| test_fmvsmvis_n_1920 | | | 99.65 6 | 99.61 6 | 99.77 55 | 99.38 212 | 99.37 100 | 99.58 109 | 99.62 41 | 99.41 9 | 99.87 25 | 99.92 14 | 98.81 44 | 100.00 1 | 99.97 1 | 99.93 22 | 99.94 11 |
|
| test_fmvsm_n_1920 | | | 99.69 4 | 99.66 3 | 99.78 52 | 99.84 32 | 99.44 94 | 99.58 109 | 99.69 18 | 99.43 7 | 99.98 6 | 99.91 20 | 98.62 70 | 100.00 1 | 99.97 1 | 99.95 16 | 99.90 17 |
|
| test_vis1_n_1920 | | | 98.63 160 | 98.40 167 | 99.31 143 | 99.86 20 | 97.94 248 | 99.67 64 | 99.62 41 | 99.43 7 | 99.99 2 | 99.91 20 | 87.29 365 | 100.00 1 | 99.92 12 | 99.92 24 | 99.98 2 |
|
| fmvsm_l_conf0.5_n_a | | | 99.71 1 | 99.67 1 | 99.85 28 | 99.86 20 | 99.61 67 | 99.56 122 | 99.63 39 | 99.48 3 | 99.98 6 | 99.83 68 | 98.75 55 | 99.99 4 | 99.97 1 | 99.96 12 | 99.94 11 |
|
| fmvsm_l_conf0.5_n | | | 99.71 1 | 99.67 1 | 99.85 28 | 99.84 32 | 99.63 64 | 99.56 122 | 99.63 39 | 99.47 4 | 99.98 6 | 99.82 76 | 98.75 55 | 99.99 4 | 99.97 1 | 99.97 7 | 99.94 11 |
|
| test_fmvsmconf_n | | | 99.70 3 | 99.64 4 | 99.87 11 | 99.80 52 | 99.66 53 | 99.48 178 | 99.64 36 | 99.45 5 | 99.92 15 | 99.92 14 | 98.62 70 | 99.99 4 | 99.96 7 | 99.99 1 | 99.96 7 |
|
| patch_mono-2 | | | 99.26 69 | 99.62 5 | 98.16 294 | 99.81 46 | 94.59 357 | 99.52 148 | 99.64 36 | 99.33 13 | 99.73 62 | 99.90 26 | 99.00 22 | 99.99 4 | 99.69 19 | 99.98 4 | 99.89 20 |
|
| h-mvs33 | | | 97.70 268 | 97.28 289 | 98.97 192 | 99.70 101 | 97.27 271 | 99.36 230 | 99.45 193 | 98.94 54 | 99.66 83 | 99.64 192 | 94.93 204 | 99.99 4 | 99.48 41 | 84.36 388 | 99.65 129 |
|
| xiu_mvs_v1_base_debu | | | 99.29 63 | 99.27 58 | 99.34 136 | 99.63 131 | 98.97 153 | 99.12 293 | 99.51 115 | 98.86 60 | 99.84 29 | 99.47 255 | 98.18 96 | 99.99 4 | 99.50 36 | 99.31 157 | 99.08 225 |
|
| xiu_mvs_v1_base | | | 99.29 63 | 99.27 58 | 99.34 136 | 99.63 131 | 98.97 153 | 99.12 293 | 99.51 115 | 98.86 60 | 99.84 29 | 99.47 255 | 98.18 96 | 99.99 4 | 99.50 36 | 99.31 157 | 99.08 225 |
|
| xiu_mvs_v1_base_debi | | | 99.29 63 | 99.27 58 | 99.34 136 | 99.63 131 | 98.97 153 | 99.12 293 | 99.51 115 | 98.86 60 | 99.84 29 | 99.47 255 | 98.18 96 | 99.99 4 | 99.50 36 | 99.31 157 | 99.08 225 |
|
| EPNet | | | 98.86 128 | 98.71 132 | 99.30 148 | 97.20 381 | 98.18 230 | 99.62 88 | 98.91 333 | 99.28 16 | 98.63 295 | 99.81 90 | 95.96 167 | 99.99 4 | 99.24 68 | 99.72 118 | 99.73 97 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MM | | | 99.40 50 | 99.28 55 | 99.74 61 | 99.67 111 | 99.31 107 | 99.52 148 | 98.87 340 | 99.55 1 | 99.74 60 | 99.80 103 | 96.47 151 | 99.98 13 | 99.97 1 | 99.97 7 | 99.94 11 |
|
| test_cas_vis1_n_1920 | | | 99.16 83 | 99.01 95 | 99.61 84 | 99.81 46 | 98.86 175 | 99.65 75 | 99.64 36 | 99.39 10 | 99.97 13 | 99.94 6 | 93.20 273 | 99.98 13 | 99.55 29 | 99.91 31 | 99.99 1 |
|
| test_vis1_n | | | 97.92 231 | 97.44 266 | 99.34 136 | 99.53 163 | 98.08 236 | 99.74 44 | 99.49 143 | 99.15 20 | 100.00 1 | 99.94 6 | 79.51 389 | 99.98 13 | 99.88 14 | 99.76 110 | 99.97 4 |
|
| xiu_mvs_v2_base | | | 99.26 69 | 99.25 62 | 99.29 151 | 99.53 163 | 98.91 169 | 99.02 316 | 99.45 193 | 98.80 69 | 99.71 68 | 99.26 309 | 98.94 29 | 99.98 13 | 99.34 55 | 99.23 161 | 98.98 239 |
|
| PS-MVSNAJ | | | 99.32 59 | 99.32 40 | 99.30 148 | 99.57 152 | 98.94 165 | 98.97 330 | 99.46 182 | 98.92 57 | 99.71 68 | 99.24 311 | 99.01 18 | 99.98 13 | 99.35 51 | 99.66 128 | 98.97 240 |
|
| QAPM | | | 98.67 156 | 98.30 174 | 99.80 46 | 99.20 257 | 99.67 51 | 99.77 34 | 99.72 11 | 94.74 355 | 98.73 276 | 99.90 26 | 95.78 177 | 99.98 13 | 96.96 289 | 99.88 51 | 99.76 87 |
|
| 3Dnovator | | 97.25 9 | 99.24 74 | 99.05 83 | 99.81 44 | 99.12 277 | 99.66 53 | 99.84 13 | 99.74 10 | 99.09 32 | 98.92 251 | 99.90 26 | 95.94 170 | 99.98 13 | 98.95 93 | 99.92 24 | 99.79 74 |
|
| OpenMVS |  | 96.50 16 | 98.47 166 | 98.12 186 | 99.52 111 | 99.04 296 | 99.53 82 | 99.82 17 | 99.72 11 | 94.56 358 | 98.08 327 | 99.88 36 | 94.73 221 | 99.98 13 | 97.47 257 | 99.76 110 | 99.06 231 |
|
| test_fmvsmconf0.1_n | | | 99.55 14 | 99.45 21 | 99.86 21 | 99.44 197 | 99.65 57 | 99.50 163 | 99.61 48 | 99.45 5 | 99.87 25 | 99.92 14 | 97.31 121 | 99.97 21 | 99.95 8 | 99.99 1 | 99.97 4 |
|
| test_fmvs1_n | | | 98.41 172 | 98.14 183 | 99.21 163 | 99.82 42 | 97.71 260 | 99.74 44 | 99.49 143 | 99.32 14 | 99.99 2 | 99.95 3 | 85.32 372 | 99.97 21 | 99.82 16 | 99.84 77 | 99.96 7 |
|
| CANet_DTU | | | 98.97 118 | 98.87 115 | 99.25 158 | 99.33 225 | 98.42 222 | 99.08 302 | 99.30 275 | 99.16 19 | 99.43 140 | 99.75 138 | 95.27 195 | 99.97 21 | 98.56 158 | 99.95 16 | 99.36 201 |
|
| MTAPA | | | 99.52 17 | 99.39 27 | 99.89 4 | 99.90 4 | 99.86 13 | 99.66 69 | 99.47 173 | 98.79 70 | 99.68 74 | 99.81 90 | 98.43 83 | 99.97 21 | 98.88 102 | 99.90 39 | 99.83 49 |
|
| PGM-MVS | | | 99.45 33 | 99.31 47 | 99.86 21 | 99.87 15 | 99.78 36 | 99.58 109 | 99.65 33 | 97.84 172 | 99.71 68 | 99.80 103 | 99.12 13 | 99.97 21 | 98.33 179 | 99.87 54 | 99.83 49 |
|
| mPP-MVS | | | 99.44 37 | 99.30 49 | 99.86 21 | 99.88 11 | 99.79 30 | 99.69 55 | 99.48 155 | 98.12 138 | 99.50 126 | 99.75 138 | 98.78 48 | 99.97 21 | 98.57 155 | 99.89 48 | 99.83 49 |
|
| CP-MVS | | | 99.45 33 | 99.32 40 | 99.85 28 | 99.83 39 | 99.75 39 | 99.69 55 | 99.52 101 | 98.07 148 | 99.53 121 | 99.63 198 | 98.93 33 | 99.97 21 | 98.74 127 | 99.91 31 | 99.83 49 |
|
| SteuartSystems-ACMMP | | | 99.54 15 | 99.42 22 | 99.87 11 | 99.82 42 | 99.81 25 | 99.59 101 | 99.51 115 | 98.62 83 | 99.79 42 | 99.83 68 | 99.28 4 | 99.97 21 | 98.48 165 | 99.90 39 | 99.84 40 |
| Skip Steuart: Steuart Systems R&D Blog. |
| 3Dnovator+ | | 97.12 13 | 99.18 79 | 98.97 101 | 99.82 41 | 99.17 269 | 99.68 48 | 99.81 20 | 99.51 115 | 99.20 18 | 98.72 277 | 99.89 30 | 95.68 182 | 99.97 21 | 98.86 110 | 99.86 62 | 99.81 61 |
|
| fmvsm_s_conf0.5_n_a | | | 99.56 13 | 99.47 17 | 99.85 28 | 99.83 39 | 99.64 63 | 99.52 148 | 99.65 33 | 99.10 27 | 99.98 6 | 99.92 14 | 97.35 120 | 99.96 30 | 99.94 10 | 99.92 24 | 99.95 9 |
|
| fmvsm_s_conf0.5_n | | | 99.51 18 | 99.40 25 | 99.85 28 | 99.84 32 | 99.65 57 | 99.51 156 | 99.67 23 | 99.13 22 | 99.98 6 | 99.92 14 | 96.60 146 | 99.96 30 | 99.95 8 | 99.96 12 | 99.95 9 |
|
| mvsany_test1 | | | 99.50 20 | 99.46 20 | 99.62 83 | 99.61 141 | 99.09 136 | 98.94 336 | 99.48 155 | 99.10 27 | 99.96 14 | 99.91 20 | 98.85 39 | 99.96 30 | 99.72 18 | 99.58 137 | 99.82 54 |
|
| test_fmvs1 | | | 98.88 124 | 98.79 126 | 99.16 168 | 99.69 106 | 97.61 263 | 99.55 134 | 99.49 143 | 99.32 14 | 99.98 6 | 99.91 20 | 91.41 320 | 99.96 30 | 99.82 16 | 99.92 24 | 99.90 17 |
|
| DVP-MVS++ | | | 99.59 8 | 99.50 13 | 99.88 5 | 99.51 170 | 99.88 8 | 99.87 9 | 99.51 115 | 98.99 45 | 99.88 20 | 99.81 90 | 99.27 5 | 99.96 30 | 98.85 112 | 99.80 97 | 99.81 61 |
|
| MSC_two_6792asdad | | | | | 99.87 11 | 99.51 170 | 99.76 37 | | 99.33 257 | | | | | 99.96 30 | 98.87 105 | 99.84 77 | 99.89 20 |
|
| No_MVS | | | | | 99.87 11 | 99.51 170 | 99.76 37 | | 99.33 257 | | | | | 99.96 30 | 98.87 105 | 99.84 77 | 99.89 20 |
|
| ZD-MVS | | | | | | 99.71 96 | 99.79 30 | | 99.61 48 | 96.84 274 | 99.56 114 | 99.54 231 | 98.58 72 | 99.96 30 | 96.93 292 | 99.75 112 | |
|
| SED-MVS | | | 99.61 7 | 99.52 11 | 99.88 5 | 99.84 32 | 99.90 2 | 99.60 95 | 99.48 155 | 99.08 33 | 99.91 16 | 99.81 90 | 99.20 7 | 99.96 30 | 98.91 99 | 99.85 69 | 99.79 74 |
|
| test_241102_TWO | | | | | | | | | 99.48 155 | 99.08 33 | 99.88 20 | 99.81 90 | 98.94 29 | 99.96 30 | 98.91 99 | 99.84 77 | 99.88 26 |
|
| ZNCC-MVS | | | 99.47 29 | 99.33 38 | 99.87 11 | 99.87 15 | 99.81 25 | 99.64 78 | 99.67 23 | 98.08 147 | 99.55 118 | 99.64 192 | 98.91 34 | 99.96 30 | 98.72 130 | 99.90 39 | 99.82 54 |
|
| DVP-MVS |  | | 99.57 12 | 99.47 17 | 99.88 5 | 99.85 26 | 99.89 4 | 99.57 116 | 99.37 239 | 99.10 27 | 99.81 37 | 99.80 103 | 98.94 29 | 99.96 30 | 98.93 96 | 99.86 62 | 99.81 61 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 98.99 45 | 99.81 37 | 99.80 103 | 99.09 14 | 99.96 30 | 98.85 112 | 99.90 39 | 99.88 26 |
|
| test_0728_SECOND | | | | | 99.91 2 | 99.84 32 | 99.89 4 | 99.57 116 | 99.51 115 | | | | | 99.96 30 | 98.93 96 | 99.86 62 | 99.88 26 |
|
| SR-MVS | | | 99.43 40 | 99.29 53 | 99.86 21 | 99.75 73 | 99.83 16 | 99.59 101 | 99.62 41 | 98.21 124 | 99.73 62 | 99.79 115 | 98.68 64 | 99.96 30 | 98.44 170 | 99.77 107 | 99.79 74 |
|
| DPE-MVS |  | | 99.46 31 | 99.32 40 | 99.91 2 | 99.78 56 | 99.88 8 | 99.36 230 | 99.51 115 | 98.73 76 | 99.88 20 | 99.84 64 | 98.72 61 | 99.96 30 | 98.16 192 | 99.87 54 | 99.88 26 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MVS_0304 | | | 99.42 42 | 99.32 40 | 99.72 65 | 99.70 101 | 99.27 113 | 99.52 148 | 97.57 385 | 99.51 2 | 99.82 35 | 99.78 121 | 98.09 100 | 99.96 30 | 99.97 1 | 99.97 7 | 99.94 11 |
|
| UA-Net | | | 99.42 42 | 99.29 53 | 99.80 46 | 99.62 137 | 99.55 77 | 99.50 163 | 99.70 15 | 98.79 70 | 99.77 51 | 99.96 1 | 97.45 115 | 99.96 30 | 98.92 98 | 99.90 39 | 99.89 20 |
|
| HFP-MVS | | | 99.49 22 | 99.37 30 | 99.86 21 | 99.87 15 | 99.80 27 | 99.66 69 | 99.67 23 | 98.15 133 | 99.68 74 | 99.69 168 | 99.06 16 | 99.96 30 | 98.69 135 | 99.87 54 | 99.84 40 |
|
| region2R | | | 99.48 26 | 99.35 34 | 99.87 11 | 99.88 11 | 99.80 27 | 99.65 75 | 99.66 28 | 98.13 137 | 99.66 83 | 99.68 174 | 98.96 24 | 99.96 30 | 98.62 143 | 99.87 54 | 99.84 40 |
|
| HPM-MVS++ |  | | 99.39 52 | 99.23 65 | 99.87 11 | 99.75 73 | 99.84 15 | 99.43 198 | 99.51 115 | 98.68 81 | 99.27 184 | 99.53 235 | 98.64 69 | 99.96 30 | 98.44 170 | 99.80 97 | 99.79 74 |
|
| APDe-MVS |  | | 99.66 5 | 99.57 8 | 99.92 1 | 99.77 62 | 99.89 4 | 99.75 41 | 99.56 69 | 99.02 38 | 99.88 20 | 99.85 54 | 99.18 10 | 99.96 30 | 99.22 69 | 99.92 24 | 99.90 17 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMPR | | | 99.49 22 | 99.36 32 | 99.86 21 | 99.87 15 | 99.79 30 | 99.66 69 | 99.67 23 | 98.15 133 | 99.67 78 | 99.69 168 | 98.95 27 | 99.96 30 | 98.69 135 | 99.87 54 | 99.84 40 |
|
| MP-MVS |  | | 99.33 58 | 99.15 71 | 99.87 11 | 99.88 11 | 99.82 22 | 99.66 69 | 99.46 182 | 98.09 143 | 99.48 130 | 99.74 143 | 98.29 91 | 99.96 30 | 97.93 209 | 99.87 54 | 99.82 54 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CPTT-MVS | | | 99.11 99 | 98.90 110 | 99.74 61 | 99.80 52 | 99.46 92 | 99.59 101 | 99.49 143 | 97.03 261 | 99.63 96 | 99.69 168 | 97.27 124 | 99.96 30 | 97.82 220 | 99.84 77 | 99.81 61 |
|
| PVSNet_Blended_VisFu | | | 99.36 55 | 99.28 55 | 99.61 84 | 99.86 20 | 99.07 141 | 99.47 184 | 99.93 2 | 97.66 195 | 99.71 68 | 99.86 49 | 97.73 110 | 99.96 30 | 99.47 43 | 99.82 90 | 99.79 74 |
|
| UGNet | | | 98.87 125 | 98.69 134 | 99.40 130 | 99.22 254 | 98.72 189 | 99.44 194 | 99.68 20 | 99.24 17 | 99.18 208 | 99.42 265 | 92.74 283 | 99.96 30 | 99.34 55 | 99.94 21 | 99.53 166 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| CSCG | | | 99.32 59 | 99.32 40 | 99.32 142 | 99.85 26 | 98.29 225 | 99.71 51 | 99.66 28 | 98.11 140 | 99.41 147 | 99.80 103 | 98.37 88 | 99.96 30 | 98.99 89 | 99.96 12 | 99.72 103 |
