This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 699.61 699.77 6099.38 22699.37 10799.58 11799.62 4199.41 1199.87 3199.92 1698.81 47100.00 199.97 199.93 2599.94 11
test_fmvsm_n_192099.69 499.66 399.78 5799.84 3299.44 10199.58 11799.69 1899.43 999.98 799.91 2298.62 73100.00 199.97 199.95 1799.90 17
test_vis1_n_192098.63 17098.40 17799.31 15699.86 2097.94 25699.67 6999.62 4199.43 999.99 299.91 2287.29 380100.00 199.92 1399.92 2899.98 2
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3299.86 2099.61 7299.56 13099.63 3999.48 399.98 799.83 7498.75 5899.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 3299.84 3299.63 6999.56 13099.63 3999.47 499.98 799.82 8398.75 5899.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1599.80 5299.66 5899.48 18899.64 3699.45 799.92 1899.92 1698.62 7399.99 499.96 799.99 199.96 7
patch_mono-299.26 7699.62 598.16 30899.81 4694.59 37699.52 15799.64 3699.33 1599.73 7299.90 2999.00 2299.99 499.69 2399.98 499.89 20
h-mvs3397.70 28297.28 30398.97 20399.70 10697.27 28399.36 24499.45 20498.94 6099.66 9499.64 20094.93 21499.99 499.48 4884.36 40999.65 135
xiu_mvs_v1_base_debu99.29 7099.27 6399.34 14999.63 13798.97 16399.12 31199.51 12198.86 6699.84 3799.47 26698.18 10099.99 499.50 4399.31 16899.08 245
xiu_mvs_v1_base99.29 7099.27 6399.34 14999.63 13798.97 16399.12 31199.51 12198.86 6699.84 3799.47 26698.18 10099.99 499.50 4399.31 16899.08 245
xiu_mvs_v1_base_debi99.29 7099.27 6399.34 14999.63 13798.97 16399.12 31199.51 12198.86 6699.84 3799.47 26698.18 10099.99 499.50 4399.31 16899.08 245
EPNet98.86 14198.71 14599.30 16197.20 40198.18 23899.62 9598.91 34999.28 1898.63 30999.81 9795.96 17599.99 499.24 7499.72 12799.73 101
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM99.40 5499.28 6099.74 6699.67 11699.31 11799.52 15798.87 35699.55 199.74 7099.80 11096.47 15899.98 1399.97 199.97 799.94 11
test_cas_vis1_n_192099.16 9099.01 10299.61 9399.81 4698.86 18399.65 8199.64 3699.39 1299.97 1599.94 693.20 28399.98 1399.55 3699.91 3599.99 1
test_vis1_n97.92 24197.44 28099.34 14999.53 17098.08 24499.74 4699.49 15199.15 23100.00 199.94 679.51 41099.98 1399.88 1599.76 11999.97 4
xiu_mvs_v2_base99.26 7699.25 6799.29 16499.53 17098.91 17799.02 33499.45 20498.80 7599.71 7999.26 32398.94 3299.98 1399.34 6299.23 17398.98 259
PS-MVSNAJ99.32 6599.32 4699.30 16199.57 15898.94 17398.97 34899.46 19398.92 6399.71 7999.24 32599.01 1899.98 1399.35 5799.66 13798.97 260
QAPM98.67 16698.30 18499.80 5199.20 27399.67 5699.77 3499.72 1194.74 37398.73 28999.90 2995.78 18599.98 1396.96 30699.88 5899.76 91
3Dnovator97.25 999.24 8199.05 9099.81 4899.12 29599.66 5899.84 1299.74 1099.09 3898.92 26399.90 2995.94 17899.98 1398.95 10499.92 2899.79 78
OpenMVScopyleft96.50 1698.47 17598.12 19699.52 12099.04 31399.53 8899.82 1699.72 1194.56 37698.08 34399.88 4194.73 23099.98 1397.47 27499.76 11999.06 251
reproduce_model99.63 799.54 1199.90 499.78 5799.88 899.56 13099.55 8099.15 2399.90 2199.90 2999.00 2299.97 2199.11 8599.91 3599.86 33
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2599.44 20899.65 6299.50 17399.61 4899.45 799.87 3199.92 1697.31 12699.97 2199.95 999.99 199.97 4
test_fmvs1_n98.41 18198.14 19399.21 17699.82 4297.71 26999.74 4699.49 15199.32 1699.99 299.95 385.32 39199.97 2199.82 1899.84 8499.96 7
CANet_DTU98.97 13198.87 12699.25 17199.33 23898.42 23099.08 32099.30 28699.16 2299.43 15499.75 14495.27 20299.97 2198.56 17199.95 1799.36 219
MVS_030499.15 9298.96 11299.73 6998.92 33099.37 10799.37 23996.92 40799.51 299.66 9499.78 12996.69 14999.97 2199.84 1799.97 799.84 43
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7599.47 18498.79 7699.68 8599.81 9798.43 8699.97 2198.88 11499.90 4499.83 53
PGM-MVS99.45 3899.31 5299.86 2599.87 1599.78 3999.58 11799.65 3397.84 18799.71 7999.80 11099.12 1399.97 2198.33 19499.87 6199.83 53
mPP-MVS99.44 4299.30 5499.86 2599.88 1199.79 3399.69 6099.48 16398.12 15099.50 13999.75 14498.78 5199.97 2198.57 16899.89 5599.83 53
CP-MVS99.45 3899.32 4699.85 3299.83 3999.75 4399.69 6099.52 10798.07 16099.53 13499.63 20698.93 3699.97 2198.74 13999.91 3599.83 53
SteuartSystems-ACMMP99.54 1899.42 2599.87 1599.82 4299.81 2899.59 10999.51 12198.62 9199.79 5199.83 7499.28 499.97 2198.48 17899.90 4499.84 43
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 8698.97 10899.82 4599.17 28799.68 5399.81 2099.51 12199.20 2098.72 29099.89 3495.68 18999.97 2198.86 12299.86 6999.81 65
fmvsm_s_conf0.5_n_299.32 6599.13 7999.89 799.80 5299.77 4099.44 20599.58 6399.47 499.99 299.93 1094.04 26199.96 3299.96 799.93 2599.93 16
reproduce-ours99.61 899.52 1299.90 499.76 6899.88 899.52 15799.54 8999.13 2699.89 2399.89 3498.96 2599.96 3299.04 9399.90 4499.85 37
our_new_method99.61 899.52 1299.90 499.76 6899.88 899.52 15799.54 8999.13 2699.89 2399.89 3498.96 2599.96 3299.04 9399.90 4499.85 37
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3299.83 3999.64 6899.52 15799.65 3399.10 3399.98 799.92 1697.35 12599.96 3299.94 1199.92 2899.95 9
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3299.84 3299.65 6299.51 16699.67 2399.13 2699.98 799.92 1696.60 15299.96 3299.95 999.96 1299.95 9
mvsany_test199.50 2399.46 2399.62 9299.61 14799.09 14698.94 35499.48 16399.10 3399.96 1699.91 2298.85 4299.96 3299.72 2199.58 14799.82 58
test_fmvs198.88 13798.79 13899.16 18199.69 11097.61 27399.55 14499.49 15199.32 1699.98 799.91 2291.41 33199.96 3299.82 1899.92 2899.90 17
DVP-MVS++99.59 1199.50 1699.88 999.51 17899.88 899.87 899.51 12198.99 5199.88 2699.81 9799.27 599.96 3298.85 12499.80 10499.81 65
MSC_two_6792asdad99.87 1599.51 17899.76 4199.33 26899.96 3298.87 11799.84 8499.89 20
No_MVS99.87 1599.51 17899.76 4199.33 26899.96 3298.87 11799.84 8499.89 20
ZD-MVS99.71 10199.79 3399.61 4896.84 29199.56 12799.54 24098.58 7599.96 3296.93 30999.75 121
SED-MVS99.61 899.52 1299.88 999.84 3299.90 299.60 10299.48 16399.08 3999.91 1999.81 9799.20 799.96 3298.91 11199.85 7699.79 78
test_241102_TWO99.48 16399.08 3999.88 2699.81 9798.94 3299.96 3298.91 11199.84 8499.88 26
ZNCC-MVS99.47 3299.33 4499.87 1599.87 1599.81 2899.64 8499.67 2398.08 15999.55 13199.64 20098.91 3799.96 3298.72 14299.90 4499.82 58
DVP-MVScopyleft99.57 1599.47 2099.88 999.85 2699.89 499.57 12499.37 24899.10 3399.81 4599.80 11098.94 3299.96 3298.93 10899.86 6999.81 65
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 5199.81 4599.80 11099.09 1499.96 3298.85 12499.90 4499.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 12499.51 12199.96 3298.93 10899.86 6999.88 26
SR-MVS99.43 4599.29 5899.86 2599.75 7899.83 1999.59 10999.62 4198.21 13799.73 7299.79 12298.68 6799.96 3298.44 18499.77 11699.79 78
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5799.88 899.36 24499.51 12198.73 8399.88 2699.84 6998.72 6499.96 3298.16 20899.87 6199.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UA-Net99.42 4799.29 5899.80 5199.62 14399.55 8399.50 17399.70 1598.79 7699.77 6099.96 197.45 12099.96 3298.92 11099.90 4499.89 20
HFP-MVS99.49 2599.37 3699.86 2599.87 1599.80 3099.66 7599.67 2398.15 14499.68 8599.69 17499.06 1699.96 3298.69 14799.87 6199.84 43
region2R99.48 2999.35 4099.87 1599.88 1199.80 3099.65 8199.66 2898.13 14999.66 9499.68 18198.96 2599.96 3298.62 15699.87 6199.84 43
HPM-MVS++copyleft99.39 5699.23 7099.87 1599.75 7899.84 1899.43 21099.51 12198.68 8899.27 19699.53 24498.64 7299.96 3298.44 18499.80 10499.79 78
APDe-MVScopyleft99.66 599.57 899.92 199.77 6499.89 499.75 4299.56 7299.02 4499.88 2699.85 5999.18 1099.96 3299.22 7599.92 2899.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR99.49 2599.36 3899.86 2599.87 1599.79 3399.66 7599.67 2398.15 14499.67 8999.69 17498.95 3099.96 3298.69 14799.87 6199.84 43
