This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS99.66 199.57 399.92 199.77 5399.89 499.75 3999.56 5799.02 2699.88 1199.85 4299.18 1099.96 2299.22 5399.92 1399.90 4
test_0728_SECOND99.91 299.84 3199.89 499.57 10899.51 10399.96 2298.93 8099.86 4899.88 12
DPE-MVScopyleft99.46 2399.32 3299.91 299.78 4799.88 899.36 20999.51 10398.73 6199.88 1199.84 5298.72 5899.96 2298.16 17699.87 4099.88 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MTAPA99.52 1099.39 1999.89 499.90 499.86 1399.66 6599.47 16098.79 5899.68 6099.81 7698.43 7899.97 1498.88 8699.90 2599.83 35
DVP-MVS++99.59 399.50 899.88 599.51 15699.88 899.87 999.51 10398.99 3399.88 1199.81 7699.27 599.96 2298.85 9699.80 8399.81 47
SED-MVS99.61 299.52 699.88 599.84 3199.90 299.60 9099.48 14299.08 2199.91 799.81 7699.20 799.96 2298.91 8399.85 5599.79 60
DVP-MVScopyleft99.57 799.47 1299.88 599.85 2599.89 499.57 10899.37 22499.10 1699.81 2599.80 8998.94 2999.96 2298.93 8099.86 4899.81 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MP-MVS-pluss99.37 4499.20 5799.88 599.90 499.87 1299.30 22499.52 8997.18 21999.60 9099.79 10098.79 4699.95 4898.83 10299.91 1899.83 35
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 3499.27 4899.88 599.89 899.80 2799.67 6099.50 12298.70 6399.77 3899.49 23198.21 8999.95 4898.46 15399.77 9399.88 12
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP99.47 2199.34 2899.88 599.87 1599.86 1399.47 16499.48 14298.05 13699.76 4399.86 3798.82 4399.93 7098.82 10699.91 1899.84 26
MSC_two_6792asdad99.87 1199.51 15699.76 3799.33 24199.96 2298.87 8999.84 6399.89 6
No_MVS99.87 1199.51 15699.76 3799.33 24199.96 2298.87 8999.84 6399.89 6
ZNCC-MVS99.47 2199.33 3099.87 1199.87 1599.81 2599.64 7399.67 2298.08 13099.55 10299.64 17698.91 3499.96 2298.72 11499.90 2599.82 40
region2R99.48 1899.35 2699.87 1199.88 1199.80 2799.65 7199.66 2698.13 12099.66 6999.68 15898.96 2499.96 2298.62 12799.87 4099.84 26
HPM-MVS++copyleft99.39 4299.23 5599.87 1199.75 6499.84 1599.43 17799.51 10398.68 6599.27 16899.53 21998.64 6699.96 2298.44 15499.80 8399.79 60
XVS99.53 999.42 1599.87 1199.85 2599.83 1699.69 5199.68 1998.98 3699.37 14499.74 12798.81 4499.94 5798.79 10799.86 4899.84 26
X-MVStestdata96.55 29195.45 30899.87 1199.85 2599.83 1699.69 5199.68 1998.98 3699.37 14464.01 37898.81 4499.94 5798.79 10799.86 4899.84 26
MP-MVScopyleft99.33 4899.15 6199.87 1199.88 1199.82 2299.66 6599.46 16998.09 12699.48 11499.74 12798.29 8699.96 2297.93 19299.87 4099.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP99.54 899.42 1599.87 1199.82 3799.81 2599.59 9699.51 10398.62 6799.79 3099.83 5699.28 499.97 1498.48 14999.90 2599.84 26
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS99.43 3299.29 4499.86 2099.75 6499.83 1699.59 9699.62 3398.21 10899.73 4899.79 10098.68 6199.96 2298.44 15499.77 9399.79 60
HFP-MVS99.49 1499.37 2299.86 2099.87 1599.80 2799.66 6599.67 2298.15 11799.68 6099.69 15299.06 1699.96 2298.69 11999.87 4099.84 26
ACMMPR99.49 1499.36 2499.86 2099.87 1599.79 3099.66 6599.67 2298.15 11799.67 6499.69 15298.95 2799.96 2298.69 11999.87 4099.84 26
PGM-MVS99.45 2599.31 3899.86 2099.87 1599.78 3699.58 10499.65 3197.84 15499.71 5499.80 8999.12 1399.97 1498.33 16399.87 4099.83 35
mPP-MVS99.44 2999.30 4099.86 2099.88 1199.79 3099.69 5199.48 14298.12 12199.50 11099.75 12298.78 4799.97 1498.57 13999.89 3499.83 35
SR-MVS-dyc-post99.45 2599.31 3899.85 2599.76 5699.82 2299.63 7799.52 8998.38 8699.76 4399.82 6398.53 7199.95 4898.61 13099.81 7999.77 68
GST-MVS99.40 4199.24 5399.85 2599.86 2099.79 3099.60 9099.67 2297.97 14299.63 8099.68 15898.52 7299.95 4898.38 15799.86 4899.81 47
SMA-MVScopyleft99.44 2999.30 4099.85 2599.73 7899.83 1699.56 11499.47 16097.45 19599.78 3599.82 6399.18 1099.91 9098.79 10799.89 3499.81 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVS_3200maxsize99.48 1899.35 2699.85 2599.76 5699.83 1699.63 7799.54 7398.36 9099.79 3099.82 6398.86 3899.95 4898.62 12799.81 7999.78 66
HPM-MVS_fast99.51 1199.40 1899.85 2599.91 199.79 3099.76 3699.56 5797.72 16899.76 4399.75 12299.13 1299.92 8099.07 6799.92 1399.85 22
CP-MVS99.45 2599.32 3299.85 2599.83 3599.75 3999.69 5199.52 8998.07 13199.53 10599.63 18298.93 3399.97 1498.74 11199.91 1899.83 35
APD-MVScopyleft99.27 5699.08 6999.84 3199.75 6499.79 3099.50 14599.50 12297.16 22199.77 3899.82 6398.78 4799.94 5797.56 22999.86 4899.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVScopyleft99.42 3499.28 4699.83 3299.90 499.72 4299.81 2099.54 7397.59 17999.68 6099.63 18298.91 3499.94 5798.58 13699.91 1899.84 26
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MCST-MVS99.43 3299.30 4099.82 3399.79 4599.74 4199.29 22899.40 20798.79 5899.52 10799.62 18798.91 3499.90 10198.64 12599.75 9899.82 40
ACMMPcopyleft99.45 2599.32 3299.82 3399.89 899.67 5199.62 8399.69 1898.12 12199.63 8099.84 5298.73 5799.96 2298.55 14599.83 7299.81 47
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+97.12 1399.18 6698.97 8799.82 3399.17 25199.68 4899.81 2099.51 10399.20 898.72 25899.89 2095.68 17299.97 1498.86 9499.86 4899.81 47
TSAR-MVS + MP.99.58 499.50 899.81 3699.91 199.66 5399.63 7799.39 21098.91 4699.78 3599.85 4299.36 299.94 5798.84 9999.88 3799.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator97.25 999.24 6299.05 7199.81 3699.12 25899.66 5399.84 1399.74 1099.09 2098.92 23299.90 1695.94 16099.98 898.95 7799.92 1399.79 60
UA-Net99.42 3499.29 4499.80 3899.62 12599.55 6899.50 14599.70 1598.79 5899.77 3899.96 197.45 10999.96 2298.92 8299.90 2599.89 6
CDPH-MVS99.13 7598.91 9599.80 3899.75 6499.71 4499.15 26199.41 19996.60 26699.60 9099.55 21098.83 4299.90 10197.48 23699.83 7299.78 66
QAPM98.67 14098.30 15899.80 3899.20 24099.67 5199.77 3399.72 1194.74 32898.73 25799.90 1695.78 16799.98 896.96 26999.88 3799.76 73
SF-MVS99.38 4399.24 5399.79 4199.79 4599.68 4899.57 10899.54 7397.82 15999.71 5499.80 8998.95 2799.93 7098.19 17299.84 6399.74 78
NCCC99.34 4799.19 5899.79 4199.61 12999.65 5699.30 22499.48 14298.86 4899.21 18299.63 18298.72 5899.90 10198.25 16899.63 11999.80 56
CNVR-MVS99.42 3499.30 4099.78 4399.62 12599.71 4499.26 24399.52 8998.82 5399.39 13999.71 13898.96 2499.85 12998.59 13599.80 8399.77 68
DP-MVS99.16 7098.95 9199.78 4399.77 5399.53 7399.41 18699.50 12297.03 23599.04 21499.88 2697.39 11099.92 8098.66 12399.90 2599.87 17
train_agg99.02 9798.77 11299.77 4599.67 10099.65 5699.05 28199.41 19996.28 28798.95 22799.49 23198.76 5199.91 9097.63 22099.72 10499.75 74
DeepC-MVS_fast98.69 199.49 1499.39 1999.77 4599.63 11999.59 6299.36 20999.46 16999.07 2399.79 3099.82 6398.85 3999.92 8098.68 12199.87 4099.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何199.75 4799.75 6499.59 6299.54 7396.76 25199.29 16399.64 17698.43 7899.94 5796.92 27499.66 11499.72 89
test1299.75 4799.64 11699.61 6099.29 26399.21 18298.38 8299.89 11199.74 10199.74 78
CPTT-MVS99.11 8598.90 9699.74 4999.80 4499.46 8299.59 9699.49 13097.03 23599.63 8099.69 15297.27 11699.96 2297.82 20299.84 6399.81 47
LS3D99.27 5699.12 6499.74 4999.18 24599.75 3999.56 11499.57 5298.45 8099.49 11399.85 4297.77 10399.94 5798.33 16399.84 6399.52 148
VNet99.11 8598.90 9699.73 5199.52 15499.56 6699.41 18699.39 21099.01 2899.74 4799.78 10695.56 17499.92 8099.52 1898.18 21399.72 89
114514_t98.93 10598.67 12199.72 5299.85 2599.53 7399.62 8399.59 4492.65 34899.71 5499.78 10698.06 9699.90 10198.84 9999.91 1899.74 78
PHI-MVS99.30 5199.17 6099.70 5399.56 14499.52 7699.58 10499.80 897.12 22599.62 8499.73 13398.58 6799.90 10198.61 13099.91 1899.68 103
test_prior99.68 5499.67 10099.48 8099.56 5799.83 14699.74 78
DPM-MVS98.95 10498.71 11799.66 5599.63 11999.55 6898.64 33899.10 28997.93 14599.42 12799.55 21098.67 6399.80 16395.80 30299.68 11299.61 127
PAPM_NR99.04 9498.84 10599.66 5599.74 7199.44 8499.39 19899.38 21697.70 17099.28 16499.28 28798.34 8499.85 12996.96 26999.45 13199.69 99
