This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21699.37 10399.58 10899.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2699.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9699.58 10899.69 1899.43 799.98 699.91 1998.62 70100.00 199.97 199.95 1899.90 17
test_vis1_n_192098.63 16498.40 17099.31 14899.86 2097.94 24999.67 6499.62 4199.43 799.99 299.91 1987.29 368100.00 199.92 1299.92 2899.98 2
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12199.63 3999.48 399.98 699.83 6698.75 5599.99 499.97 199.96 1399.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12199.63 3999.47 499.98 699.82 7498.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
patch_mono-299.26 7199.62 598.16 29999.81 4694.59 36299.52 14699.64 3699.33 1399.73 6599.90 2599.00 2299.99 499.69 1999.98 499.89 20
h-mvs3397.70 27197.28 29298.97 19599.70 10197.27 27299.36 23199.45 19898.94 5499.66 8799.64 19194.93 20999.99 499.48 4184.36 39599.65 129
xiu_mvs_v1_base_debu99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 235
xiu_mvs_v1_base99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 235
xiu_mvs_v1_base_debi99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 235
EPNet98.86 13498.71 13999.30 15397.20 38898.18 23199.62 8798.91 33799.28 1698.63 29899.81 8995.96 17399.99 499.24 7199.72 12299.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM99.40 5099.28 5599.74 6199.67 11199.31 11199.52 14698.87 34499.55 199.74 6399.80 10396.47 15799.98 1399.97 199.97 799.94 11
test_cas_vis1_n_192099.16 8699.01 9999.61 8699.81 4698.86 17899.65 7599.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 2999.91 3599.99 1
test_vis1_n97.92 23497.44 26999.34 14199.53 16398.08 23799.74 4499.49 14499.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11499.97 4
xiu_mvs_v2_base99.26 7199.25 6399.29 15699.53 16398.91 17299.02 31999.45 19898.80 6999.71 7199.26 31198.94 2999.98 1399.34 5899.23 16598.98 249
PS-MVSNAJ99.32 6199.32 4099.30 15399.57 15298.94 16898.97 33499.46 18798.92 5799.71 7199.24 31399.01 1899.98 1399.35 5299.66 13298.97 250
QAPM98.67 16098.30 17799.80 4699.20 26299.67 5199.77 3499.72 1194.74 36098.73 27999.90 2595.78 18399.98 1396.96 29499.88 5599.76 87
3Dnovator97.25 999.24 7699.05 8799.81 4499.12 28499.66 5399.84 1299.74 1099.09 3298.92 25499.90 2595.94 17699.98 1398.95 9699.92 2899.79 74
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11399.04 30499.53 8299.82 1699.72 1194.56 36398.08 33299.88 3594.73 22599.98 1397.47 26299.76 11499.06 241
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16199.61 4899.45 599.87 2599.92 1497.31 12699.97 2199.95 899.99 199.97 4
test_fmvs1_n98.41 17598.14 18699.21 16899.82 4297.71 26199.74 4499.49 14499.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8199.96 7
CANet_DTU98.97 12498.87 12099.25 16399.33 23098.42 22399.08 30599.30 27999.16 1999.43 14599.75 13795.27 20099.97 2198.56 16199.95 1899.36 209
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17798.79 7099.68 7899.81 8998.43 8399.97 2198.88 10599.90 4399.83 49
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10899.65 3397.84 17799.71 7199.80 10399.12 1399.97 2198.33 18399.87 5899.83 49
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15798.12 14399.50 13099.75 13798.78 4899.97 2198.57 15899.89 5299.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 15399.53 12599.63 19798.93 3399.97 2198.74 13099.91 3599.83 49
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10099.51 11598.62 8499.79 4299.83 6699.28 499.97 2198.48 16899.90 4399.84 40
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 8298.97 10599.82 4199.17 27699.68 4899.81 2099.51 11599.20 1898.72 28099.89 2995.68 18799.97 2198.86 11399.86 6699.81 61
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14699.65 3399.10 2799.98 699.92 1497.35 12599.96 3099.94 1099.92 2899.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15499.67 2399.13 2299.98 699.92 1496.60 15299.96 3099.95 899.96 1399.95 9
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 14198.94 34199.48 15799.10 2799.96 1499.91 1998.85 3999.96 3099.72 1899.58 14199.82 54
test_fmvs198.88 13098.79 13399.16 17399.69 10697.61 26499.55 13399.49 14499.32 1499.98 699.91 1991.41 32399.96 3099.82 1699.92 2899.90 17
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 899.51 11598.99 4599.88 2099.81 8999.27 599.96 3098.85 11599.80 10199.81 61
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
No_MVS99.87 1199.51 17099.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
ZD-MVS99.71 9699.79 3099.61 4896.84 27999.56 11899.54 23198.58 7299.96 3096.93 29799.75 116
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9499.48 15799.08 3399.91 1699.81 8999.20 799.96 3098.91 10299.85 7399.79 74
test_241102_TWO99.48 15799.08 3399.88 2099.81 8998.94 2999.96 3098.91 10299.84 8199.88 26
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 15299.55 12299.64 19198.91 3499.96 3098.72 13399.90 4399.82 54
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11599.37 24299.10 2799.81 3799.80 10398.94 2999.96 3098.93 9999.86 6699.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11599.90 4399.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11599.51 11599.96 3098.93 9999.86 6699.88 26
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10099.62 4198.21 12899.73 6599.79 11698.68 6499.96 3098.44 17499.77 11199.79 74
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23199.51 11598.73 7699.88 2099.84 6298.72 6199.96 3098.16 19699.87 5899.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11799.52 14697.57 39099.51 299.82 3599.78 12298.09 10099.96 3099.97 199.97 799.94 11
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16199.70 1598.79 7099.77 5199.96 197.45 12099.96 3098.92 10199.90 4399.89 20
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13599.68 7899.69 16799.06 1699.96 3098.69 13899.87 5899.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 14099.66 8799.68 17398.96 2499.96 3098.62 14699.87 5899.84 40
HPM-MVS++copyleft99.39 5299.23 6699.87 1199.75 7399.84 1599.43 19999.51 11598.68 8199.27 18899.53 23598.64 6999.96 3098.44 17499.80 10199.79 74
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5299.18 1099.96 3099.22 7299.92 2899.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13599.67 8299.69 16798.95 2799.96 3098.69 13899.87 5899.84 40
MP-MVScopyleft99.33 5999.15 7399.87 1199.88 1199.82 2299.66 6999.46 18798.09 14899.48 13499.74 14298.29 9199.96 3097.93 21499.87 5899.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 10298.90 11499.74 6199.80 5299.46 9499.59 10099.49 14497.03 26699.63 10099.69 16797.27 12999.96 3097.82 22599.84 8199.81 61
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8699.86 2099.07 14699.47 18599.93 297.66 20099.71 7199.86 4797.73 11199.96 3099.47 4399.82 9499.79 74
