APDe-MVS | | | 99.66 1 | 99.57 1 | 99.92 1 | 99.77 49 | 99.89 3 | 99.75 29 | 99.56 57 | 99.02 15 | 99.88 5 | 99.85 29 | 99.18 9 | 99.96 19 | 99.22 39 | 99.92 11 | 99.90 1 |
|
test_0728_SECOND | | | | | 99.91 2 | 99.84 32 | 99.89 3 | 99.57 93 | 99.51 103 | | | | | 99.96 19 | 98.93 68 | 99.86 51 | 99.88 6 |
|
DPE-MVS |  | | 99.46 24 | 99.32 31 | 99.91 2 | 99.78 44 | 99.88 7 | 99.36 196 | 99.51 103 | 98.73 53 | 99.88 5 | 99.84 38 | 98.72 61 | 99.96 19 | 98.16 170 | 99.87 40 | 99.88 6 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
zzz-MVS | | | 99.49 15 | 99.36 22 | 99.89 4 | 99.90 3 | 99.86 10 | 99.36 196 | 99.47 160 | 98.79 49 | 99.68 55 | 99.81 62 | 98.43 82 | 99.97 11 | 98.88 74 | 99.90 23 | 99.83 30 |
|
MTAPA | | | 99.52 13 | 99.39 17 | 99.89 4 | 99.90 3 | 99.86 10 | 99.66 50 | 99.47 160 | 98.79 49 | 99.68 55 | 99.81 62 | 98.43 82 | 99.97 11 | 98.88 74 | 99.90 23 | 99.83 30 |
|
SED-MVS | | | 99.61 2 | 99.52 6 | 99.88 6 | 99.84 32 | 99.90 1 | 99.60 75 | 99.48 142 | 99.08 11 | 99.91 1 | 99.81 62 | 99.20 6 | 99.96 19 | 98.91 71 | 99.85 58 | 99.79 55 |
|
DVP-MVS |  | | 99.57 7 | 99.47 9 | 99.88 6 | 99.85 25 | 99.89 3 | 99.57 93 | 99.37 228 | 99.10 8 | 99.81 23 | 99.80 76 | 98.94 32 | 99.96 19 | 98.93 68 | 99.86 51 | 99.81 42 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MP-MVS-pluss | | | 99.37 49 | 99.20 62 | 99.88 6 | 99.90 3 | 99.87 9 | 99.30 211 | 99.52 90 | 97.18 212 | 99.60 85 | 99.79 88 | 98.79 48 | 99.95 44 | 98.83 89 | 99.91 16 | 99.83 30 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MSP-MVS | | | 99.42 39 | 99.27 52 | 99.88 6 | 99.89 8 | 99.80 26 | 99.67 46 | 99.50 122 | 98.70 55 | 99.77 34 | 99.49 225 | 98.21 97 | 99.95 44 | 98.46 144 | 99.77 95 | 99.88 6 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
ACMMP_NAP | | | 99.47 22 | 99.34 27 | 99.88 6 | 99.87 15 | 99.86 10 | 99.47 149 | 99.48 142 | 98.05 125 | 99.76 38 | 99.86 23 | 98.82 45 | 99.93 70 | 98.82 93 | 99.91 16 | 99.84 19 |
|
No_MVS | | | | | 99.87 11 | 99.51 152 | 99.76 38 | | 99.33 245 | | | | | 99.96 19 | 98.87 78 | 99.84 65 | 99.89 2 |
|
ZNCC-MVS | | | 99.47 22 | 99.33 29 | 99.87 11 | 99.87 15 | 99.81 24 | 99.64 60 | 99.67 22 | 98.08 119 | 99.55 97 | 99.64 168 | 98.91 37 | 99.96 19 | 98.72 104 | 99.90 23 | 99.82 37 |
|
region2R | | | 99.48 19 | 99.35 25 | 99.87 11 | 99.88 11 | 99.80 26 | 99.65 57 | 99.66 27 | 98.13 108 | 99.66 66 | 99.68 148 | 98.96 26 | 99.96 19 | 98.62 118 | 99.87 40 | 99.84 19 |
|
HPM-MVS++ |  | | 99.39 47 | 99.23 60 | 99.87 11 | 99.75 62 | 99.84 13 | 99.43 163 | 99.51 103 | 98.68 57 | 99.27 160 | 99.53 212 | 98.64 69 | 99.96 19 | 98.44 146 | 99.80 86 | 99.79 55 |
|
XVS | | | 99.53 11 | 99.42 13 | 99.87 11 | 99.85 25 | 99.83 14 | 99.69 38 | 99.68 19 | 98.98 27 | 99.37 138 | 99.74 117 | 98.81 46 | 99.94 55 | 98.79 95 | 99.86 51 | 99.84 19 |
|
X-MVStestdata | | | 96.55 292 | 95.45 307 | 99.87 11 | 99.85 25 | 99.83 14 | 99.69 38 | 99.68 19 | 98.98 27 | 99.37 138 | 64.01 369 | 98.81 46 | 99.94 55 | 98.79 95 | 99.86 51 | 99.84 19 |
|
MP-MVS |  | | 99.33 54 | 99.15 66 | 99.87 11 | 99.88 11 | 99.82 20 | 99.66 50 | 99.46 170 | 98.09 115 | 99.48 110 | 99.74 117 | 98.29 94 | 99.96 19 | 97.93 188 | 99.87 40 | 99.82 37 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
SteuartSystems-ACMMP | | | 99.54 9 | 99.42 13 | 99.87 11 | 99.82 37 | 99.81 24 | 99.59 81 | 99.51 103 | 98.62 59 | 99.79 27 | 99.83 42 | 99.28 4 | 99.97 11 | 98.48 140 | 99.90 23 | 99.84 19 |
Skip Steuart: Steuart Systems R&D Blog. |
testtj | | | 99.12 87 | 98.87 106 | 99.86 19 | 99.72 80 | 99.79 30 | 99.44 157 | 99.51 103 | 97.29 202 | 99.59 88 | 99.74 117 | 98.15 103 | 99.96 19 | 96.74 276 | 99.69 113 | 99.81 42 |
|
SR-MVS | | | 99.43 34 | 99.29 46 | 99.86 19 | 99.75 62 | 99.83 14 | 99.59 81 | 99.62 33 | 98.21 100 | 99.73 44 | 99.79 88 | 98.68 64 | 99.96 19 | 98.44 146 | 99.77 95 | 99.79 55 |
|
HFP-MVS | | | 99.49 15 | 99.37 20 | 99.86 19 | 99.87 15 | 99.80 26 | 99.66 50 | 99.67 22 | 98.15 106 | 99.68 55 | 99.69 141 | 99.06 14 | 99.96 19 | 98.69 109 | 99.87 40 | 99.84 19 |
|
#test# | | | 99.43 34 | 99.29 46 | 99.86 19 | 99.87 15 | 99.80 26 | 99.55 109 | 99.67 22 | 97.83 143 | 99.68 55 | 99.69 141 | 99.06 14 | 99.96 19 | 98.39 148 | 99.87 40 | 99.84 19 |
|
ACMMPR | | | 99.49 15 | 99.36 22 | 99.86 19 | 99.87 15 | 99.79 30 | 99.66 50 | 99.67 22 | 98.15 106 | 99.67 61 | 99.69 141 | 98.95 29 | 99.96 19 | 98.69 109 | 99.87 40 | 99.84 19 |
|
PGM-MVS | | | 99.45 26 | 99.31 38 | 99.86 19 | 99.87 15 | 99.78 37 | 99.58 88 | 99.65 32 | 97.84 142 | 99.71 48 | 99.80 76 | 99.12 12 | 99.97 11 | 98.33 156 | 99.87 40 | 99.83 30 |
|
mPP-MVS | | | 99.44 30 | 99.30 42 | 99.86 19 | 99.88 11 | 99.79 30 | 99.69 38 | 99.48 142 | 98.12 110 | 99.50 106 | 99.75 111 | 98.78 49 | 99.97 11 | 98.57 129 | 99.89 33 | 99.83 30 |
|
test1172 | | | 99.43 34 | 99.29 46 | 99.85 26 | 99.75 62 | 99.82 20 | 99.60 75 | 99.56 57 | 98.28 90 | 99.74 42 | 99.79 88 | 98.53 73 | 99.95 44 | 98.55 135 | 99.78 92 | 99.79 55 |
|
SR-MVS-dyc-post | | | 99.45 26 | 99.31 38 | 99.85 26 | 99.76 52 | 99.82 20 | 99.63 62 | 99.52 90 | 98.38 78 | 99.76 38 | 99.82 49 | 98.53 73 | 99.95 44 | 98.61 121 | 99.81 82 | 99.77 65 |
|
GST-MVS | | | 99.40 46 | 99.24 58 | 99.85 26 | 99.86 21 | 99.79 30 | 99.60 75 | 99.67 22 | 97.97 131 | 99.63 74 | 99.68 148 | 98.52 75 | 99.95 44 | 98.38 150 | 99.86 51 | 99.81 42 |
|
SMA-MVS |  | | 99.44 30 | 99.30 42 | 99.85 26 | 99.73 75 | 99.83 14 | 99.56 100 | 99.47 160 | 97.45 186 | 99.78 32 | 99.82 49 | 99.18 9 | 99.91 92 | 98.79 95 | 99.89 33 | 99.81 42 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS_3200maxsize | | | 99.48 19 | 99.35 25 | 99.85 26 | 99.76 52 | 99.83 14 | 99.63 62 | 99.54 73 | 98.36 82 | 99.79 27 | 99.82 49 | 98.86 41 | 99.95 44 | 98.62 118 | 99.81 82 | 99.78 63 |
|
HPM-MVS_fast | | | 99.51 14 | 99.40 16 | 99.85 26 | 99.91 1 | 99.79 30 | 99.76 28 | 99.56 57 | 97.72 157 | 99.76 38 | 99.75 111 | 99.13 11 | 99.92 81 | 99.07 55 | 99.92 11 | 99.85 15 |
|
CP-MVS | | | 99.45 26 | 99.32 31 | 99.85 26 | 99.83 36 | 99.75 39 | 99.69 38 | 99.52 90 | 98.07 120 | 99.53 100 | 99.63 174 | 98.93 36 | 99.97 11 | 98.74 100 | 99.91 16 | 99.83 30 |
|
APD-MVS |  | | 99.27 63 | 99.08 74 | 99.84 33 | 99.75 62 | 99.79 30 | 99.50 128 | 99.50 122 | 97.16 214 | 99.77 34 | 99.82 49 | 98.78 49 | 99.94 55 | 97.56 224 | 99.86 51 | 99.80 51 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
abl_6 | | | 99.44 30 | 99.31 38 | 99.83 34 | 99.85 25 | 99.75 39 | 99.66 50 | 99.59 43 | 98.13 108 | 99.82 21 | 99.81 62 | 98.60 70 | 99.96 19 | 98.46 144 | 99.88 36 | 99.79 55 |
|
HPM-MVS |  | | 99.42 39 | 99.28 50 | 99.83 34 | 99.90 3 | 99.72 43 | 99.81 13 | 99.54 73 | 97.59 169 | 99.68 55 | 99.63 174 | 98.91 37 | 99.94 55 | 98.58 127 | 99.91 16 | 99.84 19 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MCST-MVS | | | 99.43 34 | 99.30 42 | 99.82 36 | 99.79 42 | 99.74 42 | 99.29 215 | 99.40 209 | 98.79 49 | 99.52 103 | 99.62 180 | 98.91 37 | 99.90 107 | 98.64 116 | 99.75 100 | 99.82 37 |
|
ACMMP |  | | 99.45 26 | 99.32 31 | 99.82 36 | 99.89 8 | 99.67 53 | 99.62 68 | 99.69 18 | 98.12 110 | 99.63 74 | 99.84 38 | 98.73 60 | 99.96 19 | 98.55 135 | 99.83 73 | 99.81 42 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
3Dnovator+ | | 97.12 13 | 99.18 73 | 98.97 93 | 99.82 36 | 99.17 247 | 99.68 50 | 99.81 13 | 99.51 103 | 99.20 4 | 98.72 255 | 99.89 10 | 95.68 180 | 99.97 11 | 98.86 82 | 99.86 51 | 99.81 42 |
|
TSAR-MVS + MP. | | | 99.58 4 | 99.50 8 | 99.81 39 | 99.91 1 | 99.66 55 | 99.63 62 | 99.39 213 | 98.91 38 | 99.78 32 | 99.85 29 | 99.36 2 | 99.94 55 | 98.84 86 | 99.88 36 | 99.82 37 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
3Dnovator | | 97.25 9 | 99.24 68 | 99.05 76 | 99.81 39 | 99.12 254 | 99.66 55 | 99.84 7 | 99.74 10 | 99.09 10 | 98.92 229 | 99.90 7 | 95.94 169 | 99.98 6 | 98.95 65 | 99.92 11 | 99.79 55 |
|
UA-Net | | | 99.42 39 | 99.29 46 | 99.80 41 | 99.62 126 | 99.55 76 | 99.50 128 | 99.70 15 | 98.79 49 | 99.77 34 | 99.96 1 | 97.45 119 | 99.96 19 | 98.92 70 | 99.90 23 | 99.89 2 |
|
CDPH-MVS | | | 99.13 81 | 98.91 101 | 99.80 41 | 99.75 62 | 99.71 45 | 99.15 251 | 99.41 203 | 96.60 260 | 99.60 85 | 99.55 203 | 98.83 44 | 99.90 107 | 97.48 231 | 99.83 73 | 99.78 63 |
|
QAPM | | | 98.67 146 | 98.30 163 | 99.80 41 | 99.20 236 | 99.67 53 | 99.77 25 | 99.72 11 | 94.74 322 | 98.73 254 | 99.90 7 | 95.78 176 | 99.98 6 | 96.96 265 | 99.88 36 | 99.76 70 |
|
SF-MVS | | | 99.38 48 | 99.24 58 | 99.79 44 | 99.79 42 | 99.68 50 | 99.57 93 | 99.54 73 | 97.82 148 | 99.71 48 | 99.80 76 | 98.95 29 | 99.93 70 | 98.19 165 | 99.84 65 | 99.74 76 |
|
NCCC | | | 99.34 52 | 99.19 63 | 99.79 44 | 99.61 130 | 99.65 58 | 99.30 211 | 99.48 142 | 98.86 40 | 99.21 176 | 99.63 174 | 98.72 61 | 99.90 107 | 98.25 161 | 99.63 126 | 99.80 51 |
|
CNVR-MVS | | | 99.42 39 | 99.30 42 | 99.78 46 | 99.62 126 | 99.71 45 | 99.26 231 | 99.52 90 | 98.82 44 | 99.39 133 | 99.71 129 | 98.96 26 | 99.85 132 | 98.59 126 | 99.80 86 | 99.77 65 |
|
DP-MVS | | | 99.16 77 | 98.95 97 | 99.78 46 | 99.77 49 | 99.53 81 | 99.41 172 | 99.50 122 | 97.03 229 | 99.04 210 | 99.88 15 | 97.39 120 | 99.92 81 | 98.66 114 | 99.90 23 | 99.87 11 |
|
ETH3D-3000-0.1 | | | 99.21 69 | 99.02 84 | 99.77 48 | 99.73 75 | 99.69 48 | 99.38 189 | 99.51 103 | 97.45 186 | 99.61 81 | 99.75 111 | 98.51 76 | 99.91 92 | 97.45 236 | 99.83 73 | 99.71 96 |
|
train_agg | | | 99.02 106 | 98.77 120 | 99.77 48 | 99.67 101 | 99.65 58 | 99.05 270 | 99.41 203 | 96.28 281 | 98.95 224 | 99.49 225 | 98.76 54 | 99.91 92 | 97.63 215 | 99.72 107 | 99.75 71 |
|
