This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SD-MVS99.41 4799.52 1199.05 18499.74 8099.68 4899.46 18899.52 10199.11 2699.88 2099.91 2099.43 197.70 38798.72 13299.93 2399.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8399.39 22398.91 5899.78 4799.85 5399.36 299.94 6998.84 11799.88 5299.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PC_three_145298.18 13499.84 2999.70 15699.31 398.52 37098.30 18699.80 9899.81 61
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10299.51 11598.62 8499.79 4299.83 6799.28 499.97 2198.48 16799.90 4099.84 40
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 8999.27 599.96 3098.85 11499.80 9899.81 61
OPU-MVS99.64 7899.56 15699.72 4299.60 9699.70 15699.27 599.42 27598.24 18899.80 9899.79 74
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9699.48 15599.08 3399.91 1699.81 8999.20 799.96 3098.91 10199.85 7099.79 74
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14199.20 799.76 200
MSLP-MVS++99.46 3199.47 1799.44 12999.60 14699.16 12799.41 20899.71 1398.98 4899.45 13599.78 12099.19 999.54 26099.28 6399.84 7899.63 140
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12399.47 17597.45 22299.78 4799.82 7599.18 1099.91 10598.79 12599.89 4999.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4299.56 6999.02 3899.88 2099.85 5399.18 1099.96 3099.22 7099.92 2599.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3899.56 6997.72 19099.76 5699.75 13699.13 1299.92 9599.07 8399.92 2599.85 36
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 11099.65 3397.84 17599.71 6899.80 10299.12 1399.97 2198.33 18299.87 5599.83 49
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 8999.09 14
test_0728_THIRD98.99 4599.81 3799.80 10299.09 1499.96 3098.85 11499.90 4099.88 26
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 7099.67 2398.15 13699.68 7499.69 16699.06 1699.96 3098.69 13799.87 5599.84 40
TSAR-MVS + GP.99.36 5599.36 3299.36 13999.67 11198.61 20199.07 30699.33 25799.00 4399.82 3599.81 8999.06 1699.84 15599.09 8199.42 14899.65 129
pcd_1.5k_mvsjas8.27 37911.03 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 41299.01 180.00 4120.00 4110.00 4100.00 408
PS-MVSNAJss98.92 12398.92 10798.90 20898.78 33598.53 20799.78 3399.54 8598.07 15199.00 24299.76 13399.01 1899.37 28299.13 7797.23 28898.81 255
PS-MVSNAJ99.32 5999.32 4099.30 15299.57 15298.94 16798.97 33399.46 18498.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12998.97 246
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13299.61 9599.45 19599.01 4099.89 1999.82 7599.01 1899.92 9599.56 2899.95 1699.85 36
patch_mono-299.26 6999.62 598.16 29899.81 4694.59 36199.52 14999.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13399.60 9699.45 19599.01 4099.90 1899.83 6798.98 2399.93 8499.59 2599.95 1699.86 33
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7699.66 2898.13 14099.66 8399.68 17298.96 2499.96 3098.62 14599.87 5599.84 40
segment_acmp98.96 24
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27199.52 10198.82 6599.39 15799.71 15298.96 2499.85 14898.59 15399.80 9899.77 82
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11799.54 8597.82 18099.71 6899.80 10298.95 2799.93 8498.19 19199.84 7899.74 92
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 7099.67 2398.15 13699.67 7899.69 16698.95 2799.96 3098.69 13799.87 5599.84 40
test_241102_TWO99.48 15599.08 3399.88 2099.81 8998.94 2999.96 3098.91 10199.84 7899.88 26
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11799.37 23999.10 2799.81 3799.80 10298.94 2999.96 3098.93 9899.86 6399.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7598.94 29
xiu_mvs_v2_base99.26 6999.25 6299.29 15599.53 16398.91 17199.02 31999.45 19598.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16298.98 245
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5699.52 10198.07 15199.53 12299.63 19698.93 3399.97 2198.74 12999.91 3299.83 49
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7999.67 2398.08 15099.55 11999.64 19098.91 3499.96 3098.72 13299.90 4099.82 54
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25299.40 22098.79 7099.52 12499.62 20198.91 3499.90 11698.64 14399.75 11399.82 54
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2199.54 8597.59 20399.68 7499.63 19698.91 3499.94 6998.58 15499.91 3299.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata99.54 9799.75 7398.95 16499.51 11597.07 25999.43 14199.70 15698.87 3799.94 6997.76 23199.64 13299.72 103
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8399.54 8598.36 11099.79 4299.82 7598.86 3899.95 5998.62 14599.81 9499.78 80
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13998.94 34099.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13899.82 54
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23199.46 18499.07 3599.79 4299.82 7598.85 3999.92 9598.68 13999.87 5599.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 7699.72 9199.40 21699.51 11597.53 21399.64 9399.78 12098.84 4199.91 10597.63 24399.82 91
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 29099.41 21496.60 29699.60 10799.55 22498.83 4299.90 11697.48 25999.83 8799.78 80
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18599.48 15598.05 15699.76 5699.86 4898.82 4399.93 8498.82 12499.91 3299.84 40
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21399.37 10099.58 11099.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2399.94 11
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16199.74 14198.81 4499.94 6998.79 12599.86 6399.84 40
X-MVStestdata96.55 31995.45 33799.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16164.01 40998.81 4499.94 6998.79 12599.86 6399.84 40
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24799.52 10197.18 24799.60 10799.79 11498.79 4799.95 5998.83 12099.91 3299.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5699.48 15598.12 14199.50 12799.75 13698.78 4899.97 2198.57 15799.89 4999.83 49
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16499.50 13597.16 24999.77 5199.82 7598.78 4899.94 6997.56 25299.86 6399.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS97.07 1597.74 26397.34 28398.94 19899.70 10197.53 26699.25 27399.51 11591.90 38199.30 17799.63 19698.78 4899.64 24688.09 39199.87 5599.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST999.67 11199.65 5799.05 31199.41 21496.22 32298.95 24899.49 24698.77 5199.91 105
train_agg99.02 11298.77 12999.77 5599.67 11199.65 5799.05 31199.41 21496.28 31698.95 24899.49 24698.76 5299.91 10597.63 24399.72 11999.75 88
test_899.67 11199.61 6799.03 31699.41 21496.28 31698.93 25299.48 25198.76 5299.91 105
API-MVS99.04 10999.03 8799.06 18299.40 20999.31 10899.55 13599.56 6998.54 9199.33 17299.39 27698.76 5299.78 19496.98 29199.78 10598.07 363
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12399.63 3999.48 399.98 699.83 6798.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12399.63 3999.47 499.98 699.82 7598.75 5599.99 499.97 199.97 799.94 11
RE-MVS-def99.34 3699.76 6599.82 2299.63 8399.52 10198.38 10699.76 5699.82 7598.75 5598.61 14899.81 9499.77 82
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26299.57 6496.40 31299.42 14499.68 17298.75 5599.80 18697.98 21099.72 11999.44 193
Test By Simon98.75 55
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 14199.63 9699.84 6398.73 6099.96 3098.55 16399.83 8799.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23199.51 11598.73 7699.88 2099.84 6398.72 6199.96 3098.16 19599.87 5599.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24799.48 15598.86 6099.21 20099.63 19698.72 6199.90 11698.25 18799.63 13499.80 70
DeepPCF-MVS98.18 398.81 14199.37 3097.12 34599.60 14691.75 38598.61 37099.44 20399.35 1299.83 3499.85 5398.70 6399.81 18099.02 8799.91 3299.81 61
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10299.62 4198.21 12899.73 6299.79 11498.68 6499.96 3098.44 17399.77 10899.79 74
test_prior298.96 33498.34 11299.01 23899.52 23698.68 6497.96 21199.74 116
DPM-MVS98.95 12198.71 13499.66 6999.63 13199.55 7798.64 36999.10 30797.93 16599.42 14499.55 22498.67 6699.80 18695.80 32799.68 12799.61 144
原ACMM199.65 7399.73 8799.33 10399.47 17597.46 21999.12 21799.66 18398.67 6699.91 10597.70 24099.69 12499.71 112
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8999.78 4799.70 15698.65 6899.79 18999.65 2399.78 10599.41 197
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19999.51 11598.68 8199.27 18699.53 23398.64 6999.96 3098.44 17399.80 9899.79 74