MVS_111021_HR99.41 3899.32 3299.66 5599.72 8299.47 8198.95 30799.85 698.82 5399.54 10399.73 13398.51 7399.74 18098.91 8399.88 3799.77 68
AdaColmapbinary99.01 10098.80 10899.66 5599.56 14499.54 7099.18 25699.70 1598.18 11599.35 15199.63 18296.32 14799.90 10197.48 23699.77 9399.55 140
原ACMM199.65 5999.73 7899.33 9199.47 16097.46 19299.12 19899.66 16998.67 6399.91 9097.70 21799.69 10999.71 96
DELS-MVS99.48 1899.42 1599.65 5999.72 8299.40 8899.05 28199.66 2699.14 1199.57 9799.80 8998.46 7699.94 5799.57 1399.84 6399.60 129
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon99.12 8198.95 9199.65 5999.74 7199.70 4699.27 23599.57 5296.40 28399.42 12799.68 15898.75 5499.80 16397.98 18999.72 10499.44 170
MVS_111021_LR99.41 3899.33 3099.65 5999.77 5399.51 7798.94 30999.85 698.82 5399.65 7599.74 12798.51 7399.80 16398.83 10299.89 3499.64 120
HyFIR lowres test99.11 8598.92 9399.65 5999.90 499.37 8999.02 29099.91 397.67 17499.59 9399.75 12295.90 16399.73 18699.53 1699.02 16999.86 19
OPU-MVS99.64 6499.56 14499.72 4299.60 9099.70 14299.27 599.42 24998.24 16999.80 8399.79 60
EI-MVSNet-UG-set99.58 499.57 399.64 6499.78 4799.14 11799.60 9099.45 18099.01 2899.90 999.83 5698.98 2399.93 7099.59 1199.95 899.86 19
EI-MVSNet-Vis-set99.58 499.56 599.64 6499.78 4799.15 11699.61 8999.45 18099.01 2899.89 1099.82 6399.01 1899.92 8099.56 1499.95 899.85 22
F-COLMAP99.19 6499.04 7399.64 6499.78 4799.27 10099.42 18499.54 7397.29 21099.41 13199.59 19698.42 8099.93 7098.19 17299.69 10999.73 83
DeepC-MVS98.35 299.30 5199.19 5899.64 6499.82 3799.23 10499.62 8399.55 6598.94 4299.63 8099.95 295.82 16699.94 5799.37 3499.97 599.73 83
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test199.50 1299.46 1499.62 6999.61 12999.09 12298.94 30999.48 14299.10 1699.96 699.91 1198.85 3999.96 2299.72 599.58 12399.82 40
PVSNet_Blended_VisFu99.36 4599.28 4699.61 7099.86 2099.07 12799.47 16499.93 297.66 17599.71 5499.86 3797.73 10499.96 2299.47 2799.82 7699.79 60
WTY-MVS99.06 9298.88 9999.61 7099.62 12599.16 11199.37 20599.56 5798.04 13799.53 10599.62 18796.84 13099.94 5798.85 9698.49 19999.72 89
CANet99.25 6199.14 6299.59 7299.41 18899.16 11199.35 21499.57 5298.82 5399.51 10999.61 19196.46 14299.95 4899.59 1199.98 299.65 113
1112_ss98.98 10198.77 11299.59 7299.68 9999.02 13299.25 24599.48 14297.23 21699.13 19699.58 20096.93 12999.90 10198.87 8998.78 18699.84 26
CNLPA99.14 7398.99 8399.59 7299.58 13899.41 8799.16 25899.44 18898.45 8099.19 18899.49 23198.08 9599.89 11197.73 21299.75 9899.48 159
alignmvs98.81 12498.56 14299.58 7599.43 18399.42 8599.51 13998.96 30698.61 6899.35 15198.92 32894.78 20399.77 17399.35 3598.11 21899.54 142
DROMVSNet99.44 2999.39 1999.58 7599.56 14499.49 7899.88 499.58 4998.38 8699.73 4899.69 15298.20 9099.70 20299.64 1099.82 7699.54 142
Test_1112_low_res98.89 10898.66 12499.57 7799.69 9598.95 14899.03 28799.47 16096.98 23799.15 19499.23 29596.77 13399.89 11198.83 10298.78 18699.86 19
IS-MVSNet99.05 9398.87 10099.57 7799.73 7899.32 9299.75 3999.20 27898.02 14099.56 9899.86 3796.54 14099.67 20998.09 17999.13 15799.73 83
casdiffmvspermissive99.13 7598.98 8699.56 7999.65 11499.16 11199.56 11499.50 12298.33 9499.41 13199.86 3795.92 16199.83 14699.45 2999.16 15299.70 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.12 8198.97 8799.56 7999.78 4799.10 12199.68 5799.66 2698.49 7799.86 1699.87 3294.77 20699.84 13599.19 5599.41 13499.74 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
casdiffmvs_mvgpermissive99.15 7199.02 7899.55 8199.66 10899.09 12299.64 7399.56 5798.26 10099.45 11899.87 3296.03 15599.81 15799.54 1599.15 15599.73 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS99.50 1299.48 1099.54 8299.76 5699.42 8599.90 199.55 6598.56 7199.78 3599.70 14298.65 6599.79 16699.65 999.78 9099.41 174
test_yl98.86 11398.63 12799.54 8299.49 16799.18 10899.50 14599.07 29598.22 10699.61 8799.51 22595.37 18099.84 13598.60 13398.33 20299.59 133
DCV-MVSNet98.86 11398.63 12799.54 8299.49 16799.18 10899.50 14599.07 29598.22 10699.61 8799.51 22595.37 18099.84 13598.60 13398.33 20299.59 133
CS-MVS-test99.49 1499.48 1099.54 8299.78 4799.30 9699.89 299.58 4998.56 7199.73 4899.69 15298.55 7099.82 15299.69 699.85 5599.48 159
testdata99.54 8299.75 6498.95 14899.51 10397.07 23199.43 12499.70 14298.87 3799.94 5797.76 20899.64 11799.72 89
LFMVS97.90 21797.35 26099.54 8299.52 15499.01 13499.39 19898.24 34997.10 22999.65 7599.79 10084.79 35199.91 9099.28 4798.38 20199.69 99
ab-mvs98.86 11398.63 12799.54 8299.64 11699.19 10699.44 17399.54 7397.77 16299.30 16099.81 7694.20 22899.93 7099.17 5898.82 18399.49 158
MAR-MVS98.86 11398.63 12799.54 8299.37 19999.66 5399.45 16899.54 7396.61 26499.01 21799.40 25697.09 12199.86 12397.68 21999.53 12799.10 195
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GeoE98.85 12098.62 13299.53 9099.61 12999.08 12599.80 2499.51 10397.10 22999.31 15899.78 10695.23 18899.77 17398.21 17099.03 16799.75 74
baseline99.15 7199.02 7899.53 9099.66 10899.14 11799.72 4699.48 14298.35 9199.42 12799.84 5296.07 15399.79 16699.51 1999.14 15699.67 106
sss99.17 6899.05 7199.53 9099.62 12598.97 13999.36 20999.62 3397.83 15599.67 6499.65 17097.37 11399.95 4899.19 5599.19 15199.68 103
EPP-MVSNet99.13 7598.99 8399.53 9099.65 11499.06 12899.81 2099.33 24197.43 19899.60 9099.88 2697.14 11899.84 13599.13 6098.94 17299.69 99
PLCcopyleft97.94 499.02 9798.85 10499.53 9099.66 10899.01 13499.24 24799.52 8996.85 24799.27 16899.48 23698.25 8899.91 9097.76 20899.62 12099.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG98.98 10198.80 10899.53 9099.76 5699.19 10698.75 32899.55 6597.25 21399.47 11599.77 11397.82 10199.87 12096.93 27299.90 2599.54 142
PatchMatch-RL98.84 12398.62 13299.52 9699.71 8799.28 9899.06 27999.77 997.74 16799.50 11099.53 21995.41 17899.84 13597.17 25899.64 11799.44 170
OpenMVScopyleft96.50 1698.47 15098.12 16999.52 9699.04 27599.53 7399.82 1799.72 1194.56 33198.08 30699.88 2694.73 20999.98 897.47 23899.76 9699.06 206
Fast-Effi-MVS+98.70 13598.43 14899.51 9899.51 15699.28 9899.52 13499.47 16096.11 30399.01 21799.34 27396.20 15199.84 13597.88 19598.82 18399.39 177
canonicalmvs99.02 9798.86 10399.51 9899.42 18599.32 9299.80 2499.48 14298.63 6699.31 15898.81 33197.09 12199.75 17999.27 5097.90 22299.47 165
diffmvspermissive99.14 7399.02 7899.51 9899.61 12998.96 14399.28 23099.49 13098.46 7999.72 5399.71 13896.50 14199.88 11699.31 4299.11 15899.67 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPR98.63 14498.34 15499.51 9899.40 19399.03 13198.80 32399.36 22596.33 28499.00 22199.12 30998.46 7699.84 13595.23 31599.37 14299.66 109
Effi-MVS+98.81 12498.59 13999.48 10299.46 17799.12 12098.08 36199.50 12297.50 19199.38 14299.41 25396.37 14699.81 15799.11 6298.54 19699.51 154
MVS97.28 27796.55 28799.48 10298.78 30898.95 14899.27 23599.39 21083.53 36598.08 30699.54 21596.97 12799.87 12094.23 32899.16 15299.63 123
MVS_Test99.10 8898.97 8799.48 10299.49 16799.14 11799.67 6099.34 23497.31 20899.58 9499.76 11997.65 10699.82 15298.87 8999.07 16499.46 167
HY-MVS97.30 798.85 12098.64 12699.47 10599.42 18599.08 12599.62 8399.36 22597.39 20399.28 16499.68 15896.44 14499.92 8098.37 15998.22 20899.40 176
PCF-MVS97.08 1497.66 25897.06 27999.47 10599.61 12999.09 12298.04 36299.25 27091.24 35398.51 28599.70 14294.55 21899.91 9092.76 34599.85 5599.42 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
lupinMVS99.13 7599.01 8299.46 10799.51 15698.94 15199.05 28199.16 28397.86 15099.80 2899.56 20797.39 11099.86 12398.94 7899.85 5599.58 137
EIA-MVS99.18 6699.09 6899.45 10899.49 16799.18 10899.67 6099.53 8497.66 17599.40 13699.44 24598.10 9499.81 15798.94 7899.62 12099.35 180
jason99.13 7599.03 7599.45 10899.46 17798.87 15899.12 26699.26 26898.03 13999.79 3099.65 17097.02 12499.85 12999.02 7199.90 2599.65 113
jason: jason.
