This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21299.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test_vis1_n_192098.63 16098.40 16799.31 14399.86 2097.94 24899.67 6499.62 4199.43 799.99 299.91 2087.29 365100.00 199.92 1299.92 2499.98 2
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
patch_mono-299.26 6999.62 598.16 29499.81 4694.59 35799.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
h-mvs3397.70 26897.28 28998.97 19299.70 10197.27 27199.36 23099.45 19398.94 5499.66 8399.64 19294.93 20499.99 499.48 4184.36 38899.65 129
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29399.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 225
xiu_mvs_v1_base99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29399.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 225
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29399.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 225
EPNet98.86 12898.71 13299.30 14897.20 38198.18 23099.62 8898.91 33399.28 1698.63 29599.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM99.40 5099.28 5599.74 6199.67 11199.31 10799.52 14898.87 34099.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3199.99 1
test_vis1_n97.92 23197.44 26699.34 13699.53 16398.08 23699.74 4499.49 14399.15 20100.00 199.94 679.51 38999.98 1399.88 1499.76 11099.97 4
xiu_mvs_v2_base99.26 6999.25 6299.29 15199.53 16398.91 16999.02 31699.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 239
PS-MVSNAJ99.32 5999.32 4099.30 14899.57 15298.94 16598.97 33099.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 240
QAPM98.67 15698.30 17499.80 4699.20 25799.67 5199.77 3499.72 1194.74 35598.73 27699.90 2695.78 17799.98 1396.96 28999.88 5199.76 87
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 27799.66 5399.84 1399.74 1099.09 3298.92 25199.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 29699.53 8299.82 1799.72 1194.56 35898.08 32799.88 3694.73 22199.98 1397.47 25799.76 11099.06 231
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_fmvs1_n98.41 17298.14 18399.21 16399.82 4297.71 26099.74 4499.49 14399.32 1499.99 299.95 385.32 37299.97 2199.82 1699.84 7799.96 7
CANet_DTU98.97 11898.87 11599.25 15899.33 22598.42 22299.08 30299.30 27599.16 1999.43 14099.75 13895.27 19599.97 2198.56 15899.95 1699.36 201
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17299.71 6899.80 10399.12 1399.97 2198.33 17999.87 5499.83 49
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 26999.68 4899.81 2099.51 11599.20 1898.72 27799.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13698.94 33699.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
test_fmvs198.88 12498.79 12699.16 16899.69 10697.61 26399.55 13499.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2499.90 17
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
ZD-MVS99.71 9699.79 3099.61 4896.84 27499.56 11499.54 23198.58 7299.96 3096.93 29299.75 112
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17099.77 10799.79 74
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19299.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38599.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17099.80 9799.79 74
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 20999.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10199.49 14397.03 26199.63 9699.69 16897.27 12499.96 3097.82 22099.84 7799.81 61
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19599.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
UGNet98.87 12598.69 13499.40 13099.22 25498.72 18999.44 19499.68 2099.24 1799.18 20899.42 26592.74 28399.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 5999.32 4099.32 14299.85 2698.29 22599.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36199.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17399.86 6299.81 61
CANet99.25 7399.14 7299.59 8799.41 20399.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24699.52 10197.18 24399.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 5996.67 304
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
RPMNet96.72 31395.90 32599.19 16599.18 26298.49 21399.22 27899.52 10188.72 38899.56 11497.38 38294.08 25199.95 5986.87 39298.58 20799.14 217
sss99.17 8199.05 8399.53 10599.62 13798.97 15399.36 23099.62 4197.83 17399.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2499.98 2
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 31595.45 33399.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40598.81 4499.94 6998.79 12399.86 6299.84 40
旧先验298.96 33196.70 28199.47 13199.94 6998.19 188
新几何199.75 5899.75 7399.59 7099.54 8596.76 27799.29 17999.64 19298.43 8399.94 6996.92 29499.66 12899.72 103
testdata99.54 9799.75 7398.95 16299.51 11597.07 25599.43 14099.70 15898.87 3799.94 6997.76 22799.64 13199.72 103
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 19999.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 7799.10 7699.45 12399.89 898.52 20999.39 21999.94 198.73 7699.11 21799.89 3095.50 18799.94 6999.50 3699.97 799.89 20
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16399.50 13597.16 24599.77 5199.82 7698.78 4899.94 6997.56 24899.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 30899.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21599.72 103
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 6799.12 7499.74 6199.18 26299.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 17999.84 7799.52 167
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22699.72 103
FE-MVS98.48 16598.17 17999.40 13099.54 16298.96 15799.68 6198.81 34695.54 33999.62 10099.70 15893.82 26099.93 8497.35 26699.46 14499.32 207
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11699.54 8597.82 17799.71 6899.80 10398.95 2799.93 8498.19 18899.84 7799.74 92
dcpmvs_299.23 7599.58 798.16 29499.83 3994.68 35599.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
Anonymous2024052998.09 20197.68 23799.34 13699.66 12098.44 21999.40 21599.43 20793.67 36599.22 19599.89 3090.23 33699.93 8499.26 6798.33 22099.66 125
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
无先验98.99 32499.51 11596.89 27199.93 8497.53 25199.72 103
VDDNet97.55 28297.02 30099.16 16899.49 18198.12 23599.38 22499.30 27595.35 34199.68 7499.90 2682.62 38499.93 8499.31 5898.13 23799.42 193
ab-mvs98.86 12898.63 14299.54 9799.64 12899.19 12099.44 19499.54 8597.77 18099.30 17699.81 9094.20 24599.93 8499.17 7498.82 19699.49 177
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11399.42 20599.54 8597.29 23499.41 14799.59 21298.42 8599.93 8498.19 18899.69 12399.73 97
Anonymous20240521198.30 18297.98 20399.26 15799.57 15298.16 23199.41 20798.55 36696.03 33399.19 20499.74 14391.87 30799.92 9599.16 7598.29 22599.70 113
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
VDD-MVS97.73 26297.35 27898.88 21199.47 19097.12 27999.34 23898.85 34298.19 12799.67 7899.85 5482.98 38299.92 9599.49 4098.32 22499.60 146