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 11099.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
ZD-MVS99.71 9699.79 3099.61 4896.84 27899.56 11599.54 22998.58 7299.96 3096.93 29699.75 113
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 11099.80 897.12 25399.62 10199.73 14798.58 7299.90 11698.61 14899.91 3299.68 119
dcpmvs_299.23 7599.58 798.16 29899.83 3994.68 35999.76 3899.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 11099.89 299.58 6198.56 8999.73 6299.69 16698.55 7599.82 17599.69 1999.85 7099.48 178
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8399.52 10198.38 10699.76 5699.82 7598.53 7699.95 5998.61 14899.81 9499.77 82
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9699.67 2397.97 16299.63 9699.68 17298.52 7799.95 5998.38 17699.86 6399.81 61
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34099.85 698.82 6599.65 8999.74 14198.51 7899.80 18698.83 12099.89 4999.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33899.85 698.82 6599.54 12099.73 14798.51 7899.74 20598.91 10199.88 5299.77 82
旧先验199.74 8099.59 7099.54 8599.69 16698.47 8099.68 12799.73 97
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 31199.66 2899.14 2199.57 11499.80 10298.46 8199.94 6999.57 2799.84 7899.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.63 16098.34 17099.51 11399.40 20999.03 14998.80 35499.36 24096.33 31399.00 24299.12 32698.46 8199.84 15595.23 34299.37 15799.66 125
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 7099.47 17598.79 7099.68 7499.81 8998.43 8399.97 2198.88 10499.90 4099.83 49
新几何199.75 5899.75 7399.59 7099.54 8596.76 28199.29 18099.64 19098.43 8399.94 6996.92 29899.66 12999.72 103
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11499.42 20699.54 8597.29 23899.41 14899.59 21098.42 8599.93 8498.19 19199.69 12499.73 97
ETV-MVS99.26 6999.21 6699.40 13399.46 19099.30 11099.56 12399.52 10198.52 9499.44 14099.27 30798.41 8699.86 14299.10 8099.59 13799.04 238
test1299.75 5899.64 12899.61 6799.29 27999.21 20098.38 8799.89 12799.74 11699.74 92
CSCG99.32 5999.32 4099.32 14699.85 2698.29 22799.71 5299.66 2898.11 14399.41 14899.80 10298.37 8899.96 3098.99 9199.96 1299.72 103
PAPM_NR99.04 10998.84 12299.66 6999.74 8099.44 9499.39 22099.38 23197.70 19499.28 18199.28 30498.34 8999.85 14896.96 29399.45 14699.69 115
TAMVS99.12 9599.08 8099.24 16499.46 19098.55 20599.51 15799.46 18498.09 14699.45 13599.82 7598.34 8999.51 26198.70 13498.93 18799.67 122
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 7099.46 18498.09 14699.48 13199.74 14198.29 9199.96 3097.93 21399.87 5599.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22299.75 7399.49 8798.91 34499.49 14396.42 31099.34 17199.65 18498.28 9299.69 12499.72 103
PLCcopyleft97.94 499.02 11298.85 12099.53 10599.66 12099.01 15299.24 27599.52 10196.85 27799.27 18699.48 25198.25 9399.91 10597.76 23199.62 13599.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6599.50 13598.70 7899.77 5199.49 24698.21 9499.95 5998.46 17199.77 10899.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10699.73 6299.69 16698.20 9599.70 22799.64 2499.82 9199.54 161
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
xiu_mvs_v1_base99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
EIA-MVS99.18 7999.09 7999.45 12599.49 18199.18 12499.67 6599.53 9697.66 19999.40 15399.44 26198.10 9999.81 18098.94 9699.62 13599.35 206
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11499.52 14997.57 38999.51 299.82 3599.78 12098.09 10099.96 3099.97 199.97 799.94 11
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28799.44 20398.45 10099.19 20699.49 24698.08 10199.89 12797.73 23599.75 11399.48 178
114514_t98.93 12298.67 13899.72 6599.85 2699.53 8299.62 8899.59 5792.65 37999.71 6899.78 12098.06 10299.90 11698.84 11799.91 3299.74 92
CDS-MVSNet99.09 10499.03 8799.25 16299.42 19998.73 19099.45 18999.46 18498.11 14399.46 13499.77 12898.01 10399.37 28298.70 13498.92 18999.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS99.13 8999.02 9199.45 12599.57 15298.63 19899.07 30699.34 25098.99 4599.61 10499.82 7597.98 10499.87 13897.00 28999.80 9899.85 36
EI-MVSNet98.67 15698.67 13898.68 24499.35 22297.97 24499.50 16499.38 23196.93 27499.20 20399.83 6797.87 10599.36 28698.38 17697.56 26498.71 273
IterMVS-LS98.46 16798.42 16598.58 25299.59 14898.00 24299.37 22799.43 20996.94 27399.07 22799.59 21097.87 10599.03 34098.32 18495.62 32498.71 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG98.98 11898.80 12599.53 10599.76 6599.19 12298.75 35999.55 7797.25 24199.47 13299.77 12897.82 10799.87 13896.93 29699.90 4099.54 161
OMC-MVS99.08 10599.04 8599.20 16899.67 11198.22 23199.28 25799.52 10198.07 15199.66 8399.81 8997.79 10899.78 19497.79 22699.81 9499.60 146
LS3D99.27 6799.12 7499.74 6199.18 26699.75 3999.56 12399.57 6498.45 10099.49 13099.85 5397.77 10999.94 6998.33 18299.84 7899.52 167
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14599.47 18599.93 297.66 19999.71 6899.86 4897.73 11099.96 3099.47 4399.82 9199.79 74
131498.68 15598.54 15999.11 17898.89 32098.65 19699.27 26299.49 14396.89 27597.99 33699.56 22197.72 11199.83 16897.74 23499.27 16198.84 254
MVS_Test99.10 10398.97 10199.48 11999.49 18199.14 13399.67 6599.34 25097.31 23699.58 11199.76 13397.65 11299.82 17598.87 10799.07 17899.46 188
PVSNet_BlendedMVS98.86 13098.80 12599.03 18699.76 6598.79 18699.28 25799.91 397.42 22799.67 7899.37 28097.53 11399.88 13398.98 9297.29 28698.42 344
PVSNet_Blended99.08 10598.97 10199.42 13099.76 6598.79 18698.78 35699.91 396.74 28299.67 7899.49 24697.53 11399.88 13398.98 9299.85 7099.60 146
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16499.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 10099.90 4099.89 20
MVSFormer99.17 8199.12 7499.29 15599.51 17098.94 16799.88 499.46 18497.55 20999.80 4099.65 18497.39 11699.28 30099.03 8599.85 7099.65 129
lupinMVS99.13 8999.01 9599.46 12499.51 17098.94 16799.05 31199.16 30197.86 17099.80 4099.56 22197.39 11699.86 14298.94 9699.85 7099.58 154
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20899.50 13597.03 26599.04 23599.88 3697.39 11699.92 9598.66 14199.90 4099.87 31
sss99.17 8199.05 8399.53 10599.62 13798.97 15799.36 23199.62 4197.83 17699.67 7899.65 18497.37 11999.95 5999.19 7299.19 16599.68 119
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14999.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2599.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16499.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
mvs_anonymous99.03 11198.99 9799.16 17299.38 21398.52 21199.51 15799.38 23197.79 18199.38 15999.81 8997.30 12299.45 26599.35 5198.99 18499.51 173
miper_ehance_all_eth98.18 19498.10 18898.41 27799.23 25397.72 25998.72 36299.31 27196.60 29698.88 25999.29 30297.29 12399.13 32697.60 24595.99 31398.38 349
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10299.49 14397.03 26599.63 9699.69 16697.27 12499.96 3097.82 22499.84 7899.81 61
PMMVS98.80 14498.62 14999.34 14099.27 24598.70 19298.76 35899.31 27197.34 23399.21 20099.07 32897.20 12599.82 17598.56 16098.87 19299.52 167
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14699.81 2199.33 25797.43 22599.60 10799.88 3697.14 12699.84 15599.13 7798.94 18699.69 115
mvsmamba98.92 12398.87 11599.08 17999.07 29499.16 12799.88 499.51 11598.15 13699.40 15399.89 3097.12 12799.33 29299.38 4897.40 28298.73 270
c3_l98.12 20198.04 19798.38 28199.30 23697.69 26398.81 35399.33 25796.67 28798.83 26799.34 29097.11 12898.99 34697.58 24795.34 33098.48 336
sasdasda99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2699.48 15598.63 8299.31 17498.81 35397.09 12999.75 20399.27 6697.90 24599.47 184
canonicalmvs99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2699.48 15598.63 8299.31 17498.81 35397.09 12999.75 20399.27 6697.90 24599.47 184
MAR-MVS98.86 13098.63 14499.54 9799.37 21699.66 5399.45 18999.54 8596.61 29499.01 23899.40 27297.09 12999.86 14297.68 24299.53 14299.10 226
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_enhance_ethall98.16 19698.08 19298.41 27798.96 31497.72 25998.45 37999.32 26796.95 27198.97 24699.17 31897.06 13299.22 31297.86 21995.99 31398.29 353
MGCFI-Net99.01 11698.85 12099.50 11899.42 19999.26 11699.82 1799.48 15598.60 8699.28 18198.81 35397.04 13399.76 20099.29 6297.87 24899.47 184
jason99.13 8999.03 8799.45 12599.46 19098.87 17499.12 29699.26 28598.03 15999.79 4299.65 18497.02 13499.85 14899.02 8799.90 4099.65 129
jason: jason.
