This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft97.34 1796.97 2698.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19098.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
MM98.23 1195.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
ACMMP_NAP97.20 1996.86 3098.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MCST-MVS97.18 2096.84 3298.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
3Dnovator+91.43 495.40 8194.48 10398.16 1696.90 16595.34 1698.48 2197.87 11194.65 4988.53 27998.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPM-MVS95.69 7494.92 8798.01 1998.08 10495.71 995.27 28597.62 14190.43 19395.55 11397.07 14491.72 4699.50 9989.62 20498.94 8998.82 111
APD-MVScopyleft96.95 3196.60 4698.01 1999.03 4194.93 2697.72 9898.10 7291.50 15198.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVS-pluss96.70 4696.27 6097.98 2199.23 3094.71 2896.96 17898.06 8290.67 18195.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA97.08 2496.78 3897.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
MVS_030497.04 2796.73 4197.96 2397.60 13394.36 3498.01 5794.09 34497.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS96.96 3096.67 4497.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
HFP-MVS97.14 2296.92 2997.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
GST-MVS96.85 3896.52 5097.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
XVS97.18 2096.96 2797.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
X-MVStestdata91.71 21389.67 27297.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 39691.70 4899.80 3095.66 7599.40 5099.62 18
ACMMPR97.07 2596.84 3297.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
alignmvs95.87 7295.23 8197.78 3197.56 13795.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 18998.95 96
DeepC-MVS_fast93.89 296.93 3396.64 4597.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R97.07 2596.84 3297.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
CDPH-MVS95.97 6995.38 7797.77 3398.93 4794.44 3296.35 23197.88 10986.98 28996.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
canonicalmvs96.02 6795.45 7497.75 3597.59 13495.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19398.91 101
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
train_agg96.30 6195.83 6897.72 3798.70 5694.19 4096.41 22398.02 9488.58 24596.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
MP-MVScopyleft96.77 4396.45 5697.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4396.46 5597.71 3998.40 7594.07 4698.21 4398.45 2289.86 20397.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS96.81 4196.53 4997.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
mPP-MVS96.86 3696.60 4697.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
CP-MVS97.02 2896.81 3697.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
CANet96.39 5896.02 6397.50 4597.62 13093.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
SR-MVS97.01 2996.86 3097.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
3Dnovator91.36 595.19 9094.44 10597.44 4796.56 18993.36 6398.65 1198.36 2494.12 6389.25 26498.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
HPM-MVScopyleft96.69 4896.45 5697.40 4899.36 1893.11 6998.87 698.06 8291.17 16696.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon95.68 7595.12 8597.37 4999.19 3194.19 4097.03 16998.08 7488.35 25495.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
新几何197.32 5198.60 6593.59 5697.75 12381.58 35695.75 10697.85 9690.04 7799.67 5686.50 26799.13 7798.69 119
DELS-MVS96.61 5196.38 5897.30 5297.79 11993.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 13992.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
DeepC-MVS93.07 396.06 6595.66 6997.29 5397.96 10893.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft96.27 6295.93 6497.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.96.69 4896.49 5197.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
HPM-MVS_fast96.51 5496.27 6097.22 5999.32 2292.74 7798.74 998.06 8290.57 19096.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
VNet95.89 7195.45 7497.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18599.16 73
UA-Net95.95 7095.53 7197.20 6197.67 12492.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 18997.35 14299.11 81
test_fmvsmconf0.1_n97.09 2397.06 1997.19 6295.67 23292.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
EPNet95.20 8994.56 9797.14 6392.80 34692.68 7997.85 8294.87 32996.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVS_3200maxsize96.81 4196.71 4397.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
SR-MVS-dyc-post96.88 3596.80 3797.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 31996.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf0.01_n96.15 6495.85 6797.03 6792.66 34991.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
MVS_111021_HR96.68 5096.58 4896.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
QAPM93.45 14592.27 17396.98 6996.77 17592.62 8098.39 2698.12 6784.50 32988.27 28697.77 10282.39 20099.81 2985.40 28698.81 9398.51 129
WTY-MVS94.71 10594.02 10996.79 7097.71 12392.05 10096.59 21497.35 18290.61 18794.64 12996.93 15086.41 13199.39 11191.20 17894.71 19798.94 97
CPTT-MVS95.57 7995.19 8296.70 7199.27 2691.48 12198.33 2898.11 7087.79 27095.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
sss94.51 10693.80 11396.64 7297.07 15391.97 10396.32 23498.06 8288.94 23294.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
ab-mvs93.57 14192.55 16396.64 7297.28 14291.96 10495.40 27797.45 16689.81 20793.22 16496.28 19279.62 24799.46 10390.74 18493.11 21798.50 130
EI-MVSNet-Vis-set96.51 5496.47 5296.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
114514_t93.95 12593.06 14096.63 7499.07 3791.61 11497.46 13397.96 10277.99 37393.00 16697.57 11986.14 13799.33 11589.22 21599.15 7598.94 97
HY-MVS89.66 993.87 12992.95 14396.63 7497.10 15292.49 8595.64 26996.64 24289.05 22793.00 16695.79 21885.77 14199.45 10589.16 21994.35 19997.96 167
MSLP-MVS++96.94 3297.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
CANet_DTU94.37 10893.65 11796.55 7896.46 19792.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25099.71 4690.76 18398.45 10997.82 177
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 165
LFMVS93.60 13892.63 15896.52 8098.13 10091.27 13097.94 7193.39 35690.57 19096.29 8698.31 6069.00 34199.16 13294.18 11695.87 17399.12 80
DP-MVS92.76 17891.51 20096.52 8098.77 5390.99 14397.38 14196.08 27082.38 34989.29 26197.87 9383.77 16699.69 5281.37 32796.69 16098.89 105
CNLPA94.28 11093.53 12296.52 8098.38 7892.55 8396.59 21496.88 22590.13 19991.91 18997.24 13585.21 14699.09 14287.64 24797.83 12797.92 169
casdiffmvs_mvgpermissive95.81 7395.57 7096.51 8396.87 16691.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17195.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.23 8794.81 8996.51 8397.18 14691.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MAR-MVS94.22 11193.46 12796.51 8398.00 10792.19 9797.67 10397.47 15988.13 26193.00 16695.84 21284.86 15199.51 9687.99 23498.17 12097.83 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 11293.42 13296.48 8697.64 12891.42 12595.55 27197.71 13288.99 22992.34 18095.82 21489.19 8599.11 13886.14 27397.38 14098.90 102
EI-MVSNet-UG-set96.34 6096.30 5996.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
LS3D93.57 14192.61 16196.47 8797.59 13491.61 11497.67 10397.72 12885.17 31990.29 22498.34 5484.60 15399.73 4283.85 30698.27 11598.06 166
CSCG96.05 6695.91 6596.46 8999.24 2890.47 16498.30 3098.57 1889.01 22893.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
CS-MVS-test96.89 3497.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17696.92 3599.33 5898.94 97
test_yl94.78 10394.23 10796.43 9197.74 12191.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
DCV-MVSNet94.78 10394.23 10796.43 9197.74 12191.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
ETV-MVS96.02 6795.89 6696.40 9397.16 14792.44 8697.47 13197.77 12294.55 5096.48 7994.51 27491.23 6198.92 16195.65 7898.19 11897.82 177
OpenMVScopyleft89.19 1292.86 17391.68 19296.40 9395.34 25192.73 7898.27 3398.12 6784.86 32485.78 32597.75 10378.89 26399.74 4187.50 25198.65 9896.73 217
MVS_111021_LR96.24 6396.19 6296.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28195.22 12097.68 10790.25 7499.54 8987.95 23599.12 7998.49 132
PVSNet_Blended_VisFu95.27 8594.91 8896.38 9698.20 9390.86 14997.27 15198.25 4590.21 19594.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
Effi-MVS+94.93 9794.45 10496.36 9896.61 18391.47 12296.41 22397.41 17591.02 17194.50 13295.92 20887.53 11498.78 17193.89 12396.81 15598.84 110
PCF-MVS89.48 1191.56 22189.95 26096.36 9896.60 18492.52 8492.51 35897.26 18879.41 36888.90 26896.56 17984.04 16499.55 8777.01 35397.30 14597.01 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsmvis_n_192096.70 4696.84 3296.31 10096.62 18291.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 194
UGNet94.04 12393.28 13596.31 10096.85 16791.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31899.61 6991.72 16598.46 10898.13 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MG-MVS95.61 7795.38 7796.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
AdaColmapbinary94.34 10993.68 11696.31 10098.59 6691.68 11296.59 21497.81 12189.87 20292.15 18397.06 14583.62 17099.54 8989.34 21098.07 12297.70 181
lupinMVS94.99 9694.56 9796.29 10496.34 20391.21 13395.83 26096.27 26188.93 23396.22 8996.88 15586.20 13598.85 16695.27 9199.05 8398.82 111
nrg03094.05 12293.31 13496.27 10595.22 26294.59 2998.34 2797.46 16192.93 11591.21 21296.64 16887.23 12298.22 22394.99 9885.80 30795.98 240
CS-MVS96.86 3697.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18297.10 3199.17 7398.90 102
EC-MVSNet96.42 5696.47 5296.26 10697.01 16191.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19297.45 2699.11 8098.67 121
PAPM_NR95.01 9294.59 9596.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21697.78 12998.97 93
OMC-MVS95.09 9194.70 9396.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
1112_ss93.37 14792.42 17096.21 11097.05 15890.99 14396.31 23596.72 23486.87 29289.83 24396.69 16486.51 12999.14 13588.12 23293.67 21198.50 130
fmvsm_s_conf0.5_n_a96.75 4596.93 2896.20 11197.64 12890.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
jason94.84 10194.39 10696.18 11295.52 23890.93 14796.09 24896.52 25089.28 22096.01 9897.32 12984.70 15298.77 17495.15 9498.91 9198.85 108
jason: jason.
