This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 699.61 699.77 6199.38 22799.37 10899.58 11799.62 4299.41 1299.87 3299.92 1798.81 47100.00 199.97 199.93 2699.94 12
test_fmvsm_n_192099.69 499.66 399.78 5899.84 3299.44 10299.58 11799.69 1899.43 1099.98 899.91 2398.62 73100.00 199.97 199.95 1899.90 18
test_vis1_n_192098.63 17198.40 17899.31 15799.86 2097.94 25799.67 6999.62 4299.43 1099.99 299.91 2387.29 381100.00 199.92 1499.92 2999.98 2
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3399.86 2099.61 7399.56 13099.63 4099.48 399.98 899.83 7598.75 5899.99 499.97 199.96 1399.94 12
fmvsm_l_conf0.5_n99.71 199.67 199.85 3399.84 3299.63 7099.56 13099.63 4099.47 499.98 899.82 8498.75 5899.99 499.97 199.97 799.94 12
test_fmvsmconf_n99.70 399.64 499.87 1599.80 5299.66 5999.48 18899.64 3799.45 799.92 1999.92 1798.62 7399.99 499.96 799.99 199.96 7
patch_mono-299.26 7799.62 598.16 30999.81 4694.59 37799.52 15799.64 3799.33 1699.73 7399.90 3099.00 2299.99 499.69 2499.98 499.89 21
h-mvs3397.70 28397.28 30498.97 20499.70 10797.27 28499.36 24599.45 20598.94 6199.66 9599.64 20194.93 21499.99 499.48 4984.36 41099.65 136
xiu_mvs_v1_base_debu99.29 7199.27 6399.34 15099.63 13898.97 16499.12 31299.51 12298.86 6799.84 3899.47 26798.18 10099.99 499.50 4499.31 16999.08 246
xiu_mvs_v1_base99.29 7199.27 6399.34 15099.63 13898.97 16499.12 31299.51 12298.86 6799.84 3899.47 26798.18 10099.99 499.50 4499.31 16999.08 246
xiu_mvs_v1_base_debi99.29 7199.27 6399.34 15099.63 13898.97 16499.12 31299.51 12298.86 6799.84 3899.47 26798.18 10099.99 499.50 4499.31 16999.08 246
EPNet98.86 14298.71 14699.30 16297.20 40298.18 23999.62 9598.91 35099.28 1998.63 31099.81 9895.96 17599.99 499.24 7599.72 12899.73 102
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM99.40 5499.28 6099.74 6799.67 11799.31 11899.52 15798.87 35799.55 199.74 7199.80 11196.47 15899.98 1399.97 199.97 799.94 12
test_cas_vis1_n_192099.16 9199.01 10399.61 9499.81 4698.86 18499.65 8199.64 3799.39 1399.97 1699.94 693.20 28499.98 1399.55 3799.91 3699.99 1
test_vis1_n97.92 24297.44 28199.34 15099.53 17198.08 24599.74 4699.49 15299.15 24100.00 199.94 679.51 41199.98 1399.88 1699.76 12099.97 4
xiu_mvs_v2_base99.26 7799.25 6799.29 16599.53 17198.91 17899.02 33599.45 20598.80 7699.71 8099.26 32498.94 3299.98 1399.34 6399.23 17498.98 260
PS-MVSNAJ99.32 6699.32 4699.30 16299.57 15998.94 17498.97 34999.46 19498.92 6499.71 8099.24 32699.01 1899.98 1399.35 5899.66 13898.97 261
QAPM98.67 16798.30 18599.80 5299.20 27499.67 5799.77 3499.72 1194.74 37498.73 29099.90 3095.78 18599.98 1396.96 30799.88 5999.76 92
3Dnovator97.25 999.24 8299.05 9199.81 4999.12 29699.66 5999.84 1299.74 1099.09 3998.92 26499.90 3095.94 17899.98 1398.95 10599.92 2999.79 79
OpenMVScopyleft96.50 1698.47 17698.12 19799.52 12199.04 31499.53 8999.82 1699.72 1194.56 37798.08 34499.88 4294.73 23099.98 1397.47 27599.76 12099.06 252
fmvsm_s_conf0.5_n_399.37 5899.20 7399.87 1599.75 7899.70 5199.48 18899.66 2899.45 799.99 299.93 1094.64 23899.97 2199.94 1199.97 799.95 9
reproduce_model99.63 799.54 1199.90 499.78 5799.88 899.56 13099.55 8199.15 2499.90 2299.90 3099.00 2299.97 2199.11 8699.91 3699.86 34
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2699.44 20999.65 6399.50 17399.61 4999.45 799.87 3299.92 1797.31 12699.97 2199.95 999.99 199.97 4
test_fmvs1_n98.41 18298.14 19499.21 17799.82 4297.71 27099.74 4699.49 15299.32 1799.99 299.95 385.32 39299.97 2199.82 1999.84 8599.96 7
CANet_DTU98.97 13298.87 12799.25 17299.33 23998.42 23199.08 32199.30 28799.16 2399.43 15599.75 14595.27 20299.97 2198.56 17299.95 1899.36 220
MVS_030499.15 9398.96 11399.73 7098.92 33199.37 10899.37 24096.92 40899.51 299.66 9599.78 13096.69 14999.97 2199.84 1899.97 799.84 44
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7599.47 18598.79 7799.68 8699.81 9898.43 8699.97 2198.88 11599.90 4599.83 54
PGM-MVS99.45 3899.31 5299.86 2699.87 1599.78 3999.58 11799.65 3497.84 18899.71 8099.80 11199.12 1399.97 2198.33 19599.87 6299.83 54
mPP-MVS99.44 4299.30 5499.86 2699.88 1199.79 3399.69 6099.48 16498.12 15199.50 14099.75 14598.78 5199.97 2198.57 16999.89 5699.83 54
CP-MVS99.45 3899.32 4699.85 3399.83 3999.75 4399.69 6099.52 10898.07 16199.53 13599.63 20798.93 3699.97 2198.74 14099.91 3699.83 54
SteuartSystems-ACMMP99.54 1899.42 2599.87 1599.82 4299.81 2899.59 10999.51 12298.62 9299.79 5299.83 7599.28 499.97 2198.48 17999.90 4599.84 44
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 8798.97 10999.82 4699.17 28899.68 5499.81 2099.51 12299.20 2198.72 29199.89 3595.68 18999.97 2198.86 12399.86 7099.81 66