|
| ACMMP |  | | 99.45 33 | 99.32 40 | 99.82 41 | 99.89 8 | 99.67 51 | 99.62 88 | 99.69 18 | 98.12 138 | 99.63 96 | 99.84 64 | 98.73 60 | 99.96 30 | 98.55 161 | 99.83 86 | 99.81 61 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| test_fmvsmconf0.01_n | | | 99.22 76 | 99.03 87 | 99.79 49 | 98.42 361 | 99.48 89 | 99.55 134 | 99.51 115 | 99.39 10 | 99.78 47 | 99.93 9 | 94.80 213 | 99.95 59 | 99.93 11 | 99.95 16 | 99.94 11 |
|
| SR-MVS-dyc-post | | | 99.45 33 | 99.31 47 | 99.85 28 | 99.76 65 | 99.82 22 | 99.63 82 | 99.52 101 | 98.38 102 | 99.76 56 | 99.82 76 | 98.53 76 | 99.95 59 | 98.61 146 | 99.81 93 | 99.77 82 |
|
| GST-MVS | | | 99.40 50 | 99.24 63 | 99.85 28 | 99.86 20 | 99.79 30 | 99.60 95 | 99.67 23 | 97.97 159 | 99.63 96 | 99.68 174 | 98.52 77 | 99.95 59 | 98.38 173 | 99.86 62 | 99.81 61 |
|
| CANet | | | 99.25 73 | 99.14 72 | 99.59 87 | 99.41 203 | 99.16 125 | 99.35 235 | 99.57 64 | 98.82 65 | 99.51 125 | 99.61 207 | 96.46 152 | 99.95 59 | 99.59 25 | 99.98 4 | 99.65 129 |
|
| MP-MVS-pluss | | | 99.37 54 | 99.20 67 | 99.88 5 | 99.90 4 | 99.87 12 | 99.30 246 | 99.52 101 | 97.18 243 | 99.60 106 | 99.79 115 | 98.79 47 | 99.95 59 | 98.83 118 | 99.91 31 | 99.83 49 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MSP-MVS | | | 99.42 42 | 99.27 58 | 99.88 5 | 99.89 8 | 99.80 27 | 99.67 64 | 99.50 135 | 98.70 78 | 99.77 51 | 99.49 247 | 98.21 94 | 99.95 59 | 98.46 169 | 99.77 107 | 99.88 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| testdata2 | | | | | | | | | | | | | | 99.95 59 | 96.67 304 | | |
|
| APD-MVS_3200maxsize | | | 99.48 26 | 99.35 34 | 99.85 28 | 99.76 65 | 99.83 16 | 99.63 82 | 99.54 85 | 98.36 106 | 99.79 42 | 99.82 76 | 98.86 38 | 99.95 59 | 98.62 143 | 99.81 93 | 99.78 80 |
|
| RPMNet | | | 96.72 313 | 95.90 325 | 99.19 165 | 99.18 262 | 98.49 213 | 99.22 278 | 99.52 101 | 88.72 388 | 99.56 114 | 97.38 382 | 94.08 251 | 99.95 59 | 86.87 392 | 98.58 207 | 99.14 217 |
|
| sss | | | 99.17 81 | 99.05 83 | 99.53 105 | 99.62 137 | 98.97 153 | 99.36 230 | 99.62 41 | 97.83 173 | 99.67 78 | 99.65 186 | 97.37 119 | 99.95 59 | 99.19 71 | 99.19 164 | 99.68 119 |
|
| fmvsm_s_conf0.1_n_a | | | 99.26 69 | 99.06 82 | 99.85 28 | 99.52 167 | 99.62 65 | 99.54 139 | 99.62 41 | 98.69 79 | 99.99 2 | 99.96 1 | 94.47 237 | 99.94 69 | 99.88 14 | 99.92 24 | 99.98 2 |
|
| fmvsm_s_conf0.1_n | | | 99.29 63 | 99.10 76 | 99.86 21 | 99.70 101 | 99.65 57 | 99.53 147 | 99.62 41 | 98.74 75 | 99.99 2 | 99.95 3 | 94.53 235 | 99.94 69 | 99.89 13 | 99.96 12 | 99.97 4 |
|
| TSAR-MVS + MP. | | | 99.58 9 | 99.50 13 | 99.81 44 | 99.91 1 | 99.66 53 | 99.63 82 | 99.39 223 | 98.91 58 | 99.78 47 | 99.85 54 | 99.36 2 | 99.94 69 | 98.84 115 | 99.88 51 | 99.82 54 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| XVS | | | 99.53 16 | 99.42 22 | 99.87 11 | 99.85 26 | 99.83 16 | 99.69 55 | 99.68 20 | 98.98 48 | 99.37 160 | 99.74 143 | 98.81 44 | 99.94 69 | 98.79 123 | 99.86 62 | 99.84 40 |
|
| X-MVStestdata | | | 96.55 315 | 95.45 333 | 99.87 11 | 99.85 26 | 99.83 16 | 99.69 55 | 99.68 20 | 98.98 48 | 99.37 160 | 64.01 405 | 98.81 44 | 99.94 69 | 98.79 123 | 99.86 62 | 99.84 40 |
|
| 旧先验2 | | | | | | | | 98.96 331 | | 96.70 281 | 99.47 131 | | | 99.94 69 | 98.19 188 | | |
|
| æ–°å‡ ä½•1 | | | | | 99.75 58 | 99.75 73 | 99.59 70 | | 99.54 85 | 96.76 277 | 99.29 179 | 99.64 192 | 98.43 83 | 99.94 69 | 96.92 294 | 99.66 128 | 99.72 103 |
|
| testdata | | | | | 99.54 97 | 99.75 73 | 98.95 162 | | 99.51 115 | 97.07 255 | 99.43 140 | 99.70 158 | 98.87 37 | 99.94 69 | 97.76 227 | 99.64 131 | 99.72 103 |
|
| HPM-MVS |  | | 99.42 42 | 99.28 55 | 99.83 40 | 99.90 4 | 99.72 42 | 99.81 20 | 99.54 85 | 97.59 199 | 99.68 74 | 99.63 198 | 98.91 34 | 99.94 69 | 98.58 152 | 99.91 31 | 99.84 40 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CHOSEN 1792x2688 | | | 99.19 77 | 99.10 76 | 99.45 123 | 99.89 8 | 98.52 209 | 99.39 219 | 99.94 1 | 98.73 76 | 99.11 217 | 99.89 30 | 95.50 187 | 99.94 69 | 99.50 36 | 99.97 7 | 99.89 20 |
|
| APD-MVS |  | | 99.27 67 | 99.08 80 | 99.84 39 | 99.75 73 | 99.79 30 | 99.50 163 | 99.50 135 | 97.16 245 | 99.77 51 | 99.82 76 | 98.78 48 | 99.94 69 | 97.56 248 | 99.86 62 | 99.80 70 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DELS-MVS | | | 99.48 26 | 99.42 22 | 99.65 73 | 99.72 91 | 99.40 99 | 99.05 308 | 99.66 28 | 99.14 21 | 99.57 113 | 99.80 103 | 98.46 81 | 99.94 69 | 99.57 27 | 99.84 77 | 99.60 146 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| WTY-MVS | | | 99.06 107 | 98.88 114 | 99.61 84 | 99.62 137 | 99.16 125 | 99.37 226 | 99.56 69 | 98.04 154 | 99.53 121 | 99.62 203 | 96.84 138 | 99.94 69 | 98.85 112 | 98.49 215 | 99.72 103 |
|
| DeepC-MVS | | 98.35 2 | 99.30 61 | 99.19 68 | 99.64 78 | 99.82 42 | 99.23 118 | 99.62 88 | 99.55 77 | 98.94 54 | 99.63 96 | 99.95 3 | 95.82 176 | 99.94 69 | 99.37 50 | 99.97 7 | 99.73 97 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| LS3D | | | 99.27 67 | 99.12 74 | 99.74 61 | 99.18 262 | 99.75 39 | 99.56 122 | 99.57 64 | 98.45 96 | 99.49 129 | 99.85 54 | 97.77 109 | 99.94 69 | 98.33 179 | 99.84 77 | 99.52 167 |
|
| SDMVSNet | | | 99.11 99 | 98.90 110 | 99.75 58 | 99.81 46 | 99.59 70 | 99.81 20 | 99.65 33 | 98.78 73 | 99.64 93 | 99.88 36 | 94.56 231 | 99.93 84 | 99.67 21 | 98.26 226 | 99.72 103 |
|
| FE-MVS | | | 98.48 165 | 98.17 179 | 99.40 130 | 99.54 162 | 98.96 157 | 99.68 61 | 98.81 346 | 95.54 339 | 99.62 100 | 99.70 158 | 93.82 260 | 99.93 84 | 97.35 266 | 99.46 144 | 99.32 207 |
|
| SF-MVS | | | 99.38 53 | 99.24 63 | 99.79 49 | 99.79 54 | 99.68 48 | 99.57 116 | 99.54 85 | 97.82 177 | 99.71 68 | 99.80 103 | 98.95 27 | 99.93 84 | 98.19 188 | 99.84 77 | 99.74 92 |
|
| dcpmvs_2 | | | 99.23 75 | 99.58 7 | 98.16 294 | 99.83 39 | 94.68 355 | 99.76 37 | 99.52 101 | 99.07 35 | 99.98 6 | 99.88 36 | 98.56 74 | 99.93 84 | 99.67 21 | 99.98 4 | 99.87 31 |
|
| Anonymous20240529 | | | 98.09 201 | 97.68 237 | 99.34 136 | 99.66 120 | 98.44 219 | 99.40 215 | 99.43 207 | 93.67 365 | 99.22 195 | 99.89 30 | 90.23 336 | 99.93 84 | 99.26 67 | 98.33 220 | 99.66 125 |
|
| ACMMP_NAP | | | 99.47 29 | 99.34 36 | 99.88 5 | 99.87 15 | 99.86 13 | 99.47 184 | 99.48 155 | 98.05 153 | 99.76 56 | 99.86 49 | 98.82 43 | 99.93 84 | 98.82 122 | 99.91 31 | 99.84 40 |
|
| EI-MVSNet-UG-set | | | 99.58 9 | 99.57 8 | 99.64 78 | 99.78 56 | 99.14 131 | 99.60 95 | 99.45 193 | 99.01 40 | 99.90 18 | 99.83 68 | 98.98 23 | 99.93 84 | 99.59 25 | 99.95 16 | 99.86 33 |
|
| æ— å…ˆéªŒ | | | | | | | | 98.99 324 | 99.51 115 | 96.89 271 | | | | 99.93 84 | 97.53 251 | | 99.72 103 |
|
| VDDNet | | | 97.55 282 | 97.02 300 | 99.16 168 | 99.49 181 | 98.12 235 | 99.38 224 | 99.30 275 | 95.35 341 | 99.68 74 | 99.90 26 | 82.62 384 | 99.93 84 | 99.31 58 | 98.13 237 | 99.42 193 |
|
| ab-mvs | | | 98.86 128 | 98.63 142 | 99.54 97 | 99.64 128 | 99.19 120 | 99.44 194 | 99.54 85 | 97.77 180 | 99.30 176 | 99.81 90 | 94.20 245 | 99.93 84 | 99.17 74 | 98.82 196 | 99.49 177 |
|
| F-COLMAP | | | 99.19 77 | 99.04 85 | 99.64 78 | 99.78 56 | 99.27 113 | 99.42 205 | 99.54 85 | 97.29 234 | 99.41 147 | 99.59 212 | 98.42 85 | 99.93 84 | 98.19 188 | 99.69 123 | 99.73 97 |
|
| Anonymous202405211 | | | 98.30 182 | 97.98 203 | 99.26 157 | 99.57 152 | 98.16 231 | 99.41 207 | 98.55 366 | 96.03 333 | 99.19 204 | 99.74 143 | 91.87 307 | 99.92 95 | 99.16 75 | 98.29 225 | 99.70 113 |
|
| EI-MVSNet-Vis-set | | | 99.58 9 | 99.56 10 | 99.64 78 | 99.78 56 | 99.15 130 | 99.61 94 | 99.45 193 | 99.01 40 | 99.89 19 | 99.82 76 | 99.01 18 | 99.92 95 | 99.56 28 | 99.95 16 | 99.85 36 |
|
| VDD-MVS | | | 97.73 262 | 97.35 278 | 98.88 211 | 99.47 190 | 97.12 279 | 99.34 238 | 98.85 342 | 98.19 127 | 99.67 78 | 99.85 54 | 82.98 382 | 99.92 95 | 99.49 40 | 98.32 224 | 99.60 146 |
|
| VNet | | | 99.11 99 | 98.90 110 | 99.73 64 | 99.52 167 | 99.56 75 | 99.41 207 | 99.39 223 | 99.01 40 | 99.74 60 | 99.78 121 | 95.56 185 | 99.92 95 | 99.52 34 | 98.18 233 | 99.72 103 |
|
| XVG-OURS-SEG-HR | | | 98.69 153 | 98.62 147 | 98.89 209 | 99.71 96 | 97.74 255 | 99.12 293 | 99.54 85 | 98.44 99 | 99.42 143 | 99.71 154 | 94.20 245 | 99.92 95 | 98.54 162 | 98.90 190 | 99.00 236 |
|
| HPM-MVS_fast | | | 99.51 18 | 99.40 25 | 99.85 28 | 99.91 1 | 99.79 30 | 99.76 37 | 99.56 69 | 97.72 186 | 99.76 56 | 99.75 138 | 99.13 12 | 99.92 95 | 99.07 83 | 99.92 24 | 99.85 36 |
|
| HY-MVS | | 97.30 7 | 98.85 135 | 98.64 141 | 99.47 120 | 99.42 200 | 99.08 139 | 99.62 88 | 99.36 240 | 97.39 226 | 99.28 180 | 99.68 174 | 96.44 154 | 99.92 95 | 98.37 175 | 98.22 228 | 99.40 197 |
|
| DP-MVS | | | 99.16 83 | 98.95 105 | 99.78 52 | 99.77 62 | 99.53 82 | 99.41 207 | 99.50 135 | 97.03 261 | 99.04 233 | 99.88 36 | 97.39 116 | 99.92 95 | 98.66 139 | 99.90 39 | 99.87 31 |
|
| IB-MVS | | 95.67 18 | 96.22 321 | 95.44 334 | 98.57 249 | 99.21 255 | 96.70 305 | 98.65 364 | 97.74 383 | 96.71 280 | 97.27 351 | 98.54 362 | 86.03 368 | 99.92 95 | 98.47 168 | 86.30 386 | 99.10 220 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| DeepC-MVS_fast | | 98.69 1 | 99.49 22 | 99.39 27 | 99.77 55 | 99.63 131 | 99.59 70 | 99.36 230 | 99.46 182 | 99.07 35 | 99.79 42 | 99.82 76 | 98.85 39 | 99.92 95 | 98.68 137 | 99.87 54 | 99.82 54 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 9.14 | | | | 99.10 76 | | 99.72 91 | | 99.40 215 | 99.51 115 | 97.53 209 | 99.64 93 | 99.78 121 | 98.84 41 | 99.91 105 | 97.63 239 | 99.82 90 | |
|
| SMA-MVS |  | | 99.44 37 | 99.30 49 | 99.85 28 | 99.73 87 | 99.83 16 | 99.56 122 | 99.47 173 | 97.45 218 | 99.78 47 | 99.82 76 | 99.18 10 | 99.91 105 | 98.79 123 | 99.89 48 | 99.81 61 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| TEST9 | | | | | | 99.67 111 | 99.65 57 | 99.05 308 | 99.41 212 | 96.22 318 | 98.95 246 | 99.49 247 | 98.77 51 | 99.91 105 | | | |
|
| train_agg | | | 99.02 112 | 98.77 127 | 99.77 55 | 99.67 111 | 99.65 57 | 99.05 308 | 99.41 212 | 96.28 312 | 98.95 246 | 99.49 247 | 98.76 52 | 99.91 105 | 97.63 239 | 99.72 118 | 99.75 88 |
|
| test_8 | | | | | | 99.67 111 | 99.61 67 | 99.03 313 | 99.41 212 | 96.28 312 | 98.93 250 | 99.48 252 | 98.76 52 | 99.91 105 | | | |
|
| agg_prior | | | | | | 99.67 111 | 99.62 65 | | 99.40 220 | | 98.87 260 | | | 99.91 105 | | | |
|
| 原ACMM1 | | | | | 99.65 73 | 99.73 87 | 99.33 103 | | 99.47 173 | 97.46 215 | 99.12 215 | 99.66 185 | 98.67 66 | 99.91 105 | 97.70 236 | 99.69 123 | 99.71 112 |
|
| LFMVS | | | 97.90 234 | 97.35 278 | 99.54 97 | 99.52 167 | 99.01 148 | 99.39 219 | 98.24 373 | 97.10 253 | 99.65 89 | 99.79 115 | 84.79 375 | 99.91 105 | 99.28 63 | 98.38 217 | 99.69 115 |
|
| XVG-OURS | | | 98.73 149 | 98.68 135 | 98.88 211 | 99.70 101 | 97.73 256 | 98.92 338 | 99.55 77 | 98.52 91 | 99.45 134 | 99.84 64 | 95.27 195 | 99.91 105 | 98.08 199 | 98.84 194 | 99.00 236 |
|