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18599.92 9599.52 3498.18 23399.72 103
XVG-OURS-SEG-HR98.69 15398.62 14798.89 20999.71 9697.74 25599.12 29399.54 8598.44 9999.42 14399.71 15494.20 24599.92 9598.54 16298.90 19099.00 236
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18699.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
HY-MVS97.30 798.85 13598.64 14199.47 12099.42 20099.08 13999.62 8899.36 24097.39 22699.28 18099.68 17496.44 15499.92 9598.37 17598.22 22899.40 197
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20799.50 13597.03 26199.04 23399.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
IB-MVS95.67 1896.22 32195.44 33498.57 24999.21 25596.70 30598.65 36497.74 38396.71 28097.27 35198.54 36286.03 36899.92 9598.47 16886.30 38699.10 220
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 7699.72 9199.40 21599.51 11597.53 20999.64 9399.78 12198.84 4199.91 10597.63 23999.82 90
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 21899.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11199.65 5799.05 30899.41 21296.22 31898.95 24699.49 24798.77 5199.91 105
train_agg99.02 11298.77 12799.77 5599.67 11199.65 5799.05 30899.41 21296.28 31298.95 24699.49 24798.76 5299.91 10597.63 23999.72 11899.75 88
test_899.67 11199.61 6799.03 31399.41 21296.28 31298.93 25099.48 25298.76 5299.91 105
agg_prior99.67 11199.62 6599.40 22098.87 26099.91 105
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21599.12 21599.66 18598.67 6699.91 10597.70 23699.69 12399.71 112
LFMVS97.90 23497.35 27899.54 9799.52 16799.01 14899.39 21998.24 37397.10 25399.65 8999.79 11584.79 37599.91 10599.28 6398.38 21799.69 115
XVG-OURS98.73 14998.68 13598.88 21199.70 10197.73 25698.92 33899.55 7798.52 9199.45 13499.84 6495.27 19599.91 10598.08 19998.84 19499.00 236
PLCcopyleft97.94 499.02 11298.85 11999.53 10599.66 12099.01 14899.24 27399.52 10196.85 27399.27 18499.48 25298.25 9399.91 10597.76 22799.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 27597.06 29999.47 12099.61 14199.09 13698.04 38999.25 28791.24 38098.51 30599.70 15894.55 23399.91 10592.76 36999.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UWE-MVS97.58 28197.29 28898.48 26099.09 28596.25 32399.01 32196.61 39497.86 16799.19 20499.01 33688.72 34899.90 11697.38 26498.69 20299.28 210
test_vis1_rt95.81 33095.65 33096.32 35699.67 11191.35 38399.49 17496.74 39298.25 11795.24 37198.10 37574.96 39099.90 11699.53 3298.85 19397.70 375
FA-MVS(test-final)98.75 14698.53 16099.41 12999.55 16099.05 14499.80 2599.01 31896.59 29499.58 11099.59 21295.39 19099.90 11697.78 22399.49 14399.28 210
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25199.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 28799.41 21296.60 29299.60 10699.55 22698.83 4299.90 11697.48 25599.83 8699.78 80
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24699.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18499.63 13399.80 70
114514_t98.93 12098.67 13699.72 6599.85 2699.53 8299.62 8899.59 5792.65 37599.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
1112_ss98.98 11698.77 12799.59 8799.68 11099.02 14699.25 27199.48 15597.23 24099.13 21399.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 10999.80 897.12 24999.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
AdaColmapbinary99.01 11598.80 12399.66 6999.56 15699.54 7999.18 28299.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25599.77 10799.55 159
COLMAP_ROBcopyleft97.56 698.86 12898.75 12999.17 16799.88 1198.53 20599.34 23899.59 5797.55 20598.70 28499.89 3095.83 17599.90 11698.10 19499.90 3999.08 225
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 17898.03 19899.31 14399.63 13198.56 20299.54 13996.75 39197.53 20999.73 6299.65 18691.25 32499.89 12798.62 14399.56 13899.48 178
tttt051798.42 17098.14 18399.28 15599.66 12098.38 22399.74 4496.85 38997.68 19299.79 4299.74 14391.39 32199.89 12798.83 11899.56 13899.57 156
test1299.75 5899.64 12899.61 6799.29 27999.21 19898.38 8799.89 12799.74 11599.74 92
Test_1112_low_res98.89 12398.66 13999.57 9299.69 10698.95 16299.03 31399.47 17396.98 26399.15 21199.23 31296.77 14199.89 12798.83 11898.78 19999.86 33
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28499.44 20198.45 9699.19 20499.49 24798.08 10199.89 12797.73 23199.75 11299.48 178
sd_testset98.75 14698.57 15699.29 15199.81 4698.26 22799.56 12299.62 4198.78 7399.64 9399.88 3692.02 30499.88 13299.54 3098.26 22699.72 103
APD_test195.87 32896.49 31294.00 36299.53 16384.01 39099.54 13999.32 26795.91 33597.99 33299.85 5485.49 37199.88 13291.96 37298.84 19498.12 357
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 15799.28 25599.49 14398.46 9599.72 6799.71 15496.50 15099.88 13299.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 12898.80 12399.03 18299.76 6598.79 18499.28 25599.91 397.42 22399.67 7899.37 28097.53 11399.88 13298.98 9097.29 28198.42 340
PVSNet_Blended99.08 10598.97 10199.42 12899.76 6598.79 18498.78 35299.91 396.74 27899.67 7899.49 24797.53 11399.88 13298.98 9099.85 6999.60 146
MVS97.28 29896.55 31099.48 11798.78 33198.95 16299.27 26099.39 22383.53 39298.08 32799.54 23196.97 13599.87 13794.23 35199.16 16599.63 140
MG-MVS99.13 8999.02 9199.45 12399.57 15298.63 19699.07 30399.34 25098.99 4599.61 10399.82 7697.98 10499.87 13797.00 28599.80 9799.85 36
MSDG98.98 11698.80 12399.53 10599.76 6599.19 12098.75 35599.55 7797.25 23799.47 13199.77 12997.82 10799.87 13796.93 29299.90 3999.54 161
ETV-MVS99.26 6999.21 6699.40 13099.46 19199.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 14099.10 7999.59 13699.04 232
thisisatest051598.14 19697.79 22199.19 16599.50 17998.50 21298.61 36696.82 39096.95 26799.54 11999.43 26391.66 31699.86 14098.08 19999.51 14299.22 214
thres600view797.86 23997.51 25498.92 20099.72 9197.95 24699.59 10198.74 35397.94 16199.27 18498.62 35991.75 31099.86 14093.73 35698.19 23298.96 242
lupinMVS99.13 8999.01 9599.46 12299.51 17098.94 16599.05 30899.16 30197.86 16799.80 4099.56 22397.39 11699.86 14098.94 9499.85 6999.58 154
PVSNet96.02 1798.85 13598.84 12098.89 20999.73 8797.28 27098.32 38299.60 5497.86 16799.50 12699.57 22096.75 14299.86 14098.56 15899.70 12299.54 161
MAR-MVS98.86 12898.63 14299.54 9799.37 21599.66 5399.45 18899.54 8596.61 29099.01 23699.40 27297.09 12999.86 14097.68 23899.53 14199.10 220
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250696.81 31296.65 30897.29 33799.74 8092.21 38099.60 9585.06 40999.13 2299.77 5199.93 987.82 36399.85 14699.38 4899.38 14999.80 70
AllTest98.87 12598.72 13099.31 14399.86 2098.48 21599.56 12299.61 4897.85 17099.36 16499.85 5495.95 16899.85 14696.66 30599.83 8699.59 150
TestCases99.31 14399.86 2098.48 21599.61 4897.85 17099.36 16499.85 5495.95 16899.85 14696.66 30599.83 8699.59 150
jason99.13 8999.03 8799.45 12399.46 19198.87 17299.12 29399.26 28598.03 15699.79 4299.65 18697.02 13299.85 14699.02 8799.90 3999.65 129
jason: jason.