CHOSEN 1792x268899.19 6499.10 6699.45 10899.89 898.52 19399.39 19899.94 198.73 6199.11 20099.89 2095.50 17699.94 5799.50 2099.97 599.89 6
MG-MVS99.13 7599.02 7899.45 10899.57 14098.63 18099.07 27699.34 23498.99 3399.61 8799.82 6397.98 9899.87 12097.00 26599.80 8399.85 22
MSLP-MVS++99.46 2399.47 1299.44 11299.60 13499.16 11199.41 18699.71 1398.98 3699.45 11899.78 10699.19 999.54 23499.28 4799.84 6399.63 123
PVSNet_Blended99.08 9098.97 8799.42 11399.76 5698.79 16998.78 32599.91 396.74 25299.67 6499.49 23197.53 10799.88 11698.98 7499.85 5599.60 129
FA-MVS(test-final)98.75 13198.53 14499.41 11499.55 14899.05 13099.80 2499.01 30096.59 26899.58 9499.59 19695.39 17999.90 10197.78 20599.49 12999.28 187
FE-MVS98.48 14998.17 16399.40 11599.54 14998.96 14399.68 5798.81 32495.54 31499.62 8499.70 14293.82 24199.93 7097.35 24599.46 13099.32 184
ETV-MVS99.26 5899.21 5699.40 11599.46 17799.30 9699.56 11499.52 8998.52 7599.44 12399.27 29098.41 8199.86 12399.10 6399.59 12299.04 207
BH-RMVSNet98.41 15698.08 17599.40 11599.41 18898.83 16599.30 22498.77 32797.70 17098.94 22999.65 17092.91 25899.74 18096.52 28899.55 12699.64 120
UGNet98.87 11098.69 11999.40 11599.22 23698.72 17399.44 17399.68 1999.24 799.18 19199.42 24992.74 26299.96 2299.34 3999.94 1199.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline198.31 16497.95 19099.38 11999.50 16598.74 17199.59 9698.93 30898.41 8499.14 19599.60 19494.59 21599.79 16698.48 14993.29 33299.61 127
TSAR-MVS + GP.99.36 4599.36 2499.36 12099.67 10098.61 18399.07 27699.33 24199.00 3199.82 2499.81 7699.06 1699.84 13599.09 6499.42 13399.65 113
test_vis1_n97.92 21497.44 24899.34 12199.53 15098.08 21899.74 4299.49 13099.15 10100.00 199.94 479.51 36299.98 899.88 299.76 9699.97 2
Anonymous2024052998.09 18597.68 22099.34 12199.66 10898.44 20299.40 19499.43 19493.67 33899.22 17999.89 2090.23 31499.93 7099.26 5198.33 20299.66 109
xiu_mvs_v1_base_debu99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
xiu_mvs_v1_base99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
xiu_mvs_v1_base_debi99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
PMMVS98.80 12798.62 13299.34 12199.27 22598.70 17498.76 32799.31 25597.34 20599.21 18299.07 31197.20 11799.82 15298.56 14298.87 17899.52 148
CSCG99.32 4999.32 3299.32 12799.85 2598.29 20899.71 4899.66 2698.11 12399.41 13199.80 8998.37 8399.96 2298.99 7399.96 799.72 89
test_vis1_n_192098.63 14498.40 15199.31 12899.86 2097.94 22999.67 6099.62 3399.43 199.99 299.91 1187.29 342100.00 199.92 199.92 1399.98 1
thisisatest053098.35 16298.03 18199.31 12899.63 11998.56 18699.54 12796.75 36597.53 18899.73 4899.65 17091.25 30299.89 11198.62 12799.56 12499.48 159
AllTest98.87 11098.72 11599.31 12899.86 2098.48 19999.56 11499.61 3697.85 15299.36 14899.85 4295.95 15899.85 12996.66 28599.83 7299.59 133
TestCases99.31 12899.86 2098.48 19999.61 3697.85 15299.36 14899.85 4295.95 15899.85 12996.66 28599.83 7299.59 133
Vis-MVSNet (Re-imp)98.87 11098.72 11599.31 12899.71 8798.88 15799.80 2499.44 18897.91 14799.36 14899.78 10695.49 17799.43 24897.91 19399.11 15899.62 125
PS-MVSNAJ99.32 4999.32 3299.30 13399.57 14098.94 15198.97 30399.46 16998.92 4599.71 5499.24 29499.01 1899.98 899.35 3599.66 11498.97 215
VPA-MVSNet98.29 16797.95 19099.30 13399.16 25399.54 7099.50 14599.58 4998.27 9999.35 15199.37 26492.53 27299.65 21799.35 3594.46 31798.72 240
EPNet98.86 11398.71 11799.30 13397.20 35698.18 21299.62 8398.91 31399.28 698.63 27699.81 7695.96 15799.99 299.24 5299.72 10499.73 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v2_base99.26 5899.25 5299.29 13699.53 15098.91 15599.02 29099.45 18098.80 5799.71 5499.26 29298.94 2999.98 899.34 3999.23 14898.98 214
MVSFormer99.17 6899.12 6499.29 13699.51 15698.94 15199.88 499.46 16997.55 18499.80 2899.65 17097.39 11099.28 27799.03 6999.85 5599.65 113
tttt051798.42 15498.14 16699.28 13899.66 10898.38 20699.74 4296.85 36397.68 17299.79 3099.74 12791.39 29999.89 11198.83 10299.56 12499.57 138
nrg03098.64 14398.42 14999.28 13899.05 27499.69 4799.81 2099.46 16998.04 13799.01 21799.82 6396.69 13699.38 25399.34 3994.59 31698.78 227
Anonymous20240521198.30 16697.98 18699.26 14099.57 14098.16 21399.41 18698.55 34396.03 30899.19 18899.74 12791.87 28599.92 8099.16 5998.29 20799.70 97
CANet_DTU98.97 10398.87 10099.25 14199.33 20898.42 20599.08 27599.30 25999.16 999.43 12499.75 12295.27 18499.97 1498.56 14299.95 899.36 179
CDS-MVSNet99.09 8999.03 7599.25 14199.42 18598.73 17299.45 16899.46 16998.11 12399.46 11799.77 11398.01 9799.37 25898.70 11698.92 17599.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XXY-MVS98.38 16098.09 17499.24 14399.26 22799.32 9299.56 11499.55 6597.45 19598.71 25999.83 5693.23 25099.63 22598.88 8696.32 27898.76 232
TAMVS99.12 8199.08 6999.24 14399.46 17798.55 18799.51 13999.46 16998.09 12699.45 11899.82 6398.34 8499.51 23598.70 11698.93 17399.67 106
FIs98.78 12898.63 12799.23 14599.18 24599.54 7099.83 1699.59 4498.28 9798.79 25299.81 7696.75 13499.37 25899.08 6696.38 27698.78 227
test_fmvs1_n98.41 15698.14 16699.21 14699.82 3797.71 24199.74 4299.49 13099.32 499.99 299.95 285.32 34999.97 1499.82 399.84 6399.96 3
OMC-MVS99.08 9099.04 7399.20 14799.67 10098.22 21199.28 23099.52 8998.07 13199.66 6999.81 7697.79 10299.78 17197.79 20499.81 7999.60 129
thisisatest051598.14 18097.79 20499.19 14899.50 16598.50 19698.61 33996.82 36496.95 24199.54 10399.43 24791.66 29499.86 12398.08 18399.51 12899.22 190
RPMNet96.72 28995.90 30099.19 14899.18 24598.49 19799.22 25299.52 8988.72 36199.56 9897.38 35594.08 23499.95 4886.87 36698.58 19299.14 192
COLMAP_ROBcopyleft97.56 698.86 11398.75 11499.17 15099.88 1198.53 18999.34 21799.59 4497.55 18498.70 26599.89 2095.83 16599.90 10198.10 17899.90 2599.08 200
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs198.88 10998.79 11199.16 15199.69 9597.61 24399.55 12399.49 13099.32 499.98 499.91 1191.41 29899.96 2299.82 399.92 1399.90 4
VDDNet97.55 26397.02 28099.16 15199.49 16798.12 21799.38 20399.30 25995.35 31699.68 6099.90 1682.62 35799.93 7099.31 4298.13 21799.42 172
mvs_anonymous99.03 9698.99 8399.16 15199.38 19798.52 19399.51 13999.38 21697.79 16099.38 14299.81 7697.30 11499.45 23999.35 3598.99 17099.51 154
FC-MVSNet-test98.75 13198.62 13299.15 15499.08 26799.45 8399.86 1299.60 4198.23 10598.70 26599.82 6396.80 13199.22 28899.07 6796.38 27698.79 226
UniMVSNet (Re)98.29 16798.00 18499.13 15599.00 27999.36 9099.49 15599.51 10397.95 14398.97 22599.13 30696.30 14899.38 25398.36 16193.34 33198.66 271
131498.68 13998.54 14399.11 15698.89 29298.65 17899.27 23599.49 13096.89 24597.99 31199.56 20797.72 10599.83 14697.74 21199.27 14698.84 223
CHOSEN 280x42099.12 8199.13 6399.08 15799.66 10897.89 23098.43 34999.71 1398.88 4799.62 8499.76 11996.63 13799.70 20299.46 2899.99 199.66 109