our_test_397.65 27897.68 23997.55 33498.62 35494.97 35598.84 35099.30 27596.83 28098.19 32799.34 29097.01 13599.02 34295.00 34696.01 31198.64 305
RRT_MVS98.70 15298.66 14198.83 22798.90 31898.45 22099.89 299.28 28197.76 18598.94 25099.92 1496.98 13699.25 30599.28 6397.00 29498.80 256
MVS97.28 30296.55 31499.48 11998.78 33598.95 16499.27 26299.39 22383.53 39698.08 33199.54 22996.97 13799.87 13894.23 35599.16 16699.63 140
Fast-Effi-MVS+-dtu98.77 14798.83 12498.60 24899.41 20496.99 29599.52 14999.49 14398.11 14399.24 19299.34 29096.96 13899.79 18997.95 21299.45 14699.02 241
1112_ss98.98 11898.77 12999.59 8799.68 11099.02 15099.25 27399.48 15597.23 24499.13 21599.58 21496.93 13999.90 11698.87 10798.78 20099.84 40
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12799.37 22799.56 6998.04 15799.53 12299.62 20196.84 14099.94 6998.85 11498.49 21699.72 103
FC-MVSNet-test98.75 14898.62 14999.15 17699.08 29399.45 9399.86 1299.60 5498.23 12598.70 28699.82 7596.80 14199.22 31299.07 8396.38 30498.79 257
Effi-MVS+-dtu98.78 14598.89 11398.47 26999.33 22896.91 30199.57 11799.30 27598.47 9899.41 14898.99 33896.78 14299.74 20598.73 13199.38 15098.74 268
Test_1112_low_res98.89 12598.66 14199.57 9299.69 10698.95 16499.03 31699.47 17596.98 26799.15 21399.23 31296.77 14399.89 12798.83 12098.78 20099.86 33
FIs98.78 14598.63 14499.23 16699.18 26699.54 7999.83 1699.59 5798.28 11798.79 27399.81 8996.75 14499.37 28299.08 8296.38 30498.78 258
PVSNet96.02 1798.85 13798.84 12298.89 21199.73 8797.28 27298.32 38699.60 5497.86 17099.50 12799.57 21896.75 14499.86 14298.56 16099.70 12399.54 161
nrg03098.64 15998.42 16599.28 15999.05 30099.69 4799.81 2199.46 18498.04 15799.01 23899.82 7596.69 14699.38 27899.34 5594.59 34598.78 258
CHOSEN 280x42099.12 9599.13 7399.08 17999.66 12097.89 25198.43 38099.71 1398.88 5999.62 10199.76 13396.63 14799.70 22799.46 4499.99 199.66 125
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15799.67 2399.13 2299.98 699.92 1496.60 14899.96 3099.95 899.96 1299.95 9
eth_miper_zixun_eth98.05 21297.96 20698.33 28499.26 24797.38 27098.56 37599.31 27196.65 28998.88 25999.52 23696.58 14999.12 33097.39 26795.53 32798.47 338
cdsmvs_eth3d_5k24.64 37732.85 3800.00 3930.00 4160.00 4180.00 40499.51 1150.00 4110.00 41299.56 22196.58 1490.00 4120.00 4110.00 4100.00 408
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4299.20 29698.02 16099.56 11599.86 4896.54 15199.67 23598.09 19899.13 17199.73 97
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 16199.28 25799.49 14398.46 9999.72 6799.71 15296.50 15299.88 13399.31 5899.11 17299.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MM99.40 5099.28 5599.74 6199.67 11199.31 10899.52 14998.87 34299.55 199.74 6099.80 10296.47 15399.98 1399.97 199.97 799.94 11
CANet99.25 7399.14 7299.59 8799.41 20499.16 12799.35 23699.57 6498.82 6599.51 12699.61 20596.46 15499.95 5999.59 2599.98 499.65 129
ppachtmachnet_test97.49 29497.45 26397.61 33298.62 35495.24 34998.80 35499.46 18496.11 33298.22 32599.62 20196.45 15598.97 35493.77 35995.97 31698.61 324
HY-MVS97.30 798.85 13798.64 14399.47 12299.42 19999.08 14399.62 8899.36 24097.39 23099.28 18199.68 17296.44 15699.92 9598.37 17898.22 22999.40 199
UniMVSNet_NR-MVSNet98.22 18897.97 20598.96 19598.92 31798.98 15499.48 17999.53 9697.76 18598.71 28099.46 25896.43 15799.22 31298.57 15792.87 36998.69 281
Effi-MVS+98.81 14198.59 15599.48 11999.46 19099.12 13798.08 39299.50 13597.50 21799.38 15999.41 26996.37 15899.81 18099.11 7998.54 21399.51 173
AdaColmapbinary99.01 11698.80 12599.66 6999.56 15699.54 7999.18 28599.70 1598.18 13499.35 16899.63 19696.32 15999.90 11697.48 25999.77 10899.55 159
UniMVSNet (Re)98.29 18498.00 20199.13 17799.00 30599.36 10299.49 17599.51 11597.95 16398.97 24699.13 32396.30 16099.38 27898.36 18093.34 36298.66 301
LCM-MVSNet-Re97.83 24798.15 18296.87 35399.30 23692.25 38399.59 10298.26 37497.43 22596.20 36999.13 32396.27 16198.73 36698.17 19498.99 18499.64 136
PAPM97.59 28297.09 30199.07 18199.06 29798.26 22998.30 38799.10 30794.88 35598.08 33199.34 29096.27 16199.64 24689.87 38498.92 18999.31 212
Fast-Effi-MVS+98.70 15298.43 16499.51 11399.51 17099.28 11299.52 14999.47 17596.11 33299.01 23899.34 29096.20 16399.84 15597.88 21698.82 19799.39 200
EPNet_dtu98.03 21597.96 20698.23 29498.27 36795.54 34299.23 27698.75 35399.02 3897.82 34399.71 15296.11 16499.48 26293.04 36899.65 13199.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline99.15 8599.02 9199.53 10599.66 12099.14 13399.72 5099.48 15598.35 11199.42 14499.84 6396.07 16599.79 18999.51 3599.14 17099.67 122
D2MVS98.41 17298.50 16198.15 30199.26 24796.62 31499.40 21699.61 4897.71 19198.98 24499.36 28396.04 16699.67 23598.70 13497.41 28198.15 360
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13999.64 7999.56 6998.26 12099.45 13599.87 4496.03 16799.81 18099.54 3099.15 16999.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_lstm_enhance98.00 22297.91 21298.28 29299.34 22697.43 26998.88 34699.36 24096.48 30598.80 27199.55 22495.98 16898.91 35897.27 27395.50 32898.51 334
EPNet98.86 13098.71 13499.30 15297.20 38598.18 23299.62 8898.91 33599.28 1698.63 29799.81 8995.96 16999.99 499.24 6999.72 11999.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest98.87 12798.72 13299.31 14799.86 2098.48 21799.56 12399.61 4897.85 17399.36 16599.85 5395.95 17099.85 14896.66 30999.83 8799.59 150
TestCases99.31 14799.86 2098.48 21799.61 4897.85 17399.36 16599.85 5395.95 17099.85 14896.66 30999.83 8799.59 150
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 28299.66 5399.84 1399.74 1099.09 3298.92 25399.90 2695.94 17299.98 1398.95 9599.92 2599.79 74
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12799.56 12399.50 13598.33 11499.41 14899.86 4895.92 17399.83 16899.45 4599.16 16699.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF98.22 18898.62 14996.99 34799.82 4291.58 38699.72 5099.44 20396.61 29499.66 8399.89 3095.92 17399.82 17597.46 26299.10 17599.57 156
pmmvs498.13 19997.90 21398.81 23198.61 35698.87 17498.99 32799.21 29596.44 30899.06 23299.58 21495.90 17599.11 33197.18 28296.11 31098.46 341
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31999.91 397.67 19899.59 11099.75 13695.90 17599.73 21199.53 3299.02 18399.86 33
COLMAP_ROBcopyleft97.56 698.86 13098.75 13199.17 17199.88 1198.53 20799.34 23999.59 5797.55 20998.70 28699.89 3095.83 17799.90 11698.10 19799.90 4099.08 231
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 12099.62 8899.55 7798.94 5499.63 9699.95 395.82 17899.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
QAPM98.67 15698.30 17499.80 4699.20 26099.67 5199.77 3599.72 1194.74 35998.73 27899.90 2695.78 17999.98 1396.96 29399.88 5299.76 87
BH-untuned98.42 17098.36 16898.59 24999.49 18196.70 30999.27 26299.13 30597.24 24398.80 27199.38 27795.75 18099.74 20597.07 28799.16 16699.33 210
test_djsdf98.67 15698.57 15698.98 19298.70 34798.91 17199.88 499.46 18497.55 20999.22 19799.88 3695.73 18199.28 30099.03 8597.62 25998.75 265
DIV-MVS_self_test98.01 22097.85 22098.48 26499.24 25297.95 24898.71 36399.35 24696.50 30198.60 30299.54 22995.72 18299.03 34097.21 27695.77 31998.46 341