MP-MVScopyleft99.33 6399.15 7799.87 1599.88 1199.82 2599.66 7599.46 19398.09 15599.48 14399.74 14998.29 9599.96 3297.93 22699.87 6199.82 58
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 10898.90 12099.74 6699.80 5299.46 9999.59 10999.49 15197.03 27899.63 10999.69 17497.27 12999.96 3297.82 23799.84 8499.81 65
PVSNet_Blended_VisFu99.36 6099.28 6099.61 9399.86 2099.07 15199.47 19499.93 297.66 21099.71 7999.86 5497.73 11599.96 3299.47 5099.82 9799.79 78
UGNet98.87 13898.69 14799.40 14199.22 27098.72 19799.44 20599.68 2099.24 1999.18 22099.42 27792.74 29399.96 3299.34 6299.94 2399.53 176
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 6599.32 4699.32 15599.85 2698.29 23399.71 5599.66 2898.11 15299.41 16199.80 11098.37 9299.96 3298.99 9999.96 1299.72 108
ACMMPcopyleft99.45 3899.32 4699.82 4599.89 899.67 5699.62 9599.69 1898.12 15099.63 10999.84 6998.73 6399.96 3298.55 17499.83 9399.81 65
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.1_n_299.37 5899.22 7199.81 4899.77 6499.75 4399.46 19799.60 5499.47 499.98 799.94 694.98 21199.95 6399.97 199.79 11199.73 101
test_fmvsmconf0.01_n99.22 8399.03 9499.79 5498.42 38199.48 9699.55 14499.51 12199.39 1299.78 5699.93 1094.80 22299.95 6399.93 1299.95 1799.94 11
SR-MVS-dyc-post99.45 3899.31 5299.85 3299.76 6899.82 2599.63 9099.52 10798.38 11399.76 6699.82 8398.53 7999.95 6398.61 15999.81 10099.77 86
GST-MVS99.40 5499.24 6899.85 3299.86 2099.79 3399.60 10299.67 2397.97 17299.63 10999.68 18198.52 8099.95 6398.38 18799.86 6999.81 65
CANet99.25 8099.14 7899.59 9699.41 21699.16 13699.35 24999.57 6798.82 7199.51 13899.61 21596.46 15999.95 6399.59 3199.98 499.65 135
MP-MVS-pluss99.37 5899.20 7399.88 999.90 499.87 1599.30 26099.52 10797.18 26099.60 11999.79 12298.79 5099.95 6398.83 13099.91 3599.83 53
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4799.27 6399.88 999.89 899.80 3099.67 6999.50 14198.70 8599.77 6099.49 25798.21 9899.95 6398.46 18299.77 11699.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 6396.67 321
APD-MVS_3200maxsize99.48 2999.35 4099.85 3299.76 6899.83 1999.63 9099.54 8998.36 11799.79 5199.82 8398.86 4199.95 6398.62 15699.81 10099.78 84
RPMNet96.72 33095.90 34399.19 17899.18 27998.49 22299.22 29499.52 10788.72 40999.56 12797.38 40394.08 26099.95 6386.87 41198.58 21999.14 237
sss99.17 8899.05 9099.53 11499.62 14398.97 16399.36 24499.62 4197.83 18899.67 8999.65 19497.37 12499.95 6399.19 7799.19 17699.68 125
MVSMamba_PlusPlus99.46 3499.41 2999.64 8599.68 11499.50 9399.75 4299.50 14198.27 12799.87 3199.92 1698.09 10499.94 7499.65 2799.95 1799.47 196
fmvsm_s_conf0.1_n_a99.26 7699.06 8999.85 3299.52 17599.62 7099.54 14899.62 4198.69 8699.99 299.96 194.47 24699.94 7499.88 1599.92 2899.98 2
fmvsm_s_conf0.1_n99.29 7099.10 8399.86 2599.70 10699.65 6299.53 15699.62 4198.74 8299.99 299.95 394.53 24499.94 7499.89 1499.96 1299.97 4
TSAR-MVS + MP.99.58 1299.50 1699.81 4899.91 199.66 5899.63 9099.39 23298.91 6499.78 5699.85 5999.36 299.94 7498.84 12799.88 5899.82 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RRT-MVS98.91 13598.75 14199.39 14599.46 20198.61 20899.76 3799.50 14198.06 16499.81 4599.88 4193.91 26899.94 7499.11 8599.27 17199.61 151
mamv499.33 6399.42 2599.07 18999.67 11697.73 26499.42 21799.60 5498.15 14499.94 1799.91 2298.42 8899.94 7499.72 2199.96 1299.54 170
XVS99.53 1999.42 2599.87 1599.85 2699.83 1999.69 6099.68 2098.98 5499.37 17299.74 14998.81 4799.94 7498.79 13599.86 6999.84 43
X-MVStestdata96.55 33395.45 35299.87 1599.85 2699.83 1999.69 6099.68 2098.98 5499.37 17264.01 42698.81 4799.94 7498.79 13599.86 6999.84 43
旧先验298.96 34996.70 29899.47 14499.94 7498.19 204
新几何199.75 6399.75 7899.59 7599.54 8996.76 29499.29 19099.64 20098.43 8699.94 7496.92 31199.66 13799.72 108
testdata99.54 10699.75 7898.95 17099.51 12197.07 27299.43 15499.70 16498.87 4099.94 7497.76 24499.64 14099.72 108
HPM-MVScopyleft99.42 4799.28 6099.83 4499.90 499.72 4799.81 2099.54 8997.59 21599.68 8599.63 20698.91 3799.94 7498.58 16599.91 3599.84 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 8499.10 8399.45 13499.89 898.52 21899.39 23299.94 198.73 8399.11 22999.89 3495.50 19499.94 7499.50 4399.97 799.89 20
APD-MVScopyleft99.27 7499.08 8799.84 4399.75 7899.79 3399.50 17399.50 14197.16 26299.77 6099.82 8398.78 5199.94 7497.56 26599.86 6999.80 74
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2999.42 2599.65 7999.72 9699.40 10699.05 32699.66 2899.14 2599.57 12699.80 11098.46 8499.94 7499.57 3499.84 8499.60 154
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 11798.88 12599.61 9399.62 14399.16 13699.37 23999.56 7298.04 16799.53 13499.62 21196.84 14399.94 7498.85 12498.49 22799.72 108
DeepC-MVS98.35 299.30 6899.19 7499.64 8599.82 4299.23 12999.62 9599.55 8098.94 6099.63 10999.95 395.82 18499.94 7499.37 5699.97 799.73 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 7499.12 8199.74 6699.18 27999.75 4399.56 13099.57 6798.45 10699.49 14299.85 5997.77 11499.94 7498.33 19499.84 8499.52 177
GDP-MVS99.08 11498.89 12399.64 8599.53 17099.34 11199.64 8499.48 16398.32 12299.77 6099.66 19295.14 20899.93 9298.97 10399.50 15399.64 142
SDMVSNet99.11 10898.90 12099.75 6399.81 4699.59 7599.81 2099.65 3398.78 7999.64 10699.88 4194.56 24099.93 9299.67 2598.26 23999.72 108
FE-MVS98.48 17498.17 18999.40 14199.54 16998.96 16799.68 6698.81 36395.54 35799.62 11399.70 16493.82 27199.93 9297.35 28399.46 15599.32 225
SF-MVS99.38 5799.24 6899.79 5499.79 5599.68 5399.57 12499.54 8997.82 19299.71 7999.80 11098.95 3099.93 9298.19 20499.84 8499.74 96
dcpmvs_299.23 8299.58 798.16 30899.83 3994.68 37499.76 3799.52 10799.07 4199.98 799.88 4198.56 7799.93 9299.67 2599.98 499.87 31
Anonymous2024052998.09 21197.68 24899.34 14999.66 12698.44 22799.40 22899.43 21893.67 38399.22 20799.89 3490.23 34799.93 9299.26 7398.33 23399.66 131
ACMMP_NAP99.47 3299.34 4299.88 999.87 1599.86 1699.47 19499.48 16398.05 16699.76 6699.86 5498.82 4699.93 9298.82 13499.91 3599.84 43
EI-MVSNet-UG-set99.58 1299.57 899.64 8599.78 5799.14 14199.60 10299.45 20499.01 4699.90 2199.83 7498.98 2499.93 9299.59 3199.95 1799.86 33
无先验98.99 34299.51 12196.89 28899.93 9297.53 26899.72 108
VDDNet97.55 29697.02 31599.16 18199.49 19198.12 24399.38 23799.30 28695.35 35999.68 8599.90 2982.62 40399.93 9299.31 6598.13 25099.42 208
ab-mvs98.86 14198.63 15499.54 10699.64 13499.19 13199.44 20599.54 8997.77 19699.30 18799.81 9794.20 25499.93 9299.17 8198.82 20899.49 189
F-COLMAP99.19 8499.04 9299.64 8599.78 5799.27 12499.42 21799.54 8997.29 25199.41 16199.59 22098.42 8899.93 9298.19 20499.69 13299.73 101
BP-MVS199.12 10398.94 11699.65 7999.51 17899.30 11999.67 6998.92 34498.48 10399.84 3799.69 17494.96 21299.92 10499.62 3099.79 11199.71 117
Anonymous20240521198.30 19297.98 21399.26 17099.57 15898.16 23999.41 22098.55 38596.03 35199.19 21699.74 14991.87 31899.92 10499.16 8298.29 23899.70 119
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8599.78 5799.15 14099.61 10199.45 20499.01 4699.89 2399.82 8399.01 1899.92 10499.56 3599.95 1799.85 37
VDD-MVS97.73 27697.35 29298.88 22399.47 19997.12 29199.34 25298.85 35898.19 13999.67 8999.85 5982.98 40199.92 10499.49 4798.32 23799.60 154
VNet99.11 10898.90 12099.73 6999.52 17599.56 8199.41 22099.39 23299.01 4699.74 7099.78 12995.56 19299.92 10499.52 4198.18 24699.72 108
XVG-OURS-SEG-HR98.69 16498.62 15998.89 22199.71 10197.74 26399.12 31199.54 8998.44 10999.42 15799.71 16094.20 25499.92 10498.54 17598.90 20299.00 256
mvsmamba99.06 11798.96 11299.36 14799.47 19998.64 20499.70 5699.05 32897.61 21499.65 10199.83 7496.54 15599.92 10499.19 7799.62 14399.51 184