fmvsm_s_conf0.1_n_a96.40 5796.47 5296.16 11395.48 24090.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 155
PLCcopyleft91.00 694.11 11993.43 13096.13 11498.58 6891.15 14196.69 20197.39 17687.29 28491.37 20296.71 16088.39 9999.52 9587.33 25497.13 15197.73 179
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvspermissive95.64 7695.49 7296.08 11596.76 17890.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 17895.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline95.58 7895.42 7696.08 11596.78 17390.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18495.66 7597.25 14799.13 77
CHOSEN 1792x268894.15 11593.51 12596.06 11798.27 8389.38 20095.18 28998.48 2185.60 31193.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
IS-MVSNet94.90 9894.52 10196.05 11897.67 12490.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20489.98 19397.86 12699.14 76
fmvsm_s_conf0.5_n96.85 3897.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 155
h-mvs3394.15 11593.52 12496.04 11997.81 11890.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 35898.29 150
VDD-MVS93.82 13293.08 13996.02 12197.88 11589.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 34599.39 11196.31 4994.85 19198.71 118
VDDNet93.05 16392.07 17796.02 12196.84 16890.39 16898.08 5195.85 27886.22 30395.79 10598.46 4267.59 34899.19 12894.92 9994.85 19198.47 135
fmvsm_s_conf0.1_n96.58 5396.77 3996.01 12396.67 18090.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 158
MVSFormer95.37 8295.16 8395.99 12496.34 20391.21 13398.22 4197.57 14691.42 15596.22 8997.32 12986.20 13597.92 27394.07 11799.05 8398.85 108
CDS-MVSNet94.14 11893.54 12195.93 12596.18 21091.46 12396.33 23397.04 20888.97 23193.56 15196.51 18187.55 11397.89 27789.80 19895.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
API-MVS94.84 10194.49 10295.90 12697.90 11492.00 10297.80 8997.48 15689.19 22394.81 12696.71 16088.84 9199.17 13188.91 22398.76 9596.53 220
HyFIR lowres test93.66 13792.92 14495.87 12798.24 8789.88 18194.58 30198.49 1985.06 32193.78 14895.78 21982.86 18798.67 18591.77 16495.71 17899.07 85
SDMVSNet94.17 11393.61 11895.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19297.28 13179.13 25498.93 16094.61 11092.84 22097.28 201
Test_1112_low_res92.84 17591.84 18695.85 12997.04 15989.97 17995.53 27396.64 24285.38 31489.65 24995.18 24585.86 13999.10 13987.70 24293.58 21698.49 132
PVSNet_Blended94.87 10094.56 9795.81 13098.27 8389.46 19795.47 27598.36 2488.84 23694.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
Anonymous20240521192.07 20490.83 22495.76 13198.19 9588.75 22097.58 11795.00 31986.00 30693.64 15097.45 12466.24 35999.53 9190.68 18692.71 22399.01 89
EPP-MVSNet95.22 8895.04 8695.76 13197.49 13889.56 19098.67 1097.00 21290.69 17994.24 13797.62 11689.79 8198.81 16993.39 13496.49 16498.92 100
xiu_mvs_v1_base_debu95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
xiu_mvs_v1_base95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
xiu_mvs_v1_base_debi95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
Anonymous2024052991.98 20790.73 22895.73 13698.14 9989.40 19997.99 6097.72 12879.63 36793.54 15397.41 12769.94 33899.56 8591.04 18091.11 25398.22 153
GeoE93.89 12893.28 13595.72 13796.96 16489.75 18498.24 3996.92 22189.47 21592.12 18597.21 13784.42 15698.39 21187.71 24196.50 16399.01 89
EIA-MVS95.53 8095.47 7395.71 13897.06 15689.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
MVS_Test94.89 9994.62 9495.68 13996.83 17089.55 19196.70 19997.17 19391.17 16695.60 11296.11 20387.87 10898.76 17593.01 14497.17 15098.72 116
TAMVS94.01 12493.46 12795.64 14096.16 21290.45 16596.71 19896.89 22489.27 22193.46 15696.92 15387.29 12097.94 26988.70 22795.74 17698.53 126
ET-MVSNet_ETH3D91.49 22590.11 25395.63 14196.40 20091.57 11895.34 27993.48 35590.60 18975.58 37595.49 23580.08 23896.79 34094.25 11589.76 27298.52 127
diffmvspermissive95.25 8695.13 8495.63 14196.43 19989.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18596.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)93.31 14992.55 16395.61 14395.39 24593.34 6497.39 13998.71 1193.14 10390.10 23494.83 26087.71 10998.03 25491.67 16983.99 33495.46 268
Fast-Effi-MVS+93.46 14492.75 15395.59 14496.77 17590.03 17396.81 18997.13 19588.19 25791.30 20694.27 29086.21 13498.63 18987.66 24696.46 16698.12 160
PatchMatch-RL92.90 17192.02 18095.56 14598.19 9590.80 15295.27 28597.18 19187.96 26391.86 19195.68 22580.44 23198.99 15684.01 30297.54 13496.89 213
TAPA-MVS90.10 792.30 19491.22 21195.56 14598.33 8089.60 18896.79 19097.65 13681.83 35391.52 19897.23 13687.94 10698.91 16371.31 37498.37 11198.17 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline192.82 17691.90 18495.55 14797.20 14590.77 15497.19 16094.58 33492.20 13392.36 17896.34 19084.16 16298.21 22489.20 21783.90 33897.68 182
NR-MVSNet92.34 19191.27 20895.53 14894.95 27693.05 7097.39 13998.07 7992.65 12384.46 33695.71 22285.00 14997.77 28889.71 20083.52 34195.78 250
MVS91.71 21390.44 23795.51 14995.20 26491.59 11696.04 25097.45 16673.44 38187.36 30595.60 22985.42 14499.10 13985.97 27897.46 13595.83 245
VPA-MVSNet93.24 15192.48 16895.51 14995.70 23092.39 8797.86 7998.66 1692.30 13092.09 18795.37 23880.49 23098.40 20793.95 12085.86 30695.75 255
thisisatest053093.03 16492.21 17595.49 15197.07 15389.11 21497.49 13092.19 36690.16 19794.09 14196.41 18676.43 29199.05 15190.38 18895.68 17998.31 149
PS-MVSNAJ95.37 8295.33 7995.49 15197.35 14190.66 16095.31 28297.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 231
DU-MVS92.90 17192.04 17895.49 15194.95 27692.83 7497.16 16398.24 4793.02 10690.13 23095.71 22283.47 17197.85 27991.71 16683.93 33595.78 250
UniMVSNet_NR-MVSNet93.37 14792.67 15795.47 15495.34 25192.83 7497.17 16298.58 1792.98 11290.13 23095.80 21588.37 10097.85 27991.71 16683.93 33595.73 257
testdata95.46 15598.18 9788.90 21897.66 13482.73 34797.03 5798.07 7690.06 7698.85 16689.67 20298.98 8798.64 122
xiu_mvs_v2_base95.32 8495.29 8095.40 15697.22 14390.50 16395.44 27697.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 231