fmvsm_s_conf0.5_n_299.32 6699.13 8099.89 799.80 5299.77 4099.44 20699.58 6499.47 499.99 299.93 1094.04 26299.96 3399.96 799.93 2699.93 17
reproduce-ours99.61 899.52 1299.90 499.76 6899.88 899.52 15799.54 9099.13 2799.89 2499.89 3598.96 2599.96 3399.04 9499.90 4599.85 38
our_new_method99.61 899.52 1299.90 499.76 6899.88 899.52 15799.54 9099.13 2799.89 2499.89 3598.96 2599.96 3399.04 9499.90 4599.85 38
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3399.83 3999.64 6999.52 15799.65 3499.10 3499.98 899.92 1797.35 12599.96 3399.94 1199.92 2999.95 9
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3399.84 3299.65 6399.51 16699.67 2399.13 2799.98 899.92 1796.60 15299.96 3399.95 999.96 1399.95 9
mvsany_test199.50 2399.46 2399.62 9399.61 14899.09 14798.94 35599.48 16499.10 3499.96 1799.91 2398.85 4299.96 3399.72 2299.58 14899.82 59
test_fmvs198.88 13898.79 13999.16 18299.69 11197.61 27499.55 14499.49 15299.32 1799.98 899.91 2391.41 33299.96 3399.82 1999.92 2999.90 18
DVP-MVS++99.59 1199.50 1699.88 999.51 17999.88 899.87 899.51 12298.99 5299.88 2799.81 9899.27 599.96 3398.85 12599.80 10599.81 66
MSC_two_6792asdad99.87 1599.51 17999.76 4199.33 26999.96 3398.87 11899.84 8599.89 21
No_MVS99.87 1599.51 17999.76 4199.33 26999.96 3398.87 11899.84 8599.89 21
ZD-MVS99.71 10299.79 3399.61 4996.84 29299.56 12899.54 24198.58 7599.96 3396.93 31099.75 122
SED-MVS99.61 899.52 1299.88 999.84 3299.90 299.60 10299.48 16499.08 4099.91 2099.81 9899.20 799.96 3398.91 11299.85 7799.79 79
test_241102_TWO99.48 16499.08 4099.88 2799.81 9898.94 3299.96 3398.91 11299.84 8599.88 27
ZNCC-MVS99.47 3299.33 4499.87 1599.87 1599.81 2899.64 8499.67 2398.08 16099.55 13299.64 20198.91 3799.96 3398.72 14399.90 4599.82 59
DVP-MVScopyleft99.57 1599.47 2099.88 999.85 2699.89 499.57 12499.37 24999.10 3499.81 4699.80 11198.94 3299.96 3398.93 10999.86 7099.81 66
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 5299.81 4699.80 11199.09 1499.96 3398.85 12599.90 4599.88 27
test_0728_SECOND99.91 299.84 3299.89 499.57 12499.51 12299.96 3398.93 10999.86 7099.88 27
SR-MVS99.43 4599.29 5899.86 2699.75 7899.83 1999.59 10999.62 4298.21 13899.73 7399.79 12398.68 6799.96 3398.44 18599.77 11799.79 79
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5799.88 899.36 24599.51 12298.73 8499.88 2799.84 7098.72 6499.96 3398.16 20999.87 6299.88 27
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UA-Net99.42 4799.29 5899.80 5299.62 14499.55 8499.50 17399.70 1598.79 7799.77 6199.96 197.45 12099.96 3398.92 11199.90 4599.89 21
HFP-MVS99.49 2599.37 3699.86 2699.87 1599.80 3099.66 7599.67 2398.15 14599.68 8699.69 17599.06 1699.96 3398.69 14899.87 6299.84 44
region2R99.48 2999.35 4099.87 1599.88 1199.80 3099.65 8199.66 2898.13 15099.66 9599.68 18298.96 2599.96 3398.62 15799.87 6299.84 44
HPM-MVS++copyleft99.39 5699.23 7099.87 1599.75 7899.84 1899.43 21199.51 12298.68 8999.27 19799.53 24598.64 7299.96 3398.44 18599.80 10599.79 79
APDe-MVScopyleft99.66 599.57 899.92 199.77 6499.89 499.75 4299.56 7399.02 4599.88 2799.85 6099.18 1099.96 3399.22 7699.92 2999.90 18
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR99.49 2599.36 3899.86 2699.87 1599.79 3399.66 7599.67 2398.15 14599.67 9099.69 17598.95 3099.96 3398.69 14899.87 6299.84 44
MP-MVScopyleft99.33 6499.15 7899.87 1599.88 1199.82 2599.66 7599.46 19498.09 15699.48 14499.74 15098.29 9599.96 3397.93 22799.87 6299.82 59
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 10998.90 12199.74 6799.80 5299.46 10099.59 10999.49 15297.03 27999.63 11099.69 17597.27 12999.96 3397.82 23899.84 8599.81 66
PVSNet_Blended_VisFu99.36 6199.28 6099.61 9499.86 2099.07 15299.47 19599.93 297.66 21199.71 8099.86 5597.73 11599.96 3399.47 5199.82 9899.79 79
UGNet98.87 13998.69 14899.40 14299.22 27198.72 19899.44 20699.68 2099.24 2099.18 22199.42 27892.74 29499.96 3399.34 6399.94 2499.53 177
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 6699.32 4699.32 15699.85 2698.29 23499.71 5599.66 2898.11 15399.41 16299.80 11198.37 9299.96 3398.99 10099.96 1399.72 109
ACMMPcopyleft99.45 3899.32 4699.82 4699.89 899.67 5799.62 9599.69 1898.12 15199.63 11099.84 7098.73 6399.96 3398.55 17599.83 9499.81 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.1_n_299.37 5899.22 7199.81 4999.77 6499.75 4399.46 19899.60 5599.47 499.98 899.94 694.98 21199.95 6499.97 199.79 11299.73 102
test_fmvsmconf0.01_n99.22 8499.03 9599.79 5598.42 38299.48 9799.55 14499.51 12299.39 1399.78 5799.93 1094.80 22299.95 6499.93 1399.95 1899.94 12
SR-MVS-dyc-post99.45 3899.31 5299.85 3399.76 6899.82 2599.63 9099.52 10898.38 11499.76 6799.82 8498.53 7999.95 6498.61 16099.81 10199.77 87