HPM-MVS_fast99.51 2199.40 3099.85 3299.91 199.79 3399.76 3799.56 7297.72 20199.76 6699.75 14499.13 1299.92 10499.07 9199.92 2899.85 37
HY-MVS97.30 798.85 14898.64 15399.47 13199.42 21199.08 14999.62 9599.36 24997.39 24399.28 19199.68 18196.44 16199.92 10498.37 18998.22 24199.40 213
DP-MVS99.16 9098.95 11499.78 5799.77 6499.53 8899.41 22099.50 14197.03 27899.04 24599.88 4197.39 12199.92 10498.66 15199.90 4499.87 31
IB-MVS95.67 1896.22 33995.44 35398.57 26199.21 27196.70 31998.65 38397.74 40296.71 29797.27 36798.54 37986.03 38599.92 10498.47 18186.30 40799.10 240
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 6099.63 13799.59 7599.36 24499.46 19399.07 4199.79 5199.82 8398.85 4299.92 10498.68 14999.87 6199.82 58
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
balanced_conf0399.46 3499.39 3299.67 7499.55 16699.58 8099.74 4699.51 12198.42 11099.87 3199.84 6998.05 10799.91 11699.58 3399.94 2399.52 177
9.1499.10 8399.72 9699.40 22899.51 12197.53 22599.64 10699.78 12998.84 4499.91 11697.63 25699.82 97
SMA-MVScopyleft99.44 4299.30 5499.85 3299.73 9299.83 1999.56 13099.47 18497.45 23499.78 5699.82 8399.18 1099.91 11698.79 13599.89 5599.81 65
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11699.65 6299.05 32699.41 22396.22 33698.95 25999.49 25798.77 5499.91 116
train_agg99.02 12398.77 13999.77 6099.67 11699.65 6299.05 32699.41 22396.28 33098.95 25999.49 25798.76 5599.91 11697.63 25699.72 12799.75 92
test_899.67 11699.61 7299.03 33199.41 22396.28 33098.93 26299.48 26398.76 5599.91 116
agg_prior99.67 11699.62 7099.40 22998.87 27299.91 116
原ACMM199.65 7999.73 9299.33 11299.47 18497.46 23199.12 22799.66 19298.67 6999.91 11697.70 25399.69 13299.71 117
LFMVS97.90 24497.35 29299.54 10699.52 17599.01 15899.39 23298.24 39297.10 27099.65 10199.79 12284.79 39499.91 11699.28 6998.38 23099.69 121
XVG-OURS98.73 16298.68 14898.88 22399.70 10697.73 26498.92 35699.55 8098.52 10099.45 14799.84 6995.27 20299.91 11698.08 21598.84 20699.00 256
PLCcopyleft97.94 499.02 12398.85 13099.53 11499.66 12699.01 15899.24 28899.52 10796.85 29099.27 19699.48 26398.25 9799.91 11697.76 24499.62 14399.65 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 28997.06 31499.47 13199.61 14799.09 14698.04 40999.25 29891.24 40098.51 31999.70 16494.55 24299.91 11692.76 38899.85 7699.42 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mmtdpeth96.95 32596.71 32497.67 34499.33 23894.90 37199.89 299.28 29298.15 14499.72 7798.57 37886.56 38399.90 12899.82 1889.02 40298.20 372
UWE-MVS97.58 29597.29 30298.48 27299.09 30396.25 33999.01 33996.61 41397.86 18299.19 21699.01 35088.72 36299.90 12897.38 28198.69 21499.28 228
test_vis1_rt95.81 34995.65 34896.32 37599.67 11691.35 40299.49 18496.74 41198.25 13095.24 39098.10 39674.96 41199.90 12899.53 3998.85 20597.70 396
FA-MVS(test-final)98.75 15998.53 17099.41 14099.55 16699.05 15499.80 2599.01 33396.59 31299.58 12399.59 22095.39 19799.90 12897.78 24099.49 15499.28 228
MCST-MVS99.43 4599.30 5499.82 4599.79 5599.74 4699.29 26599.40 22998.79 7699.52 13699.62 21198.91 3799.90 12898.64 15399.75 12199.82 58
CDPH-MVS99.13 9798.91 11999.80 5199.75 7899.71 4999.15 30599.41 22396.60 31099.60 11999.55 23598.83 4599.90 12897.48 27299.83 9399.78 84
NCCC99.34 6299.19 7499.79 5499.61 14799.65 6299.30 26099.48 16398.86 6699.21 21099.63 20698.72 6499.90 12898.25 20099.63 14299.80 74
114514_t98.93 13398.67 14999.72 7199.85 2699.53 8899.62 9599.59 5992.65 39599.71 7999.78 12998.06 10699.90 12898.84 12799.91 3599.74 96
1112_ss98.98 12998.77 13999.59 9699.68 11499.02 15699.25 28699.48 16397.23 25799.13 22599.58 22496.93 14299.90 12898.87 11798.78 21199.84 43
PHI-MVS99.30 6899.17 7699.70 7299.56 16299.52 9199.58 11799.80 897.12 26699.62 11399.73 15598.58 7599.90 12898.61 15999.91 3599.68 125
AdaColmapbinary99.01 12798.80 13599.66 7599.56 16299.54 8599.18 30099.70 1598.18 14299.35 17899.63 20696.32 16499.90 12897.48 27299.77 11699.55 168
COLMAP_ROBcopyleft97.56 698.86 14198.75 14199.17 18099.88 1198.53 21499.34 25299.59 5997.55 22198.70 29799.89 3495.83 18399.90 12898.10 21099.90 4499.08 245
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 18898.03 20899.31 15699.63 13798.56 21199.54 14896.75 41097.53 22599.73 7299.65 19491.25 33599.89 14098.62 15699.56 14899.48 190
tttt051798.42 17998.14 19399.28 16899.66 12698.38 23199.74 4696.85 40897.68 20799.79 5199.74 14991.39 33299.89 14098.83 13099.56 14899.57 165
test1299.75 6399.64 13499.61 7299.29 29099.21 21098.38 9199.89 14099.74 12499.74 96
Test_1112_low_res98.89 13698.66 15299.57 10199.69 11098.95 17099.03 33199.47 18496.98 28099.15 22399.23 32696.77 14699.89 14098.83 13098.78 21199.86 33
CNLPA99.14 9598.99 10499.59 9699.58 15699.41 10599.16 30299.44 21298.45 10699.19 21699.49 25798.08 10599.89 14097.73 24899.75 12199.48 190
sd_testset98.75 15998.57 16699.29 16499.81 4698.26 23599.56 13099.62 4198.78 7999.64 10699.88 4192.02 31599.88 14599.54 3798.26 23999.72 108
APD_test195.87 34796.49 32994.00 38299.53 17084.01 41199.54 14899.32 27895.91 35397.99 34899.85 5985.49 38999.88 14591.96 39198.84 20698.12 376
diffmvspermissive99.14 9599.02 9899.51 12299.61 14798.96 16799.28 27099.49 15198.46 10599.72 7799.71 16096.50 15799.88 14599.31 6599.11 18399.67 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 14198.80 13599.03 19599.76 6898.79 19299.28 27099.91 397.42 24099.67 8999.37 29497.53 11899.88 14598.98 10097.29 29798.42 357
PVSNet_Blended99.08 11498.97 10899.42 13999.76 6898.79 19298.78 37099.91 396.74 29599.67 8999.49 25797.53 11899.88 14598.98 10099.85 7699.60 154
MVS97.28 31496.55 32799.48 12898.78 34898.95 17099.27 27599.39 23283.53 41398.08 34399.54 24096.97 14099.87 15094.23 37099.16 17799.63 147
MG-MVS99.13 9799.02 9899.45 13499.57 15898.63 20599.07 32199.34 26198.99 5199.61 11699.82 8397.98 10999.87 15097.00 30299.80 10499.85 37
MSDG98.98 12998.80 13599.53 11499.76 6899.19 13198.75 37399.55 8097.25 25499.47 14499.77 13797.82 11299.87 15096.93 30999.90 4499.54 170
ETV-MVS99.26 7699.21 7299.40 14199.46 20199.30 11999.56 13099.52 10798.52 10099.44 15299.27 32198.41 9099.86 15399.10 8899.59 14699.04 252
thisisatest051598.14 20697.79 23299.19 17899.50 18998.50 22198.61 38596.82 40996.95 28499.54 13299.43 27591.66 32799.86 15398.08 21599.51 15299.22 234
thres600view797.86 25097.51 26698.92 21299.72 9697.95 25499.59 10998.74 37197.94 17499.27 19698.62 37591.75 32199.86 15393.73 37598.19 24598.96 262
lupinMVS99.13 9799.01 10299.46 13399.51 17898.94 17399.05 32699.16 31397.86 18299.80 4999.56 23297.39 12199.86 15398.94 10599.85 7699.58 162
PVSNet96.02 1798.85 14898.84 13298.89 22199.73 9297.28 28298.32 40199.60 5497.86 18299.50 13999.57 22996.75 14799.86 15398.56 17199.70 13199.54 170
MAR-MVS98.86 14198.63 15499.54 10699.37 22999.66 5899.45 19999.54 8996.61 30799.01 24899.40 28597.09 13399.86 15397.68 25599.53 15199.10 240
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing9197.44 30897.02 31598.71 24999.18 27996.89 31399.19 29899.04 32997.78 19598.31 33098.29 38885.41 39099.85 15998.01 22197.95 25599.39 214
test250696.81 32996.65 32597.29 35699.74 8592.21 39999.60 10285.06 43099.13 2699.77 6099.93 1087.82 37899.85 15999.38 5599.38 16099.80 74
AllTest98.87 13898.72 14399.31 15699.86 2098.48 22499.56 13099.61 4897.85 18599.36 17599.85 5995.95 17699.85 15996.66 32299.83 9399.59 158
TestCases99.31 15699.86 2098.48 22499.61 4897.85 18599.36 17599.85 5995.95 17699.85 15996.66 32299.83 9399.59 158
jason99.13 9799.03 9499.45 13499.46 20198.87 18099.12 31199.26 29698.03 16999.79 5199.65 19497.02 13899.85 15999.02 9799.90 4499.65 135
jason: jason.