UGNet98.87 13198.69 14199.40 13599.22 25998.72 19299.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 5899.94 2499.53 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 6199.32 4099.32 14799.85 2698.29 22699.71 5199.66 2898.11 14599.41 15299.80 10398.37 8899.96 3098.99 9299.96 1399.72 103
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8799.69 1898.12 14399.63 10099.84 6298.73 6099.96 3098.55 16499.83 9099.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.01_n99.22 7899.03 9199.79 4998.42 36899.48 9199.55 13399.51 11599.39 1099.78 4799.93 994.80 21799.95 5999.93 1199.95 1899.94 11
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10699.76 5799.82 7498.53 7699.95 5998.61 14999.81 9799.77 82
GST-MVS99.40 5099.24 6499.85 2899.86 2099.79 3099.60 9499.67 2397.97 16499.63 10099.68 17398.52 7799.95 5998.38 17799.86 6699.81 61
CANet99.25 7599.14 7599.59 8999.41 20599.16 13099.35 23699.57 6498.82 6599.51 12999.61 20696.46 15899.95 5999.59 2599.98 499.65 129
MP-MVS-pluss99.37 5499.20 6999.88 599.90 499.87 1299.30 24799.52 10197.18 24899.60 11099.79 11698.79 4799.95 5998.83 12199.91 3599.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4299.27 5999.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 17299.77 11199.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 5996.67 309
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 11099.79 4299.82 7498.86 3899.95 5998.62 14699.81 9799.78 80
RPMNet96.72 31895.90 33099.19 17099.18 26898.49 21599.22 28099.52 10188.72 39599.56 11897.38 38994.08 25599.95 5986.87 39798.58 21199.14 227
sss99.17 8499.05 8799.53 10799.62 13798.97 15899.36 23199.62 4197.83 17899.67 8299.65 18597.37 12499.95 5999.19 7599.19 16899.68 119
fmvsm_s_conf0.1_n_a99.26 7199.06 8699.85 2899.52 16799.62 6599.54 13799.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2899.98 2
fmvsm_s_conf0.1_n99.29 6599.10 8099.86 2199.70 10199.65 5799.53 14599.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1399.97 4
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22598.91 5899.78 4799.85 5299.36 299.94 6998.84 11899.88 5599.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16499.74 14298.81 4499.94 6998.79 12699.86 6699.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6699.84 40
旧先验298.96 33596.70 28699.47 13699.94 6998.19 192
新几何199.75 5899.75 7399.59 7099.54 8596.76 28299.29 18299.64 19198.43 8399.94 6996.92 29999.66 13299.72 103
testdata99.54 9999.75 7398.95 16599.51 11597.07 26099.43 14599.70 15798.87 3799.94 6997.76 23299.64 13599.72 103
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 20499.68 7899.63 19798.91 3499.94 6998.58 15599.91 3599.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 8099.10 8099.45 12899.89 898.52 21199.39 22099.94 198.73 7699.11 22199.89 2995.50 19299.94 6999.50 3699.97 799.89 20
APD-MVScopyleft99.27 6999.08 8499.84 3999.75 7399.79 3099.50 16199.50 13597.16 25099.77 5199.82 7498.78 4899.94 6997.56 25399.86 6699.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 10299.05 31199.66 2899.14 2199.57 11799.80 10398.46 8199.94 6999.57 2799.84 8199.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 11098.88 11999.61 8699.62 13799.16 13099.37 22799.56 6998.04 15999.53 12599.62 20296.84 14499.94 6998.85 11598.49 21999.72 103
DeepC-MVS98.35 299.30 6399.19 7099.64 7899.82 4299.23 12399.62 8799.55 7798.94 5499.63 10099.95 395.82 18299.94 6999.37 5199.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 6999.12 7899.74 6199.18 26899.75 3999.56 12199.57 6498.45 10099.49 13399.85 5297.77 11099.94 6998.33 18399.84 8199.52 168
SDMVSNet99.11 10298.90 11499.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9799.88 3594.56 23599.93 8499.67 2198.26 23099.72 103
FE-MVS98.48 16898.17 18299.40 13599.54 16298.96 16299.68 6198.81 35195.54 34499.62 10499.70 15793.82 26499.93 8497.35 27199.46 14899.32 215
SF-MVS99.38 5399.24 6499.79 4999.79 5499.68 4899.57 11599.54 8597.82 18299.71 7199.80 10398.95 2799.93 8498.19 19299.84 8199.74 92
dcpmvs_299.23 7799.58 798.16 29999.83 3994.68 36099.76 3799.52 10199.07 3599.98 699.88 3598.56 7499.93 8499.67 2199.98 499.87 31
Anonymous2024052998.09 20497.68 24099.34 14199.66 12098.44 22099.40 21699.43 21293.67 37099.22 19999.89 2990.23 33999.93 8499.26 6998.33 22499.66 125
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18599.48 15798.05 15899.76 5799.86 4798.82 4399.93 8498.82 12599.91 3599.84 40
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13699.60 9499.45 19899.01 4099.90 1899.83 6698.98 2399.93 8499.59 2599.95 1899.86 33
无先验98.99 32899.51 11596.89 27699.93 8497.53 25699.72 103
VDDNet97.55 28597.02 30499.16 17399.49 18198.12 23699.38 22599.30 27995.35 34699.68 7899.90 2582.62 38999.93 8499.31 6198.13 24199.42 198
ab-mvs98.86 13498.63 14899.54 9999.64 12899.19 12599.44 19599.54 8597.77 18699.30 17999.81 8994.20 24999.93 8499.17 7898.82 20099.49 178
F-COLMAP99.19 8099.04 8999.64 7899.78 5699.27 11799.42 20699.54 8597.29 23999.41 15299.59 21198.42 8599.93 8498.19 19299.69 12799.73 97
Anonymous20240521198.30 18597.98 20699.26 16299.57 15298.16 23299.41 20898.55 37196.03 33899.19 20899.74 14291.87 31099.92 9599.16 7998.29 22999.70 113
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13599.61 9399.45 19899.01 4099.89 1999.82 7499.01 1899.92 9599.56 2899.95 1899.85 36
VDD-MVS97.73 26597.35 28198.88 21499.47 18997.12 28099.34 23998.85 34698.19 13099.67 8299.85 5282.98 38799.92 9599.49 4098.32 22899.60 146
VNet99.11 10298.90 11499.73 6499.52 16799.56 7599.41 20899.39 22599.01 4099.74 6399.78 12295.56 19099.92 9599.52 3498.18 23799.72 103
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21299.71 9697.74 25699.12 29699.54 8598.44 10399.42 14899.71 15394.20 24999.92 9598.54 16598.90 19499.00 246
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 19199.76 5799.75 13799.13 1299.92 9599.07 8699.92 2899.85 36
HY-MVS97.30 798.85 14198.64 14799.47 12599.42 20099.08 14499.62 8799.36 24397.39 23199.28 18399.68 17396.44 16099.92 9598.37 17998.22 23299.40 202
DP-MVS99.16 8698.95 10999.78 5299.77 6299.53 8299.41 20899.50 13597.03 26699.04 23799.88 3597.39 12199.92 9598.66 14299.90 4399.87 31
IB-MVS95.67 1896.22 32695.44 33998.57 25399.21 26096.70 31098.65 36997.74 38896.71 28597.27 35698.54 36686.03 37199.92 9598.47 17186.30 39399.10 230
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23199.46 18799.07 3599.79 4299.82 7498.85 3999.92 9598.68 14099.87 5899.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 8099.72 9199.40 21699.51 11597.53 21499.64 9799.78 12298.84 4199.91 10597.63 24499.82 94
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12199.47 17797.45 22399.78 4799.82 7499.18 1099.91 10598.79 12699.89 5299.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11199.65 5799.05 31199.41 21696.22 32398.95 25099.49 24798.77 5199.91 105