GST-MVS99.40 5499.24 6899.85 3399.86 2099.79 3399.60 10299.67 2397.97 17399.63 11099.68 18298.52 8099.95 6498.38 18899.86 7099.81 66
CANet99.25 8199.14 7999.59 9799.41 21799.16 13799.35 25099.57 6898.82 7299.51 13999.61 21696.46 15999.95 6499.59 3299.98 499.65 136
MP-MVS-pluss99.37 5899.20 7399.88 999.90 499.87 1599.30 26199.52 10897.18 26199.60 12099.79 12398.79 5099.95 6498.83 13199.91 3699.83 54
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4799.27 6399.88 999.89 899.80 3099.67 6999.50 14298.70 8699.77 6199.49 25898.21 9899.95 6498.46 18399.77 11799.88 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 6496.67 322
APD-MVS_3200maxsize99.48 2999.35 4099.85 3399.76 6899.83 1999.63 9099.54 9098.36 11899.79 5299.82 8498.86 4199.95 6498.62 15799.81 10199.78 85
RPMNet96.72 33195.90 34499.19 17999.18 28098.49 22399.22 29599.52 10888.72 41099.56 12897.38 40494.08 26199.95 6486.87 41298.58 22099.14 238
sss99.17 8999.05 9199.53 11599.62 14498.97 16499.36 24599.62 4297.83 18999.67 9099.65 19597.37 12499.95 6499.19 7899.19 17799.68 126
MVSMamba_PlusPlus99.46 3499.41 2999.64 8699.68 11599.50 9499.75 4299.50 14298.27 12899.87 3299.92 1798.09 10499.94 7599.65 2899.95 1899.47 197
fmvsm_s_conf0.1_n_a99.26 7799.06 9099.85 3399.52 17699.62 7199.54 14899.62 4298.69 8799.99 299.96 194.47 24799.94 7599.88 1699.92 2999.98 2
fmvsm_s_conf0.1_n99.29 7199.10 8499.86 2699.70 10799.65 6399.53 15699.62 4298.74 8399.99 299.95 394.53 24599.94 7599.89 1599.96 1399.97 4
TSAR-MVS + MP.99.58 1299.50 1699.81 4999.91 199.66 5999.63 9099.39 23398.91 6599.78 5799.85 6099.36 299.94 7598.84 12899.88 5999.82 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RRT-MVS98.91 13698.75 14299.39 14699.46 20298.61 20999.76 3799.50 14298.06 16599.81 4699.88 4293.91 26999.94 7599.11 8699.27 17299.61 152
mamv499.33 6499.42 2599.07 19099.67 11797.73 26599.42 21899.60 5598.15 14599.94 1899.91 2398.42 8899.94 7599.72 2299.96 1399.54 171
XVS99.53 1999.42 2599.87 1599.85 2699.83 1999.69 6099.68 2098.98 5599.37 17399.74 15098.81 4799.94 7598.79 13699.86 7099.84 44
X-MVStestdata96.55 33495.45 35399.87 1599.85 2699.83 1999.69 6099.68 2098.98 5599.37 17364.01 42798.81 4799.94 7598.79 13699.86 7099.84 44
旧先验298.96 35096.70 29999.47 14599.94 7598.19 205
新几何199.75 6499.75 7899.59 7699.54 9096.76 29599.29 19199.64 20198.43 8699.94 7596.92 31299.66 13899.72 109
testdata99.54 10799.75 7898.95 17199.51 12297.07 27399.43 15599.70 16598.87 4099.94 7597.76 24599.64 14199.72 109
HPM-MVScopyleft99.42 4799.28 6099.83 4599.90 499.72 4799.81 2099.54 9097.59 21699.68 8699.63 20798.91 3799.94 7598.58 16699.91 3699.84 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 8599.10 8499.45 13599.89 898.52 21999.39 23399.94 198.73 8499.11 23099.89 3595.50 19499.94 7599.50 4499.97 799.89 21
APD-MVScopyleft99.27 7599.08 8899.84 4499.75 7899.79 3399.50 17399.50 14297.16 26399.77 6199.82 8498.78 5199.94 7597.56 26699.86 7099.80 75
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2999.42 2599.65 8099.72 9799.40 10799.05 32799.66 2899.14 2699.57 12799.80 11198.46 8499.94 7599.57 3599.84 8599.60 155
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 11898.88 12699.61 9499.62 14499.16 13799.37 24099.56 7398.04 16899.53 13599.62 21296.84 14399.94 7598.85 12598.49 22899.72 109
DeepC-MVS98.35 299.30 6999.19 7599.64 8699.82 4299.23 13099.62 9599.55 8198.94 6199.63 11099.95 395.82 18499.94 7599.37 5799.97 799.73 102
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 7599.12 8299.74 6799.18 28099.75 4399.56 13099.57 6898.45 10799.49 14399.85 6097.77 11499.94 7598.33 19599.84 8599.52 178
GDP-MVS99.08 11598.89 12499.64 8699.53 17199.34 11299.64 8499.48 16498.32 12399.77 6199.66 19395.14 20899.93 9398.97 10499.50 15499.64 143
SDMVSNet99.11 10998.90 12199.75 6499.81 4699.59 7699.81 2099.65 3498.78 8099.64 10799.88 4294.56 24199.93 9399.67 2698.26 24099.72 109
FE-MVS98.48 17598.17 19099.40 14299.54 17098.96 16899.68 6698.81 36495.54 35899.62 11499.70 16593.82 27299.93 9397.35 28499.46 15699.32 226
SF-MVS99.38 5799.24 6899.79 5599.79 5599.68 5499.57 12499.54 9097.82 19399.71 8099.80 11198.95 3099.93 9398.19 20599.84 8599.74 97
dcpmvs_299.23 8399.58 798.16 30999.83 3994.68 37599.76 3799.52 10899.07 4299.98 899.88 4298.56 7799.93 9399.67 2699.98 499.87 32
Anonymous2024052998.09 21297.68 24999.34 15099.66 12798.44 22899.40 22999.43 21993.67 38499.22 20899.89 3590.23 34899.93 9399.26 7498.33 23499.66 132
ACMMP_NAP99.47 3299.34 4299.88 999.87 1599.86 1699.47 19599.48 16498.05 16799.76 6799.86 5598.82 4699.93 9398.82 13599.91 3699.84 44