CNVR-MVS99.42 4799.30 5499.78 5799.62 14399.71 4999.26 28499.52 10798.82 7199.39 16899.71 16098.96 2599.85 15998.59 16499.80 10499.77 86
PAPM_NR99.04 12098.84 13299.66 7599.74 8599.44 10199.39 23299.38 24097.70 20599.28 19199.28 31898.34 9399.85 15996.96 30699.45 15699.69 121
testing9997.36 31196.94 31898.63 25499.18 27996.70 31999.30 26098.93 34197.71 20298.23 33598.26 38984.92 39399.84 16698.04 22097.85 26299.35 220
testing22297.16 31996.50 32899.16 18199.16 28998.47 22699.27 27598.66 38197.71 20298.23 33598.15 39282.28 40699.84 16697.36 28297.66 26899.18 236
test111198.04 22198.11 19797.83 33599.74 8593.82 38499.58 11795.40 41799.12 3199.65 10199.93 1090.73 34099.84 16699.43 5399.38 16099.82 58
ECVR-MVScopyleft98.04 22198.05 20698.00 32199.74 8594.37 37999.59 10994.98 41899.13 2699.66 9499.93 1090.67 34199.84 16699.40 5499.38 16099.80 74
test_yl98.86 14198.63 15499.54 10699.49 19199.18 13399.50 17399.07 32598.22 13599.61 11699.51 25195.37 19899.84 16698.60 16298.33 23399.59 158
DCV-MVSNet98.86 14198.63 15499.54 10699.49 19199.18 13399.50 17399.07 32598.22 13599.61 11699.51 25195.37 19899.84 16698.60 16298.33 23399.59 158
Fast-Effi-MVS+98.70 16398.43 17499.51 12299.51 17899.28 12299.52 15799.47 18496.11 34699.01 24899.34 30496.20 16899.84 16697.88 22998.82 20899.39 214
TSAR-MVS + GP.99.36 6099.36 3899.36 14799.67 11698.61 20899.07 32199.33 26899.00 4999.82 4499.81 9799.06 1699.84 16699.09 8999.42 15899.65 135
tpmrst98.33 18998.48 17297.90 32999.16 28994.78 37299.31 25899.11 31897.27 25299.45 14799.59 22095.33 20099.84 16698.48 17898.61 21699.09 244
Vis-MVSNetpermissive99.12 10398.97 10899.56 10399.78 5799.10 14599.68 6699.66 2898.49 10299.86 3599.87 5094.77 22799.84 16699.19 7799.41 15999.74 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 17098.34 18099.51 12299.40 22199.03 15598.80 36899.36 24996.33 32799.00 25299.12 34098.46 8499.84 16695.23 35699.37 16799.66 131
PatchMatch-RL98.84 15198.62 15999.52 12099.71 10199.28 12299.06 32499.77 997.74 20099.50 13999.53 24495.41 19699.84 16697.17 29699.64 14099.44 206
EPP-MVSNet99.13 9798.99 10499.53 11499.65 13299.06 15299.81 2099.33 26897.43 23899.60 11999.88 4197.14 13199.84 16699.13 8398.94 19799.69 121
testing1197.50 30197.10 31298.71 24999.20 27396.91 31199.29 26598.82 36197.89 17998.21 33898.40 38385.63 38899.83 17998.45 18398.04 25399.37 218
thres100view90097.76 26897.45 27598.69 25199.72 9697.86 26099.59 10998.74 37197.93 17599.26 20098.62 37591.75 32199.83 17993.22 38098.18 24698.37 363
tfpn200view997.72 27897.38 28898.72 24799.69 11097.96 25299.50 17398.73 37797.83 18899.17 22198.45 38191.67 32599.83 17993.22 38098.18 24698.37 363
test_prior99.68 7399.67 11699.48 9699.56 7299.83 17999.74 96
131498.68 16598.54 16999.11 18798.89 33398.65 20299.27 27599.49 15196.89 28897.99 34899.56 23297.72 11699.83 17997.74 24799.27 17198.84 268
thres40097.77 26797.38 28898.92 21299.69 11097.96 25299.50 17398.73 37797.83 18899.17 22198.45 38191.67 32599.83 17993.22 38098.18 24698.96 262
casdiffmvspermissive99.13 9798.98 10799.56 10399.65 13299.16 13699.56 13099.50 14198.33 12199.41 16199.86 5495.92 17999.83 17999.45 5299.16 17799.70 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SPE-MVS-test99.49 2599.48 1899.54 10699.78 5799.30 11999.89 299.58 6398.56 9699.73 7299.69 17498.55 7899.82 18699.69 2399.85 7699.48 190
MVS_Test99.10 11298.97 10899.48 12899.49 19199.14 14199.67 6999.34 26197.31 24999.58 12399.76 14197.65 11799.82 18698.87 11799.07 18999.46 201
dp97.75 27297.80 23197.59 34899.10 30093.71 38799.32 25598.88 35496.48 31999.08 23699.55 23592.67 29999.82 18696.52 32698.58 21999.24 233
RPSCF98.22 19698.62 15996.99 36299.82 4291.58 40199.72 5299.44 21296.61 30799.66 9499.89 3495.92 17999.82 18697.46 27599.10 18699.57 165
PMMVS98.80 15598.62 15999.34 14999.27 25698.70 19898.76 37299.31 28297.34 24699.21 21099.07 34297.20 13099.82 18698.56 17198.87 20399.52 177
UBG97.85 25197.48 26998.95 20699.25 26297.64 27199.24 28898.74 37197.90 17898.64 30798.20 39188.65 36699.81 19198.27 19998.40 22999.42 208
EIA-MVS99.18 8699.09 8699.45 13499.49 19199.18 13399.67 6999.53 10297.66 21099.40 16699.44 27398.10 10399.81 19198.94 10599.62 14399.35 220
Effi-MVS+98.81 15298.59 16599.48 12899.46 20199.12 14498.08 40899.50 14197.50 22999.38 17099.41 28196.37 16399.81 19199.11 8598.54 22499.51 184
thres20097.61 29397.28 30398.62 25599.64 13498.03 24699.26 28498.74 37197.68 20799.09 23598.32 38791.66 32799.81 19192.88 38598.22 24198.03 382
tpmvs97.98 23298.02 21097.84 33499.04 31394.73 37399.31 25899.20 30896.10 35098.76 28799.42 27794.94 21399.81 19196.97 30598.45 22898.97 260
casdiffmvs_mvgpermissive99.15 9299.02 9899.55 10599.66 12699.09 14699.64 8499.56 7298.26 12999.45 14799.87 5096.03 17399.81 19199.54 3799.15 18099.73 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 15299.37 3697.12 36099.60 15291.75 40098.61 38599.44 21299.35 1499.83 4399.85 5998.70 6699.81 19199.02 9799.91 3599.81 65
DPM-MVS98.95 13298.71 14599.66 7599.63 13799.55 8398.64 38499.10 31997.93 17599.42 15799.55 23598.67 6999.80 19895.80 34199.68 13599.61 151
DP-MVS Recon99.12 10398.95 11499.65 7999.74 8599.70 5199.27 27599.57 6796.40 32699.42 15799.68 18198.75 5899.80 19897.98 22399.72 12799.44 206
MVS_111021_LR99.41 5199.33 4499.65 7999.77 6499.51 9298.94 35499.85 698.82 7199.65 10199.74 14998.51 8199.80 19898.83 13099.89 5599.64 142
CS-MVS99.50 2399.48 1899.54 10699.76 6899.42 10399.90 199.55 8098.56 9699.78 5699.70 16498.65 7199.79 20199.65 2799.78 11399.41 211
Fast-Effi-MVS+-dtu98.77 15898.83 13498.60 25699.41 21696.99 30599.52 15799.49 15198.11 15299.24 20299.34 30496.96 14199.79 20197.95 22599.45 15699.02 255
baseline198.31 19097.95 21799.38 14699.50 18998.74 19599.59 10998.93 34198.41 11199.14 22499.60 21894.59 23899.79 20198.48 17893.29 37899.61 151
baseline99.15 9299.02 9899.53 11499.66 12699.14 14199.72 5299.48 16398.35 11899.42 15799.84 6996.07 17199.79 20199.51 4299.14 18199.67 128
PVSNet_094.43 1996.09 34495.47 35197.94 32699.31 24694.34 38197.81 41099.70 1597.12 26697.46 36198.75 37289.71 35299.79 20197.69 25481.69 41399.68 125
API-MVS99.04 12099.03 9499.06 19199.40 22199.31 11799.55 14499.56 7298.54 9899.33 18299.39 28998.76 5599.78 20696.98 30499.78 11398.07 379
OMC-MVS99.08 11499.04 9299.20 17799.67 11698.22 23799.28 27099.52 10798.07 16099.66 9499.81 9797.79 11399.78 20697.79 23999.81 10099.60 154
GeoE98.85 14898.62 15999.53 11499.61 14799.08 14999.80 2599.51 12197.10 27099.31 18499.78 12995.23 20699.77 20898.21 20299.03 19299.75 92
alignmvs98.81 15298.56 16899.58 9999.43 20999.42 10399.51 16698.96 33998.61 9299.35 17898.92 36294.78 22499.77 20899.35 5798.11 25199.54 170
tpm cat197.39 31097.36 29097.50 35199.17 28793.73 38699.43 21099.31 28291.27 39998.71 29199.08 34194.31 25299.77 20896.41 33098.50 22699.00 256
CostFormer97.72 27897.73 24497.71 34299.15 29394.02 38399.54 14899.02 33294.67 37499.04 24599.35 30092.35 31199.77 20898.50 17797.94 25699.34 223
MGCFI-Net99.01 12798.85 13099.50 12799.42 21199.26 12599.82 1699.48 16398.60 9399.28 19198.81 36797.04 13799.76 21299.29 6897.87 26099.47 196
test_241102_ONE99.84 3299.90 299.48 16399.07 4199.91 1999.74 14999.20 799.76 212
MDTV_nov1_ep1398.32 18299.11 29794.44 37899.27 27598.74 37197.51 22899.40 16699.62 21194.78 22499.76 21297.59 25998.81 210
sasdasda99.02 12398.86 12899.51 12299.42 21199.32 11399.80 2599.48 16398.63 8999.31 18498.81 36797.09 13399.75 21599.27 7197.90 25799.47 196
canonicalmvs99.02 12398.86 12899.51 12299.42 21199.32 11399.80 2599.48 16398.63 8999.31 18498.81 36797.09 13399.75 21599.27 7197.90 25799.47 196
Effi-MVS+-dtu98.78 15698.89 12398.47 27799.33 23896.91 31199.57 12499.30 28698.47 10499.41 16198.99 35296.78 14599.74 21798.73 14199.38 16098.74 282
patchmatchnet-post98.70 37394.79 22399.74 217
SCA98.19 20098.16 19098.27 30399.30 24795.55 35399.07 32198.97 33797.57 21899.43 15499.57 22992.72 29499.74 21797.58 26099.20 17599.52 177
BH-untuned98.42 17998.36 17898.59 25799.49 19196.70 31999.27 27599.13 31797.24 25698.80 28299.38 29195.75 18699.74 21797.07 30099.16 17799.33 224
BH-RMVSNet98.41 18198.08 20299.40 14199.41 21698.83 18899.30 26098.77 36797.70 20598.94 26199.65 19492.91 28999.74 21796.52 32699.55 15099.64 142