train_agg99.02 11698.77 13499.77 5599.67 11199.65 5799.05 31199.41 21696.28 31798.95 25099.49 24798.76 5299.91 10597.63 24499.72 12299.75 88
test_899.67 11199.61 6799.03 31699.41 21696.28 31798.93 25399.48 25398.76 5299.91 105
agg_prior99.67 11199.62 6599.40 22298.87 26399.91 105
原ACMM199.65 7399.73 8799.33 10699.47 17797.46 22099.12 21999.66 18498.67 6699.91 10597.70 24199.69 12799.71 112
LFMVS97.90 23797.35 28199.54 9999.52 16799.01 15399.39 22098.24 37897.10 25899.65 9399.79 11684.79 38099.91 10599.28 6598.38 22199.69 115
XVG-OURS98.73 15698.68 14298.88 21499.70 10197.73 25798.92 34399.55 7798.52 9499.45 13999.84 6295.27 20099.91 10598.08 20398.84 19899.00 246
PLCcopyleft97.94 499.02 11698.85 12599.53 10799.66 12099.01 15399.24 27599.52 10196.85 27899.27 18899.48 25398.25 9399.91 10597.76 23299.62 13899.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 27897.06 30399.47 12599.61 14199.09 14198.04 39599.25 29091.24 38698.51 30899.70 15794.55 23799.91 10592.76 37499.85 7399.42 198
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UWE-MVS97.58 28497.29 29198.48 26499.09 29296.25 32899.01 32596.61 39997.86 17299.19 20899.01 33888.72 35199.90 11697.38 26998.69 20699.28 218
test_vis1_rt95.81 33595.65 33596.32 36199.67 11191.35 38899.49 17596.74 39798.25 12195.24 37798.10 38274.96 39799.90 11699.53 3298.85 19797.70 382
FA-MVS(test-final)98.75 15398.53 16499.41 13499.55 16099.05 14999.80 2599.01 32296.59 29999.58 11499.59 21195.39 19599.90 11697.78 22899.49 14799.28 218
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25299.40 22298.79 7099.52 12799.62 20298.91 3499.90 11698.64 14499.75 11699.82 54
CDPH-MVS99.13 9298.91 11399.80 4699.75 7399.71 4499.15 29099.41 21696.60 29799.60 11099.55 22698.83 4299.90 11697.48 26099.83 9099.78 80
NCCC99.34 5899.19 7099.79 4999.61 14199.65 5799.30 24799.48 15798.86 6099.21 20299.63 19798.72 6199.90 11698.25 18899.63 13799.80 70
114514_t98.93 12698.67 14399.72 6599.85 2699.53 8299.62 8799.59 5792.65 38199.71 7199.78 12298.06 10299.90 11698.84 11899.91 3599.74 92
1112_ss98.98 12298.77 13499.59 8999.68 11099.02 15199.25 27399.48 15797.23 24599.13 21799.58 21596.93 14399.90 11698.87 10898.78 20399.84 40
PHI-MVS99.30 6399.17 7299.70 6799.56 15699.52 8599.58 10899.80 897.12 25499.62 10499.73 14898.58 7299.90 11698.61 14999.91 3599.68 119
AdaColmapbinary99.01 12098.80 13099.66 6999.56 15699.54 7999.18 28599.70 1598.18 13399.35 17099.63 19796.32 16399.90 11697.48 26099.77 11199.55 160
COLMAP_ROBcopyleft97.56 698.86 13498.75 13699.17 17299.88 1198.53 20799.34 23999.59 5797.55 21098.70 28799.89 2995.83 18199.90 11698.10 19899.90 4399.08 235
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 18198.03 20199.31 14899.63 13198.56 20499.54 13796.75 39697.53 21499.73 6599.65 18591.25 32799.89 12798.62 14699.56 14299.48 180
tttt051798.42 17398.14 18699.28 16099.66 12098.38 22499.74 4496.85 39497.68 19799.79 4299.74 14291.39 32499.89 12798.83 12199.56 14299.57 157
test1299.75 5899.64 12899.61 6799.29 28399.21 20298.38 8799.89 12799.74 11999.74 92
Test_1112_low_res98.89 12998.66 14699.57 9499.69 10698.95 16599.03 31699.47 17796.98 26899.15 21599.23 31496.77 14799.89 12798.83 12198.78 20399.86 33
CNLPA99.14 9098.99 10199.59 8999.58 15099.41 10199.16 28799.44 20698.45 10099.19 20899.49 24798.08 10199.89 12797.73 23699.75 11699.48 180
MVSMamba_pp99.36 5599.28 5599.62 8399.38 21699.50 8799.50 16199.49 14498.55 9199.77 5199.82 7497.62 11699.88 13299.39 4899.96 1399.47 186
sd_testset98.75 15398.57 16099.29 15699.81 4698.26 22899.56 12199.62 4198.78 7399.64 9799.88 3592.02 30799.88 13299.54 3098.26 23099.72 103
APD_test195.87 33396.49 31794.00 36899.53 16384.01 39799.54 13799.32 27095.91 34097.99 33799.85 5285.49 37599.88 13291.96 37798.84 19898.12 364
bld_raw_dy_0_6499.05 11199.15 7398.74 23799.46 19096.95 30099.02 31999.47 17798.15 13599.75 6299.56 22297.63 11599.88 13299.35 5299.97 799.40 202
mamv499.33 5999.23 6699.62 8399.39 21399.50 8799.50 16199.50 13598.13 14099.76 5799.81 8997.69 11399.88 13299.35 5299.95 1899.49 178
diffmvspermissive99.14 9099.02 9599.51 11599.61 14198.96 16299.28 25799.49 14498.46 9999.72 7099.71 15396.50 15699.88 13299.31 6199.11 17599.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 13498.80 13099.03 18799.76 6598.79 18799.28 25799.91 397.42 22899.67 8299.37 28297.53 11899.88 13298.98 9397.29 28998.42 347
PVSNet_Blended99.08 10898.97 10599.42 13399.76 6598.79 18798.78 35799.91 396.74 28399.67 8299.49 24797.53 11899.88 13298.98 9399.85 7399.60 146
iter_conf05_1199.22 7899.13 7699.49 12199.37 22099.43 9898.95 33899.38 23398.52 9499.70 7799.49 24797.62 11699.87 14099.20 7499.94 2499.16 226
MVS97.28 30396.55 31599.48 12298.78 33798.95 16599.27 26299.39 22583.53 39998.08 33299.54 23196.97 14199.87 14094.23 35699.16 16999.63 140
MG-MVS99.13 9299.02 9599.45 12899.57 15298.63 19999.07 30699.34 25398.99 4599.61 10799.82 7497.98 10499.87 14097.00 29099.80 10199.85 36
MSDG98.98 12298.80 13099.53 10799.76 6599.19 12598.75 36099.55 7797.25 24299.47 13699.77 13097.82 10899.87 14096.93 29799.90 4399.54 162
ETV-MVS99.26 7199.21 6899.40 13599.46 19099.30 11399.56 12199.52 10198.52 9499.44 14499.27 30998.41 8699.86 14499.10 8399.59 14099.04 242
thisisatest051598.14 19997.79 22499.19 17099.50 17998.50 21498.61 37196.82 39596.95 27299.54 12399.43 26491.66 31999.86 14498.08 20399.51 14699.22 223
thres600view797.86 24297.51 25798.92 20399.72 9197.95 24799.59 10098.74 35897.94 16699.27 18898.62 36391.75 31399.86 14493.73 36198.19 23698.96 252
lupinMVS99.13 9299.01 9999.46 12799.51 17098.94 16899.05 31199.16 30497.86 17299.80 4099.56 22297.39 12199.86 14498.94 9799.85 7399.58 154
PVSNet96.02 1798.85 14198.84 12798.89 21299.73 8797.28 27198.32 38799.60 5497.86 17299.50 13099.57 21996.75 14899.86 14498.56 16199.70 12699.54 162
MAR-MVS98.86 13498.63 14899.54 9999.37 22099.66 5399.45 18999.54 8596.61 29599.01 24099.40 27397.09 13499.86 14497.68 24399.53 14599.10 230
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing9197.44 29797.02 30498.71 24199.18 26896.89 30499.19 28399.04 31997.78 18598.31 31998.29 37585.41 37699.85 15098.01 20997.95 24699.39 204
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9485.06 41699.13 2299.77 5199.93 987.82 36699.85 15099.38 4999.38 15399.80 70
AllTest98.87 13198.72 13799.31 14899.86 2098.48 21799.56 12199.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
TestCases99.31 14899.86 2098.48 21799.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
jason99.13 9299.03 9199.45 12899.46 19098.87 17599.12 29699.26 28898.03 16199.79 4299.65 18597.02 13999.85 15099.02 9099.90 4399.65 129
jason: jason.