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 27499.68 4899.81 2199.51 11599.20 1898.72 27999.89 3095.68 18399.97 2198.86 11299.86 6399.81 61
cl____98.01 22097.84 22198.55 25899.25 25197.97 24498.71 36399.34 25096.47 30798.59 30399.54 22995.65 18499.21 31797.21 27695.77 31998.46 341
WB-MVSnew97.65 27897.65 24297.63 33098.78 33597.62 26499.13 29398.33 37397.36 23299.07 22798.94 34495.64 18599.15 32292.95 36998.68 20496.12 394
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20899.39 22399.01 4099.74 6099.78 12095.56 18699.92 9599.52 3498.18 23499.72 103
WR-MVS_H98.13 19997.87 21998.90 20899.02 30398.84 17999.70 5399.59 5797.27 23998.40 31399.19 31795.53 18799.23 30998.34 18193.78 35998.61 324
CHOSEN 1792x268899.19 7799.10 7699.45 12599.89 898.52 21199.39 22099.94 198.73 7699.11 21999.89 3095.50 18899.94 6999.50 3699.97 799.89 20
Vis-MVSNet (Re-imp)98.87 12798.72 13299.31 14799.71 9698.88 17399.80 2699.44 20397.91 16799.36 16599.78 12095.49 18999.43 27497.91 21499.11 17299.62 142
PatchMatch-RL98.84 14098.62 14999.52 11199.71 9699.28 11299.06 30999.77 997.74 18999.50 12799.53 23395.41 19099.84 15597.17 28399.64 13299.44 193
FA-MVS(test-final)98.75 14898.53 16099.41 13199.55 16099.05 14899.80 2699.01 31996.59 29899.58 11199.59 21095.39 19199.90 11697.78 22799.49 14499.28 214
test_yl98.86 13098.63 14499.54 9799.49 18199.18 12499.50 16499.07 31398.22 12699.61 10499.51 23995.37 19299.84 15598.60 15198.33 22199.59 150
DCV-MVSNet98.86 13098.63 14499.54 9799.49 18199.18 12499.50 16499.07 31398.22 12699.61 10499.51 23995.37 19299.84 15598.60 15198.33 22199.59 150
tpmrst98.33 18098.48 16297.90 31699.16 27694.78 35799.31 24599.11 30697.27 23999.45 13599.59 21095.33 19499.84 15598.48 16798.61 20599.09 230
MVP-Stereo97.81 25297.75 23397.99 31197.53 37896.60 31698.96 33498.85 34497.22 24597.23 35699.36 28395.28 19599.46 26495.51 33499.78 10597.92 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CANet_DTU98.97 12098.87 11599.25 16299.33 22898.42 22499.08 30599.30 27599.16 1999.43 14199.75 13695.27 19699.97 2198.56 16099.95 1699.36 205
XVG-OURS98.73 15198.68 13798.88 21399.70 10197.73 25898.92 34299.55 7798.52 9499.45 13599.84 6395.27 19699.91 10598.08 20298.84 19599.00 242
BH-w/o98.00 22297.89 21798.32 28699.35 22296.20 32999.01 32498.90 33796.42 31098.38 31499.00 33795.26 19899.72 21596.06 32098.61 20599.03 239
EU-MVSNet97.98 22498.03 19897.81 32498.72 34496.65 31399.66 7099.66 2898.09 14698.35 31699.82 7595.25 19998.01 38097.41 26695.30 33198.78 258
GeoE98.85 13798.62 14999.53 10599.61 14199.08 14399.80 2699.51 11597.10 25799.31 17499.78 12095.23 20099.77 19698.21 18999.03 18199.75 88
MDTV_nov1_ep13_2view95.18 35299.35 23696.84 27899.58 11195.19 20197.82 22499.46 188
JIA-IIPM97.50 28997.02 30398.93 20098.73 34297.80 25699.30 24798.97 32391.73 38298.91 25494.86 39695.10 20299.71 22197.58 24797.98 24299.28 214
NR-MVSNet97.97 22797.61 24799.02 18798.87 32499.26 11699.47 18599.42 21197.63 20197.08 36199.50 24395.07 20399.13 32697.86 21993.59 36098.68 286
tpmvs97.98 22498.02 20097.84 32099.04 30194.73 35899.31 24599.20 29696.10 33698.76 27699.42 26594.94 20499.81 18096.97 29298.45 21798.97 246
h-mvs3397.70 27097.28 29198.97 19499.70 10197.27 27399.36 23199.45 19598.94 5499.66 8399.64 19094.93 20599.99 499.48 4184.36 39299.65 129
hse-mvs297.50 28997.14 29798.59 24999.49 18197.05 28899.28 25799.22 29298.94 5499.66 8399.42 26594.93 20599.65 24399.48 4183.80 39499.08 231
v897.95 22997.63 24698.93 20098.95 31598.81 18599.80 2699.41 21496.03 33799.10 22299.42 26594.92 20799.30 29896.94 29594.08 35498.66 301
PatchmatchNetpermissive98.31 18198.36 16898.19 29699.16 27695.32 34899.27 26298.92 33197.37 23199.37 16199.58 21494.90 20899.70 22797.43 26599.21 16399.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n97.87 23997.52 25498.92 20298.76 34098.58 20399.84 1399.46 18496.20 32398.91 25499.70 15694.89 20999.44 27096.03 32193.89 35798.75 265
sam_mvs194.86 21099.52 167
DU-MVS98.08 20597.79 22398.96 19598.87 32498.98 15499.41 20899.45 19597.87 16998.71 28099.50 24394.82 21199.22 31298.57 15792.87 36998.68 286
Baseline_NR-MVSNet97.76 25797.45 26398.68 24499.09 29098.29 22799.41 20898.85 34495.65 34298.63 29799.67 17894.82 21199.10 33398.07 20592.89 36898.64 305
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36599.48 8999.55 13599.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
patchmatchnet-post98.70 35994.79 21499.74 205
Patchmatch-RL test95.84 33395.81 33295.95 36295.61 39390.57 38898.24 38898.39 37295.10 35195.20 37798.67 36094.78 21597.77 38596.28 31890.02 38399.51 173
alignmvs98.81 14198.56 15899.58 9099.43 19799.42 9699.51 15798.96 32598.61 8599.35 16898.92 34894.78 21599.77 19699.35 5198.11 23999.54 161
MDTV_nov1_ep1398.32 17299.11 28494.44 36399.27 26298.74 35697.51 21699.40 15399.62 20194.78 21599.76 20097.59 24698.81 199
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13899.68 6299.66 2898.49 9799.86 2799.87 4494.77 21899.84 15599.19 7299.41 14999.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
anonymousdsp98.44 16898.28 17598.94 19898.50 36298.96 16199.77 3599.50 13597.07 25998.87 26299.77 12894.76 21999.28 30098.66 14197.60 26098.57 330
v1097.85 24297.52 25498.86 22198.99 30898.67 19499.75 4299.41 21495.70 34198.98 24499.41 26994.75 22099.23 30996.01 32394.63 34498.67 293
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 30199.53 8299.82 1799.72 1194.56 36298.08 33199.88 3694.73 22199.98 1397.47 26199.76 11199.06 237
sam_mvs94.72 222
SSC-MVS92.73 35693.73 35289.72 38095.02 39981.38 40099.76 3899.23 29094.87 35692.80 38998.93 34594.71 22391.37 40474.49 40493.80 35896.42 390
WB-MVS93.10 35494.10 34890.12 37995.51 39781.88 39999.73 4899.27 28495.05 35293.09 38898.91 34994.70 22491.89 40376.62 40294.02 35696.58 389
v14897.79 25597.55 25098.50 26198.74 34197.72 25999.54 14099.33 25796.26 31998.90 25699.51 23994.68 22599.14 32397.83 22393.15 36698.63 312
v114497.98 22497.69 23898.85 22498.87 32498.66 19599.54 14099.35 24696.27 31899.23 19699.35 28694.67 22699.23 30996.73 30495.16 33498.68 286
V4298.06 20797.79 22398.86 22198.98 31198.84 17999.69 5699.34 25096.53 30099.30 17799.37 28094.67 22699.32 29597.57 25194.66 34398.42 344
test_post65.99 40794.65 22899.73 211
baseline198.31 18197.95 20899.38 13899.50 17998.74 18999.59 10298.93 32898.41 10499.14 21499.60 20894.59 22999.79 18998.48 16793.29 36399.61 144
DSMNet-mixed97.25 30497.35 28096.95 35097.84 37393.61 37599.57 11796.63 39796.13 33198.87 26298.61 36394.59 22997.70 38795.08 34498.86 19399.55 159
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2199.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22799.72 103
Patchmatch-test97.93 23097.65 24298.77 23699.18 26697.07 28699.03 31699.14 30496.16 32798.74 27799.57 21894.56 23199.72 21593.36 36499.11 17299.52 167
PCF-MVS97.08 1497.66 27797.06 30299.47 12299.61 14199.09 13998.04 39399.25 28791.24 38498.51 30799.70 15694.55 23399.91 10592.76 37399.85 7099.42 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchT97.03 31296.44 31798.79 23498.99 30898.34 22699.16 28799.07 31392.13 38099.52 12497.31 38994.54 23498.98 34788.54 38998.73 20299.03 239