mvsmamba98.92 10698.87 10099.08 15799.07 26899.16 11199.88 499.51 10398.15 11799.40 13699.89 2097.12 11999.33 26899.38 3297.40 25498.73 239
PAPM97.59 26297.09 27899.07 15999.06 27198.26 21098.30 35699.10 28994.88 32598.08 30699.34 27396.27 14999.64 22089.87 35598.92 17599.31 185
WR-MVS98.06 18897.73 21699.06 16098.86 30099.25 10299.19 25599.35 23097.30 20998.66 26899.43 24793.94 23799.21 29398.58 13694.28 32198.71 242
API-MVS99.04 9499.03 7599.06 16099.40 19399.31 9599.55 12399.56 5798.54 7399.33 15599.39 26098.76 5199.78 17196.98 26799.78 9098.07 335
ET-MVSNet_ETH3D96.49 29395.64 30699.05 16299.53 15098.82 16698.84 31997.51 36097.63 17784.77 36599.21 29992.09 28298.91 33398.98 7492.21 34299.41 174
SD-MVS99.41 3899.52 699.05 16299.74 7199.68 4899.46 16799.52 8999.11 1599.88 1199.91 1199.43 197.70 35998.72 11499.93 1299.77 68
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_BlendedMVS98.86 11398.80 10899.03 16499.76 5698.79 16999.28 23099.91 397.42 20099.67 6499.37 26497.53 10799.88 11698.98 7497.29 25898.42 316
NR-MVSNet97.97 20897.61 22799.02 16598.87 29799.26 10199.47 16499.42 19697.63 17797.08 33399.50 22895.07 19199.13 30197.86 19893.59 32998.68 256
VPNet97.84 22697.44 24899.01 16699.21 23898.94 15199.48 15999.57 5298.38 8699.28 16499.73 13388.89 32599.39 25199.19 5593.27 33398.71 242
CP-MVSNet98.09 18597.78 20799.01 16698.97 28599.24 10399.67 6099.46 16997.25 21398.48 28899.64 17693.79 24299.06 31198.63 12694.10 32498.74 237
GA-MVS97.85 22397.47 24099.00 16899.38 19797.99 22298.57 34299.15 28497.04 23498.90 23599.30 28389.83 31799.38 25396.70 28298.33 20299.62 125
MVSTER98.49 14898.32 15699.00 16899.35 20299.02 13299.54 12799.38 21697.41 20199.20 18599.73 13393.86 24099.36 26298.87 8997.56 23598.62 286
iter_conf_final98.71 13498.61 13898.99 17099.49 16798.96 14399.63 7799.41 19998.19 11199.39 13999.77 11394.82 19999.38 25399.30 4597.52 23898.64 275
bld_raw_dy_0_6498.69 13798.58 14098.99 17098.88 29398.96 14399.80 2499.41 19997.91 14799.32 15699.87 3295.70 17199.31 27499.09 6497.27 25998.71 242
tfpnnormal97.84 22697.47 24098.98 17299.20 24099.22 10599.64 7399.61 3696.32 28598.27 30099.70 14293.35 24999.44 24495.69 30595.40 30198.27 326
test_djsdf98.67 14098.57 14198.98 17298.70 31998.91 15599.88 499.46 16997.55 18499.22 17999.88 2695.73 16999.28 27799.03 6997.62 23098.75 234
h-mvs3397.70 25197.28 27098.97 17499.70 9297.27 25199.36 20999.45 18098.94 4299.66 6999.64 17694.93 19399.99 299.48 2584.36 36199.65 113
UniMVSNet_NR-MVSNet98.22 17097.97 18798.96 17598.92 28998.98 13699.48 15999.53 8497.76 16398.71 25999.46 24396.43 14599.22 28898.57 13992.87 33898.69 251
DU-MVS98.08 18797.79 20498.96 17598.87 29798.98 13699.41 18699.45 18097.87 14998.71 25999.50 22894.82 19999.22 28898.57 13992.87 33898.68 256
PS-CasMVS97.93 21197.59 22998.95 17798.99 28099.06 12899.68 5799.52 8997.13 22398.31 29799.68 15892.44 27899.05 31298.51 14794.08 32598.75 234
anonymousdsp98.44 15298.28 15998.94 17898.50 33498.96 14399.77 3399.50 12297.07 23198.87 24199.77 11394.76 20799.28 27798.66 12397.60 23198.57 301
TAPA-MVS97.07 1597.74 24497.34 26398.94 17899.70 9297.53 24499.25 24599.51 10391.90 35099.30 16099.63 18298.78 4799.64 22088.09 36299.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v897.95 21097.63 22698.93 18098.95 28798.81 16899.80 2499.41 19996.03 30899.10 20399.42 24994.92 19599.30 27596.94 27194.08 32598.66 271
JIA-IIPM97.50 26897.02 28098.93 18098.73 31497.80 23599.30 22498.97 30491.73 35198.91 23394.86 36595.10 19099.71 19697.58 22497.98 22099.28 187
v7n97.87 22097.52 23498.92 18298.76 31298.58 18599.84 1399.46 16996.20 29498.91 23399.70 14294.89 19799.44 24496.03 29793.89 32798.75 234
v2v48298.06 18897.77 20998.92 18298.90 29098.82 16699.57 10899.36 22596.65 25999.19 18899.35 27094.20 22899.25 28297.72 21494.97 31098.69 251
thres600view797.86 22297.51 23698.92 18299.72 8297.95 22799.59 9698.74 33197.94 14499.27 16898.62 33791.75 28899.86 12393.73 33398.19 21298.96 217
thres40097.77 23797.38 25698.92 18299.69 9597.96 22599.50 14598.73 33697.83 15599.17 19298.45 34291.67 29299.83 14693.22 33898.18 21398.96 217
v119297.81 23397.44 24898.91 18698.88 29398.68 17599.51 13999.34 23496.18 29699.20 18599.34 27394.03 23599.36 26295.32 31495.18 30598.69 251
mvs_tets98.40 15998.23 16198.91 18698.67 32298.51 19599.66 6599.53 8498.19 11198.65 27499.81 7692.75 26099.44 24499.31 4297.48 24698.77 230
Anonymous2023121197.88 21897.54 23398.90 18899.71 8798.53 18999.48 15999.57 5294.16 33498.81 24899.68 15893.23 25099.42 24998.84 9994.42 31998.76 232
PS-MVSNAJss98.92 10698.92 9398.90 18898.78 30898.53 18999.78 3199.54 7398.07 13199.00 22199.76 11999.01 1899.37 25899.13 6097.23 26098.81 224
WR-MVS_H98.13 18197.87 20098.90 18899.02 27798.84 16299.70 4999.59 4497.27 21198.40 29299.19 30095.53 17599.23 28598.34 16293.78 32898.61 295
XVG-OURS-SEG-HR98.69 13798.62 13298.89 19199.71 8797.74 23699.12 26699.54 7398.44 8399.42 12799.71 13894.20 22899.92 8098.54 14698.90 17799.00 211
PVSNet96.02 1798.85 12098.84 10598.89 19199.73 7897.28 25098.32 35599.60 4197.86 15099.50 11099.57 20496.75 13499.86 12398.56 14299.70 10899.54 142
jajsoiax98.43 15398.28 15998.88 19398.60 32998.43 20399.82 1799.53 8498.19 11198.63 27699.80 8993.22 25299.44 24499.22 5397.50 24298.77 230
pm-mvs197.68 25497.28 27098.88 19399.06 27198.62 18199.50 14599.45 18096.32 28597.87 31599.79 10092.47 27499.35 26597.54 23193.54 33098.67 263
VDD-MVS97.73 24597.35 26098.88 19399.47 17697.12 25799.34 21798.85 32098.19 11199.67 6499.85 4282.98 35599.92 8099.49 2498.32 20699.60 129
XVG-OURS98.73 13398.68 12098.88 19399.70 9297.73 23798.92 31199.55 6598.52 7599.45 11899.84 5295.27 18499.91 9098.08 18398.84 18199.00 211
UniMVSNet_ETH3D97.32 27696.81 28398.87 19799.40 19397.46 24699.51 13999.53 8495.86 31198.54 28499.77 11382.44 35899.66 21298.68 12197.52 23899.50 157
v14419297.92 21497.60 22898.87 19798.83 30398.65 17899.55 12399.34 23496.20 29499.32 15699.40 25694.36 22399.26 28196.37 29395.03 30998.70 247
iter_conf0598.55 14798.44 14798.87 19799.34 20698.60 18499.55 12399.42 19698.21 10899.37 14499.77 11393.55 24699.38 25399.30 4597.48 24698.63 283
CR-MVSNet98.17 17797.93 19398.87 19799.18 24598.49 19799.22 25299.33 24196.96 23999.56 9899.38 26194.33 22499.00 32094.83 32198.58 19299.14 192
v1097.85 22397.52 23498.86 20198.99 28098.67 17699.75 3999.41 19995.70 31298.98 22399.41 25394.75 20899.23 28596.01 29894.63 31598.67 263
V4298.06 18897.79 20498.86 20198.98 28398.84 16299.69 5199.34 23496.53 27099.30 16099.37 26494.67 21299.32 27197.57 22894.66 31498.42 316
TransMVSNet (Re)97.15 28196.58 28698.86 20199.12 25898.85 16199.49 15598.91 31395.48 31597.16 33199.80 8993.38 24899.11 30694.16 33091.73 34398.62 286
v114497.98 20597.69 21998.85 20498.87 29798.66 17799.54 12799.35 23096.27 28999.23 17899.35 27094.67 21299.23 28596.73 28095.16 30698.68 256