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27199.52 10198.82 6599.39 16099.71 15398.96 2499.85 15098.59 15499.80 10199.77 82
PAPM_NR99.04 11398.84 12799.66 6999.74 8099.44 9699.39 22099.38 23397.70 19599.28 18399.28 30698.34 8999.85 15096.96 29499.45 14999.69 115
testing9997.36 30096.94 30798.63 24699.18 26896.70 31099.30 24798.93 33097.71 19298.23 32498.26 37684.92 37999.84 15798.04 20897.85 25399.35 210
testing22297.16 30896.50 31699.16 17399.16 27898.47 21999.27 26298.66 36797.71 19298.23 32498.15 37882.28 39299.84 15797.36 27097.66 26099.18 225
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 10895.40 40399.12 2599.65 9399.93 990.73 33299.84 15799.43 4699.38 15399.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10094.98 40499.13 2299.66 8799.93 990.67 33399.84 15799.40 4799.38 15399.80 70
test_yl98.86 13498.63 14899.54 9999.49 18199.18 12799.50 16199.07 31698.22 12699.61 10799.51 24195.37 19699.84 15798.60 15298.33 22499.59 150
DCV-MVSNet98.86 13498.63 14899.54 9999.49 18199.18 12799.50 16199.07 31698.22 12699.61 10799.51 24195.37 19699.84 15798.60 15298.33 22499.59 150
Fast-Effi-MVS+98.70 15798.43 16799.51 11599.51 17099.28 11599.52 14699.47 17796.11 33399.01 24099.34 29296.20 16799.84 15797.88 21798.82 20099.39 204
TSAR-MVS + GP.99.36 5599.36 3299.36 14099.67 11198.61 20299.07 30699.33 26099.00 4399.82 3599.81 8999.06 1699.84 15799.09 8499.42 15199.65 129
tpmrst98.33 18298.48 16697.90 31799.16 27894.78 35899.31 24599.11 30997.27 24099.45 13999.59 21195.33 19899.84 15798.48 16898.61 20899.09 234
Vis-MVSNetpermissive99.12 9898.97 10599.56 9699.78 5699.10 14099.68 6199.66 2898.49 9799.86 2799.87 4394.77 22299.84 15799.19 7599.41 15299.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 16498.34 17399.51 11599.40 21099.03 15098.80 35599.36 24396.33 31499.00 24499.12 32898.46 8199.84 15795.23 34399.37 16099.66 125
PatchMatch-RL98.84 14498.62 15399.52 11399.71 9699.28 11599.06 30999.77 997.74 19099.50 13099.53 23595.41 19499.84 15797.17 28499.64 13599.44 196
EPP-MVSNet99.13 9298.99 10199.53 10799.65 12699.06 14799.81 2099.33 26097.43 22699.60 11099.88 3597.14 13199.84 15799.13 8098.94 18999.69 115
testing1197.50 29097.10 30198.71 24199.20 26296.91 30299.29 25298.82 34997.89 17098.21 32798.40 37085.63 37499.83 17098.45 17398.04 24499.37 208
thres100view90097.76 25897.45 26498.69 24399.72 9197.86 25399.59 10098.74 35897.93 16799.26 19298.62 36391.75 31399.83 17093.22 36698.18 23798.37 353
tfpn200view997.72 26797.38 27798.72 23999.69 10697.96 24599.50 16198.73 36397.83 17899.17 21398.45 36891.67 31799.83 17093.22 36698.18 23798.37 353
test_prior99.68 6899.67 11199.48 9199.56 6999.83 17099.74 92
131498.68 15998.54 16399.11 17998.89 32298.65 19799.27 26299.49 14496.89 27697.99 33799.56 22297.72 11299.83 17097.74 23599.27 16498.84 258
thres40097.77 25797.38 27798.92 20399.69 10697.96 24599.50 16198.73 36397.83 17899.17 21398.45 36891.67 31799.83 17093.22 36698.18 23798.96 252
casdiffmvspermissive99.13 9298.98 10499.56 9699.65 12699.16 13099.56 12199.50 13598.33 11499.41 15299.86 4795.92 17799.83 17099.45 4599.16 16999.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test99.49 2299.48 1599.54 9999.78 5699.30 11399.89 299.58 6198.56 8999.73 6599.69 16798.55 7599.82 17799.69 1999.85 7399.48 180
MVS_Test99.10 10698.97 10599.48 12299.49 18199.14 13699.67 6499.34 25397.31 23799.58 11499.76 13497.65 11499.82 17798.87 10899.07 18199.46 191
dp97.75 26297.80 22397.59 33499.10 28993.71 37399.32 24298.88 34296.48 30699.08 22899.55 22692.67 29299.82 17796.52 31398.58 21199.24 222
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 4999.44 20696.61 29599.66 8799.89 2995.92 17799.82 17797.46 26399.10 17899.57 157
PMMVS98.80 14898.62 15399.34 14199.27 24798.70 19398.76 35999.31 27497.34 23499.21 20299.07 33097.20 13099.82 17798.56 16198.87 19599.52 168
EIA-MVS99.18 8299.09 8399.45 12899.49 18199.18 12799.67 6499.53 9697.66 20099.40 15799.44 26298.10 9999.81 18298.94 9799.62 13899.35 210
Effi-MVS+98.81 14598.59 15999.48 12299.46 19099.12 13998.08 39499.50 13597.50 21899.38 16299.41 27096.37 16299.81 18299.11 8298.54 21699.51 174
thres20097.61 28297.28 29298.62 24799.64 12898.03 23999.26 27198.74 35897.68 19799.09 22798.32 37491.66 31999.81 18292.88 37198.22 23298.03 369
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24599.20 29996.10 33798.76 27799.42 26694.94 20899.81 18296.97 29398.45 22098.97 250
casdiffmvs_mvgpermissive99.15 8899.02 9599.55 9899.66 12099.09 14199.64 7899.56 6998.26 12099.45 13999.87 4396.03 17199.81 18299.54 3099.15 17299.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 14599.37 3097.12 34699.60 14691.75 38698.61 37199.44 20699.35 1299.83 3499.85 5298.70 6399.81 18299.02 9099.91 3599.81 61
DPM-MVS98.95 12598.71 13999.66 6999.63 13199.55 7798.64 37099.10 31097.93 16799.42 14899.55 22698.67 6699.80 18895.80 32899.68 13099.61 144
DP-MVS Recon99.12 9898.95 10999.65 7399.74 8099.70 4699.27 26299.57 6496.40 31399.42 14899.68 17398.75 5599.80 18897.98 21199.72 12299.44 196
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34199.85 698.82 6599.65 9399.74 14298.51 7899.80 18898.83 12199.89 5299.64 136
CS-MVS99.50 2099.48 1599.54 9999.76 6599.42 9999.90 199.55 7798.56 8999.78 4799.70 15798.65 6899.79 19199.65 2399.78 10899.41 200
Fast-Effi-MVS+-dtu98.77 15198.83 12998.60 24899.41 20596.99 29499.52 14699.49 14498.11 14599.24 19499.34 29296.96 14299.79 19197.95 21399.45 14999.02 245
baseline198.31 18397.95 21099.38 13999.50 17998.74 19099.59 10098.93 33098.41 10499.14 21699.60 20994.59 23399.79 19198.48 16893.29 36699.61 144
baseline99.15 8899.02 9599.53 10799.66 12099.14 13699.72 4999.48 15798.35 11199.42 14899.84 6296.07 16999.79 19199.51 3599.14 17399.67 122
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23794.34 36797.81 39699.70 1597.12 25497.46 35098.75 36089.71 34399.79 19197.69 24281.69 39999.68 119
API-MVS99.04 11399.03 9199.06 18399.40 21099.31 11199.55 13399.56 6998.54 9299.33 17499.39 27798.76 5299.78 19696.98 29299.78 10898.07 366
OMC-MVS99.08 10899.04 8999.20 16999.67 11198.22 23099.28 25799.52 10198.07 15399.66 8799.81 8997.79 10999.78 19697.79 22799.81 9799.60 146
GeoE98.85 14198.62 15399.53 10799.61 14199.08 14499.80 2599.51 11597.10 25899.31 17699.78 12295.23 20499.77 19898.21 19099.03 18499.75 88
alignmvs98.81 14598.56 16299.58 9299.43 19899.42 9999.51 15498.96 32898.61 8599.35 17098.92 35094.78 21999.77 19899.35 5298.11 24299.54 162
tpm cat197.39 29997.36 27997.50 33799.17 27693.73 37299.43 19999.31 27491.27 38598.71 28199.08 32994.31 24799.77 19896.41 31798.50 21899.00 246
CostFormer97.72 26797.73 23697.71 32999.15 28294.02 36999.54 13799.02 32194.67 36199.04 23799.35 28892.35 30499.77 19898.50 16797.94 24799.34 213
MGCFI-Net99.01 12098.85 12599.50 12099.42 20099.26 11999.82 1699.48 15798.60 8699.28 18398.81 35597.04 13899.76 20299.29 6497.87 25199.47 186