| PLC |  | 97.94 4 | 99.02 112 | 98.85 119 | 99.53 105 | 99.66 120 | 99.01 148 | 99.24 273 | 99.52 101 | 96.85 273 | 99.27 184 | 99.48 252 | 98.25 93 | 99.91 105 | 97.76 227 | 99.62 134 | 99.65 129 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| PCF-MVS | | 97.08 14 | 97.66 275 | 97.06 299 | 99.47 120 | 99.61 141 | 99.09 136 | 98.04 389 | 99.25 287 | 91.24 380 | 98.51 305 | 99.70 158 | 94.55 233 | 99.91 105 | 92.76 369 | 99.85 69 | 99.42 193 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| UWE-MVS | | | 97.58 281 | 97.29 288 | 98.48 260 | 99.09 285 | 96.25 323 | 99.01 321 | 96.61 394 | 97.86 167 | 99.19 204 | 99.01 336 | 88.72 348 | 99.90 116 | 97.38 264 | 98.69 202 | 99.28 210 |
|
| test_vis1_rt | | | 95.81 330 | 95.65 330 | 96.32 356 | 99.67 111 | 91.35 383 | 99.49 174 | 96.74 392 | 98.25 117 | 95.24 371 | 98.10 375 | 74.96 390 | 99.90 116 | 99.53 32 | 98.85 193 | 97.70 375 |
|
| FA-MVS(test-final) | | | 98.75 146 | 98.53 160 | 99.41 129 | 99.55 160 | 99.05 144 | 99.80 25 | 99.01 318 | 96.59 294 | 99.58 110 | 99.59 212 | 95.39 190 | 99.90 116 | 97.78 223 | 99.49 143 | 99.28 210 |
|
| MCST-MVS | | | 99.43 40 | 99.30 49 | 99.82 41 | 99.79 54 | 99.74 41 | 99.29 251 | 99.40 220 | 98.79 70 | 99.52 123 | 99.62 203 | 98.91 34 | 99.90 116 | 98.64 141 | 99.75 112 | 99.82 54 |
|
| CDPH-MVS | | | 99.13 89 | 98.91 109 | 99.80 46 | 99.75 73 | 99.71 44 | 99.15 287 | 99.41 212 | 96.60 292 | 99.60 106 | 99.55 226 | 98.83 42 | 99.90 116 | 97.48 255 | 99.83 86 | 99.78 80 |
|
| NCCC | | | 99.34 57 | 99.19 68 | 99.79 49 | 99.61 141 | 99.65 57 | 99.30 246 | 99.48 155 | 98.86 60 | 99.21 198 | 99.63 198 | 98.72 61 | 99.90 116 | 98.25 184 | 99.63 133 | 99.80 70 |
|
| 114514_t | | | 98.93 120 | 98.67 136 | 99.72 65 | 99.85 26 | 99.53 82 | 99.62 88 | 99.59 57 | 92.65 375 | 99.71 68 | 99.78 121 | 98.06 102 | 99.90 116 | 98.84 115 | 99.91 31 | 99.74 92 |
|
| 1112_ss | | | 98.98 116 | 98.77 127 | 99.59 87 | 99.68 110 | 99.02 146 | 99.25 271 | 99.48 155 | 97.23 240 | 99.13 213 | 99.58 216 | 96.93 137 | 99.90 116 | 98.87 105 | 98.78 199 | 99.84 40 |
|
| PHI-MVS | | | 99.30 61 | 99.17 70 | 99.70 67 | 99.56 156 | 99.52 85 | 99.58 109 | 99.80 8 | 97.12 249 | 99.62 100 | 99.73 149 | 98.58 72 | 99.90 116 | 98.61 146 | 99.91 31 | 99.68 119 |
|
| AdaColmap |  | | 99.01 115 | 98.80 123 | 99.66 69 | 99.56 156 | 99.54 79 | 99.18 282 | 99.70 15 | 98.18 131 | 99.35 167 | 99.63 198 | 96.32 157 | 99.90 116 | 97.48 255 | 99.77 107 | 99.55 159 |
|
| COLMAP_ROB |  | 97.56 6 | 98.86 128 | 98.75 129 | 99.17 167 | 99.88 11 | 98.53 205 | 99.34 238 | 99.59 57 | 97.55 205 | 98.70 284 | 99.89 30 | 95.83 175 | 99.90 116 | 98.10 194 | 99.90 39 | 99.08 225 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| thisisatest0530 | | | 98.35 178 | 98.03 198 | 99.31 143 | 99.63 131 | 98.56 202 | 99.54 139 | 96.75 391 | 97.53 209 | 99.73 62 | 99.65 186 | 91.25 324 | 99.89 127 | 98.62 143 | 99.56 138 | 99.48 178 |
|
| tttt0517 | | | 98.42 170 | 98.14 183 | 99.28 155 | 99.66 120 | 98.38 223 | 99.74 44 | 96.85 389 | 97.68 192 | 99.79 42 | 99.74 143 | 91.39 321 | 99.89 127 | 98.83 118 | 99.56 138 | 99.57 156 |
|
| test12 | | | | | 99.75 58 | 99.64 128 | 99.61 67 | | 99.29 279 | | 99.21 198 | | 98.38 87 | 99.89 127 | | 99.74 115 | 99.74 92 |
|
| Test_1112_low_res | | | 98.89 123 | 98.66 139 | 99.57 92 | 99.69 106 | 98.95 162 | 99.03 313 | 99.47 173 | 96.98 263 | 99.15 211 | 99.23 312 | 96.77 141 | 99.89 127 | 98.83 118 | 98.78 199 | 99.86 33 |
|
| CNLPA | | | 99.14 87 | 98.99 97 | 99.59 87 | 99.58 150 | 99.41 98 | 99.16 284 | 99.44 201 | 98.45 96 | 99.19 204 | 99.49 247 | 98.08 101 | 99.89 127 | 97.73 231 | 99.75 112 | 99.48 178 |
|
| sd_testset | | | 98.75 146 | 98.57 156 | 99.29 151 | 99.81 46 | 98.26 227 | 99.56 122 | 99.62 41 | 98.78 73 | 99.64 93 | 99.88 36 | 92.02 304 | 99.88 132 | 99.54 30 | 98.26 226 | 99.72 103 |
|
| APD_test1 | | | 95.87 328 | 96.49 312 | 94.00 362 | 99.53 163 | 84.01 390 | 99.54 139 | 99.32 267 | 95.91 335 | 97.99 332 | 99.85 54 | 85.49 371 | 99.88 132 | 91.96 372 | 98.84 194 | 98.12 357 |
|
| diffmvs |  | | 99.14 87 | 99.02 91 | 99.51 113 | 99.61 141 | 98.96 157 | 99.28 255 | 99.49 143 | 98.46 95 | 99.72 67 | 99.71 154 | 96.50 150 | 99.88 132 | 99.31 58 | 99.11 171 | 99.67 122 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PVSNet_BlendedMVS | | | 98.86 128 | 98.80 123 | 99.03 182 | 99.76 65 | 98.79 184 | 99.28 255 | 99.91 3 | 97.42 223 | 99.67 78 | 99.37 280 | 97.53 113 | 99.88 132 | 98.98 90 | 97.29 281 | 98.42 340 |
|
| PVSNet_Blended | | | 99.08 105 | 98.97 101 | 99.42 128 | 99.76 65 | 98.79 184 | 98.78 352 | 99.91 3 | 96.74 278 | 99.67 78 | 99.49 247 | 97.53 113 | 99.88 132 | 98.98 90 | 99.85 69 | 99.60 146 |
|
| MVS | | | 97.28 298 | 96.55 310 | 99.48 117 | 98.78 331 | 98.95 162 | 99.27 260 | 99.39 223 | 83.53 392 | 98.08 327 | 99.54 231 | 96.97 135 | 99.87 137 | 94.23 351 | 99.16 165 | 99.63 140 |
|
| MG-MVS | | | 99.13 89 | 99.02 91 | 99.45 123 | 99.57 152 | 98.63 196 | 99.07 303 | 99.34 250 | 98.99 45 | 99.61 103 | 99.82 76 | 97.98 104 | 99.87 137 | 97.00 285 | 99.80 97 | 99.85 36 |
|
| MSDG | | | 98.98 116 | 98.80 123 | 99.53 105 | 99.76 65 | 99.19 120 | 98.75 355 | 99.55 77 | 97.25 237 | 99.47 131 | 99.77 129 | 97.82 107 | 99.87 137 | 96.93 292 | 99.90 39 | 99.54 161 |
|
| ETV-MVS | | | 99.26 69 | 99.21 66 | 99.40 130 | 99.46 191 | 99.30 109 | 99.56 122 | 99.52 101 | 98.52 91 | 99.44 139 | 99.27 307 | 98.41 86 | 99.86 140 | 99.10 79 | 99.59 136 | 99.04 232 |
|
| thisisatest0515 | | | 98.14 196 | 97.79 221 | 99.19 165 | 99.50 179 | 98.50 212 | 98.61 366 | 96.82 390 | 96.95 267 | 99.54 119 | 99.43 263 | 91.66 316 | 99.86 140 | 98.08 199 | 99.51 142 | 99.22 214 |
|
| thres600view7 | | | 97.86 239 | 97.51 254 | 98.92 200 | 99.72 91 | 97.95 246 | 99.59 101 | 98.74 353 | 97.94 161 | 99.27 184 | 98.62 359 | 91.75 310 | 99.86 140 | 93.73 356 | 98.19 232 | 98.96 242 |
|
| lupinMVS | | | 99.13 89 | 99.01 95 | 99.46 122 | 99.51 170 | 98.94 165 | 99.05 308 | 99.16 301 | 97.86 167 | 99.80 40 | 99.56 223 | 97.39 116 | 99.86 140 | 98.94 94 | 99.85 69 | 99.58 154 |
|
| PVSNet | | 96.02 17 | 98.85 135 | 98.84 120 | 98.89 209 | 99.73 87 | 97.28 270 | 98.32 382 | 99.60 54 | 97.86 167 | 99.50 126 | 99.57 220 | 96.75 142 | 99.86 140 | 98.56 158 | 99.70 122 | 99.54 161 |
|
| MAR-MVS | | | 98.86 128 | 98.63 142 | 99.54 97 | 99.37 215 | 99.66 53 | 99.45 188 | 99.54 85 | 96.61 290 | 99.01 236 | 99.40 272 | 97.09 129 | 99.86 140 | 97.68 238 | 99.53 141 | 99.10 220 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| test2506 | | | 96.81 312 | 96.65 308 | 97.29 337 | 99.74 80 | 92.21 380 | 99.60 95 | 85.06 409 | 99.13 22 | 99.77 51 | 99.93 9 | 87.82 363 | 99.85 146 | 99.38 48 | 99.38 149 | 99.80 70 |
|
| AllTest | | | 98.87 125 | 98.72 130 | 99.31 143 | 99.86 20 | 98.48 215 | 99.56 122 | 99.61 48 | 97.85 170 | 99.36 164 | 99.85 54 | 95.95 168 | 99.85 146 | 96.66 305 | 99.83 86 | 99.59 150 |
|
| TestCases | | | | | 99.31 143 | 99.86 20 | 98.48 215 | | 99.61 48 | 97.85 170 | 99.36 164 | 99.85 54 | 95.95 168 | 99.85 146 | 96.66 305 | 99.83 86 | 99.59 150 |
|
| jason | | | 99.13 89 | 99.03 87 | 99.45 123 | 99.46 191 | 98.87 172 | 99.12 293 | 99.26 285 | 98.03 156 | 99.79 42 | 99.65 186 | 97.02 132 | 99.85 146 | 99.02 87 | 99.90 39 | 99.65 129 |
| jason: jason. |
| CNVR-MVS | | | 99.42 42 | 99.30 49 | 99.78 52 | 99.62 137 | 99.71 44 | 99.26 269 | 99.52 101 | 98.82 65 | 99.39 155 | 99.71 154 | 98.96 24 | 99.85 146 | 98.59 151 | 99.80 97 | 99.77 82 |
|
| PAPM_NR | | | 99.04 109 | 98.84 120 | 99.66 69 | 99.74 80 | 99.44 94 | 99.39 219 | 99.38 231 | 97.70 190 | 99.28 180 | 99.28 304 | 98.34 89 | 99.85 146 | 96.96 289 | 99.45 145 | 99.69 115 |
|
| testing99 | | | 97.36 295 | 96.94 302 | 98.63 242 | 99.18 262 | 96.70 305 | 99.30 246 | 98.93 326 | 97.71 187 | 98.23 320 | 98.26 369 | 84.92 374 | 99.84 152 | 98.04 204 | 97.85 245 | 99.35 202 |
|
| testing222 | | | 97.16 303 | 96.50 311 | 99.16 168 | 99.16 271 | 98.47 217 | 99.27 260 | 98.66 362 | 97.71 187 | 98.23 320 | 98.15 371 | 82.28 386 | 99.84 152 | 97.36 265 | 97.66 250 | 99.18 216 |
|
| test1111 | | | 98.04 211 | 98.11 187 | 97.83 317 | 99.74 80 | 93.82 365 | 99.58 109 | 95.40 398 | 99.12 25 | 99.65 89 | 99.93 9 | 90.73 329 | 99.84 152 | 99.43 46 | 99.38 149 | 99.82 54 |
|
| ECVR-MVS |  | | 98.04 211 | 98.05 196 | 98.00 306 | 99.74 80 | 94.37 360 | 99.59 101 | 94.98 399 | 99.13 22 | 99.66 83 | 99.93 9 | 90.67 330 | 99.84 152 | 99.40 47 | 99.38 149 | 99.80 70 |
|
| test_yl | | | 98.86 128 | 98.63 142 | 99.54 97 | 99.49 181 | 99.18 122 | 99.50 163 | 99.07 313 | 98.22 122 | 99.61 103 | 99.51 241 | 95.37 191 | 99.84 152 | 98.60 149 | 98.33 220 | 99.59 150 |
|
| DCV-MVSNet | | | 98.86 128 | 98.63 142 | 99.54 97 | 99.49 181 | 99.18 122 | 99.50 163 | 99.07 313 | 98.22 122 | 99.61 103 | 99.51 241 | 95.37 191 | 99.84 152 | 98.60 149 | 98.33 220 | 99.59 150 |
|
| Fast-Effi-MVS+ | | | 98.70 151 | 98.43 164 | 99.51 113 | 99.51 170 | 99.28 111 | 99.52 148 | 99.47 173 | 96.11 328 | 99.01 236 | 99.34 290 | 96.20 161 | 99.84 152 | 97.88 212 | 98.82 196 | 99.39 198 |
|
| TSAR-MVS + GP. | | | 99.36 55 | 99.36 32 | 99.36 135 | 99.67 111 | 98.61 199 | 99.07 303 | 99.33 257 | 99.00 43 | 99.82 35 | 99.81 90 | 99.06 16 | 99.84 152 | 99.09 80 | 99.42 147 | 99.65 129 |
|
| tpmrst | | | 98.33 179 | 98.48 162 | 97.90 312 | 99.16 271 | 94.78 353 | 99.31 244 | 99.11 306 | 97.27 235 | 99.45 134 | 99.59 212 | 95.33 193 | 99.84 152 | 98.48 165 | 98.61 204 | 99.09 224 |
|
| Vis-MVSNet |  | | 99.12 95 | 98.97 101 | 99.56 94 | 99.78 56 | 99.10 135 | 99.68 61 | 99.66 28 | 98.49 93 | 99.86 27 | 99.87 44 | 94.77 218 | 99.84 152 | 99.19 71 | 99.41 148 | 99.74 92 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| PAPR | | | 98.63 160 | 98.34 170 | 99.51 113 | 99.40 208 | 99.03 145 | 98.80 350 | 99.36 240 | 96.33 309 | 99.00 240 | 99.12 326 | 98.46 81 | 99.84 152 | 95.23 338 | 99.37 156 | 99.66 125 |
|
| PatchMatch-RL | | | 98.84 138 | 98.62 147 | 99.52 111 | 99.71 96 | 99.28 111 | 99.06 306 | 99.77 9 | 97.74 185 | 99.50 126 | 99.53 235 | 95.41 189 | 99.84 152 | 97.17 279 | 99.64 131 | 99.44 191 |
|
| EPP-MVSNet | | | 99.13 89 | 98.99 97 | 99.53 105 | 99.65 126 | 99.06 142 | 99.81 20 | 99.33 257 | 97.43 221 | 99.60 106 | 99.88 36 | 97.14 126 | 99.84 152 | 99.13 76 | 98.94 185 | 99.69 115 |
|
| thres100view900 | | | 97.76 255 | 97.45 261 | 98.69 239 | 99.72 91 | 97.86 252 | 99.59 101 | 98.74 353 | 97.93 162 | 99.26 188 | 98.62 359 | 91.75 310 | 99.83 165 | 93.22 361 | 98.18 233 | 98.37 346 |
|
| tfpn200view9 | | | 97.72 264 | 97.38 274 | 98.72 237 | 99.69 106 | 97.96 244 | 99.50 163 | 98.73 358 | 97.83 173 | 99.17 209 | 98.45 364 | 91.67 314 | 99.83 165 | 93.22 361 | 98.18 233 | 98.37 346 |
|
| test_prior | | | | | 99.68 68 | 99.67 111 | 99.48 89 | | 99.56 69 | | | | | 99.83 165 | | | 99.74 92 |