DeepC-MVS_fast | | 98.69 1 | 99.49 15 | 99.39 17 | 99.77 48 | 99.63 120 | 99.59 69 | 99.36 196 | 99.46 170 | 99.07 13 | 99.79 27 | 99.82 49 | 98.85 42 | 99.92 81 | 98.68 111 | 99.87 40 | 99.82 37 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
agg_prior1 | | | 99.01 109 | 98.76 122 | 99.76 51 | 99.67 101 | 99.62 62 | 98.99 286 | 99.40 209 | 96.26 284 | 98.87 237 | 99.49 225 | 98.77 52 | 99.91 92 | 97.69 212 | 99.72 107 | 99.75 71 |
|
xxxxxxxxxxxxxcwj | | | 99.43 34 | 99.32 31 | 99.75 52 | 99.76 52 | 99.59 69 | 99.14 253 | 99.53 84 | 99.00 22 | 99.71 48 | 99.80 76 | 98.95 29 | 99.93 70 | 98.19 165 | 99.84 65 | 99.74 76 |
|
Regformer-2 | | | 99.54 9 | 99.47 9 | 99.75 52 | 99.71 86 | 99.52 84 | 99.49 138 | 99.49 130 | 98.94 33 | 99.83 18 | 99.76 106 | 99.01 17 | 99.94 55 | 99.15 48 | 99.87 40 | 99.80 51 |
|
æ–°å‡ ä½•1 | | | | | 99.75 52 | 99.75 62 | 99.59 69 | | 99.54 73 | 96.76 246 | 99.29 155 | 99.64 168 | 98.43 82 | 99.94 55 | 96.92 270 | 99.66 121 | 99.72 89 |
|
1121 | | | 99.09 96 | 98.87 106 | 99.75 52 | 99.74 70 | 99.60 66 | 99.27 222 | 99.48 142 | 96.82 245 | 99.25 167 | 99.65 161 | 98.38 87 | 99.93 70 | 97.53 227 | 99.67 120 | 99.73 83 |
|
test12 | | | | | 99.75 52 | 99.64 117 | 99.61 64 | | 99.29 266 | | 99.21 176 | | 98.38 87 | 99.89 115 | | 99.74 103 | 99.74 76 |
|
CPTT-MVS | | | 99.11 92 | 98.90 102 | 99.74 57 | 99.80 41 | 99.46 93 | 99.59 81 | 99.49 130 | 97.03 229 | 99.63 74 | 99.69 141 | 97.27 127 | 99.96 19 | 97.82 197 | 99.84 65 | 99.81 42 |
|
LS3D | | | 99.27 63 | 99.12 69 | 99.74 57 | 99.18 241 | 99.75 39 | 99.56 100 | 99.57 51 | 98.45 71 | 99.49 109 | 99.85 29 | 97.77 113 | 99.94 55 | 98.33 156 | 99.84 65 | 99.52 151 |
|
ETH3 D test6400 | | | 98.70 142 | 98.35 158 | 99.73 59 | 99.69 96 | 99.60 66 | 99.16 247 | 99.45 182 | 95.42 310 | 99.27 160 | 99.60 187 | 97.39 120 | 99.91 92 | 95.36 309 | 99.83 73 | 99.70 98 |
|
Regformer-4 | | | 99.59 3 | 99.54 4 | 99.73 59 | 99.76 52 | 99.41 98 | 99.58 88 | 99.49 130 | 99.02 15 | 99.88 5 | 99.80 76 | 99.00 23 | 99.94 55 | 99.45 19 | 99.92 11 | 99.84 19 |
|
VNet | | | 99.11 92 | 98.90 102 | 99.73 59 | 99.52 150 | 99.56 74 | 99.41 172 | 99.39 213 | 99.01 18 | 99.74 42 | 99.78 95 | 95.56 183 | 99.92 81 | 99.52 7 | 98.18 212 | 99.72 89 |
|
ETH3D cwj APD-0.16 | | | 99.06 100 | 98.84 112 | 99.72 62 | 99.51 152 | 99.60 66 | 99.23 236 | 99.44 191 | 97.04 227 | 99.39 133 | 99.67 154 | 98.30 93 | 99.92 81 | 97.27 243 | 99.69 113 | 99.64 122 |
|
Regformer-1 | | | 99.53 11 | 99.47 9 | 99.72 62 | 99.71 86 | 99.44 95 | 99.49 138 | 99.46 170 | 98.95 32 | 99.83 18 | 99.76 106 | 99.01 17 | 99.93 70 | 99.17 45 | 99.87 40 | 99.80 51 |
|
114514_t | | | 98.93 115 | 98.67 130 | 99.72 62 | 99.85 25 | 99.53 81 | 99.62 68 | 99.59 43 | 92.65 341 | 99.71 48 | 99.78 95 | 98.06 106 | 99.90 107 | 98.84 86 | 99.91 16 | 99.74 76 |
|
PHI-MVS | | | 99.30 57 | 99.17 65 | 99.70 65 | 99.56 144 | 99.52 84 | 99.58 88 | 99.80 8 | 97.12 218 | 99.62 78 | 99.73 124 | 98.58 71 | 99.90 107 | 98.61 121 | 99.91 16 | 99.68 105 |
|
Regformer-3 | | | 99.57 7 | 99.53 5 | 99.68 66 | 99.76 52 | 99.29 109 | 99.58 88 | 99.44 191 | 99.01 18 | 99.87 10 | 99.80 76 | 98.97 25 | 99.91 92 | 99.44 21 | 99.92 11 | 99.83 30 |
|
test_prior3 | | | 99.21 69 | 99.05 76 | 99.68 66 | 99.67 101 | 99.48 89 | 98.96 294 | 99.56 57 | 98.34 84 | 99.01 213 | 99.52 215 | 98.68 64 | 99.83 146 | 97.96 185 | 99.74 103 | 99.74 76 |
|
test_prior | | | | | 99.68 66 | 99.67 101 | 99.48 89 | | 99.56 57 | | | | | 99.83 146 | | | 99.74 76 |
|
DPM-MVS | | | 98.95 114 | 98.71 126 | 99.66 69 | 99.63 120 | 99.55 76 | 98.64 328 | 99.10 290 | 97.93 134 | 99.42 122 | 99.55 203 | 98.67 67 | 99.80 162 | 95.80 298 | 99.68 118 | 99.61 130 |
|
PAPM_NR | | | 99.04 103 | 98.84 112 | 99.66 69 | 99.74 70 | 99.44 95 | 99.39 184 | 99.38 219 | 97.70 159 | 99.28 157 | 99.28 285 | 98.34 91 | 99.85 132 | 96.96 265 | 99.45 136 | 99.69 101 |
|
MVS_111021_HR | | | 99.41 43 | 99.32 31 | 99.66 69 | 99.72 80 | 99.47 91 | 98.95 298 | 99.85 6 | 98.82 44 | 99.54 98 | 99.73 124 | 98.51 76 | 99.74 180 | 98.91 71 | 99.88 36 | 99.77 65 |
|
AdaColmap |  | | 99.01 109 | 98.80 117 | 99.66 69 | 99.56 144 | 99.54 78 | 99.18 245 | 99.70 15 | 98.18 104 | 99.35 144 | 99.63 174 | 96.32 157 | 99.90 107 | 97.48 231 | 99.77 95 | 99.55 143 |
|
原ACMM1 | | | | | 99.65 73 | 99.73 75 | 99.33 103 | | 99.47 160 | 97.46 183 | 99.12 192 | 99.66 160 | 98.67 67 | 99.91 92 | 97.70 211 | 99.69 113 | 99.71 96 |
|
DELS-MVS | | | 99.48 19 | 99.42 13 | 99.65 73 | 99.72 80 | 99.40 100 | 99.05 270 | 99.66 27 | 99.14 6 | 99.57 92 | 99.80 76 | 98.46 80 | 99.94 55 | 99.57 4 | 99.84 65 | 99.60 132 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DP-MVS Recon | | | 99.12 87 | 98.95 97 | 99.65 73 | 99.74 70 | 99.70 47 | 99.27 222 | 99.57 51 | 96.40 277 | 99.42 122 | 99.68 148 | 98.75 57 | 99.80 162 | 97.98 184 | 99.72 107 | 99.44 172 |
|
MVS_111021_LR | | | 99.41 43 | 99.33 29 | 99.65 73 | 99.77 49 | 99.51 86 | 98.94 300 | 99.85 6 | 98.82 44 | 99.65 71 | 99.74 117 | 98.51 76 | 99.80 162 | 98.83 89 | 99.89 33 | 99.64 122 |
|
HyFIR lowres test | | | 99.11 92 | 98.92 99 | 99.65 73 | 99.90 3 | 99.37 101 | 99.02 279 | 99.91 3 | 97.67 164 | 99.59 88 | 99.75 111 | 95.90 172 | 99.73 187 | 99.53 6 | 99.02 170 | 99.86 12 |
|
OPU-MVS | | | | | 99.64 78 | 99.56 144 | 99.72 43 | 99.60 75 | | | | 99.70 133 | 99.27 5 | 99.42 249 | 98.24 162 | 99.80 86 | 99.79 55 |
|
EI-MVSNet-UG-set | | | 99.58 4 | 99.57 1 | 99.64 78 | 99.78 44 | 99.14 129 | 99.60 75 | 99.45 182 | 99.01 18 | 99.90 3 | 99.83 42 | 98.98 24 | 99.93 70 | 99.59 2 | 99.95 6 | 99.86 12 |
|
EI-MVSNet-Vis-set | | | 99.58 4 | 99.56 3 | 99.64 78 | 99.78 44 | 99.15 128 | 99.61 74 | 99.45 182 | 99.01 18 | 99.89 4 | 99.82 49 | 99.01 17 | 99.92 81 | 99.56 5 | 99.95 6 | 99.85 15 |
|
F-COLMAP | | | 99.19 71 | 99.04 79 | 99.64 78 | 99.78 44 | 99.27 112 | 99.42 170 | 99.54 73 | 97.29 202 | 99.41 126 | 99.59 190 | 98.42 85 | 99.93 70 | 98.19 165 | 99.69 113 | 99.73 83 |
|
DeepC-MVS | | 98.35 2 | 99.30 57 | 99.19 63 | 99.64 78 | 99.82 37 | 99.23 116 | 99.62 68 | 99.55 66 | 98.94 33 | 99.63 74 | 99.95 2 | 95.82 175 | 99.94 55 | 99.37 23 | 99.97 3 | 99.73 83 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PVSNet_Blended_VisFu | | | 99.36 50 | 99.28 50 | 99.61 83 | 99.86 21 | 99.07 138 | 99.47 149 | 99.93 2 | 97.66 165 | 99.71 48 | 99.86 23 | 97.73 114 | 99.96 19 | 99.47 17 | 99.82 79 | 99.79 55 |
|
WTY-MVS | | | 99.06 100 | 98.88 105 | 99.61 83 | 99.62 126 | 99.16 124 | 99.37 192 | 99.56 57 | 98.04 126 | 99.53 100 | 99.62 180 | 96.84 139 | 99.94 55 | 98.85 84 | 98.49 199 | 99.72 89 |
|
CANet | | | 99.25 67 | 99.14 67 | 99.59 85 | 99.41 183 | 99.16 124 | 99.35 202 | 99.57 51 | 98.82 44 | 99.51 105 | 99.61 184 | 96.46 152 | 99.95 44 | 99.59 2 | 99.98 2 | 99.65 115 |
|
1112_ss | | | 98.98 111 | 98.77 120 | 99.59 85 | 99.68 100 | 99.02 142 | 99.25 233 | 99.48 142 | 97.23 209 | 99.13 190 | 99.58 193 | 96.93 138 | 99.90 107 | 98.87 78 | 98.78 186 | 99.84 19 |
|
CNLPA | | | 99.14 79 | 98.99 89 | 99.59 85 | 99.58 138 | 99.41 98 | 99.16 247 | 99.44 191 | 98.45 71 | 99.19 182 | 99.49 225 | 98.08 105 | 99.89 115 | 97.73 206 | 99.75 100 | 99.48 162 |
|
alignmvs | | | 98.81 133 | 98.56 148 | 99.58 88 | 99.43 179 | 99.42 97 | 99.51 122 | 98.96 305 | 98.61 60 | 99.35 144 | 98.92 323 | 94.78 211 | 99.77 172 | 99.35 24 | 98.11 218 | 99.54 145 |
|
DROMVSNet | | | 99.44 30 | 99.39 17 | 99.58 88 | 99.56 144 | 99.49 87 | 99.88 1 | 99.58 49 | 98.38 78 | 99.73 44 | 99.69 141 | 98.20 98 | 99.70 203 | 99.64 1 | 99.82 79 | 99.54 145 |
|
Test_1112_low_res | | | 98.89 117 | 98.66 133 | 99.57 90 | 99.69 96 | 98.95 155 | 99.03 276 | 99.47 160 | 96.98 231 | 99.15 188 | 99.23 292 | 96.77 143 | 99.89 115 | 98.83 89 | 98.78 186 | 99.86 12 |
|
IS-MVSNet | | | 99.05 102 | 98.87 106 | 99.57 90 | 99.73 75 | 99.32 104 | 99.75 29 | 99.20 279 | 98.02 129 | 99.56 93 | 99.86 23 | 96.54 150 | 99.67 209 | 98.09 174 | 99.13 158 | 99.73 83 |
|
casdiffmvs | | | 99.13 81 | 98.98 92 | 99.56 92 | 99.65 115 | 99.16 124 | 99.56 100 | 99.50 122 | 98.33 87 | 99.41 126 | 99.86 23 | 95.92 170 | 99.83 146 | 99.45 19 | 99.16 154 | 99.70 98 |
|
Vis-MVSNet |  | | 99.12 87 | 98.97 93 | 99.56 92 | 99.78 44 | 99.10 134 | 99.68 43 | 99.66 27 | 98.49 67 | 99.86 11 | 99.87 20 | 94.77 214 | 99.84 137 | 99.19 42 | 99.41 139 | 99.74 76 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
test_yl | | | 98.86 121 | 98.63 135 | 99.54 94 | 99.49 162 | 99.18 121 | 99.50 128 | 99.07 295 | 98.22 98 | 99.61 81 | 99.51 219 | 95.37 189 | 99.84 137 | 98.60 124 | 98.33 202 | 99.59 136 |
|
DCV-MVSNet | | | 98.86 121 | 98.63 135 | 99.54 94 | 99.49 162 | 99.18 121 | 99.50 128 | 99.07 295 | 98.22 98 | 99.61 81 | 99.51 219 | 95.37 189 | 99.84 137 | 98.60 124 | 98.33 202 | 99.59 136 |
|
testdata | | | | | 99.54 94 | 99.75 62 | 98.95 155 | | 99.51 103 | 97.07 224 | 99.43 119 | 99.70 133 | 98.87 40 | 99.94 55 | 97.76 202 | 99.64 124 | 99.72 89 |
|
LFMVS | | | 97.90 217 | 97.35 262 | 99.54 94 | 99.52 150 | 99.01 144 | 99.39 184 | 98.24 342 | 97.10 222 | 99.65 71 | 99.79 88 | 84.79 352 | 99.91 92 | 99.28 34 | 98.38 201 | 99.69 101 |
|
ab-mvs | | | 98.86 121 | 98.63 135 | 99.54 94 | 99.64 117 | 99.19 119 | 99.44 157 | 99.54 73 | 97.77 151 | 99.30 152 | 99.81 62 | 94.20 236 | 99.93 70 | 99.17 45 | 98.82 183 | 99.49 161 |
|
MAR-MVS | | | 98.86 121 | 98.63 135 | 99.54 94 | 99.37 194 | 99.66 55 | 99.45 153 | 99.54 73 | 96.61 258 | 99.01 213 | 99.40 254 | 97.09 131 | 99.86 126 | 97.68 214 | 99.53 134 | 99.10 195 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
GeoE | | | 98.85 129 | 98.62 140 | 99.53 100 | 99.61 130 | 99.08 136 | 99.80 17 | 99.51 103 | 97.10 222 | 99.31 150 | 99.78 95 | 95.23 197 | 99.77 172 | 98.21 163 | 99.03 168 | 99.75 71 |
|