test_241102_ONE99.84 3299.90 299.48 15799.07 3599.91 1699.74 14299.20 799.76 202
MDTV_nov1_ep1398.32 17599.11 28694.44 36499.27 26298.74 35897.51 21799.40 15799.62 20294.78 21999.76 20297.59 24798.81 202
sasdasda99.02 11698.86 12399.51 11599.42 20099.32 10799.80 2599.48 15798.63 8299.31 17698.81 35597.09 13499.75 20599.27 6797.90 24899.47 186
canonicalmvs99.02 11698.86 12399.51 11599.42 20099.32 10799.80 2599.48 15798.63 8299.31 17698.81 35597.09 13499.75 20599.27 6797.90 24899.47 186
Effi-MVS+-dtu98.78 14998.89 11898.47 26999.33 23096.91 30299.57 11599.30 27998.47 9899.41 15298.99 34096.78 14699.74 20798.73 13299.38 15398.74 271
patchmatchnet-post98.70 36194.79 21899.74 207
SCA98.19 19398.16 18398.27 29499.30 23895.55 34199.07 30698.97 32697.57 20799.43 14599.57 21992.72 28799.74 20797.58 24899.20 16799.52 168
BH-untuned98.42 17398.36 17198.59 24999.49 18196.70 31099.27 26299.13 30897.24 24498.80 27299.38 27995.75 18499.74 20797.07 28899.16 16999.33 214
BH-RMVSNet98.41 17598.08 19599.40 13599.41 20598.83 18399.30 24798.77 35497.70 19598.94 25299.65 18592.91 28299.74 20796.52 31399.55 14499.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9398.95 33899.85 698.82 6599.54 12399.73 14898.51 7899.74 20798.91 10299.88 5599.77 82
test_post65.99 41094.65 23299.73 213
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28696.33 32599.41 20899.52 10198.06 15799.05 23699.50 24489.64 34599.73 21397.73 23697.38 28798.53 335
HyFIR lowres test99.11 10298.92 11199.65 7399.90 499.37 10399.02 31999.91 397.67 19999.59 11399.75 13795.90 17999.73 21399.53 3299.02 18699.86 33
DeepMVS_CXcopyleft93.34 37199.29 24282.27 40099.22 29585.15 39796.33 37099.05 33390.97 33099.73 21393.57 36397.77 25698.01 370
Patchmatch-test97.93 23197.65 24398.77 23599.18 26897.07 28599.03 31699.14 30796.16 32898.74 27899.57 21994.56 23599.72 21793.36 36599.11 17599.52 168
LPG-MVS_test98.22 18998.13 18898.49 26299.33 23097.05 28799.58 10899.55 7797.46 22099.24 19499.83 6692.58 29499.72 21798.09 19997.51 27298.68 289
LGP-MVS_train98.49 26299.33 23097.05 28799.55 7797.46 22099.24 19499.83 6692.58 29499.72 21798.09 19997.51 27298.68 289
BH-w/o98.00 22397.89 21998.32 28799.35 22596.20 33099.01 32598.90 33996.42 31198.38 31599.00 33995.26 20299.72 21796.06 32198.61 20899.03 243
ACMP97.20 1198.06 20897.94 21298.45 27199.37 22097.01 29299.44 19599.49 14497.54 21398.45 31299.79 11691.95 30999.72 21797.91 21597.49 27798.62 317
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 21897.90 21598.40 27999.23 25596.80 30899.70 5299.60 5497.12 25498.18 32999.70 15791.73 31599.72 21798.39 17697.45 27998.68 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 27665.14 41194.18 25299.71 22397.58 248
ADS-MVSNet98.20 19298.08 19598.56 25699.33 23096.48 32099.23 27699.15 30596.24 32199.10 22499.67 17994.11 25399.71 22396.81 30299.05 18299.48 180
JIA-IIPM97.50 29097.02 30498.93 20198.73 34597.80 25599.30 24798.97 32691.73 38498.91 25594.86 39995.10 20699.71 22397.58 24897.98 24599.28 218
EPMVS97.82 25197.65 24398.35 28398.88 32395.98 33399.49 17594.71 40697.57 20799.26 19299.48 25392.46 30199.71 22397.87 21999.08 18099.35 210
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 17998.75 35596.74 28396.68 36799.88 3588.65 35599.71 22398.37 17982.74 39898.09 365
ACMM97.58 598.37 18098.34 17398.48 26499.41 20597.10 28199.56 12199.45 19898.53 9399.04 23799.85 5293.00 27899.71 22398.74 13097.45 27998.64 308
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 22897.77 22998.57 25399.59 14896.61 31699.45 18999.08 31398.21 12898.88 26099.80 10388.66 35499.70 22998.58 15597.72 25799.39 204
CHOSEN 280x42099.12 9899.13 7699.08 18099.66 12097.89 25098.43 38199.71 1398.88 5999.62 10499.76 13496.63 15199.70 22999.46 4499.99 199.66 125
EC-MVSNet99.44 3799.39 2799.58 9299.56 15699.49 8999.88 399.58 6198.38 10699.73 6599.69 16798.20 9599.70 22999.64 2499.82 9499.54 162
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27895.32 34999.27 26298.92 33397.37 23299.37 16499.58 21594.90 21299.70 22997.43 26699.21 16699.54 162
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 20397.99 20598.44 27499.41 20596.96 29999.60 9499.56 6998.09 14898.15 33099.91 1990.87 33199.70 22998.88 10597.45 27998.67 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS97.50 29096.90 30899.29 15699.23 25598.78 18999.32 24298.90 33997.52 21698.56 30598.09 38384.72 38199.69 23497.86 22097.88 25099.39 204
HQP_MVS98.27 18898.22 18198.44 27499.29 24296.97 29699.39 22099.47 17798.97 5199.11 22199.61 20692.71 28999.69 23497.78 22897.63 26198.67 296
plane_prior599.47 17799.69 23497.78 22897.63 26198.67 296
D2MVS98.41 17598.50 16598.15 30299.26 24996.62 31599.40 21699.61 4897.71 19298.98 24699.36 28596.04 17099.67 23798.70 13597.41 28498.15 363
IS-MVSNet99.05 11198.87 12099.57 9499.73 8799.32 10799.75 4199.20 29998.02 16299.56 11899.86 4796.54 15599.67 23798.09 19999.13 17499.73 97
CLD-MVS98.16 19798.10 19198.33 28499.29 24296.82 30798.75 36099.44 20697.83 17899.13 21799.55 22692.92 28099.67 23798.32 18597.69 25898.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 30597.30 28997.09 34799.43 19893.31 37899.73 4798.87 34498.83 6499.28 18399.80 10384.45 38299.66 24097.88 21797.45 27998.30 355
AUN-MVS96.88 31596.31 32198.59 24999.48 18897.04 29099.27 26299.22 29597.44 22598.51 30899.41 27091.97 30899.66 24097.71 23983.83 39699.07 240
UniMVSNet_ETH3D97.32 30296.81 31098.87 21899.40 21097.46 26799.51 15499.53 9695.86 34198.54 30799.77 13082.44 39099.66 24098.68 14097.52 27199.50 177
OPM-MVS98.19 19398.10 19198.45 27198.88 32397.07 28599.28 25799.38 23398.57 8899.22 19999.81 8992.12 30599.66 24098.08 20397.54 27098.61 326
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19096.68 31399.56 12199.54 8598.41 10497.79 34699.87 4390.18 34099.66 24098.05 20797.18 29498.62 317
hse-mvs297.50 29097.14 29898.59 24999.49 18197.05 28799.28 25799.22 29598.94 5499.66 8799.42 26694.93 20999.65 24599.48 4183.80 39799.08 235
VPA-MVSNet98.29 18697.95 21099.30 15399.16 27899.54 7999.50 16199.58 6198.27 11999.35 17099.37 28292.53 29699.65 24599.35 5294.46 34998.72 274
TR-MVS97.76 25897.41 27598.82 22799.06 30097.87 25198.87 34998.56 37096.63 29498.68 28999.22 31592.49 29799.65 24595.40 33997.79 25598.95 254
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 24897.56 253
HQP4-MVS98.66 29099.64 24898.64 308
HQP-MVS98.02 21897.90 21598.37 28299.19 26596.83 30598.98 33199.39 22598.24 12298.66 29099.40 27392.47 29899.64 24897.19 28197.58 26698.64 308
PAPM97.59 28397.09 30299.07 18299.06 30098.26 22898.30 38899.10 31094.88 35698.08 33299.34 29296.27 16599.64 24889.87 38598.92 19299.31 216
TAPA-MVS97.07 1597.74 26497.34 28498.94 19999.70 10197.53 26599.25 27399.51 11591.90 38399.30 17999.63 19798.78 4899.64 24888.09 39299.87 5899.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 17998.09 19499.24 16599.26 24999.32 10799.56 12199.55 7797.45 22398.71 28199.83 6693.23 27399.63 25398.88 10596.32 30998.76 266
