 8199.52 798.18 21299.72 89
ETH3D cwj APD-0.1699.06 10098.84 11299.72 6299.51 15299.60 6699.23 23699.44 19197.04 22799.39 13399.67 15498.30 9399.92 8197.27 24399.69 11399.64 122
Regformer-199.53 1199.47 999.72 6299.71 8699.44 9599.49 13899.46 17098.95 3299.83 1899.76 10699.01 1799.93 7099.17 4599.87 4099.80 51
114514_t98.93 11598.67 13099.72 6299.85 2599.53 8199.62 6899.59 4392.65 34199.71 4899.78 9598.06 10699.90 10798.84 8699.91 1699.74 76
PHI-MVS99.30 5799.17 6599.70 6599.56 14499.52 8499.58 8899.80 897.12 21899.62 7899.73 12498.58 7199.90 10798.61 12199.91 1699.68 105
Regformer-399.57 799.53 599.68 6699.76 5299.29 10999.58 8899.44 19199.01 1899.87 1099.80 7698.97 2599.91 9299.44 2199.92 1199.83 30
test_prior399.21 6999.05 7699.68 6699.67 10199.48 8998.96 29499.56 5798.34 8499.01 21399.52 21598.68 6499.83 14697.96 18599.74 10399.74 76
test_prior99.68 6699.67 10199.48 8999.56 5799.83 14699.74 76
DPM-MVS98.95 11498.71 12699.66 6999.63 12099.55 7698.64 32899.10 29097.93 13499.42 12299.55 20398.67 6799.80 16295.80 29899.68 11899.61 130
PAPM_NR99.04 10398.84 11299.66 6999.74 7099.44 9599.39 18499.38 21997.70 15999.28 15799.28 28598.34 9199.85 13296.96 26599.45 13699.69 101
MVS_111021_HR99.41 4399.32 3199.66 6999.72 8099.47 9198.95 29899.85 698.82 4499.54 9899.73 12498.51 7699.74 18098.91 7199.88 3699.77 65
AdaColmapbinary99.01 10998.80 11799.66 6999.56 14499.54 7899.18 24599.70 1598.18 10499.35 14499.63 17496.32 15799.90 10797.48 23199.77 9599.55 143
原ACMM199.65 7399.73 7599.33 10399.47 16097.46 18399.12 19299.66 16098.67 6799.91 9297.70 21199.69 11399.71 96
DELS-MVS99.48 1999.42 1399.65 7399.72 8099.40 10099.05 27099.66 2799.14 699.57 9299.80 7698.46 8099.94 5599.57 499.84 6599.60 132
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon99.12 8798.95 9799.65 7399.74 7099.70 4799.27 22299.57 5196.40 27799.42 12299.68 14898.75 5799.80 16297.98 18499.72 10799.44 172
MVS_111021_LR99.41 4399.33 2999.65 7399.77 4999.51 8698.94 30099.85 698.82 4499.65 7199.74 11798.51 7699.80 16298.83 8999.89 3399.64 122
HyFIR lowres test99.11 9298.92 9999.65 7399.90 399.37 10199.02 27999.91 397.67 16499.59 8899.75 11195.90 17299.73 18799.53 699.02 17099.86 12
OPU-MVS99.64 7899.56 14499.72 4399.60 7599.70 13399.27 599.42 24998.24 16299.80 8699.79 55
EI-MVSNet-UG-set99.58 499.57 199.64 7899.78 4499.14 12999.60 7599.45 18299.01 1899.90 399.83 4298.98 2499.93 7099.59 299.95 699.86 12
EI-MVSNet-Vis-set99.58 499.56 399.64 7899.78 4499.15 12899.61 7499.45 18299.01 1899.89 499.82 4999.01 1799.92 8199.56 599.95 699.85 15
F-COLMAP99.19 7199.04 7999.64 7899.78 4499.27 11299.42 17099.54 7397.29 20299.41 12699.59 19098.42 8599.93 7098.19 16599.69 11399.73 83
DeepC-MVS98.35 299.30 5799.19 6399.64 7899.82 3799.23 11699.62 6899.55 6698.94 3399.63 7499.95 295.82 17599.94 5599.37 2399.97 399.73 83
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PVSNet_Blended_VisFu99.36 5099.28 5099.61 8399.86 2199.07 13899.47 14999.93 297.66 16599.71 4899.86 2397.73 11499.96 1999.47 1799.82 7999.79 55
WTY-MVS99.06 10098.88 10599.61 8399.62 12699.16 12499.37 19299.56 5798.04 12699.53 10099.62 18096.84 13999.94 5598.85 8498.49 19999.72 89
CANet99.25 6799.14 6799.59 8599.41 18399.16 12499.35 20299.57 5198.82 4499.51 10599.61 18496.46 15299.95 4499.59 299.98 299.65 115
1112_ss98.98 11198.77 12099.59 8599.68 10099.02 14299.25 23399.48 14297.23 20999.13 19099.58 19396.93 13899.90 10798.87 7898.78 18699.84 19
CNLPA99.14 7998.99 8999.59 8599.58 13899.41 9899.16 24799.44 19198.45 7199.19 18299.49 22598.08 10599.89 11597.73 20699.75 10099.48 162
alignmvs98.81 13398.56 14899.58 8899.43 17999.42 9799.51 12298.96 30598.61 6099.35 14498.92 32394.78 21199.77 17299.35 2498.11 21899.54 145
DROMVSNet99.44 3099.39 1799.58 8899.56 14499.49 8799.88 199.58 4998.38 7899.73 4499.69 14198.20 9899.70 20399.64 199.82 7999.54 145
Test_1112_low_res98.89 11798.66 13399.57 9099.69 9698.95 15599.03 27699.47 16096.98 23199.15 18899.23 29296.77 14399.89 11598.83 8998.78 18699.86 12
IS-MVSNet99.05 10298.87 10699.57 9099.73 7599.32 10499.75 2999.20 27998.02 12999.56 9399.86 2396.54 15099.67 20998.09 17499.13 15899.73 83
casdiffmvs99.13 8198.98 9299.56 9299.65 11599.16 12499.56 10099.50 12298.33 8799.41 12699.86 2395.92 17099.83 14699.45 1999.16 15499.70 98
Vis-MVSNetpermissive99.12 8798.97 9399.56 9299.78 4499.10 13499.68 4399.66 2798.49 6799.86 1199.87 2094.77 21499.84 13799.19 4299.41 13999.74 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_yl98.86 12198.63 13599.54 9499.49 16299.18 12199.50 12899.07 29598.22 9899.61 8199.51 21995.37 18999.84 13798.60 12498.33 20299.59 136
DCV-MVSNet98.86 12198.63 13599.54 9499.49 16299.18 12199.50 12899.07 29598.22 9899.61 8199.51 21995.37 18999.84 13798.60 12498.33 20299.59 136
testdata99.54 9499.75 6298.95 15599.51 10397.07 22499.43 11999.70 13398.87 4099.94 5597.76 20299.64 12499.72 89
LFMVS97.90 21797.35 26299.54 9499.52 15099.01 14499.39 18498.24 34297.10 22299.65 7199.79 8884.79 35299.91 9299.28 3498.38 20199.69 101
ab-mvs98.86 12198.63 13599.54 9499.64 11799.19 11999.44 15799.54 7397.77 15199.30 15299.81 6294.20 23699.93 7099.17 4598.82 18399.49 161
MAR-MVS98.86 12198.63 13599.54 9499.37 19499.66 5599.45 15399.54 7396.61 25899.01 21399.40 25497.09 13199.86 12697.68 21499.53 13499.10 195
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GeoE98.85 12998.62 14099.53 10099.61 13099.08 13699.80 1799.51 10397.10 22299.31 15099.78 9595.23 19799.77 17298.21 16399.03 16899.75 71
baseline99.15 7899.02 8499.53 10099.66 11099.14 12999.72 3399.48 14298.35 8399.42 12299.84 3896.07 16399.79 16599.51 999.14 15799.67 108
sss99.17 7599.05 7699.53 10099.62 12698.97 14999.36 19699.62 3397.83 14399.67 6199.65 16197.37 12499.95 4499.19 4299.19 15399.68 105
EPP-MVSNet99.13 8198.99 8999.53 10099.65 11599.06 13999.81 1399.33 24597.43 19099.60 8599.88 1597.14 12999.84 13799.13 4998.94 17499.69 101