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14899.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
CVMVSNet98.57 16298.67 13898.30 28899.35 22295.59 33999.50 16499.55 7798.60 8699.39 15799.83 6794.48 23699.45 26598.75 12898.56 21199.85 36
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 14099.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2599.98 2
test-LLR98.06 20797.90 21398.55 25898.79 33297.10 28298.67 36597.75 38597.34 23398.61 30098.85 35094.45 23899.45 26597.25 27499.38 15099.10 226
test0.0.03 197.71 26997.42 27398.56 25698.41 36697.82 25598.78 35698.63 36697.34 23398.05 33598.98 34094.45 23898.98 34795.04 34597.15 29298.89 251
v14419297.92 23397.60 24898.87 21798.83 33098.65 19699.55 13599.34 25096.20 32399.32 17399.40 27294.36 24099.26 30496.37 31795.03 33798.70 277
CR-MVSNet98.17 19597.93 21198.87 21799.18 26698.49 21599.22 28099.33 25796.96 26999.56 11599.38 27794.33 24199.00 34594.83 34898.58 20899.14 223
Patchmtry97.75 26197.40 27598.81 23199.10 28798.87 17499.11 30299.33 25794.83 35798.81 26999.38 27794.33 24199.02 34296.10 31995.57 32598.53 332
tpm cat197.39 29897.36 27897.50 33699.17 27493.73 37199.43 19999.31 27191.27 38398.71 28099.08 32794.31 24399.77 19696.41 31698.50 21599.00 242
TranMVSNet+NR-MVSNet97.93 23097.66 24198.76 23798.78 33598.62 19999.65 7699.49 14397.76 18598.49 30999.60 20894.23 24498.97 35498.00 20992.90 36798.70 277
v2v48298.06 20797.77 22898.92 20298.90 31898.82 18399.57 11799.36 24096.65 28999.19 20699.35 28694.20 24599.25 30597.72 23794.97 33898.69 281
XVG-OURS-SEG-HR98.69 15498.62 14998.89 21199.71 9697.74 25799.12 29699.54 8598.44 10399.42 14499.71 15294.20 24599.92 9598.54 16498.90 19199.00 242
ab-mvs98.86 13098.63 14499.54 9799.64 12899.19 12299.44 19599.54 8597.77 18499.30 17799.81 8994.20 24599.93 8499.17 7598.82 19799.49 177
test_post199.23 27665.14 40894.18 24899.71 22197.58 247
ADS-MVSNet298.02 21798.07 19597.87 31799.33 22895.19 35199.23 27699.08 31096.24 32099.10 22299.67 17894.11 24998.93 35796.81 30199.05 17999.48 178
ADS-MVSNet98.20 19198.08 19298.56 25699.33 22896.48 31999.23 27699.15 30296.24 32099.10 22299.67 17894.11 24999.71 22196.81 30199.05 17999.48 178
RPMNet96.72 31795.90 32999.19 16999.18 26698.49 21599.22 28099.52 10188.72 39299.56 11597.38 38694.08 25199.95 5986.87 39698.58 20899.14 223
v119297.81 25297.44 26898.91 20698.88 32198.68 19399.51 15799.34 25096.18 32599.20 20399.34 29094.03 25299.36 28695.32 34095.18 33398.69 281
dmvs_testset95.02 34196.12 32391.72 37499.10 28780.43 40299.58 11097.87 38497.47 21895.22 37698.82 35293.99 25395.18 39988.09 39194.91 34199.56 158
v192192097.80 25497.45 26398.84 22598.80 33198.53 20799.52 14999.34 25096.15 32999.24 19299.47 25493.98 25499.29 29995.40 33895.13 33598.69 281
Anonymous2023120696.22 32596.03 32696.79 35597.31 38394.14 36799.63 8399.08 31096.17 32697.04 36299.06 33093.94 25597.76 38686.96 39595.06 33698.47 338
WR-MVS98.06 20797.73 23599.06 18298.86 32799.25 11899.19 28399.35 24697.30 23798.66 28999.43 26393.94 25599.21 31798.58 15494.28 35098.71 273
Syy-MVS97.09 31197.14 29796.95 35099.00 30592.73 38199.29 25299.39 22397.06 26197.41 35098.15 37593.92 25798.68 36791.71 37798.34 21999.45 191
N_pmnet94.95 34495.83 33192.31 37298.47 36379.33 40499.12 29692.81 41093.87 36797.68 34699.13 32393.87 25899.01 34491.38 37996.19 30898.59 328
MVSTER98.49 16498.32 17299.00 19099.35 22299.02 15099.54 14099.38 23197.41 22899.20 20399.73 14793.86 25999.36 28698.87 10797.56 26498.62 315
FE-MVS98.48 16598.17 17999.40 13399.54 16298.96 16199.68 6298.81 34995.54 34399.62 10199.70 15693.82 26099.93 8497.35 27099.46 14599.32 211
CP-MVSNet98.09 20397.78 22699.01 18898.97 31399.24 11999.67 6599.46 18497.25 24198.48 31099.64 19093.79 26199.06 33698.63 14494.10 35398.74 268
cascas97.69 27197.43 27298.48 26498.60 35797.30 27198.18 39199.39 22392.96 37798.41 31298.78 35793.77 26299.27 30398.16 19598.61 20598.86 252
v124097.69 27197.32 28698.79 23498.85 32898.43 22299.48 17999.36 24096.11 33299.27 18699.36 28393.76 26399.24 30894.46 35195.23 33298.70 277
test20.0396.12 32995.96 32896.63 35697.44 37995.45 34599.51 15799.38 23196.55 29996.16 37099.25 31093.76 26396.17 39687.35 39494.22 35198.27 354
dmvs_re98.08 20598.16 18097.85 31899.55 16094.67 36099.70 5398.92 33198.15 13699.06 23299.35 28693.67 26599.25 30597.77 23097.25 28799.64 136
iter_conf0598.55 16398.44 16398.87 21799.34 22698.60 20299.55 13599.42 21198.21 12899.37 16199.77 12893.55 26699.38 27899.30 6197.48 27498.63 312
baseline297.87 23997.55 25098.82 22899.18 26698.02 24199.41 20896.58 39996.97 26896.51 36699.17 31893.43 26799.57 25697.71 23899.03 18198.86 252
TransMVSNet (Re)97.15 30896.58 31398.86 22199.12 28298.85 17899.49 17598.91 33595.48 34497.16 35999.80 10293.38 26899.11 33194.16 35791.73 37498.62 315
tfpnnormal97.84 24597.47 26098.98 19299.20 26099.22 12199.64 7999.61 4896.32 31498.27 32299.70 15693.35 26999.44 27095.69 33095.40 32998.27 354
Anonymous2023121197.88 23797.54 25398.90 20899.71 9698.53 20799.48 17999.57 6494.16 36598.81 26999.68 17293.23 27099.42 27598.84 11794.42 34898.76 263
XXY-MVS98.38 17698.09 19199.24 16499.26 24799.32 10499.56 12399.55 7797.45 22298.71 28099.83 6793.23 27099.63 25198.88 10496.32 30698.76 263
jajsoiax98.43 16998.28 17598.88 21398.60 35798.43 22299.82 1799.53 9698.19 13198.63 29799.80 10293.22 27299.44 27099.22 7097.50 27098.77 261
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17799.65 7699.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3299.99 1
MDA-MVSNet_test_wron95.45 33794.60 34498.01 30898.16 36997.21 27899.11 30299.24 28993.49 37280.73 40298.98 34093.02 27498.18 37594.22 35694.45 34798.64 305
ACMM97.58 598.37 17798.34 17098.48 26499.41 20497.10 28299.56 12399.45 19598.53 9299.04 23599.85 5393.00 27599.71 22198.74 12997.45 27698.64 305
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet398.03 21597.76 23298.84 22599.39 21298.98 15499.40 21699.38 23196.67 28799.07 22799.28 30492.93 27698.98 34797.10 28496.65 29798.56 331
DTE-MVSNet97.51 28897.19 29698.46 27098.63 35398.13 23699.84 1399.48 15596.68 28697.97 33899.67 17892.92 27798.56 36996.88 30092.60 37298.70 277
CLD-MVS98.16 19698.10 18898.33 28499.29 24096.82 30698.75 35999.44 20397.83 17699.13 21599.55 22492.92 27799.67 23598.32 18497.69 25498.48 336
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-RMVSNet98.41 17298.08 19299.40 13399.41 20498.83 18299.30 24798.77 35297.70 19498.94 25099.65 18492.91 27999.74 20596.52 31299.55 14199.64 136
YYNet195.36 33994.51 34697.92 31497.89 37297.10 28299.10 30499.23 29093.26 37580.77 40199.04 33292.81 28098.02 37994.30 35294.18 35298.64 305
mvs_tets98.40 17598.23 17798.91 20698.67 35098.51 21399.66 7099.53 9698.19 13198.65 29599.81 8992.75 28199.44 27099.31 5897.48 27498.77 261