baseline | | | 99.15 78 | 99.02 84 | 99.53 100 | 99.66 110 | 99.14 129 | 99.72 33 | 99.48 142 | 98.35 83 | 99.42 122 | 99.84 38 | 96.07 163 | 99.79 165 | 99.51 9 | 99.14 157 | 99.67 108 |
|
sss | | | 99.17 75 | 99.05 76 | 99.53 100 | 99.62 126 | 98.97 149 | 99.36 196 | 99.62 33 | 97.83 143 | 99.67 61 | 99.65 161 | 97.37 124 | 99.95 44 | 99.19 42 | 99.19 153 | 99.68 105 |
|
EPP-MVSNet | | | 99.13 81 | 98.99 89 | 99.53 100 | 99.65 115 | 99.06 139 | 99.81 13 | 99.33 245 | 97.43 190 | 99.60 85 | 99.88 15 | 97.14 129 | 99.84 137 | 99.13 49 | 98.94 174 | 99.69 101 |
|
PLC |  | 97.94 4 | 99.02 106 | 98.85 111 | 99.53 100 | 99.66 110 | 99.01 144 | 99.24 235 | 99.52 90 | 96.85 241 | 99.27 160 | 99.48 231 | 98.25 96 | 99.91 92 | 97.76 202 | 99.62 127 | 99.65 115 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MSDG | | | 98.98 111 | 98.80 117 | 99.53 100 | 99.76 52 | 99.19 119 | 98.75 318 | 99.55 66 | 97.25 206 | 99.47 111 | 99.77 102 | 97.82 111 | 99.87 123 | 96.93 268 | 99.90 23 | 99.54 145 |
|
PatchMatch-RL | | | 98.84 132 | 98.62 140 | 99.52 106 | 99.71 86 | 99.28 110 | 99.06 268 | 99.77 9 | 97.74 156 | 99.50 106 | 99.53 212 | 95.41 187 | 99.84 137 | 97.17 254 | 99.64 124 | 99.44 172 |
|
OpenMVS |  | 96.50 16 | 98.47 154 | 98.12 172 | 99.52 106 | 99.04 270 | 99.53 81 | 99.82 11 | 99.72 11 | 94.56 325 | 98.08 305 | 99.88 15 | 94.73 217 | 99.98 6 | 97.47 233 | 99.76 98 | 99.06 206 |
|
Fast-Effi-MVS+ | | | 98.70 142 | 98.43 153 | 99.51 108 | 99.51 152 | 99.28 110 | 99.52 118 | 99.47 160 | 96.11 299 | 99.01 213 | 99.34 271 | 96.20 161 | 99.84 137 | 97.88 191 | 98.82 183 | 99.39 178 |
|
canonicalmvs | | | 99.02 106 | 98.86 110 | 99.51 108 | 99.42 180 | 99.32 104 | 99.80 17 | 99.48 142 | 98.63 58 | 99.31 150 | 98.81 326 | 97.09 131 | 99.75 179 | 99.27 36 | 97.90 222 | 99.47 167 |
|
diffmvs | | | 99.14 79 | 99.02 84 | 99.51 108 | 99.61 130 | 98.96 153 | 99.28 217 | 99.49 130 | 98.46 70 | 99.72 47 | 99.71 129 | 96.50 151 | 99.88 120 | 99.31 31 | 99.11 159 | 99.67 108 |
|
PAPR | | | 98.63 150 | 98.34 159 | 99.51 108 | 99.40 188 | 99.03 141 | 98.80 313 | 99.36 229 | 96.33 278 | 99.00 218 | 99.12 306 | 98.46 80 | 99.84 137 | 95.23 311 | 99.37 144 | 99.66 111 |
|
Effi-MVS+ | | | 98.81 133 | 98.59 146 | 99.48 112 | 99.46 171 | 99.12 133 | 98.08 351 | 99.50 122 | 97.50 182 | 99.38 136 | 99.41 250 | 96.37 156 | 99.81 157 | 99.11 51 | 98.54 196 | 99.51 157 |
|
MVS | | | 97.28 280 | 96.55 288 | 99.48 112 | 98.78 303 | 98.95 155 | 99.27 222 | 99.39 213 | 83.53 356 | 98.08 305 | 99.54 208 | 96.97 136 | 99.87 123 | 94.23 323 | 99.16 154 | 99.63 126 |
|
MVS_Test | | | 99.10 95 | 98.97 93 | 99.48 112 | 99.49 162 | 99.14 129 | 99.67 46 | 99.34 238 | 97.31 200 | 99.58 90 | 99.76 106 | 97.65 116 | 99.82 153 | 98.87 78 | 99.07 165 | 99.46 169 |
|
HY-MVS | | 97.30 7 | 98.85 129 | 98.64 134 | 99.47 115 | 99.42 180 | 99.08 136 | 99.62 68 | 99.36 229 | 97.39 195 | 99.28 157 | 99.68 148 | 96.44 154 | 99.92 81 | 98.37 152 | 98.22 208 | 99.40 177 |
|
PCF-MVS | | 97.08 14 | 97.66 260 | 97.06 281 | 99.47 115 | 99.61 130 | 99.09 135 | 98.04 352 | 99.25 271 | 91.24 346 | 98.51 282 | 99.70 133 | 94.55 226 | 99.91 92 | 92.76 340 | 99.85 58 | 99.42 174 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
lupinMVS | | | 99.13 81 | 99.01 88 | 99.46 117 | 99.51 152 | 98.94 158 | 99.05 270 | 99.16 284 | 97.86 138 | 99.80 25 | 99.56 200 | 97.39 120 | 99.86 126 | 98.94 66 | 99.85 58 | 99.58 140 |
|
EIA-MVS | | | 99.18 73 | 99.09 73 | 99.45 118 | 99.49 162 | 99.18 121 | 99.67 46 | 99.53 84 | 97.66 165 | 99.40 131 | 99.44 240 | 98.10 104 | 99.81 157 | 98.94 66 | 99.62 127 | 99.35 180 |
|
CS-MVS-test | | | 99.30 57 | 99.25 56 | 99.45 118 | 99.46 171 | 99.23 116 | 99.80 17 | 99.57 51 | 98.28 90 | 99.53 100 | 99.44 240 | 98.16 102 | 99.79 165 | 99.38 22 | 99.61 129 | 99.34 182 |
|
jason | | | 99.13 81 | 99.03 81 | 99.45 118 | 99.46 171 | 98.87 165 | 99.12 255 | 99.26 269 | 98.03 128 | 99.79 27 | 99.65 161 | 97.02 134 | 99.85 132 | 99.02 59 | 99.90 23 | 99.65 115 |
jason: jason. |
CHOSEN 1792x2688 | | | 99.19 71 | 99.10 71 | 99.45 118 | 99.89 8 | 98.52 199 | 99.39 184 | 99.94 1 | 98.73 53 | 99.11 194 | 99.89 10 | 95.50 185 | 99.94 55 | 99.50 10 | 99.97 3 | 99.89 2 |
|
MG-MVS | | | 99.13 81 | 99.02 84 | 99.45 118 | 99.57 140 | 98.63 187 | 99.07 265 | 99.34 238 | 98.99 25 | 99.61 81 | 99.82 49 | 97.98 108 | 99.87 123 | 97.00 261 | 99.80 86 | 99.85 15 |
|
MSLP-MVS++ | | | 99.46 24 | 99.47 9 | 99.44 123 | 99.60 134 | 99.16 124 | 99.41 172 | 99.71 13 | 98.98 27 | 99.45 114 | 99.78 95 | 99.19 8 | 99.54 233 | 99.28 34 | 99.84 65 | 99.63 126 |
|
CS-MVS | | | 99.34 52 | 99.31 38 | 99.43 124 | 99.44 178 | 99.47 91 | 99.68 43 | 99.56 57 | 98.41 75 | 99.62 78 | 99.41 250 | 98.35 90 | 99.76 176 | 99.52 7 | 99.76 98 | 99.05 207 |
|
PVSNet_Blended | | | 99.08 98 | 98.97 93 | 99.42 125 | 99.76 52 | 98.79 176 | 98.78 315 | 99.91 3 | 96.74 247 | 99.67 61 | 99.49 225 | 97.53 117 | 99.88 120 | 98.98 62 | 99.85 58 | 99.60 132 |
|
ETV-MVS | | | 99.26 65 | 99.21 61 | 99.40 126 | 99.46 171 | 99.30 108 | 99.56 100 | 99.52 90 | 98.52 65 | 99.44 118 | 99.27 288 | 98.41 86 | 99.86 126 | 99.10 52 | 99.59 130 | 99.04 208 |
|
BH-RMVSNet | | | 98.41 160 | 98.08 177 | 99.40 126 | 99.41 183 | 98.83 172 | 99.30 211 | 98.77 322 | 97.70 159 | 98.94 226 | 99.65 161 | 92.91 264 | 99.74 180 | 96.52 284 | 99.55 133 | 99.64 122 |
|
UGNet | | | 98.87 118 | 98.69 128 | 99.40 126 | 99.22 232 | 98.72 180 | 99.44 157 | 99.68 19 | 99.24 3 | 99.18 185 | 99.42 246 | 92.74 268 | 99.96 19 | 99.34 28 | 99.94 9 | 99.53 150 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
baseline1 | | | 98.31 167 | 97.95 192 | 99.38 129 | 99.50 160 | 98.74 178 | 99.59 81 | 98.93 307 | 98.41 75 | 99.14 189 | 99.60 187 | 94.59 223 | 99.79 165 | 98.48 140 | 93.29 329 | 99.61 130 |
|
TSAR-MVS + GP. | | | 99.36 50 | 99.36 22 | 99.36 130 | 99.67 101 | 98.61 190 | 99.07 265 | 99.33 245 | 99.00 22 | 99.82 21 | 99.81 62 | 99.06 14 | 99.84 137 | 99.09 53 | 99.42 138 | 99.65 115 |
|
Anonymous20240529 | | | 98.09 189 | 97.68 221 | 99.34 131 | 99.66 110 | 98.44 207 | 99.40 180 | 99.43 199 | 93.67 332 | 99.22 173 | 99.89 10 | 90.23 317 | 99.93 70 | 99.26 37 | 98.33 202 | 99.66 111 |
|
xiu_mvs_v1_base_debu | | | 99.29 60 | 99.27 52 | 99.34 131 | 99.63 120 | 98.97 149 | 99.12 255 | 99.51 103 | 98.86 40 | 99.84 13 | 99.47 234 | 98.18 99 | 99.99 1 | 99.50 10 | 99.31 145 | 99.08 200 |
|
xiu_mvs_v1_base | | | 99.29 60 | 99.27 52 | 99.34 131 | 99.63 120 | 98.97 149 | 99.12 255 | 99.51 103 | 98.86 40 | 99.84 13 | 99.47 234 | 98.18 99 | 99.99 1 | 99.50 10 | 99.31 145 | 99.08 200 |
|
xiu_mvs_v1_base_debi | | | 99.29 60 | 99.27 52 | 99.34 131 | 99.63 120 | 98.97 149 | 99.12 255 | 99.51 103 | 98.86 40 | 99.84 13 | 99.47 234 | 98.18 99 | 99.99 1 | 99.50 10 | 99.31 145 | 99.08 200 |
|
PMMVS | | | 98.80 136 | 98.62 140 | 99.34 131 | 99.27 220 | 98.70 181 | 98.76 317 | 99.31 257 | 97.34 197 | 99.21 176 | 99.07 308 | 97.20 128 | 99.82 153 | 98.56 132 | 98.87 180 | 99.52 151 |
|
CSCG | | | 99.32 55 | 99.32 31 | 99.32 136 | 99.85 25 | 98.29 213 | 99.71 35 | 99.66 27 | 98.11 112 | 99.41 126 | 99.80 76 | 98.37 89 | 99.96 19 | 98.99 61 | 99.96 5 | 99.72 89 |
|
thisisatest0530 | | | 98.35 165 | 98.03 182 | 99.31 137 | 99.63 120 | 98.56 192 | 99.54 112 | 96.75 359 | 97.53 179 | 99.73 44 | 99.65 161 | 91.25 307 | 99.89 115 | 98.62 118 | 99.56 131 | 99.48 162 |
|
AllTest | | | 98.87 118 | 98.72 124 | 99.31 137 | 99.86 21 | 98.48 205 | 99.56 100 | 99.61 35 | 97.85 140 | 99.36 141 | 99.85 29 | 95.95 167 | 99.85 132 | 96.66 282 | 99.83 73 | 99.59 136 |
|
TestCases | | | | | 99.31 137 | 99.86 21 | 98.48 205 | | 99.61 35 | 97.85 140 | 99.36 141 | 99.85 29 | 95.95 167 | 99.85 132 | 96.66 282 | 99.83 73 | 99.59 136 |
|
Vis-MVSNet (Re-imp) | | | 98.87 118 | 98.72 124 | 99.31 137 | 99.71 86 | 98.88 164 | 99.80 17 | 99.44 191 | 97.91 136 | 99.36 141 | 99.78 95 | 95.49 186 | 99.43 248 | 97.91 189 | 99.11 159 | 99.62 128 |
|
PS-MVSNAJ | | | 99.32 55 | 99.32 31 | 99.30 141 | 99.57 140 | 98.94 158 | 98.97 293 | 99.46 170 | 98.92 37 | 99.71 48 | 99.24 291 | 99.01 17 | 99.98 6 | 99.35 24 | 99.66 121 | 98.97 216 |
|
VPA-MVSNet | | | 98.29 170 | 97.95 192 | 99.30 141 | 99.16 249 | 99.54 78 | 99.50 128 | 99.58 49 | 98.27 93 | 99.35 144 | 99.37 262 | 92.53 278 | 99.65 216 | 99.35 24 | 94.46 313 | 98.72 243 |
|
EPNet | | | 98.86 121 | 98.71 126 | 99.30 141 | 97.20 349 | 98.18 218 | 99.62 68 | 98.91 312 | 99.28 2 | 98.63 273 | 99.81 62 | 95.96 166 | 99.99 1 | 99.24 38 | 99.72 107 | 99.73 83 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_part1 | | | 97.75 242 | 97.24 275 | 99.29 144 | 99.59 136 | 99.63 61 | 99.65 57 | 99.49 130 | 96.17 292 | 98.44 287 | 99.69 141 | 89.80 321 | 99.47 236 | 98.68 111 | 93.66 325 | 98.78 229 |
|
xiu_mvs_v2_base | | | 99.26 65 | 99.25 56 | 99.29 144 | 99.53 148 | 98.91 162 | 99.02 279 | 99.45 182 | 98.80 48 | 99.71 48 | 99.26 289 | 98.94 32 | 99.98 6 | 99.34 28 | 99.23 150 | 98.98 215 |
|
MVSFormer | | | 99.17 75 | 99.12 69 | 99.29 144 | 99.51 152 | 98.94 158 | 99.88 1 | 99.46 170 | 97.55 174 | 99.80 25 | 99.65 161 | 97.39 120 | 99.28 274 | 99.03 57 | 99.85 58 | 99.65 115 |
|
tttt0517 | | | 98.42 158 | 98.14 170 | 99.28 147 | 99.66 110 | 98.38 211 | 99.74 32 | 96.85 357 | 97.68 161 | 99.79 27 | 99.74 117 | 91.39 304 | 99.89 115 | 98.83 89 | 99.56 131 | 99.57 141 |
|
nrg030 | | | 98.64 149 | 98.42 154 | 99.28 147 | 99.05 269 | 99.69 48 | 99.81 13 | 99.46 170 | 98.04 126 | 99.01 213 | 99.82 49 | 96.69 146 | 99.38 253 | 99.34 28 | 94.59 312 | 98.78 229 |
|
Anonymous202405211 | | | 98.30 169 | 97.98 187 | 99.26 149 | 99.57 140 | 98.16 219 | 99.41 172 | 98.55 338 | 96.03 304 | 99.19 182 | 99.74 117 | 91.87 291 | 99.92 81 | 99.16 47 | 98.29 207 | 99.70 98 |