PLCcopyleft97.94 499.02 10698.85 11199.53 10099.66 11099.01 14499.24 23599.52 9096.85 24199.27 16099.48 23198.25 9699.91 9297.76 20299.62 12799.65 115
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG98.98 11198.80 11799.53 10099.76 5299.19 11998.75 31899.55 6697.25 20699.47 11199.77 10297.82 11199.87 12396.93 26899.90 2399.54 145
PatchMatch-RL98.84 13298.62 14099.52 10699.71 8699.28 11099.06 26899.77 997.74 15699.50 10699.53 21295.41 18799.84 13797.17 25499.64 12499.44 172
OpenMVScopyleft96.50 1698.47 15498.12 17299.52 10699.04 27099.53 8199.82 1199.72 1194.56 32598.08 30599.88 1594.73 21799.98 697.47 23399.76 9899.06 206
Fast-Effi-MVS+98.70 14298.43 15399.51 10899.51 15299.28 11099.52 11899.47 16096.11 29999.01 21399.34 27196.20 16199.84 13797.88 19198.82 18399.39 178
canonicalmvs99.02 10698.86 11099.51 10899.42 18099.32 10499.80 1799.48 14298.63 5899.31 15098.81 32697.09 13199.75 17999.27 3697.90 22299.47 167
diffmvs99.14 7999.02 8499.51 10899.61 13098.96 15399.28 21799.49 13098.46 7099.72 4799.71 12996.50 15199.88 12099.31 3199.11 15999.67 108
PAPR98.63 15098.34 15999.51 10899.40 18899.03 14198.80 31399.36 22996.33 27899.00 21899.12 30698.46 8099.84 13795.23 31199.37 14499.66 111
Effi-MVS+98.81 13398.59 14699.48 11299.46 17199.12 13398.08 35199.50 12297.50 18299.38 13699.41 25096.37 15699.81 15799.11 5198.54 19699.51 157
MVS97.28 28096.55 28899.48 11298.78 30398.95 15599.27 22299.39 21383.53 35698.08 30599.54 20896.97 13699.87 12394.23 32399.16 15499.63 126
MVS_Test99.10 9598.97 9399.48 11299.49 16299.14 12999.67 4699.34 23897.31 20099.58 9099.76 10697.65 11699.82 15398.87 7899.07 16599.46 169
HY-MVS97.30 798.85 12998.64 13499.47 11599.42 18099.08 13699.62 6899.36 22997.39 19599.28 15799.68 14896.44 15499.92 8198.37 15298.22 20899.40 177
PCF-MVS97.08 1497.66 26097.06 28199.47 11599.61 13099.09 13598.04 35299.25 27191.24 34698.51 28299.70 13394.55 22699.91 9292.76 34099.85 5899.42 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
lupinMVS99.13 8199.01 8899.46 11799.51 15298.94 15899.05 27099.16 28497.86 13899.80 2599.56 20097.39 12099.86 12698.94 6699.85 5899.58 140
EIA-MVS99.18 7399.09 7399.45 11899.49 16299.18 12199.67 4699.53 8497.66 16599.40 13199.44 24098.10 10499.81 15798.94 6699.62 12799.35 180
CS-MVS-test99.30 5799.25 5699.45 11899.46 17199.23 11699.80 1799.57 5198.28 9099.53 10099.44 24098.16 10299.79 16599.38 2299.61 12999.34 182
jason99.13 8199.03 8199.45 11899.46 17198.87 16599.12 25599.26 26998.03 12899.79 2799.65 16197.02 13499.85 13299.02 5999.90 2399.65 115
jason: jason.
CHOSEN 1792x268899.19 7199.10 7199.45 11899.89 898.52 19999.39 18499.94 198.73 5399.11 19499.89 1095.50 18599.94 5599.50 1099.97 399.89 2
MG-MVS99.13 8199.02 8499.45 11899.57 14098.63 18799.07 26599.34 23898.99 2599.61 8199.82 4997.98 10899.87 12397.00 26199.80 8699.85 15
MSLP-MVS++99.46 2499.47 999.44 12399.60 13499.16 12499.41 17299.71 1398.98 2799.45 11499.78 9599.19 899.54 23399.28 3499.84 6599.63 126
CS-MVS99.34 5299.31 3899.43 12499.44 17899.47 9199.68 4399.56 5798.41 7599.62 7899.41 25098.35 9099.76 17699.52 799.76 9899.05 207
PVSNet_Blended99.08 9898.97 9399.42 12599.76 5298.79 17698.78 31599.91 396.74 24799.67 6199.49 22597.53 11799.88 12098.98 6299.85 5899.60 132
ETV-MVS99.26 6599.21 6199.40 12699.46 17199.30 10899.56 10099.52 9098.52 6599.44 11899.27 28898.41 8699.86 12699.10 5299.59 13099.04 208
BH-RMVSNet98.41 16098.08 17799.40 12699.41 18398.83 17299.30 21198.77 32297.70 15998.94 22699.65 16192.91 26499.74 18096.52 28499.55 13399.64 122
UGNet98.87 11898.69 12899.40 12699.22 23298.72 18099.44 15799.68 1999.24 399.18 18599.42 24692.74 26899.96 1999.34 2899.94 999.53 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline198.31 16797.95 19299.38 12999.50 16098.74 17899.59 8198.93 30798.41 7599.14 18999.60 18794.59 22399.79 16598.48 14093.29 32999.61 130
TSAR-MVS + GP.99.36 5099.36 2299.36 13099.67 10198.61 19099.07 26599.33 24599.00 2299.82 2199.81 6299.06 1499.84 13799.09 5399.42 13899.65 115
Anonymous2024052998.09 18997.68 22199.34 13199.66 11098.44 20799.40 18099.43 19993.67 33299.22 17399.89 1090.23 31799.93 7099.26 3798.33 20299.66 111
xiu_mvs_v1_base_debu99.29 6099.27 5299.34 13199.63 12098.97 14999.12 25599.51 10398.86 4099.84 1399.47 23498.18 9999.99 199.50 1099.31 14599.08 200
xiu_mvs_v1_base99.29 6099.27 5299.34 13199.63 12098.97 14999.12 25599.51 10398.86 4099.84 1399.47 23498.18 9999.99 199.50 1099.31 14599.08 200
xiu_mvs_v1_base_debi99.29 6099.27 5299.34 13199.63 12098.97 14999.12 25599.51 10398.86 4099.84 1399.47 23498.18 9999.99 199.50 1099.31 14599.08 200
PMMVS98.80 13698.62 14099.34 13199.27 22098.70 18198.76 31799.31 25797.34 19799.21 17699.07 30897.20 12899.82 15398.56 13298.87 18099.52 151
CSCG99.32 5599.32 3199.32 13699.85 2598.29 21399.71 3599.66 2798.11 11299.41 12699.80 7698.37 8999.96 1998.99 6199.96 599.72 89
thisisatest053098.35 16598.03 18299.31 13799.63 12098.56 19299.54 11296.75 35997.53 17999.73 4499.65 16191.25 30799.89 11598.62 11899.56 13199.48 162
AllTest98.87 11898.72 12499.31 13799.86 2198.48 20599.56 10099.61 3597.85 14099.36 14199.85 2995.95 16799.85 13296.66 28299.83 7399.59 136
TestCases99.31 13799.86 2198.48 20599.61 3597.85 14099.36 14199.85 2995.95 16799.85 13296.66 28299.83 7399.59 136
Vis-MVSNet (Re-imp)98.87 11898.72 12499.31 13799.71 8698.88 16499.80 1799.44 19197.91 13699.36 14199.78 9595.49 18699.43 24897.91 18999.11 15999.62 128
PS-MVSNAJ99.32 5599.32 3199.30 14199.57 14098.94 15898.97 29399.46 17098.92 3799.71 4899.24 29199.01 1799.98 699.35 2499.66 12198.97 216
VPA-MVSNet98.29 17097.95 19299.30 14199.16 24999.54 7899.50 12899.58 4998.27 9399.35 14499.37 26292.53 27899.65 21699.35 2494.46 31398.72 243
EPNet98.86 12198.71 12699.30 14197.20 34998.18 21899.62 6898.91 31299.28 298.63 27399.81 6295.96 16699.99 199.24 3899.72 10799.73 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_part197.75 24297.24 27599.29 14499.59 13699.63 6199.65 5799.49 13096.17 29298.44 28799.69 14189.80 32199.47 23698.68 11193.66 32598.78 229