F-COLMAP93.58 14092.98 14295.37 15798.40 7588.98 21697.18 16197.29 18787.75 27390.49 21997.10 14385.21 14699.50 9986.70 26496.72 15997.63 183
FA-MVS(test-final)93.52 14392.92 14495.31 15896.77 17588.54 22794.82 29596.21 26689.61 21094.20 13895.25 24383.24 17599.14 13590.01 19296.16 16898.25 151
FIs94.09 12093.70 11595.27 15995.70 23092.03 10198.10 4998.68 1393.36 9390.39 22296.70 16287.63 11297.94 26992.25 15190.50 26595.84 244
thisisatest051592.29 19591.30 20695.25 16096.60 18488.90 21894.36 31192.32 36587.92 26493.43 15794.57 27277.28 28399.00 15589.42 20895.86 17497.86 173
PAPM91.52 22490.30 24395.20 16195.30 25789.83 18293.38 34496.85 22886.26 30288.59 27795.80 21584.88 15098.15 23075.67 35795.93 17297.63 183
thres600view792.49 18491.60 19495.18 16297.91 11389.47 19597.65 10694.66 33192.18 13793.33 15994.91 25578.06 27699.10 13981.61 32194.06 20896.98 208
DeepPCF-MVS93.97 196.61 5197.09 1895.15 16398.09 10186.63 27796.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
131492.81 17792.03 17995.14 16495.33 25489.52 19496.04 25097.44 17087.72 27486.25 32295.33 23983.84 16598.79 17089.26 21397.05 15297.11 206
TranMVSNet+NR-MVSNet92.50 18291.63 19395.14 16494.76 28892.07 9997.53 12398.11 7092.90 11689.56 25296.12 20083.16 17797.60 30289.30 21183.20 34495.75 255
thres40092.42 18691.52 19895.12 16697.85 11689.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27299.08 14481.40 32494.08 20596.98 208
FE-MVS92.05 20591.05 21595.08 16796.83 17087.93 24693.91 32995.70 28486.30 30094.15 14094.97 25176.59 28799.21 12684.10 30096.86 15398.09 164
sd_testset93.10 15992.45 16995.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19297.28 13175.35 30298.65 18788.99 22192.84 22097.28 201
iter_conf_final93.60 13893.11 13895.04 16997.13 15091.30 12897.92 7395.65 29092.98 11291.60 19596.64 16879.28 25298.13 23295.34 9091.49 24395.70 258
FC-MVSNet-test93.94 12693.57 11995.04 16995.48 24091.45 12498.12 4898.71 1193.37 9190.23 22596.70 16287.66 11097.85 27991.49 17190.39 26695.83 245
FMVSNet391.78 21190.69 23095.03 17196.53 19292.27 9397.02 17196.93 21789.79 20889.35 25894.65 26977.01 28497.47 31386.12 27488.82 27995.35 277
patch_mono-296.83 4097.44 1395.01 17299.05 3985.39 29796.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
VPNet92.23 19991.31 20594.99 17395.56 23690.96 14597.22 15897.86 11592.96 11490.96 21496.62 17775.06 30398.20 22591.90 15983.65 34095.80 248
FMVSNet291.31 23690.08 25494.99 17396.51 19392.21 9497.41 13496.95 21588.82 23888.62 27694.75 26473.87 31297.42 31885.20 28988.55 28495.35 277
thres100view90092.43 18591.58 19594.98 17597.92 11289.37 20197.71 10094.66 33192.20 13393.31 16094.90 25678.06 27699.08 14481.40 32494.08 20596.48 223
BH-RMVSNet92.72 18091.97 18294.97 17697.16 14787.99 24596.15 24695.60 29190.62 18691.87 19097.15 14178.41 26998.57 19683.16 30897.60 13398.36 147
MSDG91.42 22890.24 24794.96 17797.15 14988.91 21793.69 33696.32 25985.72 31086.93 31696.47 18380.24 23598.98 15780.57 33095.05 19096.98 208
tfpn200view992.38 18891.52 19894.95 17897.85 11689.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27299.08 14481.40 32494.08 20596.48 223
XXY-MVS92.16 20191.23 21094.95 17894.75 29090.94 14697.47 13197.43 17389.14 22488.90 26896.43 18579.71 24598.24 22189.56 20587.68 29095.67 261
Vis-MVSNet (Re-imp)94.15 11593.88 11294.95 17897.61 13187.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 27688.24 23197.97 12499.02 86
mvsmamba93.83 13193.46 12794.93 18194.88 28390.85 15098.55 1495.49 29794.24 6191.29 20996.97 14983.04 18298.14 23195.56 8691.17 25195.78 250
tttt051792.96 16792.33 17294.87 18297.11 15187.16 26497.97 6792.09 36790.63 18593.88 14797.01 14876.50 28899.06 15090.29 19195.45 18298.38 145
iter_conf0593.18 15792.63 15894.83 18396.64 18190.69 15797.60 11595.53 29692.52 12591.58 19696.64 16876.35 29298.13 23295.43 8891.42 24695.68 260
OPM-MVS93.28 15092.76 15194.82 18494.63 29690.77 15496.65 20597.18 19193.72 7591.68 19497.26 13479.33 25198.63 18992.13 15592.28 22895.07 293
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS93.78 13493.43 13094.82 18496.21 20789.99 17697.74 9397.51 15394.85 3491.34 20396.64 16881.32 21798.60 19293.02 14292.23 22995.86 241
hse-mvs293.45 14592.99 14194.81 18697.02 16088.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20395.85 6979.13 36297.35 198
AUN-MVS91.76 21290.75 22794.81 18697.00 16288.57 22596.65 20596.49 25289.63 20992.15 18396.12 20078.66 26598.50 20090.83 18179.18 36197.36 196
XVG-OURS-SEG-HR93.86 13093.55 12094.81 18697.06 15688.53 22895.28 28397.45 16691.68 14894.08 14297.68 10782.41 19998.90 16493.84 12592.47 22696.98 208
XVG-OURS93.72 13693.35 13394.80 18997.07 15388.61 22394.79 29697.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 22596.92 212
IB-MVS87.33 1789.91 28088.28 29394.79 19095.26 26187.70 25395.12 29193.95 34889.35 21987.03 31192.49 33470.74 33199.19 12889.18 21881.37 35297.49 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.34 19191.53 19794.77 19195.13 26990.83 15196.40 22797.98 10091.88 14489.29 26195.54 23382.50 19697.80 28489.79 19985.27 31595.69 259
RPMNet88.98 29187.05 30594.77 19194.45 30287.19 26290.23 37398.03 9177.87 37592.40 17587.55 37880.17 23799.51 9668.84 37993.95 20997.60 188
thres20092.23 19991.39 20194.75 19397.61 13189.03 21596.60 21395.09 31692.08 13993.28 16194.00 30278.39 27099.04 15481.26 32894.18 20196.19 230
UniMVSNet_ETH3D91.34 23590.22 25094.68 19494.86 28487.86 25097.23 15797.46 16187.99 26289.90 24096.92 15366.35 35798.23 22290.30 19090.99 25697.96 167
GA-MVS91.38 23090.31 24294.59 19594.65 29587.62 25494.34 31296.19 26790.73 17790.35 22393.83 30671.84 32397.96 26687.22 25693.61 21498.21 154
GBi-Net91.35 23390.27 24594.59 19596.51 19391.18 13797.50 12596.93 21788.82 23889.35 25894.51 27473.87 31297.29 32586.12 27488.82 27995.31 280
test191.35 23390.27 24594.59 19596.51 19391.18 13797.50 12596.93 21788.82 23889.35 25894.51 27473.87 31297.29 32586.12 27488.82 27995.31 280
FMVSNet189.88 28288.31 29294.59 19595.41 24491.18 13797.50 12596.93 21786.62 29587.41 30394.51 27465.94 36197.29 32583.04 31087.43 29395.31 280