EI-MVSNet-UG-set99.58 1299.57 899.64 8699.78 5799.14 14299.60 10299.45 20599.01 4799.90 2299.83 7598.98 2499.93 9399.59 3299.95 1899.86 34
无先验98.99 34399.51 12296.89 28999.93 9397.53 26999.72 109
VDDNet97.55 29797.02 31699.16 18299.49 19298.12 24499.38 23899.30 28795.35 36099.68 8699.90 3082.62 40499.93 9399.31 6698.13 25199.42 209
ab-mvs98.86 14298.63 15599.54 10799.64 13599.19 13299.44 20699.54 9097.77 19799.30 18899.81 9894.20 25599.93 9399.17 8298.82 20999.49 190
F-COLMAP99.19 8599.04 9399.64 8699.78 5799.27 12599.42 21899.54 9097.29 25299.41 16299.59 22198.42 8899.93 9398.19 20599.69 13399.73 102
BP-MVS199.12 10498.94 11799.65 8099.51 17999.30 12099.67 6998.92 34598.48 10499.84 3899.69 17594.96 21299.92 10599.62 3199.79 11299.71 118
Anonymous20240521198.30 19397.98 21499.26 17199.57 15998.16 24099.41 22198.55 38696.03 35299.19 21799.74 15091.87 31999.92 10599.16 8398.29 23999.70 120
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8699.78 5799.15 14199.61 10199.45 20599.01 4799.89 2499.82 8499.01 1899.92 10599.56 3699.95 1899.85 38
VDD-MVS97.73 27797.35 29398.88 22499.47 20097.12 29299.34 25398.85 35998.19 14099.67 9099.85 6082.98 40299.92 10599.49 4898.32 23899.60 155
VNet99.11 10998.90 12199.73 7099.52 17699.56 8299.41 22199.39 23399.01 4799.74 7199.78 13095.56 19299.92 10599.52 4298.18 24799.72 109
XVG-OURS-SEG-HR98.69 16598.62 16098.89 22299.71 10297.74 26499.12 31299.54 9098.44 11099.42 15899.71 16194.20 25599.92 10598.54 17698.90 20399.00 257
mvsmamba99.06 11898.96 11399.36 14899.47 20098.64 20599.70 5699.05 32997.61 21599.65 10299.83 7596.54 15599.92 10599.19 7899.62 14499.51 185
HPM-MVS_fast99.51 2199.40 3099.85 3399.91 199.79 3399.76 3799.56 7397.72 20299.76 6799.75 14599.13 1299.92 10599.07 9299.92 2999.85 38
HY-MVS97.30 798.85 14998.64 15499.47 13299.42 21299.08 15099.62 9599.36 25097.39 24499.28 19299.68 18296.44 16199.92 10598.37 19098.22 24299.40 214
DP-MVS99.16 9198.95 11599.78 5899.77 6499.53 8999.41 22199.50 14297.03 27999.04 24699.88 4297.39 12199.92 10598.66 15299.90 4599.87 32
IB-MVS95.67 1896.22 34095.44 35498.57 26299.21 27296.70 32098.65 38497.74 40396.71 29897.27 36898.54 38086.03 38699.92 10598.47 18286.30 40899.10 241
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 6199.63 13899.59 7699.36 24599.46 19499.07 4299.79 5299.82 8498.85 4299.92 10598.68 15099.87 6299.82 59
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
balanced_conf0399.46 3499.39 3299.67 7599.55 16799.58 8199.74 4699.51 12298.42 11199.87 3299.84 7098.05 10799.91 11799.58 3499.94 2499.52 178
9.1499.10 8499.72 9799.40 22999.51 12297.53 22699.64 10799.78 13098.84 4499.91 11797.63 25799.82 98
SMA-MVScopyleft99.44 4299.30 5499.85 3399.73 9399.83 1999.56 13099.47 18597.45 23599.78 5799.82 8499.18 1099.91 11798.79 13699.89 5699.81 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11799.65 6399.05 32799.41 22496.22 33798.95 26099.49 25898.77 5499.91 117
train_agg99.02 12498.77 14099.77 6199.67 11799.65 6399.05 32799.41 22496.28 33198.95 26099.49 25898.76 5599.91 11797.63 25799.72 12899.75 93
test_899.67 11799.61 7399.03 33299.41 22496.28 33198.93 26399.48 26498.76 5599.91 117
agg_prior99.67 11799.62 7199.40 23098.87 27399.91 117
原ACMM199.65 8099.73 9399.33 11399.47 18597.46 23299.12 22899.66 19398.67 6999.91 11797.70 25499.69 13399.71 118
LFMVS97.90 24597.35 29399.54 10799.52 17699.01 15999.39 23398.24 39397.10 27199.65 10299.79 12384.79 39599.91 11799.28 7098.38 23199.69 122
XVG-OURS98.73 16398.68 14998.88 22499.70 10797.73 26598.92 35799.55 8198.52 10199.45 14899.84 7095.27 20299.91 11798.08 21698.84 20799.00 257
PLCcopyleft97.94 499.02 12498.85 13199.53 11599.66 12799.01 15999.24 28999.52 10896.85 29199.27 19799.48 26498.25 9799.91 11797.76 24599.62 14499.65 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 29097.06 31599.47 13299.61 14899.09 14798.04 41099.25 29991.24 40198.51 32099.70 16594.55 24399.91 11792.76 38999.85 7799.42 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mmtdpeth96.95 32696.71 32597.67 34599.33 23994.90 37299.89 299.28 29398.15 14599.72 7898.57 37986.56 38499.90 12999.82 1989.02 40398.20 373
UWE-MVS97.58 29697.29 30398.48 27399.09 30496.25 34099.01 34096.61 41497.86 18399.19 21799.01 35188.72 36399.90 12997.38 28298.69 21599.28 229
test_vis1_rt95.81 35095.65 34996.32 37699.67 11791.35 40399.49 18496.74 41298.25 13195.24 39198.10 39774.96 41299.90 12999.53 4098.85 20697.70 397
FA-MVS(test-final)98.75 16098.53 17199.41 14199.55 16799.05 15599.80 2599.01 33496.59 31399.58 12499.59 22195.39 19799.90 12997.78 24199.49 15599.28 229