ITE_SJBPF98.08 30499.29 24296.37 32398.92 33398.34 11298.83 26899.75 13791.09 32899.62 25495.82 32697.40 28598.25 359
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25298.82 34998.07 15398.66 29099.64 19189.97 34199.61 25597.01 28996.68 29997.94 376
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 19998.54 37296.44 30999.12 21999.34 29291.83 31299.60 25697.75 23496.46 30599.48 180
tpm297.44 29797.34 28497.74 32899.15 28294.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25797.31 27298.07 24399.29 217
baseline297.87 24097.55 25198.82 22799.18 26898.02 24099.41 20896.58 40096.97 26996.51 36899.17 32093.43 27099.57 25897.71 23999.03 18498.86 256
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27097.41 22998.13 33199.30 30288.99 34999.56 25995.68 33299.80 10197.90 379
TinyColmap97.12 31096.89 30997.83 32299.07 29695.52 34498.57 37498.74 35897.58 20697.81 34599.79 11688.16 36199.56 25995.10 34497.21 29298.39 351
USDC97.34 30197.20 29697.75 32799.07 29695.20 35198.51 37899.04 31997.99 16398.31 31999.86 4789.02 34899.55 26195.67 33397.36 28898.49 338
MSLP-MVS++99.46 3199.47 1799.44 13299.60 14699.16 13099.41 20899.71 1398.98 4899.45 13999.78 12299.19 999.54 26299.28 6599.84 8199.63 140
TAMVS99.12 9899.08 8499.24 16599.46 19098.55 20599.51 15499.46 18798.09 14899.45 13999.82 7498.34 8999.51 26398.70 13598.93 19099.67 122
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27698.75 35599.02 3897.82 34499.71 15396.11 16899.48 26493.04 36999.65 13499.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28798.93 33096.16 32894.08 38599.22 31582.72 38899.47 26595.67 33397.50 27498.17 362
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33598.85 34697.22 24697.23 35799.36 28595.28 19999.46 26695.51 33599.78 10897.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
iter_conf0598.76 15298.90 11498.33 28499.07 29696.97 29699.50 16199.31 27498.13 14099.48 13499.80 10397.89 10599.46 26699.25 7097.68 25998.56 333
CVMVSNet98.57 16698.67 14398.30 28999.35 22595.59 34099.50 16199.55 7798.60 8699.39 16099.83 6694.48 24099.45 26898.75 12998.56 21499.85 36
test-LLR98.06 20897.90 21598.55 25898.79 33497.10 28198.67 36697.75 38697.34 23498.61 30198.85 35294.45 24299.45 26897.25 27599.38 15399.10 230
TESTMET0.1,197.55 28597.27 29598.40 27998.93 31996.53 31898.67 36697.61 38996.96 27098.64 29799.28 30688.63 35699.45 26897.30 27399.38 15399.21 224
test-mter97.49 29597.13 30098.55 25898.79 33497.10 28198.67 36697.75 38696.65 29098.61 30198.85 35288.23 36099.45 26897.25 27599.38 15399.10 230
mvs_anonymous99.03 11598.99 10199.16 17399.38 21698.52 21199.51 15499.38 23397.79 18399.38 16299.81 8997.30 12799.45 26899.35 5298.99 18799.51 174
tfpnnormal97.84 24697.47 26198.98 19399.20 26299.22 12499.64 7899.61 4896.32 31598.27 32399.70 15793.35 27299.44 27395.69 33195.40 33298.27 357
v7n97.87 24097.52 25598.92 20398.76 34398.58 20399.84 1299.46 18796.20 32498.91 25599.70 15794.89 21399.44 27396.03 32293.89 36098.75 268
jajsoiax98.43 17298.28 17898.88 21498.60 36098.43 22199.82 1699.53 9698.19 13098.63 29899.80 10393.22 27599.44 27399.22 7297.50 27498.77 264
mvs_tets98.40 17898.23 18098.91 20798.67 35398.51 21399.66 6999.53 9698.19 13098.65 29699.81 8992.75 28499.44 27399.31 6197.48 27898.77 264
Vis-MVSNet (Re-imp)98.87 13198.72 13799.31 14899.71 9698.88 17499.80 2599.44 20697.91 16999.36 16799.78 12295.49 19399.43 27797.91 21599.11 17599.62 142
OPU-MVS99.64 7899.56 15699.72 4299.60 9499.70 15799.27 599.42 27898.24 18999.80 10199.79 74
Anonymous2023121197.88 23897.54 25498.90 20999.71 9698.53 20799.48 17999.57 6494.16 36698.81 27099.68 17393.23 27399.42 27898.84 11894.42 35198.76 266
VPNet97.84 24697.44 26999.01 18999.21 26098.94 16899.48 17999.57 6498.38 10699.28 18399.73 14888.89 35099.39 28099.19 7593.27 36798.71 276
nrg03098.64 16398.42 16899.28 16099.05 30399.69 4799.81 2099.46 18798.04 15999.01 24099.82 7496.69 15099.38 28199.34 5894.59 34898.78 261
GA-MVS97.85 24397.47 26199.00 19199.38 21697.99 24298.57 37499.15 30597.04 26598.90 25799.30 30289.83 34299.38 28196.70 30798.33 22499.62 142
UniMVSNet (Re)98.29 18698.00 20499.13 17899.00 30899.36 10599.49 17599.51 11597.95 16598.97 24899.13 32596.30 16499.38 28198.36 18193.34 36598.66 304
FIs98.78 14998.63 14899.23 16799.18 26899.54 7999.83 1599.59 5798.28 11798.79 27499.81 8996.75 14899.37 28499.08 8596.38 30798.78 261
PS-MVSNAJss98.92 12798.92 11198.90 20998.78 33798.53 20799.78 3299.54 8598.07 15399.00 24499.76 13499.01 1899.37 28499.13 8097.23 29198.81 259
CDS-MVSNet99.09 10799.03 9199.25 16399.42 20098.73 19199.45 18999.46 18798.11 14599.46 13899.77 13098.01 10399.37 28498.70 13598.92 19299.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23893.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28494.85 34899.85 7399.46 191
v119297.81 25397.44 26998.91 20798.88 32398.68 19499.51 15499.34 25396.18 32699.20 20599.34 29294.03 25699.36 28895.32 34195.18 33698.69 284
EI-MVSNet98.67 16098.67 14398.68 24499.35 22597.97 24399.50 16199.38 23396.93 27599.20 20599.83 6697.87 10699.36 28898.38 17797.56 26898.71 276
MVSTER98.49 16798.32 17599.00 19199.35 22599.02 15199.54 13799.38 23397.41 22999.20 20599.73 14893.86 26399.36 28898.87 10897.56 26898.62 317
gg-mvs-nofinetune96.17 32995.32 34098.73 23898.79 33498.14 23499.38 22594.09 40791.07 38898.07 33591.04 40589.62 34699.35 29196.75 30499.09 17998.68 289
pm-mvs197.68 27497.28 29298.88 21499.06 30098.62 20099.50 16199.45 19896.32 31597.87 34299.79 11692.47 29899.35 29197.54 25593.54 36498.67 296
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18398.78 27599.94 691.68 31699.35 29197.21 27796.99 29898.69 284
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24199.28 2858.40 41325.05 41499.27 30984.11 38399.33 29489.20 38798.22 23297.42 387
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22799.47 17793.46 37497.41 35199.78 12287.06 36999.33 29496.92 29992.70 37498.65 306
mvsmamba98.92 12798.87 12099.08 18099.07 29699.16 13099.88 399.51 11598.15 13599.40 15799.89 2997.12 13299.33 29499.38 4997.40 28598.73 273
V4298.06 20897.79 22498.86 22198.98 31498.84 18099.69 5599.34 25396.53 30199.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4388.69 35399.32 29795.89 32594.93 34398.62 317
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 30998.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25196.76 390
v897.95 23097.63 24798.93 20198.95 31898.81 18699.80 2599.41 21696.03 33899.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 304
v192192097.80 25597.45 26498.84 22598.80 33398.53 20799.52 14699.34 25396.15 33099.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 284
anonymousdsp98.44 17198.28 17898.94 19998.50 36598.96 16299.77 3499.50 13597.07 26098.87 26399.77 13094.76 22399.28 30298.66 14297.60 26498.57 332
MVSFormer99.17 8499.12 7899.29 15699.51 17098.94 16899.88 399.46 18797.55 21099.80 4099.65 18597.39 12199.28 30299.03 8899.85 7399.65 129