v192192097.80 23597.45 24398.84 20598.80 30498.53 18999.52 13499.34 23496.15 30099.24 17499.47 23993.98 23699.29 27695.40 31295.13 30798.69 251
FMVSNet398.03 19697.76 21398.84 20599.39 19698.98 13699.40 19499.38 21696.67 25799.07 20899.28 28792.93 25598.98 32297.10 26096.65 26998.56 302
RRT_MVS98.70 13598.66 12498.83 20798.90 29098.45 20199.89 299.28 26597.76 16398.94 22999.92 1096.98 12699.25 28299.28 4797.00 26698.80 225
baseline297.87 22097.55 23098.82 20899.18 24598.02 22099.41 18696.58 36896.97 23896.51 33899.17 30193.43 24799.57 23097.71 21599.03 16798.86 221
TR-MVS97.76 23897.41 25498.82 20899.06 27197.87 23198.87 31798.56 34296.63 26398.68 26799.22 29692.49 27399.65 21795.40 31297.79 22498.95 219
pmmvs498.13 18197.90 19598.81 21098.61 32898.87 15898.99 29799.21 27796.44 27999.06 21299.58 20095.90 16399.11 30697.18 25796.11 28298.46 313
Patchmtry97.75 24297.40 25598.81 21099.10 26398.87 15899.11 27299.33 24194.83 32698.81 24899.38 26194.33 22499.02 31796.10 29595.57 29798.53 303
FMVSNet297.72 24797.36 25898.80 21299.51 15698.84 16299.45 16899.42 19696.49 27298.86 24599.29 28590.26 31198.98 32296.44 29096.56 27298.58 300
v124097.69 25297.32 26698.79 21398.85 30198.43 20399.48 15999.36 22596.11 30399.27 16899.36 26793.76 24499.24 28494.46 32495.23 30498.70 247
PatchT97.03 28496.44 29098.79 21398.99 28098.34 20799.16 25899.07 29592.13 34999.52 10797.31 35894.54 21998.98 32288.54 36098.73 18899.03 208
Patchmatch-test97.93 21197.65 22398.77 21599.18 24597.07 26299.03 28799.14 28696.16 29898.74 25699.57 20494.56 21799.72 19093.36 33799.11 15899.52 148
TranMVSNet+NR-MVSNet97.93 21197.66 22298.76 21698.78 30898.62 18199.65 7199.49 13097.76 16398.49 28799.60 19494.23 22798.97 32998.00 18892.90 33698.70 247
gg-mvs-nofinetune96.17 30095.32 31098.73 21798.79 30598.14 21599.38 20394.09 37591.07 35598.07 30991.04 37189.62 32199.35 26596.75 27999.09 16298.68 256
tfpn200view997.72 24797.38 25698.72 21899.69 9597.96 22599.50 14598.73 33697.83 15599.17 19298.45 34291.67 29299.83 14693.22 33898.18 21398.37 322
PEN-MVS97.76 23897.44 24898.72 21898.77 31198.54 18899.78 3199.51 10397.06 23398.29 29999.64 17692.63 26998.89 33598.09 17993.16 33498.72 240
thres100view90097.76 23897.45 24398.69 22099.72 8297.86 23399.59 9698.74 33197.93 14599.26 17298.62 33791.75 28899.83 14693.22 33898.18 21398.37 322
EI-MVSNet98.67 14098.67 12198.68 22199.35 20297.97 22399.50 14599.38 21696.93 24499.20 18599.83 5697.87 9999.36 26298.38 15797.56 23598.71 242
Baseline_NR-MVSNet97.76 23897.45 24398.68 22199.09 26598.29 20899.41 18698.85 32095.65 31398.63 27699.67 16494.82 19999.10 30898.07 18692.89 33798.64 275
thres20097.61 26197.28 27098.62 22399.64 11698.03 21999.26 24398.74 33197.68 17299.09 20698.32 34691.66 29499.81 15792.88 34298.22 20898.03 338
Fast-Effi-MVS+-dtu98.77 13098.83 10798.60 22499.41 18896.99 27199.52 13499.49 13098.11 12399.24 17499.34 27396.96 12899.79 16697.95 19199.45 13199.02 210
hse-mvs297.50 26897.14 27698.59 22599.49 16797.05 26499.28 23099.22 27498.94 4299.66 6999.42 24994.93 19399.65 21799.48 2583.80 36399.08 200
AUN-MVS96.88 28596.31 29298.59 22599.48 17597.04 26799.27 23599.22 27497.44 19798.51 28599.41 25391.97 28399.66 21297.71 21583.83 36299.07 205
BH-untuned98.42 15498.36 15298.59 22599.49 16796.70 28399.27 23599.13 28797.24 21598.80 25099.38 26195.75 16899.74 18097.07 26399.16 15299.33 183
IterMVS-LS98.46 15198.42 14998.58 22899.59 13698.00 22199.37 20599.43 19496.94 24399.07 20899.59 19697.87 9999.03 31598.32 16595.62 29698.71 242
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tt080597.97 20897.77 20998.57 22999.59 13696.61 28899.45 16899.08 29298.21 10898.88 23899.80 8988.66 32899.70 20298.58 13697.72 22699.39 177
MIMVSNet97.73 24597.45 24398.57 22999.45 18297.50 24599.02 29098.98 30396.11 30399.41 13199.14 30590.28 31098.74 33995.74 30398.93 17399.47 165
IB-MVS95.67 1896.22 29795.44 30998.57 22999.21 23896.70 28398.65 33797.74 35896.71 25497.27 32798.54 34086.03 34599.92 8098.47 15286.30 35999.10 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet98.20 17398.08 17598.56 23299.33 20896.48 29299.23 24899.15 28496.24 29199.10 20399.67 16494.11 23299.71 19696.81 27799.05 16599.48 159
test0.0.03 197.71 25097.42 25398.56 23298.41 33797.82 23498.78 32598.63 34097.34 20598.05 31098.98 32394.45 22198.98 32295.04 31897.15 26498.89 220
cl____98.01 20197.84 20298.55 23499.25 23197.97 22398.71 33299.34 23496.47 27898.59 28299.54 21595.65 17399.21 29397.21 25195.77 29198.46 313
test-LLR98.06 18897.90 19598.55 23498.79 30597.10 25898.67 33497.75 35697.34 20598.61 27998.85 32994.45 22199.45 23997.25 24999.38 13599.10 195
test-mter97.49 27197.13 27798.55 23498.79 30597.10 25898.67 33497.75 35696.65 25998.61 27998.85 32988.23 33499.45 23997.25 24999.38 13599.10 195
v14897.79 23697.55 23098.50 23798.74 31397.72 23899.54 12799.33 24196.26 29098.90 23599.51 22594.68 21199.14 29897.83 20193.15 33598.63 283
LPG-MVS_test98.22 17098.13 16898.49 23899.33 20897.05 26499.58 10499.55 6597.46 19299.24 17499.83 5692.58 27099.72 19098.09 17997.51 24098.68 256
LGP-MVS_train98.49 23899.33 20897.05 26499.55 6597.46 19299.24 17499.83 5692.58 27099.72 19098.09 17997.51 24098.68 256
cl2297.85 22397.64 22598.48 24099.09 26597.87 23198.60 34199.33 24197.11 22898.87 24199.22 29692.38 27999.17 29798.21 17095.99 28598.42 316
DIV-MVS_self_test98.01 20197.85 20198.48 24099.24 23297.95 22798.71 33299.35 23096.50 27198.60 28199.54 21595.72 17099.03 31597.21 25195.77 29198.46 313
cascas97.69 25297.43 25298.48 24098.60 32997.30 24998.18 36099.39 21092.96 34698.41 29198.78 33393.77 24399.27 28098.16 17698.61 18998.86 221
ACMM97.58 598.37 16198.34 15498.48 24099.41 18897.10 25899.56 11499.45 18098.53 7499.04 21499.85 4293.00 25499.71 19698.74 11197.45 24898.64 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu98.78 12898.89 9898.47 24499.33 20896.91 27799.57 10899.30 25998.47 7899.41 13198.99 32096.78 13299.74 18098.73 11399.38 13598.74 237
DTE-MVSNet97.51 26797.19 27598.46 24598.63 32598.13 21699.84 1399.48 14296.68 25697.97 31399.67 16492.92 25698.56 34196.88 27692.60 34198.70 247
OPM-MVS98.19 17498.10 17198.45 24698.88 29397.07 26299.28 23099.38 21698.57 7099.22 17999.81 7692.12 28199.66 21298.08 18397.54 23798.61 295
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
GG-mvs-BLEND98.45 24698.55 33298.16 21399.43 17793.68 37697.23 32898.46 34189.30 32299.22 28895.43 31198.22 20897.98 343
ACMP97.20 1198.06 18897.94 19298.45 24699.37 19997.01 26999.44 17399.49 13097.54 18798.45 28999.79 10091.95 28499.72 19097.91 19397.49 24598.62 286
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP_MVS98.27 16998.22 16298.44 24999.29 22096.97 27399.39 19899.47 16098.97 3999.11 20099.61 19192.71 26599.69 20797.78 20597.63 22898.67 263