MCST-MVS99.43 4599.30 5499.82 4699.79 5599.74 4699.29 26699.40 23098.79 7799.52 13799.62 21298.91 3799.90 12998.64 15499.75 12299.82 59
CDPH-MVS99.13 9898.91 12099.80 5299.75 7899.71 4999.15 30699.41 22496.60 31199.60 12099.55 23698.83 4599.90 12997.48 27399.83 9499.78 85
NCCC99.34 6399.19 7599.79 5599.61 14899.65 6399.30 26199.48 16498.86 6799.21 21199.63 20798.72 6499.90 12998.25 20199.63 14399.80 75
114514_t98.93 13498.67 15099.72 7299.85 2699.53 8999.62 9599.59 6092.65 39699.71 8099.78 13098.06 10699.90 12998.84 12899.91 3699.74 97
1112_ss98.98 13098.77 14099.59 9799.68 11599.02 15799.25 28799.48 16497.23 25899.13 22699.58 22596.93 14299.90 12998.87 11898.78 21299.84 44
PHI-MVS99.30 6999.17 7799.70 7399.56 16399.52 9299.58 11799.80 897.12 26799.62 11499.73 15698.58 7599.90 12998.61 16099.91 3699.68 126
AdaColmapbinary99.01 12898.80 13699.66 7699.56 16399.54 8699.18 30199.70 1598.18 14399.35 17999.63 20796.32 16499.90 12997.48 27399.77 11799.55 169
COLMAP_ROBcopyleft97.56 698.86 14298.75 14299.17 18199.88 1198.53 21599.34 25399.59 6097.55 22298.70 29899.89 3595.83 18399.90 12998.10 21199.90 4599.08 246
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 18998.03 20999.31 15799.63 13898.56 21299.54 14896.75 41197.53 22699.73 7399.65 19591.25 33699.89 14198.62 15799.56 14999.48 191
tttt051798.42 18098.14 19499.28 16999.66 12798.38 23299.74 4696.85 40997.68 20899.79 5299.74 15091.39 33399.89 14198.83 13199.56 14999.57 166
test1299.75 6499.64 13599.61 7399.29 29199.21 21198.38 9199.89 14199.74 12599.74 97
Test_1112_low_res98.89 13798.66 15399.57 10299.69 11198.95 17199.03 33299.47 18596.98 28199.15 22499.23 32796.77 14699.89 14198.83 13198.78 21299.86 34
CNLPA99.14 9698.99 10599.59 9799.58 15799.41 10699.16 30399.44 21398.45 10799.19 21799.49 25898.08 10599.89 14197.73 24999.75 12299.48 191
sd_testset98.75 16098.57 16799.29 16599.81 4698.26 23699.56 13099.62 4298.78 8099.64 10799.88 4292.02 31699.88 14699.54 3898.26 24099.72 109
APD_test195.87 34896.49 33094.00 38399.53 17184.01 41299.54 14899.32 27995.91 35497.99 34999.85 6085.49 39099.88 14691.96 39298.84 20798.12 377
diffmvspermissive99.14 9699.02 9999.51 12399.61 14898.96 16899.28 27199.49 15298.46 10699.72 7899.71 16196.50 15799.88 14699.31 6699.11 18499.67 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 14298.80 13699.03 19699.76 6898.79 19399.28 27199.91 397.42 24199.67 9099.37 29597.53 11899.88 14698.98 10197.29 29898.42 358
PVSNet_Blended99.08 11598.97 10999.42 14099.76 6898.79 19398.78 37199.91 396.74 29699.67 9099.49 25897.53 11899.88 14698.98 10199.85 7799.60 155
MVS97.28 31596.55 32899.48 12998.78 34998.95 17199.27 27699.39 23383.53 41498.08 34499.54 24196.97 14099.87 15194.23 37199.16 17899.63 148
MG-MVS99.13 9899.02 9999.45 13599.57 15998.63 20699.07 32299.34 26298.99 5299.61 11799.82 8497.98 10999.87 15197.00 30399.80 10599.85 38
MSDG98.98 13098.80 13699.53 11599.76 6899.19 13298.75 37499.55 8197.25 25599.47 14599.77 13897.82 11299.87 15196.93 31099.90 4599.54 171
ETV-MVS99.26 7799.21 7299.40 14299.46 20299.30 12099.56 13099.52 10898.52 10199.44 15399.27 32298.41 9099.86 15499.10 8999.59 14799.04 253
thisisatest051598.14 20797.79 23399.19 17999.50 19098.50 22298.61 38696.82 41096.95 28599.54 13399.43 27691.66 32899.86 15498.08 21699.51 15399.22 235
thres600view797.86 25197.51 26798.92 21399.72 9797.95 25599.59 10998.74 37297.94 17599.27 19798.62 37691.75 32299.86 15493.73 37698.19 24698.96 263
lupinMVS99.13 9899.01 10399.46 13499.51 17998.94 17499.05 32799.16 31497.86 18399.80 5099.56 23397.39 12199.86 15498.94 10699.85 7799.58 163
PVSNet96.02 1798.85 14998.84 13398.89 22299.73 9397.28 28398.32 40299.60 5597.86 18399.50 14099.57 23096.75 14799.86 15498.56 17299.70 13299.54 171
MAR-MVS98.86 14298.63 15599.54 10799.37 23099.66 5999.45 20099.54 9096.61 30899.01 24999.40 28697.09 13399.86 15497.68 25699.53 15299.10 241
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing9197.44 30997.02 31698.71 25099.18 28096.89 31499.19 29999.04 33097.78 19698.31 33198.29 38985.41 39199.85 16098.01 22297.95 25699.39 215
test250696.81 33096.65 32697.29 35799.74 8692.21 40099.60 10285.06 43199.13 2799.77 6199.93 1087.82 37999.85 16099.38 5699.38 16199.80 75
AllTest98.87 13998.72 14499.31 15799.86 2098.48 22599.56 13099.61 4997.85 18699.36 17699.85 6095.95 17699.85 16096.66 32399.83 9499.59 159
TestCases99.31 15799.86 2098.48 22599.61 4997.85 18699.36 17699.85 6095.95 17699.85 16096.66 32399.83 9499.59 159
jason99.13 9899.03 9599.45 13599.46 20298.87 18199.12 31299.26 29798.03 17099.79 5299.65 19597.02 13899.85 16099.02 9899.90 4599.65 136
jason: jason.