cascas91.20 24190.08 25494.58 19994.97 27489.16 21393.65 33897.59 14479.90 36689.40 25692.92 32875.36 30198.36 21392.14 15494.75 19596.23 227
ECVR-MVScopyleft93.19 15492.73 15594.57 20097.66 12685.41 29598.21 4388.23 38493.43 8994.70 12898.21 6772.57 32099.07 14893.05 14198.49 10599.25 68
HQP-MVS93.19 15492.74 15494.54 20195.86 22389.33 20396.65 20597.39 17693.55 8090.14 22695.87 21080.95 22098.50 20092.13 15592.10 23495.78 250
PVSNet_BlendedMVS94.06 12193.92 11194.47 20298.27 8389.46 19796.73 19598.36 2490.17 19694.36 13495.24 24488.02 10499.58 7793.44 13190.72 26194.36 330
gg-mvs-nofinetune87.82 30585.61 31794.44 20394.46 30189.27 20891.21 36784.61 39380.88 35989.89 24274.98 38771.50 32597.53 30885.75 28297.21 14896.51 221
PS-MVSNAJss93.74 13593.51 12594.44 20393.91 31889.28 20797.75 9297.56 14992.50 12689.94 23996.54 18088.65 9598.18 22893.83 12690.90 25895.86 241
PMMVS92.86 17392.34 17194.42 20594.92 27986.73 27394.53 30396.38 25784.78 32694.27 13695.12 24983.13 17998.40 20791.47 17296.49 16498.12 160
bld_raw_dy_0_6492.37 18991.69 19194.39 20694.28 31089.73 18597.71 10093.65 35392.78 12090.46 22096.67 16675.88 29597.97 26192.92 14690.89 25995.48 264
MVSTER93.20 15392.81 15094.37 20796.56 18989.59 18997.06 16897.12 19691.24 16291.30 20695.96 20682.02 20698.05 25093.48 13090.55 26395.47 267
ACMM89.79 892.96 16792.50 16794.35 20896.30 20588.71 22197.58 11797.36 18191.40 15790.53 21896.65 16779.77 24498.75 17691.24 17791.64 23995.59 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42093.12 15892.72 15694.34 20996.71 17987.27 25890.29 37297.72 12886.61 29691.34 20395.29 24084.29 16098.41 20693.25 13598.94 8997.35 198
CLD-MVS92.98 16692.53 16594.32 21096.12 21789.20 21095.28 28397.47 15992.66 12289.90 24095.62 22880.58 22898.40 20792.73 14792.40 22795.38 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dcpmvs_296.37 5997.05 2294.31 21198.96 4684.11 31597.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
test111193.19 15492.82 14994.30 21297.58 13684.56 31098.21 4389.02 38293.53 8494.58 13098.21 6772.69 31999.05 15193.06 14098.48 10799.28 65
test_cas_vis1_n_192094.48 10794.55 10094.28 21396.78 17386.45 27997.63 11297.64 13893.32 9497.68 3898.36 5073.75 31699.08 14496.73 3999.05 8397.31 200
Anonymous2023121190.63 26489.42 27794.27 21498.24 8789.19 21298.05 5497.89 10779.95 36588.25 28794.96 25272.56 32198.13 23289.70 20185.14 31795.49 263
LTVRE_ROB88.41 1390.99 25089.92 26294.19 21596.18 21089.55 19196.31 23597.09 20087.88 26685.67 32695.91 20978.79 26498.57 19681.50 32289.98 26994.44 328
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs490.93 25489.85 26494.17 21693.34 33790.79 15394.60 30096.02 27184.62 32787.45 30195.15 24681.88 21097.45 31587.70 24287.87 28994.27 335
tt080591.09 24590.07 25794.16 21795.61 23388.31 23297.56 11996.51 25189.56 21189.17 26595.64 22767.08 35598.38 21291.07 17988.44 28595.80 248
TR-MVS91.48 22690.59 23394.16 21796.40 20087.33 25695.67 26695.34 30587.68 27591.46 20095.52 23476.77 28698.35 21482.85 31293.61 21496.79 216
LPG-MVS_test92.94 16992.56 16294.10 21996.16 21288.26 23597.65 10697.46 16191.29 15890.12 23297.16 13979.05 25698.73 17892.25 15191.89 23795.31 280
LGP-MVS_train94.10 21996.16 21288.26 23597.46 16191.29 15890.12 23297.16 13979.05 25698.73 17892.25 15191.89 23795.31 280
mvs_anonymous93.82 13293.74 11494.06 22196.44 19885.41 29595.81 26197.05 20689.85 20590.09 23596.36 18987.44 11797.75 28993.97 11996.69 16099.02 86
ACMP89.59 1092.62 18192.14 17694.05 22296.40 20088.20 23897.36 14297.25 19091.52 15088.30 28496.64 16878.46 26898.72 18191.86 16291.48 24495.23 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test250691.60 21790.78 22594.04 22397.66 12683.81 31898.27 3375.53 39993.43 8995.23 11998.21 6767.21 35199.07 14893.01 14498.49 10599.25 68
jajsoiax92.42 18691.89 18594.03 22493.33 33888.50 22997.73 9597.53 15192.00 14288.85 27196.50 18275.62 30098.11 23893.88 12491.56 24295.48 264
test_djsdf93.07 16292.76 15194.00 22593.49 33288.70 22298.22 4197.57 14691.42 15590.08 23695.55 23282.85 18897.92 27394.07 11791.58 24195.40 273
AllTest90.23 27388.98 28493.98 22697.94 11086.64 27496.51 21895.54 29485.38 31485.49 32896.77 15870.28 33399.15 13380.02 33492.87 21896.15 233
TestCases93.98 22697.94 11086.64 27495.54 29485.38 31485.49 32896.77 15870.28 33399.15 13380.02 33492.87 21896.15 233
anonymousdsp92.16 20191.55 19693.97 22892.58 35189.55 19197.51 12497.42 17489.42 21788.40 28194.84 25980.66 22697.88 27891.87 16191.28 24994.48 325
pm-mvs190.72 26189.65 27493.96 22994.29 30989.63 18697.79 9096.82 23089.07 22586.12 32495.48 23678.61 26697.78 28686.97 26281.67 35094.46 326
WR-MVS_H92.00 20691.35 20293.95 23095.09 27189.47 19598.04 5598.68 1391.46 15388.34 28294.68 26785.86 13997.56 30485.77 28184.24 33294.82 310
CR-MVSNet90.82 25789.77 26893.95 23094.45 30287.19 26290.23 37395.68 28886.89 29192.40 17592.36 33980.91 22297.05 33181.09 32993.95 20997.60 188
mvs_tets92.31 19391.76 18793.94 23293.41 33588.29 23397.63 11297.53 15192.04 14088.76 27496.45 18474.62 30898.09 24293.91 12291.48 24495.45 269
baseline291.63 21690.86 22093.94 23294.33 30686.32 28195.92 25791.64 37189.37 21886.94 31594.69 26681.62 21498.69 18388.64 22894.57 19896.81 215
RRT_MVS93.10 15992.83 14893.93 23494.76 28888.04 24398.47 2296.55 24993.44 8890.01 23897.04 14680.64 22797.93 27294.33 11490.21 26895.83 245
BH-untuned92.94 16992.62 16093.92 23597.22 14386.16 28796.40 22796.25 26390.06 20089.79 24496.17 19883.19 17698.35 21487.19 25797.27 14697.24 203
ACMH87.59 1690.53 26689.42 27793.87 23696.21 20787.92 24797.24 15396.94 21688.45 25183.91 34696.27 19371.92 32298.62 19184.43 29789.43 27595.05 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SCA91.84 21091.18 21393.83 23795.59 23484.95 30694.72 29795.58 29390.82 17392.25 18193.69 31275.80 29798.10 23986.20 27195.98 17098.45 137
CP-MVSNet91.89 20991.24 20993.82 23895.05 27288.57 22597.82 8698.19 5591.70 14788.21 28895.76 22081.96 20797.52 31087.86 23684.65 32495.37 276
v2v48291.59 21890.85 22293.80 23993.87 32088.17 24096.94 17996.88 22589.54 21289.53 25394.90 25681.70 21398.02 25589.25 21485.04 32195.20 288