xiu_mvs_v2_base99.26 6599.25 5699.29 14499.53 14898.91 16299.02 27999.45 18298.80 4899.71 4899.26 28998.94 3299.98 699.34 2899.23 15098.98 215
MVSFormer99.17 7599.12 6999.29 14499.51 15298.94 15899.88 199.46 17097.55 17499.80 2599.65 16197.39 12099.28 27499.03 5799.85 5899.65 115
tttt051798.42 15898.14 17099.28 14799.66 11098.38 21199.74 3296.85 35797.68 16199.79 2799.74 11791.39 30499.89 11598.83 8999.56 13199.57 141
nrg03098.64 14998.42 15499.28 14799.05 26999.69 4899.81 1399.46 17098.04 12699.01 21399.82 4996.69 14699.38 25399.34 2894.59 31298.78 229
Anonymous20240521198.30 16997.98 18799.26 14999.57 14098.16 21999.41 17298.55 33896.03 30499.19 18299.74 11791.87 29199.92 8199.16 4798.29 20799.70 98
CANet_DTU98.97 11398.87 10699.25 15099.33 20298.42 21099.08 26499.30 26199.16 599.43 11999.75 11195.27 19399.97 1198.56 13299.95 699.36 179
CDS-MVSNet99.09 9699.03 8199.25 15099.42 18098.73 17999.45 15399.46 17098.11 11299.46 11399.77 10298.01 10799.37 25698.70 10698.92 17799.66 111
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XXY-MVS98.38 16398.09 17699.24 15299.26 22299.32 10499.56 10099.55 6697.45 18698.71 25699.83 4293.23 25699.63 22498.88 7496.32 27498.76 235
TAMVS99.12 8799.08 7499.24 15299.46 17198.55 19399.51 12299.46 17098.09 11599.45 11499.82 4998.34 9199.51 23498.70 10698.93 17599.67 108
FIs98.78 13798.63 13599.23 15499.18 24199.54 7899.83 1099.59 4398.28 9098.79 24999.81 6296.75 14499.37 25699.08 5496.38 27298.78 229
OMC-MVS99.08 9899.04 7999.20 15599.67 10198.22 21799.28 21799.52 9098.07 12099.66 6699.81 6297.79 11299.78 17097.79 19999.81 8299.60 132
thisisatest051598.14 18497.79 20699.19 15699.50 16098.50 20298.61 32996.82 35896.95 23599.54 9899.43 24391.66 30099.86 12698.08 17899.51 13599.22 189
RPMNet96.72 29095.90 30099.19 15699.18 24198.49 20399.22 24199.52 9088.72 35299.56 9397.38 34994.08 24299.95 4486.87 35998.58 19299.14 192
COLMAP_ROBcopyleft97.56 698.86 12198.75 12399.17 15899.88 1198.53 19599.34 20599.59 4397.55 17498.70 26299.89 1095.83 17499.90 10798.10 17399.90 2399.08 200
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDDNet97.55 26597.02 28299.16 15999.49 16298.12 22399.38 18999.30 26195.35 31199.68 5599.90 782.62 35699.93 7099.31 3198.13 21799.42 174
mvs_anonymous99.03 10598.99 8999.16 15999.38 19298.52 19999.51 12299.38 21997.79 14999.38 13699.81 6297.30 12599.45 23999.35 2498.99 17299.51 157
FC-MVSNet-test98.75 14098.62 14099.15 16199.08 26399.45 9499.86 699.60 4098.23 9798.70 26299.82 4996.80 14099.22 28499.07 5596.38 27298.79 228
UniMVSNet (Re)98.29 17098.00 18599.13 16299.00 27599.36 10299.49 13899.51 10397.95 13298.97 22299.13 30396.30 15899.38 25398.36 15493.34 32898.66 273
131498.68 14598.54 14999.11 16398.89 28798.65 18599.27 22299.49 13096.89 23997.99 31099.56 20097.72 11599.83 14697.74 20599.27 14898.84 225
CHOSEN 280x42099.12 8799.13 6899.08 16499.66 11097.89 23498.43 33999.71 1398.88 3999.62 7899.76 10696.63 14799.70 20399.46 1899.99 199.66 111
PAPM97.59 26497.09 28099.07 16599.06 26698.26 21698.30 34699.10 29094.88 31998.08 30599.34 27196.27 15999.64 21989.87 34998.92 17799.31 185
WR-MVS98.06 19297.73 21799.06 16698.86 29599.25 11499.19 24499.35 23497.30 20198.66 26599.43 24393.94 24599.21 28998.58 12794.28 31798.71 245
API-MVS99.04 10399.03 8199.06 16699.40 18899.31 10799.55 10999.56 5798.54 6399.33 14899.39 25898.76 5499.78 17096.98 26399.78 9298.07 334
ET-MVSNet_ETH3D96.49 29495.64 30599.05 16899.53 14898.82 17398.84 30997.51 35497.63 16784.77 35799.21 29692.09 28898.91 32998.98 6292.21 33999.41 176
RRT_MVS98.60 15198.44 15299.05 16898.88 28899.14 12999.49 13899.38 21997.76 15299.29 15599.86 2395.38 18899.36 26098.81 9497.16 25898.64 277
SD-MVS99.41 4399.52 699.05 16899.74 7099.68 5099.46 15299.52 9099.11 799.88 599.91 599.43 197.70 35198.72 10499.93 1099.77 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_BlendedMVS98.86 12198.80 11799.03 17199.76 5298.79 17699.28 21799.91 397.42 19299.67 6199.37 26297.53 11799.88 12098.98 6297.29 25398.42 317
NR-MVSNet97.97 21097.61 22899.02 17298.87 29299.26 11399.47 14999.42 20197.63 16797.08 33199.50 22295.07 20099.13 29897.86 19393.59 32698.68 258
VPNet97.84 22697.44 25099.01 17399.21 23498.94 15899.48 14499.57 5198.38 7899.28 15799.73 12488.89 33099.39 25199.19 4293.27 33098.71 245
CP-MVSNet98.09 18997.78 20999.01 17398.97 28199.24 11599.67 4699.46 17097.25 20698.48 28599.64 16893.79 24999.06 30798.63 11794.10 32098.74 241
GA-MVS97.85 22397.47 24299.00 17599.38 19297.99 22798.57 33299.15 28597.04 22798.90 23299.30 28189.83 32099.38 25396.70 27998.33 20299.62 128
MVSTER98.49 15398.32 16199.00 17599.35 19799.02 14299.54 11299.38 21997.41 19399.20 17999.73 12493.86 24899.36 26098.87 7897.56 23498.62 287
tfpnnormal97.84 22697.47 24298.98 17799.20 23699.22 11899.64 6099.61 3596.32 27998.27 29999.70 13393.35 25599.44 24495.69 30095.40 29798.27 326
test_djsdf98.67 14698.57 14798.98 17798.70 31498.91 16299.88 199.46 17097.55 17499.22 17399.88 1595.73 17899.28 27499.03 5797.62 22998.75 237
hse-mvs397.70 25397.28 27198.97 17999.70 9397.27 25499.36 19699.45 18298.94 3399.66 6699.64 16894.93 20299.99 199.48 1584.36 35299.65 115
UniMVSNet_NR-MVSNet98.22 17397.97 18898.96 18098.92 28598.98 14699.48 14499.53 8497.76 15298.71 25699.46 23896.43 15599.22 28498.57 12992.87 33598.69 253
DU-MVS98.08 19197.79 20698.96 18098.87 29298.98 14699.41 17299.45 18297.87 13798.71 25699.50 22294.82 20899.22 28498.57 12992.87 33598.68 258
PS-CasMVS97.93 21297.59 23198.95 18298.99 27699.06 13999.68 4399.52 9097.13 21698.31 29699.68 14892.44 28499.05 30898.51 13894.08 32198.75 237
anonymousdsp98.44 15698.28 16498.94 18398.50 32998.96 15399.77 2599.50 12297.07 22498.87 23799.77 10294.76 21599.28 27498.66 11497.60 23098.57 302