|
| 1314 | | | 98.68 155 | 98.54 159 | 99.11 174 | 98.89 315 | 98.65 194 | 99.27 260 | 99.49 143 | 96.89 271 | 97.99 332 | 99.56 223 | 97.72 111 | 99.83 165 | 97.74 230 | 99.27 160 | 98.84 248 |
|
| thres400 | | | 97.77 254 | 97.38 274 | 98.92 200 | 99.69 106 | 97.96 244 | 99.50 163 | 98.73 358 | 97.83 173 | 99.17 209 | 98.45 364 | 91.67 314 | 99.83 165 | 93.22 361 | 98.18 233 | 98.96 242 |
|
| casdiffmvs |  | | 99.13 89 | 98.98 100 | 99.56 94 | 99.65 126 | 99.16 125 | 99.56 122 | 99.50 135 | 98.33 110 | 99.41 147 | 99.86 49 | 95.92 171 | 99.83 165 | 99.45 45 | 99.16 165 | 99.70 113 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CS-MVS-test | | | 99.49 22 | 99.48 15 | 99.54 97 | 99.78 56 | 99.30 109 | 99.89 2 | 99.58 61 | 98.56 87 | 99.73 62 | 99.69 168 | 98.55 75 | 99.82 171 | 99.69 19 | 99.85 69 | 99.48 178 |
|
| MVS_Test | | | 99.10 103 | 98.97 101 | 99.48 117 | 99.49 181 | 99.14 131 | 99.67 64 | 99.34 250 | 97.31 232 | 99.58 110 | 99.76 135 | 97.65 112 | 99.82 171 | 98.87 105 | 99.07 177 | 99.46 186 |
|
| dp | | | 97.75 259 | 97.80 220 | 97.59 329 | 99.10 282 | 93.71 368 | 99.32 241 | 98.88 338 | 96.48 301 | 99.08 224 | 99.55 226 | 92.67 289 | 99.82 171 | 96.52 308 | 98.58 207 | 99.24 213 |
|
| RPSCF | | | 98.22 186 | 98.62 147 | 96.99 343 | 99.82 42 | 91.58 382 | 99.72 49 | 99.44 201 | 96.61 290 | 99.66 83 | 99.89 30 | 95.92 171 | 99.82 171 | 97.46 258 | 99.10 174 | 99.57 156 |
|
| PMMVS | | | 98.80 142 | 98.62 147 | 99.34 136 | 99.27 242 | 98.70 190 | 98.76 354 | 99.31 271 | 97.34 229 | 99.21 198 | 99.07 328 | 97.20 125 | 99.82 171 | 98.56 158 | 98.87 191 | 99.52 167 |
|
| EIA-MVS | | | 99.18 79 | 99.09 79 | 99.45 123 | 99.49 181 | 99.18 122 | 99.67 64 | 99.53 96 | 97.66 195 | 99.40 152 | 99.44 261 | 98.10 99 | 99.81 176 | 98.94 94 | 99.62 134 | 99.35 202 |
|
| Effi-MVS+ | | | 98.81 139 | 98.59 154 | 99.48 117 | 99.46 191 | 99.12 134 | 98.08 388 | 99.50 135 | 97.50 213 | 99.38 158 | 99.41 269 | 96.37 156 | 99.81 176 | 99.11 78 | 98.54 212 | 99.51 173 |
|
| thres200 | | | 97.61 279 | 97.28 289 | 98.62 243 | 99.64 128 | 98.03 238 | 99.26 269 | 98.74 353 | 97.68 192 | 99.09 223 | 98.32 368 | 91.66 316 | 99.81 176 | 92.88 366 | 98.22 228 | 98.03 362 |
|
| tpmvs | | | 97.98 222 | 98.02 200 | 97.84 316 | 99.04 296 | 94.73 354 | 99.31 244 | 99.20 296 | 96.10 332 | 98.76 274 | 99.42 265 | 94.94 203 | 99.81 176 | 96.97 288 | 98.45 216 | 98.97 240 |
|
| casdiffmvs_mvg |  | | 99.15 85 | 99.02 91 | 99.55 96 | 99.66 120 | 99.09 136 | 99.64 78 | 99.56 69 | 98.26 116 | 99.45 134 | 99.87 44 | 96.03 165 | 99.81 176 | 99.54 30 | 99.15 168 | 99.73 97 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DeepPCF-MVS | | 98.18 3 | 98.81 139 | 99.37 30 | 97.12 341 | 99.60 146 | 91.75 381 | 98.61 366 | 99.44 201 | 99.35 12 | 99.83 34 | 99.85 54 | 98.70 63 | 99.81 176 | 99.02 87 | 99.91 31 | 99.81 61 |
|
| DPM-MVS | | | 98.95 119 | 98.71 132 | 99.66 69 | 99.63 131 | 99.55 77 | 98.64 365 | 99.10 307 | 97.93 162 | 99.42 143 | 99.55 226 | 98.67 66 | 99.80 182 | 95.80 323 | 99.68 126 | 99.61 144 |
|
| DP-MVS Recon | | | 99.12 95 | 98.95 105 | 99.65 73 | 99.74 80 | 99.70 46 | 99.27 260 | 99.57 64 | 96.40 308 | 99.42 143 | 99.68 174 | 98.75 55 | 99.80 182 | 97.98 206 | 99.72 118 | 99.44 191 |
|
| MVS_111021_LR | | | 99.41 47 | 99.33 38 | 99.65 73 | 99.77 62 | 99.51 86 | 98.94 336 | 99.85 6 | 98.82 65 | 99.65 89 | 99.74 143 | 98.51 78 | 99.80 182 | 98.83 118 | 99.89 48 | 99.64 136 |
|
| CS-MVS | | | 99.50 20 | 99.48 15 | 99.54 97 | 99.76 65 | 99.42 96 | 99.90 1 | 99.55 77 | 98.56 87 | 99.78 47 | 99.70 158 | 98.65 68 | 99.79 185 | 99.65 23 | 99.78 104 | 99.41 195 |
|
| Fast-Effi-MVS+-dtu | | | 98.77 145 | 98.83 122 | 98.60 244 | 99.41 203 | 96.99 293 | 99.52 148 | 99.49 143 | 98.11 140 | 99.24 190 | 99.34 290 | 96.96 136 | 99.79 185 | 97.95 208 | 99.45 145 | 99.02 235 |
|
| baseline1 | | | 98.31 180 | 97.95 207 | 99.38 134 | 99.50 179 | 98.74 187 | 99.59 101 | 98.93 326 | 98.41 100 | 99.14 212 | 99.60 210 | 94.59 229 | 99.79 185 | 98.48 165 | 93.29 359 | 99.61 144 |
|
| baseline | | | 99.15 85 | 99.02 91 | 99.53 105 | 99.66 120 | 99.14 131 | 99.72 49 | 99.48 155 | 98.35 107 | 99.42 143 | 99.84 64 | 96.07 163 | 99.79 185 | 99.51 35 | 99.14 169 | 99.67 122 |
|
| PVSNet_0 | | 94.43 19 | 96.09 326 | 95.47 332 | 97.94 309 | 99.31 232 | 94.34 362 | 97.81 390 | 99.70 15 | 97.12 249 | 97.46 345 | 98.75 356 | 89.71 340 | 99.79 185 | 97.69 237 | 81.69 392 | 99.68 119 |
|
| API-MVS | | | 99.04 109 | 99.03 87 | 99.06 178 | 99.40 208 | 99.31 107 | 99.55 134 | 99.56 69 | 98.54 89 | 99.33 171 | 99.39 276 | 98.76 52 | 99.78 190 | 96.98 287 | 99.78 104 | 98.07 359 |
|
| OMC-MVS | | | 99.08 105 | 99.04 85 | 99.20 164 | 99.67 111 | 98.22 229 | 99.28 255 | 99.52 101 | 98.07 148 | 99.66 83 | 99.81 90 | 97.79 108 | 99.78 190 | 97.79 222 | 99.81 93 | 99.60 146 |
|
| GeoE | | | 98.85 135 | 98.62 147 | 99.53 105 | 99.61 141 | 99.08 139 | 99.80 25 | 99.51 115 | 97.10 253 | 99.31 174 | 99.78 121 | 95.23 199 | 99.77 192 | 98.21 186 | 99.03 180 | 99.75 88 |
|
| alignmvs | | | 98.81 139 | 98.56 158 | 99.58 90 | 99.43 198 | 99.42 96 | 99.51 156 | 98.96 324 | 98.61 84 | 99.35 167 | 98.92 348 | 94.78 215 | 99.77 192 | 99.35 51 | 98.11 238 | 99.54 161 |
|
| tpm cat1 | | | 97.39 294 | 97.36 276 | 97.50 332 | 99.17 269 | 93.73 367 | 99.43 198 | 99.31 271 | 91.27 379 | 98.71 278 | 99.08 327 | 94.31 243 | 99.77 192 | 96.41 312 | 98.50 214 | 99.00 236 |
|
| CostFormer | | | 97.72 264 | 97.73 233 | 97.71 324 | 99.15 275 | 94.02 364 | 99.54 139 | 99.02 317 | 94.67 356 | 99.04 233 | 99.35 286 | 92.35 301 | 99.77 192 | 98.50 164 | 97.94 241 | 99.34 205 |
|
| test_241102_ONE | | | | | | 99.84 32 | 99.90 2 | | 99.48 155 | 99.07 35 | 99.91 16 | 99.74 143 | 99.20 7 | 99.76 196 | | | |
|
| MDTV_nov1_ep13 | | | | 98.32 172 | | 99.11 279 | 94.44 359 | 99.27 260 | 98.74 353 | 97.51 212 | 99.40 152 | 99.62 203 | 94.78 215 | 99.76 196 | 97.59 242 | 98.81 198 | |
|
| canonicalmvs | | | 99.02 112 | 98.86 118 | 99.51 113 | 99.42 200 | 99.32 104 | 99.80 25 | 99.48 155 | 98.63 82 | 99.31 174 | 98.81 353 | 97.09 129 | 99.75 198 | 99.27 66 | 97.90 242 | 99.47 184 |
|
| Effi-MVS+-dtu | | | 98.78 143 | 98.89 113 | 98.47 265 | 99.33 225 | 96.91 299 | 99.57 116 | 99.30 275 | 98.47 94 | 99.41 147 | 98.99 338 | 96.78 140 | 99.74 199 | 98.73 129 | 99.38 149 | 98.74 262 |
|
| patchmatchnet-post | | | | | | | | | | | | 98.70 357 | 94.79 214 | 99.74 199 | | | |
|
| SCA | | | 98.19 190 | 98.16 180 | 98.27 289 | 99.30 233 | 95.55 336 | 99.07 303 | 98.97 322 | 97.57 202 | 99.43 140 | 99.57 220 | 92.72 284 | 99.74 199 | 97.58 243 | 99.20 163 | 99.52 167 |
|
| BH-untuned | | | 98.42 170 | 98.36 168 | 98.59 245 | 99.49 181 | 96.70 305 | 99.27 260 | 99.13 305 | 97.24 239 | 98.80 269 | 99.38 277 | 95.75 178 | 99.74 199 | 97.07 283 | 99.16 165 | 99.33 206 |
|
| BH-RMVSNet | | | 98.41 172 | 98.08 192 | 99.40 130 | 99.41 203 | 98.83 180 | 99.30 246 | 98.77 349 | 97.70 190 | 98.94 248 | 99.65 186 | 92.91 279 | 99.74 199 | 96.52 308 | 99.55 140 | 99.64 136 |
|
| MVS_111021_HR | | | 99.41 47 | 99.32 40 | 99.66 69 | 99.72 91 | 99.47 91 | 98.95 334 | 99.85 6 | 98.82 65 | 99.54 119 | 99.73 149 | 98.51 78 | 99.74 199 | 98.91 99 | 99.88 51 | 99.77 82 |
|
| test_post | | | | | | | | | | | | 65.99 403 | 94.65 228 | 99.73 205 | | | |
|
| XVG-ACMP-BASELINE | | | 97.83 245 | 97.71 235 | 98.20 291 | 99.11 279 | 96.33 320 | 99.41 207 | 99.52 101 | 98.06 152 | 99.05 232 | 99.50 244 | 89.64 342 | 99.73 205 | 97.73 231 | 97.38 279 | 98.53 328 |
|
| HyFIR lowres test | | | 99.11 99 | 98.92 107 | 99.65 73 | 99.90 4 | 99.37 100 | 99.02 316 | 99.91 3 | 97.67 194 | 99.59 109 | 99.75 138 | 95.90 173 | 99.73 205 | 99.53 32 | 99.02 182 | 99.86 33 |
|
| DeepMVS_CX |  | | | | 93.34 365 | 99.29 237 | 82.27 393 | | 99.22 292 | 85.15 390 | 96.33 364 | 99.05 331 | 90.97 327 | 99.73 205 | 93.57 358 | 97.77 247 | 98.01 363 |
|
| Patchmatch-test | | | 97.93 228 | 97.65 240 | 98.77 234 | 99.18 262 | 97.07 284 | 99.03 313 | 99.14 304 | 96.16 323 | 98.74 275 | 99.57 220 | 94.56 231 | 99.72 209 | 93.36 360 | 99.11 171 | 99.52 167 |
|
| LPG-MVS_test | | | 98.22 186 | 98.13 185 | 98.49 258 | 99.33 225 | 97.05 286 | 99.58 109 | 99.55 77 | 97.46 215 | 99.24 190 | 99.83 68 | 92.58 291 | 99.72 209 | 98.09 195 | 97.51 263 | 98.68 281 |
|
| LGP-MVS_train | | | | | 98.49 258 | 99.33 225 | 97.05 286 | | 99.55 77 | 97.46 215 | 99.24 190 | 99.83 68 | 92.58 291 | 99.72 209 | 98.09 195 | 97.51 263 | 98.68 281 |
|
| BH-w/o | | | 98.00 220 | 97.89 216 | 98.32 282 | 99.35 219 | 96.20 325 | 99.01 321 | 98.90 335 | 96.42 306 | 98.38 312 | 99.00 337 | 95.26 197 | 99.72 209 | 96.06 316 | 98.61 204 | 99.03 233 |
|
| ACMP | | 97.20 11 | 98.06 205 | 97.94 209 | 98.45 267 | 99.37 215 | 97.01 291 | 99.44 194 | 99.49 143 | 97.54 208 | 98.45 309 | 99.79 115 | 91.95 306 | 99.72 209 | 97.91 210 | 97.49 268 | 98.62 311 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| LTVRE_ROB | | 97.16 12 | 98.02 215 | 97.90 212 | 98.40 275 | 99.23 250 | 96.80 303 | 99.70 52 | 99.60 54 | 97.12 249 | 98.18 324 | 99.70 158 | 91.73 312 | 99.72 209 | 98.39 172 | 97.45 271 | 98.68 281 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test_post1 | | | | | | | | 99.23 274 | | | | 65.14 404 | 94.18 248 | 99.71 215 | 97.58 243 | | |
|
| ADS-MVSNet | | | 98.20 189 | 98.08 192 | 98.56 252 | 99.33 225 | 96.48 315 | 99.23 274 | 99.15 302 | 96.24 316 | 99.10 220 | 99.67 180 | 94.11 249 | 99.71 215 | 96.81 297 | 99.05 178 | 99.48 178 |
|
| JIA-IIPM | | | 97.50 287 | 97.02 300 | 98.93 198 | 98.73 338 | 97.80 254 | 99.30 246 | 98.97 322 | 91.73 378 | 98.91 252 | 94.86 392 | 95.10 201 | 99.71 215 | 97.58 243 | 97.98 240 | 99.28 210 |
|
| EPMVS | | | 97.82 248 | 97.65 240 | 98.35 279 | 98.88 316 | 95.98 328 | 99.49 174 | 94.71 401 | 97.57 202 | 99.26 188 | 99.48 252 | 92.46 298 | 99.71 215 | 97.87 214 | 99.08 176 | 99.35 202 |
|
| TDRefinement | | | 95.42 334 | 94.57 341 | 97.97 308 | 89.83 402 | 96.11 327 | 99.48 178 | 98.75 350 | 96.74 278 | 96.68 361 | 99.88 36 | 88.65 352 | 99.71 215 | 98.37 175 | 82.74 391 | 98.09 358 |
|
| ACMM | | 97.58 5 | 98.37 177 | 98.34 170 | 98.48 260 | 99.41 203 | 97.10 280 | 99.56 122 | 99.45 193 | 98.53 90 | 99.04 233 | 99.85 54 | 93.00 275 | 99.71 215 | 98.74 127 | 97.45 271 | 98.64 300 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tt0805 | | | 97.97 225 | 97.77 226 | 98.57 249 | 99.59 148 | 96.61 311 | 99.45 188 | 99.08 310 | 98.21 124 | 98.88 257 | 99.80 103 | 88.66 351 | 99.70 221 | 98.58 152 | 97.72 248 | 99.39 198 |
|
| CHOSEN 280x420 | | | 99.12 95 | 99.13 73 | 99.08 175 | 99.66 120 | 97.89 249 | 98.43 376 | 99.71 13 | 98.88 59 | 99.62 100 | 99.76 135 | 96.63 145 | 99.70 221 | 99.46 44 | 99.99 1 | 99.66 125 |
|