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 26999.52 10198.82 6599.39 15599.71 15498.96 2499.85 14698.59 15199.80 9799.77 82
PAPM_NR99.04 10998.84 12099.66 6999.74 8099.44 9499.39 21999.38 23197.70 19099.28 18099.28 30498.34 8999.85 14696.96 28999.45 14599.69 115
testing9997.36 29596.94 30298.63 24299.18 26296.70 30599.30 24698.93 32697.71 18798.23 32098.26 36984.92 37499.84 15298.04 20497.85 24599.35 202
testing22297.16 30396.50 31199.16 16899.16 27198.47 21799.27 26098.66 36297.71 18798.23 32098.15 37182.28 38699.84 15297.36 26597.66 25099.18 216
test111198.04 21198.11 18797.83 31799.74 8093.82 36599.58 10995.40 39899.12 2599.65 8999.93 990.73 32999.84 15299.43 4699.38 14999.82 54
ECVR-MVScopyleft98.04 21198.05 19698.00 30699.74 8094.37 36099.59 10194.98 39999.13 2299.66 8399.93 990.67 33099.84 15299.40 4799.38 14999.80 70
test_yl98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15298.60 14998.33 22099.59 150
DCV-MVSNet98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15298.60 14998.33 22099.59 150
Fast-Effi-MVS+98.70 15198.43 16499.51 11399.51 17099.28 11199.52 14899.47 17396.11 32899.01 23699.34 29096.20 16199.84 15297.88 21298.82 19699.39 198
TSAR-MVS + GP.99.36 5599.36 3299.36 13599.67 11198.61 19999.07 30399.33 25799.00 4399.82 3599.81 9099.06 1699.84 15299.09 8099.42 14799.65 129
tpmrst98.33 17998.48 16297.90 31299.16 27194.78 35399.31 24499.11 30697.27 23599.45 13499.59 21295.33 19399.84 15298.48 16598.61 20499.09 224
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21899.84 15299.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 16098.34 17099.51 11399.40 20899.03 14598.80 35099.36 24096.33 30999.00 24099.12 32698.46 8199.84 15295.23 33899.37 15699.66 125
PatchMatch-RL98.84 13898.62 14799.52 11199.71 9699.28 11199.06 30699.77 997.74 18599.50 12699.53 23595.41 18999.84 15297.17 27999.64 13199.44 191
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14299.81 2099.33 25797.43 22199.60 10699.88 3697.14 12699.84 15299.13 7698.94 18599.69 115
thres100view90097.76 25597.45 26198.69 23999.72 9197.86 25299.59 10198.74 35397.93 16299.26 18898.62 35991.75 31099.83 16593.22 36198.18 23398.37 346
tfpn200view997.72 26497.38 27498.72 23799.69 10697.96 24499.50 16398.73 35897.83 17399.17 20998.45 36491.67 31499.83 16593.22 36198.18 23398.37 346
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16599.74 92
131498.68 15598.54 15999.11 17498.89 31598.65 19499.27 26099.49 14396.89 27197.99 33299.56 22397.72 11199.83 16597.74 23099.27 16098.84 248
thres40097.77 25497.38 27498.92 20099.69 10697.96 24499.50 16398.73 35897.83 17399.17 20998.45 36491.67 31499.83 16593.22 36198.18 23398.96 242
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16599.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 17199.69 1999.85 6999.48 178
MVS_Test99.10 10398.97 10199.48 11799.49 18199.14 13199.67 6499.34 25097.31 23299.58 11099.76 13597.65 11299.82 17198.87 10599.07 17799.46 186
dp97.75 25997.80 22097.59 32999.10 28293.71 36899.32 24198.88 33896.48 30199.08 22499.55 22692.67 28999.82 17196.52 30898.58 20799.24 213
RPSCF98.22 18698.62 14796.99 34399.82 4291.58 38299.72 4999.44 20196.61 29099.66 8399.89 3095.92 17199.82 17197.46 25899.10 17499.57 156
PMMVS98.80 14298.62 14799.34 13699.27 24298.70 19098.76 35499.31 27197.34 22999.21 19899.07 32897.20 12599.82 17198.56 15898.87 19199.52 167
EIA-MVS99.18 7999.09 7999.45 12399.49 18199.18 12299.67 6499.53 9697.66 19599.40 15299.44 26198.10 9999.81 17698.94 9499.62 13499.35 202
Effi-MVS+98.81 13998.59 15499.48 11799.46 19199.12 13498.08 38899.50 13597.50 21399.38 15899.41 26996.37 15699.81 17699.11 7898.54 21299.51 173
thres20097.61 27997.28 28998.62 24399.64 12898.03 23899.26 26998.74 35397.68 19299.09 22398.32 36891.66 31699.81 17692.88 36698.22 22898.03 362
tpmvs97.98 22298.02 20097.84 31699.04 29694.73 35499.31 24499.20 29696.10 33298.76 27499.42 26594.94 20399.81 17696.97 28898.45 21698.97 240
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17699.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 13999.37 3097.12 34199.60 14691.75 38198.61 36699.44 20199.35 1299.83 3499.85 5498.70 6399.81 17699.02 8799.91 3199.81 61
DPM-MVS98.95 11998.71 13299.66 6999.63 13199.55 7798.64 36599.10 30797.93 16299.42 14399.55 22698.67 6699.80 18295.80 32399.68 12699.61 144
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26099.57 6496.40 30899.42 14399.68 17498.75 5599.80 18297.98 20699.72 11899.44 191
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33699.85 698.82 6599.65 8999.74 14398.51 7899.80 18298.83 11899.89 4899.64 136
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18599.65 2399.78 10499.41 195
Fast-Effi-MVS+-dtu98.77 14598.83 12298.60 24499.41 20396.99 29399.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18597.95 20899.45 14599.02 235
baseline198.31 18097.95 20799.38 13499.50 17998.74 18799.59 10198.93 32698.41 10099.14 21299.60 21094.59 22999.79 18598.48 16593.29 35999.61 144
baseline99.15 8599.02 9199.53 10599.66 12099.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18599.51 3599.14 16999.67 122
PVSNet_094.43 1996.09 32695.47 33297.94 30999.31 23294.34 36297.81 39099.70 1597.12 24997.46 34598.75 35689.71 34099.79 18597.69 23781.69 39299.68 119
API-MVS99.04 10999.03 8799.06 17899.40 20899.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 19096.98 28799.78 10498.07 359
OMC-MVS99.08 10599.04 8599.20 16499.67 11198.22 22999.28 25599.52 10198.07 14899.66 8399.81 9097.79 10899.78 19097.79 22299.81 9399.60 146
GeoE98.85 13598.62 14799.53 10599.61 14199.08 13999.80 2599.51 11597.10 25399.31 17499.78 12195.23 19999.77 19298.21 18699.03 18099.75 88
alignmvs98.81 13998.56 15899.58 9099.43 19899.42 9699.51 15698.96 32498.61 8499.35 16798.92 34894.78 21599.77 19299.35 5198.11 23899.54 161
tpm cat197.39 29497.36 27697.50 33299.17 26993.73 36799.43 19899.31 27191.27 37998.71 27899.08 32794.31 24399.77 19296.41 31298.50 21499.00 236
CostFormer97.72 26497.73 23397.71 32499.15 27594.02 36499.54 13999.02 31794.67 35699.04 23399.35 28692.35 30199.77 19298.50 16497.94 24199.34 205
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 196
MDTV_nov1_ep1398.32 17299.11 27994.44 35999.27 26098.74 35397.51 21299.40 15299.62 20394.78 21599.76 19697.59 24298.81 198
canonicalmvs99.02 11298.86 11899.51 11399.42 20099.32 10499.80 2599.48 15598.63 8299.31 17498.81 35397.09 12999.75 19899.27 6697.90 24299.47 184
Effi-MVS+-dtu98.78 14398.89 11398.47 26599.33 22596.91 29999.57 11699.30 27598.47 9499.41 14798.99 33896.78 14099.74 19998.73 12999.38 14998.74 262