TAPA-MVS97.07 1597.74 24597.34 26598.94 18399.70 9397.53 24799.25 23399.51 10391.90 34399.30 15299.63 17498.78 4999.64 21988.09 35599.87 4099.65 115
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v897.95 21197.63 22798.93 18598.95 28398.81 17599.80 1799.41 20396.03 30499.10 19799.42 24694.92 20499.30 27296.94 26794.08 32198.66 273
JIA-IIPM97.50 27197.02 28298.93 18598.73 30997.80 23999.30 21198.97 30391.73 34498.91 23094.86 35795.10 19999.71 19797.58 21997.98 22099.28 187
v7n97.87 22097.52 23698.92 18798.76 30798.58 19199.84 799.46 17096.20 28998.91 23099.70 13394.89 20699.44 24496.03 29393.89 32398.75 237
v2v48298.06 19297.77 21198.92 18798.90 28698.82 17399.57 9399.36 22996.65 25499.19 18299.35 26894.20 23699.25 27997.72 20894.97 30698.69 253
thres600view797.86 22297.51 23898.92 18799.72 8097.95 23299.59 8198.74 32697.94 13399.27 16098.62 33391.75 29499.86 12693.73 32898.19 21198.96 218
thres40097.77 23797.38 25898.92 18799.69 9697.96 23099.50 12898.73 33197.83 14399.17 18698.45 33891.67 29899.83 14693.22 33398.18 21298.96 218
v119297.81 23397.44 25098.91 19198.88 28898.68 18299.51 12299.34 23896.18 29199.20 17999.34 27194.03 24399.36 26095.32 31095.18 30198.69 253
mvs_tets98.40 16298.23 16698.91 19198.67 31798.51 20199.66 5099.53 8498.19 10198.65 27199.81 6292.75 26699.44 24499.31 3197.48 24498.77 233
Anonymous2023121197.88 21897.54 23598.90 19399.71 8698.53 19599.48 14499.57 5194.16 32898.81 24599.68 14893.23 25699.42 24998.84 8694.42 31598.76 235
PS-MVSNAJss98.92 11698.92 9998.90 19398.78 30398.53 19599.78 2399.54 7398.07 12099.00 21899.76 10699.01 1799.37 25699.13 4997.23 25498.81 226
WR-MVS_H98.13 18597.87 20298.90 19399.02 27398.84 16999.70 3699.59 4397.27 20498.40 29099.19 29795.53 18499.23 28198.34 15593.78 32498.61 296
mvs-test198.86 12198.84 11298.89 19699.33 20297.77 24099.44 15799.30 26198.47 6899.10 19799.43 24396.78 14199.95 4498.73 10299.02 17098.96 218
XVG-OURS-SEG-HR98.69 14498.62 14098.89 19699.71 8697.74 24199.12 25599.54 7398.44 7499.42 12299.71 12994.20 23699.92 8198.54 13798.90 17999.00 212
PVSNet96.02 1798.85 12998.84 11298.89 19699.73 7597.28 25398.32 34599.60 4097.86 13899.50 10699.57 19796.75 14499.86 12698.56 13299.70 11299.54 145
jajsoiax98.43 15798.28 16498.88 19998.60 32498.43 20899.82 1199.53 8498.19 10198.63 27399.80 7693.22 25899.44 24499.22 3997.50 24098.77 233
pm-mvs197.68 25697.28 27198.88 19999.06 26698.62 18899.50 12899.45 18296.32 27997.87 31399.79 8892.47 28099.35 26497.54 22693.54 32798.67 265
VDD-MVS97.73 24697.35 26298.88 19999.47 17097.12 26099.34 20598.85 31898.19 10199.67 6199.85 2982.98 35499.92 8199.49 1498.32 20699.60 132
XVG-OURS98.73 14198.68 12998.88 19999.70 9397.73 24298.92 30199.55 6698.52 6599.45 11499.84 3895.27 19399.91 9298.08 17898.84 18299.00 212
UniMVSNet_ETH3D97.32 27996.81 28598.87 20399.40 18897.46 24999.51 12299.53 8495.86 30698.54 28199.77 10282.44 35799.66 21298.68 11197.52 23799.50 160
v14419297.92 21597.60 22998.87 20398.83 29898.65 18599.55 10999.34 23896.20 28999.32 14999.40 25494.36 23199.26 27896.37 28995.03 30598.70 249
CR-MVSNet98.17 18097.93 19598.87 20399.18 24198.49 20399.22 24199.33 24596.96 23399.56 9399.38 25994.33 23299.00 31694.83 31798.58 19299.14 192
v1097.85 22397.52 23698.86 20698.99 27698.67 18399.75 2999.41 20395.70 30798.98 22099.41 25094.75 21699.23 28196.01 29494.63 31198.67 265
V4298.06 19297.79 20698.86 20698.98 27998.84 16999.69 3899.34 23896.53 26499.30 15299.37 26294.67 22099.32 26997.57 22394.66 31098.42 317
TransMVSNet (Re)97.15 28396.58 28798.86 20699.12 25498.85 16899.49 13898.91 31295.48 30997.16 32999.80 7693.38 25499.11 30394.16 32591.73 34098.62 287
v114497.98 20797.69 22098.85 20998.87 29298.66 18499.54 11299.35 23496.27 28399.23 17299.35 26894.67 22099.23 28196.73 27795.16 30298.68 258
v192192097.80 23597.45 24598.84 21098.80 29998.53 19599.52 11899.34 23896.15 29699.24 16899.47 23493.98 24499.29 27395.40 30795.13 30398.69 253
FMVSNet398.03 19897.76 21498.84 21099.39 19198.98 14699.40 18099.38 21996.67 25299.07 20499.28 28592.93 26198.98 31897.10 25696.65 26398.56 303
baseline297.87 22097.55 23298.82 21299.18 24198.02 22599.41 17296.58 36196.97 23296.51 33699.17 29893.43 25399.57 22997.71 20999.03 16898.86 223
TR-MVS97.76 23897.41 25598.82 21299.06 26697.87 23598.87 30798.56 33796.63 25798.68 26499.22 29392.49 27999.65 21695.40 30797.79 22498.95 221
pmmvs498.13 18597.90 19798.81 21498.61 32398.87 16598.99 28699.21 27896.44 27399.06 20899.58 19395.90 17299.11 30397.18 25396.11 27898.46 314
Patchmtry97.75 24297.40 25698.81 21499.10 25998.87 16599.11 26199.33 24594.83 32098.81 24599.38 25994.33 23299.02 31396.10 29195.57 29398.53 304
FMVSNet297.72 24897.36 26098.80 21699.51 15298.84 16999.45 15399.42 20196.49 26698.86 24299.29 28390.26 31498.98 31896.44 28696.56 26698.58 301
v124097.69 25497.32 26898.79 21798.85 29698.43 20899.48 14499.36 22996.11 29999.27 16099.36 26593.76 25199.24 28094.46 32095.23 30098.70 249
PatchT97.03 28696.44 29098.79 21798.99 27698.34 21299.16 24799.07 29592.13 34299.52 10397.31 35294.54 22798.98 31888.54 35398.73 18899.03 209
Patchmatch-test97.93 21297.65 22498.77 21999.18 24197.07 26599.03 27699.14 28796.16 29498.74 25399.57 19794.56 22599.72 19193.36 33299.11 15999.52 151
TranMVSNet+NR-MVSNet97.93 21297.66 22398.76 22098.78 30398.62 18899.65 5799.49 13097.76 15298.49 28499.60 18794.23 23598.97 32598.00 18392.90 33398.70 249
gg-mvs-nofinetune96.17 30195.32 30998.73 22198.79 30098.14 22199.38 18994.09 36691.07 34898.07 30891.04 36289.62 32599.35 26496.75 27599.09 16398.68 258
bset_n11_16_dypcd98.16 18197.97 18898.73 22198.26 33498.28 21597.99 35398.01 34797.68 16199.10 19799.63 17495.68 18099.15 29498.78 9896.55 26798.75 237
tfpn200view997.72 24897.38 25898.72 22399.69 9697.96 23099.50 12898.73 33197.83 14399.17 18698.45 33891.67 29899.83 14693.22 33398.18 21298.37 323