test_djsdf98.67 16098.57 16098.98 19398.70 35098.91 17299.88 399.46 18797.55 21099.22 19999.88 3595.73 18599.28 30299.03 8897.62 26398.75 268
cascas97.69 27297.43 27398.48 26498.60 36097.30 27098.18 39299.39 22592.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 20898.86 256
v14419297.92 23497.60 24998.87 21898.83 33298.65 19799.55 13399.34 25396.20 32499.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 280
dmvs_re98.08 20698.16 18397.85 31999.55 16094.67 36199.70 5298.92 33398.15 13599.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
v2v48298.06 20897.77 22998.92 20398.90 32198.82 18499.57 11599.36 24396.65 29099.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 284
v124097.69 27297.32 28798.79 23398.85 33098.43 22199.48 17999.36 24396.11 33399.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 280
v114497.98 22597.69 23998.85 22498.87 32698.66 19699.54 13799.35 24996.27 31999.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 289
v1097.85 24397.52 25598.86 22198.99 31198.67 19599.75 4199.41 21695.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 296
WR-MVS_H98.13 20097.87 22098.90 20999.02 30698.84 18099.70 5299.59 5797.27 24098.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 326
miper_enhance_ethall98.16 19798.08 19598.41 27798.96 31797.72 25898.45 38099.32 27096.95 27298.97 24899.17 32097.06 13799.22 31397.86 22095.99 31698.29 356
GG-mvs-BLEND98.45 27198.55 36398.16 23299.43 19993.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23297.98 374
FC-MVSNet-test98.75 15398.62 15399.15 17799.08 29599.45 9599.86 1199.60 5498.23 12598.70 28799.82 7496.80 14599.22 31399.07 8696.38 30798.79 260
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19698.92 32098.98 15599.48 17999.53 9697.76 18798.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 284
DU-MVS98.08 20697.79 22498.96 19698.87 32698.98 15599.41 20899.45 19897.87 17198.71 28199.50 24494.82 21599.22 31398.57 15892.87 37298.68 289
cl____98.01 22197.84 22298.55 25899.25 25397.97 24398.71 36499.34 25396.47 30898.59 30499.54 23195.65 18899.21 31897.21 27795.77 32298.46 344
WR-MVS98.06 20897.73 23699.06 18398.86 32999.25 12199.19 28399.35 24997.30 23898.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 276
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19599.26 28893.52 37296.98 36499.52 23888.52 35799.20 32092.58 37697.50 27497.93 377
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3498.68 36697.14 25197.90 34099.93 990.45 33499.18 32197.00 29096.43 30698.67 296
cl2297.85 24397.64 24698.48 26499.09 29297.87 25198.60 37399.33 26097.11 25798.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26399.13 29398.33 37597.36 23399.07 22998.94 34695.64 18999.15 32392.95 37098.68 20796.12 397
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15296.36 32499.02 31999.49 14497.18 24898.71 28199.72 15292.72 28799.14 32497.44 26595.86 32198.67 296
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26298.90 33996.14 33198.37 31699.53 23591.54 32299.14 32497.51 25795.87 32098.63 315
v14897.79 25697.55 25198.50 26198.74 34497.72 25899.54 13799.33 26096.26 32098.90 25799.51 24194.68 22999.14 32497.83 22493.15 36998.63 315
miper_ehance_all_eth98.18 19598.10 19198.41 27799.23 25597.72 25898.72 36399.31 27496.60 29798.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
NR-MVSNet97.97 22897.61 24899.02 18898.87 32699.26 11999.47 18599.42 21497.63 20297.08 36299.50 24495.07 20799.13 32797.86 22093.59 36398.68 289
IterMVS97.83 24897.77 22998.02 30899.58 15096.27 32799.02 31999.48 15797.22 24698.71 28199.70 15792.75 28499.13 32797.46 26396.00 31598.67 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 15789.01 39391.99 39499.67 17985.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 21397.96 20898.33 28499.26 24997.38 26998.56 37699.31 27496.65 29098.88 26099.52 23896.58 15399.12 33197.39 26895.53 33098.47 341
pmmvs498.13 20097.90 21598.81 23098.61 35998.87 17598.99 32899.21 29896.44 30999.06 23499.58 21595.90 17999.11 33297.18 28396.11 31398.46 344
TransMVSNet (Re)97.15 30996.58 31498.86 22199.12 28498.85 17999.49 17598.91 33795.48 34597.16 36099.80 10393.38 27199.11 33294.16 35891.73 37798.62 317
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
Baseline_NR-MVSNet97.76 25897.45 26498.68 24499.09 29298.29 22699.41 20898.85 34695.65 34398.63 29899.67 17994.82 21599.10 33498.07 20692.89 37198.64 308
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3790.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
CP-MVSNet98.09 20497.78 22799.01 18998.97 31699.24 12299.67 6499.46 18797.25 24298.48 31199.64 19193.79 26599.06 33798.63 14594.10 35698.74 271
PS-CasMVS97.93 23197.59 25098.95 19898.99 31199.06 14799.68 6199.52 10197.13 25298.31 31999.68 17392.44 30299.05 33898.51 16694.08 35798.75 268
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 897.05 39397.59 20496.16 37299.80 10388.71 35299.04 33996.69 30896.55 30498.65 306
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31199.20 29993.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
DIV-MVS_self_test98.01 22197.85 22198.48 26499.24 25497.95 24798.71 36499.35 24996.50 30298.60 30399.54 23195.72 18699.03 34197.21 27795.77 32298.46 344
IterMVS-LS98.46 17098.42 16898.58 25299.59 14898.00 24199.37 22799.43 21296.94 27499.07 22999.59 21197.87 10699.03 34198.32 18595.62 32798.71 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27996.83 28198.19 32899.34 29297.01 14099.02 34395.00 34796.01 31498.64 308
Patchmtry97.75 26297.40 27698.81 23099.10 28998.87 17599.11 30299.33 26094.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29692.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 330
CR-MVSNet98.17 19697.93 21398.87 21899.18 26898.49 21599.22 28099.33 26096.96 27099.56 11899.38 27994.33 24599.00 34694.83 34998.58 21199.14 227
c3_l98.12 20298.04 20098.38 28199.30 23897.69 26298.81 35499.33 26096.67 28898.83 26899.34 29297.11 13398.99 34797.58 24895.34 33398.48 339
test0.0.03 197.71 27097.42 27498.56 25698.41 36997.82 25498.78 35798.63 36897.34 23498.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 255
PatchT97.03 31396.44 31898.79 23398.99 31198.34 22599.16 28799.07 31692.13 38299.52 12797.31 39294.54 23898.98 34888.54 39098.73 20599.03 243
GBi-Net97.68 27497.48 25998.29 29099.51 17097.26 27499.43 19999.48 15796.49 30399.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 317
test197.68 27497.48 25998.29 29099.51 17097.26 27499.43 19999.48 15796.49 30399.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 317
FMVSNet398.03 21697.76 23398.84 22599.39 21398.98 15599.40 21699.38 23396.67 28899.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 333
FMVSNet297.72 26797.36 27998.80 23299.51 17098.84 18099.45 18999.42 21496.49 30398.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 331