COLMAP_ROBcopyleft87.81 1590.40 26989.28 28093.79 24097.95 10987.13 26596.92 18095.89 27782.83 34686.88 31897.18 13873.77 31599.29 12178.44 34493.62 21394.95 297
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvsany_test193.93 12793.98 11093.78 24194.94 27886.80 27094.62 29992.55 36488.77 24296.85 6098.49 3888.98 8898.08 24395.03 9695.62 18096.46 225
V4291.58 22090.87 21993.73 24294.05 31588.50 22997.32 14796.97 21388.80 24189.71 24594.33 28582.54 19598.05 25089.01 22085.07 31994.64 323
PVSNet86.66 1892.24 19891.74 19093.73 24297.77 12083.69 32292.88 35396.72 23487.91 26593.00 16694.86 25878.51 26799.05 15186.53 26597.45 13998.47 135
MIMVSNet88.50 29986.76 30993.72 24494.84 28587.77 25291.39 36394.05 34586.41 29987.99 29392.59 33363.27 36695.82 35377.44 34792.84 22097.57 190
Patchmatch-test89.42 28887.99 29593.70 24595.27 25885.11 30288.98 37994.37 33981.11 35787.10 31093.69 31282.28 20197.50 31174.37 36394.76 19498.48 134
PS-CasMVS91.55 22290.84 22393.69 24694.96 27588.28 23497.84 8398.24 4791.46 15388.04 29295.80 21579.67 24697.48 31287.02 26184.54 32995.31 280
v114491.37 23290.60 23293.68 24793.89 31988.23 23796.84 18797.03 21088.37 25389.69 24794.39 28182.04 20597.98 25887.80 23885.37 31294.84 307
GG-mvs-BLEND93.62 24893.69 32589.20 21092.39 36083.33 39587.98 29489.84 36371.00 32996.87 33882.08 32095.40 18394.80 313
tfpnnormal89.70 28688.40 29193.60 24995.15 26790.10 17297.56 11998.16 6187.28 28586.16 32394.63 27077.57 28198.05 25074.48 36184.59 32792.65 356
PatchmatchNetpermissive91.91 20891.35 20293.59 25095.38 24684.11 31593.15 34895.39 29989.54 21292.10 18693.68 31482.82 18998.13 23284.81 29295.32 18498.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v119291.07 24690.23 24893.58 25193.70 32487.82 25196.73 19597.07 20387.77 27189.58 25094.32 28780.90 22497.97 26186.52 26685.48 31094.95 297
v891.29 23890.53 23693.57 25294.15 31188.12 24297.34 14497.06 20588.99 22988.32 28394.26 29283.08 18098.01 25687.62 24883.92 33794.57 324
ADS-MVSNet89.89 28188.68 28893.53 25395.86 22384.89 30790.93 36895.07 31783.23 34491.28 21091.81 34879.01 26097.85 27979.52 33691.39 24797.84 174
v1091.04 24890.23 24893.49 25494.12 31288.16 24197.32 14797.08 20188.26 25688.29 28594.22 29582.17 20497.97 26186.45 26884.12 33394.33 331
EI-MVSNet93.03 16492.88 14693.48 25595.77 22886.98 26796.44 21997.12 19690.66 18391.30 20697.64 11486.56 12798.05 25089.91 19590.55 26395.41 270
PEN-MVS91.20 24190.44 23793.48 25594.49 30087.91 24997.76 9198.18 5791.29 15887.78 29695.74 22180.35 23397.33 32385.46 28582.96 34595.19 291
v7n90.76 25889.86 26393.45 25793.54 32987.60 25597.70 10297.37 17988.85 23587.65 29894.08 30081.08 21998.10 23984.68 29483.79 33994.66 322
v14419291.06 24790.28 24493.39 25893.66 32787.23 26196.83 18897.07 20387.43 28089.69 24794.28 28981.48 21598.00 25787.18 25884.92 32394.93 301
EPMVS90.70 26289.81 26693.37 25994.73 29284.21 31393.67 33788.02 38589.50 21492.38 17793.49 32077.82 28097.78 28686.03 27792.68 22498.11 163
IterMVS-LS92.29 19591.94 18393.34 26096.25 20686.97 26896.57 21797.05 20690.67 18189.50 25594.80 26286.59 12697.64 29789.91 19586.11 30595.40 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-w/o92.14 20391.75 18893.31 26196.99 16385.73 29095.67 26695.69 28688.73 24389.26 26394.82 26182.97 18598.07 24785.26 28896.32 16796.13 235
v192192090.85 25690.03 25993.29 26293.55 32886.96 26996.74 19497.04 20887.36 28289.52 25494.34 28480.23 23697.97 26186.27 26985.21 31694.94 299
ACMH+87.92 1490.20 27589.18 28293.25 26396.48 19686.45 27996.99 17596.68 23988.83 23784.79 33596.22 19570.16 33598.53 19884.42 29888.04 28794.77 318
v124090.70 26289.85 26493.23 26493.51 33186.80 27096.61 21197.02 21187.16 28789.58 25094.31 28879.55 24897.98 25885.52 28485.44 31194.90 304
PatchT88.87 29587.42 29993.22 26594.08 31485.10 30389.51 37794.64 33381.92 35292.36 17888.15 37480.05 23997.01 33472.43 37093.65 21297.54 191
Fast-Effi-MVS+-dtu92.29 19591.99 18193.21 26695.27 25885.52 29397.03 16996.63 24592.09 13889.11 26795.14 24780.33 23498.08 24387.54 25094.74 19696.03 239
miper_enhance_ethall91.54 22391.01 21693.15 26795.35 25087.07 26693.97 32496.90 22286.79 29389.17 26593.43 32486.55 12897.64 29789.97 19486.93 29794.74 319
cl2291.21 24090.56 23593.14 26896.09 21986.80 27094.41 30996.58 24887.80 26988.58 27893.99 30380.85 22597.62 30089.87 19786.93 29794.99 296
XVG-ACMP-BASELINE90.93 25490.21 25193.09 26994.31 30885.89 28895.33 28097.26 18891.06 17089.38 25795.44 23768.61 34398.60 19289.46 20791.05 25494.79 315
TransMVSNet (Re)88.94 29287.56 29893.08 27094.35 30588.45 23197.73 9595.23 31087.47 27984.26 33995.29 24079.86 24397.33 32379.44 34074.44 37393.45 346
DTE-MVSNet90.56 26589.75 27093.01 27193.95 31687.25 25997.64 11097.65 13690.74 17687.12 30895.68 22579.97 24197.00 33583.33 30781.66 35194.78 317
EPNet_dtu91.71 21391.28 20792.99 27293.76 32383.71 32196.69 20195.28 30693.15 10287.02 31295.95 20783.37 17497.38 32179.46 33996.84 15497.88 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 21891.13 21492.97 27395.55 23786.57 27894.47 30596.88 22587.77 27188.88 27094.01 30186.22 13397.54 30689.49 20686.93 29794.79 315
Baseline_NR-MVSNet91.20 24190.62 23192.95 27493.83 32188.03 24497.01 17495.12 31588.42 25289.70 24695.13 24883.47 17197.44 31689.66 20383.24 34393.37 347
test_vis1_n_192094.17 11394.58 9692.91 27597.42 14082.02 33597.83 8497.85 11694.68 4698.10 2998.49 3870.15 33699.32 11797.91 1598.82 9297.40 195
cl____90.96 25390.32 24192.89 27695.37 24886.21 28594.46 30796.64 24287.82 26788.15 29094.18 29682.98 18497.54 30687.70 24285.59 30894.92 303
DIV-MVS_self_test90.97 25290.33 24092.88 27795.36 24986.19 28694.46 30796.63 24587.82 26788.18 28994.23 29382.99 18397.53 30887.72 23985.57 30994.93 301
c3_l91.38 23090.89 21892.88 27795.58 23586.30 28294.68 29896.84 22988.17 25888.83 27394.23 29385.65 14297.47 31389.36 20984.63 32594.89 305
pmmvs589.86 28388.87 28692.82 27992.86 34486.23 28496.26 23895.39 29984.24 33187.12 30894.51 27474.27 31097.36 32287.61 24987.57 29194.86 306
v14890.99 25090.38 23992.81 28093.83 32185.80 28996.78 19296.68 23989.45 21688.75 27593.93 30582.96 18697.82 28387.83 23783.25 34294.80 313