PEN-MVS97.76 23897.44 25098.72 22398.77 30698.54 19499.78 2399.51 10397.06 22698.29 29899.64 16892.63 27598.89 33198.09 17493.16 33198.72 243
thres100view90097.76 23897.45 24598.69 22599.72 8097.86 23799.59 8198.74 32697.93 13499.26 16598.62 33391.75 29499.83 14693.22 33398.18 21298.37 323
EI-MVSNet98.67 14698.67 13098.68 22699.35 19797.97 22899.50 12899.38 21996.93 23899.20 17999.83 4297.87 10999.36 26098.38 15097.56 23498.71 245
Baseline_NR-MVSNet97.76 23897.45 24598.68 22699.09 26198.29 21399.41 17298.85 31895.65 30898.63 27399.67 15494.82 20899.10 30598.07 18192.89 33498.64 277
thres20097.61 26397.28 27198.62 22899.64 11798.03 22499.26 23198.74 32697.68 16199.09 20298.32 34291.66 30099.81 15792.88 33798.22 20898.03 337
Fast-Effi-MVS+-dtu98.77 13998.83 11698.60 22999.41 18396.99 27499.52 11899.49 13098.11 11299.24 16899.34 27196.96 13799.79 16597.95 18799.45 13699.02 211
hse-mvs297.50 27197.14 27898.59 23099.49 16297.05 26799.28 21799.22 27598.94 3399.66 6699.42 24694.93 20299.65 21699.48 1583.80 35499.08 200
AUN-MVS96.88 28796.31 29298.59 23099.48 16997.04 27099.27 22299.22 27597.44 18998.51 28299.41 25091.97 28999.66 21297.71 20983.83 35399.07 205
BH-untuned98.42 15898.36 15698.59 23099.49 16296.70 28699.27 22299.13 28897.24 20898.80 24799.38 25995.75 17799.74 18097.07 25999.16 15499.33 184
IterMVS-LS98.46 15598.42 15498.58 23399.59 13698.00 22699.37 19299.43 19996.94 23799.07 20499.59 19097.87 10999.03 31198.32 15895.62 29298.71 245
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet97.73 24697.45 24598.57 23499.45 17797.50 24899.02 27998.98 30296.11 29999.41 12699.14 30290.28 31398.74 33395.74 29998.93 17599.47 167
IB-MVS95.67 1896.22 29895.44 30898.57 23499.21 23496.70 28698.65 32797.74 35296.71 24997.27 32598.54 33686.03 34899.92 8198.47 14386.30 35099.10 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet98.20 17698.08 17798.56 23699.33 20296.48 29499.23 23699.15 28596.24 28699.10 19799.67 15494.11 24099.71 19796.81 27399.05 16699.48 162
test0.0.03 197.71 25297.42 25498.56 23698.41 33297.82 23898.78 31598.63 33597.34 19798.05 30998.98 32094.45 22998.98 31895.04 31497.15 25998.89 222
cl-mvsnet____98.01 20397.84 20498.55 23899.25 22697.97 22898.71 32299.34 23896.47 27298.59 27999.54 20895.65 18299.21 28997.21 24795.77 28798.46 314
test-LLR98.06 19297.90 19798.55 23898.79 30097.10 26198.67 32497.75 35097.34 19798.61 27698.85 32494.45 22999.45 23997.25 24599.38 14099.10 195
test-mter97.49 27497.13 27998.55 23898.79 30097.10 26198.67 32497.75 35096.65 25498.61 27698.85 32488.23 33899.45 23997.25 24599.38 14099.10 195
v14897.79 23697.55 23298.50 24198.74 30897.72 24399.54 11299.33 24596.26 28498.90 23299.51 21994.68 21999.14 29597.83 19693.15 33298.63 285
LPG-MVS_test98.22 17398.13 17198.49 24299.33 20297.05 26799.58 8899.55 6697.46 18399.24 16899.83 4292.58 27699.72 19198.09 17497.51 23898.68 258
LGP-MVS_train98.49 24299.33 20297.05 26799.55 6697.46 18399.24 16899.83 4292.58 27699.72 19198.09 17497.51 23898.68 258
cl-mvsnet297.85 22397.64 22698.48 24499.09 26197.87 23598.60 33199.33 24597.11 22198.87 23799.22 29392.38 28599.17 29398.21 16395.99 28198.42 317
cl-mvsnet198.01 20397.85 20398.48 24499.24 22797.95 23298.71 32299.35 23496.50 26598.60 27899.54 20895.72 17999.03 31197.21 24795.77 28798.46 314
cascas97.69 25497.43 25398.48 24498.60 32497.30 25298.18 35099.39 21392.96 34098.41 28998.78 32993.77 25099.27 27798.16 17098.61 18998.86 223
ACMM97.58 598.37 16498.34 15998.48 24499.41 18397.10 26199.56 10099.45 18298.53 6499.04 21099.85 2993.00 26099.71 19798.74 10097.45 24598.64 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu98.78 13798.89 10498.47 24899.33 20296.91 28099.57 9399.30 26198.47 6899.41 12698.99 31796.78 14199.74 18098.73 10299.38 14098.74 241
DTE-MVSNet97.51 27097.19 27798.46 24998.63 32098.13 22299.84 799.48 14296.68 25197.97 31199.67 15492.92 26298.56 33596.88 27292.60 33898.70 249
OPM-MVS98.19 17798.10 17398.45 25098.88 28897.07 26599.28 21799.38 21998.57 6299.22 17399.81 6292.12 28799.66 21298.08 17897.54 23698.61 296
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
GG-mvs-BLEND98.45 25098.55 32798.16 21999.43 16393.68 36797.23 32698.46 33789.30 32799.22 28495.43 30698.22 20897.98 342
ACMP97.20 1198.06 19297.94 19498.45 25099.37 19497.01 27299.44 15799.49 13097.54 17798.45 28699.79 8891.95 29099.72 19197.91 18997.49 24398.62 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP_MVS98.27 17298.22 16798.44 25399.29 21596.97 27699.39 18499.47 16098.97 3099.11 19499.61 18492.71 27199.69 20797.78 20097.63 22798.67 265
ACMH97.28 898.10 18897.99 18698.44 25399.41 18396.96 27899.60 7599.56 5798.09 11598.15 30399.91 590.87 31199.70 20398.88 7497.45 24598.67 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth98.18 17998.10 17398.41 25599.23 22897.72 24398.72 32199.31 25796.60 26098.88 23599.29 28397.29 12699.13 29897.60 21795.99 28198.38 322
miper_enhance_ethall98.16 18198.08 17798.41 25598.96 28297.72 24398.45 33899.32 25496.95 23598.97 22299.17 29897.06 13399.22 28497.86 19395.99 28198.29 325
TESTMET0.1,197.55 26597.27 27498.40 25798.93 28496.53 29298.67 32497.61 35396.96 23398.64 27299.28 28588.63 33499.45 23997.30 24299.38 14099.21 190
LTVRE_ROB97.16 1298.02 20097.90 19798.40 25799.23 22896.80 28499.70 3699.60 4097.12 21898.18 30299.70 13391.73 29699.72 19198.39 14897.45 24598.68 258
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl_fuxian98.12 18798.04 18198.38 25999.30 21197.69 24698.81 31299.33 24596.67 25298.83 24399.34 27197.11 13098.99 31797.58 21995.34 29898.48 308
HQP-MVS98.02 20097.90 19798.37 26099.19 23896.83 28198.98 29099.39 21398.24 9498.66 26599.40 25492.47 28099.64 21997.19 25197.58 23298.64 277
EPMVS97.82 23197.65 22498.35 26198.88 28895.98 30699.49 13894.71 36597.57 17299.26 16599.48 23192.46 28399.71 19797.87 19299.08 16499.35 180