CNVR-MVS99.42 4799.30 5499.78 5899.62 14499.71 4999.26 28599.52 10898.82 7299.39 16999.71 16198.96 2599.85 16098.59 16599.80 10599.77 87
PAPM_NR99.04 12198.84 13399.66 7699.74 8699.44 10299.39 23399.38 24197.70 20699.28 19299.28 31998.34 9399.85 16096.96 30799.45 15799.69 122
testing9997.36 31296.94 31998.63 25599.18 28096.70 32099.30 26198.93 34297.71 20398.23 33698.26 39084.92 39499.84 16798.04 22197.85 26399.35 221
testing22297.16 32096.50 32999.16 18299.16 29098.47 22799.27 27698.66 38297.71 20398.23 33698.15 39382.28 40799.84 16797.36 28397.66 26999.18 237
test111198.04 22298.11 19897.83 33699.74 8693.82 38599.58 11795.40 41899.12 3299.65 10299.93 1090.73 34199.84 16799.43 5499.38 16199.82 59
ECVR-MVScopyleft98.04 22298.05 20798.00 32299.74 8694.37 38099.59 10994.98 41999.13 2799.66 9599.93 1090.67 34299.84 16799.40 5599.38 16199.80 75
test_yl98.86 14298.63 15599.54 10799.49 19299.18 13499.50 17399.07 32698.22 13699.61 11799.51 25295.37 19899.84 16798.60 16398.33 23499.59 159
DCV-MVSNet98.86 14298.63 15599.54 10799.49 19299.18 13499.50 17399.07 32698.22 13699.61 11799.51 25295.37 19899.84 16798.60 16398.33 23499.59 159
Fast-Effi-MVS+98.70 16498.43 17599.51 12399.51 17999.28 12399.52 15799.47 18596.11 34799.01 24999.34 30596.20 16899.84 16797.88 23098.82 20999.39 215
TSAR-MVS + GP.99.36 6199.36 3899.36 14899.67 11798.61 20999.07 32299.33 26999.00 5099.82 4599.81 9899.06 1699.84 16799.09 9099.42 15999.65 136
tpmrst98.33 19098.48 17397.90 33099.16 29094.78 37399.31 25999.11 31997.27 25399.45 14899.59 22195.33 20099.84 16798.48 17998.61 21799.09 245
Vis-MVSNetpermissive99.12 10498.97 10999.56 10499.78 5799.10 14699.68 6699.66 2898.49 10399.86 3699.87 5194.77 22799.84 16799.19 7899.41 16099.74 97
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 17198.34 18199.51 12399.40 22299.03 15698.80 36999.36 25096.33 32899.00 25399.12 34198.46 8499.84 16795.23 35799.37 16899.66 132
PatchMatch-RL98.84 15298.62 16099.52 12199.71 10299.28 12399.06 32599.77 997.74 20199.50 14099.53 24595.41 19699.84 16797.17 29799.64 14199.44 207
EPP-MVSNet99.13 9898.99 10599.53 11599.65 13399.06 15399.81 2099.33 26997.43 23999.60 12099.88 4297.14 13199.84 16799.13 8498.94 19899.69 122
testing1197.50 30297.10 31398.71 25099.20 27496.91 31299.29 26698.82 36297.89 18098.21 33998.40 38485.63 38999.83 18098.45 18498.04 25499.37 219
thres100view90097.76 26997.45 27698.69 25299.72 9797.86 26199.59 10998.74 37297.93 17699.26 20198.62 37691.75 32299.83 18093.22 38198.18 24798.37 364
tfpn200view997.72 27997.38 28998.72 24899.69 11197.96 25399.50 17398.73 37897.83 18999.17 22298.45 38291.67 32699.83 18093.22 38198.18 24798.37 364
test_prior99.68 7499.67 11799.48 9799.56 7399.83 18099.74 97
131498.68 16698.54 17099.11 18898.89 33498.65 20399.27 27699.49 15296.89 28997.99 34999.56 23397.72 11699.83 18097.74 24899.27 17298.84 269
thres40097.77 26897.38 28998.92 21399.69 11197.96 25399.50 17398.73 37897.83 18999.17 22298.45 38291.67 32699.83 18093.22 38198.18 24798.96 263
casdiffmvspermissive99.13 9898.98 10899.56 10499.65 13399.16 13799.56 13099.50 14298.33 12299.41 16299.86 5595.92 17999.83 18099.45 5399.16 17899.70 120
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SPE-MVS-test99.49 2599.48 1899.54 10799.78 5799.30 12099.89 299.58 6498.56 9799.73 7399.69 17598.55 7899.82 18799.69 2499.85 7799.48 191
MVS_Test99.10 11398.97 10999.48 12999.49 19299.14 14299.67 6999.34 26297.31 25099.58 12499.76 14297.65 11799.82 18798.87 11899.07 19099.46 202
dp97.75 27397.80 23297.59 34999.10 30193.71 38899.32 25698.88 35596.48 32099.08 23799.55 23692.67 30099.82 18796.52 32798.58 22099.24 234
RPSCF98.22 19798.62 16096.99 36399.82 4291.58 40299.72 5299.44 21396.61 30899.66 9599.89 3595.92 17999.82 18797.46 27699.10 18799.57 166
PMMVS98.80 15698.62 16099.34 15099.27 25798.70 19998.76 37399.31 28397.34 24799.21 21199.07 34397.20 13099.82 18798.56 17298.87 20499.52 178
UBG97.85 25297.48 27098.95 20799.25 26397.64 27299.24 28998.74 37297.90 17998.64 30898.20 39288.65 36799.81 19298.27 20098.40 23099.42 209
EIA-MVS99.18 8799.09 8799.45 13599.49 19299.18 13499.67 6999.53 10397.66 21199.40 16799.44 27498.10 10399.81 19298.94 10699.62 14499.35 221
Effi-MVS+98.81 15398.59 16699.48 12999.46 20299.12 14598.08 40999.50 14297.50 23099.38 17199.41 28296.37 16399.81 19299.11 8698.54 22599.51 185
thres20097.61 29497.28 30498.62 25699.64 13598.03 24799.26 28598.74 37297.68 20899.09 23698.32 38891.66 32899.81 19292.88 38698.22 24298.03 383
tpmvs97.98 23398.02 21197.84 33599.04 31494.73 37499.31 25999.20 30996.10 35198.76 28899.42 27894.94 21399.81 19296.97 30698.45 22998.97 261
casdiffmvs_mvgpermissive99.15 9399.02 9999.55 10699.66 12799.09 14799.64 8499.56 7398.26 13099.45 14899.87 5196.03 17399.81 19299.54 3899.15 18199.73 102
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 15399.37 3697.12 36199.60 15391.75 40198.61 38699.44 21399.35 1599.83 4499.85 6098.70 6699.81 19299.02 9899.91 3699.81 66
DPM-MVS98.95 13398.71 14699.66 7699.63 13899.55 8498.64 38599.10 32097.93 17699.42 15899.55 23698.67 6999.80 19995.80 34299.68 13699.61 152
DP-MVS Recon99.12 10498.95 11599.65 8099.74 8699.70 5199.27 27699.57 6896.40 32799.42 15899.68 18298.75 5899.80 19997.98 22499.72 12899.44 207