MVS_111021_HR99.41 5199.32 4699.66 7599.72 9699.47 9898.95 35299.85 698.82 7199.54 13299.73 15598.51 8199.74 21798.91 11199.88 5899.77 86
test_post65.99 42494.65 23799.73 223
XVG-ACMP-BASELINE97.83 25797.71 24698.20 30599.11 29796.33 33599.41 22099.52 10798.06 16499.05 24499.50 25489.64 35499.73 22397.73 24897.38 29598.53 345
HyFIR lowres test99.11 10898.92 11799.65 7999.90 499.37 10799.02 33499.91 397.67 20999.59 12299.75 14495.90 18199.73 22399.53 3999.02 19499.86 33
DeepMVS_CXcopyleft93.34 38599.29 25182.27 41499.22 30485.15 41196.33 38299.05 34590.97 33899.73 22393.57 37797.77 26598.01 383
Patchmatch-test97.93 23897.65 25198.77 24499.18 27997.07 29699.03 33199.14 31696.16 34198.74 28899.57 22994.56 24099.72 22793.36 37999.11 18399.52 177
LPG-MVS_test98.22 19698.13 19598.49 27099.33 23897.05 29899.58 11799.55 8097.46 23199.24 20299.83 7492.58 30199.72 22798.09 21197.51 28198.68 300
LGP-MVS_train98.49 27099.33 23897.05 29899.55 8097.46 23199.24 20299.83 7492.58 30199.72 22798.09 21197.51 28198.68 300
BH-w/o98.00 23097.89 22698.32 29599.35 23396.20 34199.01 33998.90 35196.42 32498.38 32699.00 35195.26 20499.72 22796.06 33498.61 21699.03 253
ACMP97.20 1198.06 21597.94 21998.45 28099.37 22997.01 30399.44 20599.49 15197.54 22498.45 32399.79 12291.95 31799.72 22797.91 22797.49 28698.62 328
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 22597.90 22298.40 28899.23 26696.80 31799.70 5699.60 5497.12 26698.18 34099.70 16491.73 32399.72 22798.39 18697.45 28898.68 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 29065.14 42594.18 25799.71 23397.58 260
ADS-MVSNet98.20 19998.08 20298.56 26499.33 23896.48 33099.23 29099.15 31496.24 33499.10 23299.67 18794.11 25899.71 23396.81 31499.05 19099.48 190
JIA-IIPM97.50 30197.02 31598.93 21098.73 35797.80 26299.30 26098.97 33791.73 39898.91 26494.86 41395.10 20999.71 23397.58 26097.98 25499.28 228
EPMVS97.82 26097.65 25198.35 29298.88 33495.98 34599.49 18494.71 42097.57 21899.26 20099.48 26392.46 30899.71 23397.87 23199.08 18899.35 220
TDRefinement95.42 35394.57 36097.97 32389.83 42396.11 34499.48 18898.75 36896.74 29596.68 37999.88 4188.65 36699.71 23398.37 18982.74 41298.09 378
ACMM97.58 598.37 18798.34 18098.48 27299.41 21697.10 29299.56 13099.45 20498.53 9999.04 24599.85 5993.00 28599.71 23398.74 13997.45 28898.64 319
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 23597.77 23798.57 26199.59 15496.61 32699.45 19999.08 32298.21 13798.88 26999.80 11088.66 36599.70 23998.58 16597.72 26699.39 214
CHOSEN 280x42099.12 10399.13 7999.08 18899.66 12697.89 25798.43 39599.71 1398.88 6599.62 11399.76 14196.63 15199.70 23999.46 5199.99 199.66 131
EC-MVSNet99.44 4299.39 3299.58 9999.56 16299.49 9499.88 499.58 6398.38 11399.73 7299.69 17498.20 9999.70 23999.64 2999.82 9799.54 170
PatchmatchNetpermissive98.31 19098.36 17898.19 30699.16 28995.32 36299.27 27598.92 34497.37 24499.37 17299.58 22494.90 21799.70 23997.43 27899.21 17499.54 170
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 21097.99 21298.44 28399.41 21696.96 30999.60 10299.56 7298.09 15598.15 34199.91 2290.87 33999.70 23998.88 11497.45 28898.67 307
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS97.50 30196.90 31999.29 16499.23 26698.78 19499.32 25598.90 35197.52 22798.56 31698.09 39784.72 39599.69 24497.86 23297.88 25999.39 214
HQP_MVS98.27 19598.22 18898.44 28399.29 25196.97 30799.39 23299.47 18498.97 5799.11 22999.61 21592.71 29699.69 24497.78 24097.63 26998.67 307
plane_prior599.47 18499.69 24497.78 24097.63 26998.67 307
D2MVS98.41 18198.50 17198.15 31199.26 25896.62 32599.40 22899.61 4897.71 20298.98 25499.36 29796.04 17299.67 24798.70 14497.41 29398.15 375
IS-MVSNet99.05 11998.87 12699.57 10199.73 9299.32 11399.75 4299.20 30898.02 17099.56 12799.86 5496.54 15599.67 24798.09 21199.13 18299.73 101
CLD-MVS98.16 20498.10 19898.33 29399.29 25196.82 31698.75 37399.44 21297.83 18899.13 22599.55 23592.92 28799.67 24798.32 19697.69 26798.48 349
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 31697.30 30097.09 36199.43 20993.31 39299.73 5098.87 35698.83 7099.28 19199.80 11084.45 39699.66 25097.88 22997.45 28898.30 365
AUN-MVS96.88 32796.31 33398.59 25799.48 19897.04 30199.27 27599.22 30497.44 23798.51 31999.41 28191.97 31699.66 25097.71 25183.83 41099.07 250
UniMVSNet_ETH3D97.32 31396.81 32198.87 22799.40 22197.46 27699.51 16699.53 10295.86 35498.54 31899.77 13782.44 40499.66 25098.68 14997.52 28099.50 188
OPM-MVS98.19 20098.10 19898.45 28098.88 33497.07 29699.28 27099.38 24098.57 9599.22 20799.81 9792.12 31399.66 25098.08 21597.54 27898.61 337
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 24197.78 23598.32 29599.46 20196.68 32399.56 13099.54 8998.41 11197.79 35799.87 5090.18 34899.66 25098.05 21997.18 30298.62 328
hse-mvs297.50 30197.14 30998.59 25799.49 19197.05 29899.28 27099.22 30498.94 6099.66 9499.42 27794.93 21499.65 25599.48 4883.80 41199.08 245
VPA-MVSNet98.29 19397.95 21799.30 16199.16 28999.54 8599.50 17399.58 6398.27 12799.35 17899.37 29492.53 30399.65 25599.35 5794.46 36098.72 284
TR-MVS97.76 26897.41 28698.82 23699.06 30997.87 25898.87 36298.56 38496.63 30698.68 29999.22 32792.49 30499.65 25595.40 35297.79 26498.95 264
reproduce_monomvs97.89 24597.87 22797.96 32599.51 17895.45 35899.60 10299.25 29899.17 2198.85 27799.49 25789.29 35799.64 25899.35 5796.31 31898.78 271
gm-plane-assit98.54 37792.96 39494.65 37599.15 33599.64 25897.56 265
HQP4-MVS98.66 30099.64 25898.64 319
HQP-MVS98.02 22597.90 22298.37 29199.19 27696.83 31498.98 34599.39 23298.24 13198.66 30099.40 28592.47 30599.64 25897.19 29397.58 27498.64 319
PAPM97.59 29497.09 31399.07 18999.06 30998.26 23598.30 40299.10 31994.88 36998.08 34399.34 30496.27 16699.64 25889.87 39998.92 20099.31 226
TAPA-MVS97.07 1597.74 27497.34 29598.94 20899.70 10697.53 27499.25 28699.51 12191.90 39799.30 18799.63 20698.78 5199.64 25888.09 40699.87 6199.65 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 18598.09 20199.24 17399.26 25899.32 11399.56 13099.55 8097.45 23498.71 29199.83 7493.23 28099.63 26498.88 11496.32 31798.76 277
ITE_SJBPF98.08 31499.29 25196.37 33398.92 34498.34 11998.83 27899.75 14491.09 33699.62 26595.82 33997.40 29498.25 369
LF4IMVS97.52 29897.46 27497.70 34398.98 32395.55 35399.29 26598.82 36198.07 16098.66 30099.64 20089.97 34999.61 26697.01 30196.68 30797.94 390
tpm97.67 28897.55 26098.03 31699.02 31595.01 36899.43 21098.54 38696.44 32299.12 22799.34 30491.83 32099.60 26797.75 24696.46 31399.48 190
tpm297.44 30897.34 29597.74 34199.15 29394.36 38099.45 19998.94 34093.45 38898.90 26699.44 27391.35 33399.59 26897.31 28498.07 25299.29 227
baseline297.87 24897.55 26098.82 23699.18 27998.02 24799.41 22096.58 41496.97 28196.51 38099.17 33293.43 27799.57 26997.71 25199.03 19298.86 266
MS-PatchMatch97.24 31897.32 29896.99 36298.45 38093.51 39198.82 36699.32 27897.41 24198.13 34299.30 31488.99 35999.56 27095.68 34599.80 10497.90 393
TinyColmap97.12 32196.89 32097.83 33599.07 30795.52 35698.57 38898.74 37197.58 21797.81 35699.79 12288.16 37399.56 27095.10 35797.21 30098.39 361
USDC97.34 31297.20 30797.75 34099.07 30795.20 36498.51 39299.04 32997.99 17198.31 33099.86 5489.02 35899.55 27295.67 34697.36 29698.49 348
MSLP-MVS++99.46 3499.47 2099.44 13899.60 15299.16 13699.41 22099.71 1398.98 5499.45 14799.78 12999.19 999.54 27399.28 6999.84 8499.63 147
TAMVS99.12 10399.08 8799.24 17399.46 20198.55 21299.51 16699.46 19398.09 15599.45 14799.82 8398.34 9399.51 27498.70 14498.93 19899.67 128
EPNet_dtu98.03 22397.96 21598.23 30498.27 38395.54 35599.23 29098.75 36899.02 4497.82 35599.71 16096.11 17099.48 27593.04 38399.65 13999.69 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs5depth96.66 33196.22 33597.97 32397.00 40596.28 33798.66 38299.03 33196.61 30796.93 37799.79 12287.20 38199.47 27696.65 32494.13 36798.16 374
EG-PatchMatch MVS95.97 34695.69 34796.81 36997.78 39092.79 39599.16 30298.93 34196.16 34194.08 39899.22 32782.72 40299.47 27695.67 34697.50 28398.17 373
MVP-Stereo97.81 26297.75 24297.99 32297.53 39496.60 32798.96 34998.85 35897.22 25897.23 36899.36 29795.28 20199.46 27895.51 34899.78 11397.92 392