eth_miper_zixun_eth98.05 19797.96 19098.33 26299.26 22297.38 25198.56 33499.31 25796.65 25498.88 23599.52 21596.58 14899.12 30297.39 24095.53 29598.47 310
CLD-MVS98.16 18198.10 17398.33 26299.29 21596.82 28398.75 31899.44 19197.83 14399.13 19099.55 20392.92 26299.67 20998.32 15897.69 22698.48 308
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-w/o98.00 20597.89 20198.32 26499.35 19796.20 30399.01 28498.90 31496.42 27598.38 29199.00 31695.26 19599.72 19196.06 29298.61 18999.03 209
ACMH+97.24 1097.92 21597.78 20998.32 26499.46 17196.68 28899.56 10099.54 7398.41 7597.79 31799.87 2090.18 31899.66 21298.05 18297.18 25798.62 287
CVMVSNet98.57 15298.67 13098.30 26699.35 19795.59 31399.50 12899.55 6698.60 6199.39 13399.83 4294.48 22899.45 23998.75 9998.56 19599.85 15
GBi-Net97.68 25697.48 24098.29 26799.51 15297.26 25699.43 16399.48 14296.49 26699.07 20499.32 27890.26 31498.98 31897.10 25696.65 26398.62 287
test197.68 25697.48 24098.29 26799.51 15297.26 25699.43 16399.48 14296.49 26699.07 20499.32 27890.26 31498.98 31897.10 25696.65 26398.62 287
FMVSNet196.84 28896.36 29198.29 26799.32 20997.26 25699.43 16399.48 14295.11 31498.55 28099.32 27883.95 35398.98 31895.81 29796.26 27598.62 287
miper_lstm_enhance98.00 20597.91 19698.28 27099.34 20197.43 25098.88 30599.36 22996.48 27098.80 24799.55 20395.98 16598.91 32997.27 24395.50 29698.51 306
SCA98.19 17798.16 16898.27 27199.30 21195.55 31499.07 26598.97 30397.57 17299.43 11999.57 19792.72 26999.74 18097.58 21999.20 15299.52 151
EPNet_dtu98.03 19897.96 19098.23 27298.27 33395.54 31699.23 23698.75 32399.02 1597.82 31599.71 12996.11 16299.48 23593.04 33699.65 12399.69 101
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-ACMP-BASELINE97.83 22897.71 21998.20 27399.11 25696.33 29999.41 17299.52 9098.06 12499.05 20999.50 22289.64 32499.73 18797.73 20697.38 25198.53 304
OurMVSNet-221017-097.88 21897.77 21198.19 27498.71 31396.53 29299.88 199.00 30097.79 14998.78 25099.94 391.68 29799.35 26497.21 24796.99 26198.69 253
PatchmatchNetpermissive98.31 16798.36 15698.19 27499.16 24995.32 32299.27 22298.92 30997.37 19699.37 13899.58 19394.90 20599.70 20397.43 23899.21 15199.54 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs597.52 26897.30 27098.16 27698.57 32696.73 28599.27 22298.90 31496.14 29798.37 29299.53 21291.54 30399.14 29597.51 22995.87 28598.63 285
D2MVS98.41 16098.50 15098.15 27799.26 22296.62 29099.40 18099.61 3597.71 15898.98 22099.36 26596.04 16499.67 20998.70 10697.41 24998.15 332
testgi97.65 26197.50 23998.13 27899.36 19696.45 29599.42 17099.48 14297.76 15297.87 31399.45 23991.09 30898.81 33294.53 31998.52 19799.13 194
RRT_test8_iter0597.72 24897.60 22998.08 27999.23 22896.08 30599.63 6299.49 13097.54 17798.94 22699.81 6287.99 34199.35 26499.21 4196.51 26998.81 226
ITE_SJBPF98.08 27999.29 21596.37 29798.92 30998.34 8498.83 24399.75 11191.09 30899.62 22595.82 29697.40 25098.25 328
IterMVS-SCA-FT97.82 23197.75 21598.06 28199.57 14096.36 29899.02 27999.49 13097.18 21298.71 25699.72 12892.72 26999.14 29597.44 23795.86 28698.67 265
SixPastTwentyTwo97.50 27197.33 26798.03 28298.65 31896.23 30299.77 2598.68 33497.14 21597.90 31299.93 490.45 31299.18 29297.00 26196.43 27198.67 265
tpm97.67 25997.55 23298.03 28299.02 27395.01 32899.43 16398.54 33996.44 27399.12 19299.34 27191.83 29399.60 22797.75 20496.46 27099.48 162
IterMVS97.83 22897.77 21198.02 28499.58 13896.27 30199.02 27999.48 14297.22 21098.71 25699.70 13392.75 26699.13 29897.46 23496.00 28098.67 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet_test_wron95.45 30894.60 31498.01 28598.16 33697.21 25999.11 26199.24 27393.49 33580.73 36298.98 32093.02 25998.18 33994.22 32494.45 31498.64 277
K. test v397.10 28596.79 28698.01 28598.72 31196.33 29999.87 597.05 35697.59 16996.16 34099.80 7688.71 33199.04 30996.69 28096.55 26798.65 275
MVP-Stereo97.81 23397.75 21597.99 28797.53 34296.60 29198.96 29498.85 31897.22 21097.23 32699.36 26595.28 19299.46 23895.51 30499.78 9297.92 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TDRefinement95.42 30994.57 31597.97 28889.83 36496.11 30499.48 14498.75 32396.74 24796.68 33599.88 1588.65 33399.71 19798.37 15282.74 35598.09 333
PVSNet_094.43 1996.09 30395.47 30697.94 28999.31 21094.34 33897.81 35499.70 1597.12 21897.46 32198.75 33089.71 32299.79 16597.69 21281.69 35699.68 105
DWT-MVSNet_test97.53 26797.40 25697.93 29099.03 27294.86 33299.57 9398.63 33596.59 26298.36 29398.79 32789.32 32699.74 18098.14 17298.16 21699.20 191
MDA-MVSNet-bldmvs94.96 31393.98 31997.92 29198.24 33597.27 25499.15 25199.33 24593.80 33180.09 36399.03 31388.31 33797.86 34893.49 33194.36 31698.62 287
YYNet195.36 31094.51 31697.92 29197.89 33897.10 26199.10 26399.23 27493.26 33880.77 36199.04 31292.81 26598.02 34394.30 32194.18 31998.64 277
tpmrst98.33 16698.48 15197.90 29399.16 24994.78 33399.31 20999.11 28997.27 20499.45 11499.59 19095.33 19199.84 13798.48 14098.61 18999.09 199
ADS-MVSNet298.02 20098.07 18097.87 29499.33 20295.19 32599.23 23699.08 29396.24 28699.10 19799.67 15494.11 24098.93 32896.81 27399.05 16699.48 162
test_040296.64 29196.24 29397.85 29598.85 29696.43 29699.44 15799.26 26993.52 33496.98 33399.52 21588.52 33599.20 29192.58 34297.50 24097.93 345
tpmvs97.98 20798.02 18497.84 29699.04 27094.73 33499.31 20999.20 27996.10 30398.76 25299.42 24694.94 20199.81 15796.97 26498.45 20098.97 216
TinyColmap97.12 28496.89 28497.83 29799.07 26495.52 31798.57 33298.74 32697.58 17197.81 31699.79 8888.16 33999.56 23095.10 31297.21 25598.39 321
pmmvs696.53 29396.09 29697.82 29898.69 31595.47 31899.37 19299.47 16093.46 33697.41 32299.78 9587.06 34699.33 26896.92 27092.70 33798.65 275
EU-MVSNet97.98 20798.03 18297.81 29998.72 31196.65 28999.66 5099.66 2798.09 11598.35 29499.82 4995.25 19698.01 34497.41 23995.30 29998.78 229
lessismore_v097.79 30098.69 31595.44 32094.75 36495.71 34499.87 2088.69 33299.32 26995.89 29594.93 30898.62 287