|
CANet_DTU | | | 98.97 113 | 98.87 106 | 99.25 150 | 99.33 202 | 98.42 210 | 99.08 264 | 99.30 261 | 99.16 5 | 99.43 119 | 99.75 111 | 95.27 193 | 99.97 11 | 98.56 132 | 99.95 6 | 99.36 179 |
|
CDS-MVSNet | | | 99.09 96 | 99.03 81 | 99.25 150 | 99.42 180 | 98.73 179 | 99.45 153 | 99.46 170 | 98.11 112 | 99.46 113 | 99.77 102 | 98.01 107 | 99.37 256 | 98.70 106 | 98.92 177 | 99.66 111 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
XXY-MVS | | | 98.38 163 | 98.09 176 | 99.24 152 | 99.26 222 | 99.32 104 | 99.56 100 | 99.55 66 | 97.45 186 | 98.71 256 | 99.83 42 | 93.23 256 | 99.63 224 | 98.88 74 | 96.32 274 | 98.76 235 |
|
TAMVS | | | 99.12 87 | 99.08 74 | 99.24 152 | 99.46 171 | 98.55 193 | 99.51 122 | 99.46 170 | 98.09 115 | 99.45 114 | 99.82 49 | 98.34 91 | 99.51 234 | 98.70 106 | 98.93 175 | 99.67 108 |
|
FIs | | | 98.78 137 | 98.63 135 | 99.23 154 | 99.18 241 | 99.54 78 | 99.83 10 | 99.59 43 | 98.28 90 | 98.79 249 | 99.81 62 | 96.75 144 | 99.37 256 | 99.08 54 | 96.38 272 | 98.78 229 |
|
OMC-MVS | | | 99.08 98 | 99.04 79 | 99.20 155 | 99.67 101 | 98.22 217 | 99.28 217 | 99.52 90 | 98.07 120 | 99.66 66 | 99.81 62 | 97.79 112 | 99.78 170 | 97.79 199 | 99.81 82 | 99.60 132 |
|
thisisatest0515 | | | 98.14 184 | 97.79 206 | 99.19 156 | 99.50 160 | 98.50 202 | 98.61 329 | 96.82 358 | 96.95 235 | 99.54 98 | 99.43 243 | 91.66 300 | 99.86 126 | 98.08 178 | 99.51 135 | 99.22 189 |
|
RPMNet | | | 96.72 290 | 95.90 300 | 99.19 156 | 99.18 241 | 98.49 203 | 99.22 241 | 99.52 90 | 88.72 352 | 99.56 93 | 97.38 349 | 94.08 242 | 99.95 44 | 86.87 359 | 98.58 192 | 99.14 192 |
|
COLMAP_ROB |  | 97.56 6 | 98.86 121 | 98.75 123 | 99.17 158 | 99.88 11 | 98.53 195 | 99.34 205 | 99.59 43 | 97.55 174 | 98.70 262 | 99.89 10 | 95.83 174 | 99.90 107 | 98.10 173 | 99.90 23 | 99.08 200 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
VDDNet | | | 97.55 265 | 97.02 282 | 99.16 159 | 99.49 162 | 98.12 223 | 99.38 189 | 99.30 261 | 95.35 311 | 99.68 55 | 99.90 7 | 82.62 356 | 99.93 70 | 99.31 31 | 98.13 217 | 99.42 174 |
|
mvs_anonymous | | | 99.03 105 | 98.99 89 | 99.16 159 | 99.38 192 | 98.52 199 | 99.51 122 | 99.38 219 | 97.79 149 | 99.38 136 | 99.81 62 | 97.30 125 | 99.45 239 | 99.35 24 | 98.99 172 | 99.51 157 |
|
FC-MVSNet-test | | | 98.75 140 | 98.62 140 | 99.15 161 | 99.08 263 | 99.45 94 | 99.86 6 | 99.60 40 | 98.23 97 | 98.70 262 | 99.82 49 | 96.80 140 | 99.22 284 | 99.07 55 | 96.38 272 | 98.79 228 |
|
UniMVSNet (Re) | | | 98.29 170 | 98.00 185 | 99.13 162 | 99.00 275 | 99.36 102 | 99.49 138 | 99.51 103 | 97.95 132 | 98.97 222 | 99.13 303 | 96.30 158 | 99.38 253 | 98.36 154 | 93.34 328 | 98.66 273 |
|
1314 | | | 98.68 145 | 98.54 149 | 99.11 163 | 98.89 287 | 98.65 185 | 99.27 222 | 99.49 130 | 96.89 239 | 97.99 310 | 99.56 200 | 97.72 115 | 99.83 146 | 97.74 205 | 99.27 148 | 98.84 225 |
|
CHOSEN 280x420 | | | 99.12 87 | 99.13 68 | 99.08 164 | 99.66 110 | 97.89 234 | 98.43 339 | 99.71 13 | 98.88 39 | 99.62 78 | 99.76 106 | 96.63 147 | 99.70 203 | 99.46 18 | 99.99 1 | 99.66 111 |
|
PAPM | | | 97.59 264 | 97.09 280 | 99.07 165 | 99.06 266 | 98.26 216 | 98.30 346 | 99.10 290 | 94.88 319 | 98.08 305 | 99.34 271 | 96.27 159 | 99.64 219 | 89.87 349 | 98.92 177 | 99.31 185 |
|
WR-MVS | | | 98.06 192 | 97.73 217 | 99.06 166 | 98.86 295 | 99.25 114 | 99.19 244 | 99.35 234 | 97.30 201 | 98.66 265 | 99.43 243 | 93.94 245 | 99.21 289 | 98.58 127 | 94.28 317 | 98.71 245 |
|
API-MVS | | | 99.04 103 | 99.03 81 | 99.06 166 | 99.40 188 | 99.31 107 | 99.55 109 | 99.56 57 | 98.54 63 | 99.33 148 | 99.39 258 | 98.76 54 | 99.78 170 | 96.98 263 | 99.78 92 | 98.07 334 |
|
ET-MVSNet_ETH3D | | | 96.49 294 | 95.64 305 | 99.05 168 | 99.53 148 | 98.82 173 | 98.84 309 | 97.51 354 | 97.63 167 | 84.77 357 | 99.21 296 | 92.09 288 | 98.91 329 | 98.98 62 | 92.21 339 | 99.41 176 |
|
RRT_MVS | | | 98.60 151 | 98.44 152 | 99.05 168 | 98.88 288 | 99.14 129 | 99.49 138 | 99.38 219 | 97.76 152 | 99.29 155 | 99.86 23 | 95.38 188 | 99.36 260 | 98.81 94 | 97.16 258 | 98.64 277 |
|
SD-MVS | | | 99.41 43 | 99.52 6 | 99.05 168 | 99.74 70 | 99.68 50 | 99.46 152 | 99.52 90 | 99.11 7 | 99.88 5 | 99.91 5 | 99.43 1 | 97.70 351 | 98.72 104 | 99.93 10 | 99.77 65 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PVSNet_BlendedMVS | | | 98.86 121 | 98.80 117 | 99.03 171 | 99.76 52 | 98.79 176 | 99.28 217 | 99.91 3 | 97.42 192 | 99.67 61 | 99.37 262 | 97.53 117 | 99.88 120 | 98.98 62 | 97.29 253 | 98.42 317 |
|
NR-MVSNet | | | 97.97 210 | 97.61 228 | 99.02 172 | 98.87 292 | 99.26 113 | 99.47 149 | 99.42 201 | 97.63 167 | 97.08 331 | 99.50 222 | 95.07 200 | 99.13 298 | 97.86 193 | 93.59 326 | 98.68 258 |
|
VPNet | | | 97.84 226 | 97.44 250 | 99.01 173 | 99.21 234 | 98.94 158 | 99.48 144 | 99.57 51 | 98.38 78 | 99.28 157 | 99.73 124 | 88.89 330 | 99.39 251 | 99.19 42 | 93.27 330 | 98.71 245 |
|
CP-MVSNet | | | 98.09 189 | 97.78 209 | 99.01 173 | 98.97 281 | 99.24 115 | 99.67 46 | 99.46 170 | 97.25 206 | 98.48 285 | 99.64 168 | 93.79 249 | 99.06 307 | 98.63 117 | 94.10 320 | 98.74 241 |
|
GA-MVS | | | 97.85 223 | 97.47 242 | 99.00 175 | 99.38 192 | 97.99 227 | 98.57 332 | 99.15 285 | 97.04 227 | 98.90 232 | 99.30 281 | 89.83 320 | 99.38 253 | 96.70 279 | 98.33 202 | 99.62 128 |
|
MVSTER | | | 98.49 153 | 98.32 161 | 99.00 175 | 99.35 197 | 99.02 142 | 99.54 112 | 99.38 219 | 97.41 193 | 99.20 179 | 99.73 124 | 93.86 248 | 99.36 260 | 98.87 78 | 97.56 234 | 98.62 287 |
|
tfpnnormal | | | 97.84 226 | 97.47 242 | 98.98 177 | 99.20 236 | 99.22 118 | 99.64 60 | 99.61 35 | 96.32 279 | 98.27 299 | 99.70 133 | 93.35 255 | 99.44 244 | 95.69 300 | 95.40 297 | 98.27 326 |
|
test_djsdf | | | 98.67 146 | 98.57 147 | 98.98 177 | 98.70 314 | 98.91 162 | 99.88 1 | 99.46 170 | 97.55 174 | 99.22 173 | 99.88 15 | 95.73 178 | 99.28 274 | 99.03 57 | 97.62 229 | 98.75 237 |
|
hse-mvs3 | | | 97.70 253 | 97.28 271 | 98.97 179 | 99.70 93 | 97.27 254 | 99.36 196 | 99.45 182 | 98.94 33 | 99.66 66 | 99.64 168 | 94.93 202 | 99.99 1 | 99.48 15 | 84.36 352 | 99.65 115 |
|
UniMVSNet_NR-MVSNet | | | 98.22 173 | 97.97 188 | 98.96 180 | 98.92 285 | 98.98 146 | 99.48 144 | 99.53 84 | 97.76 152 | 98.71 256 | 99.46 238 | 96.43 155 | 99.22 284 | 98.57 129 | 92.87 335 | 98.69 253 |
|
DU-MVS | | | 98.08 191 | 97.79 206 | 98.96 180 | 98.87 292 | 98.98 146 | 99.41 172 | 99.45 182 | 97.87 137 | 98.71 256 | 99.50 222 | 94.82 208 | 99.22 284 | 98.57 129 | 92.87 335 | 98.68 258 |
|
PS-CasMVS | | | 97.93 212 | 97.59 231 | 98.95 182 | 98.99 276 | 99.06 139 | 99.68 43 | 99.52 90 | 97.13 216 | 98.31 296 | 99.68 148 | 92.44 284 | 99.05 308 | 98.51 138 | 94.08 321 | 98.75 237 |
|
anonymousdsp | | | 98.44 156 | 98.28 164 | 98.94 183 | 98.50 329 | 98.96 153 | 99.77 25 | 99.50 122 | 97.07 224 | 98.87 237 | 99.77 102 | 94.76 215 | 99.28 274 | 98.66 114 | 97.60 230 | 98.57 302 |
|
TAPA-MVS | | 97.07 15 | 97.74 245 | 97.34 265 | 98.94 183 | 99.70 93 | 97.53 247 | 99.25 233 | 99.51 103 | 91.90 343 | 99.30 152 | 99.63 174 | 98.78 49 | 99.64 219 | 88.09 355 | 99.87 40 | 99.65 115 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
v8 | | | 97.95 211 | 97.63 227 | 98.93 185 | 98.95 283 | 98.81 175 | 99.80 17 | 99.41 203 | 96.03 304 | 99.10 197 | 99.42 246 | 94.92 204 | 99.30 272 | 96.94 267 | 94.08 321 | 98.66 273 |
|
JIA-IIPM | | | 97.50 271 | 97.02 282 | 98.93 185 | 98.73 309 | 97.80 239 | 99.30 211 | 98.97 303 | 91.73 344 | 98.91 230 | 94.86 357 | 95.10 199 | 99.71 197 | 97.58 219 | 97.98 220 | 99.28 187 |
|
v7n | | | 97.87 220 | 97.52 236 | 98.92 187 | 98.76 307 | 98.58 191 | 99.84 7 | 99.46 170 | 96.20 289 | 98.91 230 | 99.70 133 | 94.89 206 | 99.44 244 | 96.03 293 | 93.89 323 | 98.75 237 |
|
v2v482 | | | 98.06 192 | 97.77 211 | 98.92 187 | 98.90 286 | 98.82 173 | 99.57 93 | 99.36 229 | 96.65 254 | 99.19 182 | 99.35 268 | 94.20 236 | 99.25 279 | 97.72 208 | 94.97 306 | 98.69 253 |
|
thres600view7 | | | 97.86 222 | 97.51 238 | 98.92 187 | 99.72 80 | 97.95 232 | 99.59 81 | 98.74 326 | 97.94 133 | 99.27 160 | 98.62 333 | 91.75 294 | 99.86 126 | 93.73 328 | 98.19 211 | 98.96 218 |
|
thres400 | | | 97.77 237 | 97.38 258 | 98.92 187 | 99.69 96 | 97.96 230 | 99.50 128 | 98.73 331 | 97.83 143 | 99.17 186 | 98.45 338 | 91.67 298 | 99.83 146 | 93.22 333 | 98.18 212 | 98.96 218 |
|
v1192 | | | 97.81 233 | 97.44 250 | 98.91 191 | 98.88 288 | 98.68 182 | 99.51 122 | 99.34 238 | 96.18 291 | 99.20 179 | 99.34 271 | 94.03 243 | 99.36 260 | 95.32 310 | 95.18 301 | 98.69 253 |
|
mvs_tets | | | 98.40 162 | 98.23 166 | 98.91 191 | 98.67 317 | 98.51 201 | 99.66 50 | 99.53 84 | 98.19 101 | 98.65 271 | 99.81 62 | 92.75 266 | 99.44 244 | 99.31 31 | 97.48 244 | 98.77 233 |
|
Anonymous20231211 | | | 97.88 218 | 97.54 235 | 98.90 193 | 99.71 86 | 98.53 195 | 99.48 144 | 99.57 51 | 94.16 328 | 98.81 245 | 99.68 148 | 93.23 256 | 99.42 249 | 98.84 86 | 94.42 315 | 98.76 235 |
|
PS-MVSNAJss | | | 98.92 116 | 98.92 99 | 98.90 193 | 98.78 303 | 98.53 195 | 99.78 23 | 99.54 73 | 98.07 120 | 99.00 218 | 99.76 106 | 99.01 17 | 99.37 256 | 99.13 49 | 97.23 254 | 98.81 226 |
|
WR-MVS_H | | | 98.13 185 | 97.87 202 | 98.90 193 | 99.02 273 | 98.84 169 | 99.70 36 | 99.59 43 | 97.27 204 | 98.40 290 | 99.19 297 | 95.53 184 | 99.23 281 | 98.34 155 | 93.78 324 | 98.61 296 |
|
mvs-test1 | | | 98.86 121 | 98.84 112 | 98.89 196 | 99.33 202 | 97.77 240 | 99.44 157 | 99.30 261 | 98.47 68 | 99.10 197 | 99.43 243 | 96.78 141 | 99.95 44 | 98.73 102 | 99.02 170 | 98.96 218 |
|
XVG-OURS-SEG-HR | | | 98.69 144 | 98.62 140 | 98.89 196 | 99.71 86 | 97.74 241 | 99.12 255 | 99.54 73 | 98.44 74 | 99.42 122 | 99.71 129 | 94.20 236 | 99.92 81 | 98.54 137 | 98.90 179 | 99.00 212 |