patchmatchnet-post98.70 35794.79 21499.74 199
SCA98.19 19098.16 18098.27 28999.30 23395.55 33699.07 30398.97 32297.57 20299.43 14099.57 22092.72 28499.74 19997.58 24399.20 16399.52 167
BH-untuned98.42 17098.36 16898.59 24599.49 18196.70 30599.27 26099.13 30597.24 23998.80 26999.38 27795.75 17899.74 19997.07 28399.16 16599.33 206
BH-RMVSNet98.41 17298.08 19299.40 13099.41 20398.83 18099.30 24698.77 34997.70 19098.94 24899.65 18692.91 27999.74 19996.52 30899.55 14099.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33499.85 698.82 6599.54 11999.73 14998.51 7899.74 19998.91 9999.88 5199.77 82
test_post65.99 40394.65 22899.73 205
XVG-ACMP-BASELINE97.83 24597.71 23598.20 29199.11 27996.33 32099.41 20799.52 10198.06 15299.05 23299.50 24489.64 34299.73 20597.73 23197.38 27998.53 328
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31699.91 397.67 19499.59 10999.75 13895.90 17399.73 20599.53 3299.02 18299.86 33
DeepMVS_CXcopyleft93.34 36599.29 23782.27 39399.22 29285.15 39096.33 36499.05 33190.97 32799.73 20593.57 35897.77 24798.01 363
Patchmatch-test97.93 22897.65 24098.77 23499.18 26297.07 28499.03 31399.14 30496.16 32398.74 27599.57 22094.56 23199.72 20993.36 36099.11 17199.52 167
LPG-MVS_test98.22 18698.13 18598.49 25899.33 22597.05 28699.58 10999.55 7797.46 21599.24 19099.83 6892.58 29199.72 20998.09 19597.51 26398.68 281
LGP-MVS_train98.49 25899.33 22597.05 28699.55 7797.46 21599.24 19099.83 6892.58 29199.72 20998.09 19597.51 26398.68 281
BH-w/o98.00 22097.89 21698.32 28299.35 21996.20 32599.01 32198.90 33596.42 30698.38 31299.00 33795.26 19799.72 20996.06 31698.61 20499.03 233
ACMP97.20 1198.06 20597.94 20998.45 26799.37 21597.01 29199.44 19499.49 14397.54 20898.45 30999.79 11591.95 30699.72 20997.91 21097.49 26898.62 311
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 21597.90 21298.40 27599.23 25096.80 30399.70 5299.60 5497.12 24998.18 32499.70 15891.73 31299.72 20998.39 17297.45 27198.68 281
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 27465.14 40494.18 24899.71 21597.58 243
ADS-MVSNet98.20 18998.08 19298.56 25299.33 22596.48 31599.23 27499.15 30296.24 31699.10 22099.67 18094.11 24999.71 21596.81 29799.05 17899.48 178
JIA-IIPM97.50 28797.02 30098.93 19898.73 33897.80 25499.30 24698.97 32291.73 37898.91 25294.86 39295.10 20199.71 21597.58 24397.98 24099.28 210
EPMVS97.82 24897.65 24098.35 27998.88 31695.98 32899.49 17494.71 40197.57 20299.26 18899.48 25292.46 29899.71 21597.87 21499.08 17699.35 202
TDRefinement95.42 33494.57 34197.97 30889.83 40296.11 32799.48 17898.75 35096.74 27896.68 36199.88 3688.65 35299.71 21598.37 17582.74 39198.09 358
ACMM97.58 598.37 17798.34 17098.48 26099.41 20397.10 28099.56 12299.45 19398.53 9099.04 23399.85 5493.00 27599.71 21598.74 12797.45 27198.64 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 22597.77 22698.57 24999.59 14896.61 31199.45 18899.08 31098.21 12498.88 25799.80 10388.66 35199.70 22198.58 15297.72 24899.39 198
CHOSEN 280x42099.12 9599.13 7399.08 17599.66 12097.89 24998.43 37699.71 1398.88 5999.62 10099.76 13596.63 14599.70 22199.46 4499.99 199.66 125
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 22199.64 2499.82 9099.54 161
PatchmatchNetpermissive98.31 18098.36 16898.19 29299.16 27195.32 34499.27 26098.92 32997.37 22799.37 16099.58 21694.90 20799.70 22197.43 26199.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 20097.99 20298.44 27099.41 20396.96 29799.60 9599.56 6998.09 14398.15 32599.91 2090.87 32899.70 22198.88 10297.45 27198.67 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS97.50 28796.90 30399.29 15199.23 25098.78 18699.32 24198.90 33597.52 21198.56 30298.09 37684.72 37699.69 22697.86 21597.88 24399.39 198
HQP_MVS98.27 18598.22 17898.44 27099.29 23796.97 29599.39 21999.47 17398.97 5199.11 21799.61 20792.71 28699.69 22697.78 22397.63 25198.67 288
plane_prior599.47 17399.69 22697.78 22397.63 25198.67 288
D2MVS98.41 17298.50 16198.15 29799.26 24496.62 31099.40 21599.61 4897.71 18798.98 24299.36 28396.04 16499.67 22998.70 13297.41 27698.15 356
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 22998.09 19599.13 17099.73 97
CLD-MVS98.16 19498.10 18898.33 28099.29 23796.82 30298.75 35599.44 20197.83 17399.13 21399.55 22692.92 27799.67 22998.32 18197.69 24998.48 332
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 30097.30 28697.09 34299.43 19893.31 37399.73 4798.87 34098.83 6499.28 18099.80 10384.45 37799.66 23297.88 21297.45 27198.30 348
AUN-MVS96.88 31096.31 31698.59 24599.48 18997.04 28999.27 26099.22 29297.44 22098.51 30599.41 26991.97 30599.66 23297.71 23483.83 38999.07 230
UniMVSNet_ETH3D97.32 29796.81 30598.87 21599.40 20897.46 26699.51 15699.53 9695.86 33698.54 30499.77 12982.44 38599.66 23298.68 13797.52 26199.50 176
OPM-MVS98.19 19098.10 18898.45 26798.88 31697.07 28499.28 25599.38 23198.57 8699.22 19599.81 9092.12 30299.66 23298.08 19997.54 26098.61 320
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 23197.78 22498.32 28299.46 19196.68 30899.56 12299.54 8598.41 10097.79 34199.87 4490.18 33799.66 23298.05 20397.18 28798.62 311
hse-mvs297.50 28797.14 29598.59 24599.49 18197.05 28699.28 25599.22 29298.94 5499.66 8399.42 26594.93 20499.65 23799.48 4183.80 39099.08 225
VPA-MVSNet98.29 18397.95 20799.30 14899.16 27199.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29399.65 23799.35 5194.46 34298.72 265
TR-MVS97.76 25597.41 27298.82 22699.06 29297.87 25098.87 34498.56 36596.63 28998.68 28699.22 31392.49 29499.65 23795.40 33497.79 24698.95 244
gm-plane-assit98.54 35792.96 37594.65 35799.15 32199.64 24097.56 248
HQP4-MVS98.66 28799.64 24098.64 300
HQP-MVS98.02 21597.90 21298.37 27899.19 25996.83 30098.98 32799.39 22398.24 11898.66 28799.40 27292.47 29599.64 24097.19 27697.58 25698.64 300
PAPM97.59 28097.09 29899.07 17799.06 29298.26 22798.30 38399.10 30794.88 35198.08 32799.34 29096.27 15999.64 24089.87 38098.92 18899.31 208
TAPA-MVS97.07 1597.74 26197.34 28198.94 19699.70 10197.53 26499.25 27199.51 11591.90 37799.30 17699.63 19898.78 4899.64 24088.09 38799.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 17698.09 19199.24 16099.26 24499.32 10499.56 12299.55 7797.45 21898.71 27899.83 6893.23 27099.63 24598.88 10296.32 30298.76 257
ITE_SJBPF98.08 29999.29 23796.37 31898.92 32998.34 10898.83 26599.75 13891.09 32599.62 24695.82 32197.40 27798.25 352
LF4IMVS97.52 28497.46 26097.70 32598.98 30695.55 33699.29 25198.82 34598.07 14898.66 28799.64 19289.97 33899.61 24797.01 28496.68 29297.94 369