Patchmtry88.64 29887.25 30192.78 28194.09 31386.64 27489.82 37695.68 28880.81 36187.63 29992.36 33980.91 22297.03 33278.86 34285.12 31894.67 321
test_vis1_n92.37 18992.26 17492.72 28294.75 29082.64 32798.02 5696.80 23191.18 16597.77 3797.93 8858.02 37498.29 21997.63 1998.21 11797.23 204
MVP-Stereo90.74 26090.08 25492.71 28393.19 34088.20 23895.86 25996.27 26186.07 30584.86 33494.76 26377.84 27997.75 28983.88 30598.01 12392.17 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs687.81 30686.19 31392.69 28491.32 36186.30 28297.34 14496.41 25680.59 36484.05 34594.37 28367.37 35097.67 29484.75 29379.51 36094.09 338
Effi-MVS+-dtu93.08 16193.21 13792.68 28596.02 22183.25 32597.14 16596.72 23493.85 7291.20 21393.44 32283.08 18098.30 21891.69 16895.73 17796.50 222
CostFormer91.18 24490.70 22992.62 28694.84 28581.76 33794.09 32294.43 33684.15 33292.72 17393.77 31079.43 24998.20 22590.70 18592.18 23297.90 170
LCM-MVSNet-Re92.50 18292.52 16692.44 28796.82 17281.89 33696.92 18093.71 35292.41 12884.30 33894.60 27185.08 14897.03 33291.51 17097.36 14198.40 143
ITE_SJBPF92.43 28895.34 25185.37 29895.92 27391.47 15287.75 29796.39 18871.00 32997.96 26682.36 31889.86 27193.97 339
dmvs_re90.21 27489.50 27692.35 28995.47 24385.15 30195.70 26594.37 33990.94 17288.42 28093.57 31874.63 30795.67 35682.80 31389.57 27496.22 228
D2MVS91.30 23790.95 21792.35 28994.71 29385.52 29396.18 24598.21 5188.89 23486.60 31993.82 30879.92 24297.95 26889.29 21290.95 25793.56 343
eth_miper_zixun_eth91.02 24990.59 23392.34 29195.33 25484.35 31194.10 32196.90 22288.56 24788.84 27294.33 28584.08 16397.60 30288.77 22684.37 33195.06 294
test_fmvs1_n92.73 17992.88 14692.29 29296.08 22081.05 34397.98 6197.08 20190.72 17896.79 6298.18 7063.07 36798.45 20497.62 2098.42 11097.36 196
USDC88.94 29287.83 29792.27 29394.66 29484.96 30593.86 33095.90 27587.34 28383.40 34895.56 23167.43 34998.19 22782.64 31789.67 27393.66 342
test_fmvs193.21 15293.53 12292.25 29496.55 19181.20 34297.40 13896.96 21490.68 18096.80 6198.04 7969.25 34098.40 20797.58 2198.50 10497.16 205
tpm289.96 27989.21 28192.23 29594.91 28181.25 34093.78 33294.42 33780.62 36391.56 19793.44 32276.44 29097.94 26985.60 28392.08 23697.49 192
test-LLR91.42 22891.19 21292.12 29694.59 29780.66 34694.29 31692.98 35891.11 16890.76 21692.37 33679.02 25898.07 24788.81 22496.74 15797.63 183
test-mter90.19 27689.54 27592.12 29694.59 29780.66 34694.29 31692.98 35887.68 27590.76 21692.37 33667.67 34798.07 24788.81 22496.74 15797.63 183
ADS-MVSNet289.45 28788.59 28992.03 29895.86 22382.26 33390.93 36894.32 34283.23 34491.28 21091.81 34879.01 26095.99 34879.52 33691.39 24797.84 174
TESTMET0.1,190.06 27889.42 27791.97 29994.41 30480.62 34894.29 31691.97 36987.28 28590.44 22192.47 33568.79 34297.67 29488.50 23096.60 16297.61 187
JIA-IIPM88.26 30287.04 30691.91 30093.52 33081.42 33989.38 37894.38 33880.84 36090.93 21580.74 38579.22 25397.92 27382.76 31491.62 24096.38 226
tpmvs89.83 28489.15 28391.89 30194.92 27980.30 35393.11 34995.46 29886.28 30188.08 29192.65 33080.44 23198.52 19981.47 32389.92 27096.84 214
TDRefinement86.53 31684.76 32791.85 30282.23 38984.25 31296.38 22995.35 30284.97 32384.09 34394.94 25365.76 36298.34 21784.60 29674.52 37292.97 350
miper_lstm_enhance90.50 26890.06 25891.83 30395.33 25483.74 31993.86 33096.70 23887.56 27887.79 29593.81 30983.45 17396.92 33787.39 25284.62 32694.82 310
IterMVS-SCA-FT90.31 27089.81 26691.82 30495.52 23884.20 31494.30 31596.15 26890.61 18787.39 30494.27 29075.80 29796.44 34387.34 25386.88 30194.82 310
tpm cat188.36 30087.21 30391.81 30595.13 26980.55 34992.58 35795.70 28474.97 37887.45 30191.96 34678.01 27898.17 22980.39 33288.74 28296.72 218
tpmrst91.44 22791.32 20491.79 30695.15 26779.20 36593.42 34395.37 30188.55 24893.49 15593.67 31582.49 19798.27 22090.41 18789.34 27697.90 170
MS-PatchMatch90.27 27189.77 26891.78 30794.33 30684.72 30995.55 27196.73 23386.17 30486.36 32195.28 24271.28 32797.80 28484.09 30198.14 12192.81 353
FMVSNet587.29 31085.79 31691.78 30794.80 28787.28 25795.49 27495.28 30684.09 33383.85 34791.82 34762.95 36894.17 37078.48 34385.34 31493.91 340
EG-PatchMatch MVS87.02 31485.44 31891.76 30992.67 34885.00 30496.08 24996.45 25483.41 34379.52 36693.49 32057.10 37697.72 29179.34 34190.87 26092.56 357
tpm90.25 27289.74 27191.76 30993.92 31779.73 35993.98 32393.54 35488.28 25591.99 18893.25 32577.51 28297.44 31687.30 25587.94 28898.12 160
IterMVS90.15 27789.67 27291.61 31195.48 24083.72 32094.33 31396.12 26989.99 20187.31 30794.15 29875.78 29996.27 34686.97 26286.89 30094.83 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ppachtmachnet_test88.35 30187.29 30091.53 31292.45 35483.57 32393.75 33395.97 27284.28 33085.32 33194.18 29679.00 26296.93 33675.71 35684.99 32294.10 336
pmmvs-eth3d86.22 32184.45 32891.53 31288.34 37887.25 25994.47 30595.01 31883.47 34279.51 36789.61 36469.75 33995.71 35483.13 30976.73 36991.64 365
test_040286.46 31784.79 32691.45 31495.02 27385.55 29296.29 23794.89 32580.90 35882.21 35493.97 30468.21 34697.29 32562.98 38388.68 28391.51 368
OurMVSNet-221017-090.51 26790.19 25291.44 31593.41 33581.25 34096.98 17696.28 26091.68 14886.55 32096.30 19174.20 31197.98 25888.96 22287.40 29595.09 292
test0.0.03 189.37 28988.70 28791.41 31692.47 35385.63 29195.22 28892.70 36291.11 16886.91 31793.65 31679.02 25893.19 37978.00 34689.18 27795.41 270
KD-MVS_2432*160084.81 33282.64 33691.31 31791.07 36385.34 29991.22 36595.75 28285.56 31283.09 35090.21 35967.21 35195.89 34977.18 35162.48 38992.69 354
miper_refine_blended84.81 33282.64 33691.31 31791.07 36385.34 29991.22 36595.75 28285.56 31283.09 35090.21 35967.21 35195.89 34977.18 35162.48 38992.69 354
TinyColmap86.82 31585.35 32191.21 31994.91 28182.99 32693.94 32694.02 34783.58 34081.56 35694.68 26762.34 37098.13 23275.78 35587.35 29692.52 358
our_test_388.78 29687.98 29691.20 32092.45 35482.53 32993.61 34095.69 28685.77 30984.88 33393.71 31179.99 24096.78 34179.47 33886.24 30294.28 334
MDA-MVSNet-bldmvs85.00 33082.95 33591.17 32193.13 34283.33 32494.56 30295.00 31984.57 32865.13 38692.65 33070.45 33295.85 35173.57 36777.49 36594.33 331