|
PVSNet | | 96.02 17 | 98.85 129 | 98.84 112 | 98.89 196 | 99.73 75 | 97.28 253 | 98.32 345 | 99.60 40 | 97.86 138 | 99.50 106 | 99.57 197 | 96.75 144 | 99.86 126 | 98.56 132 | 99.70 112 | 99.54 145 |
|
jajsoiax | | | 98.43 157 | 98.28 164 | 98.88 199 | 98.60 324 | 98.43 208 | 99.82 11 | 99.53 84 | 98.19 101 | 98.63 273 | 99.80 76 | 93.22 258 | 99.44 244 | 99.22 39 | 97.50 240 | 98.77 233 |
|
pm-mvs1 | | | 97.68 256 | 97.28 271 | 98.88 199 | 99.06 266 | 98.62 188 | 99.50 128 | 99.45 182 | 96.32 279 | 97.87 313 | 99.79 88 | 92.47 280 | 99.35 264 | 97.54 226 | 93.54 327 | 98.67 265 |
|
VDD-MVS | | | 97.73 246 | 97.35 262 | 98.88 199 | 99.47 170 | 97.12 260 | 99.34 205 | 98.85 318 | 98.19 101 | 99.67 61 | 99.85 29 | 82.98 354 | 99.92 81 | 99.49 14 | 98.32 206 | 99.60 132 |
|
XVG-OURS | | | 98.73 141 | 98.68 129 | 98.88 199 | 99.70 93 | 97.73 242 | 98.92 301 | 99.55 66 | 98.52 65 | 99.45 114 | 99.84 38 | 95.27 193 | 99.91 92 | 98.08 178 | 98.84 182 | 99.00 212 |
|
UniMVSNet_ETH3D | | | 97.32 279 | 96.81 285 | 98.87 203 | 99.40 188 | 97.46 249 | 99.51 122 | 99.53 84 | 95.86 306 | 98.54 281 | 99.77 102 | 82.44 357 | 99.66 212 | 98.68 111 | 97.52 237 | 99.50 160 |
|
v144192 | | | 97.92 215 | 97.60 229 | 98.87 203 | 98.83 298 | 98.65 185 | 99.55 109 | 99.34 238 | 96.20 289 | 99.32 149 | 99.40 254 | 94.36 231 | 99.26 278 | 96.37 289 | 95.03 305 | 98.70 249 |
|
CR-MVSNet | | | 98.17 180 | 97.93 195 | 98.87 203 | 99.18 241 | 98.49 203 | 99.22 241 | 99.33 245 | 96.96 233 | 99.56 93 | 99.38 259 | 94.33 232 | 99.00 316 | 94.83 317 | 98.58 192 | 99.14 192 |
|
v10 | | | 97.85 223 | 97.52 236 | 98.86 206 | 98.99 276 | 98.67 183 | 99.75 29 | 99.41 203 | 95.70 307 | 98.98 220 | 99.41 250 | 94.75 216 | 99.23 281 | 96.01 294 | 94.63 311 | 98.67 265 |
|
V42 | | | 98.06 192 | 97.79 206 | 98.86 206 | 98.98 279 | 98.84 169 | 99.69 38 | 99.34 238 | 96.53 264 | 99.30 152 | 99.37 262 | 94.67 220 | 99.32 269 | 97.57 223 | 94.66 310 | 98.42 317 |
|
TransMVSNet (Re) | | | 97.15 283 | 96.58 287 | 98.86 206 | 99.12 254 | 98.85 168 | 99.49 138 | 98.91 312 | 95.48 309 | 97.16 329 | 99.80 76 | 93.38 254 | 99.11 303 | 94.16 325 | 91.73 340 | 98.62 287 |
|
v1144 | | | 97.98 207 | 97.69 220 | 98.85 209 | 98.87 292 | 98.66 184 | 99.54 112 | 99.35 234 | 96.27 283 | 99.23 172 | 99.35 268 | 94.67 220 | 99.23 281 | 96.73 277 | 95.16 302 | 98.68 258 |
|
v1921920 | | | 97.80 235 | 97.45 245 | 98.84 210 | 98.80 299 | 98.53 195 | 99.52 118 | 99.34 238 | 96.15 296 | 99.24 168 | 99.47 234 | 93.98 244 | 99.29 273 | 95.40 307 | 95.13 303 | 98.69 253 |
|
FMVSNet3 | | | 98.03 198 | 97.76 214 | 98.84 210 | 99.39 191 | 98.98 146 | 99.40 180 | 99.38 219 | 96.67 252 | 99.07 204 | 99.28 285 | 92.93 261 | 98.98 318 | 97.10 256 | 96.65 263 | 98.56 303 |
|
baseline2 | | | 97.87 220 | 97.55 232 | 98.82 212 | 99.18 241 | 98.02 225 | 99.41 172 | 96.58 361 | 96.97 232 | 96.51 336 | 99.17 298 | 93.43 253 | 99.57 229 | 97.71 209 | 99.03 168 | 98.86 223 |
|
TR-MVS | | | 97.76 238 | 97.41 255 | 98.82 212 | 99.06 266 | 97.87 235 | 98.87 307 | 98.56 337 | 96.63 257 | 98.68 264 | 99.22 293 | 92.49 279 | 99.65 216 | 95.40 307 | 97.79 224 | 98.95 221 |
|
pmmvs4 | | | 98.13 185 | 97.90 197 | 98.81 214 | 98.61 323 | 98.87 165 | 98.99 286 | 99.21 278 | 96.44 273 | 99.06 208 | 99.58 193 | 95.90 172 | 99.11 303 | 97.18 253 | 96.11 278 | 98.46 314 |
|
Patchmtry | | | 97.75 242 | 97.40 256 | 98.81 214 | 99.10 259 | 98.87 165 | 99.11 261 | 99.33 245 | 94.83 320 | 98.81 245 | 99.38 259 | 94.33 232 | 99.02 313 | 96.10 291 | 95.57 293 | 98.53 304 |
|
FMVSNet2 | | | 97.72 248 | 97.36 260 | 98.80 216 | 99.51 152 | 98.84 169 | 99.45 153 | 99.42 201 | 96.49 266 | 98.86 242 | 99.29 283 | 90.26 314 | 98.98 318 | 96.44 286 | 96.56 266 | 98.58 301 |
|
v1240 | | | 97.69 254 | 97.32 268 | 98.79 217 | 98.85 296 | 98.43 208 | 99.48 144 | 99.36 229 | 96.11 299 | 99.27 160 | 99.36 265 | 93.76 251 | 99.24 280 | 94.46 320 | 95.23 300 | 98.70 249 |
|
PatchT | | | 97.03 286 | 96.44 290 | 98.79 217 | 98.99 276 | 98.34 212 | 99.16 247 | 99.07 295 | 92.13 342 | 99.52 103 | 97.31 352 | 94.54 227 | 98.98 318 | 88.54 353 | 98.73 188 | 99.03 209 |
|
Patchmatch-test | | | 97.93 212 | 97.65 224 | 98.77 219 | 99.18 241 | 97.07 265 | 99.03 276 | 99.14 287 | 96.16 294 | 98.74 253 | 99.57 197 | 94.56 225 | 99.72 191 | 93.36 332 | 99.11 159 | 99.52 151 |
|
TranMVSNet+NR-MVSNet | | | 97.93 212 | 97.66 223 | 98.76 220 | 98.78 303 | 98.62 188 | 99.65 57 | 99.49 130 | 97.76 152 | 98.49 284 | 99.60 187 | 94.23 235 | 98.97 325 | 98.00 183 | 92.90 333 | 98.70 249 |
|
gg-mvs-nofinetune | | | 96.17 301 | 95.32 309 | 98.73 221 | 98.79 300 | 98.14 221 | 99.38 189 | 94.09 366 | 91.07 348 | 98.07 308 | 91.04 362 | 89.62 325 | 99.35 264 | 96.75 275 | 99.09 163 | 98.68 258 |
|
bset_n11_16_dypcd | | | 98.16 181 | 97.97 188 | 98.73 221 | 98.26 334 | 98.28 215 | 97.99 353 | 98.01 347 | 97.68 161 | 99.10 197 | 99.63 174 | 95.68 180 | 99.15 294 | 98.78 98 | 96.55 267 | 98.75 237 |
|
tfpn200view9 | | | 97.72 248 | 97.38 258 | 98.72 223 | 99.69 96 | 97.96 230 | 99.50 128 | 98.73 331 | 97.83 143 | 99.17 186 | 98.45 338 | 91.67 298 | 99.83 146 | 93.22 333 | 98.18 212 | 98.37 323 |
|
PEN-MVS | | | 97.76 238 | 97.44 250 | 98.72 223 | 98.77 306 | 98.54 194 | 99.78 23 | 99.51 103 | 97.06 226 | 98.29 298 | 99.64 168 | 92.63 275 | 98.89 331 | 98.09 174 | 93.16 331 | 98.72 243 |
|
thres100view900 | | | 97.76 238 | 97.45 245 | 98.69 225 | 99.72 80 | 97.86 237 | 99.59 81 | 98.74 326 | 97.93 134 | 99.26 165 | 98.62 333 | 91.75 294 | 99.83 146 | 93.22 333 | 98.18 212 | 98.37 323 |
|
EI-MVSNet | | | 98.67 146 | 98.67 130 | 98.68 226 | 99.35 197 | 97.97 228 | 99.50 128 | 99.38 219 | 96.93 238 | 99.20 179 | 99.83 42 | 97.87 109 | 99.36 260 | 98.38 150 | 97.56 234 | 98.71 245 |
|
Baseline_NR-MVSNet | | | 97.76 238 | 97.45 245 | 98.68 226 | 99.09 261 | 98.29 213 | 99.41 172 | 98.85 318 | 95.65 308 | 98.63 273 | 99.67 154 | 94.82 208 | 99.10 305 | 98.07 181 | 92.89 334 | 98.64 277 |
|
thres200 | | | 97.61 263 | 97.28 271 | 98.62 228 | 99.64 117 | 98.03 224 | 99.26 231 | 98.74 326 | 97.68 161 | 99.09 202 | 98.32 342 | 91.66 300 | 99.81 157 | 92.88 337 | 98.22 208 | 98.03 337 |
|
Fast-Effi-MVS+-dtu | | | 98.77 139 | 98.83 116 | 98.60 229 | 99.41 183 | 96.99 274 | 99.52 118 | 99.49 130 | 98.11 112 | 99.24 168 | 99.34 271 | 96.96 137 | 99.79 165 | 97.95 187 | 99.45 136 | 99.02 211 |
|
hse-mvs2 | | | 97.50 271 | 97.14 278 | 98.59 230 | 99.49 162 | 97.05 267 | 99.28 217 | 99.22 275 | 98.94 33 | 99.66 66 | 99.42 246 | 94.93 202 | 99.65 216 | 99.48 15 | 83.80 354 | 99.08 200 |
|
AUN-MVS | | | 96.88 287 | 96.31 292 | 98.59 230 | 99.48 169 | 97.04 270 | 99.27 222 | 99.22 275 | 97.44 189 | 98.51 282 | 99.41 250 | 91.97 289 | 99.66 212 | 97.71 209 | 83.83 353 | 99.07 205 |
|
BH-untuned | | | 98.42 158 | 98.36 156 | 98.59 230 | 99.49 162 | 96.70 286 | 99.27 222 | 99.13 288 | 97.24 208 | 98.80 247 | 99.38 259 | 95.75 177 | 99.74 180 | 97.07 259 | 99.16 154 | 99.33 184 |
|
IterMVS-LS | | | 98.46 155 | 98.42 154 | 98.58 233 | 99.59 136 | 98.00 226 | 99.37 192 | 99.43 199 | 96.94 237 | 99.07 204 | 99.59 190 | 97.87 109 | 99.03 311 | 98.32 158 | 95.62 292 | 98.71 245 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MIMVSNet | | | 97.73 246 | 97.45 245 | 98.57 234 | 99.45 177 | 97.50 248 | 99.02 279 | 98.98 302 | 96.11 299 | 99.41 126 | 99.14 302 | 90.28 313 | 98.74 333 | 95.74 299 | 98.93 175 | 99.47 167 |
|
IB-MVS | | 95.67 18 | 96.22 298 | 95.44 308 | 98.57 234 | 99.21 234 | 96.70 286 | 98.65 327 | 97.74 352 | 96.71 249 | 97.27 325 | 98.54 336 | 86.03 348 | 99.92 81 | 98.47 143 | 86.30 350 | 99.10 195 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ADS-MVSNet | | | 98.20 176 | 98.08 177 | 98.56 236 | 99.33 202 | 96.48 294 | 99.23 236 | 99.15 285 | 96.24 286 | 99.10 197 | 99.67 154 | 94.11 240 | 99.71 197 | 96.81 273 | 99.05 166 | 99.48 162 |
|
test0.0.03 1 | | | 97.71 252 | 97.42 254 | 98.56 236 | 98.41 332 | 97.82 238 | 98.78 315 | 98.63 335 | 97.34 197 | 98.05 309 | 98.98 320 | 94.45 229 | 98.98 318 | 95.04 314 | 97.15 259 | 98.89 222 |
|
cl-mvsnet____ | | | 98.01 203 | 97.84 204 | 98.55 238 | 99.25 226 | 97.97 228 | 98.71 322 | 99.34 238 | 96.47 272 | 98.59 279 | 99.54 208 | 95.65 182 | 99.21 289 | 97.21 247 | 95.77 287 | 98.46 314 |
|
test-LLR | | | 98.06 192 | 97.90 197 | 98.55 238 | 98.79 300 | 97.10 261 | 98.67 324 | 97.75 350 | 97.34 197 | 98.61 276 | 98.85 324 | 94.45 229 | 99.45 239 | 97.25 245 | 99.38 140 | 99.10 195 |
|
test-mter | | | 97.49 274 | 97.13 279 | 98.55 238 | 98.79 300 | 97.10 261 | 98.67 324 | 97.75 350 | 96.65 254 | 98.61 276 | 98.85 324 | 88.23 338 | 99.45 239 | 97.25 245 | 99.38 140 | 99.10 195 |
|
v148 | | | 97.79 236 | 97.55 232 | 98.50 241 | 98.74 308 | 97.72 243 | 99.54 112 | 99.33 245 | 96.26 284 | 98.90 232 | 99.51 219 | 94.68 219 | 99.14 295 | 97.83 196 | 93.15 332 | 98.63 285 |
|
LPG-MVS_test | | | 98.22 173 | 98.13 171 | 98.49 242 | 99.33 202 | 97.05 267 | 99.58 88 | 99.55 66 | 97.46 183 | 99.24 168 | 99.83 42 | 92.58 276 | 99.72 191 | 98.09 174 | 97.51 238 | 98.68 258 |
|
LGP-MVS_train | | | | | 98.49 242 | 99.33 202 | 97.05 267 | | 99.55 66 | 97.46 183 | 99.24 168 | 99.83 42 | 92.58 276 | 99.72 191 | 98.09 174 | 97.51 238 | 98.68 258 |
|
cl-mvsnet2 | | | 97.85 223 | 97.64 226 | 98.48 244 | 99.09 261 | 97.87 235 | 98.60 331 | 99.33 245 | 97.11 221 | 98.87 237 | 99.22 293 | 92.38 285 | 99.17 293 | 98.21 163 | 95.99 281 | 98.42 317 |
|
cl-mvsnet1 | | | 98.01 203 | 97.85 203 | 98.48 244 | 99.24 227 | 97.95 232 | 98.71 322 | 99.35 234 | 96.50 265 | 98.60 278 | 99.54 208 | 95.72 179 | 99.03 311 | 97.21 247 | 95.77 287 | 98.46 314 |