| EC-MVSNet | | | 99.44 37 | 99.39 27 | 99.58 90 | 99.56 156 | 99.49 87 | 99.88 4 | 99.58 61 | 98.38 102 | 99.73 62 | 99.69 168 | 98.20 95 | 99.70 221 | 99.64 24 | 99.82 90 | 99.54 161 |
|
| PatchmatchNet |  | | 98.31 180 | 98.36 168 | 98.19 292 | 99.16 271 | 95.32 344 | 99.27 260 | 98.92 329 | 97.37 227 | 99.37 160 | 99.58 216 | 94.90 207 | 99.70 221 | 97.43 261 | 99.21 162 | 99.54 161 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| ACMH | | 97.28 8 | 98.10 200 | 97.99 202 | 98.44 270 | 99.41 203 | 96.96 297 | 99.60 95 | 99.56 69 | 98.09 143 | 98.15 325 | 99.91 20 | 90.87 328 | 99.70 221 | 98.88 102 | 97.45 271 | 98.67 288 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ETVMVS | | | 97.50 287 | 96.90 303 | 99.29 151 | 99.23 250 | 98.78 186 | 99.32 241 | 98.90 335 | 97.52 211 | 98.56 302 | 98.09 376 | 84.72 376 | 99.69 226 | 97.86 215 | 97.88 243 | 99.39 198 |
|
| HQP_MVS | | | 98.27 185 | 98.22 178 | 98.44 270 | 99.29 237 | 96.97 295 | 99.39 219 | 99.47 173 | 98.97 51 | 99.11 217 | 99.61 207 | 92.71 286 | 99.69 226 | 97.78 223 | 97.63 251 | 98.67 288 |
|
| plane_prior5 | | | | | | | | | 99.47 173 | | | | | 99.69 226 | 97.78 223 | 97.63 251 | 98.67 288 |
|
| D2MVS | | | 98.41 172 | 98.50 161 | 98.15 297 | 99.26 244 | 96.62 310 | 99.40 215 | 99.61 48 | 97.71 187 | 98.98 242 | 99.36 283 | 96.04 164 | 99.67 229 | 98.70 132 | 97.41 276 | 98.15 356 |
|
| IS-MVSNet | | | 99.05 108 | 98.87 115 | 99.57 92 | 99.73 87 | 99.32 104 | 99.75 41 | 99.20 296 | 98.02 157 | 99.56 114 | 99.86 49 | 96.54 149 | 99.67 229 | 98.09 195 | 99.13 170 | 99.73 97 |
|
| CLD-MVS | | | 98.16 194 | 98.10 188 | 98.33 280 | 99.29 237 | 96.82 302 | 98.75 355 | 99.44 201 | 97.83 173 | 99.13 213 | 99.55 226 | 92.92 277 | 99.67 229 | 98.32 181 | 97.69 249 | 98.48 332 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| test_fmvs2 | | | 97.25 300 | 97.30 286 | 97.09 342 | 99.43 198 | 93.31 373 | 99.73 47 | 98.87 340 | 98.83 64 | 99.28 180 | 99.80 103 | 84.45 377 | 99.66 232 | 97.88 212 | 97.45 271 | 98.30 348 |
|
| AUN-MVS | | | 96.88 310 | 96.31 316 | 98.59 245 | 99.48 189 | 97.04 289 | 99.27 260 | 99.22 292 | 97.44 220 | 98.51 305 | 99.41 269 | 91.97 305 | 99.66 232 | 97.71 234 | 83.83 389 | 99.07 230 |
|
| UniMVSNet_ETH3D | | | 97.32 297 | 96.81 305 | 98.87 215 | 99.40 208 | 97.46 266 | 99.51 156 | 99.53 96 | 95.86 336 | 98.54 304 | 99.77 129 | 82.44 385 | 99.66 232 | 98.68 137 | 97.52 261 | 99.50 176 |
|
| OPM-MVS | | | 98.19 190 | 98.10 188 | 98.45 267 | 98.88 316 | 97.07 284 | 99.28 255 | 99.38 231 | 98.57 86 | 99.22 195 | 99.81 90 | 92.12 302 | 99.66 232 | 98.08 199 | 97.54 260 | 98.61 320 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ACMH+ | | 97.24 10 | 97.92 231 | 97.78 224 | 98.32 282 | 99.46 191 | 96.68 308 | 99.56 122 | 99.54 85 | 98.41 100 | 97.79 341 | 99.87 44 | 90.18 337 | 99.66 232 | 98.05 203 | 97.18 287 | 98.62 311 |
|
| hse-mvs2 | | | 97.50 287 | 97.14 295 | 98.59 245 | 99.49 181 | 97.05 286 | 99.28 255 | 99.22 292 | 98.94 54 | 99.66 83 | 99.42 265 | 94.93 204 | 99.65 237 | 99.48 41 | 83.80 390 | 99.08 225 |
|
| VPA-MVSNet | | | 98.29 183 | 97.95 207 | 99.30 148 | 99.16 271 | 99.54 79 | 99.50 163 | 99.58 61 | 98.27 115 | 99.35 167 | 99.37 280 | 92.53 293 | 99.65 237 | 99.35 51 | 94.46 342 | 98.72 265 |
|
| TR-MVS | | | 97.76 255 | 97.41 272 | 98.82 226 | 99.06 292 | 97.87 250 | 98.87 344 | 98.56 365 | 96.63 289 | 98.68 286 | 99.22 313 | 92.49 294 | 99.65 237 | 95.40 334 | 97.79 246 | 98.95 244 |
|
| gm-plane-assit | | | | | | 98.54 357 | 92.96 375 | | | 94.65 357 | | 99.15 321 | | 99.64 240 | 97.56 248 | | |
|
| HQP4-MVS | | | | | | | | | | | 98.66 287 | | | 99.64 240 | | | 98.64 300 |
|
| HQP-MVS | | | 98.02 215 | 97.90 212 | 98.37 278 | 99.19 259 | 96.83 300 | 98.98 327 | 99.39 223 | 98.24 118 | 98.66 287 | 99.40 272 | 92.47 295 | 99.64 240 | 97.19 276 | 97.58 256 | 98.64 300 |
|
| PAPM | | | 97.59 280 | 97.09 298 | 99.07 177 | 99.06 292 | 98.26 227 | 98.30 383 | 99.10 307 | 94.88 351 | 98.08 327 | 99.34 290 | 96.27 159 | 99.64 240 | 89.87 380 | 98.92 188 | 99.31 208 |
|
| TAPA-MVS | | 97.07 15 | 97.74 261 | 97.34 281 | 98.94 196 | 99.70 101 | 97.53 264 | 99.25 271 | 99.51 115 | 91.90 377 | 99.30 176 | 99.63 198 | 98.78 48 | 99.64 240 | 88.09 387 | 99.87 54 | 99.65 129 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| XXY-MVS | | | 98.38 176 | 98.09 191 | 99.24 160 | 99.26 244 | 99.32 104 | 99.56 122 | 99.55 77 | 97.45 218 | 98.71 278 | 99.83 68 | 93.23 270 | 99.63 245 | 98.88 102 | 96.32 302 | 98.76 257 |
|
| ITE_SJBPF | | | | | 98.08 299 | 99.29 237 | 96.37 318 | | 98.92 329 | 98.34 108 | 98.83 265 | 99.75 138 | 91.09 325 | 99.62 246 | 95.82 321 | 97.40 277 | 98.25 352 |
|
| LF4IMVS | | | 97.52 284 | 97.46 260 | 97.70 325 | 98.98 306 | 95.55 336 | 99.29 251 | 98.82 345 | 98.07 148 | 98.66 287 | 99.64 192 | 89.97 338 | 99.61 247 | 97.01 284 | 96.68 292 | 97.94 369 |
|
| tpm | | | 97.67 274 | 97.55 248 | 98.03 301 | 99.02 298 | 95.01 350 | 99.43 198 | 98.54 367 | 96.44 304 | 99.12 215 | 99.34 290 | 91.83 309 | 99.60 248 | 97.75 229 | 96.46 298 | 99.48 178 |
|
| tpm2 | | | 97.44 293 | 97.34 281 | 97.74 323 | 99.15 275 | 94.36 361 | 99.45 188 | 98.94 325 | 93.45 370 | 98.90 254 | 99.44 261 | 91.35 322 | 99.59 249 | 97.31 267 | 98.07 239 | 99.29 209 |
|
| baseline2 | | | 97.87 237 | 97.55 248 | 98.82 226 | 99.18 262 | 98.02 239 | 99.41 207 | 96.58 395 | 96.97 264 | 96.51 362 | 99.17 318 | 93.43 267 | 99.57 250 | 97.71 234 | 99.03 180 | 98.86 246 |
|
| MS-PatchMatch | | | 97.24 302 | 97.32 284 | 96.99 343 | 98.45 360 | 93.51 372 | 98.82 348 | 99.32 267 | 97.41 224 | 98.13 326 | 99.30 300 | 88.99 346 | 99.56 251 | 95.68 327 | 99.80 97 | 97.90 372 |
|
| TinyColmap | | | 97.12 305 | 96.89 304 | 97.83 317 | 99.07 289 | 95.52 339 | 98.57 369 | 98.74 353 | 97.58 201 | 97.81 340 | 99.79 115 | 88.16 358 | 99.56 251 | 95.10 339 | 97.21 285 | 98.39 344 |
|
| USDC | | | 97.34 296 | 97.20 293 | 97.75 322 | 99.07 289 | 95.20 346 | 98.51 373 | 99.04 316 | 97.99 158 | 98.31 316 | 99.86 49 | 89.02 345 | 99.55 253 | 95.67 328 | 97.36 280 | 98.49 331 |
|
| MSLP-MVS++ | | | 99.46 31 | 99.47 17 | 99.44 127 | 99.60 146 | 99.16 125 | 99.41 207 | 99.71 13 | 98.98 48 | 99.45 134 | 99.78 121 | 99.19 9 | 99.54 254 | 99.28 63 | 99.84 77 | 99.63 140 |
|
| TAMVS | | | 99.12 95 | 99.08 80 | 99.24 160 | 99.46 191 | 98.55 203 | 99.51 156 | 99.46 182 | 98.09 143 | 99.45 134 | 99.82 76 | 98.34 89 | 99.51 255 | 98.70 132 | 98.93 186 | 99.67 122 |
|
| EPNet_dtu | | | 98.03 213 | 97.96 205 | 98.23 290 | 98.27 363 | 95.54 338 | 99.23 274 | 98.75 350 | 99.02 38 | 97.82 339 | 99.71 154 | 96.11 162 | 99.48 256 | 93.04 364 | 99.65 130 | 99.69 115 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| EG-PatchMatch MVS | | | 95.97 327 | 95.69 329 | 96.81 350 | 97.78 370 | 92.79 376 | 99.16 284 | 98.93 326 | 96.16 323 | 94.08 379 | 99.22 313 | 82.72 383 | 99.47 257 | 95.67 328 | 97.50 265 | 98.17 355 |
|
| MVP-Stereo | | | 97.81 250 | 97.75 231 | 97.99 307 | 97.53 374 | 96.60 312 | 98.96 331 | 98.85 342 | 97.22 241 | 97.23 352 | 99.36 283 | 95.28 194 | 99.46 258 | 95.51 330 | 99.78 104 | 97.92 371 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| CVMVSNet | | | 98.57 162 | 98.67 136 | 98.30 284 | 99.35 219 | 95.59 335 | 99.50 163 | 99.55 77 | 98.60 85 | 99.39 155 | 99.83 68 | 94.48 236 | 99.45 259 | 98.75 126 | 98.56 210 | 99.85 36 |
|
| test-LLR | | | 98.06 205 | 97.90 212 | 98.55 254 | 98.79 328 | 97.10 280 | 98.67 361 | 97.75 381 | 97.34 229 | 98.61 298 | 98.85 350 | 94.45 238 | 99.45 259 | 97.25 270 | 99.38 149 | 99.10 220 |
|
| TESTMET0.1,1 | | | 97.55 282 | 97.27 292 | 98.40 275 | 98.93 311 | 96.53 313 | 98.67 361 | 97.61 384 | 96.96 265 | 98.64 294 | 99.28 304 | 88.63 353 | 99.45 259 | 97.30 268 | 99.38 149 | 99.21 215 |
|
| test-mter | | | 97.49 291 | 97.13 297 | 98.55 254 | 98.79 328 | 97.10 280 | 98.67 361 | 97.75 381 | 96.65 285 | 98.61 298 | 98.85 350 | 88.23 357 | 99.45 259 | 97.25 270 | 99.38 149 | 99.10 220 |
|
| mvs_anonymous | | | 99.03 111 | 98.99 97 | 99.16 168 | 99.38 212 | 98.52 209 | 99.51 156 | 99.38 231 | 97.79 178 | 99.38 158 | 99.81 90 | 97.30 122 | 99.45 259 | 99.35 51 | 98.99 183 | 99.51 173 |
|
| tfpnnormal | | | 97.84 243 | 97.47 258 | 98.98 190 | 99.20 257 | 99.22 119 | 99.64 78 | 99.61 48 | 96.32 310 | 98.27 319 | 99.70 158 | 93.35 269 | 99.44 264 | 95.69 326 | 95.40 325 | 98.27 350 |
|
| v7n | | | 97.87 237 | 97.52 252 | 98.92 200 | 98.76 336 | 98.58 201 | 99.84 13 | 99.46 182 | 96.20 319 | 98.91 252 | 99.70 158 | 94.89 208 | 99.44 264 | 96.03 317 | 93.89 353 | 98.75 259 |
|
| jajsoiax | | | 98.43 169 | 98.28 175 | 98.88 211 | 98.60 353 | 98.43 220 | 99.82 17 | 99.53 96 | 98.19 127 | 98.63 295 | 99.80 103 | 93.22 272 | 99.44 264 | 99.22 69 | 97.50 265 | 98.77 255 |
|
| mvs_tets | | | 98.40 175 | 98.23 177 | 98.91 204 | 98.67 346 | 98.51 211 | 99.66 69 | 99.53 96 | 98.19 127 | 98.65 293 | 99.81 90 | 92.75 281 | 99.44 264 | 99.31 58 | 97.48 269 | 98.77 255 |
|
| Vis-MVSNet (Re-imp) | | | 98.87 125 | 98.72 130 | 99.31 143 | 99.71 96 | 98.88 171 | 99.80 25 | 99.44 201 | 97.91 164 | 99.36 164 | 99.78 121 | 95.49 188 | 99.43 268 | 97.91 210 | 99.11 171 | 99.62 142 |
|
| OPU-MVS | | | | | 99.64 78 | 99.56 156 | 99.72 42 | 99.60 95 | | | | 99.70 158 | 99.27 5 | 99.42 269 | 98.24 185 | 99.80 97 | 99.79 74 |
|
| Anonymous20231211 | | | 97.88 235 | 97.54 251 | 98.90 206 | 99.71 96 | 98.53 205 | 99.48 178 | 99.57 64 | 94.16 361 | 98.81 267 | 99.68 174 | 93.23 270 | 99.42 269 | 98.84 115 | 94.42 344 | 98.76 257 |
|
| VPNet | | | 97.84 243 | 97.44 266 | 99.01 184 | 99.21 255 | 98.94 165 | 99.48 178 | 99.57 64 | 98.38 102 | 99.28 180 | 99.73 149 | 88.89 347 | 99.39 271 | 99.19 71 | 93.27 360 | 98.71 267 |
|
| iter_conf_final | | | 98.71 150 | 98.61 153 | 98.99 188 | 99.49 181 | 98.96 157 | 99.63 82 | 99.41 212 | 98.19 127 | 99.39 155 | 99.77 129 | 94.82 210 | 99.38 272 | 99.30 61 | 97.52 261 | 98.64 300 |
|
| nrg030 | | | 98.64 159 | 98.42 165 | 99.28 155 | 99.05 295 | 99.69 47 | 99.81 20 | 99.46 182 | 98.04 154 | 99.01 236 | 99.82 76 | 96.69 144 | 99.38 272 | 99.34 55 | 94.59 341 | 98.78 252 |
|
| iter_conf05 | | | 98.55 163 | 98.44 163 | 98.87 215 | 99.34 223 | 98.60 200 | 99.55 134 | 99.42 209 | 98.21 124 | 99.37 160 | 99.77 129 | 93.55 266 | 99.38 272 | 99.30 61 | 97.48 269 | 98.63 308 |
|
| GA-MVS | | | 97.85 240 | 97.47 258 | 99.00 186 | 99.38 212 | 97.99 241 | 98.57 369 | 99.15 302 | 97.04 260 | 98.90 254 | 99.30 300 | 89.83 339 | 99.38 272 | 96.70 302 | 98.33 220 | 99.62 142 |
|
| UniMVSNet (Re) | | | 98.29 183 | 98.00 201 | 99.13 173 | 99.00 300 | 99.36 102 | 99.49 174 | 99.51 115 | 97.95 160 | 98.97 244 | 99.13 323 | 96.30 158 | 99.38 272 | 98.36 177 | 93.34 358 | 98.66 296 |
|
| FIs | | | 98.78 143 | 98.63 142 | 99.23 162 | 99.18 262 | 99.54 79 | 99.83 16 | 99.59 57 | 98.28 113 | 98.79 271 | 99.81 90 | 96.75 142 | 99.37 277 | 99.08 82 | 96.38 300 | 98.78 252 |