ACMH97.28 898.10 18497.99 18598.44 24999.41 18896.96 27599.60 9099.56 5798.09 12698.15 30499.91 1190.87 30699.70 20298.88 8697.45 24898.67 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth98.18 17698.10 17198.41 25199.23 23397.72 23898.72 33199.31 25596.60 26698.88 23899.29 28597.29 11599.13 30197.60 22295.99 28598.38 321
miper_enhance_ethall98.16 17898.08 17598.41 25198.96 28697.72 23898.45 34899.32 25196.95 24198.97 22599.17 30197.06 12399.22 28897.86 19895.99 28598.29 325
TESTMET0.1,197.55 26397.27 27398.40 25398.93 28896.53 29098.67 33497.61 35996.96 23998.64 27599.28 28788.63 33099.45 23997.30 24799.38 13599.21 191
LTVRE_ROB97.16 1298.02 19897.90 19598.40 25399.23 23396.80 28199.70 4999.60 4197.12 22598.18 30399.70 14291.73 29099.72 19098.39 15697.45 24898.68 256
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
c3_l98.12 18398.04 18098.38 25599.30 21697.69 24298.81 32299.33 24196.67 25798.83 24699.34 27397.11 12098.99 32197.58 22495.34 30298.48 307
HQP-MVS98.02 19897.90 19598.37 25699.19 24296.83 27898.98 30099.39 21098.24 10298.66 26899.40 25692.47 27499.64 22097.19 25597.58 23398.64 275
EPMVS97.82 23197.65 22398.35 25798.88 29395.98 30499.49 15594.71 37497.57 18299.26 17299.48 23692.46 27799.71 19697.87 19799.08 16399.35 180
eth_miper_zixun_eth98.05 19397.96 18898.33 25899.26 22797.38 24898.56 34499.31 25596.65 25998.88 23899.52 22296.58 13899.12 30597.39 24495.53 29998.47 309
CLD-MVS98.16 17898.10 17198.33 25899.29 22096.82 28098.75 32899.44 18897.83 15599.13 19699.55 21092.92 25699.67 20998.32 16597.69 22798.48 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-w/o98.00 20397.89 19998.32 26099.35 20296.20 30199.01 29598.90 31596.42 28198.38 29399.00 31995.26 18699.72 19096.06 29698.61 18999.03 208
ACMH+97.24 1097.92 21497.78 20798.32 26099.46 17796.68 28599.56 11499.54 7398.41 8497.79 31999.87 3290.18 31599.66 21298.05 18797.18 26398.62 286
CVMVSNet98.57 14698.67 12198.30 26299.35 20295.59 31199.50 14599.55 6598.60 6999.39 13999.83 5694.48 22099.45 23998.75 11098.56 19599.85 22
GBi-Net97.68 25497.48 23898.29 26399.51 15697.26 25399.43 17799.48 14296.49 27299.07 20899.32 28090.26 31198.98 32297.10 26096.65 26998.62 286
test197.68 25497.48 23898.29 26399.51 15697.26 25399.43 17799.48 14296.49 27299.07 20899.32 28090.26 31198.98 32297.10 26096.65 26998.62 286
FMVSNet196.84 28696.36 29198.29 26399.32 21497.26 25399.43 17799.48 14295.11 32098.55 28399.32 28083.95 35498.98 32295.81 30196.26 27998.62 286
miper_lstm_enhance98.00 20397.91 19498.28 26699.34 20697.43 24798.88 31599.36 22596.48 27698.80 25099.55 21095.98 15698.91 33397.27 24895.50 30098.51 305
SCA98.19 17498.16 16498.27 26799.30 21695.55 31299.07 27698.97 30497.57 18299.43 12499.57 20492.72 26399.74 18097.58 22499.20 15099.52 148
EPNet_dtu98.03 19697.96 18898.23 26898.27 33895.54 31499.23 24898.75 32899.02 2697.82 31799.71 13896.11 15299.48 23693.04 34199.65 11699.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-ACMP-BASELINE97.83 22897.71 21898.20 26999.11 26096.33 29799.41 18699.52 8998.06 13599.05 21399.50 22889.64 32099.73 18697.73 21297.38 25698.53 303
OurMVSNet-221017-097.88 21897.77 20998.19 27098.71 31896.53 29099.88 499.00 30197.79 16098.78 25399.94 491.68 29199.35 26597.21 25196.99 26798.69 251
PatchmatchNetpermissive98.31 16498.36 15298.19 27099.16 25395.32 32099.27 23598.92 31097.37 20499.37 14499.58 20094.90 19699.70 20297.43 24299.21 14999.54 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patch_mono-299.26 5899.62 198.16 27299.81 4194.59 33399.52 13499.64 3299.33 399.73 4899.90 1699.00 2299.99 299.69 699.98 299.89 6
dcpmvs_299.23 6399.58 298.16 27299.83 3594.68 33299.76 3699.52 8999.07 2399.98 499.88 2698.56 6999.93 7099.67 899.98 299.87 17
pmmvs597.52 26597.30 26898.16 27298.57 33196.73 28299.27 23598.90 31596.14 30198.37 29499.53 21991.54 29799.14 29897.51 23395.87 28998.63 283
D2MVS98.41 15698.50 14598.15 27599.26 22796.62 28799.40 19499.61 3697.71 16998.98 22399.36 26796.04 15499.67 20998.70 11697.41 25398.15 332
testgi97.65 25997.50 23798.13 27699.36 20196.45 29399.42 18499.48 14297.76 16397.87 31599.45 24491.09 30398.81 33694.53 32398.52 19799.13 194
ITE_SJBPF98.08 27799.29 22096.37 29598.92 31098.34 9298.83 24699.75 12291.09 30399.62 22695.82 30097.40 25498.25 328
IterMVS-SCA-FT97.82 23197.75 21498.06 27899.57 14096.36 29699.02 29099.49 13097.18 21998.71 25999.72 13792.72 26399.14 29897.44 24195.86 29098.67 263
SixPastTwentyTwo97.50 26897.33 26598.03 27998.65 32396.23 30099.77 3398.68 33997.14 22297.90 31499.93 690.45 30999.18 29697.00 26596.43 27598.67 263
tpm97.67 25797.55 23098.03 27999.02 27795.01 32699.43 17798.54 34496.44 27999.12 19899.34 27391.83 28799.60 22897.75 21096.46 27499.48 159
IterMVS97.83 22897.77 20998.02 28199.58 13896.27 29999.02 29099.48 14297.22 21798.71 25999.70 14292.75 26099.13 30197.46 23996.00 28498.67 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet_test_wron95.45 30994.60 31598.01 28298.16 34097.21 25699.11 27299.24 27293.49 34180.73 37198.98 32393.02 25398.18 34794.22 32994.45 31898.64 275
K. test v397.10 28396.79 28498.01 28298.72 31696.33 29799.87 997.05 36297.59 17996.16 34299.80 8988.71 32699.04 31396.69 28396.55 27398.65 273
ECVR-MVScopyleft98.04 19498.05 17998.00 28499.74 7194.37 33699.59 9694.98 37299.13 1299.66 6999.93 690.67 30899.84 13599.40 3199.38 13599.80 56
MVP-Stereo97.81 23397.75 21497.99 28597.53 34996.60 28998.96 30498.85 32097.22 21797.23 32899.36 26795.28 18399.46 23895.51 30999.78 9097.92 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TDRefinement95.42 31094.57 31697.97 28689.83 37596.11 30399.48 15998.75 32896.74 25296.68 33799.88 2688.65 32999.71 19698.37 15982.74 36498.09 334
PVSNet_094.43 1996.09 30295.47 30797.94 28799.31 21594.34 33897.81 36399.70 1597.12 22597.46 32398.75 33489.71 31899.79 16697.69 21881.69 36599.68 103
MDA-MVSNet-bldmvs94.96 31493.98 32097.92 28898.24 33997.27 25199.15 26199.33 24193.80 33780.09 37299.03 31688.31 33397.86 35693.49 33694.36 32098.62 286
YYNet195.36 31194.51 31797.92 28897.89 34397.10 25899.10 27499.23 27393.26 34480.77 37099.04 31592.81 25998.02 35194.30 32594.18 32398.64 275
tpmrst98.33 16398.48 14697.90 29099.16 25394.78 33099.31 22299.11 28897.27 21199.45 11899.59 19695.33 18299.84 13598.48 14998.61 18999.09 199
ADS-MVSNet298.02 19898.07 17897.87 29199.33 20895.19 32399.23 24899.08 29296.24 29199.10 20399.67 16494.11 23298.93 33296.81 27799.05 16599.48 159
test_040296.64 29096.24 29397.85 29298.85 30196.43 29499.44 17399.26 26893.52 34096.98 33599.52 22288.52 33199.20 29592.58 34797.50 24297.93 346
tpmvs97.98 20598.02 18397.84 29399.04 27594.73 33199.31 22299.20 27896.10 30798.76 25599.42 24994.94 19299.81 15796.97 26898.45 20098.97 215