|
cascas | | | 97.69 254 | 97.43 253 | 98.48 244 | 98.60 324 | 97.30 252 | 98.18 350 | 99.39 213 | 92.96 340 | 98.41 289 | 98.78 329 | 93.77 250 | 99.27 277 | 98.16 170 | 98.61 189 | 98.86 223 |
|
ACMM | | 97.58 5 | 98.37 164 | 98.34 159 | 98.48 244 | 99.41 183 | 97.10 261 | 99.56 100 | 99.45 182 | 98.53 64 | 99.04 210 | 99.85 29 | 93.00 260 | 99.71 197 | 98.74 100 | 97.45 245 | 98.64 277 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Effi-MVS+-dtu | | | 98.78 137 | 98.89 104 | 98.47 248 | 99.33 202 | 96.91 280 | 99.57 93 | 99.30 261 | 98.47 68 | 99.41 126 | 98.99 317 | 96.78 141 | 99.74 180 | 98.73 102 | 99.38 140 | 98.74 241 |
|
DTE-MVSNet | | | 97.51 270 | 97.19 277 | 98.46 249 | 98.63 320 | 98.13 222 | 99.84 7 | 99.48 142 | 96.68 251 | 97.97 311 | 99.67 154 | 92.92 262 | 98.56 335 | 96.88 272 | 92.60 338 | 98.70 249 |
|
OPM-MVS | | | 98.19 177 | 98.10 173 | 98.45 250 | 98.88 288 | 97.07 265 | 99.28 217 | 99.38 219 | 98.57 62 | 99.22 173 | 99.81 62 | 92.12 287 | 99.66 212 | 98.08 178 | 97.54 236 | 98.61 296 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
GG-mvs-BLEND | | | | | 98.45 250 | 98.55 327 | 98.16 219 | 99.43 163 | 93.68 367 | | 97.23 326 | 98.46 337 | 89.30 327 | 99.22 284 | 95.43 306 | 98.22 208 | 97.98 342 |
|
ACMP | | 97.20 11 | 98.06 192 | 97.94 194 | 98.45 250 | 99.37 194 | 97.01 272 | 99.44 157 | 99.49 130 | 97.54 177 | 98.45 286 | 99.79 88 | 91.95 290 | 99.72 191 | 97.91 189 | 97.49 243 | 98.62 287 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
HQP_MVS | | | 98.27 172 | 98.22 167 | 98.44 253 | 99.29 215 | 96.97 276 | 99.39 184 | 99.47 160 | 98.97 30 | 99.11 194 | 99.61 184 | 92.71 271 | 99.69 207 | 97.78 200 | 97.63 227 | 98.67 265 |
|
ACMH | | 97.28 8 | 98.10 188 | 97.99 186 | 98.44 253 | 99.41 183 | 96.96 278 | 99.60 75 | 99.56 57 | 98.09 115 | 98.15 303 | 99.91 5 | 90.87 311 | 99.70 203 | 98.88 74 | 97.45 245 | 98.67 265 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
miper_ehance_all_eth | | | 98.18 179 | 98.10 173 | 98.41 255 | 99.23 228 | 97.72 243 | 98.72 321 | 99.31 257 | 96.60 260 | 98.88 235 | 99.29 283 | 97.29 126 | 99.13 298 | 97.60 217 | 95.99 281 | 98.38 322 |
|
miper_enhance_ethall | | | 98.16 181 | 98.08 177 | 98.41 255 | 98.96 282 | 97.72 243 | 98.45 338 | 99.32 254 | 96.95 235 | 98.97 222 | 99.17 298 | 97.06 133 | 99.22 284 | 97.86 193 | 95.99 281 | 98.29 325 |
|
TESTMET0.1,1 | | | 97.55 265 | 97.27 274 | 98.40 257 | 98.93 284 | 96.53 292 | 98.67 324 | 97.61 353 | 96.96 233 | 98.64 272 | 99.28 285 | 88.63 334 | 99.45 239 | 97.30 242 | 99.38 140 | 99.21 190 |
|
LTVRE_ROB | | 97.16 12 | 98.02 200 | 97.90 197 | 98.40 257 | 99.23 228 | 96.80 284 | 99.70 36 | 99.60 40 | 97.12 218 | 98.18 302 | 99.70 133 | 91.73 296 | 99.72 191 | 98.39 148 | 97.45 245 | 98.68 258 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
cl_fuxian | | | 98.12 187 | 98.04 181 | 98.38 259 | 99.30 211 | 97.69 246 | 98.81 312 | 99.33 245 | 96.67 252 | 98.83 243 | 99.34 271 | 97.11 130 | 98.99 317 | 97.58 219 | 95.34 298 | 98.48 308 |
|
HQP-MVS | | | 98.02 200 | 97.90 197 | 98.37 260 | 99.19 238 | 96.83 281 | 98.98 290 | 99.39 213 | 98.24 94 | 98.66 265 | 99.40 254 | 92.47 280 | 99.64 219 | 97.19 251 | 97.58 232 | 98.64 277 |
|
EPMVS | | | 97.82 231 | 97.65 224 | 98.35 261 | 98.88 288 | 95.98 306 | 99.49 138 | 94.71 365 | 97.57 172 | 99.26 165 | 99.48 231 | 92.46 283 | 99.71 197 | 97.87 192 | 99.08 164 | 99.35 180 |
|
eth_miper_zixun_eth | | | 98.05 197 | 97.96 190 | 98.33 262 | 99.26 222 | 97.38 251 | 98.56 334 | 99.31 257 | 96.65 254 | 98.88 235 | 99.52 215 | 96.58 148 | 99.12 302 | 97.39 240 | 95.53 295 | 98.47 310 |
|
CLD-MVS | | | 98.16 181 | 98.10 173 | 98.33 262 | 99.29 215 | 96.82 283 | 98.75 318 | 99.44 191 | 97.83 143 | 99.13 190 | 99.55 203 | 92.92 262 | 99.67 209 | 98.32 158 | 97.69 226 | 98.48 308 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
BH-w/o | | | 98.00 205 | 97.89 201 | 98.32 264 | 99.35 197 | 96.20 303 | 99.01 284 | 98.90 314 | 96.42 275 | 98.38 291 | 99.00 316 | 95.26 195 | 99.72 191 | 96.06 292 | 98.61 189 | 99.03 209 |
|
ACMH+ | | 97.24 10 | 97.92 215 | 97.78 209 | 98.32 264 | 99.46 171 | 96.68 288 | 99.56 100 | 99.54 73 | 98.41 75 | 97.79 317 | 99.87 20 | 90.18 318 | 99.66 212 | 98.05 182 | 97.18 257 | 98.62 287 |
|
CVMVSNet | | | 98.57 152 | 98.67 130 | 98.30 266 | 99.35 197 | 95.59 313 | 99.50 128 | 99.55 66 | 98.60 61 | 99.39 133 | 99.83 42 | 94.48 228 | 99.45 239 | 98.75 99 | 98.56 195 | 99.85 15 |
|
GBi-Net | | | 97.68 256 | 97.48 240 | 98.29 267 | 99.51 152 | 97.26 256 | 99.43 163 | 99.48 142 | 96.49 266 | 99.07 204 | 99.32 278 | 90.26 314 | 98.98 318 | 97.10 256 | 96.65 263 | 98.62 287 |
|
test1 | | | 97.68 256 | 97.48 240 | 98.29 267 | 99.51 152 | 97.26 256 | 99.43 163 | 99.48 142 | 96.49 266 | 99.07 204 | 99.32 278 | 90.26 314 | 98.98 318 | 97.10 256 | 96.65 263 | 98.62 287 |
|
FMVSNet1 | | | 96.84 288 | 96.36 291 | 98.29 267 | 99.32 209 | 97.26 256 | 99.43 163 | 99.48 142 | 95.11 314 | 98.55 280 | 99.32 278 | 83.95 353 | 98.98 318 | 95.81 297 | 96.26 275 | 98.62 287 |
|
miper_lstm_enhance | | | 98.00 205 | 97.91 196 | 98.28 270 | 99.34 201 | 97.43 250 | 98.88 305 | 99.36 229 | 96.48 270 | 98.80 247 | 99.55 203 | 95.98 165 | 98.91 329 | 97.27 243 | 95.50 296 | 98.51 306 |
|
SCA | | | 98.19 177 | 98.16 168 | 98.27 271 | 99.30 211 | 95.55 314 | 99.07 265 | 98.97 303 | 97.57 172 | 99.43 119 | 99.57 197 | 92.72 269 | 99.74 180 | 97.58 219 | 99.20 152 | 99.52 151 |
|
EPNet_dtu | | | 98.03 198 | 97.96 190 | 98.23 272 | 98.27 333 | 95.54 316 | 99.23 236 | 98.75 323 | 99.02 15 | 97.82 315 | 99.71 129 | 96.11 162 | 99.48 235 | 93.04 336 | 99.65 123 | 99.69 101 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
XVG-ACMP-BASELINE | | | 97.83 228 | 97.71 219 | 98.20 273 | 99.11 256 | 96.33 299 | 99.41 172 | 99.52 90 | 98.06 124 | 99.05 209 | 99.50 222 | 89.64 324 | 99.73 187 | 97.73 206 | 97.38 251 | 98.53 304 |
|
OurMVSNet-221017-0 | | | 97.88 218 | 97.77 211 | 98.19 274 | 98.71 313 | 96.53 292 | 99.88 1 | 99.00 300 | 97.79 149 | 98.78 250 | 99.94 3 | 91.68 297 | 99.35 264 | 97.21 247 | 96.99 261 | 98.69 253 |
|
PatchmatchNet |  | | 98.31 167 | 98.36 156 | 98.19 274 | 99.16 249 | 95.32 322 | 99.27 222 | 98.92 309 | 97.37 196 | 99.37 138 | 99.58 193 | 94.90 205 | 99.70 203 | 97.43 238 | 99.21 151 | 99.54 145 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
pmmvs5 | | | 97.52 268 | 97.30 270 | 98.16 276 | 98.57 326 | 96.73 285 | 99.27 222 | 98.90 314 | 96.14 297 | 98.37 292 | 99.53 212 | 91.54 303 | 99.14 295 | 97.51 229 | 95.87 285 | 98.63 285 |
|
D2MVS | | | 98.41 160 | 98.50 150 | 98.15 277 | 99.26 222 | 96.62 290 | 99.40 180 | 99.61 35 | 97.71 158 | 98.98 220 | 99.36 265 | 96.04 164 | 99.67 209 | 98.70 106 | 97.41 249 | 98.15 332 |
|
testgi | | | 97.65 261 | 97.50 239 | 98.13 278 | 99.36 196 | 96.45 295 | 99.42 170 | 99.48 142 | 97.76 152 | 97.87 313 | 99.45 239 | 91.09 308 | 98.81 332 | 94.53 319 | 98.52 197 | 99.13 194 |
|
RRT_test8_iter05 | | | 97.72 248 | 97.60 229 | 98.08 279 | 99.23 228 | 96.08 305 | 99.63 62 | 99.49 130 | 97.54 177 | 98.94 226 | 99.81 62 | 87.99 341 | 99.35 264 | 99.21 41 | 96.51 269 | 98.81 226 |
|
ITE_SJBPF | | | | | 98.08 279 | 99.29 215 | 96.37 297 | | 98.92 309 | 98.34 84 | 98.83 243 | 99.75 111 | 91.09 308 | 99.62 225 | 95.82 296 | 97.40 250 | 98.25 328 |
|
IterMVS-SCA-FT | | | 97.82 231 | 97.75 215 | 98.06 281 | 99.57 140 | 96.36 298 | 99.02 279 | 99.49 130 | 97.18 212 | 98.71 256 | 99.72 128 | 92.72 269 | 99.14 295 | 97.44 237 | 95.86 286 | 98.67 265 |
|
SixPastTwentyTwo | | | 97.50 271 | 97.33 267 | 98.03 282 | 98.65 318 | 96.23 302 | 99.77 25 | 98.68 334 | 97.14 215 | 97.90 312 | 99.93 4 | 90.45 312 | 99.18 292 | 97.00 261 | 96.43 271 | 98.67 265 |
|
tpm | | | 97.67 259 | 97.55 232 | 98.03 282 | 99.02 273 | 95.01 328 | 99.43 163 | 98.54 339 | 96.44 273 | 99.12 192 | 99.34 271 | 91.83 293 | 99.60 227 | 97.75 204 | 96.46 270 | 99.48 162 |
|
IterMVS | | | 97.83 228 | 97.77 211 | 98.02 284 | 99.58 138 | 96.27 301 | 99.02 279 | 99.48 142 | 97.22 210 | 98.71 256 | 99.70 133 | 92.75 266 | 99.13 298 | 97.46 234 | 96.00 280 | 98.67 265 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MDA-MVSNet_test_wron | | | 95.45 308 | 94.60 314 | 98.01 285 | 98.16 336 | 97.21 259 | 99.11 261 | 99.24 273 | 93.49 335 | 80.73 362 | 98.98 320 | 93.02 259 | 98.18 339 | 94.22 324 | 94.45 314 | 98.64 277 |
|
K. test v3 | | | 97.10 285 | 96.79 286 | 98.01 285 | 98.72 311 | 96.33 299 | 99.87 5 | 97.05 356 | 97.59 169 | 96.16 340 | 99.80 76 | 88.71 331 | 99.04 309 | 96.69 280 | 96.55 267 | 98.65 275 |
|
MVP-Stereo | | | 97.81 233 | 97.75 215 | 97.99 287 | 97.53 342 | 96.60 291 | 98.96 294 | 98.85 318 | 97.22 210 | 97.23 326 | 99.36 265 | 95.28 192 | 99.46 238 | 95.51 304 | 99.78 92 | 97.92 346 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
TDRefinement | | | 95.42 309 | 94.57 315 | 97.97 288 | 89.83 364 | 96.11 304 | 99.48 144 | 98.75 323 | 96.74 247 | 96.68 335 | 99.88 15 | 88.65 333 | 99.71 197 | 98.37 152 | 82.74 355 | 98.09 333 |
|
PVSNet_0 | | 94.43 19 | 96.09 303 | 95.47 306 | 97.94 289 | 99.31 210 | 94.34 338 | 97.81 354 | 99.70 15 | 97.12 218 | 97.46 321 | 98.75 330 | 89.71 322 | 99.79 165 | 97.69 212 | 81.69 356 | 99.68 105 |
|
DWT-MVSNet_test | | | 97.53 267 | 97.40 256 | 97.93 290 | 99.03 272 | 94.86 332 | 99.57 93 | 98.63 335 | 96.59 262 | 98.36 293 | 98.79 327 | 89.32 326 | 99.74 180 | 98.14 172 | 98.16 216 | 99.20 191 |
|
MDA-MVSNet-bldmvs | | | 94.96 313 | 93.98 319 | 97.92 291 | 98.24 335 | 97.27 254 | 99.15 251 | 99.33 245 | 93.80 331 | 80.09 363 | 99.03 313 | 88.31 337 | 97.86 348 | 93.49 331 | 94.36 316 | 98.62 287 |