|
| PS-MVSNAJss | | | 98.92 121 | 98.92 107 | 98.90 206 | 98.78 331 | 98.53 205 | 99.78 32 | 99.54 85 | 98.07 148 | 99.00 240 | 99.76 135 | 99.01 18 | 99.37 277 | 99.13 76 | 97.23 284 | 98.81 249 |
|
| CDS-MVSNet | | | 99.09 104 | 99.03 87 | 99.25 158 | 99.42 200 | 98.73 188 | 99.45 188 | 99.46 182 | 98.11 140 | 99.46 133 | 99.77 129 | 98.01 103 | 99.37 277 | 98.70 132 | 98.92 188 | 99.66 125 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MVS-HIRNet | | | 95.75 331 | 95.16 336 | 97.51 331 | 99.30 233 | 93.69 369 | 98.88 342 | 95.78 396 | 85.09 391 | 98.78 272 | 92.65 394 | 91.29 323 | 99.37 277 | 94.85 343 | 99.85 69 | 99.46 186 |
|
| v1192 | | | 97.81 250 | 97.44 266 | 98.91 204 | 98.88 316 | 98.68 191 | 99.51 156 | 99.34 250 | 96.18 321 | 99.20 201 | 99.34 290 | 94.03 252 | 99.36 281 | 95.32 336 | 95.18 329 | 98.69 276 |
|
| EI-MVSNet | | | 98.67 156 | 98.67 136 | 98.68 240 | 99.35 219 | 97.97 242 | 99.50 163 | 99.38 231 | 96.93 270 | 99.20 201 | 99.83 68 | 97.87 105 | 99.36 281 | 98.38 173 | 97.56 258 | 98.71 267 |
|
| MVSTER | | | 98.49 164 | 98.32 172 | 99.00 186 | 99.35 219 | 99.02 146 | 99.54 139 | 99.38 231 | 97.41 224 | 99.20 201 | 99.73 149 | 93.86 259 | 99.36 281 | 98.87 105 | 97.56 258 | 98.62 311 |
|
| gg-mvs-nofinetune | | | 96.17 324 | 95.32 335 | 98.73 236 | 98.79 328 | 98.14 233 | 99.38 224 | 94.09 402 | 91.07 382 | 98.07 330 | 91.04 398 | 89.62 343 | 99.35 284 | 96.75 299 | 99.09 175 | 98.68 281 |
|
| pm-mvs1 | | | 97.68 271 | 97.28 289 | 98.88 211 | 99.06 292 | 98.62 197 | 99.50 163 | 99.45 193 | 96.32 310 | 97.87 337 | 99.79 115 | 92.47 295 | 99.35 284 | 97.54 250 | 93.54 357 | 98.67 288 |
|
| OurMVSNet-221017-0 | | | 97.88 235 | 97.77 226 | 98.19 292 | 98.71 342 | 96.53 313 | 99.88 4 | 99.00 319 | 97.79 178 | 98.78 272 | 99.94 6 | 91.68 313 | 99.35 284 | 97.21 272 | 96.99 291 | 98.69 276 |
|
| EGC-MVSNET | | | 82.80 363 | 77.86 369 | 97.62 327 | 97.91 367 | 96.12 326 | 99.33 240 | 99.28 281 | 8.40 406 | 25.05 407 | 99.27 307 | 84.11 378 | 99.33 287 | 89.20 382 | 98.22 228 | 97.42 380 |
|
| pmmvs6 | | | 96.53 316 | 96.09 321 | 97.82 319 | 98.69 344 | 95.47 340 | 99.37 226 | 99.47 173 | 93.46 369 | 97.41 346 | 99.78 121 | 87.06 366 | 99.33 287 | 96.92 294 | 92.70 367 | 98.65 298 |
|
| mvsmamba | | | 98.92 121 | 98.87 115 | 99.08 175 | 99.07 289 | 99.16 125 | 99.88 4 | 99.51 115 | 98.15 133 | 99.40 152 | 99.89 30 | 97.12 127 | 99.33 287 | 99.38 48 | 97.40 277 | 98.73 264 |
|
| V42 | | | 98.06 205 | 97.79 221 | 98.86 219 | 98.98 306 | 98.84 177 | 99.69 55 | 99.34 250 | 96.53 296 | 99.30 176 | 99.37 280 | 94.67 226 | 99.32 290 | 97.57 247 | 94.66 339 | 98.42 340 |
|
| lessismore_v0 | | | | | 97.79 321 | 98.69 344 | 95.44 342 | | 94.75 400 | | 95.71 370 | 99.87 44 | 88.69 350 | 99.32 290 | 95.89 320 | 94.93 336 | 98.62 311 |
|
| OpenMVS_ROB |  | 92.34 20 | 94.38 345 | 93.70 351 | 96.41 355 | 97.38 376 | 93.17 374 | 99.06 306 | 98.75 350 | 86.58 389 | 94.84 377 | 98.26 369 | 81.53 387 | 99.32 290 | 89.01 383 | 97.87 244 | 96.76 383 |
|
| bld_raw_dy_0_64 | | | 98.69 153 | 98.58 155 | 98.99 188 | 98.88 316 | 98.96 157 | 99.80 25 | 99.41 212 | 97.91 164 | 99.32 172 | 99.87 44 | 95.70 181 | 99.31 293 | 99.09 80 | 97.27 282 | 98.71 267 |
|
| v8 | | | 97.95 227 | 97.63 244 | 98.93 198 | 98.95 310 | 98.81 183 | 99.80 25 | 99.41 212 | 96.03 333 | 99.10 220 | 99.42 265 | 94.92 206 | 99.30 294 | 96.94 291 | 94.08 350 | 98.66 296 |
|
| v1921920 | | | 97.80 252 | 97.45 261 | 98.84 223 | 98.80 327 | 98.53 205 | 99.52 148 | 99.34 250 | 96.15 325 | 99.24 190 | 99.47 255 | 93.98 254 | 99.29 295 | 95.40 334 | 95.13 331 | 98.69 276 |
|
| anonymousdsp | | | 98.44 168 | 98.28 175 | 98.94 196 | 98.50 358 | 98.96 157 | 99.77 34 | 99.50 135 | 97.07 255 | 98.87 260 | 99.77 129 | 94.76 219 | 99.28 296 | 98.66 139 | 97.60 254 | 98.57 326 |
|
| MVSFormer | | | 99.17 81 | 99.12 74 | 99.29 151 | 99.51 170 | 98.94 165 | 99.88 4 | 99.46 182 | 97.55 205 | 99.80 40 | 99.65 186 | 97.39 116 | 99.28 296 | 99.03 85 | 99.85 69 | 99.65 129 |
|
| test_djsdf | | | 98.67 156 | 98.57 156 | 98.98 190 | 98.70 343 | 98.91 169 | 99.88 4 | 99.46 182 | 97.55 205 | 99.22 195 | 99.88 36 | 95.73 179 | 99.28 296 | 99.03 85 | 97.62 253 | 98.75 259 |
|
| cascas | | | 97.69 269 | 97.43 270 | 98.48 260 | 98.60 353 | 97.30 269 | 98.18 387 | 99.39 223 | 92.96 373 | 98.41 310 | 98.78 355 | 93.77 262 | 99.27 299 | 98.16 192 | 98.61 204 | 98.86 246 |
|
| v144192 | | | 97.92 231 | 97.60 246 | 98.87 215 | 98.83 326 | 98.65 194 | 99.55 134 | 99.34 250 | 96.20 319 | 99.32 172 | 99.40 272 | 94.36 240 | 99.26 300 | 96.37 313 | 95.03 333 | 98.70 272 |
|
| dmvs_re | | | 98.08 203 | 98.16 180 | 97.85 314 | 99.55 160 | 94.67 356 | 99.70 52 | 98.92 329 | 98.15 133 | 99.06 230 | 99.35 286 | 93.67 265 | 99.25 301 | 97.77 226 | 97.25 283 | 99.64 136 |
|
| RRT_MVS | | | 98.70 151 | 98.66 139 | 98.83 225 | 98.90 313 | 98.45 218 | 99.89 2 | 99.28 281 | 97.76 181 | 98.94 248 | 99.92 14 | 96.98 134 | 99.25 301 | 99.28 63 | 97.00 290 | 98.80 250 |
|
| v2v482 | | | 98.06 205 | 97.77 226 | 98.92 200 | 98.90 313 | 98.82 181 | 99.57 116 | 99.36 240 | 96.65 285 | 99.19 204 | 99.35 286 | 94.20 245 | 99.25 301 | 97.72 233 | 94.97 334 | 98.69 276 |
|
| v1240 | | | 97.69 269 | 97.32 284 | 98.79 232 | 98.85 324 | 98.43 220 | 99.48 178 | 99.36 240 | 96.11 328 | 99.27 184 | 99.36 283 | 93.76 263 | 99.24 304 | 94.46 347 | 95.23 328 | 98.70 272 |
|
| v1144 | | | 97.98 222 | 97.69 236 | 98.85 222 | 98.87 320 | 98.66 193 | 99.54 139 | 99.35 246 | 96.27 314 | 99.23 194 | 99.35 286 | 94.67 226 | 99.23 305 | 96.73 300 | 95.16 330 | 98.68 281 |
|
| v10 | | | 97.85 240 | 97.52 252 | 98.86 219 | 98.99 303 | 98.67 192 | 99.75 41 | 99.41 212 | 95.70 337 | 98.98 242 | 99.41 269 | 94.75 220 | 99.23 305 | 96.01 319 | 94.63 340 | 98.67 288 |
|
| WR-MVS_H | | | 98.13 197 | 97.87 217 | 98.90 206 | 99.02 298 | 98.84 177 | 99.70 52 | 99.59 57 | 97.27 235 | 98.40 311 | 99.19 317 | 95.53 186 | 99.23 305 | 98.34 178 | 93.78 355 | 98.61 320 |
|
| miper_enhance_ethall | | | 98.16 194 | 98.08 192 | 98.41 273 | 98.96 309 | 97.72 257 | 98.45 375 | 99.32 267 | 96.95 267 | 98.97 244 | 99.17 318 | 97.06 131 | 99.22 308 | 97.86 215 | 95.99 309 | 98.29 349 |
|
| GG-mvs-BLEND | | | | | 98.45 267 | 98.55 356 | 98.16 231 | 99.43 198 | 93.68 403 | | 97.23 352 | 98.46 363 | 89.30 344 | 99.22 308 | 95.43 333 | 98.22 228 | 97.98 367 |
|
| FC-MVSNet-test | | | 98.75 146 | 98.62 147 | 99.15 172 | 99.08 288 | 99.45 93 | 99.86 12 | 99.60 54 | 98.23 121 | 98.70 284 | 99.82 76 | 96.80 139 | 99.22 308 | 99.07 83 | 96.38 300 | 98.79 251 |
|
| UniMVSNet_NR-MVSNet | | | 98.22 186 | 97.97 204 | 98.96 193 | 98.92 312 | 98.98 150 | 99.48 178 | 99.53 96 | 97.76 181 | 98.71 278 | 99.46 259 | 96.43 155 | 99.22 308 | 98.57 155 | 92.87 365 | 98.69 276 |
|
| DU-MVS | | | 98.08 203 | 97.79 221 | 98.96 193 | 98.87 320 | 98.98 150 | 99.41 207 | 99.45 193 | 97.87 166 | 98.71 278 | 99.50 244 | 94.82 210 | 99.22 308 | 98.57 155 | 92.87 365 | 98.68 281 |
|
| cl____ | | | 98.01 218 | 97.84 219 | 98.55 254 | 99.25 248 | 97.97 242 | 98.71 359 | 99.34 250 | 96.47 303 | 98.59 301 | 99.54 231 | 95.65 183 | 99.21 313 | 97.21 272 | 95.77 315 | 98.46 337 |
|
| WR-MVS | | | 98.06 205 | 97.73 233 | 99.06 178 | 98.86 323 | 99.25 116 | 99.19 281 | 99.35 246 | 97.30 233 | 98.66 287 | 99.43 263 | 93.94 255 | 99.21 313 | 98.58 152 | 94.28 346 | 98.71 267 |
|
| test_0402 | | | 96.64 314 | 96.24 317 | 97.85 314 | 98.85 324 | 96.43 317 | 99.44 194 | 99.26 285 | 93.52 367 | 96.98 359 | 99.52 238 | 88.52 354 | 99.20 315 | 92.58 371 | 97.50 265 | 97.93 370 |
|
| SixPastTwentyTwo | | | 97.50 287 | 97.33 283 | 98.03 301 | 98.65 347 | 96.23 324 | 99.77 34 | 98.68 361 | 97.14 246 | 97.90 335 | 99.93 9 | 90.45 331 | 99.18 316 | 97.00 285 | 96.43 299 | 98.67 288 |
|
| cl22 | | | 97.85 240 | 97.64 243 | 98.48 260 | 99.09 285 | 97.87 250 | 98.60 368 | 99.33 257 | 97.11 252 | 98.87 260 | 99.22 313 | 92.38 300 | 99.17 317 | 98.21 186 | 95.99 309 | 98.42 340 |
|
| WB-MVSnew | | | 97.65 276 | 97.65 240 | 97.63 326 | 98.78 331 | 97.62 262 | 99.13 290 | 98.33 370 | 97.36 228 | 99.07 225 | 98.94 344 | 95.64 184 | 99.15 318 | 92.95 365 | 98.68 203 | 96.12 390 |
|
| IterMVS-SCA-FT | | | 97.82 248 | 97.75 231 | 98.06 300 | 99.57 152 | 96.36 319 | 99.02 316 | 99.49 143 | 97.18 243 | 98.71 278 | 99.72 153 | 92.72 284 | 99.14 319 | 97.44 260 | 95.86 314 | 98.67 288 |
|
| pmmvs5 | | | 97.52 284 | 97.30 286 | 98.16 294 | 98.57 355 | 96.73 304 | 99.27 260 | 98.90 335 | 96.14 326 | 98.37 313 | 99.53 235 | 91.54 319 | 99.14 319 | 97.51 252 | 95.87 313 | 98.63 308 |
|
| v148 | | | 97.79 253 | 97.55 248 | 98.50 257 | 98.74 337 | 97.72 257 | 99.54 139 | 99.33 257 | 96.26 315 | 98.90 254 | 99.51 241 | 94.68 225 | 99.14 319 | 97.83 219 | 93.15 362 | 98.63 308 |
|
| miper_ehance_all_eth | | | 98.18 192 | 98.10 188 | 98.41 273 | 99.23 250 | 97.72 257 | 98.72 358 | 99.31 271 | 96.60 292 | 98.88 257 | 99.29 302 | 97.29 123 | 99.13 322 | 97.60 241 | 95.99 309 | 98.38 345 |
|
| NR-MVSNet | | | 97.97 225 | 97.61 245 | 99.02 183 | 98.87 320 | 99.26 115 | 99.47 184 | 99.42 209 | 97.63 197 | 97.08 357 | 99.50 244 | 95.07 202 | 99.13 322 | 97.86 215 | 93.59 356 | 98.68 281 |
|
| IterMVS | | | 97.83 245 | 97.77 226 | 98.02 303 | 99.58 150 | 96.27 322 | 99.02 316 | 99.48 155 | 97.22 241 | 98.71 278 | 99.70 158 | 92.75 281 | 99.13 322 | 97.46 258 | 96.00 308 | 98.67 288 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CMPMVS |  | 69.68 23 | 94.13 346 | 94.90 338 | 91.84 369 | 97.24 380 | 80.01 399 | 98.52 372 | 99.48 155 | 89.01 386 | 91.99 387 | 99.67 180 | 85.67 370 | 99.13 322 | 95.44 332 | 97.03 289 | 96.39 387 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| eth_miper_zixun_eth | | | 98.05 210 | 97.96 205 | 98.33 280 | 99.26 244 | 97.38 268 | 98.56 371 | 99.31 271 | 96.65 285 | 98.88 257 | 99.52 238 | 96.58 147 | 99.12 326 | 97.39 263 | 95.53 323 | 98.47 334 |
|
| pmmvs4 | | | 98.13 197 | 97.90 212 | 98.81 229 | 98.61 352 | 98.87 172 | 98.99 324 | 99.21 295 | 96.44 304 | 99.06 230 | 99.58 216 | 95.90 173 | 99.11 327 | 97.18 278 | 96.11 306 | 98.46 337 |
|
| TransMVSNet (Re) | | | 97.15 304 | 96.58 309 | 98.86 219 | 99.12 277 | 98.85 176 | 99.49 174 | 98.91 333 | 95.48 340 | 97.16 355 | 99.80 103 | 93.38 268 | 99.11 327 | 94.16 353 | 91.73 370 | 98.62 311 |
|
| ambc | | | | | 93.06 367 | 92.68 398 | 82.36 392 | 98.47 374 | 98.73 358 | | 95.09 375 | 97.41 381 | 55.55 399 | 99.10 329 | 96.42 311 | 91.32 371 | 97.71 373 |
|
| Baseline_NR-MVSNet | | | 97.76 255 | 97.45 261 | 98.68 240 | 99.09 285 | 98.29 225 | 99.41 207 | 98.85 342 | 95.65 338 | 98.63 295 | 99.67 180 | 94.82 210 | 99.10 329 | 98.07 202 | 92.89 364 | 98.64 300 |
|