test111198.04 19498.11 17097.83 29499.74 7193.82 34199.58 10495.40 37199.12 1499.65 7599.93 690.73 30799.84 13599.43 3099.38 13599.82 40
TinyColmap97.12 28296.89 28297.83 29499.07 26895.52 31598.57 34298.74 33197.58 18197.81 31899.79 10088.16 33599.56 23195.10 31697.21 26198.39 320
pmmvs696.53 29296.09 29697.82 29698.69 32095.47 31699.37 20599.47 16093.46 34297.41 32499.78 10687.06 34399.33 26896.92 27492.70 34098.65 273
EU-MVSNet97.98 20598.03 18197.81 29798.72 31696.65 28699.66 6599.66 2698.09 12698.35 29599.82 6395.25 18798.01 35297.41 24395.30 30398.78 227
lessismore_v097.79 29898.69 32095.44 31894.75 37395.71 34699.87 3288.69 32799.32 27195.89 29994.93 31298.62 286
USDC97.34 27597.20 27497.75 29999.07 26895.20 32298.51 34699.04 29897.99 14198.31 29799.86 3789.02 32399.55 23395.67 30797.36 25798.49 306
tpm297.44 27397.34 26397.74 30099.15 25694.36 33799.45 16898.94 30793.45 34398.90 23599.44 24591.35 30099.59 22997.31 24698.07 21999.29 186
CostFormer97.72 24797.73 21697.71 30199.15 25694.02 34099.54 12799.02 29994.67 32999.04 21499.35 27092.35 28099.77 17398.50 14897.94 22199.34 182
LF4IMVS97.52 26597.46 24297.70 30298.98 28395.55 31299.29 22898.82 32398.07 13198.66 26899.64 17689.97 31699.61 22797.01 26496.68 26897.94 345
EGC-MVSNET82.80 33677.86 34297.62 30397.91 34296.12 30299.33 21999.28 2658.40 37925.05 38099.27 29084.11 35399.33 26889.20 35798.22 20897.42 356
ppachtmachnet_test97.49 27197.45 24397.61 30498.62 32695.24 32198.80 32399.46 16996.11 30398.22 30199.62 18796.45 14398.97 32993.77 33295.97 28898.61 295
MVS_030496.79 28896.52 28897.59 30599.22 23694.92 32999.04 28699.59 4496.49 27298.43 29098.99 32080.48 36199.39 25197.15 25999.27 14698.47 309
dp97.75 24297.80 20397.59 30599.10 26393.71 34499.32 22098.88 31796.48 27699.08 20799.55 21092.67 26899.82 15296.52 28898.58 19299.24 189
our_test_397.65 25997.68 22097.55 30798.62 32694.97 32798.84 31999.30 25996.83 25098.19 30299.34 27397.01 12599.02 31795.00 31996.01 28398.64 275
MVS-HIRNet95.75 30795.16 31197.51 30899.30 21693.69 34598.88 31595.78 36985.09 36498.78 25392.65 36791.29 30199.37 25894.85 32099.85 5599.46 167
tpm cat197.39 27497.36 25897.50 30999.17 25193.73 34399.43 17799.31 25591.27 35298.71 25999.08 31094.31 22699.77 17396.41 29298.50 19899.00 211
new_pmnet96.38 29696.03 29797.41 31098.13 34195.16 32599.05 28199.20 27893.94 33597.39 32598.79 33291.61 29699.04 31390.43 35395.77 29198.05 337
UnsupCasMVSNet_eth96.44 29496.12 29597.40 31198.65 32395.65 30999.36 20999.51 10397.13 22396.04 34498.99 32088.40 33298.17 34896.71 28190.27 35198.40 319
KD-MVS_2432*160094.62 31693.72 32297.31 31297.19 35795.82 30798.34 35299.20 27895.00 32397.57 32198.35 34487.95 33798.10 34992.87 34377.00 36998.01 339
miper_refine_blended94.62 31693.72 32297.31 31297.19 35795.82 30798.34 35299.20 27895.00 32397.57 32198.35 34487.95 33798.10 34992.87 34377.00 36998.01 339
test250696.81 28796.65 28597.29 31499.74 7192.21 35599.60 9085.06 38299.13 1299.77 3899.93 687.82 34099.85 12999.38 3299.38 13599.80 56
pmmvs-eth3d95.34 31294.73 31497.15 31595.53 36695.94 30599.35 21499.10 28995.13 31893.55 35697.54 35388.15 33697.91 35494.58 32289.69 35497.61 352
FMVSNet596.43 29596.19 29497.15 31599.11 26095.89 30699.32 22099.52 8994.47 33398.34 29699.07 31187.54 34197.07 36392.61 34695.72 29498.47 309
Anonymous2024052196.20 29995.89 30197.13 31797.72 34894.96 32899.79 3099.29 26393.01 34597.20 33099.03 31689.69 31998.36 34591.16 35196.13 28198.07 335
DeepPCF-MVS98.18 398.81 12499.37 2297.12 31899.60 13491.75 35698.61 33999.44 18899.35 299.83 2399.85 4298.70 6099.81 15799.02 7199.91 1899.81 47
test_fmvs297.25 27897.30 26897.09 31999.43 18393.31 34999.73 4598.87 31998.83 5299.28 16499.80 8984.45 35299.66 21297.88 19597.45 24898.30 324
MS-PatchMatch97.24 28097.32 26696.99 32098.45 33693.51 34898.82 32199.32 25197.41 20198.13 30599.30 28388.99 32499.56 23195.68 30699.80 8397.90 348
RPSCF98.22 17098.62 13296.99 32099.82 3791.58 35799.72 4699.44 18896.61 26499.66 6999.89 2095.92 16199.82 15297.46 23999.10 16199.57 138
KD-MVS_self_test95.00 31394.34 31896.96 32297.07 35995.39 31999.56 11499.44 18895.11 32097.13 33297.32 35791.86 28697.27 36290.35 35481.23 36698.23 330
DSMNet-mixed97.25 27897.35 26096.95 32397.84 34493.61 34799.57 10896.63 36796.13 30298.87 24198.61 33994.59 21597.70 35995.08 31798.86 17999.55 140
MIMVSNet195.51 30895.04 31296.92 32497.38 35195.60 31099.52 13499.50 12293.65 33996.97 33699.17 30185.28 35096.56 36788.36 36195.55 29898.60 298
LCM-MVSNet-Re97.83 22898.15 16596.87 32599.30 21692.25 35499.59 9698.26 34797.43 19896.20 34199.13 30696.27 14998.73 34098.17 17598.99 17099.64 120
EG-PatchMatch MVS95.97 30395.69 30496.81 32697.78 34592.79 35299.16 25898.93 30896.16 29894.08 35499.22 29682.72 35699.47 23795.67 30797.50 24298.17 331
Anonymous2023120696.22 29796.03 29796.79 32797.31 35494.14 33999.63 7799.08 29296.17 29797.04 33499.06 31393.94 23797.76 35886.96 36595.06 30898.47 309
test20.0396.12 30195.96 29996.63 32897.44 35095.45 31799.51 13999.38 21696.55 26996.16 34299.25 29393.76 24496.17 36887.35 36494.22 32298.27 326
pmmvs394.09 32293.25 32696.60 32994.76 36994.49 33498.92 31198.18 35289.66 35696.48 33998.06 35086.28 34497.33 36189.68 35687.20 35897.97 344
UnsupCasMVSNet_bld93.53 32492.51 32796.58 33097.38 35193.82 34198.24 35799.48 14291.10 35493.10 35896.66 36074.89 36498.37 34494.03 33187.71 35797.56 354
OpenMVS_ROBcopyleft92.34 2094.38 32093.70 32496.41 33197.38 35193.17 35099.06 27998.75 32886.58 36294.84 35298.26 34781.53 35999.32 27189.01 35897.87 22396.76 359
test_vis1_rt95.81 30695.65 30596.32 33299.67 10091.35 35899.49 15596.74 36698.25 10195.24 34798.10 34974.96 36399.90 10199.53 1698.85 18097.70 351
CL-MVSNet_self_test94.49 31893.97 32196.08 33396.16 36193.67 34698.33 35499.38 21695.13 31897.33 32698.15 34892.69 26796.57 36688.67 35979.87 36797.99 342
Patchmatch-RL test95.84 30595.81 30395.95 33495.61 36490.57 35998.24 35798.39 34695.10 32295.20 34898.67 33694.78 20397.77 35796.28 29490.02 35299.51 154
new-patchmatchnet94.48 31994.08 31995.67 33595.08 36892.41 35399.18 25699.28 26594.55 33293.49 35797.37 35687.86 33997.01 36491.57 34988.36 35597.61 352
PM-MVS92.96 32592.23 32895.14 33695.61 36489.98 36199.37 20598.21 35094.80 32795.04 35197.69 35265.06 36797.90 35594.30 32589.98 35397.54 355
mvsany_test393.77 32393.45 32594.74 33795.78 36388.01 36299.64 7398.25 34898.28 9794.31 35397.97 35168.89 36698.51 34397.50 23490.37 35097.71 349
APD_test195.87 30496.49 28994.00 33899.53 15084.01 36599.54 12799.32 25195.91 31097.99 31199.85 4285.49 34899.88 11691.96 34898.84 18198.12 333
test_f91.90 32791.26 33193.84 33995.52 36785.92 36499.69 5198.53 34595.31 31793.87 35596.37 36255.33 37398.27 34695.70 30490.98 34897.32 357