|
YYNet1 | | | 95.36 310 | 94.51 316 | 97.92 291 | 97.89 338 | 97.10 261 | 99.10 263 | 99.23 274 | 93.26 338 | 80.77 361 | 99.04 312 | 92.81 265 | 98.02 343 | 94.30 321 | 94.18 319 | 98.64 277 |
|
tpmrst | | | 98.33 166 | 98.48 151 | 97.90 293 | 99.16 249 | 94.78 333 | 99.31 209 | 99.11 289 | 97.27 204 | 99.45 114 | 99.59 190 | 95.33 191 | 99.84 137 | 98.48 140 | 98.61 189 | 99.09 199 |
|
ADS-MVSNet2 | | | 98.02 200 | 98.07 180 | 97.87 294 | 99.33 202 | 95.19 325 | 99.23 236 | 99.08 293 | 96.24 286 | 99.10 197 | 99.67 154 | 94.11 240 | 98.93 328 | 96.81 273 | 99.05 166 | 99.48 162 |
|
test_0402 | | | 96.64 291 | 96.24 293 | 97.85 295 | 98.85 296 | 96.43 296 | 99.44 157 | 99.26 269 | 93.52 334 | 96.98 333 | 99.52 215 | 88.52 335 | 99.20 291 | 92.58 342 | 97.50 240 | 97.93 345 |
|
tpmvs | | | 97.98 207 | 98.02 184 | 97.84 296 | 99.04 270 | 94.73 334 | 99.31 209 | 99.20 279 | 96.10 303 | 98.76 252 | 99.42 246 | 94.94 201 | 99.81 157 | 96.97 264 | 98.45 200 | 98.97 216 |
|
TinyColmap | | | 97.12 284 | 96.89 284 | 97.83 297 | 99.07 264 | 95.52 317 | 98.57 332 | 98.74 326 | 97.58 171 | 97.81 316 | 99.79 88 | 88.16 339 | 99.56 230 | 95.10 312 | 97.21 255 | 98.39 321 |
|
pmmvs6 | | | 96.53 293 | 96.09 296 | 97.82 298 | 98.69 315 | 95.47 318 | 99.37 192 | 99.47 160 | 93.46 336 | 97.41 322 | 99.78 95 | 87.06 346 | 99.33 268 | 96.92 270 | 92.70 337 | 98.65 275 |
|
EU-MVSNet | | | 97.98 207 | 98.03 182 | 97.81 299 | 98.72 311 | 96.65 289 | 99.66 50 | 99.66 27 | 98.09 115 | 98.35 294 | 99.82 49 | 95.25 196 | 98.01 344 | 97.41 239 | 95.30 299 | 98.78 229 |
|
lessismore_v0 | | | | | 97.79 300 | 98.69 315 | 95.44 320 | | 94.75 364 | | 95.71 344 | 99.87 20 | 88.69 332 | 99.32 269 | 95.89 295 | 94.93 308 | 98.62 287 |
|
USDC | | | 97.34 278 | 97.20 276 | 97.75 301 | 99.07 264 | 95.20 324 | 98.51 336 | 99.04 298 | 97.99 130 | 98.31 296 | 99.86 23 | 89.02 328 | 99.55 232 | 95.67 302 | 97.36 252 | 98.49 307 |
|
tpm2 | | | 97.44 276 | 97.34 265 | 97.74 302 | 99.15 252 | 94.36 337 | 99.45 153 | 98.94 306 | 93.45 337 | 98.90 232 | 99.44 240 | 91.35 305 | 99.59 228 | 97.31 241 | 98.07 219 | 99.29 186 |
|
CostFormer | | | 97.72 248 | 97.73 217 | 97.71 303 | 99.15 252 | 94.02 340 | 99.54 112 | 99.02 299 | 94.67 323 | 99.04 210 | 99.35 268 | 92.35 286 | 99.77 172 | 98.50 139 | 97.94 221 | 99.34 182 |
|
LF4IMVS | | | 97.52 268 | 97.46 244 | 97.70 304 | 98.98 279 | 95.55 314 | 99.29 215 | 98.82 321 | 98.07 120 | 98.66 265 | 99.64 168 | 89.97 319 | 99.61 226 | 97.01 260 | 96.68 262 | 97.94 344 |
|
ppachtmachnet_test | | | 97.49 274 | 97.45 245 | 97.61 305 | 98.62 321 | 95.24 323 | 98.80 313 | 99.46 170 | 96.11 299 | 98.22 300 | 99.62 180 | 96.45 153 | 98.97 325 | 93.77 327 | 95.97 284 | 98.61 296 |
|
MVS_0304 | | | 96.79 289 | 96.52 289 | 97.59 306 | 99.22 232 | 94.92 331 | 99.04 275 | 99.59 43 | 96.49 266 | 98.43 288 | 98.99 317 | 80.48 360 | 99.39 251 | 97.15 255 | 99.27 148 | 98.47 310 |
|
dp | | | 97.75 242 | 97.80 205 | 97.59 306 | 99.10 259 | 93.71 343 | 99.32 207 | 98.88 316 | 96.48 270 | 99.08 203 | 99.55 203 | 92.67 274 | 99.82 153 | 96.52 284 | 98.58 192 | 99.24 188 |
|
our_test_3 | | | 97.65 261 | 97.68 221 | 97.55 308 | 98.62 321 | 94.97 329 | 98.84 309 | 99.30 261 | 96.83 244 | 98.19 301 | 99.34 271 | 97.01 135 | 99.02 313 | 95.00 315 | 96.01 279 | 98.64 277 |
|
MVS-HIRNet | | | 95.75 306 | 95.16 310 | 97.51 309 | 99.30 211 | 93.69 344 | 98.88 305 | 95.78 362 | 85.09 355 | 98.78 250 | 92.65 359 | 91.29 306 | 99.37 256 | 94.85 316 | 99.85 58 | 99.46 169 |
|
tpm cat1 | | | 97.39 277 | 97.36 260 | 97.50 310 | 99.17 247 | 93.73 342 | 99.43 163 | 99.31 257 | 91.27 345 | 98.71 256 | 99.08 307 | 94.31 234 | 99.77 172 | 96.41 288 | 98.50 198 | 99.00 212 |
|
new_pmnet | | | 96.38 297 | 96.03 297 | 97.41 311 | 98.13 337 | 95.16 327 | 99.05 270 | 99.20 279 | 93.94 329 | 97.39 323 | 98.79 327 | 91.61 302 | 99.04 309 | 90.43 347 | 95.77 287 | 98.05 336 |
|
UnsupCasMVSNet_eth | | | 96.44 295 | 96.12 295 | 97.40 312 | 98.65 318 | 95.65 311 | 99.36 196 | 99.51 103 | 97.13 216 | 96.04 342 | 98.99 317 | 88.40 336 | 98.17 340 | 96.71 278 | 90.27 343 | 98.40 320 |
|
KD-MVS_2432*1600 | | | 94.62 315 | 93.72 321 | 97.31 313 | 97.19 350 | 95.82 309 | 98.34 342 | 99.20 279 | 95.00 317 | 97.57 319 | 98.35 340 | 87.95 342 | 98.10 341 | 92.87 338 | 77.00 360 | 98.01 338 |
|
miper_refine_blended | | | 94.62 315 | 93.72 321 | 97.31 313 | 97.19 350 | 95.82 309 | 98.34 342 | 99.20 279 | 95.00 317 | 97.57 319 | 98.35 340 | 87.95 342 | 98.10 341 | 92.87 338 | 77.00 360 | 98.01 338 |
|
pmmvs-eth3d | | | 95.34 311 | 94.73 313 | 97.15 315 | 95.53 357 | 95.94 307 | 99.35 202 | 99.10 290 | 95.13 312 | 93.55 350 | 97.54 347 | 88.15 340 | 97.91 346 | 94.58 318 | 89.69 346 | 97.61 349 |
|
FMVSNet5 | | | 96.43 296 | 96.19 294 | 97.15 315 | 99.11 256 | 95.89 308 | 99.32 207 | 99.52 90 | 94.47 327 | 98.34 295 | 99.07 308 | 87.54 345 | 97.07 355 | 92.61 341 | 95.72 290 | 98.47 310 |
|
Anonymous20240521 | | | 96.20 300 | 95.89 301 | 97.13 317 | 97.72 341 | 94.96 330 | 99.79 22 | 99.29 266 | 93.01 339 | 97.20 328 | 99.03 313 | 89.69 323 | 98.36 338 | 91.16 345 | 96.13 277 | 98.07 334 |
|
DeepPCF-MVS | | 98.18 3 | 98.81 133 | 99.37 20 | 97.12 318 | 99.60 134 | 91.75 353 | 98.61 329 | 99.44 191 | 99.35 1 | 99.83 18 | 99.85 29 | 98.70 63 | 99.81 157 | 99.02 59 | 99.91 16 | 99.81 42 |
|
MS-PatchMatch | | | 97.24 282 | 97.32 268 | 96.99 319 | 98.45 331 | 93.51 347 | 98.82 311 | 99.32 254 | 97.41 193 | 98.13 304 | 99.30 281 | 88.99 329 | 99.56 230 | 95.68 301 | 99.80 86 | 97.90 347 |
|
RPSCF | | | 98.22 173 | 98.62 140 | 96.99 319 | 99.82 37 | 91.58 354 | 99.72 33 | 99.44 191 | 96.61 258 | 99.66 66 | 99.89 10 | 95.92 170 | 99.82 153 | 97.46 234 | 99.10 162 | 99.57 141 |
|
DIV-MVS_2432*1600 | | | 95.00 312 | 94.34 317 | 96.96 321 | 97.07 352 | 95.39 321 | 99.56 100 | 99.44 191 | 95.11 314 | 97.13 330 | 97.32 351 | 91.86 292 | 97.27 354 | 90.35 348 | 81.23 357 | 98.23 330 |
|
DSMNet-mixed | | | 97.25 281 | 97.35 262 | 96.95 322 | 97.84 339 | 93.61 346 | 99.57 93 | 96.63 360 | 96.13 298 | 98.87 237 | 98.61 335 | 94.59 223 | 97.70 351 | 95.08 313 | 98.86 181 | 99.55 143 |
|
MIMVSNet1 | | | 95.51 307 | 95.04 311 | 96.92 323 | 97.38 344 | 95.60 312 | 99.52 118 | 99.50 122 | 93.65 333 | 96.97 334 | 99.17 298 | 85.28 351 | 96.56 359 | 88.36 354 | 95.55 294 | 98.60 299 |
|
LCM-MVSNet-Re | | | 97.83 228 | 98.15 169 | 96.87 324 | 99.30 211 | 92.25 352 | 99.59 81 | 98.26 341 | 97.43 190 | 96.20 339 | 99.13 303 | 96.27 159 | 98.73 334 | 98.17 169 | 98.99 172 | 99.64 122 |
|
EG-PatchMatch MVS | | | 95.97 304 | 95.69 304 | 96.81 325 | 97.78 340 | 92.79 350 | 99.16 247 | 98.93 307 | 96.16 294 | 94.08 349 | 99.22 293 | 82.72 355 | 99.47 236 | 95.67 302 | 97.50 240 | 98.17 331 |
|
Anonymous20231206 | | | 96.22 298 | 96.03 297 | 96.79 326 | 97.31 347 | 94.14 339 | 99.63 62 | 99.08 293 | 96.17 292 | 97.04 332 | 99.06 310 | 93.94 245 | 97.76 350 | 86.96 358 | 95.06 304 | 98.47 310 |
|
test20.03 | | | 96.12 302 | 95.96 299 | 96.63 327 | 97.44 343 | 95.45 319 | 99.51 122 | 99.38 219 | 96.55 263 | 96.16 340 | 99.25 290 | 93.76 251 | 96.17 360 | 87.35 357 | 94.22 318 | 98.27 326 |
|
pmmvs3 | | | 94.09 321 | 93.25 324 | 96.60 328 | 94.76 359 | 94.49 335 | 98.92 301 | 98.18 345 | 89.66 349 | 96.48 337 | 98.06 345 | 86.28 347 | 97.33 353 | 89.68 350 | 87.20 349 | 97.97 343 |
|
UnsupCasMVSNet_bld | | | 93.53 322 | 92.51 325 | 96.58 329 | 97.38 344 | 93.82 341 | 98.24 347 | 99.48 142 | 91.10 347 | 93.10 352 | 96.66 353 | 74.89 361 | 98.37 337 | 94.03 326 | 87.71 348 | 97.56 351 |
|
OpenMVS_ROB |  | 92.34 20 | 94.38 319 | 93.70 323 | 96.41 330 | 97.38 344 | 93.17 348 | 99.06 268 | 98.75 323 | 86.58 353 | 94.84 348 | 98.26 343 | 81.53 358 | 99.32 269 | 89.01 351 | 97.87 223 | 96.76 353 |
|
CL-MVSNet_2432*1600 | | | 94.49 317 | 93.97 320 | 96.08 331 | 96.16 353 | 93.67 345 | 98.33 344 | 99.38 219 | 95.13 312 | 97.33 324 | 98.15 344 | 92.69 273 | 96.57 358 | 88.67 352 | 79.87 358 | 97.99 341 |
|
Patchmatch-RL test | | | 95.84 305 | 95.81 303 | 95.95 332 | 95.61 355 | 90.57 355 | 98.24 347 | 98.39 340 | 95.10 316 | 95.20 345 | 98.67 332 | 94.78 211 | 97.77 349 | 96.28 290 | 90.02 344 | 99.51 157 |
|
new-patchmatchnet | | | 94.48 318 | 94.08 318 | 95.67 333 | 95.08 358 | 92.41 351 | 99.18 245 | 99.28 268 | 94.55 326 | 93.49 351 | 97.37 350 | 87.86 344 | 97.01 356 | 91.57 343 | 88.36 347 | 97.61 349 |
|
PM-MVS | | | 92.96 323 | 92.23 326 | 95.14 334 | 95.61 355 | 89.98 357 | 99.37 192 | 98.21 343 | 94.80 321 | 95.04 347 | 97.69 346 | 65.06 363 | 97.90 347 | 94.30 321 | 89.98 345 | 97.54 352 |
|
Gipuma |  | | 90.99 325 | 90.15 328 | 93.51 335 | 98.73 309 | 90.12 356 | 93.98 360 | 99.45 182 | 79.32 358 | 92.28 353 | 94.91 356 | 69.61 362 | 97.98 345 | 87.42 356 | 95.67 291 | 92.45 359 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DeepMVS_CX |  | | | | 93.34 336 | 99.29 215 | 82.27 360 | | 99.22 275 | 85.15 354 | 96.33 338 | 99.05 311 | 90.97 310 | 99.73 187 | 93.57 330 | 97.77 225 | 98.01 338 |
|
ambc | | | | | 93.06 337 | 92.68 360 | 82.36 359 | 98.47 337 | 98.73 331 | | 95.09 346 | 97.41 348 | 55.55 366 | 99.10 305 | 96.42 287 | 91.32 341 | 97.71 348 |
|
N_pmnet | | | 94.95 314 | 95.83 302 | 92.31 338 | 98.47 330 | 79.33 363 | 99.12 255 | 92.81 370 | 93.87 330 | 97.68 318 | 99.13 303 | 93.87 247 | 99.01 315 | 91.38 344 | 96.19 276 | 98.59 300 |
|
CMPMVS |  | 69.68 23 | 94.13 320 | 94.90 312 | 91.84 339 | 97.24 348 | 80.01 362 | 98.52 335 | 99.48 142 | 89.01 350 | 91.99 354 | 99.67 154 | 85.67 350 | 99.13 298 | 95.44 305 | 97.03 260 | 96.39 355 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