IterMVS97.83 24797.77 22898.02 30799.58 15096.27 32699.02 31999.48 15597.22 24598.71 28099.70 15692.75 28199.13 32697.46 26296.00 31298.67 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UGNet98.87 12798.69 13699.40 13399.22 25798.72 19199.44 19599.68 2099.24 1799.18 21099.42 26592.74 28399.96 3099.34 5599.94 2299.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-SCA-FT97.82 25097.75 23398.06 30499.57 15296.36 32399.02 31999.49 14397.18 24798.71 28099.72 15192.72 28499.14 32397.44 26495.86 31898.67 293
SCA98.19 19298.16 18098.27 29399.30 23695.55 34099.07 30698.97 32397.57 20699.43 14199.57 21892.72 28499.74 20597.58 24799.20 16499.52 167
HQP_MVS98.27 18698.22 17898.44 27499.29 24096.97 29799.39 22099.47 17598.97 5199.11 21999.61 20592.71 28699.69 23297.78 22797.63 25798.67 293
plane_prior699.27 24596.98 29692.71 286
CL-MVSNet_self_test94.49 34793.97 35196.08 36196.16 39093.67 37498.33 38599.38 23195.13 34797.33 35498.15 37592.69 28896.57 39488.67 38879.87 39897.99 370
dp97.75 26197.80 22297.59 33399.10 28793.71 37299.32 24298.88 34096.48 30599.08 22699.55 22492.67 28999.82 17596.52 31298.58 20899.24 217
PEN-MVS97.76 25797.44 26898.72 23998.77 33998.54 20699.78 3399.51 11597.06 26198.29 32199.64 19092.63 29098.89 36098.09 19893.16 36598.72 271
LPG-MVS_test98.22 18898.13 18598.49 26299.33 22897.05 28899.58 11099.55 7797.46 21999.24 19299.83 6792.58 29199.72 21598.09 19897.51 26898.68 286
LGP-MVS_train98.49 26299.33 22897.05 28899.55 7797.46 21999.24 19299.83 6792.58 29199.72 21598.09 19897.51 26898.68 286
VPA-MVSNet98.29 18497.95 20899.30 15299.16 27699.54 7999.50 16499.58 6198.27 11999.35 16899.37 28092.53 29399.65 24399.35 5194.46 34698.72 271
TR-MVS97.76 25797.41 27498.82 22899.06 29797.87 25298.87 34898.56 36896.63 29398.68 28899.22 31392.49 29499.65 24395.40 33897.79 25198.95 250
pm-mvs197.68 27397.28 29198.88 21399.06 29798.62 19999.50 16499.45 19596.32 31497.87 34199.79 11492.47 29599.35 28997.54 25493.54 36198.67 293
HQP2-MVS92.47 295
HQP-MVS98.02 21797.90 21398.37 28299.19 26396.83 30498.98 33099.39 22398.24 12298.66 28999.40 27292.47 29599.64 24697.19 28097.58 26298.64 305
EPMVS97.82 25097.65 24298.35 28398.88 32195.98 33299.49 17594.71 40597.57 20699.26 19099.48 25192.46 29899.71 22197.87 21899.08 17799.35 206
PS-CasMVS97.93 23097.59 24998.95 19798.99 30899.06 14699.68 6299.52 10197.13 25198.31 31899.68 17292.44 29999.05 33798.51 16594.08 35498.75 265
cl2297.85 24297.64 24598.48 26499.09 29097.87 25298.60 37299.33 25797.11 25698.87 26299.22 31392.38 30099.17 32198.21 18995.99 31398.42 344
CostFormer97.72 26697.73 23597.71 32899.15 28094.02 36899.54 14099.02 31894.67 36099.04 23599.35 28692.35 30199.77 19698.50 16697.94 24499.34 209
OPM-MVS98.19 19298.10 18898.45 27198.88 32197.07 28699.28 25799.38 23198.57 8899.22 19799.81 8992.12 30299.66 23898.08 20297.54 26698.61 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ET-MVSNet_ETH3D96.49 32195.64 33599.05 18499.53 16398.82 18398.84 35097.51 39097.63 20184.77 39699.21 31692.09 30398.91 35898.98 9292.21 37399.41 197
sd_testset98.75 14898.57 15699.29 15599.81 4698.26 22999.56 12399.62 4198.78 7399.64 9399.88 3692.02 30499.88 13399.54 3098.26 22799.72 103
AUN-MVS96.88 31496.31 32098.59 24999.48 18897.04 29199.27 26299.22 29297.44 22498.51 30799.41 26991.97 30599.66 23897.71 23883.83 39399.07 236
ACMP97.20 1198.06 20797.94 21098.45 27199.37 21697.01 29399.44 19599.49 14397.54 21298.45 31199.79 11491.95 30699.72 21597.91 21497.49 27398.62 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521198.30 18397.98 20499.26 16199.57 15298.16 23399.41 20898.55 36996.03 33799.19 20699.74 14191.87 30799.92 9599.16 7698.29 22699.70 113
KD-MVS_self_test95.00 34294.34 34796.96 34997.07 38895.39 34799.56 12399.44 20395.11 34997.13 36097.32 38891.86 30897.27 39090.35 38381.23 39798.23 358
tpm97.67 27697.55 25098.03 30599.02 30395.01 35499.43 19998.54 37096.44 30899.12 21799.34 29091.83 30999.60 25497.75 23396.46 30299.48 178
thres100view90097.76 25797.45 26398.69 24399.72 9197.86 25499.59 10298.74 35697.93 16599.26 19098.62 36191.75 31099.83 16893.22 36598.18 23498.37 350
thres600view797.86 24197.51 25698.92 20299.72 9197.95 24899.59 10298.74 35697.94 16499.27 18698.62 36191.75 31099.86 14293.73 36098.19 23398.96 248
LTVRE_ROB97.16 1298.02 21797.90 21398.40 27999.23 25396.80 30799.70 5399.60 5497.12 25398.18 32899.70 15691.73 31299.72 21598.39 17597.45 27698.68 286
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-097.88 23797.77 22898.19 29698.71 34696.53 31799.88 499.00 32097.79 18198.78 27499.94 691.68 31399.35 28997.21 27696.99 29598.69 281
tfpn200view997.72 26697.38 27698.72 23999.69 10697.96 24699.50 16498.73 36197.83 17699.17 21198.45 36691.67 31499.83 16893.22 36598.18 23498.37 350
thres40097.77 25697.38 27698.92 20299.69 10697.96 24699.50 16498.73 36197.83 17699.17 21198.45 36691.67 31499.83 16893.22 36598.18 23498.96 248
thisisatest051598.14 19897.79 22399.19 16999.50 17998.50 21498.61 37096.82 39496.95 27199.54 12099.43 26391.66 31699.86 14298.08 20299.51 14399.22 220
thres20097.61 28197.28 29198.62 24799.64 12898.03 24099.26 27198.74 35697.68 19699.09 22598.32 37191.66 31699.81 18092.88 37098.22 22998.03 366
new_pmnet96.38 32496.03 32697.41 33798.13 37095.16 35399.05 31199.20 29693.94 36697.39 35398.79 35691.61 31899.04 33890.43 38295.77 31998.05 365
pmmvs597.52 28697.30 28898.16 29898.57 35996.73 30899.27 26298.90 33796.14 33098.37 31599.53 23391.54 31999.14 32397.51 25695.87 31798.63 312
test_fmvs198.88 12698.79 12899.16 17299.69 10697.61 26599.55 13599.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2599.90 17
tttt051798.42 17098.14 18399.28 15999.66 12098.38 22599.74 4596.85 39397.68 19699.79 4299.74 14191.39 32199.89 12798.83 12099.56 13999.57 156
tpm297.44 29697.34 28397.74 32799.15 28094.36 36599.45 18998.94 32693.45 37498.90 25699.44 26191.35 32299.59 25597.31 27198.07 24099.29 213
MVS-HIRNet95.75 33595.16 34097.51 33599.30 23693.69 37398.88 34695.78 40085.09 39598.78 27492.65 39891.29 32399.37 28294.85 34799.85 7099.46 188
thisisatest053098.35 17898.03 19899.31 14799.63 13198.56 20499.54 14096.75 39597.53 21399.73 6299.65 18491.25 32499.89 12798.62 14599.56 13999.48 178
testgi97.65 27897.50 25798.13 30299.36 22196.45 32099.42 20699.48 15597.76 18597.87 34199.45 26091.09 32598.81 36294.53 35098.52 21499.13 225
ITE_SJBPF98.08 30399.29 24096.37 32298.92 33198.34 11298.83 26799.75 13691.09 32599.62 25295.82 32597.40 28298.25 356
DeepMVS_CXcopyleft93.34 36999.29 24082.27 39799.22 29285.15 39496.33 36899.05 33190.97 32799.73 21193.57 36297.77 25298.01 367
ACMH97.28 898.10 20297.99 20298.44 27499.41 20496.96 29999.60 9699.56 6998.09 14698.15 32999.91 2090.87 32899.70 22798.88 10497.45 27698.67 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111198.04 21398.11 18797.83 32199.74 8093.82 36999.58 11095.40 40299.12 2599.65 8999.93 990.73 32999.84 15599.43 4699.38 15099.82 54
ECVR-MVScopyleft98.04 21398.05 19698.00 31099.74 8094.37 36499.59 10294.98 40399.13 2299.66 8399.93 990.67 33099.84 15599.40 4799.38 15099.80 70
SixPastTwentyTwo97.50 28997.33 28598.03 30598.65 35196.23 32899.77 3598.68 36497.14 25097.90 33999.93 990.45 33199.18 32097.00 28996.43 30398.67 293
MIMVSNet97.73 26497.45 26398.57 25399.45 19597.50 26799.02 31998.98 32296.11 33299.41 14899.14 32290.28 33298.74 36595.74 32898.93 18799.47 184