| test_vis3_rt | | | 87.04 359 | 85.81 362 | 90.73 373 | 93.99 397 | 81.96 394 | 99.76 37 | 90.23 408 | 92.81 374 | 81.35 396 | 91.56 396 | 40.06 405 | 99.07 331 | 94.27 350 | 88.23 383 | 91.15 396 |
|
| CP-MVSNet | | | 98.09 201 | 97.78 224 | 99.01 184 | 98.97 308 | 99.24 117 | 99.67 64 | 99.46 182 | 97.25 237 | 98.48 308 | 99.64 192 | 93.79 261 | 99.06 332 | 98.63 142 | 94.10 349 | 98.74 262 |
|
| PS-CasMVS | | | 97.93 228 | 97.59 247 | 98.95 195 | 98.99 303 | 99.06 142 | 99.68 61 | 99.52 101 | 97.13 247 | 98.31 316 | 99.68 174 | 92.44 299 | 99.05 333 | 98.51 163 | 94.08 350 | 98.75 259 |
|
| K. test v3 | | | 97.10 306 | 96.79 306 | 98.01 304 | 98.72 340 | 96.33 320 | 99.87 9 | 97.05 388 | 97.59 199 | 96.16 366 | 99.80 103 | 88.71 349 | 99.04 334 | 96.69 303 | 96.55 297 | 98.65 298 |
|
| new_pmnet | | | 96.38 320 | 96.03 322 | 97.41 333 | 98.13 366 | 95.16 349 | 99.05 308 | 99.20 296 | 93.94 362 | 97.39 349 | 98.79 354 | 91.61 318 | 99.04 334 | 90.43 378 | 95.77 315 | 98.05 361 |
|
| DIV-MVS_self_test | | | 98.01 218 | 97.85 218 | 98.48 260 | 99.24 249 | 97.95 246 | 98.71 359 | 99.35 246 | 96.50 297 | 98.60 300 | 99.54 231 | 95.72 180 | 99.03 336 | 97.21 272 | 95.77 315 | 98.46 337 |
|
| IterMVS-LS | | | 98.46 167 | 98.42 165 | 98.58 248 | 99.59 148 | 98.00 240 | 99.37 226 | 99.43 207 | 96.94 269 | 99.07 225 | 99.59 212 | 97.87 105 | 99.03 336 | 98.32 181 | 95.62 320 | 98.71 267 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| our_test_3 | | | 97.65 276 | 97.68 237 | 97.55 330 | 98.62 350 | 94.97 351 | 98.84 346 | 99.30 275 | 96.83 276 | 98.19 323 | 99.34 290 | 97.01 133 | 99.02 338 | 95.00 342 | 96.01 307 | 98.64 300 |
|
| Patchmtry | | | 97.75 259 | 97.40 273 | 98.81 229 | 99.10 282 | 98.87 172 | 99.11 299 | 99.33 257 | 94.83 353 | 98.81 267 | 99.38 277 | 94.33 241 | 99.02 338 | 96.10 315 | 95.57 321 | 98.53 328 |
|
| N_pmnet | | | 94.95 340 | 95.83 327 | 92.31 368 | 98.47 359 | 79.33 400 | 99.12 293 | 92.81 406 | 93.87 363 | 97.68 342 | 99.13 323 | 93.87 258 | 99.01 340 | 91.38 375 | 96.19 304 | 98.59 324 |
|
| CR-MVSNet | | | 98.17 193 | 97.93 210 | 98.87 215 | 99.18 262 | 98.49 213 | 99.22 278 | 99.33 257 | 96.96 265 | 99.56 114 | 99.38 277 | 94.33 241 | 99.00 341 | 94.83 344 | 98.58 207 | 99.14 217 |
|
| c3_l | | | 98.12 199 | 98.04 197 | 98.38 277 | 99.30 233 | 97.69 261 | 98.81 349 | 99.33 257 | 96.67 283 | 98.83 265 | 99.34 290 | 97.11 128 | 98.99 342 | 97.58 243 | 95.34 326 | 98.48 332 |
|
| test0.0.03 1 | | | 97.71 267 | 97.42 271 | 98.56 252 | 98.41 362 | 97.82 253 | 98.78 352 | 98.63 363 | 97.34 229 | 98.05 331 | 98.98 340 | 94.45 238 | 98.98 343 | 95.04 341 | 97.15 288 | 98.89 245 |
|
| PatchT | | | 97.03 308 | 96.44 313 | 98.79 232 | 98.99 303 | 98.34 224 | 99.16 284 | 99.07 313 | 92.13 376 | 99.52 123 | 97.31 385 | 94.54 234 | 98.98 343 | 88.54 385 | 98.73 201 | 99.03 233 |
|
| GBi-Net | | | 97.68 271 | 97.48 256 | 98.29 285 | 99.51 170 | 97.26 273 | 99.43 198 | 99.48 155 | 96.49 298 | 99.07 225 | 99.32 297 | 90.26 333 | 98.98 343 | 97.10 280 | 96.65 293 | 98.62 311 |
|
| test1 | | | 97.68 271 | 97.48 256 | 98.29 285 | 99.51 170 | 97.26 273 | 99.43 198 | 99.48 155 | 96.49 298 | 99.07 225 | 99.32 297 | 90.26 333 | 98.98 343 | 97.10 280 | 96.65 293 | 98.62 311 |
|
| FMVSNet3 | | | 98.03 213 | 97.76 230 | 98.84 223 | 99.39 211 | 98.98 150 | 99.40 215 | 99.38 231 | 96.67 283 | 99.07 225 | 99.28 304 | 92.93 276 | 98.98 343 | 97.10 280 | 96.65 293 | 98.56 327 |
|
| FMVSNet2 | | | 97.72 264 | 97.36 276 | 98.80 231 | 99.51 170 | 98.84 177 | 99.45 188 | 99.42 209 | 96.49 298 | 98.86 264 | 99.29 302 | 90.26 333 | 98.98 343 | 96.44 310 | 96.56 296 | 98.58 325 |
|
| FMVSNet1 | | | 96.84 311 | 96.36 315 | 98.29 285 | 99.32 231 | 97.26 273 | 99.43 198 | 99.48 155 | 95.11 345 | 98.55 303 | 99.32 297 | 83.95 379 | 98.98 343 | 95.81 322 | 96.26 303 | 98.62 311 |
|
| ppachtmachnet_test | | | 97.49 291 | 97.45 261 | 97.61 328 | 98.62 350 | 95.24 345 | 98.80 350 | 99.46 182 | 96.11 328 | 98.22 322 | 99.62 203 | 96.45 153 | 98.97 350 | 93.77 355 | 95.97 312 | 98.61 320 |
|
| TranMVSNet+NR-MVSNet | | | 97.93 228 | 97.66 239 | 98.76 235 | 98.78 331 | 98.62 197 | 99.65 75 | 99.49 143 | 97.76 181 | 98.49 307 | 99.60 210 | 94.23 244 | 98.97 350 | 98.00 205 | 92.90 363 | 98.70 272 |
|
| test_method | | | 91.10 355 | 91.36 357 | 90.31 374 | 95.85 387 | 73.72 407 | 94.89 395 | 99.25 287 | 68.39 398 | 95.82 369 | 99.02 335 | 80.50 388 | 98.95 352 | 93.64 357 | 94.89 338 | 98.25 352 |
|
| ADS-MVSNet2 | | | 98.02 215 | 98.07 195 | 97.87 313 | 99.33 225 | 95.19 347 | 99.23 274 | 99.08 310 | 96.24 316 | 99.10 220 | 99.67 180 | 94.11 249 | 98.93 353 | 96.81 297 | 99.05 178 | 99.48 178 |
|
| ET-MVSNet_ETH3D | | | 96.49 317 | 95.64 331 | 99.05 180 | 99.53 163 | 98.82 181 | 98.84 346 | 97.51 386 | 97.63 197 | 84.77 392 | 99.21 316 | 92.09 303 | 98.91 354 | 98.98 90 | 92.21 369 | 99.41 195 |
|
| miper_lstm_enhance | | | 98.00 220 | 97.91 211 | 98.28 288 | 99.34 223 | 97.43 267 | 98.88 342 | 99.36 240 | 96.48 301 | 98.80 269 | 99.55 226 | 95.98 166 | 98.91 354 | 97.27 269 | 95.50 324 | 98.51 330 |
|
| PEN-MVS | | | 97.76 255 | 97.44 266 | 98.72 237 | 98.77 335 | 98.54 204 | 99.78 32 | 99.51 115 | 97.06 257 | 98.29 318 | 99.64 192 | 92.63 290 | 98.89 356 | 98.09 195 | 93.16 361 | 98.72 265 |
|
| testing3 | | | 97.28 298 | 96.76 307 | 98.82 226 | 99.37 215 | 98.07 237 | 99.45 188 | 99.36 240 | 97.56 204 | 97.89 336 | 98.95 343 | 83.70 380 | 98.82 357 | 96.03 317 | 98.56 210 | 99.58 154 |
|
| testgi | | | 97.65 276 | 97.50 255 | 98.13 298 | 99.36 218 | 96.45 316 | 99.42 205 | 99.48 155 | 97.76 181 | 97.87 337 | 99.45 260 | 91.09 325 | 98.81 358 | 94.53 346 | 98.52 213 | 99.13 219 |
|
| testf1 | | | 90.42 357 | 90.68 359 | 89.65 377 | 97.78 370 | 73.97 405 | 99.13 290 | 98.81 346 | 89.62 384 | 91.80 388 | 98.93 345 | 62.23 397 | 98.80 359 | 86.61 393 | 91.17 372 | 96.19 388 |
|
| APD_test2 | | | 90.42 357 | 90.68 359 | 89.65 377 | 97.78 370 | 73.97 405 | 99.13 290 | 98.81 346 | 89.62 384 | 91.80 388 | 98.93 345 | 62.23 397 | 98.80 359 | 86.61 393 | 91.17 372 | 96.19 388 |
|
| MIMVSNet | | | 97.73 262 | 97.45 261 | 98.57 249 | 99.45 196 | 97.50 265 | 99.02 316 | 98.98 321 | 96.11 328 | 99.41 147 | 99.14 322 | 90.28 332 | 98.74 361 | 95.74 324 | 98.93 186 | 99.47 184 |
|
| LCM-MVSNet-Re | | | 97.83 245 | 98.15 182 | 96.87 349 | 99.30 233 | 92.25 379 | 99.59 101 | 98.26 371 | 97.43 221 | 96.20 365 | 99.13 323 | 96.27 159 | 98.73 362 | 98.17 191 | 98.99 183 | 99.64 136 |
|
| Syy-MVS | | | 97.09 307 | 97.14 295 | 96.95 346 | 99.00 300 | 92.73 377 | 99.29 251 | 99.39 223 | 97.06 257 | 97.41 346 | 98.15 371 | 93.92 257 | 98.68 363 | 91.71 373 | 98.34 218 | 99.45 189 |
|
| myMVS_eth3d | | | 96.89 309 | 96.37 314 | 98.43 272 | 99.00 300 | 97.16 277 | 99.29 251 | 99.39 223 | 97.06 257 | 97.41 346 | 98.15 371 | 83.46 381 | 98.68 363 | 95.27 337 | 98.34 218 | 99.45 189 |
|
| DTE-MVSNet | | | 97.51 286 | 97.19 294 | 98.46 266 | 98.63 349 | 98.13 234 | 99.84 13 | 99.48 155 | 96.68 282 | 97.97 334 | 99.67 180 | 92.92 277 | 98.56 365 | 96.88 296 | 92.60 368 | 98.70 272 |
|
| PC_three_1452 | | | | | | | | | | 98.18 131 | 99.84 29 | 99.70 158 | 99.31 3 | 98.52 366 | 98.30 183 | 99.80 97 | 99.81 61 |
|
| mvsany_test3 | | | 93.77 348 | 93.45 352 | 94.74 361 | 95.78 388 | 88.01 387 | 99.64 78 | 98.25 372 | 98.28 113 | 94.31 378 | 97.97 378 | 68.89 393 | 98.51 367 | 97.50 253 | 90.37 377 | 97.71 373 |
|
| UnsupCasMVSNet_bld | | | 93.53 349 | 92.51 354 | 96.58 354 | 97.38 376 | 93.82 365 | 98.24 384 | 99.48 155 | 91.10 381 | 93.10 383 | 96.66 387 | 74.89 391 | 98.37 368 | 94.03 354 | 87.71 384 | 97.56 378 |
|
| Anonymous20240521 | | | 96.20 323 | 95.89 326 | 97.13 340 | 97.72 373 | 94.96 352 | 99.79 31 | 99.29 279 | 93.01 372 | 97.20 354 | 99.03 333 | 89.69 341 | 98.36 369 | 91.16 376 | 96.13 305 | 98.07 359 |
|
| test_f | | | 91.90 354 | 91.26 358 | 93.84 363 | 95.52 392 | 85.92 389 | 99.69 55 | 98.53 368 | 95.31 342 | 93.87 380 | 96.37 389 | 55.33 400 | 98.27 370 | 95.70 325 | 90.98 375 | 97.32 381 |
|
| MDA-MVSNet_test_wron | | | 95.45 333 | 94.60 340 | 98.01 304 | 98.16 365 | 97.21 276 | 99.11 299 | 99.24 289 | 93.49 368 | 80.73 398 | 98.98 340 | 93.02 274 | 98.18 371 | 94.22 352 | 94.45 343 | 98.64 300 |
|
| UnsupCasMVSNet_eth | | | 96.44 318 | 96.12 319 | 97.40 334 | 98.65 347 | 95.65 333 | 99.36 230 | 99.51 115 | 97.13 247 | 96.04 368 | 98.99 338 | 88.40 355 | 98.17 372 | 96.71 301 | 90.27 378 | 98.40 343 |
|
| KD-MVS_2432*1600 | | | 94.62 341 | 93.72 349 | 97.31 335 | 97.19 382 | 95.82 331 | 98.34 379 | 99.20 296 | 95.00 349 | 97.57 343 | 98.35 366 | 87.95 360 | 98.10 373 | 92.87 367 | 77.00 396 | 98.01 363 |
|
| miper_refine_blended | | | 94.62 341 | 93.72 349 | 97.31 335 | 97.19 382 | 95.82 331 | 98.34 379 | 99.20 296 | 95.00 349 | 97.57 343 | 98.35 366 | 87.95 360 | 98.10 373 | 92.87 367 | 77.00 396 | 98.01 363 |
|
| YYNet1 | | | 95.36 335 | 94.51 342 | 97.92 310 | 97.89 368 | 97.10 280 | 99.10 301 | 99.23 290 | 93.26 371 | 80.77 397 | 99.04 332 | 92.81 280 | 98.02 375 | 94.30 348 | 94.18 348 | 98.64 300 |
|
| EU-MVSNet | | | 97.98 222 | 98.03 198 | 97.81 320 | 98.72 340 | 96.65 309 | 99.66 69 | 99.66 28 | 98.09 143 | 98.35 314 | 99.82 76 | 95.25 198 | 98.01 376 | 97.41 262 | 95.30 327 | 98.78 252 |
|
| Gipuma |  | | 90.99 356 | 90.15 361 | 93.51 364 | 98.73 338 | 90.12 385 | 93.98 396 | 99.45 193 | 79.32 394 | 92.28 386 | 94.91 391 | 69.61 392 | 97.98 377 | 87.42 389 | 95.67 319 | 92.45 394 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| pmmvs-eth3d | | | 95.34 336 | 94.73 339 | 97.15 338 | 95.53 391 | 95.94 329 | 99.35 235 | 99.10 307 | 95.13 343 | 93.55 381 | 97.54 380 | 88.15 359 | 97.91 378 | 94.58 345 | 89.69 381 | 97.61 376 |
|
| PM-MVS | | | 92.96 351 | 92.23 355 | 95.14 360 | 95.61 389 | 89.98 386 | 99.37 226 | 98.21 374 | 94.80 354 | 95.04 376 | 97.69 379 | 65.06 394 | 97.90 379 | 94.30 348 | 89.98 380 | 97.54 379 |
|
| MDA-MVSNet-bldmvs | | | 94.96 339 | 93.98 346 | 97.92 310 | 98.24 364 | 97.27 271 | 99.15 287 | 99.33 257 | 93.80 364 | 80.09 399 | 99.03 333 | 88.31 356 | 97.86 380 | 93.49 359 | 94.36 345 | 98.62 311 |
|
| Patchmatch-RL test | | | 95.84 329 | 95.81 328 | 95.95 358 | 95.61 389 | 90.57 384 | 98.24 384 | 98.39 369 | 95.10 347 | 95.20 373 | 98.67 358 | 94.78 215 | 97.77 381 | 96.28 314 | 90.02 379 | 99.51 173 |
|
| Anonymous20231206 | | | 96.22 321 | 96.03 322 | 96.79 351 | 97.31 379 | 94.14 363 | 99.63 82 | 99.08 310 | 96.17 322 | 97.04 358 | 99.06 330 | 93.94 255 | 97.76 382 | 86.96 391 | 95.06 332 | 98.47 334 |
|
| SD-MVS | | | 99.41 47 | 99.52 11 | 99.05 180 | 99.74 80 | 99.68 48 | 99.46 187 | 99.52 101 | 99.11 26 | 99.88 20 | 99.91 20 | 99.43 1 | 97.70 383 | 98.72 130 | 99.93 22 | 99.77 82 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DSMNet-mixed | | | 97.25 300 | 97.35 278 | 96.95 346 | 97.84 369 | 93.61 371 | 99.57 116 | 96.63 393 | 96.13 327 | 98.87 260 | 98.61 361 | 94.59 229 | 97.70 383 | 95.08 340 | 98.86 192 | 99.55 159 |