MVS_111021_LR99.41 5199.33 4499.65 8099.77 6499.51 9398.94 35599.85 698.82 7299.65 10299.74 15098.51 8199.80 19998.83 13199.89 5699.64 143
CS-MVS99.50 2399.48 1899.54 10799.76 6899.42 10499.90 199.55 8198.56 9799.78 5799.70 16598.65 7199.79 20299.65 2899.78 11499.41 212
Fast-Effi-MVS+-dtu98.77 15998.83 13598.60 25799.41 21796.99 30699.52 15799.49 15298.11 15399.24 20399.34 30596.96 14199.79 20297.95 22699.45 15799.02 256
baseline198.31 19197.95 21899.38 14799.50 19098.74 19699.59 10998.93 34298.41 11299.14 22599.60 21994.59 23999.79 20298.48 17993.29 37999.61 152
baseline99.15 9399.02 9999.53 11599.66 12799.14 14299.72 5299.48 16498.35 11999.42 15899.84 7096.07 17199.79 20299.51 4399.14 18299.67 129
PVSNet_094.43 1996.09 34595.47 35297.94 32799.31 24794.34 38297.81 41199.70 1597.12 26797.46 36298.75 37389.71 35399.79 20297.69 25581.69 41499.68 126
API-MVS99.04 12199.03 9599.06 19299.40 22299.31 11899.55 14499.56 7398.54 9999.33 18399.39 29098.76 5599.78 20796.98 30599.78 11498.07 380
OMC-MVS99.08 11599.04 9399.20 17899.67 11798.22 23899.28 27199.52 10898.07 16199.66 9599.81 9897.79 11399.78 20797.79 24099.81 10199.60 155
GeoE98.85 14998.62 16099.53 11599.61 14899.08 15099.80 2599.51 12297.10 27199.31 18599.78 13095.23 20699.77 20998.21 20399.03 19399.75 93
alignmvs98.81 15398.56 16999.58 10099.43 21099.42 10499.51 16698.96 34098.61 9399.35 17998.92 36394.78 22499.77 20999.35 5898.11 25299.54 171
tpm cat197.39 31197.36 29197.50 35299.17 28893.73 38799.43 21199.31 28391.27 40098.71 29299.08 34294.31 25399.77 20996.41 33198.50 22799.00 257
CostFormer97.72 27997.73 24597.71 34399.15 29494.02 38499.54 14899.02 33394.67 37599.04 24699.35 30192.35 31299.77 20998.50 17897.94 25799.34 224
MGCFI-Net99.01 12898.85 13199.50 12899.42 21299.26 12699.82 1699.48 16498.60 9499.28 19298.81 36897.04 13799.76 21399.29 6997.87 26199.47 197
test_241102_ONE99.84 3299.90 299.48 16499.07 4299.91 2099.74 15099.20 799.76 213
MDTV_nov1_ep1398.32 18399.11 29894.44 37999.27 27698.74 37297.51 22999.40 16799.62 21294.78 22499.76 21397.59 26098.81 211
sasdasda99.02 12498.86 12999.51 12399.42 21299.32 11499.80 2599.48 16498.63 9099.31 18598.81 36897.09 13399.75 21699.27 7297.90 25899.47 197
canonicalmvs99.02 12498.86 12999.51 12399.42 21299.32 11499.80 2599.48 16498.63 9099.31 18598.81 36897.09 13399.75 21699.27 7297.90 25899.47 197
Effi-MVS+-dtu98.78 15798.89 12498.47 27899.33 23996.91 31299.57 12499.30 28798.47 10599.41 16298.99 35396.78 14599.74 21898.73 14299.38 16198.74 283
patchmatchnet-post98.70 37494.79 22399.74 218
SCA98.19 20198.16 19198.27 30499.30 24895.55 35499.07 32298.97 33897.57 21999.43 15599.57 23092.72 29599.74 21897.58 26199.20 17699.52 178
BH-untuned98.42 18098.36 17998.59 25899.49 19296.70 32099.27 27699.13 31897.24 25798.80 28399.38 29295.75 18699.74 21897.07 30199.16 17899.33 225
BH-RMVSNet98.41 18298.08 20399.40 14299.41 21798.83 18999.30 26198.77 36897.70 20698.94 26299.65 19592.91 29099.74 21896.52 32799.55 15199.64 143
MVS_111021_HR99.41 5199.32 4699.66 7699.72 9799.47 9998.95 35399.85 698.82 7299.54 13399.73 15698.51 8199.74 21898.91 11299.88 5999.77 87
test_post65.99 42594.65 23799.73 224
XVG-ACMP-BASELINE97.83 25897.71 24798.20 30699.11 29896.33 33699.41 22199.52 10898.06 16599.05 24599.50 25589.64 35599.73 22497.73 24997.38 29698.53 346
HyFIR lowres test99.11 10998.92 11899.65 8099.90 499.37 10899.02 33599.91 397.67 21099.59 12399.75 14595.90 18199.73 22499.53 4099.02 19599.86 34
DeepMVS_CXcopyleft93.34 38699.29 25282.27 41599.22 30585.15 41296.33 38399.05 34690.97 33999.73 22493.57 37897.77 26698.01 384
Patchmatch-test97.93 23997.65 25298.77 24599.18 28097.07 29799.03 33299.14 31796.16 34298.74 28999.57 23094.56 24199.72 22893.36 38099.11 18499.52 178
LPG-MVS_test98.22 19798.13 19698.49 27199.33 23997.05 29999.58 11799.55 8197.46 23299.24 20399.83 7592.58 30299.72 22898.09 21297.51 28298.68 301
LGP-MVS_train98.49 27199.33 23997.05 29999.55 8197.46 23299.24 20399.83 7592.58 30299.72 22898.09 21297.51 28298.68 301
BH-w/o98.00 23197.89 22798.32 29699.35 23496.20 34299.01 34098.90 35296.42 32598.38 32799.00 35295.26 20499.72 22896.06 33598.61 21799.03 254
ACMP97.20 1198.06 21697.94 22098.45 28199.37 23097.01 30499.44 20699.49 15297.54 22598.45 32499.79 12391.95 31899.72 22897.91 22897.49 28798.62 329
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 22697.90 22398.40 28999.23 26796.80 31899.70 5699.60 5597.12 26798.18 34199.70 16591.73 32499.72 22898.39 18797.45 28998.68 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 29165.14 42694.18 25899.71 23497.58 261
ADS-MVSNet98.20 20098.08 20398.56 26599.33 23996.48 33199.23 29199.15 31596.24 33599.10 23399.67 18894.11 25999.71 23496.81 31599.05 19199.48 191
JIA-IIPM97.50 30297.02 31698.93 21198.73 35897.80 26399.30 26198.97 33891.73 39998.91 26594.86 41495.10 20999.71 23497.58 26197.98 25599.28 229
EPMVS97.82 26197.65 25298.35 29398.88 33595.98 34699.49 18494.71 42197.57 21999.26 20199.48 26492.46 30999.71 23497.87 23299.08 18999.35 221
TDRefinement95.42 35494.57 36197.97 32489.83 42496.11 34599.48 18898.75 36996.74 29696.68 38099.88 4288.65 36799.71 23498.37 19082.74 41398.09 379