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 17298.67 14998.30 29799.35 23395.59 35299.50 17399.55 8098.60 9399.39 16899.83 7494.48 24599.45 27998.75 13898.56 22299.85 37
test-LLR98.06 21597.90 22298.55 26698.79 34597.10 29298.67 37997.75 40097.34 24698.61 31298.85 36494.45 24799.45 27997.25 28799.38 16099.10 240
TESTMET0.1,197.55 29697.27 30698.40 28898.93 32896.53 32898.67 37997.61 40396.96 28298.64 30799.28 31888.63 36899.45 27997.30 28599.38 16099.21 235
test-mter97.49 30697.13 31198.55 26698.79 34597.10 29298.67 37997.75 40096.65 30298.61 31298.85 36488.23 37299.45 27997.25 28799.38 16099.10 240
mvs_anonymous99.03 12298.99 10499.16 18199.38 22698.52 21899.51 16699.38 24097.79 19399.38 17099.81 9797.30 12799.45 27999.35 5798.99 19599.51 184
tfpnnormal97.84 25597.47 27298.98 20199.20 27399.22 13099.64 8499.61 4896.32 32898.27 33499.70 16493.35 27999.44 28495.69 34495.40 34398.27 367
v7n97.87 24897.52 26498.92 21298.76 35598.58 21099.84 1299.46 19396.20 33798.91 26499.70 16494.89 21899.44 28496.03 33593.89 37298.75 279
jajsoiax98.43 17898.28 18598.88 22398.60 37298.43 22899.82 1699.53 10298.19 13998.63 30999.80 11093.22 28299.44 28499.22 7597.50 28398.77 275
mvs_tets98.40 18498.23 18798.91 21698.67 36598.51 22099.66 7599.53 10298.19 13998.65 30699.81 9792.75 29199.44 28499.31 6597.48 28798.77 275
Vis-MVSNet (Re-imp)98.87 13898.72 14399.31 15699.71 10198.88 17999.80 2599.44 21297.91 17799.36 17599.78 12995.49 19599.43 28897.91 22799.11 18399.62 149
OPU-MVS99.64 8599.56 16299.72 4799.60 10299.70 16499.27 599.42 28998.24 20199.80 10499.79 78
Anonymous2023121197.88 24697.54 26398.90 21899.71 10198.53 21499.48 18899.57 6794.16 37998.81 28099.68 18193.23 28099.42 28998.84 12794.42 36298.76 277
ttmdpeth97.80 26497.63 25598.29 29898.77 35397.38 27999.64 8499.36 24998.78 7996.30 38399.58 22492.34 31299.39 29198.36 19195.58 33898.10 377
VPNet97.84 25597.44 28099.01 19799.21 27198.94 17399.48 18899.57 6798.38 11399.28 19199.73 15588.89 36099.39 29199.19 7793.27 37998.71 286
nrg03098.64 16998.42 17599.28 16899.05 31299.69 5299.81 2099.46 19398.04 16799.01 24899.82 8396.69 14999.38 29399.34 6294.59 35998.78 271
GA-MVS97.85 25197.47 27299.00 19999.38 22697.99 24998.57 38899.15 31497.04 27798.90 26699.30 31489.83 35199.38 29396.70 31998.33 23399.62 149
UniMVSNet (Re)98.29 19398.00 21199.13 18699.00 31799.36 11099.49 18499.51 12197.95 17398.97 25699.13 33796.30 16599.38 29398.36 19193.34 37798.66 315
FIs98.78 15698.63 15499.23 17599.18 27999.54 8599.83 1599.59 5998.28 12598.79 28499.81 9796.75 14799.37 29699.08 9096.38 31598.78 271
PS-MVSNAJss98.92 13498.92 11798.90 21898.78 34898.53 21499.78 3299.54 8998.07 16099.00 25299.76 14199.01 1899.37 29699.13 8397.23 29998.81 269
CDS-MVSNet99.09 11399.03 9499.25 17199.42 21198.73 19699.45 19999.46 19398.11 15299.46 14699.77 13798.01 10899.37 29698.70 14498.92 20099.66 131
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 35095.16 35597.51 35099.30 24793.69 38898.88 36095.78 41585.09 41298.78 28592.65 41591.29 33499.37 29694.85 36299.85 7699.46 201
v119297.81 26297.44 28098.91 21698.88 33498.68 19999.51 16699.34 26196.18 33999.20 21399.34 30494.03 26299.36 30095.32 35495.18 34798.69 295
EI-MVSNet98.67 16698.67 14998.68 25299.35 23397.97 25099.50 17399.38 24096.93 28799.20 21399.83 7497.87 11099.36 30098.38 18797.56 27698.71 286
MVSTER98.49 17398.32 18299.00 19999.35 23399.02 15699.54 14899.38 24097.41 24199.20 21399.73 15593.86 27099.36 30098.87 11797.56 27698.62 328
gg-mvs-nofinetune96.17 34295.32 35498.73 24698.79 34598.14 24199.38 23794.09 42191.07 40298.07 34691.04 41989.62 35599.35 30396.75 31699.09 18798.68 300
pm-mvs197.68 28597.28 30398.88 22399.06 30998.62 20699.50 17399.45 20496.32 32897.87 35399.79 12292.47 30599.35 30397.54 26793.54 37698.67 307
OurMVSNet-221017-097.88 24697.77 23798.19 30698.71 36196.53 32899.88 499.00 33497.79 19398.78 28599.94 691.68 32499.35 30397.21 28996.99 30698.69 295
EGC-MVSNET82.80 38477.86 39097.62 34697.91 38796.12 34399.33 25499.28 2928.40 42725.05 42899.27 32184.11 39799.33 30689.20 40198.22 24197.42 401
pmmvs696.53 33496.09 33997.82 33798.69 36395.47 35799.37 23999.47 18493.46 38797.41 36299.78 12987.06 38299.33 30696.92 31192.70 38698.65 317
V4298.06 21597.79 23298.86 23098.98 32398.84 18599.69 6099.34 26196.53 31499.30 18799.37 29494.67 23599.32 30897.57 26494.66 35798.42 357
lessismore_v097.79 33998.69 36395.44 36094.75 41995.71 38999.87 5088.69 36499.32 30895.89 33894.93 35498.62 328
OpenMVS_ROBcopyleft92.34 2094.38 36493.70 37096.41 37497.38 39693.17 39399.06 32498.75 36886.58 41094.84 39698.26 38981.53 40799.32 30889.01 40297.87 26096.76 404
v897.95 23797.63 25598.93 21098.95 32798.81 19199.80 2599.41 22396.03 35199.10 23299.42 27794.92 21699.30 31196.94 30894.08 36998.66 315
v192192097.80 26497.45 27598.84 23498.80 34498.53 21499.52 15799.34 26196.15 34399.24 20299.47 26693.98 26499.29 31295.40 35295.13 34998.69 295
anonymousdsp98.44 17798.28 18598.94 20898.50 37898.96 16799.77 3499.50 14197.07 27298.87 27299.77 13794.76 22899.28 31398.66 15197.60 27298.57 343
MVSFormer99.17 8899.12 8199.29 16499.51 17898.94 17399.88 499.46 19397.55 22199.80 4999.65 19497.39 12199.28 31399.03 9599.85 7699.65 135
test_djsdf98.67 16698.57 16698.98 20198.70 36298.91 17799.88 499.46 19397.55 22199.22 20799.88 4195.73 18799.28 31399.03 9597.62 27198.75 279
cascas97.69 28397.43 28498.48 27298.60 37297.30 28198.18 40699.39 23292.96 39198.41 32498.78 37193.77 27399.27 31698.16 20898.61 21698.86 266
v14419297.92 24197.60 25898.87 22798.83 34398.65 20299.55 14499.34 26196.20 33799.32 18399.40 28594.36 24999.26 31796.37 33195.03 35198.70 291
dmvs_re98.08 21398.16 19097.85 33299.55 16694.67 37599.70 5698.92 34498.15 14499.06 24299.35 30093.67 27699.25 31897.77 24397.25 29899.64 142
v2v48298.06 21597.77 23798.92 21298.90 33298.82 18999.57 12499.36 24996.65 30299.19 21699.35 30094.20 25499.25 31897.72 25094.97 35298.69 295
v124097.69 28397.32 29898.79 24298.85 34198.43 22899.48 18899.36 24996.11 34699.27 19699.36 29793.76 27499.24 32094.46 36695.23 34698.70 291
WBMVS97.74 27497.50 26798.46 27899.24 26497.43 27799.21 29699.42 22097.45 23498.96 25899.41 28188.83 36199.23 32198.94 10596.02 32398.71 286
v114497.98 23297.69 24798.85 23398.87 33798.66 20199.54 14899.35 25696.27 33299.23 20699.35 30094.67 23599.23 32196.73 31795.16 34898.68 300
v1097.85 25197.52 26498.86 23098.99 32098.67 20099.75 4299.41 22395.70 35598.98 25499.41 28194.75 22999.23 32196.01 33794.63 35898.67 307
WR-MVS_H98.13 20797.87 22798.90 21899.02 31598.84 18599.70 5699.59 5997.27 25298.40 32599.19 33195.53 19399.23 32198.34 19393.78 37498.61 337
miper_enhance_ethall98.16 20498.08 20298.41 28698.96 32697.72 26698.45 39499.32 27896.95 28498.97 25699.17 33297.06 13699.22 32597.86 23295.99 32698.29 366
GG-mvs-BLEND98.45 28098.55 37698.16 23999.43 21093.68 42297.23 36898.46 38089.30 35699.22 32595.43 35198.22 24197.98 388
FC-MVSNet-test98.75 15998.62 15999.15 18599.08 30699.45 10099.86 1199.60 5498.23 13498.70 29799.82 8396.80 14499.22 32599.07 9196.38 31598.79 270
UniMVSNet_NR-MVSNet98.22 19697.97 21498.96 20498.92 33098.98 16099.48 18899.53 10297.76 19798.71 29199.46 27096.43 16299.22 32598.57 16892.87 38498.69 295
DU-MVS98.08 21397.79 23298.96 20498.87 33798.98 16099.41 22099.45 20497.87 18198.71 29199.50 25494.82 22099.22 32598.57 16892.87 38498.68 300
cl____98.01 22897.84 23098.55 26699.25 26297.97 25098.71 37799.34 26196.47 32198.59 31599.54 24095.65 19099.21 33097.21 28995.77 33298.46 354
WR-MVS98.06 21597.73 24499.06 19198.86 34099.25 12799.19 29899.35 25697.30 25098.66 30099.43 27593.94 26599.21 33098.58 16594.28 36498.71 286
test_040296.64 33296.24 33497.85 33298.85 34196.43 33299.44 20599.26 29693.52 38596.98 37599.52 24788.52 36999.20 33292.58 39097.50 28397.93 391
SixPastTwentyTwo97.50 30197.33 29798.03 31698.65 36696.23 34099.77 3498.68 38097.14 26397.90 35199.93 1090.45 34299.18 33397.00 30296.43 31498.67 307
cl2297.85 25197.64 25498.48 27299.09 30397.87 25898.60 38799.33 26897.11 26998.87 27299.22 32792.38 31099.17 33498.21 20295.99 32698.42 357