|
| pmmvs3 | | | 94.09 347 | 93.25 353 | 96.60 353 | 94.76 396 | 94.49 358 | 98.92 338 | 98.18 376 | 89.66 383 | 96.48 363 | 98.06 377 | 86.28 367 | 97.33 385 | 89.68 381 | 87.20 385 | 97.97 368 |
|
| KD-MVS_self_test | | | 95.00 338 | 94.34 343 | 96.96 345 | 97.07 384 | 95.39 343 | 99.56 122 | 99.44 201 | 95.11 345 | 97.13 356 | 97.32 384 | 91.86 308 | 97.27 386 | 90.35 379 | 81.23 393 | 98.23 354 |
|
| FMVSNet5 | | | 96.43 319 | 96.19 318 | 97.15 338 | 99.11 279 | 95.89 330 | 99.32 241 | 99.52 101 | 94.47 360 | 98.34 315 | 99.07 328 | 87.54 364 | 97.07 387 | 92.61 370 | 95.72 318 | 98.47 334 |
|
| new-patchmatchnet | | | 94.48 344 | 94.08 345 | 95.67 359 | 95.08 394 | 92.41 378 | 99.18 282 | 99.28 281 | 94.55 359 | 93.49 382 | 97.37 383 | 87.86 362 | 97.01 388 | 91.57 374 | 88.36 382 | 97.61 376 |
|
| LCM-MVSNet | | | 86.80 361 | 85.22 365 | 91.53 371 | 87.81 403 | 80.96 397 | 98.23 386 | 98.99 320 | 71.05 396 | 90.13 391 | 96.51 388 | 48.45 404 | 96.88 389 | 90.51 377 | 85.30 387 | 96.76 383 |
|
| CL-MVSNet_self_test | | | 94.49 343 | 93.97 347 | 96.08 357 | 96.16 386 | 93.67 370 | 98.33 381 | 99.38 231 | 95.13 343 | 97.33 350 | 98.15 371 | 92.69 288 | 96.57 390 | 88.67 384 | 79.87 394 | 97.99 366 |
|
| MIMVSNet1 | | | 95.51 332 | 95.04 337 | 96.92 348 | 97.38 376 | 95.60 334 | 99.52 148 | 99.50 135 | 93.65 366 | 96.97 360 | 99.17 318 | 85.28 373 | 96.56 391 | 88.36 386 | 95.55 322 | 98.60 323 |
|
| test20.03 | | | 96.12 325 | 95.96 324 | 96.63 352 | 97.44 375 | 95.45 341 | 99.51 156 | 99.38 231 | 96.55 295 | 96.16 366 | 99.25 310 | 93.76 263 | 96.17 392 | 87.35 390 | 94.22 347 | 98.27 350 |
|
| tmp_tt | | | 82.80 363 | 81.52 366 | 86.66 379 | 66.61 409 | 68.44 408 | 92.79 398 | 97.92 378 | 68.96 397 | 80.04 400 | 99.85 54 | 85.77 369 | 96.15 393 | 97.86 215 | 43.89 402 | 95.39 392 |
|
| test_fmvs3 | | | 92.10 353 | 91.77 356 | 93.08 366 | 96.19 385 | 86.25 388 | 99.82 17 | 98.62 364 | 96.65 285 | 95.19 374 | 96.90 386 | 55.05 401 | 95.93 394 | 96.63 307 | 90.92 376 | 97.06 382 |
|
| dmvs_testset | | | 95.02 337 | 96.12 319 | 91.72 370 | 99.10 282 | 80.43 398 | 99.58 109 | 97.87 380 | 97.47 214 | 95.22 372 | 98.82 352 | 93.99 253 | 95.18 395 | 88.09 387 | 94.91 337 | 99.56 158 |
|
| PMMVS2 | | | 86.87 360 | 85.37 364 | 91.35 372 | 90.21 401 | 83.80 391 | 98.89 341 | 97.45 387 | 83.13 393 | 91.67 390 | 95.03 390 | 48.49 403 | 94.70 396 | 85.86 395 | 77.62 395 | 95.54 391 |
|
| PMVS |  | 70.75 22 | 75.98 369 | 74.97 370 | 79.01 385 | 70.98 408 | 55.18 410 | 93.37 397 | 98.21 374 | 65.08 402 | 61.78 403 | 93.83 393 | 21.74 410 | 92.53 397 | 78.59 397 | 91.12 374 | 89.34 398 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| FPMVS | | | 84.93 362 | 85.65 363 | 82.75 383 | 86.77 404 | 63.39 409 | 98.35 378 | 98.92 329 | 74.11 395 | 83.39 394 | 98.98 340 | 50.85 402 | 92.40 398 | 84.54 396 | 94.97 334 | 92.46 393 |
|
| WB-MVS | | | 93.10 350 | 94.10 344 | 90.12 375 | 95.51 393 | 81.88 395 | 99.73 47 | 99.27 284 | 95.05 348 | 93.09 384 | 98.91 349 | 94.70 224 | 91.89 399 | 76.62 398 | 94.02 352 | 96.58 385 |
|
| SSC-MVS | | | 92.73 352 | 93.73 348 | 89.72 376 | 95.02 395 | 81.38 396 | 99.76 37 | 99.23 290 | 94.87 352 | 92.80 385 | 98.93 345 | 94.71 223 | 91.37 400 | 74.49 400 | 93.80 354 | 96.42 386 |
|
| MVE |  | 76.82 21 | 76.91 368 | 74.31 372 | 84.70 380 | 85.38 406 | 76.05 404 | 96.88 394 | 93.17 404 | 67.39 399 | 71.28 401 | 89.01 400 | 21.66 411 | 87.69 401 | 71.74 401 | 72.29 398 | 90.35 397 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| E-PMN | | | 80.61 365 | 79.88 367 | 82.81 382 | 90.75 400 | 76.38 403 | 97.69 391 | 95.76 397 | 66.44 400 | 83.52 393 | 92.25 395 | 62.54 396 | 87.16 402 | 68.53 402 | 61.40 399 | 84.89 400 |
|
| EMVS | | | 80.02 366 | 79.22 368 | 82.43 384 | 91.19 399 | 76.40 402 | 97.55 393 | 92.49 407 | 66.36 401 | 83.01 395 | 91.27 397 | 64.63 395 | 85.79 403 | 65.82 403 | 60.65 400 | 85.08 399 |
|
| ANet_high | | | 77.30 367 | 74.86 371 | 84.62 381 | 75.88 407 | 77.61 401 | 97.63 392 | 93.15 405 | 88.81 387 | 64.27 402 | 89.29 399 | 36.51 406 | 83.93 404 | 75.89 399 | 52.31 401 | 92.33 395 |
|
| wuyk23d | | | 40.18 370 | 41.29 375 | 36.84 386 | 86.18 405 | 49.12 411 | 79.73 399 | 22.81 411 | 27.64 403 | 25.46 406 | 28.45 406 | 21.98 409 | 48.89 405 | 55.80 404 | 23.56 405 | 12.51 403 |
|
| test123 | | | 39.01 372 | 42.50 374 | 28.53 387 | 39.17 410 | 20.91 412 | 98.75 355 | 19.17 412 | 19.83 405 | 38.57 404 | 66.67 402 | 33.16 407 | 15.42 406 | 37.50 406 | 29.66 404 | 49.26 401 |
|
| testmvs | | | 39.17 371 | 43.78 373 | 25.37 388 | 36.04 411 | 16.84 413 | 98.36 377 | 26.56 410 | 20.06 404 | 38.51 405 | 67.32 401 | 29.64 408 | 15.30 407 | 37.59 405 | 39.90 403 | 43.98 402 |
|
| test_blank | | | 0.13 376 | 0.17 379 | 0.00 389 | 0.00 412 | 0.00 414 | 0.00 400 | 0.00 413 | 0.00 407 | 0.00 408 | 1.57 407 | 0.00 412 | 0.00 408 | 0.00 407 | 0.00 406 | 0.00 404 |
|
| uanet_test | | | 0.02 377 | 0.03 380 | 0.00 389 | 0.00 412 | 0.00 414 | 0.00 400 | 0.00 413 | 0.00 407 | 0.00 408 | 0.27 408 | 0.00 412 | 0.00 408 | 0.00 407 | 0.00 406 | 0.00 404 |
|
| DCPMVS | | | 0.02 377 | 0.03 380 | 0.00 389 | 0.00 412 | 0.00 414 | 0.00 400 | 0.00 413 | 0.00 407 | 0.00 408 | 0.27 408 | 0.00 412 | 0.00 408 | 0.00 407 | 0.00 406 | 0.00 404 |
|
| cdsmvs_eth3d_5k | | | 24.64 373 | 32.85 376 | 0.00 389 | 0.00 412 | 0.00 414 | 0.00 400 | 99.51 115 | 0.00 407 | 0.00 408 | 99.56 223 | 96.58 147 | 0.00 408 | 0.00 407 | 0.00 406 | 0.00 404 |
|
| pcd_1.5k_mvsjas | | | 8.27 375 | 11.03 378 | 0.00 389 | 0.00 412 | 0.00 414 | 0.00 400 | 0.00 413 | 0.00 407 | 0.00 408 | 0.27 408 | 99.01 18 | 0.00 408 | 0.00 407 | 0.00 406 | 0.00 404 |
|
| sosnet-low-res | | | 0.02 377 | 0.03 380 | 0.00 389 | 0.00 412 | 0.00 414 | 0.00 400 | 0.00 413 | 0.00 407 | 0.00 408 | 0.27 408 | 0.00 412 | 0.00 408 | 0.00 407 | 0.00 406 | 0.00 404 |
|
| sosnet | | | 0.02 377 | 0.03 380 | 0.00 389 | 0.00 412 | 0.00 414 | 0.00 400 | 0.00 413 | 0.00 407 | 0.00 408 | 0.27 408 | 0.00 412 | 0.00 408 | 0.00 407 | 0.00 406 | 0.00 404 |
|
| uncertanet | | | 0.02 377 | 0.03 380 | 0.00 389 | 0.00 412 | 0.00 414 | 0.00 400 | 0.00 413 | 0.00 407 | 0.00 408 | 0.27 408 | 0.00 412 | 0.00 408 | 0.00 407 | 0.00 406 | 0.00 404 |
|
| Regformer | | | 0.02 377 | 0.03 380 | 0.00 389 | 0.00 412 | 0.00 414 | 0.00 400 | 0.00 413 | 0.00 407 | 0.00 408 | 0.27 408 | 0.00 412 | 0.00 408 | 0.00 407 | 0.00 406 | 0.00 404 |
|
| ab-mvs-re | | | 8.30 374 | 11.06 377 | 0.00 389 | 0.00 412 | 0.00 414 | 0.00 400 | 0.00 413 | 0.00 407 | 0.00 408 | 99.58 216 | 0.00 412 | 0.00 408 | 0.00 407 | 0.00 406 | 0.00 404 |
|
| uanet | | | 0.02 377 | 0.03 380 | 0.00 389 | 0.00 412 | 0.00 414 | 0.00 400 | 0.00 413 | 0.00 407 | 0.00 408 | 0.27 408 | 0.00 412 | 0.00 408 | 0.00 407 | 0.00 406 | 0.00 404 |
|
| WAC-MVS | | | | | | | 97.16 277 | | | | | | | | 95.47 331 | | |
|
| FOURS1 | | | | | | 99.91 1 | 99.93 1 | 99.87 9 | 99.56 69 | 99.10 27 | 99.81 37 | | | | | | |
|
| test_one_0601 | | | | | | 99.81 46 | 99.88 8 | | 99.49 143 | 98.97 51 | 99.65 89 | 99.81 90 | 99.09 14 | | | | |
|
| eth-test2 | | | | | | 0.00 412 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 412 | | | | | | | | | | | |
|
| RE-MVS-def | | | | 99.34 36 | | 99.76 65 | 99.82 22 | 99.63 82 | 99.52 101 | 98.38 102 | 99.76 56 | 99.82 76 | 98.75 55 | | 98.61 146 | 99.81 93 | 99.77 82 |
|
| IU-MVS | | | | | | 99.84 32 | 99.88 8 | | 99.32 267 | 98.30 112 | 99.84 29 | | | | 98.86 110 | 99.85 69 | 99.89 20 |
|
| save fliter | | | | | | 99.76 65 | 99.59 70 | 99.14 289 | 99.40 220 | 99.00 43 | | | | | | | |
|
| test0726 | | | | | | 99.85 26 | 99.89 4 | 99.62 88 | 99.50 135 | 99.10 27 | 99.86 27 | 99.82 76 | 98.94 29 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.52 167 |
|
| test_part2 | | | | | | 99.81 46 | 99.83 16 | | | | 99.77 51 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 94.86 209 | | | | 99.52 167 |
|
| sam_mvs | | | | | | | | | | | | | 94.72 222 | | | | |
|
| MTGPA |  | | | | | | | | 99.47 173 | | | | | | | | |
|
| MTMP | | | | | | | | 99.54 139 | 98.88 338 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 97.49 254 | 99.72 118 | 99.75 88 |
|
| agg_prior2 | | | | | | | | | | | | | | | 97.21 272 | 99.73 117 | 99.75 88 |
|
| test_prior4 | | | | | | | 99.56 75 | 98.99 324 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 98.96 331 | | 98.34 108 | 99.01 236 | 99.52 238 | 98.68 64 | | 97.96 207 | 99.74 115 | |
|
| æ–°å‡ ä½•2 | | | | | | | | 99.01 321 | | | | | | | | | |
|
| 旧先验1 | | | | | | 99.74 80 | 99.59 70 | | 99.54 85 | | | 99.69 168 | 98.47 80 | | | 99.68 126 | 99.73 97 |
|
| 原ACMM2 | | | | | | | | 98.95 334 | | | | | | | | | |
|
| test222 | | | | | | 99.75 73 | 99.49 87 | 98.91 340 | 99.49 143 | 96.42 306 | 99.34 170 | 99.65 186 | 98.28 92 | | | 99.69 123 | 99.72 103 |
|
| segment_acmp | | | | | | | | | | | | | 98.96 24 | | | | |
|
| testdata1 | | | | | | | | 98.85 345 | | 98.32 111 | | | | | | | |
|
| plane_prior7 | | | | | | 99.29 237 | 97.03 290 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 99.27 242 | 96.98 294 | | | | | | 92.71 286 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 99.61 207 | | | | | |
|
| plane_prior3 | | | | | | | 97.00 292 | | | 98.69 79 | 99.11 217 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.39 219 | | 98.97 51 | | | | | | | |
|
| plane_prior1 | | | | | | 99.26 244 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 96.97 295 | 99.21 280 | | 98.45 96 | | | | | | 97.60 254 | |
|
| n2 | | | | | | | | | 0.00 413 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 413 | | | | | | | | |
|
| door-mid | | | | | | | | | 98.05 377 | | | | | | | | |
|
| test11 | | | | | | | | | 99.35 246 | | | | | | | | |
|
| door | | | | | | | | | 97.92 378 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 96.83 300 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 99.19 259 | | 98.98 327 | | 98.24 118 | 98.66 287 | | | | | | |
|
| ACMP_Plane | | | | | | 99.19 259 | | 98.98 327 | | 98.24 118 | 98.66 287 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.19 276 | | |
|
| HQP3-MVS | | | | | | | | | 99.39 223 | | | | | | | 97.58 256 | |
|
| HQP2-MVS | | | | | | | | | | | | | 92.47 295 | | | | |
|
| NP-MVS | | | | | | 99.23 250 | 96.92 298 | | | | | 99.40 272 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 95.18 348 | 99.35 235 | | 96.84 274 | 99.58 110 | | 95.19 200 | | 97.82 220 | | 99.46 186 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 97.19 286 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.43 275 | |
|
| Test By Simon | | | | | | | | | | | | | 98.75 55 | | | | |
|