USDC97.34 27897.20 27697.75 30199.07 26495.20 32498.51 33699.04 29897.99 13098.31 29699.86 2389.02 32899.55 23295.67 30297.36 25298.49 307
tpm297.44 27697.34 26597.74 30299.15 25294.36 33799.45 15398.94 30693.45 33798.90 23299.44 24091.35 30599.59 22897.31 24198.07 21999.29 186
CostFormer97.72 24897.73 21797.71 30399.15 25294.02 34099.54 11299.02 29994.67 32399.04 21099.35 26892.35 28699.77 17298.50 13997.94 22199.34 182
LF4IMVS97.52 26897.46 24497.70 30498.98 27995.55 31499.29 21598.82 32198.07 12098.66 26599.64 16889.97 31999.61 22697.01 26096.68 26297.94 344
ppachtmachnet_test97.49 27497.45 24597.61 30598.62 32195.24 32398.80 31399.46 17096.11 29998.22 30099.62 18096.45 15398.97 32593.77 32795.97 28498.61 296
MVS_030496.79 28996.52 28997.59 30699.22 23294.92 33199.04 27599.59 4396.49 26698.43 28898.99 31780.48 36099.39 25197.15 25599.27 14898.47 310
dp97.75 24297.80 20597.59 30699.10 25993.71 34399.32 20798.88 31696.48 27099.08 20399.55 20392.67 27499.82 15396.52 28498.58 19299.24 188
our_test_397.65 26197.68 22197.55 30898.62 32194.97 32998.84 30999.30 26196.83 24498.19 30199.34 27197.01 13599.02 31395.00 31596.01 27998.64 277
MVS-HIRNet95.75 30695.16 31097.51 30999.30 21193.69 34498.88 30595.78 36285.09 35598.78 25092.65 35991.29 30699.37 25694.85 31699.85 5899.46 169
tpm cat197.39 27797.36 26097.50 31099.17 24793.73 34299.43 16399.31 25791.27 34598.71 25699.08 30794.31 23499.77 17296.41 28898.50 19899.00 212
new_pmnet96.38 29796.03 29797.41 31198.13 33795.16 32799.05 27099.20 27993.94 32997.39 32398.79 32791.61 30299.04 30990.43 34795.77 28798.05 336
UnsupCasMVSNet_eth96.44 29596.12 29597.40 31298.65 31895.65 31199.36 19699.51 10397.13 21696.04 34298.99 31788.40 33698.17 34096.71 27890.27 34398.40 320
KD-MVS_2432*160094.62 31593.72 32197.31 31397.19 35095.82 30998.34 34299.20 27995.00 31797.57 31998.35 34087.95 34298.10 34192.87 33877.00 36098.01 338
miper_refine_blended94.62 31593.72 32197.31 31397.19 35095.82 30998.34 34299.20 27995.00 31797.57 31998.35 34087.95 34298.10 34192.87 33877.00 36098.01 338
pmmvs-eth3d95.34 31194.73 31397.15 31595.53 35795.94 30799.35 20299.10 29095.13 31293.55 35097.54 34788.15 34097.91 34694.58 31889.69 34697.61 349
FMVSNet596.43 29696.19 29497.15 31599.11 25695.89 30899.32 20799.52 9094.47 32798.34 29599.07 30887.54 34597.07 35592.61 34195.72 29098.47 310
Anonymous2024052196.20 30095.89 30197.13 31797.72 34194.96 33099.79 2299.29 26693.01 33997.20 32899.03 31389.69 32398.36 33891.16 34596.13 27798.07 334
DeepPCF-MVS98.18 398.81 13399.37 2097.12 31899.60 13491.75 35398.61 32999.44 19199.35 199.83 1899.85 2998.70 6399.81 15799.02 5999.91 1699.81 42
MS-PatchMatch97.24 28297.32 26896.99 31998.45 33193.51 34798.82 31199.32 25497.41 19398.13 30499.30 28188.99 32999.56 23095.68 30199.80 8697.90 347
RPSCF98.22 17398.62 14096.99 31999.82 3791.58 35499.72 3399.44 19196.61 25899.66 6699.89 1095.92 17099.82 15397.46 23499.10 16299.57 141
DIV-MVS_2432*160095.00 31294.34 31796.96 32197.07 35295.39 32199.56 10099.44 19195.11 31497.13 33097.32 35191.86 29297.27 35490.35 34881.23 35798.23 330
DSMNet-mixed97.25 28197.35 26296.95 32297.84 33993.61 34699.57 9396.63 36096.13 29898.87 23798.61 33594.59 22397.70 35195.08 31398.86 18199.55 143
MIMVSNet195.51 30795.04 31196.92 32397.38 34495.60 31299.52 11899.50 12293.65 33396.97 33499.17 29885.28 35196.56 35988.36 35495.55 29498.60 299
LCM-MVSNet-Re97.83 22898.15 16996.87 32499.30 21192.25 35299.59 8198.26 34197.43 19096.20 33999.13 30396.27 15998.73 33498.17 16998.99 17299.64 122
EG-PatchMatch MVS95.97 30495.69 30496.81 32597.78 34092.79 35099.16 24798.93 30796.16 29494.08 34999.22 29382.72 35599.47 23695.67 30297.50 24098.17 331
Anonymous2023120696.22 29896.03 29796.79 32697.31 34794.14 33999.63 6299.08 29396.17 29297.04 33299.06 31093.94 24597.76 35086.96 35895.06 30498.47 310
test20.0396.12 30295.96 29996.63 32797.44 34395.45 31999.51 12299.38 21996.55 26396.16 34099.25 29093.76 25196.17 36087.35 35794.22 31898.27 326
pmmvs394.09 32193.25 32496.60 32894.76 35994.49 33598.92 30198.18 34589.66 34996.48 33798.06 34586.28 34797.33 35389.68 35087.20 34997.97 343
UnsupCasMVSNet_bld93.53 32292.51 32596.58 32997.38 34493.82 34198.24 34799.48 14291.10 34793.10 35296.66 35374.89 36198.37 33794.03 32687.71 34897.56 351
OpenMVS_ROBcopyleft92.34 2094.38 31993.70 32396.41 33097.38 34493.17 34899.06 26898.75 32386.58 35394.84 34898.26 34381.53 35899.32 26989.01 35197.87 22396.76 353
CL-MVSNet_2432*160094.49 31793.97 32096.08 33196.16 35393.67 34598.33 34499.38 21995.13 31297.33 32498.15 34492.69 27396.57 35888.67 35279.87 35897.99 341
Patchmatch-RL test95.84 30595.81 30395.95 33295.61 35590.57 35598.24 34798.39 34095.10 31695.20 34598.67 33294.78 21197.77 34996.28 29090.02 34499.51 157
new-patchmatchnet94.48 31894.08 31895.67 33395.08 35892.41 35199.18 24599.28 26894.55 32693.49 35197.37 35087.86 34497.01 35691.57 34388.36 34797.61 349
PM-MVS92.96 32392.23 32695.14 33495.61 35589.98 35799.37 19298.21 34394.80 32195.04 34797.69 34665.06 36397.90 34794.30 32189.98 34597.54 352
Gipumacopyleft90.99 32590.15 32893.51 33598.73 30990.12 35693.98 36099.45 18279.32 35892.28 35394.91 35669.61 36297.98 34587.42 35695.67 29192.45 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft93.34 33699.29 21582.27 36099.22 27585.15 35496.33 33899.05 31190.97 31099.73 18793.57 33097.77 22598.01 338
ambc93.06 33792.68 36082.36 35998.47 33798.73 33195.09 34697.41 34855.55 36699.10 30596.42 28791.32 34197.71 348
N_pmnet94.95 31495.83 30292.31 33898.47 33079.33 36399.12 25592.81 37093.87 33097.68 31899.13 30393.87 24799.01 31591.38 34496.19 27698.59 300
CMPMVSbinary69.68 2394.13 32094.90 31291.84 33997.24 34880.01 36298.52 33599.48 14289.01 35091.99 35499.67 15485.67 35099.13 29895.44 30597.03 26096.39 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet86.80 32785.22 33191.53 34087.81 36580.96 36198.23 34998.99 30171.05 36090.13 35696.51 35448.45 36996.88 35790.51 34685.30 35196.76 353