WB-MVSnew97.65 29097.65 25197.63 34598.78 34897.62 27299.13 30898.33 38997.36 24599.07 23798.94 35895.64 19199.15 33592.95 38498.68 21596.12 411
IterMVS-SCA-FT97.82 26097.75 24298.06 31599.57 15896.36 33499.02 33499.49 15197.18 26098.71 29199.72 15992.72 29499.14 33697.44 27795.86 33198.67 307
pmmvs597.52 29897.30 30098.16 30898.57 37596.73 31899.27 27598.90 35196.14 34498.37 32799.53 24491.54 33099.14 33697.51 26995.87 33098.63 326
v14897.79 26697.55 26098.50 26998.74 35697.72 26699.54 14899.33 26896.26 33398.90 26699.51 25194.68 23499.14 33697.83 23693.15 38198.63 326
miper_ehance_all_eth98.18 20298.10 19898.41 28699.23 26697.72 26698.72 37699.31 28296.60 31098.88 26999.29 31697.29 12899.13 33997.60 25895.99 32698.38 362
NR-MVSNet97.97 23597.61 25799.02 19698.87 33799.26 12599.47 19499.42 22097.63 21297.08 37399.50 25495.07 21099.13 33997.86 23293.59 37598.68 300
IterMVS97.83 25797.77 23798.02 31899.58 15696.27 33899.02 33499.48 16397.22 25898.71 29199.70 16492.75 29199.13 33997.46 27596.00 32598.67 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 36594.90 35791.84 39097.24 40080.01 42098.52 39199.48 16389.01 40791.99 40799.67 18785.67 38799.13 33995.44 35097.03 30596.39 408
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 22097.96 21598.33 29399.26 25897.38 27998.56 39099.31 28296.65 30298.88 26999.52 24796.58 15399.12 34397.39 28095.53 34198.47 351
pmmvs498.13 20797.90 22298.81 23998.61 37198.87 18098.99 34299.21 30796.44 32299.06 24299.58 22495.90 18199.11 34497.18 29596.11 32298.46 354
TransMVSNet (Re)97.15 32096.58 32698.86 23099.12 29598.85 18499.49 18498.91 34995.48 35897.16 37199.80 11093.38 27899.11 34494.16 37291.73 39098.62 328
ambc93.06 38892.68 41982.36 41398.47 39398.73 37795.09 39497.41 40255.55 42099.10 34696.42 32991.32 39197.71 394
Baseline_NR-MVSNet97.76 26897.45 27598.68 25299.09 30398.29 23399.41 22098.85 35895.65 35698.63 30999.67 18794.82 22099.10 34698.07 21892.89 38398.64 319
test_vis3_rt87.04 38085.81 38390.73 39493.99 41881.96 41599.76 3790.23 42992.81 39381.35 41791.56 41740.06 42699.07 34894.27 36988.23 40491.15 417
CP-MVSNet98.09 21197.78 23599.01 19798.97 32599.24 12899.67 6999.46 19397.25 25498.48 32299.64 20093.79 27299.06 34998.63 15594.10 36898.74 282
PS-CasMVS97.93 23897.59 25998.95 20698.99 32099.06 15299.68 6699.52 10797.13 26498.31 33099.68 18192.44 30999.05 35098.51 17694.08 36998.75 279
K. test v397.10 32296.79 32298.01 31998.72 35996.33 33599.87 897.05 40697.59 21596.16 38599.80 11088.71 36399.04 35196.69 32096.55 31298.65 317
new_pmnet96.38 33896.03 34097.41 35298.13 38695.16 36799.05 32699.20 30893.94 38097.39 36598.79 37091.61 32999.04 35190.43 39795.77 33298.05 381
DIV-MVS_self_test98.01 22897.85 22998.48 27299.24 26497.95 25498.71 37799.35 25696.50 31598.60 31499.54 24095.72 18899.03 35397.21 28995.77 33298.46 354
IterMVS-LS98.46 17698.42 17598.58 26099.59 15498.00 24899.37 23999.43 21896.94 28699.07 23799.59 22097.87 11099.03 35398.32 19695.62 33798.71 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 29097.68 24897.55 34998.62 36994.97 36998.84 36499.30 28696.83 29398.19 33999.34 30497.01 13999.02 35595.00 36096.01 32498.64 319
Patchmtry97.75 27297.40 28798.81 23999.10 30098.87 18099.11 31799.33 26894.83 37198.81 28099.38 29194.33 25099.02 35596.10 33395.57 33998.53 345
N_pmnet94.95 35995.83 34592.31 38998.47 37979.33 42199.12 31192.81 42793.87 38197.68 35899.13 33793.87 26999.01 35791.38 39496.19 32098.59 341
CR-MVSNet98.17 20397.93 22098.87 22799.18 27998.49 22299.22 29499.33 26896.96 28299.56 12799.38 29194.33 25099.00 35894.83 36398.58 21999.14 237
c3_l98.12 20998.04 20798.38 29099.30 24797.69 27098.81 36799.33 26896.67 30098.83 27899.34 30497.11 13298.99 35997.58 26095.34 34498.48 349
test0.0.03 197.71 28197.42 28598.56 26498.41 38297.82 26198.78 37098.63 38297.34 24698.05 34798.98 35494.45 24798.98 36095.04 35997.15 30398.89 265
PatchT97.03 32496.44 33098.79 24298.99 32098.34 23299.16 30299.07 32592.13 39699.52 13697.31 40694.54 24398.98 36088.54 40498.73 21399.03 253
GBi-Net97.68 28597.48 26998.29 29899.51 17897.26 28599.43 21099.48 16396.49 31699.07 23799.32 31190.26 34498.98 36097.10 29796.65 30898.62 328
test197.68 28597.48 26998.29 29899.51 17897.26 28599.43 21099.48 16396.49 31699.07 23799.32 31190.26 34498.98 36097.10 29796.65 30898.62 328
FMVSNet398.03 22397.76 24198.84 23499.39 22498.98 16099.40 22899.38 24096.67 30099.07 23799.28 31892.93 28698.98 36097.10 29796.65 30898.56 344
FMVSNet297.72 27897.36 29098.80 24199.51 17898.84 18599.45 19999.42 22096.49 31698.86 27699.29 31690.26 34498.98 36096.44 32896.56 31198.58 342
FMVSNet196.84 32896.36 33298.29 29899.32 24597.26 28599.43 21099.48 16395.11 36398.55 31799.32 31183.95 39898.98 36095.81 34096.26 31998.62 328
ppachtmachnet_test97.49 30697.45 27597.61 34798.62 36995.24 36398.80 36899.46 19396.11 34698.22 33799.62 21196.45 16098.97 36793.77 37495.97 32998.61 337
TranMVSNet+NR-MVSNet97.93 23897.66 25098.76 24598.78 34898.62 20699.65 8199.49 15197.76 19798.49 32199.60 21894.23 25398.97 36798.00 22292.90 38298.70 291
MVStest196.08 34595.48 35097.89 33098.93 32896.70 31999.56 13099.35 25692.69 39491.81 40899.46 27089.90 35098.96 36995.00 36092.61 38798.00 386
test_method91.10 37591.36 37790.31 39595.85 40873.72 42894.89 41699.25 29868.39 41995.82 38899.02 34980.50 40998.95 37093.64 37694.89 35698.25 369
ADS-MVSNet298.02 22598.07 20597.87 33199.33 23895.19 36599.23 29099.08 32296.24 33499.10 23299.67 18794.11 25898.93 37196.81 31499.05 19099.48 190
ET-MVSNet_ETH3D96.49 33595.64 34999.05 19399.53 17098.82 18998.84 36497.51 40497.63 21284.77 41399.21 33092.09 31498.91 37298.98 10092.21 38999.41 211
miper_lstm_enhance98.00 23097.91 22198.28 30299.34 23797.43 27798.88 36099.36 24996.48 31998.80 28299.55 23595.98 17498.91 37297.27 28695.50 34298.51 347
MonoMVSNet98.38 18598.47 17398.12 31398.59 37496.19 34299.72 5298.79 36697.89 17999.44 15299.52 24796.13 16998.90 37498.64 15397.54 27899.28 228
PEN-MVS97.76 26897.44 28098.72 24798.77 35398.54 21399.78 3299.51 12197.06 27498.29 33399.64 20092.63 30098.89 37598.09 21193.16 38098.72 284
testing397.28 31496.76 32398.82 23699.37 22998.07 24599.45 19999.36 24997.56 22097.89 35298.95 35783.70 39998.82 37696.03 33598.56 22299.58 162
testgi97.65 29097.50 26798.13 31299.36 23296.45 33199.42 21799.48 16397.76 19797.87 35399.45 27291.09 33698.81 37794.53 36598.52 22599.13 239
testf190.42 37890.68 37989.65 39897.78 39073.97 42699.13 30898.81 36389.62 40491.80 40998.93 35962.23 41898.80 37886.61 41291.17 39296.19 409
APD_test290.42 37890.68 37989.65 39897.78 39073.97 42699.13 30898.81 36389.62 40491.80 40998.93 35962.23 41898.80 37886.61 41291.17 39296.19 409
MIMVSNet97.73 27697.45 27598.57 26199.45 20797.50 27599.02 33498.98 33696.11 34699.41 16199.14 33690.28 34398.74 38095.74 34298.93 19899.47 196
LCM-MVSNet-Re97.83 25798.15 19296.87 36899.30 24792.25 39899.59 10998.26 39097.43 23896.20 38499.13 33796.27 16698.73 38198.17 20798.99 19599.64 142
Syy-MVS97.09 32397.14 30996.95 36599.00 31792.73 39699.29 26599.39 23297.06 27497.41 36298.15 39293.92 26798.68 38291.71 39298.34 23199.45 204
myMVS_eth3d96.89 32696.37 33198.43 28599.00 31797.16 28999.29 26599.39 23297.06 27497.41 36298.15 39283.46 40098.68 38295.27 35598.34 23199.45 204
DTE-MVSNet97.51 30097.19 30898.46 27898.63 36898.13 24299.84 1299.48 16396.68 29997.97 35099.67 18792.92 28798.56 38496.88 31392.60 38898.70 291
PC_three_145298.18 14299.84 3799.70 16499.31 398.52 38598.30 19899.80 10499.81 65
mvsany_test393.77 36793.45 37194.74 38095.78 40988.01 40699.64 8498.25 39198.28 12594.31 39797.97 39968.89 41498.51 38697.50 27090.37 39797.71 394
UnsupCasMVSNet_bld93.53 36892.51 37496.58 37397.38 39693.82 38498.24 40399.48 16391.10 40193.10 40296.66 40874.89 41298.37 38794.03 37387.71 40597.56 399
Anonymous2024052196.20 34195.89 34497.13 35997.72 39394.96 37099.79 3199.29 29093.01 39097.20 37099.03 34789.69 35398.36 38891.16 39596.13 32198.07 379
test_f91.90 37491.26 37893.84 38395.52 41385.92 40899.69 6098.53 38795.31 36093.87 39996.37 41055.33 42198.27 38995.70 34390.98 39597.32 402
MDA-MVSNet_test_wron95.45 35294.60 35998.01 31998.16 38597.21 28899.11 31799.24 30193.49 38680.73 41998.98 35493.02 28498.18 39094.22 37194.45 36198.64 319