FMVSNet196.84 31696.36 32098.29 29099.32 23697.26 27499.43 19999.48 15795.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 317
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18796.11 33398.22 32699.62 20296.45 15998.97 35593.77 36095.97 31998.61 326
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23698.78 33798.62 20099.65 7599.49 14497.76 18798.49 31099.60 20994.23 24898.97 35598.00 21092.90 37098.70 280
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 29068.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23095.19 35299.23 27699.08 31396.24 32199.10 22499.67 17994.11 25398.93 35896.81 30299.05 18299.48 180
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18599.53 16398.82 18498.84 35197.51 39197.63 20284.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 200
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 22997.43 26898.88 34799.36 24396.48 30698.80 27299.55 22695.98 17298.91 35997.27 27495.50 33198.51 337
PEN-MVS97.76 25897.44 26998.72 23998.77 34298.54 20699.78 3299.51 11597.06 26298.29 32299.64 19192.63 29398.89 36198.09 19993.16 36898.72 274
testing397.28 30396.76 31298.82 22799.37 22098.07 23899.45 18999.36 24397.56 20997.89 34198.95 34583.70 38598.82 36296.03 32298.56 21499.58 154
testgi97.65 27997.50 25898.13 30399.36 22496.45 32199.42 20699.48 15797.76 18797.87 34299.45 26191.09 32898.81 36394.53 35198.52 21799.13 229
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29398.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29398.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
MIMVSNet97.73 26597.45 26498.57 25399.45 19697.50 26699.02 31998.98 32596.11 33399.41 15299.14 32490.28 33598.74 36695.74 32998.93 19099.47 186
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23892.25 38499.59 10098.26 37697.43 22696.20 37199.13 32596.27 16598.73 36798.17 19598.99 18799.64 136
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25299.39 22597.06 26297.41 35198.15 37893.92 26198.68 36891.71 37898.34 22299.45 194
myMVS_eth3d96.89 31496.37 31998.43 27699.00 30897.16 27899.29 25299.39 22597.06 26297.41 35198.15 37883.46 38698.68 36895.27 34298.34 22299.45 194
DTE-MVSNet97.51 28997.19 29798.46 27098.63 35698.13 23599.84 1299.48 15796.68 28797.97 33999.67 17992.92 28098.56 37096.88 30192.60 37598.70 280
PC_three_145298.18 13399.84 2999.70 15799.31 398.52 37198.30 18799.80 10199.81 61
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 7898.25 37798.28 11794.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 15791.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3199.29 28393.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5598.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27799.11 30299.24 29293.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 308
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23199.51 11597.13 25296.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28199.10 30499.23 29393.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 308
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 6999.66 2898.09 14898.35 31799.82 7495.25 20398.01 38197.41 26795.30 33498.78 261
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 19879.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23699.10 31095.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22798.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27299.15 29099.33 26093.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 317
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 174
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8299.08 31396.17 32797.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
SD-MVS99.41 4799.52 1199.05 18599.74 8099.68 4899.46 18899.52 10199.11 2699.88 2099.91 1999.43 197.70 38898.72 13399.93 2699.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11596.63 39896.13 33298.87 26398.61 36594.59 23397.70 38895.08 34598.86 19699.55 160
dongtai93.26 35592.93 35994.25 36799.39 21385.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25499.58 154
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12199.44 20695.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
FMVSNet596.43 32496.19 32397.15 34399.11 28695.89 33599.32 24299.52 10194.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28599.28 28594.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23395.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14699.50 13593.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 329
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15499.38 23396.55 30096.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5285.77 37296.15 39997.86 22043.89 40995.39 399
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1698.62 36996.65 29095.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 221
dmvs_testset95.02 34296.12 32491.72 37799.10 28980.43 40599.58 10897.87 38597.47 21995.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 159
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4799.27 28795.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3799.23 29394.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1150.00 4140.00 41599.56 22296.58 1530.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2150.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 27895.47 336
FOURS199.91 199.93 199.87 899.56 6999.10 2799.81 37
test_one_060199.81 4699.88 899.49 14498.97 5199.65 9399.81 8999.09 14
eth-test20.00 419
eth-test0.00 419
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10699.76 5799.82 7498.75 5598.61 14999.81 9799.77 82
IU-MVS99.84 3299.88 899.32 27098.30 11699.84 2998.86 11399.85 7399.89 20
save fliter99.76 6599.59 7099.14 29299.40 22299.00 43
test072699.85 2699.89 499.62 8799.50 13599.10 2799.86 2799.82 7498.94 29
GSMVS99.52 168
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 21499.52 168
sam_mvs94.72 226
MTGPAbinary99.47 177
MTMP99.54 13798.88 342
test9_res97.49 25999.72 12299.75 88
agg_prior297.21 27799.73 12199.75 88
test_prior499.56 7598.99 328
test_prior298.96 33598.34 11299.01 24099.52 23898.68 6497.96 21299.74 119
新几何299.01 325
旧先验199.74 8099.59 7099.54 8599.69 16798.47 8099.68 13099.73 97
原ACMM298.95 338
test22299.75 7399.49 8998.91 34599.49 14496.42 31199.34 17399.65 18598.28 9299.69 12799.72 103
segment_acmp98.96 24
testdata198.85 35098.32 115
plane_prior799.29 24297.03 291
plane_prior699.27 24796.98 29592.71 289
plane_prior499.61 206
plane_prior397.00 29398.69 7999.11 221
plane_prior299.39 22098.97 51
plane_prior199.26 249
plane_prior96.97 29699.21 28298.45 10097.60 264
n20.00 420
nn0.00 420
door-mid98.05 382
test1199.35 249
door97.92 383
HQP5-MVS96.83 305
HQP-NCC99.19 26598.98 33198.24 12298.66 290
ACMP_Plane99.19 26598.98 33198.24 12298.66 290
BP-MVS97.19 281
HQP3-MVS99.39 22597.58 266
HQP2-MVS92.47 298
NP-MVS99.23 25596.92 30199.40 273
MDTV_nov1_ep13_2view95.18 35399.35 23696.84 27999.58 11495.19 20597.82 22599.46 191
ACMMP++_ref97.19 293
ACMMP++97.43 283
Test By Simon98.75 55