PMMVS286.87 32685.37 33091.35 34190.21 36383.80 35898.89 30497.45 35583.13 35791.67 35595.03 35548.49 36894.70 36285.86 36077.62 35995.54 356
test_method91.10 32491.36 32790.31 34295.85 35473.72 36894.89 35999.25 27168.39 36295.82 34399.02 31580.50 35998.95 32793.64 32994.89 30998.25 328
tmp_tt82.80 32981.52 33286.66 34366.61 37168.44 36992.79 36297.92 34868.96 36180.04 36499.85 2985.77 34996.15 36197.86 19343.89 36695.39 357
MVEpermissive76.82 2176.91 33374.31 33784.70 34485.38 36876.05 36796.88 35893.17 36867.39 36371.28 36589.01 36421.66 37587.69 36571.74 36472.29 36290.35 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 33274.86 33684.62 34575.88 36977.61 36497.63 35693.15 36988.81 35164.27 36689.29 36336.51 37083.93 36875.89 36352.31 36592.33 360
E-PMN80.61 33079.88 33382.81 34690.75 36276.38 36697.69 35595.76 36366.44 36483.52 35892.25 36062.54 36587.16 36668.53 36561.40 36384.89 364
FPMVS84.93 32885.65 32982.75 34786.77 36663.39 37098.35 34198.92 30974.11 35983.39 35998.98 32050.85 36792.40 36484.54 36194.97 30692.46 358
EMVS80.02 33179.22 33482.43 34891.19 36176.40 36597.55 35792.49 37166.36 36583.01 36091.27 36164.63 36485.79 36765.82 36660.65 36485.08 363
PMVScopyleft70.75 2275.98 33474.97 33579.01 34970.98 37055.18 37193.37 36198.21 34365.08 36661.78 36793.83 35821.74 37492.53 36378.59 36291.12 34289.34 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 33541.29 34036.84 35086.18 36749.12 37279.73 36322.81 37327.64 36725.46 37028.45 37021.98 37348.89 36955.80 36723.56 36912.51 367
test12339.01 33742.50 33928.53 35139.17 37220.91 37398.75 31819.17 37419.83 36938.57 36866.67 36633.16 37115.42 37037.50 36929.66 36849.26 365
testmvs39.17 33643.78 33825.37 35236.04 37316.84 37498.36 34026.56 37220.06 36838.51 36967.32 36529.64 37215.30 37137.59 36839.90 36743.98 366
uanet_test0.02 3410.03 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.27 3710.00 3760.00 3720.00 3700.00 3700.00 368
cdsmvs_eth3d_5k24.64 33832.85 3410.00 3530.00 3740.00 3750.00 36499.51 1030.00 3700.00 37199.56 20096.58 1480.00 3720.00 3700.00 3700.00 368
pcd_1.5k_mvsjas8.27 34011.03 3430.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.27 37199.01 170.00 3720.00 3700.00 3700.00 368
sosnet-low-res0.02 3410.03 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.27 3710.00 3760.00 3720.00 3700.00 3700.00 368
sosnet0.02 3410.03 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.27 3710.00 3760.00 3720.00 3700.00 3700.00 368
uncertanet0.02 3410.03 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.27 3710.00 3760.00 3720.00 3700.00 3700.00 368
Regformer0.02 3410.03 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.27 3710.00 3760.00 3720.00 3700.00 3700.00 368
ab-mvs-re8.30 33911.06 3420.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 37199.58 1930.00 3760.00 3720.00 3700.00 3700.00 368
uanet0.02 3410.03 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.27 3710.00 3760.00 3720.00 3700.00 3700.00 368
PC_three_145298.18 10499.84 1399.70 13399.31 398.52 33698.30 16099.80 8699.81 42
eth-test20.00 374
eth-test0.00 374
ZD-MVS99.71 8699.79 3099.61 3596.84 24299.56 9399.54 20898.58 7199.96 1996.93 26899.75 100
RE-MVS-def99.34 2799.76 5299.82 2099.63 6299.52 9098.38 7899.76 3899.82 4998.75 5798.61 12199.81 8299.77 65
IU-MVS99.84 3299.88 799.32 25498.30 8999.84 1398.86 8299.85 5899.89 2
test_241102_TWO99.48 14299.08 1199.88 599.81 6298.94 3299.96 1998.91 7199.84 6599.88 6
test_241102_ONE99.84 3299.90 199.48 14299.07 1399.91 199.74 11799.20 699.76 176
9.1499.10 7199.72 8099.40 18099.51 10397.53 17999.64 7399.78 9598.84 4399.91 9297.63 21599.82 79
save fliter99.76 5299.59 6999.14 25399.40 20999.00 22
test_0728_THIRD98.99 2599.81 2399.80 7699.09 1399.96 1998.85 8499.90 2399.88 6
test072699.85 2599.89 399.62 6899.50 12299.10 899.86 1199.82 4998.94 32
GSMVS99.52 151
test_part299.81 4099.83 1499.77 34
sam_mvs194.86 20799.52 151
sam_mvs94.72 218
MTGPAbinary99.47 160
test_post199.23 23665.14 36894.18 23999.71 19797.58 219
test_post65.99 36794.65 22299.73 187
patchmatchnet-post98.70 33194.79 21099.74 180
MTMP99.54 11298.88 316
gm-plane-assit98.54 32892.96 34994.65 32499.15 30199.64 21997.56 224
test9_res97.49 23099.72 10799.75 71
TEST999.67 10199.65 5899.05 27099.41 20396.22 28898.95 22499.49 22598.77 5299.91 92
test_899.67 10199.61 6499.03 27699.41 20396.28 28198.93 22899.48 23198.76 5499.91 92
agg_prior297.21 24799.73 10699.75 71
agg_prior99.67 10199.62 6299.40 20998.87 23799.91 92
test_prior499.56 7498.99 286
test_prior298.96 29498.34 8499.01 21399.52 21598.68 6497.96 18599.74 103
旧先验298.96 29496.70 25099.47 11199.94 5598.19 165
新几何299.01 284
旧先验199.74 7099.59 6999.54 7399.69 14198.47 7999.68 11899.73 83
无先验98.99 28699.51 10396.89 23999.93 7097.53 22799.72 89
原ACMM298.95 298
test22299.75 6299.49 8798.91 30399.49 13096.42 27599.34 14799.65 16198.28 9599.69 11399.72 89
testdata299.95 4496.67 281
segment_acmp98.96 26
testdata198.85 30898.32 88
plane_prior799.29 21597.03 271
plane_prior699.27 22096.98 27592.71 271
plane_prior599.47 16099.69 20797.78 20097.63 22798.67 265
plane_prior499.61 184
plane_prior397.00 27398.69 5699.11 194
plane_prior299.39 18498.97 30
plane_prior199.26 222
plane_prior96.97 27699.21 24398.45 7197.60 230
n20.00 375
nn0.00 375
door-mid98.05 346
test1199.35 234
door97.92 348
HQP5-MVS96.83 281
HQP-NCC99.19 23898.98 29098.24 9498.66 265
ACMP_Plane99.19 23898.98 29098.24 9498.66 265
BP-MVS97.19 251
HQP4-MVS98.66 26599.64 21998.64 277
HQP3-MVS99.39 21397.58 232
HQP2-MVS92.47 280
NP-MVS99.23 22896.92 27999.40 254
MDTV_nov1_ep13_2view95.18 32699.35 20296.84 24299.58 9095.19 19897.82 19799.46 169
MDTV_nov1_ep1398.32 16199.11 25694.44 33699.27 22298.74 32697.51 18199.40 13199.62 18094.78 21199.76 17697.59 21898.81 185
ACMMP++_ref97.19 256
ACMMP++97.43 248
Test By Simon98.75 57