tpm97.67 27497.55 24898.03 30199.02 29895.01 35099.43 19898.54 36796.44 30499.12 21599.34 29091.83 30999.60 24897.75 22996.46 29899.48 178
tpm297.44 29397.34 28197.74 32399.15 27594.36 36199.45 18898.94 32593.45 37098.90 25499.44 26191.35 32299.59 24997.31 26798.07 23999.29 209
baseline297.87 23797.55 24898.82 22699.18 26298.02 23999.41 20796.58 39596.97 26496.51 36299.17 31893.43 26799.57 25097.71 23499.03 18098.86 246
MS-PatchMatch97.24 30297.32 28496.99 34398.45 36093.51 37298.82 34899.32 26797.41 22498.13 32699.30 30088.99 34699.56 25195.68 32799.80 9797.90 372
TinyColmap97.12 30596.89 30497.83 31799.07 28995.52 33998.57 36998.74 35397.58 20197.81 34099.79 11588.16 35899.56 25195.10 33997.21 28598.39 344
USDC97.34 29697.20 29397.75 32299.07 28995.20 34698.51 37399.04 31697.99 15898.31 31699.86 4989.02 34599.55 25395.67 32897.36 28098.49 331
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14699.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25499.28 6399.84 7799.63 140
TAMVS99.12 9599.08 8099.24 16099.46 19198.55 20399.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25598.70 13298.93 18699.67 122
EPNet_dtu98.03 21397.96 20598.23 29098.27 36395.54 33899.23 27498.75 35099.02 3897.82 33999.71 15496.11 16299.48 25693.04 36499.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS95.97 32795.69 32996.81 35097.78 37092.79 37699.16 28498.93 32696.16 32394.08 37999.22 31382.72 38399.47 25795.67 32897.50 26598.17 355
MVP-Stereo97.81 25097.75 23197.99 30797.53 37496.60 31298.96 33198.85 34297.22 24197.23 35299.36 28395.28 19499.46 25895.51 33099.78 10497.92 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 16298.67 13698.30 28499.35 21995.59 33599.50 16399.55 7798.60 8599.39 15599.83 6894.48 23699.45 25998.75 12698.56 21099.85 36
test-LLR98.06 20597.90 21298.55 25498.79 32897.10 28098.67 36197.75 38197.34 22998.61 29898.85 35094.45 23899.45 25997.25 27099.38 14999.10 220
TESTMET0.1,197.55 28297.27 29298.40 27598.93 31196.53 31398.67 36197.61 38496.96 26598.64 29499.28 30488.63 35399.45 25997.30 26899.38 14999.21 215
test-mter97.49 29197.13 29798.55 25498.79 32897.10 28098.67 36197.75 38196.65 28598.61 29898.85 35088.23 35799.45 25997.25 27099.38 14999.10 220
mvs_anonymous99.03 11198.99 9799.16 16899.38 21298.52 20999.51 15699.38 23197.79 17899.38 15899.81 9097.30 12299.45 25999.35 5198.99 18399.51 173
tfpnnormal97.84 24397.47 25898.98 19099.20 25799.22 11999.64 7899.61 4896.32 31098.27 31999.70 15893.35 26999.44 26495.69 32695.40 32598.27 350
v7n97.87 23797.52 25298.92 20098.76 33698.58 20199.84 1399.46 18296.20 31998.91 25299.70 15894.89 20899.44 26496.03 31793.89 35398.75 259
jajsoiax98.43 16998.28 17598.88 21198.60 35398.43 22099.82 1799.53 9698.19 12798.63 29599.80 10393.22 27299.44 26499.22 6997.50 26598.77 255
mvs_tets98.40 17598.23 17798.91 20498.67 34698.51 21199.66 6999.53 9698.19 12798.65 29399.81 9092.75 28199.44 26499.31 5897.48 26998.77 255
Vis-MVSNet (Re-imp)98.87 12598.72 13099.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18899.43 26897.91 21099.11 17199.62 142
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15899.27 599.42 26998.24 18599.80 9799.79 74
Anonymous2023121197.88 23597.54 25198.90 20699.71 9698.53 20599.48 17899.57 6494.16 36198.81 26799.68 17493.23 27099.42 26998.84 11594.42 34498.76 257
VPNet97.84 24397.44 26699.01 18499.21 25598.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34799.39 27199.19 7193.27 36098.71 267
iter_conf_final98.71 15098.61 15398.99 18899.49 18198.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 21099.38 27299.30 6197.52 26198.64 300
nrg03098.64 15998.42 16599.28 15599.05 29599.69 4799.81 2099.46 18298.04 15499.01 23699.82 7696.69 14499.38 27299.34 5594.59 34198.78 252
iter_conf0598.55 16398.44 16398.87 21599.34 22398.60 20099.55 13499.42 20998.21 12499.37 16099.77 12993.55 26699.38 27299.30 6197.48 26998.63 308
GA-MVS97.85 24097.47 25899.00 18699.38 21297.99 24198.57 36999.15 30297.04 26098.90 25499.30 30089.83 33999.38 27296.70 30298.33 22099.62 142
UniMVSNet (Re)98.29 18398.00 20199.13 17399.00 30099.36 10299.49 17499.51 11597.95 16098.97 24499.13 32396.30 15899.38 27298.36 17793.34 35898.66 296
FIs98.78 14398.63 14299.23 16299.18 26299.54 7999.83 1699.59 5798.28 11398.79 27199.81 9096.75 14299.37 27799.08 8296.38 30098.78 252
PS-MVSNAJss98.92 12198.92 10798.90 20698.78 33198.53 20599.78 3299.54 8598.07 14899.00 24099.76 13599.01 1899.37 27799.13 7697.23 28498.81 249
CDS-MVSNet99.09 10499.03 8799.25 15899.42 20098.73 18899.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27798.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 33195.16 33697.51 33199.30 23393.69 36998.88 34295.78 39685.09 39198.78 27292.65 39491.29 32399.37 27794.85 34399.85 6999.46 186
v119297.81 25097.44 26698.91 20498.88 31698.68 19199.51 15699.34 25096.18 32199.20 20199.34 29094.03 25299.36 28195.32 33695.18 32998.69 276
EI-MVSNet98.67 15698.67 13698.68 24099.35 21997.97 24299.50 16399.38 23196.93 27099.20 20199.83 6897.87 10599.36 28198.38 17397.56 25898.71 267
MVSTER98.49 16498.32 17299.00 18699.35 21999.02 14699.54 13999.38 23197.41 22499.20 20199.73 14993.86 25999.36 28198.87 10597.56 25898.62 311
gg-mvs-nofinetune96.17 32495.32 33598.73 23698.79 32898.14 23399.38 22494.09 40291.07 38298.07 33091.04 39889.62 34399.35 28496.75 29999.09 17598.68 281
pm-mvs197.68 27197.28 28998.88 21199.06 29298.62 19799.50 16399.45 19396.32 31097.87 33799.79 11592.47 29599.35 28497.54 25093.54 35798.67 288
OurMVSNet-221017-097.88 23597.77 22698.19 29298.71 34296.53 31399.88 499.00 31997.79 17898.78 27299.94 691.68 31399.35 28497.21 27296.99 29198.69 276
EGC-MVSNET82.80 36377.86 36997.62 32797.91 36796.12 32699.33 24099.28 2818.40 40625.05 40799.27 30784.11 37899.33 28789.20 38298.22 22897.42 380
pmmvs696.53 31696.09 32197.82 31998.69 34495.47 34099.37 22699.47 17393.46 36997.41 34699.78 12187.06 36699.33 28796.92 29492.70 36798.65 298
mvsmamba98.92 12198.87 11599.08 17599.07 28999.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28799.38 4897.40 27798.73 264
V4298.06 20597.79 22198.86 21998.98 30698.84 17799.69 5599.34 25096.53 29699.30 17699.37 28094.67 22699.32 29097.57 24794.66 33998.42 340
lessismore_v097.79 32198.69 34495.44 34294.75 40095.71 37099.87 4488.69 35099.32 29095.89 32094.93 33698.62 311
OpenMVS_ROBcopyleft92.34 2094.38 34593.70 35196.41 35597.38 37693.17 37499.06 30698.75 35086.58 38994.84 37798.26 36981.53 38799.32 29089.01 38397.87 24496.76 383
bld_raw_dy_0_6498.69 15398.58 15598.99 18898.88 31698.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 29399.09 8097.27 28298.71 267