Gipumacopyleft90.99 32990.15 33493.51 34098.73 31490.12 36093.98 36999.45 18079.32 36792.28 35994.91 36469.61 36597.98 35387.42 36395.67 29592.45 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft93.34 34199.29 22082.27 36899.22 27485.15 36396.33 34099.05 31490.97 30599.73 18693.57 33597.77 22598.01 339
test_fmvs392.10 32691.77 32993.08 34296.19 36086.25 36399.82 1798.62 34196.65 25995.19 34996.90 35955.05 37495.93 37096.63 28790.92 34997.06 358
ambc93.06 34392.68 37182.36 36798.47 34798.73 33695.09 35097.41 35455.55 37299.10 30896.42 29191.32 34497.71 349
N_pmnet94.95 31595.83 30292.31 34498.47 33579.33 37299.12 26692.81 37993.87 33697.68 32099.13 30693.87 23999.01 31991.38 35096.19 28098.59 299
CMPMVSbinary69.68 2394.13 32194.90 31391.84 34597.24 35580.01 37198.52 34599.48 14289.01 35991.99 36099.67 16485.67 34799.13 30195.44 31097.03 26596.39 361
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet86.80 33485.22 33891.53 34687.81 37680.96 37098.23 35998.99 30271.05 36990.13 36496.51 36148.45 37796.88 36590.51 35285.30 36096.76 359
PMMVS286.87 33385.37 33791.35 34790.21 37483.80 36698.89 31497.45 36183.13 36691.67 36395.03 36348.49 37694.70 37185.86 36977.62 36895.54 364
test_vis3_rt87.04 33285.81 33590.73 34893.99 37081.96 36999.76 3690.23 38192.81 34781.35 36991.56 36940.06 37899.07 31094.27 32788.23 35691.15 369
test_method91.10 32891.36 33090.31 34995.85 36273.72 37994.89 36899.25 27068.39 37195.82 34599.02 31880.50 36098.95 33193.64 33494.89 31398.25 328
testf190.42 33090.68 33289.65 35097.78 34573.97 37799.13 26498.81 32489.62 35791.80 36198.93 32662.23 37098.80 33786.61 36791.17 34596.19 362
APD_test290.42 33090.68 33289.65 35097.78 34573.97 37799.13 26498.81 32489.62 35791.80 36198.93 32662.23 37098.80 33786.61 36791.17 34596.19 362
tmp_tt82.80 33681.52 33986.66 35266.61 38268.44 38092.79 37197.92 35468.96 37080.04 37399.85 4285.77 34696.15 36997.86 19843.89 37595.39 365
MVEpermissive76.82 2176.91 34174.31 34584.70 35385.38 37976.05 37696.88 36793.17 37767.39 37271.28 37489.01 37321.66 38487.69 37471.74 37372.29 37190.35 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 34074.86 34484.62 35475.88 38077.61 37397.63 36593.15 37888.81 36064.27 37589.29 37236.51 37983.93 37775.89 37252.31 37492.33 368
E-PMN80.61 33879.88 34082.81 35590.75 37376.38 37597.69 36495.76 37066.44 37383.52 36692.25 36862.54 36987.16 37568.53 37461.40 37284.89 373
FPMVS84.93 33585.65 33682.75 35686.77 37763.39 38198.35 35198.92 31074.11 36883.39 36798.98 32350.85 37592.40 37384.54 37094.97 31092.46 366
EMVS80.02 33979.22 34182.43 35791.19 37276.40 37497.55 36692.49 38066.36 37483.01 36891.27 37064.63 36885.79 37665.82 37560.65 37385.08 372
PMVScopyleft70.75 2275.98 34274.97 34379.01 35870.98 38155.18 38293.37 37098.21 35065.08 37561.78 37693.83 36621.74 38392.53 37278.59 37191.12 34789.34 371
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 34341.29 34836.84 35986.18 37849.12 38379.73 37222.81 38427.64 37625.46 37928.45 37921.98 38248.89 37855.80 37623.56 37812.51 376
test12339.01 34542.50 34728.53 36039.17 38320.91 38498.75 32819.17 38519.83 37838.57 37766.67 37533.16 38015.42 37937.50 37829.66 37749.26 374
testmvs39.17 34443.78 34625.37 36136.04 38416.84 38598.36 35026.56 38320.06 37738.51 37867.32 37429.64 38115.30 38037.59 37739.90 37643.98 375
test_blank0.13 3490.17 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3811.57 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k24.64 34632.85 3490.00 3620.00 3850.00 3860.00 37399.51 1030.00 3800.00 38199.56 20796.58 1380.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas8.27 34811.03 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 38199.01 180.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.30 34711.06 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.58 2000.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.91 199.93 199.87 999.56 5799.10 1699.81 25
PC_three_145298.18 11599.84 1899.70 14299.31 398.52 34298.30 16799.80 8399.81 47
test_one_060199.81 4199.88 899.49 13098.97 3999.65 7599.81 7699.09 14
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.71 8799.79 3099.61 3696.84 24899.56 9899.54 21598.58 6799.96 2296.93 27299.75 98
RE-MVS-def99.34 2899.76 5699.82 2299.63 7799.52 8998.38 8699.76 4399.82 6398.75 5498.61 13099.81 7999.77 68
IU-MVS99.84 3199.88 899.32 25198.30 9699.84 1898.86 9499.85 5599.89 6
test_241102_TWO99.48 14299.08 2199.88 1199.81 7698.94 2999.96 2298.91 8399.84 6399.88 12
test_241102_ONE99.84 3199.90 299.48 14299.07 2399.91 799.74 12799.20 799.76 177
9.1499.10 6699.72 8299.40 19499.51 10397.53 18899.64 7999.78 10698.84 4199.91 9097.63 22099.82 76
save fliter99.76 5699.59 6299.14 26399.40 20799.00 31
test_0728_THIRD98.99 3399.81 2599.80 8999.09 1499.96 2298.85 9699.90 2599.88 12
test072699.85 2599.89 499.62 8399.50 12299.10 1699.86 1699.82 6398.94 29
GSMVS99.52 148
test_part299.81 4199.83 1699.77 38
sam_mvs194.86 19899.52 148
sam_mvs94.72 210
MTGPAbinary99.47 160
test_post199.23 24865.14 37794.18 23199.71 19697.58 224
test_post65.99 37694.65 21499.73 186
patchmatchnet-post98.70 33594.79 20299.74 180
MTMP99.54 12798.88 317
gm-plane-assit98.54 33392.96 35194.65 33099.15 30499.64 22097.56 229
test9_res97.49 23599.72 10499.75 74
TEST999.67 10099.65 5699.05 28199.41 19996.22 29398.95 22799.49 23198.77 5099.91 90
test_899.67 10099.61 6099.03 28799.41 19996.28 28798.93 23199.48 23698.76 5199.91 90
agg_prior297.21 25199.73 10399.75 74
agg_prior99.67 10099.62 5999.40 20798.87 24199.91 90
test_prior499.56 6698.99 297
test_prior298.96 30498.34 9299.01 21799.52 22298.68 6197.96 19099.74 101
旧先验298.96 30496.70 25599.47 11599.94 5798.19 172
新几何299.01 295
旧先验199.74 7199.59 6299.54 7399.69 15298.47 7599.68 11299.73 83
无先验98.99 29799.51 10396.89 24599.93 7097.53 23299.72 89
原ACMM298.95 307
test22299.75 6499.49 7898.91 31399.49 13096.42 28199.34 15499.65 17098.28 8799.69 10999.72 89
testdata299.95 4896.67 284
segment_acmp98.96 24
testdata198.85 31898.32 95
plane_prior799.29 22097.03 268
plane_prior699.27 22596.98 27292.71 265
plane_prior599.47 16099.69 20797.78 20597.63 22898.67 263
plane_prior499.61 191
plane_prior397.00 27098.69 6499.11 200
plane_prior299.39 19898.97 39
plane_prior199.26 227
plane_prior96.97 27399.21 25498.45 8097.60 231
n20.00 386
nn0.00 386
door-mid98.05 353
test1199.35 230
door97.92 354
HQP5-MVS96.83 278
HQP-NCC99.19 24298.98 30098.24 10298.66 268
ACMP_Plane99.19 24298.98 30098.24 10298.66 268
BP-MVS97.19 255
HQP4-MVS98.66 26899.64 22098.64 275
HQP3-MVS99.39 21097.58 233
HQP2-MVS92.47 274
NP-MVS99.23 23396.92 27699.40 256
MDTV_nov1_ep13_2view95.18 32499.35 21496.84 24899.58 9495.19 18997.82 20299.46 167
MDTV_nov1_ep1398.32 15699.11 26094.44 33599.27 23598.74 33197.51 19099.40 13699.62 18794.78 20399.76 17797.59 22398.81 185
ACMMP++_ref97.19 262
ACMMP++97.43 252
Test By Simon98.75 54