SixPastTwentyTwo89.15 29088.54 29090.98 32293.49 33280.28 35496.70 19994.70 33090.78 17484.15 34195.57 23071.78 32497.71 29284.63 29585.07 31994.94 299
PVSNet_082.17 1985.46 32983.64 33290.92 32395.27 25879.49 36290.55 37195.60 29183.76 33883.00 35289.95 36171.09 32897.97 26182.75 31560.79 39195.31 280
OpenMVS_ROBcopyleft81.14 2084.42 33482.28 34090.83 32490.06 36884.05 31795.73 26494.04 34673.89 38080.17 36591.53 35159.15 37297.64 29766.92 38189.05 27890.80 374
Patchmatch-RL test87.38 30986.24 31290.81 32588.74 37778.40 36988.12 38393.17 35787.11 28882.17 35589.29 36681.95 20895.60 35888.64 22877.02 36698.41 142
dp88.90 29488.26 29490.81 32594.58 29976.62 37192.85 35494.93 32385.12 32090.07 23793.07 32675.81 29698.12 23780.53 33187.42 29497.71 180
MDA-MVSNet_test_wron85.87 32684.23 33090.80 32792.38 35682.57 32893.17 34695.15 31382.15 35067.65 38292.33 34278.20 27195.51 36077.33 34879.74 35794.31 333
YYNet185.87 32684.23 33090.78 32892.38 35682.46 33193.17 34695.14 31482.12 35167.69 38192.36 33978.16 27495.50 36177.31 34979.73 35894.39 329
UnsupCasMVSNet_eth85.99 32484.45 32890.62 32989.97 36982.40 33293.62 33997.37 17989.86 20378.59 37092.37 33665.25 36395.35 36382.27 31970.75 37994.10 336
MIMVSNet184.93 33183.05 33390.56 33089.56 37284.84 30895.40 27795.35 30283.91 33480.38 36292.21 34357.23 37593.34 37870.69 37782.75 34893.50 344
lessismore_v090.45 33191.96 35979.09 36787.19 38880.32 36394.39 28166.31 35897.55 30584.00 30376.84 36794.70 320
RPSCF90.75 25990.86 22090.42 33296.84 16876.29 37395.61 27096.34 25883.89 33591.38 20197.87 9376.45 28998.78 17187.16 25992.23 22996.20 229
K. test v387.64 30886.75 31090.32 33393.02 34379.48 36396.61 21192.08 36890.66 18380.25 36494.09 29967.21 35196.65 34285.96 27980.83 35494.83 308
testgi87.97 30387.21 30390.24 33492.86 34480.76 34496.67 20494.97 32191.74 14685.52 32795.83 21362.66 36994.47 36876.25 35488.36 28695.48 264
UnsupCasMVSNet_bld82.13 34179.46 34690.14 33588.00 37982.47 33090.89 37096.62 24778.94 37075.61 37484.40 38356.63 37796.31 34577.30 35066.77 38691.63 366
testing387.67 30786.88 30890.05 33696.14 21580.71 34597.10 16792.85 36090.15 19887.54 30094.55 27355.70 37994.10 37173.77 36694.10 20495.35 277
LF4IMVS87.94 30487.25 30189.98 33792.38 35680.05 35794.38 31095.25 30987.59 27784.34 33794.74 26564.31 36497.66 29684.83 29187.45 29292.23 361
Anonymous2023120687.09 31386.14 31489.93 33891.22 36280.35 35196.11 24795.35 30283.57 34184.16 34093.02 32773.54 31795.61 35772.16 37186.14 30493.84 341
CL-MVSNet_self_test86.31 32085.15 32289.80 33988.83 37681.74 33893.93 32796.22 26486.67 29485.03 33290.80 35578.09 27594.50 36674.92 36071.86 37893.15 349
CVMVSNet91.23 23991.75 18889.67 34095.77 22874.69 37596.44 21994.88 32685.81 30892.18 18297.64 11479.07 25595.58 35988.06 23395.86 17498.74 115
myMVS_eth3d87.18 31186.38 31189.58 34195.16 26579.53 36095.00 29293.93 34988.55 24886.96 31391.99 34456.23 37894.00 37275.47 35994.11 20295.20 288
test_vis1_rt86.16 32285.06 32389.46 34293.47 33480.46 35096.41 22386.61 39085.22 31779.15 36888.64 36952.41 38297.06 33093.08 13990.57 26290.87 373
Anonymous2024052186.42 31885.44 31889.34 34390.33 36679.79 35896.73 19595.92 27383.71 33983.25 34991.36 35263.92 36596.01 34778.39 34585.36 31392.22 362
test_fmvs289.77 28589.93 26189.31 34493.68 32676.37 37297.64 11095.90 27589.84 20691.49 19996.26 19458.77 37397.10 32994.65 10891.13 25294.46 326
KD-MVS_self_test85.95 32584.95 32488.96 34589.55 37379.11 36695.13 29096.42 25585.91 30784.07 34490.48 35670.03 33794.82 36580.04 33372.94 37692.94 351
test20.0386.14 32385.40 32088.35 34690.12 36780.06 35695.90 25895.20 31188.59 24481.29 35793.62 31771.43 32692.65 38071.26 37581.17 35392.34 360
PM-MVS83.48 33681.86 34288.31 34787.83 38077.59 37093.43 34291.75 37086.91 29080.63 36089.91 36244.42 38695.84 35285.17 29076.73 36991.50 369
EU-MVSNet88.72 29788.90 28588.20 34893.15 34174.21 37696.63 21094.22 34385.18 31887.32 30695.97 20576.16 29394.98 36485.27 28786.17 30395.41 270
new_pmnet82.89 33981.12 34488.18 34989.63 37180.18 35591.77 36292.57 36376.79 37775.56 37688.23 37361.22 37194.48 36771.43 37382.92 34689.87 377
CMPMVSbinary62.92 2185.62 32884.92 32587.74 35089.14 37473.12 38094.17 31996.80 23173.98 37973.65 37894.93 25466.36 35697.61 30183.95 30491.28 24992.48 359
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Syy-MVS87.13 31287.02 30787.47 35195.16 26573.21 37995.00 29293.93 34988.55 24886.96 31391.99 34475.90 29494.00 37261.59 38594.11 20295.20 288
pmmvs379.97 34477.50 34987.39 35282.80 38879.38 36492.70 35690.75 37870.69 38278.66 36987.47 37951.34 38393.40 37773.39 36869.65 38189.38 378
new-patchmatchnet83.18 33881.87 34187.11 35386.88 38175.99 37493.70 33495.18 31285.02 32277.30 37388.40 37165.99 36093.88 37574.19 36570.18 38091.47 370
mvsany_test383.59 33582.44 33987.03 35483.80 38573.82 37793.70 33490.92 37786.42 29882.51 35390.26 35846.76 38595.71 35490.82 18276.76 36891.57 367
DSMNet-mixed86.34 31986.12 31587.00 35589.88 37070.43 38194.93 29490.08 37977.97 37485.42 33092.78 32974.44 30993.96 37474.43 36295.14 18696.62 219
ambc86.56 35683.60 38670.00 38385.69 38594.97 32180.60 36188.45 37037.42 38996.84 33982.69 31675.44 37192.86 352
MVS-HIRNet82.47 34081.21 34386.26 35795.38 24669.21 38488.96 38089.49 38066.28 38480.79 35974.08 38968.48 34497.39 32071.93 37295.47 18192.18 363
EGC-MVSNET68.77 35563.01 36086.07 35892.49 35282.24 33493.96 32590.96 3760.71 4012.62 40290.89 35453.66 38093.46 37657.25 38884.55 32882.51 384
APD_test179.31 34577.70 34884.14 35989.11 37569.07 38592.36 36191.50 37269.07 38373.87 37792.63 33239.93 38894.32 36970.54 37880.25 35689.02 379
test_fmvs383.21 33783.02 33483.78 36086.77 38268.34 38696.76 19394.91 32486.49 29784.14 34289.48 36536.04 39091.73 38291.86 16280.77 35591.26 372
test_f80.57 34379.62 34583.41 36183.38 38767.80 38893.57 34193.72 35180.80 36277.91 37287.63 37733.40 39192.08 38187.14 26079.04 36390.34 376
LCM-MVSNet72.55 35069.39 35482.03 36270.81 39965.42 39190.12 37594.36 34155.02 39065.88 38481.72 38424.16 39889.96 38374.32 36468.10 38490.71 375