v897.95 22797.63 24498.93 19898.95 31098.81 18399.80 2599.41 21296.03 33399.10 22099.42 26594.92 20699.30 29496.94 29194.08 35098.66 296
v192192097.80 25297.45 26198.84 22398.80 32798.53 20599.52 14899.34 25096.15 32599.24 19099.47 25593.98 25499.29 29595.40 33495.13 33198.69 276
anonymousdsp98.44 16898.28 17598.94 19698.50 35898.96 15799.77 3499.50 13597.07 25598.87 26099.77 12994.76 21999.28 29698.66 13997.60 25498.57 326
MVSFormer99.17 8199.12 7499.29 15199.51 17098.94 16599.88 499.46 18297.55 20599.80 4099.65 18697.39 11699.28 29699.03 8599.85 6999.65 129
test_djsdf98.67 15698.57 15698.98 19098.70 34398.91 16999.88 499.46 18297.55 20599.22 19599.88 3695.73 17999.28 29699.03 8597.62 25398.75 259
cascas97.69 26997.43 27098.48 26098.60 35397.30 26998.18 38799.39 22392.96 37398.41 31098.78 35593.77 26299.27 29998.16 19298.61 20498.86 246
v14419297.92 23197.60 24698.87 21598.83 32698.65 19499.55 13499.34 25096.20 31999.32 17299.40 27294.36 24099.26 30096.37 31395.03 33398.70 272
dmvs_re98.08 20398.16 18097.85 31499.55 16094.67 35699.70 5298.92 32998.15 13399.06 23099.35 28693.67 26599.25 30197.77 22697.25 28399.64 136
RRT_MVS98.70 15198.66 13998.83 22598.90 31398.45 21899.89 299.28 28197.76 18198.94 24899.92 1496.98 13499.25 30199.28 6397.00 29098.80 250
v2v48298.06 20597.77 22698.92 20098.90 31398.82 18199.57 11699.36 24096.65 28599.19 20499.35 28694.20 24599.25 30197.72 23394.97 33498.69 276
v124097.69 26997.32 28498.79 23298.85 32498.43 22099.48 17899.36 24096.11 32899.27 18499.36 28393.76 26399.24 30494.46 34795.23 32898.70 272
v114497.98 22297.69 23698.85 22298.87 32098.66 19399.54 13999.35 24696.27 31499.23 19499.35 28694.67 22699.23 30596.73 30095.16 33098.68 281
v1097.85 24097.52 25298.86 21998.99 30398.67 19299.75 4199.41 21295.70 33798.98 24299.41 26994.75 22099.23 30596.01 31994.63 34098.67 288
WR-MVS_H98.13 19797.87 21798.90 20699.02 29898.84 17799.70 5299.59 5797.27 23598.40 31199.19 31795.53 18699.23 30598.34 17893.78 35598.61 320
miper_enhance_ethall98.16 19498.08 19298.41 27398.96 30997.72 25798.45 37599.32 26796.95 26798.97 24499.17 31897.06 13199.22 30897.86 21595.99 30998.29 349
GG-mvs-BLEND98.45 26798.55 35698.16 23199.43 19893.68 40397.23 35298.46 36389.30 34499.22 30895.43 33398.22 22897.98 367
FC-MVSNet-test98.75 14698.62 14799.15 17299.08 28899.45 9399.86 1299.60 5498.23 12198.70 28499.82 7696.80 13999.22 30899.07 8396.38 30098.79 251
UniMVSNet_NR-MVSNet98.22 18697.97 20498.96 19398.92 31298.98 15099.48 17899.53 9697.76 18198.71 27899.46 25996.43 15599.22 30898.57 15592.87 36598.69 276
DU-MVS98.08 20397.79 22198.96 19398.87 32098.98 15099.41 20799.45 19397.87 16698.71 27899.50 24494.82 21099.22 30898.57 15592.87 36598.68 281
cl____98.01 21897.84 21998.55 25499.25 24897.97 24298.71 35999.34 25096.47 30398.59 30199.54 23195.65 18399.21 31397.21 27295.77 31598.46 337
WR-MVS98.06 20597.73 23399.06 17898.86 32399.25 11699.19 28199.35 24697.30 23398.66 28799.43 26393.94 25599.21 31398.58 15294.28 34698.71 267
test_040296.64 31496.24 31797.85 31498.85 32496.43 31799.44 19499.26 28593.52 36796.98 35999.52 23888.52 35499.20 31592.58 37197.50 26597.93 370
SixPastTwentyTwo97.50 28797.33 28398.03 30198.65 34796.23 32499.77 3498.68 36197.14 24697.90 33599.93 990.45 33199.18 31697.00 28596.43 29998.67 288
cl2297.85 24097.64 24398.48 26099.09 28597.87 25098.60 36899.33 25797.11 25298.87 26099.22 31392.38 30099.17 31798.21 18695.99 30998.42 340
WB-MVSnew97.65 27697.65 24097.63 32698.78 33197.62 26299.13 29098.33 37097.36 22899.07 22598.94 34495.64 18499.15 31892.95 36598.68 20396.12 390
IterMVS-SCA-FT97.82 24897.75 23198.06 30099.57 15296.36 31999.02 31699.49 14397.18 24398.71 27899.72 15392.72 28499.14 31997.44 26095.86 31498.67 288
pmmvs597.52 28497.30 28698.16 29498.57 35596.73 30499.27 26098.90 33596.14 32698.37 31399.53 23591.54 31999.14 31997.51 25295.87 31398.63 308
v14897.79 25397.55 24898.50 25798.74 33797.72 25799.54 13999.33 25796.26 31598.90 25499.51 24194.68 22599.14 31997.83 21993.15 36298.63 308
miper_ehance_all_eth98.18 19298.10 18898.41 27399.23 25097.72 25798.72 35899.31 27196.60 29298.88 25799.29 30297.29 12399.13 32297.60 24195.99 30998.38 345
NR-MVSNet97.97 22597.61 24599.02 18398.87 32099.26 11599.47 18499.42 20997.63 19797.08 35799.50 24495.07 20299.13 32297.86 21593.59 35698.68 281
IterMVS97.83 24597.77 22698.02 30399.58 15096.27 32299.02 31699.48 15597.22 24198.71 27899.70 15892.75 28199.13 32297.46 25896.00 30898.67 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 34694.90 33891.84 36997.24 38080.01 39998.52 37299.48 15589.01 38691.99 38799.67 18085.67 37099.13 32295.44 33297.03 28996.39 387
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 21097.96 20598.33 28099.26 24497.38 26898.56 37199.31 27196.65 28598.88 25799.52 23896.58 14799.12 32697.39 26395.53 32398.47 334
pmmvs498.13 19797.90 21298.81 22998.61 35298.87 17298.99 32499.21 29596.44 30499.06 23099.58 21695.90 17399.11 32797.18 27896.11 30698.46 337
TransMVSNet (Re)97.15 30496.58 30998.86 21999.12 27798.85 17699.49 17498.91 33395.48 34097.16 35599.80 10393.38 26899.11 32794.16 35391.73 37098.62 311
ambc93.06 36792.68 39882.36 39298.47 37498.73 35895.09 37597.41 38155.55 39999.10 32996.42 31191.32 37197.71 373
Baseline_NR-MVSNet97.76 25597.45 26198.68 24099.09 28598.29 22599.41 20798.85 34295.65 33898.63 29599.67 18094.82 21099.10 32998.07 20292.89 36498.64 300
test_vis3_rt87.04 35985.81 36290.73 37393.99 39781.96 39499.76 3790.23 40892.81 37481.35 39691.56 39640.06 40599.07 33194.27 35088.23 38391.15 396
CP-MVSNet98.09 20197.78 22499.01 18498.97 30899.24 11799.67 6499.46 18297.25 23798.48 30899.64 19293.79 26199.06 33298.63 14294.10 34998.74 262
PS-CasMVS97.93 22897.59 24798.95 19598.99 30399.06 14299.68 6199.52 10197.13 24798.31 31699.68 17492.44 29999.05 33398.51 16394.08 35098.75 259
K. test v397.10 30696.79 30698.01 30498.72 34096.33 32099.87 997.05 38897.59 19996.16 36699.80 10388.71 34999.04 33496.69 30396.55 29798.65 298
new_pmnet96.38 32096.03 32297.41 33398.13 36695.16 34999.05 30899.20 29693.94 36297.39 34998.79 35491.61 31899.04 33490.43 37895.77 31598.05 361
DIV-MVS_self_test98.01 21897.85 21898.48 26099.24 24997.95 24698.71 35999.35 24696.50 29798.60 30099.54 23195.72 18099.03 33697.21 27295.77 31598.46 337
IterMVS-LS98.46 16798.42 16598.58 24899.59 14898.00 24099.37 22699.43 20796.94 26999.07 22599.59 21297.87 10599.03 33698.32 18195.62 32098.71 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 27697.68 23797.55 33098.62 35094.97 35198.84 34699.30 27596.83 27698.19 32399.34 29097.01 13399.02 33895.00 34296.01 30798.64 300