LCM-MVSNet | | | 86.80 327 | 85.22 331 | 91.53 340 | 87.81 365 | 80.96 361 | 98.23 349 | 98.99 301 | 71.05 360 | 90.13 356 | 96.51 354 | 48.45 369 | 96.88 357 | 90.51 346 | 85.30 351 | 96.76 353 |
|
PMMVS2 | | | 86.87 326 | 85.37 330 | 91.35 341 | 90.21 363 | 83.80 358 | 98.89 304 | 97.45 355 | 83.13 357 | 91.67 355 | 95.03 355 | 48.49 368 | 94.70 362 | 85.86 360 | 77.62 359 | 95.54 356 |
|
test_method | | | 91.10 324 | 91.36 327 | 90.31 342 | 95.85 354 | 73.72 368 | 94.89 359 | 99.25 271 | 68.39 362 | 95.82 343 | 99.02 315 | 80.50 359 | 98.95 327 | 93.64 329 | 94.89 309 | 98.25 328 |
|
tmp_tt | | | 82.80 329 | 81.52 332 | 86.66 343 | 66.61 371 | 68.44 369 | 92.79 362 | 97.92 348 | 68.96 361 | 80.04 364 | 99.85 29 | 85.77 349 | 96.15 361 | 97.86 193 | 43.89 366 | 95.39 357 |
|
MVE |  | 76.82 21 | 76.91 333 | 74.31 337 | 84.70 344 | 85.38 368 | 76.05 367 | 96.88 358 | 93.17 368 | 67.39 363 | 71.28 365 | 89.01 364 | 21.66 375 | 87.69 365 | 71.74 364 | 72.29 362 | 90.35 361 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 77.30 332 | 74.86 336 | 84.62 345 | 75.88 369 | 77.61 364 | 97.63 356 | 93.15 369 | 88.81 351 | 64.27 366 | 89.29 363 | 36.51 370 | 83.93 368 | 75.89 363 | 52.31 365 | 92.33 360 |
|
E-PMN | | | 80.61 330 | 79.88 333 | 82.81 346 | 90.75 362 | 76.38 366 | 97.69 355 | 95.76 363 | 66.44 364 | 83.52 358 | 92.25 360 | 62.54 365 | 87.16 366 | 68.53 365 | 61.40 363 | 84.89 364 |
|
FPMVS | | | 84.93 328 | 85.65 329 | 82.75 347 | 86.77 366 | 63.39 370 | 98.35 341 | 98.92 309 | 74.11 359 | 83.39 359 | 98.98 320 | 50.85 367 | 92.40 364 | 84.54 361 | 94.97 306 | 92.46 358 |
|
EMVS | | | 80.02 331 | 79.22 334 | 82.43 348 | 91.19 361 | 76.40 365 | 97.55 357 | 92.49 371 | 66.36 365 | 83.01 360 | 91.27 361 | 64.63 364 | 85.79 367 | 65.82 366 | 60.65 364 | 85.08 363 |
|
PMVS |  | 70.75 22 | 75.98 334 | 74.97 335 | 79.01 349 | 70.98 370 | 55.18 371 | 93.37 361 | 98.21 343 | 65.08 366 | 61.78 367 | 93.83 358 | 21.74 374 | 92.53 363 | 78.59 362 | 91.12 342 | 89.34 362 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuyk23d | | | 40.18 335 | 41.29 340 | 36.84 350 | 86.18 367 | 49.12 372 | 79.73 363 | 22.81 373 | 27.64 367 | 25.46 370 | 28.45 370 | 21.98 373 | 48.89 369 | 55.80 367 | 23.56 369 | 12.51 367 |
|
test123 | | | 39.01 337 | 42.50 339 | 28.53 351 | 39.17 372 | 20.91 373 | 98.75 318 | 19.17 374 | 19.83 369 | 38.57 368 | 66.67 366 | 33.16 371 | 15.42 370 | 37.50 369 | 29.66 368 | 49.26 365 |
|
testmvs | | | 39.17 336 | 43.78 338 | 25.37 352 | 36.04 373 | 16.84 374 | 98.36 340 | 26.56 372 | 20.06 368 | 38.51 369 | 67.32 365 | 29.64 372 | 15.30 371 | 37.59 368 | 39.90 367 | 43.98 366 |
|
uanet_test | | | 0.02 341 | 0.03 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.27 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
cdsmvs_eth3d_5k | | | 24.64 338 | 32.85 341 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 99.51 103 | 0.00 370 | 0.00 371 | 99.56 200 | 96.58 148 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
pcd_1.5k_mvsjas | | | 8.27 340 | 11.03 343 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.27 371 | 99.01 17 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
sosnet-low-res | | | 0.02 341 | 0.03 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.27 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
sosnet | | | 0.02 341 | 0.03 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.27 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
uncertanet | | | 0.02 341 | 0.03 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.27 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
Regformer | | | 0.02 341 | 0.03 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.27 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
ab-mvs-re | | | 8.30 339 | 11.06 342 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 99.58 193 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
uanet | | | 0.02 341 | 0.03 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.27 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
PC_three_1452 | | | | | | | | | | 98.18 104 | 99.84 13 | 99.70 133 | 99.31 3 | 98.52 336 | 98.30 160 | 99.80 86 | 99.81 42 |
|
eth-test2 | | | | | | 0.00 374 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 374 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.71 86 | 99.79 30 | | 99.61 35 | 96.84 242 | 99.56 93 | 99.54 208 | 98.58 71 | 99.96 19 | 96.93 268 | 99.75 100 | |
|
RE-MVS-def | | | | 99.34 27 | | 99.76 52 | 99.82 20 | 99.63 62 | 99.52 90 | 98.38 78 | 99.76 38 | 99.82 49 | 98.75 57 | | 98.61 121 | 99.81 82 | 99.77 65 |
|
IU-MVS | | | | | | 99.84 32 | 99.88 7 | | 99.32 254 | 98.30 89 | 99.84 13 | | | | 98.86 82 | 99.85 58 | 99.89 2 |
|
test_241102_TWO | | | | | | | | | 99.48 142 | 99.08 11 | 99.88 5 | 99.81 62 | 98.94 32 | 99.96 19 | 98.91 71 | 99.84 65 | 99.88 6 |
|
test_241102_ONE | | | | | | 99.84 32 | 99.90 1 | | 99.48 142 | 99.07 13 | 99.91 1 | 99.74 117 | 99.20 6 | 99.76 176 | | | |
|
9.14 | | | | 99.10 71 | | 99.72 80 | | 99.40 180 | 99.51 103 | 97.53 179 | 99.64 73 | 99.78 95 | 98.84 43 | 99.91 92 | 97.63 215 | 99.82 79 | |
|
save fliter | | | | | | 99.76 52 | 99.59 69 | 99.14 253 | 99.40 209 | 99.00 22 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 98.99 25 | 99.81 23 | 99.80 76 | 99.09 13 | 99.96 19 | 98.85 84 | 99.90 23 | 99.88 6 |
|
test0726 | | | | | | 99.85 25 | 99.89 3 | 99.62 68 | 99.50 122 | 99.10 8 | 99.86 11 | 99.82 49 | 98.94 32 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.52 151 |
|
test_part2 | | | | | | 99.81 40 | 99.83 14 | | | | 99.77 34 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.86 207 | | | | 99.52 151 |
|
sam_mvs | | | | | | | | | | | | | 94.72 218 | | | | |
|
MTGPA |  | | | | | | | | 99.47 160 | | | | | | | | |
|
test_post1 | | | | | | | | 99.23 236 | | | | 65.14 368 | 94.18 239 | 99.71 197 | 97.58 219 | | |
|
test_post | | | | | | | | | | | | 65.99 367 | 94.65 222 | 99.73 187 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 98.70 331 | 94.79 210 | 99.74 180 | | | |
|
MTMP | | | | | | | | 99.54 112 | 98.88 316 | | | | | | | | |
|
gm-plane-assit | | | | | | 98.54 328 | 92.96 349 | | | 94.65 324 | | 99.15 301 | | 99.64 219 | 97.56 224 | | |
|
test9_res | | | | | | | | | | | | | | | 97.49 230 | 99.72 107 | 99.75 71 |
|
TEST9 | | | | | | 99.67 101 | 99.65 58 | 99.05 270 | 99.41 203 | 96.22 288 | 98.95 224 | 99.49 225 | 98.77 52 | 99.91 92 | | | |
|
test_8 | | | | | | 99.67 101 | 99.61 64 | 99.03 276 | 99.41 203 | 96.28 281 | 98.93 228 | 99.48 231 | 98.76 54 | 99.91 92 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 97.21 247 | 99.73 106 | 99.75 71 |
|
agg_prior | | | | | | 99.67 101 | 99.62 62 | | 99.40 209 | | 98.87 237 | | | 99.91 92 | | | |
|
test_prior4 | | | | | | | 99.56 74 | 98.99 286 | | | | | | | | | |
|
test_prior2 | | | | | | | | 98.96 294 | | 98.34 84 | 99.01 213 | 99.52 215 | 98.68 64 | | 97.96 185 | 99.74 103 | |
|
旧先验2 | | | | | | | | 98.96 294 | | 96.70 250 | 99.47 111 | | | 99.94 55 | 98.19 165 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 99.01 284 | | | | | | | | | |
|
旧先验1 | | | | | | 99.74 70 | 99.59 69 | | 99.54 73 | | | 99.69 141 | 98.47 79 | | | 99.68 118 | 99.73 83 |
|
æ— å…ˆéªŒ | | | | | | | | 98.99 286 | 99.51 103 | 96.89 239 | | | | 99.93 70 | 97.53 227 | | 99.72 89 |
|
原ACMM2 | | | | | | | | 98.95 298 | | | | | | | | | |
|
test222 | | | | | | 99.75 62 | 99.49 87 | 98.91 303 | 99.49 130 | 96.42 275 | 99.34 147 | 99.65 161 | 98.28 95 | | | 99.69 113 | 99.72 89 |
|
testdata2 | | | | | | | | | | | | | | 99.95 44 | 96.67 281 | | |
|
segment_acmp | | | | | | | | | | | | | 98.96 26 | | | | |
|
testdata1 | | | | | | | | 98.85 308 | | 98.32 88 | | | | | | | |
|
plane_prior7 | | | | | | 99.29 215 | 97.03 271 | | | | | | | | | | |
|
plane_prior6 | | | | | | 99.27 220 | 96.98 275 | | | | | | 92.71 271 | | | | |
|
plane_prior5 | | | | | | | | | 99.47 160 | | | | | 99.69 207 | 97.78 200 | 97.63 227 | 98.67 265 |
|
plane_prior4 | | | | | | | | | | | | 99.61 184 | | | | | |
|
plane_prior3 | | | | | | | 97.00 273 | | | 98.69 56 | 99.11 194 | | | | | | |
|
plane_prior2 | | | | | | | | 99.39 184 | | 98.97 30 | | | | | | | |
|
plane_prior1 | | | | | | 99.26 222 | | | | | | | | | | | |
|
plane_prior | | | | | | | 96.97 276 | 99.21 243 | | 98.45 71 | | | | | | 97.60 230 | |
|
n2 | | | | | | | | | 0.00 375 | | | | | | | | |
|
nn | | | | | | | | | 0.00 375 | | | | | | | | |
|
door-mid | | | | | | | | | 98.05 346 | | | | | | | | |
|
test11 | | | | | | | | | 99.35 234 | | | | | | | | |
|
door | | | | | | | | | 97.92 348 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.83 281 | | | | | | | | | | |
|
HQP-NCC | | | | | | 99.19 238 | | 98.98 290 | | 98.24 94 | 98.66 265 | | | | | | |
|
ACMP_Plane | | | | | | 99.19 238 | | 98.98 290 | | 98.24 94 | 98.66 265 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.19 251 | | |
|
HQP4-MVS | | | | | | | | | | | 98.66 265 | | | 99.64 219 | | | 98.64 277 |
|
HQP3-MVS | | | | | | | | | 99.39 213 | | | | | | | 97.58 232 | |
|
HQP2-MVS | | | | | | | | | | | | | 92.47 280 | | | | |
|
NP-MVS | | | | | | 99.23 228 | 96.92 279 | | | | | 99.40 254 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 95.18 326 | 99.35 202 | | 96.84 242 | 99.58 90 | | 95.19 198 | | 97.82 197 | | 99.46 169 |
|
MDTV_nov1_ep13 | | | | 98.32 161 | | 99.11 256 | 94.44 336 | 99.27 222 | 98.74 326 | 97.51 181 | 99.40 131 | 99.62 180 | 94.78 211 | 99.76 176 | 97.59 218 | 98.81 185 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 97.19 256 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.43 248 | |
|
Test By Simon | | | | | | | | | | | | | 98.75 57 | | | | |
|