GBi-Net97.68 27397.48 25898.29 28999.51 17097.26 27599.43 19999.48 15596.49 30299.07 22799.32 29790.26 33398.98 34797.10 28496.65 29798.62 315
test197.68 27397.48 25898.29 28999.51 17097.26 27599.43 19999.48 15596.49 30299.07 22799.32 29790.26 33398.98 34797.10 28496.65 29798.62 315
FMVSNet297.72 26697.36 27898.80 23399.51 17098.84 17999.45 18999.42 21196.49 30298.86 26699.29 30290.26 33398.98 34796.44 31496.56 30098.58 329
Anonymous2024052998.09 20397.68 23999.34 14099.66 12098.44 22199.40 21699.43 20993.67 36999.22 19799.89 3090.23 33699.93 8499.26 6898.33 22199.66 125
ACMH+97.24 1097.92 23397.78 22698.32 28699.46 19096.68 31299.56 12399.54 8598.41 10497.79 34599.87 4490.18 33799.66 23898.05 20697.18 29198.62 315
LF4IMVS97.52 28697.46 26297.70 32998.98 31195.55 34099.29 25298.82 34798.07 15198.66 28999.64 19089.97 33899.61 25397.01 28896.68 29697.94 373
GA-MVS97.85 24297.47 26099.00 19099.38 21397.99 24398.57 37399.15 30297.04 26498.90 25699.30 30089.83 33999.38 27896.70 30698.33 22199.62 142
PVSNet_094.43 1996.09 33095.47 33697.94 31399.31 23594.34 36697.81 39499.70 1597.12 25397.46 34998.75 35889.71 34099.79 18997.69 24181.69 39699.68 119
Anonymous2024052196.20 32795.89 33097.13 34497.72 37794.96 35699.79 3299.29 27993.01 37697.20 35899.03 33389.69 34198.36 37391.16 38096.13 30998.07 363
XVG-ACMP-BASELINE97.83 24797.71 23798.20 29599.11 28496.33 32499.41 20899.52 10198.06 15599.05 23499.50 24389.64 34299.73 21197.73 23597.38 28498.53 332
gg-mvs-nofinetune96.17 32895.32 33998.73 23898.79 33298.14 23599.38 22594.09 40691.07 38698.07 33491.04 40289.62 34399.35 28996.75 30399.09 17698.68 286
GG-mvs-BLEND98.45 27198.55 36098.16 23399.43 19993.68 40797.23 35698.46 36589.30 34499.22 31295.43 33798.22 22997.98 371
USDC97.34 30097.20 29597.75 32699.07 29495.20 35098.51 37799.04 31697.99 16198.31 31899.86 4889.02 34599.55 25995.67 33297.36 28598.49 335
MS-PatchMatch97.24 30697.32 28696.99 34798.45 36493.51 37698.82 35299.32 26797.41 22898.13 33099.30 30088.99 34699.56 25795.68 33199.80 9897.90 376
bld_raw_dy_0_6498.26 18797.88 21899.40 13399.37 21699.09 13999.62 8898.94 32698.53 9299.40 15399.51 23988.93 34799.89 12799.00 8997.64 25699.23 218
VPNet97.84 24597.44 26899.01 18899.21 25898.94 16799.48 17999.57 6498.38 10699.28 18199.73 14788.89 34899.39 27799.19 7293.27 36498.71 273
iter_conf05_1198.35 17897.99 20299.41 13199.37 21699.13 13698.96 33498.23 37798.50 9699.63 9699.46 25888.83 34999.87 13899.00 8999.95 1699.23 218
UWE-MVS97.58 28397.29 29098.48 26499.09 29096.25 32799.01 32496.61 39897.86 17099.19 20699.01 33688.72 35099.90 11697.38 26898.69 20399.28 214
K. test v397.10 31096.79 31098.01 30898.72 34496.33 32499.87 997.05 39297.59 20396.16 37099.80 10288.71 35199.04 33896.69 30796.55 30198.65 303
lessismore_v097.79 32598.69 34895.44 34694.75 40495.71 37499.87 4488.69 35299.32 29595.89 32494.93 34098.62 315
tt080597.97 22797.77 22898.57 25399.59 14896.61 31599.45 18999.08 31098.21 12898.88 25999.80 10288.66 35399.70 22798.58 15497.72 25399.39 200
TDRefinement95.42 33894.57 34597.97 31289.83 40696.11 33199.48 17998.75 35396.74 28296.68 36599.88 3688.65 35499.71 22198.37 17882.74 39598.09 362
TESTMET0.1,197.55 28497.27 29498.40 27998.93 31696.53 31798.67 36597.61 38896.96 26998.64 29699.28 30488.63 35599.45 26597.30 27299.38 15099.21 221
test_040296.64 31896.24 32197.85 31898.85 32896.43 32199.44 19599.26 28593.52 37196.98 36399.52 23688.52 35699.20 31992.58 37597.50 27097.93 374
UnsupCasMVSNet_eth96.44 32296.12 32397.40 33898.65 35195.65 33799.36 23199.51 11597.13 25196.04 37298.99 33888.40 35798.17 37696.71 30590.27 38298.40 347
MDA-MVSNet-bldmvs94.96 34393.98 35097.92 31498.24 36897.27 27399.15 29099.33 25793.80 36880.09 40399.03 33388.31 35897.86 38493.49 36394.36 34998.62 315
test-mter97.49 29497.13 29998.55 25898.79 33297.10 28298.67 36597.75 38596.65 28998.61 30098.85 35088.23 35999.45 26597.25 27499.38 15099.10 226
TinyColmap97.12 30996.89 30897.83 32199.07 29495.52 34398.57 37398.74 35697.58 20597.81 34499.79 11488.16 36099.56 25795.10 34397.21 28998.39 348
pmmvs-eth3d95.34 34094.73 34397.15 34295.53 39595.94 33399.35 23699.10 30795.13 34793.55 38597.54 38488.15 36197.91 38294.58 34989.69 38597.61 380
KD-MVS_2432*160094.62 34593.72 35397.31 33997.19 38695.82 33598.34 38399.20 29695.00 35397.57 34798.35 36987.95 36298.10 37792.87 37177.00 40098.01 367
miper_refine_blended94.62 34593.72 35397.31 33997.19 38695.82 33598.34 38399.20 29695.00 35397.57 34798.35 36987.95 36298.10 37792.87 37177.00 40098.01 367
new-patchmatchnet94.48 34894.08 34995.67 36395.08 39892.41 38299.18 28599.28 28194.55 36393.49 38697.37 38787.86 36497.01 39291.57 37888.36 38697.61 380
test250696.81 31696.65 31297.29 34199.74 8092.21 38499.60 9685.06 41399.13 2299.77 5199.93 987.82 36599.85 14899.38 4899.38 15099.80 70
FMVSNet596.43 32396.19 32297.15 34299.11 28495.89 33499.32 24299.52 10194.47 36498.34 31799.07 32887.54 36697.07 39192.61 37495.72 32298.47 338
test_vis1_n_192098.63 16098.40 16799.31 14799.86 2097.94 25099.67 6599.62 4199.43 799.99 299.91 2087.29 367100.00 199.92 1299.92 2599.98 2
pmmvs696.53 32096.09 32597.82 32398.69 34895.47 34499.37 22799.47 17593.46 37397.41 35099.78 12087.06 36899.33 29296.92 29892.70 37198.65 303
pmmvs394.09 35193.25 35796.60 35794.76 40094.49 36298.92 34298.18 38089.66 38796.48 36798.06 38186.28 36997.33 38989.68 38587.20 38997.97 372
IB-MVS95.67 1896.22 32595.44 33898.57 25399.21 25896.70 30998.65 36897.74 38796.71 28497.27 35598.54 36486.03 37099.92 9598.47 17086.30 39099.10 226
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tmp_tt82.80 36781.52 37086.66 38366.61 41368.44 41292.79 40297.92 38268.96 40180.04 40499.85 5385.77 37196.15 39797.86 21943.89 40695.39 396
CMPMVSbinary69.68 2394.13 35094.90 34291.84 37397.24 38480.01 40398.52 37699.48 15589.01 39091.99 39199.67 17885.67 37299.13 32695.44 33697.03 29396.39 391
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing1197.50 28997.10 30098.71 24199.20 26096.91 30199.29 25298.82 34797.89 16898.21 32698.40 36885.63 37399.83 16898.45 17298.04 24199.37 204
APD_test195.87 33296.49 31694.00 36699.53 16384.01 39499.54 14099.32 26795.91 33997.99 33699.85 5385.49 37499.88 13391.96 37698.84 19598.12 361
testing9197.44 29697.02 30398.71 24199.18 26696.89 30399.19 28399.04 31697.78 18398.31 31898.29 37285.41 37599.85 14898.01 20897.95 24399.39 200
test_fmvs1_n98.41 17298.14 18399.21 16799.82 4297.71 26299.74 4599.49 14399.32 1499.99 299.95 385.32 37699.97 2199.82 1699.84 7899.96 7
MIMVSNet195.51 33695.04 34196.92 35297.38 38095.60 33899.52 14999.50 13593.65 37096.97 36499.17 31885.28 37796.56 39588.36 39095.55 32698.60 327
testing9997.36 29996.94 30698.63 24699.18 26696.70 30999.30 24798.93 32897.71 19198.23 32398.26 37384.92 37899.84 15598.04 20797.85 25099.35 206
LFMVS97.90 23697.35 28099.54 9799.52 16799.01 15299.39 22098.24 37697.10 25799.65 8999.79 11484.79 37999.91 10599.28 6398.38 21899.69 115
ETVMVS97.50 28996.90 30799.29 15599.23 25398.78 18899.32 24298.90 33797.52 21598.56 30498.09 38084.72 38099.69 23297.86 21997.88 24799.39 200