Patchmtry97.75 25997.40 27398.81 22999.10 28298.87 17299.11 29999.33 25794.83 35398.81 26799.38 27794.33 24199.02 33896.10 31595.57 32198.53 328
N_pmnet94.95 34095.83 32792.31 36898.47 35979.33 40099.12 29392.81 40693.87 36397.68 34299.13 32393.87 25899.01 34091.38 37596.19 30498.59 324
CR-MVSNet98.17 19397.93 21098.87 21599.18 26298.49 21399.22 27899.33 25796.96 26599.56 11499.38 27794.33 24199.00 34194.83 34498.58 20799.14 217
c3_l98.12 19998.04 19798.38 27799.30 23397.69 26198.81 34999.33 25796.67 28398.83 26599.34 29097.11 12898.99 34297.58 24395.34 32698.48 332
test0.0.03 197.71 26797.42 27198.56 25298.41 36297.82 25398.78 35298.63 36397.34 22998.05 33198.98 34094.45 23898.98 34395.04 34197.15 28898.89 245
PatchT97.03 30896.44 31398.79 23298.99 30398.34 22499.16 28499.07 31392.13 37699.52 12397.31 38594.54 23498.98 34388.54 38598.73 20199.03 233
GBi-Net97.68 27197.48 25698.29 28599.51 17097.26 27399.43 19899.48 15596.49 29899.07 22599.32 29790.26 33398.98 34397.10 28096.65 29398.62 311
test197.68 27197.48 25698.29 28599.51 17097.26 27399.43 19899.48 15596.49 29899.07 22599.32 29790.26 33398.98 34397.10 28096.65 29398.62 311
FMVSNet398.03 21397.76 23098.84 22399.39 21198.98 15099.40 21599.38 23196.67 28399.07 22599.28 30492.93 27698.98 34397.10 28096.65 29398.56 327
FMVSNet297.72 26497.36 27698.80 23199.51 17098.84 17799.45 18899.42 20996.49 29898.86 26499.29 30290.26 33398.98 34396.44 31096.56 29698.58 325
FMVSNet196.84 31196.36 31598.29 28599.32 23197.26 27399.43 19899.48 15595.11 34598.55 30399.32 29783.95 37998.98 34395.81 32296.26 30398.62 311
ppachtmachnet_test97.49 29197.45 26197.61 32898.62 35095.24 34598.80 35099.46 18296.11 32898.22 32299.62 20396.45 15398.97 35093.77 35595.97 31298.61 320
TranMVSNet+NR-MVSNet97.93 22897.66 23998.76 23598.78 33198.62 19799.65 7599.49 14397.76 18198.49 30799.60 21094.23 24498.97 35098.00 20592.90 36398.70 272
test_method91.10 35591.36 35790.31 37495.85 38773.72 40794.89 39599.25 28768.39 39895.82 36999.02 33580.50 38898.95 35293.64 35794.89 33898.25 352
ADS-MVSNet298.02 21598.07 19597.87 31399.33 22595.19 34799.23 27499.08 31096.24 31699.10 22099.67 18094.11 24998.93 35396.81 29799.05 17899.48 178
ET-MVSNet_ETH3D96.49 31795.64 33199.05 18099.53 16398.82 18198.84 34697.51 38697.63 19784.77 39299.21 31692.09 30398.91 35498.98 9092.21 36999.41 195
miper_lstm_enhance98.00 22097.91 21198.28 28899.34 22397.43 26798.88 34299.36 24096.48 30198.80 26999.55 22695.98 16698.91 35497.27 26995.50 32498.51 330
PEN-MVS97.76 25597.44 26698.72 23798.77 33598.54 20499.78 3299.51 11597.06 25798.29 31899.64 19292.63 29098.89 35698.09 19593.16 36198.72 265
testing397.28 29896.76 30798.82 22699.37 21598.07 23799.45 18899.36 24097.56 20497.89 33698.95 34383.70 38098.82 35796.03 31798.56 21099.58 154
testgi97.65 27697.50 25598.13 29899.36 21896.45 31699.42 20599.48 15597.76 18197.87 33799.45 26091.09 32598.81 35894.53 34698.52 21399.13 219
testf190.42 35790.68 35989.65 37797.78 37073.97 40599.13 29098.81 34689.62 38491.80 38898.93 34562.23 39798.80 35986.61 39391.17 37296.19 388
APD_test290.42 35790.68 35989.65 37797.78 37073.97 40599.13 29098.81 34689.62 38491.80 38898.93 34562.23 39798.80 35986.61 39391.17 37296.19 388
MIMVSNet97.73 26297.45 26198.57 24999.45 19697.50 26599.02 31698.98 32196.11 32899.41 14799.14 32290.28 33298.74 36195.74 32498.93 18699.47 184
LCM-MVSNet-Re97.83 24598.15 18296.87 34999.30 23392.25 37999.59 10198.26 37197.43 22196.20 36599.13 32396.27 15998.73 36298.17 19198.99 18399.64 136
Syy-MVS97.09 30797.14 29596.95 34699.00 30092.73 37799.29 25199.39 22397.06 25797.41 34698.15 37193.92 25798.68 36391.71 37398.34 21899.45 189
myMVS_eth3d96.89 30996.37 31498.43 27299.00 30097.16 27799.29 25199.39 22397.06 25797.41 34698.15 37183.46 38198.68 36395.27 33798.34 21899.45 189
DTE-MVSNet97.51 28697.19 29498.46 26698.63 34998.13 23499.84 1399.48 15596.68 28297.97 33499.67 18092.92 27798.56 36596.88 29692.60 36898.70 272
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36698.30 18399.80 9799.81 61
mvsany_test393.77 34893.45 35294.74 36195.78 38888.01 38799.64 7898.25 37298.28 11394.31 37897.97 37868.89 39398.51 36797.50 25390.37 37797.71 373
UnsupCasMVSNet_bld93.53 34992.51 35496.58 35497.38 37693.82 36598.24 38499.48 15591.10 38193.10 38396.66 38774.89 39198.37 36894.03 35487.71 38497.56 378
Anonymous2024052196.20 32395.89 32697.13 34097.72 37394.96 35299.79 3199.29 27993.01 37297.20 35499.03 33389.69 34198.36 36991.16 37696.13 30598.07 359
test_f91.90 35491.26 35893.84 36395.52 39285.92 38999.69 5598.53 36895.31 34293.87 38096.37 38955.33 40098.27 37095.70 32590.98 37597.32 381
MDA-MVSNet_test_wron95.45 33394.60 34098.01 30498.16 36597.21 27699.11 29999.24 28993.49 36880.73 39898.98 34093.02 27498.18 37194.22 35294.45 34398.64 300
UnsupCasMVSNet_eth96.44 31896.12 31997.40 33498.65 34795.65 33399.36 23099.51 11597.13 24796.04 36898.99 33888.40 35598.17 37296.71 30190.27 37898.40 343
KD-MVS_2432*160094.62 34193.72 34997.31 33597.19 38295.82 33198.34 37999.20 29695.00 34997.57 34398.35 36687.95 36098.10 37392.87 36777.00 39698.01 363
miper_refine_blended94.62 34193.72 34997.31 33597.19 38295.82 33198.34 37999.20 29695.00 34997.57 34398.35 36687.95 36098.10 37392.87 36777.00 39698.01 363
YYNet195.36 33594.51 34297.92 31097.89 36897.10 28099.10 30199.23 29093.26 37180.77 39799.04 33292.81 28098.02 37594.30 34894.18 34898.64 300
EU-MVSNet97.98 22298.03 19897.81 32098.72 34096.65 30999.66 6999.66 2898.09 14398.35 31499.82 7695.25 19898.01 37697.41 26295.30 32798.78 252
Gipumacopyleft90.99 35690.15 36193.51 36498.73 33890.12 38593.98 39699.45 19379.32 39492.28 38694.91 39169.61 39297.98 37787.42 38995.67 31992.45 394
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 33694.73 33997.15 33895.53 39195.94 32999.35 23599.10 30795.13 34393.55 38197.54 38088.15 35997.91 37894.58 34589.69 38197.61 376
PM-MVS92.96 35192.23 35595.14 36095.61 38989.98 38699.37 22698.21 37494.80 35495.04 37697.69 37965.06 39497.90 37994.30 34889.98 38097.54 379
MDA-MVSNet-bldmvs94.96 33993.98 34697.92 31098.24 36497.27 27199.15 28799.33 25793.80 36480.09 39999.03 33388.31 35697.86 38093.49 35994.36 34598.62 311
Patchmatch-RL test95.84 32995.81 32895.95 35895.61 38990.57 38498.24 38498.39 36995.10 34795.20 37398.67 35894.78 21597.77 38196.28 31490.02 37999.51 173
Anonymous2023120696.22 32196.03 32296.79 35197.31 37994.14 36399.63 8299.08 31096.17 32297.04 35899.06 33093.94 25597.76 38286.96 39195.06 33298.47 334