UnsupCasMVSNet_eth96.44 33696.12 33797.40 35398.65 36695.65 35099.36 24499.51 12197.13 26496.04 38798.99 35288.40 37098.17 39196.71 31890.27 39898.40 360
KD-MVS_2432*160094.62 36093.72 36897.31 35497.19 40295.82 34898.34 39899.20 30895.00 36797.57 35998.35 38587.95 37598.10 39292.87 38677.00 41798.01 383
miper_refine_blended94.62 36093.72 36897.31 35497.19 40295.82 34898.34 39899.20 30895.00 36797.57 35998.35 38587.95 37598.10 39292.87 38677.00 41798.01 383
YYNet195.36 35494.51 36197.92 32797.89 38897.10 29299.10 31999.23 30293.26 38980.77 41899.04 34692.81 29098.02 39494.30 36794.18 36698.64 319
EU-MVSNet97.98 23298.03 20897.81 33898.72 35996.65 32499.66 7599.66 2898.09 15598.35 32899.82 8395.25 20598.01 39597.41 27995.30 34598.78 271
Gipumacopyleft90.99 37690.15 38193.51 38498.73 35790.12 40493.98 41799.45 20479.32 41592.28 40594.91 41269.61 41397.98 39687.42 40895.67 33692.45 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 35594.73 35897.15 35795.53 41295.94 34699.35 24999.10 31995.13 36193.55 40097.54 40188.15 37497.91 39794.58 36489.69 40197.61 397
PM-MVS92.96 37192.23 37595.14 37995.61 41089.98 40599.37 23998.21 39394.80 37295.04 39597.69 40065.06 41597.90 39894.30 36789.98 40097.54 400
MDA-MVSNet-bldmvs94.96 35893.98 36597.92 32798.24 38497.27 28399.15 30599.33 26893.80 38280.09 42099.03 34788.31 37197.86 39993.49 37894.36 36398.62 328
Patchmatch-RL test95.84 34895.81 34695.95 37795.61 41090.57 40398.24 40398.39 38895.10 36595.20 39298.67 37494.78 22497.77 40096.28 33290.02 39999.51 184
Anonymous2023120696.22 33996.03 34096.79 37097.31 39994.14 38299.63 9099.08 32296.17 34097.04 37499.06 34493.94 26597.76 40186.96 41095.06 35098.47 351
SD-MVS99.41 5199.52 1299.05 19399.74 8599.68 5399.46 19799.52 10799.11 3299.88 2699.91 2299.43 197.70 40298.72 14299.93 2599.77 86
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 31697.35 29296.95 36597.84 38993.61 39099.57 12496.63 41296.13 34598.87 27298.61 37794.59 23897.70 40295.08 35898.86 20499.55 168
dongtai93.26 36992.93 37394.25 38199.39 22485.68 40997.68 41293.27 42392.87 39296.85 37899.39 28982.33 40597.48 40476.78 41797.80 26399.58 162
pmmvs394.09 36693.25 37296.60 37294.76 41794.49 37798.92 35698.18 39589.66 40396.48 38198.06 39886.28 38497.33 40589.68 40087.20 40697.97 389
KD-MVS_self_test95.00 35794.34 36296.96 36497.07 40495.39 36199.56 13099.44 21295.11 36397.13 37297.32 40591.86 31997.27 40690.35 39881.23 41498.23 371
FMVSNet596.43 33796.19 33697.15 35799.11 29795.89 34799.32 25599.52 10794.47 37898.34 32999.07 34287.54 37997.07 40792.61 38995.72 33598.47 351
new-patchmatchnet94.48 36394.08 36495.67 37895.08 41592.41 39799.18 30099.28 29294.55 37793.49 40197.37 40487.86 37797.01 40891.57 39388.36 40397.61 397
LCM-MVSNet86.80 38285.22 38691.53 39287.81 42480.96 41898.23 40598.99 33571.05 41790.13 41296.51 40948.45 42596.88 40990.51 39685.30 40896.76 404
CL-MVSNet_self_test94.49 36293.97 36696.08 37696.16 40793.67 38998.33 40099.38 24095.13 36197.33 36698.15 39292.69 29896.57 41088.67 40379.87 41597.99 387
MIMVSNet195.51 35195.04 35696.92 36797.38 39695.60 35199.52 15799.50 14193.65 38496.97 37699.17 33285.28 39296.56 41188.36 40595.55 34098.60 340
test20.0396.12 34395.96 34296.63 37197.44 39595.45 35899.51 16699.38 24096.55 31396.16 38599.25 32493.76 27496.17 41287.35 40994.22 36598.27 367
tmp_tt82.80 38481.52 38786.66 40066.61 43068.44 42992.79 41997.92 39768.96 41880.04 42199.85 5985.77 38696.15 41397.86 23243.89 42395.39 413
test_fmvs392.10 37391.77 37693.08 38796.19 40686.25 40799.82 1698.62 38396.65 30295.19 39396.90 40755.05 42295.93 41496.63 32590.92 39697.06 403
kuosan90.92 37790.11 38293.34 38598.78 34885.59 41098.15 40793.16 42589.37 40692.07 40698.38 38481.48 40895.19 41562.54 42497.04 30499.25 232
dmvs_testset95.02 35696.12 33791.72 39199.10 30080.43 41999.58 11797.87 39997.47 23095.22 39198.82 36693.99 26395.18 41688.09 40694.91 35599.56 167
PMMVS286.87 38185.37 38591.35 39390.21 42283.80 41298.89 35997.45 40583.13 41491.67 41195.03 41148.49 42494.70 41785.86 41477.62 41695.54 412
PMVScopyleft70.75 2275.98 39074.97 39179.01 40670.98 42955.18 43193.37 41898.21 39365.08 42361.78 42493.83 41421.74 43192.53 41878.59 41691.12 39489.34 419
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 38385.65 38482.75 40486.77 42563.39 43098.35 39798.92 34474.11 41683.39 41598.98 35450.85 42392.40 41984.54 41594.97 35292.46 414
WB-MVS93.10 37094.10 36390.12 39695.51 41481.88 41699.73 5099.27 29595.05 36693.09 40398.91 36394.70 23391.89 42076.62 41894.02 37196.58 406
SSC-MVS92.73 37293.73 36789.72 39795.02 41681.38 41799.76 3799.23 30294.87 37092.80 40498.93 35994.71 23291.37 42174.49 42093.80 37396.42 407
MVEpermissive76.82 2176.91 38974.31 39384.70 40185.38 42776.05 42596.88 41593.17 42467.39 42071.28 42289.01 42121.66 43287.69 42271.74 42172.29 41990.35 418
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 38679.88 38882.81 40390.75 42176.38 42497.69 41195.76 41666.44 42183.52 41492.25 41662.54 41787.16 42368.53 42261.40 42084.89 421
EMVS80.02 38779.22 38982.43 40591.19 42076.40 42397.55 41492.49 42866.36 42283.01 41691.27 41864.63 41685.79 42465.82 42360.65 42185.08 420
ANet_high77.30 38874.86 39284.62 40275.88 42877.61 42297.63 41393.15 42688.81 40864.27 42389.29 42036.51 42783.93 42575.89 41952.31 42292.33 416
wuyk23d40.18 39141.29 39636.84 40786.18 42649.12 43279.73 42022.81 43227.64 42425.46 42728.45 42721.98 43048.89 42655.80 42523.56 42612.51 424
test12339.01 39342.50 39528.53 40839.17 43120.91 43398.75 37319.17 43319.83 42638.57 42566.67 42333.16 42815.42 42737.50 42729.66 42549.26 422
testmvs39.17 39243.78 39425.37 40936.04 43216.84 43498.36 39626.56 43120.06 42538.51 42667.32 42229.64 42915.30 42837.59 42639.90 42443.98 423
mmdepth0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.13 3970.17 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4291.57 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
cdsmvs_eth3d_5k24.64 39432.85 3970.00 4100.00 4330.00 4350.00 42199.51 1210.00 4280.00 42999.56 23296.58 1530.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas8.27 39611.03 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 42999.01 180.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
ab-mvs-re8.30 39511.06 3980.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42999.58 2240.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS97.16 28995.47 349
FOURS199.91 199.93 199.87 899.56 7299.10 3399.81 45
test_one_060199.81 4699.88 899.49 15198.97 5799.65 10199.81 9799.09 14
eth-test20.00 433
eth-test0.00 433
RE-MVS-def99.34 4299.76 6899.82 2599.63 9099.52 10798.38 11399.76 6699.82 8398.75 5898.61 15999.81 10099.77 86
IU-MVS99.84 3299.88 899.32 27898.30 12499.84 3798.86 12299.85 7699.89 20
save fliter99.76 6899.59 7599.14 30799.40 22999.00 49
test072699.85 2699.89 499.62 9599.50 14199.10 3399.86 3599.82 8398.94 32
GSMVS99.52 177
test_part299.81 4699.83 1999.77 60
sam_mvs194.86 21999.52 177
sam_mvs94.72 231
MTGPAbinary99.47 184
MTMP99.54 14898.88 354
test9_res97.49 27199.72 12799.75 92
agg_prior297.21 28999.73 12699.75 92
test_prior499.56 8198.99 342
test_prior298.96 34998.34 11999.01 24899.52 24798.68 6797.96 22499.74 124
新几何299.01 339
旧先验199.74 8599.59 7599.54 8999.69 17498.47 8399.68 13599.73 101
原ACMM298.95 352
test22299.75 7899.49 9498.91 35899.49 15196.42 32499.34 18199.65 19498.28 9699.69 13299.72 108
segment_acmp98.96 25
testdata198.85 36398.32 122
plane_prior799.29 25197.03 302
plane_prior699.27 25696.98 30692.71 296
plane_prior499.61 215
plane_prior397.00 30498.69 8699.11 229
plane_prior299.39 23298.97 57
plane_prior199.26 258
plane_prior96.97 30799.21 29698.45 10697.60 272
n20.00 434
nn0.00 434
door-mid98.05 396
test1199.35 256
door97.92 397
HQP5-MVS96.83 314
HQP-NCC99.19 27698.98 34598.24 13198.66 300
ACMP_Plane99.19 27698.98 34598.24 13198.66 300
BP-MVS97.19 293
HQP3-MVS99.39 23297.58 274
HQP2-MVS92.47 305
NP-MVS99.23 26696.92 31099.40 285
MDTV_nov1_ep13_2view95.18 36699.35 24996.84 29199.58 12395.19 20797.82 23799.46 201
ACMMP++_ref97.19 301
ACMMP++97.43 292
Test By Simon98.75 58