PMMVS270.19 35266.92 35580.01 36376.35 39365.67 39086.22 38487.58 38764.83 38662.38 38780.29 38626.78 39688.49 39063.79 38254.07 39285.88 380
test_vis3_rt72.73 34970.55 35279.27 36480.02 39068.13 38793.92 32874.30 40176.90 37658.99 39073.58 39020.29 39995.37 36284.16 29972.80 37774.31 389
N_pmnet78.73 34678.71 34778.79 36592.80 34646.50 40294.14 32043.71 40478.61 37180.83 35891.66 35074.94 30596.36 34467.24 38084.45 33093.50 344
dmvs_testset81.38 34282.60 33877.73 36691.74 36051.49 39993.03 35184.21 39489.07 22578.28 37191.25 35376.97 28588.53 38956.57 38982.24 34993.16 348
WB-MVS76.77 34776.63 35077.18 36785.32 38356.82 39794.53 30389.39 38182.66 34871.35 37989.18 36775.03 30488.88 38735.42 39566.79 38585.84 381
ANet_high63.94 35859.58 36177.02 36861.24 40166.06 38985.66 38687.93 38678.53 37242.94 39471.04 39125.42 39780.71 39452.60 39130.83 39584.28 383
testf169.31 35366.76 35676.94 36978.61 39161.93 39388.27 38186.11 39155.62 38859.69 38885.31 38120.19 40089.32 38457.62 38669.44 38279.58 386
APD_test269.31 35366.76 35676.94 36978.61 39161.93 39388.27 38186.11 39155.62 38859.69 38885.31 38120.19 40089.32 38457.62 38669.44 38279.58 386
SSC-MVS76.05 34875.83 35176.72 37184.77 38456.22 39894.32 31488.96 38381.82 35470.52 38088.91 36874.79 30688.71 38833.69 39664.71 38785.23 382
FPMVS71.27 35169.85 35375.50 37274.64 39459.03 39591.30 36491.50 37258.80 38757.92 39188.28 37229.98 39485.53 39253.43 39082.84 34781.95 385
Gipumacopyleft67.86 35665.41 35875.18 37392.66 34973.45 37866.50 39294.52 33553.33 39157.80 39266.07 39230.81 39289.20 38648.15 39278.88 36462.90 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft74.68 37490.84 36564.34 39281.61 39765.34 38567.47 38388.01 37648.60 38480.13 39562.33 38473.68 37579.58 386
test_method66.11 35764.89 35969.79 37572.62 39735.23 40665.19 39392.83 36120.35 39665.20 38588.08 37543.14 38782.70 39373.12 36963.46 38891.45 371
PMVScopyleft53.92 2258.58 35955.40 36268.12 37651.00 40248.64 40078.86 38987.10 38946.77 39235.84 39874.28 3888.76 40286.34 39142.07 39373.91 37469.38 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 36148.81 36666.58 37765.34 40057.50 39672.49 39170.94 40240.15 39539.28 39763.51 3936.89 40473.48 39838.29 39442.38 39368.76 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 36052.56 36455.43 37874.43 39547.13 40183.63 38876.30 39842.23 39342.59 39562.22 39428.57 39574.40 39631.53 39731.51 39444.78 393
EMVS52.08 36251.31 36554.39 37972.62 39745.39 40383.84 38775.51 40041.13 39440.77 39659.65 39530.08 39373.60 39728.31 39829.90 39644.18 394
tmp_tt51.94 36353.82 36346.29 38033.73 40345.30 40478.32 39067.24 40318.02 39750.93 39387.05 38052.99 38153.11 39970.76 37625.29 39740.46 395
wuyk23d25.11 36424.57 36826.74 38173.98 39639.89 40557.88 3949.80 40512.27 39810.39 3996.97 4017.03 40336.44 40025.43 39917.39 3983.89 398
test12313.04 36715.66 3705.18 3824.51 4053.45 40792.50 3591.81 4072.50 4007.58 40120.15 3983.67 4052.18 4027.13 4011.07 4009.90 396
testmvs13.36 36616.33 3694.48 3835.04 4042.26 40893.18 3453.28 4062.70 3998.24 40021.66 3972.29 4062.19 4017.58 4002.96 3999.00 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k23.24 36530.99 3670.00 3840.00 4060.00 4090.00 39597.63 1400.00 4020.00 40396.88 15584.38 1570.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.39 3699.85 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40288.65 950.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.06 36810.74 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40396.69 1640.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS79.53 36075.56 358
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
PC_three_145290.77 17598.89 1498.28 6596.24 198.35 21495.76 7399.58 2199.59 22
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 406
eth-test0.00 406
ZD-MVS99.05 3994.59 2998.08 7489.22 22297.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
RE-MVS-def96.72 4299.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
IU-MVS99.42 795.39 1197.94 10490.40 19498.94 897.41 2999.66 1099.74 8
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
9.1496.75 4098.93 4797.73 9598.23 5091.28 16197.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 137
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
MTGPAbinary98.08 74
test_post192.81 35516.58 40080.53 22997.68 29386.20 271
test_post17.58 39981.76 21198.08 243
patchmatchnet-post90.45 35782.65 19498.10 239
MTMP97.86 7982.03 396
gm-plane-assit93.22 33978.89 36884.82 32593.52 31998.64 18887.72 239
test9_res94.81 10399.38 5399.45 47
TEST998.70 5694.19 4096.41 22398.02 9488.17 25896.03 9597.56 12192.74 3099.59 74
test_898.67 5894.06 4796.37 23098.01 9788.58 24595.98 9997.55 12392.73 3199.58 77
agg_prior293.94 12199.38 5399.50 40
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
test_prior493.66 5596.42 222
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
旧先验295.94 25681.66 35597.34 4898.82 16892.26 149
新几何295.79 262
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
无先验95.79 26297.87 11183.87 33799.65 5887.68 24598.89 105
原ACMM295.67 266
test22298.24 8792.21 9495.33 28097.60 14279.22 36995.25 11897.84 9888.80 9299.15 7598.72 116
testdata299.67 5685.96 279
segment_acmp92.89 27
testdata195.26 28793.10 105
plane_prior796.21 20789.98 178
plane_prior696.10 21890.00 17481.32 217
plane_prior597.51 15398.60 19293.02 14292.23 22995.86 241
plane_prior496.64 168
plane_prior390.00 17494.46 5491.34 203
plane_prior297.74 9394.85 34
plane_prior196.14 215
plane_prior89.99 17697.24 15394.06 6592.16 233
n20.00 408
nn0.00 408
door-mid91.06 375
test1197.88 109
door91.13 374
HQP5-MVS89.33 203
HQP-NCC95.86 22396.65 20593.55 8090.14 226
ACMP_Plane95.86 22396.65 20593.55 8090.14 226
BP-MVS92.13 155
HQP4-MVS90.14 22698.50 20095.78 250
HQP3-MVS97.39 17692.10 234
HQP2-MVS80.95 220
NP-MVS95.99 22289.81 18395.87 210
MDTV_nov1_ep13_2view70.35 38293.10 35083.88 33693.55 15282.47 19886.25 27098.38 145
MDTV_nov1_ep1390.76 22695.22 26280.33 35293.03 35195.28 30688.14 26092.84 17293.83 30681.34 21698.08 24382.86 31194.34 200
ACMMP++_ref90.30 267
ACMMP++91.02 255
Test By Simon88.73 94