SD-MVS99.41 4799.52 1199.05 18099.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 38398.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 30097.35 27896.95 34697.84 36993.61 37199.57 11696.63 39396.13 32798.87 26098.61 36194.59 22997.70 38395.08 34098.86 19299.55 159
pmmvs394.09 34793.25 35396.60 35394.76 39694.49 35898.92 33898.18 37689.66 38396.48 36398.06 37786.28 36797.33 38589.68 38187.20 38597.97 368
KD-MVS_self_test95.00 33894.34 34396.96 34597.07 38495.39 34399.56 12299.44 20195.11 34597.13 35697.32 38491.86 30897.27 38690.35 37981.23 39398.23 354
FMVSNet596.43 31996.19 31897.15 33899.11 27995.89 33099.32 24199.52 10194.47 36098.34 31599.07 32887.54 36497.07 38792.61 37095.72 31898.47 334
new-patchmatchnet94.48 34494.08 34595.67 35995.08 39492.41 37899.18 28299.28 28194.55 35993.49 38297.37 38387.86 36297.01 38891.57 37488.36 38297.61 376
LCM-MVSNet86.80 36185.22 36591.53 37187.81 40380.96 39798.23 38698.99 32071.05 39690.13 39196.51 38848.45 40496.88 38990.51 37785.30 38796.76 383
CL-MVSNet_self_test94.49 34393.97 34796.08 35796.16 38693.67 37098.33 38199.38 23195.13 34397.33 35098.15 37192.69 28896.57 39088.67 38479.87 39497.99 366
MIMVSNet195.51 33295.04 33796.92 34897.38 37695.60 33499.52 14899.50 13593.65 36696.97 36099.17 31885.28 37396.56 39188.36 38695.55 32298.60 323
test20.0396.12 32595.96 32496.63 35297.44 37595.45 34199.51 15699.38 23196.55 29596.16 36699.25 31093.76 26396.17 39287.35 39094.22 34798.27 350
tmp_tt82.80 36381.52 36686.66 37966.61 40968.44 40892.79 39897.92 37868.96 39780.04 40099.85 5485.77 36996.15 39397.86 21543.89 40295.39 392
test_fmvs392.10 35391.77 35693.08 36696.19 38586.25 38899.82 1798.62 36496.65 28595.19 37496.90 38655.05 40195.93 39496.63 30790.92 37697.06 382
dmvs_testset95.02 33796.12 31991.72 37099.10 28280.43 39899.58 10997.87 38097.47 21495.22 37298.82 35293.99 25395.18 39588.09 38794.91 33799.56 158
PMMVS286.87 36085.37 36491.35 37290.21 40183.80 39198.89 34197.45 38783.13 39391.67 39095.03 39048.49 40394.70 39685.86 39577.62 39595.54 391
PMVScopyleft70.75 2275.98 36974.97 37079.01 38570.98 40855.18 41093.37 39798.21 37465.08 40261.78 40393.83 39321.74 41092.53 39778.59 39791.12 37489.34 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 36285.65 36382.75 38386.77 40463.39 40998.35 37898.92 32974.11 39583.39 39498.98 34050.85 40292.40 39884.54 39694.97 33492.46 393
WB-MVS93.10 35094.10 34490.12 37595.51 39381.88 39599.73 4799.27 28495.05 34893.09 38498.91 34994.70 22491.89 39976.62 39894.02 35296.58 385
SSC-MVS92.73 35293.73 34889.72 37695.02 39581.38 39699.76 3799.23 29094.87 35292.80 38598.93 34594.71 22391.37 40074.49 40093.80 35496.42 386
MVEpermissive76.82 2176.91 36874.31 37284.70 38085.38 40676.05 40496.88 39493.17 40467.39 39971.28 40189.01 40021.66 41187.69 40171.74 40172.29 39890.35 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 36579.88 36782.81 38290.75 40076.38 40397.69 39195.76 39766.44 40083.52 39392.25 39562.54 39687.16 40268.53 40261.40 39984.89 400
EMVS80.02 36679.22 36882.43 38491.19 39976.40 40297.55 39392.49 40766.36 40183.01 39591.27 39764.63 39585.79 40365.82 40360.65 40085.08 399
ANet_high77.30 36774.86 37184.62 38175.88 40777.61 40197.63 39293.15 40588.81 38764.27 40289.29 39936.51 40683.93 40475.89 39952.31 40192.33 395
wuyk23d40.18 37041.29 37536.84 38686.18 40549.12 41179.73 39922.81 41127.64 40325.46 40628.45 40621.98 40948.89 40555.80 40423.56 40512.51 403
test12339.01 37242.50 37428.53 38739.17 41020.91 41298.75 35519.17 41219.83 40538.57 40466.67 40233.16 40715.42 40637.50 40629.66 40449.26 401
testmvs39.17 37143.78 37325.37 38836.04 41116.84 41398.36 37726.56 41020.06 40438.51 40567.32 40129.64 40815.30 40737.59 40539.90 40343.98 402
test_blank0.13 3760.17 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4081.57 4070.00 4120.00 4080.00 4070.00 4060.00 404
uanet_test0.02 3770.03 3800.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.27 4080.00 4120.00 4080.00 4070.00 4060.00 404
DCPMVS0.02 3770.03 3800.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.27 4080.00 4120.00 4080.00 4070.00 4060.00 404
cdsmvs_eth3d_5k24.64 37332.85 3760.00 3890.00 4120.00 4140.00 40099.51 1150.00 4070.00 40899.56 22396.58 1470.00 4080.00 4070.00 4060.00 404
pcd_1.5k_mvsjas8.27 37511.03 3780.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.27 40899.01 180.00 4080.00 4070.00 4060.00 404
sosnet-low-res0.02 3770.03 3800.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.27 4080.00 4120.00 4080.00 4070.00 4060.00 404
sosnet0.02 3770.03 3800.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.27 4080.00 4120.00 4080.00 4070.00 4060.00 404
uncertanet0.02 3770.03 3800.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.27 4080.00 4120.00 4080.00 4070.00 4060.00 404
Regformer0.02 3770.03 3800.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.27 4080.00 4120.00 4080.00 4070.00 4060.00 404
ab-mvs-re8.30 37411.06 3770.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 40899.58 2160.00 4120.00 4080.00 4070.00 4060.00 404
uanet0.02 3770.03 3800.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.27 4080.00 4120.00 4080.00 4070.00 4060.00 404
WAC-MVS97.16 27795.47 331
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
eth-test20.00 412
eth-test0.00 412
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
save fliter99.76 6599.59 7099.14 28999.40 22099.00 43
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20999.52 167
sam_mvs94.72 222
MTGPAbinary99.47 173
MTMP99.54 13998.88 338
test9_res97.49 25499.72 11899.75 88
agg_prior297.21 27299.73 11799.75 88
test_prior499.56 7598.99 324
test_prior298.96 33198.34 10899.01 23699.52 23898.68 6497.96 20799.74 115
新几何299.01 321
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
原ACMM298.95 334
test22299.75 7399.49 8798.91 34099.49 14396.42 30699.34 17099.65 18698.28 9299.69 12399.72 103
segment_acmp98.96 24
testdata198.85 34598.32 111
plane_prior799.29 23797.03 290
plane_prior699.27 24296.98 29492.71 286
plane_prior499.61 207
plane_prior397.00 29298.69 7999.11 217
plane_prior299.39 21998.97 51
plane_prior199.26 244
plane_prior96.97 29599.21 28098.45 9697.60 254
n20.00 413
nn0.00 413
door-mid98.05 377
test1199.35 246
door97.92 378
HQP5-MVS96.83 300
HQP-NCC99.19 25998.98 32798.24 11898.66 287
ACMP_Plane99.19 25998.98 32798.24 11898.66 287
BP-MVS97.19 276
HQP3-MVS99.39 22397.58 256
HQP2-MVS92.47 295
NP-MVS99.23 25096.92 29899.40 272
MDTV_nov1_ep13_2view95.18 34899.35 23596.84 27499.58 11095.19 20097.82 22099.46 186
ACMMP++_ref97.19 286
ACMMP++97.43 275
Test By Simon98.75 55