test_fmvs297.25 30497.30 28897.09 34699.43 19793.31 37799.73 4898.87 34298.83 6499.28 18199.80 10284.45 38199.66 23897.88 21697.45 27698.30 352
EGC-MVSNET82.80 36777.86 37397.62 33197.91 37196.12 33099.33 24199.28 2818.40 41025.05 41199.27 30784.11 38299.33 29289.20 38698.22 22997.42 384
FMVSNet196.84 31596.36 31998.29 28999.32 23497.26 27599.43 19999.48 15595.11 34998.55 30599.32 29783.95 38398.98 34795.81 32696.26 30798.62 315
testing397.28 30296.76 31198.82 22899.37 21698.07 23999.45 18999.36 24097.56 20897.89 34098.95 34383.70 38498.82 36196.03 32198.56 21199.58 154
myMVS_eth3d96.89 31396.37 31898.43 27699.00 30597.16 27999.29 25299.39 22397.06 26197.41 35098.15 37583.46 38598.68 36795.27 34198.34 21999.45 191
VDD-MVS97.73 26497.35 28098.88 21399.47 18997.12 28199.34 23998.85 34498.19 13199.67 7899.85 5382.98 38699.92 9599.49 4098.32 22599.60 146
EG-PatchMatch MVS95.97 33195.69 33396.81 35497.78 37492.79 38099.16 28798.93 32896.16 32794.08 38399.22 31382.72 38799.47 26395.67 33297.50 27098.17 359
VDDNet97.55 28497.02 30399.16 17299.49 18198.12 23799.38 22599.30 27595.35 34599.68 7499.90 2682.62 38899.93 8499.31 5898.13 23899.42 195
UniMVSNet_ETH3D97.32 30196.81 30998.87 21799.40 20997.46 26899.51 15799.53 9695.86 34098.54 30699.77 12882.44 38999.66 23898.68 13997.52 26799.50 176
testing22297.16 30796.50 31599.16 17299.16 27698.47 21999.27 26298.66 36597.71 19198.23 32398.15 37582.28 39099.84 15597.36 26997.66 25599.18 222
OpenMVS_ROBcopyleft92.34 2094.38 34993.70 35596.41 35997.38 38093.17 37899.06 30998.75 35386.58 39394.84 38198.26 37381.53 39199.32 29589.01 38797.87 24896.76 387
test_method91.10 35991.36 36190.31 37895.85 39173.72 41194.89 39999.25 28768.39 40295.82 37399.02 33580.50 39298.95 35693.64 36194.89 34298.25 356
test_vis1_n97.92 23397.44 26899.34 14099.53 16398.08 23899.74 4599.49 14399.15 20100.00 199.94 679.51 39399.98 1399.88 1499.76 11199.97 4
test_vis1_rt95.81 33495.65 33496.32 36099.67 11191.35 38799.49 17596.74 39698.25 12195.24 37598.10 37974.96 39499.90 11699.53 3298.85 19497.70 379
UnsupCasMVSNet_bld93.53 35392.51 35896.58 35897.38 38093.82 36998.24 38899.48 15591.10 38593.10 38796.66 39174.89 39598.37 37294.03 35887.71 38897.56 382
Gipumacopyleft90.99 36090.15 36593.51 36898.73 34290.12 38993.98 40099.45 19579.32 39892.28 39094.91 39569.61 39697.98 38187.42 39395.67 32392.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test393.77 35293.45 35694.74 36595.78 39288.01 39199.64 7998.25 37598.28 11794.31 38297.97 38268.89 39798.51 37197.50 25790.37 38197.71 377
PM-MVS92.96 35592.23 35995.14 36495.61 39389.98 39099.37 22798.21 37894.80 35895.04 38097.69 38365.06 39897.90 38394.30 35289.98 38497.54 383
EMVS80.02 37079.22 37282.43 38891.19 40376.40 40697.55 39792.49 41166.36 40583.01 39991.27 40164.63 39985.79 40765.82 40760.65 40485.08 403
E-PMN80.61 36979.88 37182.81 38690.75 40476.38 40797.69 39595.76 40166.44 40483.52 39792.25 39962.54 40087.16 40668.53 40661.40 40384.89 404
testf190.42 36190.68 36389.65 38197.78 37473.97 40999.13 29398.81 34989.62 38891.80 39298.93 34562.23 40198.80 36386.61 39791.17 37696.19 392
APD_test290.42 36190.68 36389.65 38197.78 37473.97 40999.13 29398.81 34989.62 38891.80 39298.93 34562.23 40198.80 36386.61 39791.17 37696.19 392
ambc93.06 37192.68 40282.36 39698.47 37898.73 36195.09 37997.41 38555.55 40399.10 33396.42 31591.32 37597.71 377
test_f91.90 35891.26 36293.84 36795.52 39685.92 39399.69 5698.53 37195.31 34693.87 38496.37 39355.33 40498.27 37495.70 32990.98 37997.32 385
test_fmvs392.10 35791.77 36093.08 37096.19 38986.25 39299.82 1798.62 36796.65 28995.19 37896.90 39055.05 40595.93 39896.63 31190.92 38097.06 386
FPMVS84.93 36685.65 36782.75 38786.77 40863.39 41398.35 38298.92 33174.11 39983.39 39898.98 34050.85 40692.40 40284.54 40094.97 33892.46 397
PMMVS286.87 36485.37 36891.35 37690.21 40583.80 39598.89 34597.45 39183.13 39791.67 39495.03 39448.49 40794.70 40085.86 39977.62 39995.54 395
LCM-MVSNet86.80 36585.22 36991.53 37587.81 40780.96 40198.23 39098.99 32171.05 40090.13 39596.51 39248.45 40896.88 39390.51 38185.30 39196.76 387
test_vis3_rt87.04 36385.81 36690.73 37793.99 40181.96 39899.76 3890.23 41292.81 37881.35 40091.56 40040.06 40999.07 33594.27 35488.23 38791.15 400
ANet_high77.30 37174.86 37584.62 38575.88 41177.61 40597.63 39693.15 40988.81 39164.27 40689.29 40336.51 41083.93 40875.89 40352.31 40592.33 399
test12339.01 37642.50 37828.53 39139.17 41420.91 41698.75 35919.17 41619.83 40938.57 40866.67 40633.16 41115.42 41037.50 41029.66 40849.26 405
testmvs39.17 37543.78 37725.37 39236.04 41516.84 41798.36 38126.56 41420.06 40838.51 40967.32 40529.64 41215.30 41137.59 40939.90 40743.98 406
wuyk23d40.18 37441.29 37936.84 39086.18 40949.12 41579.73 40322.81 41527.64 40725.46 41028.45 41021.98 41348.89 40955.80 40823.56 40912.51 407
PMVScopyleft70.75 2275.98 37374.97 37479.01 38970.98 41255.18 41493.37 40198.21 37865.08 40661.78 40793.83 39721.74 41492.53 40178.59 40191.12 37889.34 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive76.82 2176.91 37274.31 37684.70 38485.38 41076.05 40896.88 39893.17 40867.39 40371.28 40589.01 40421.66 41587.69 40571.74 40572.29 40290.35 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_blank0.13 3800.17 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4121.57 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.30 37811.06 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.58 2140.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS97.16 27995.47 335
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10799.84 7899.89 20
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10799.84 7899.89 20
eth-test20.00 416
eth-test0.00 416
IU-MVS99.84 3299.88 899.32 26798.30 11699.84 2998.86 11299.85 7099.89 20
save fliter99.76 6599.59 7099.14 29299.40 22099.00 43
test_0728_SECOND99.91 299.84 3299.89 499.57 11799.51 11599.96 3098.93 9899.86 6399.88 26
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
MTGPAbinary99.47 175
MTMP99.54 14098.88 340
gm-plane-assit98.54 36192.96 37994.65 36199.15 32199.64 24697.56 252
test9_res97.49 25899.72 11999.75 88
agg_prior297.21 27699.73 11899.75 88
agg_prior99.67 11199.62 6599.40 22098.87 26299.91 105
test_prior499.56 7598.99 327
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16899.74 92
旧先验298.96 33496.70 28599.47 13299.94 6998.19 191
新几何299.01 324
无先验98.99 32799.51 11596.89 27599.93 8497.53 25599.72 103
原ACMM298.95 338
testdata299.95 5996.67 308
testdata198.85 34998.32 115
plane_prior799.29 24097.03 292
plane_prior599.47 17599.69 23297.78 22797.63 25798.67 293
plane_prior499.61 205
plane_prior397.00 29498.69 7999.11 219
plane_prior299.39 22098.97 51
plane_prior199.26 247
plane_prior96.97 29799.21 28298.45 10097.60 260
n20.00 417
nn0.00 417
door-mid98.05 381
test1199.35 246
door97.92 382
HQP5-MVS96.83 304
HQP-NCC99.19 26398.98 33098.24 12298.66 289
ACMP_Plane99.19 26398.98 33098.24 12298.66 289
BP-MVS97.19 280
HQP4-MVS98.66 28999.64 24698.64 305
HQP3-MVS99.39 22397.58 262
NP-MVS99.23 25396.92 30099.40 272
ACMMP++_ref97.19 290
ACMMP++97.43 280