ACMM97.58 598.37 18898.34 18198.48 27399.41 21797.10 29399.56 13099.45 20598.53 10099.04 24699.85 6093.00 28699.71 23498.74 14097.45 28998.64 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 23697.77 23898.57 26299.59 15596.61 32799.45 20099.08 32398.21 13898.88 27099.80 11188.66 36699.70 24098.58 16697.72 26799.39 215
CHOSEN 280x42099.12 10499.13 8099.08 18999.66 12797.89 25898.43 39699.71 1398.88 6699.62 11499.76 14296.63 15199.70 24099.46 5299.99 199.66 132
EC-MVSNet99.44 4299.39 3299.58 10099.56 16399.49 9599.88 499.58 6498.38 11499.73 7399.69 17598.20 9999.70 24099.64 3099.82 9899.54 171
PatchmatchNetpermissive98.31 19198.36 17998.19 30799.16 29095.32 36399.27 27698.92 34597.37 24599.37 17399.58 22594.90 21799.70 24097.43 27999.21 17599.54 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 21197.99 21398.44 28499.41 21796.96 31099.60 10299.56 7398.09 15698.15 34299.91 2390.87 34099.70 24098.88 11597.45 28998.67 308
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS97.50 30296.90 32099.29 16599.23 26798.78 19599.32 25698.90 35297.52 22898.56 31798.09 39884.72 39699.69 24597.86 23397.88 26099.39 215
HQP_MVS98.27 19698.22 18998.44 28499.29 25296.97 30899.39 23399.47 18598.97 5899.11 23099.61 21692.71 29799.69 24597.78 24197.63 27098.67 308
plane_prior599.47 18599.69 24597.78 24197.63 27098.67 308
D2MVS98.41 18298.50 17298.15 31299.26 25996.62 32699.40 22999.61 4997.71 20398.98 25599.36 29896.04 17299.67 24898.70 14597.41 29498.15 376
IS-MVSNet99.05 12098.87 12799.57 10299.73 9399.32 11499.75 4299.20 30998.02 17199.56 12899.86 5596.54 15599.67 24898.09 21299.13 18399.73 102
CLD-MVS98.16 20598.10 19998.33 29499.29 25296.82 31798.75 37499.44 21397.83 18999.13 22699.55 23692.92 28899.67 24898.32 19797.69 26898.48 350
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 31797.30 30197.09 36299.43 21093.31 39399.73 5098.87 35798.83 7199.28 19299.80 11184.45 39799.66 25197.88 23097.45 28998.30 366
AUN-MVS96.88 32896.31 33498.59 25899.48 19997.04 30299.27 27699.22 30597.44 23898.51 32099.41 28291.97 31799.66 25197.71 25283.83 41199.07 251
UniMVSNet_ETH3D97.32 31496.81 32298.87 22899.40 22297.46 27799.51 16699.53 10395.86 35598.54 31999.77 13882.44 40599.66 25198.68 15097.52 28199.50 189
OPM-MVS98.19 20198.10 19998.45 28198.88 33597.07 29799.28 27199.38 24198.57 9699.22 20899.81 9892.12 31499.66 25198.08 21697.54 27998.61 338
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 24297.78 23698.32 29699.46 20296.68 32499.56 13099.54 9098.41 11297.79 35899.87 5190.18 34999.66 25198.05 22097.18 30398.62 329
hse-mvs297.50 30297.14 31098.59 25899.49 19297.05 29999.28 27199.22 30598.94 6199.66 9599.42 27894.93 21499.65 25699.48 4983.80 41299.08 246
VPA-MVSNet98.29 19497.95 21899.30 16299.16 29099.54 8699.50 17399.58 6498.27 12899.35 17999.37 29592.53 30499.65 25699.35 5894.46 36198.72 285
TR-MVS97.76 26997.41 28798.82 23799.06 31097.87 25998.87 36398.56 38596.63 30798.68 30099.22 32892.49 30599.65 25695.40 35397.79 26598.95 265
reproduce_monomvs97.89 24697.87 22897.96 32699.51 17995.45 35999.60 10299.25 29999.17 2298.85 27899.49 25889.29 35899.64 25999.35 5896.31 31998.78 272
gm-plane-assit98.54 37892.96 39594.65 37699.15 33699.64 25997.56 266
HQP4-MVS98.66 30199.64 25998.64 320
HQP-MVS98.02 22697.90 22398.37 29299.19 27796.83 31598.98 34699.39 23398.24 13298.66 30199.40 28692.47 30699.64 25997.19 29497.58 27598.64 320
PAPM97.59 29597.09 31499.07 19099.06 31098.26 23698.30 40399.10 32094.88 37098.08 34499.34 30596.27 16699.64 25989.87 40098.92 20199.31 227
TAPA-MVS97.07 1597.74 27597.34 29698.94 20999.70 10797.53 27599.25 28799.51 12291.90 39899.30 18899.63 20798.78 5199.64 25988.09 40799.87 6299.65 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 18698.09 20299.24 17499.26 25999.32 11499.56 13099.55 8197.45 23598.71 29299.83 7593.23 28199.63 26598.88 11596.32 31898.76 278
ITE_SJBPF98.08 31599.29 25296.37 33498.92 34598.34 12098.83 27999.75 14591.09 33799.62 26695.82 34097.40 29598.25 370
LF4IMVS97.52 29997.46 27597.70 34498.98 32495.55 35499.29 26698.82 36298.07 16198.66 30199.64 20189.97 35099.61 26797.01 30296.68 30897.94 391
tpm97.67 28997.55 26198.03 31799.02 31695.01 36999.43 21198.54 38796.44 32399.12 22899.34 30591.83 32199.60 26897.75 24796.46 31499.48 191
tpm297.44 30997.34 29697.74 34299.15 29494.36 38199.45 20098.94 34193.45 38998.90 26799.44 27491.35 33499.59 26997.31 28598.07 25399.29 228
baseline297.87 24997.55 26198.82 23799.18 28098.02 24899.41 22196.58 41596.97 28296.51 38199.17 33393.43 27899.57 27097.71 25299.03 19398.86 267
MS-PatchMatch97.24 31997.32 29996.99 36398.45 38193.51 39298.82 36799.32 27997.41 24298.13 34399.30 31588.99 36099.56 27195.68 34699.80 10597.90 394
TinyColmap97.12 32296.89 32197.83 33699.07 30895.52 35798.57 38998.74 37297.58 21897.81 35799.79 12388.16 37499.56 27195.10 35897.21 30198.39 362
USDC97.34 31397.20 30897.75 34199.07 30895.20 36598.51 39399.04 33097.99 17298.31 33199.86 5589.02 35999.55 27395.67 34797.36 29798.49 349
MSLP-MVS++99.46 3499.47 2099.44 13999.60 15399.16 13799.41 22199.71 1398.98 5599.45 14899.78 13099.19 999.54 27499.28 7099.84 8599.63 148
TAMVS99.12 10499.08 8899.24 17499.46 20298.55 21399.51 16699.46 19498.09 15699.45 14899.82 8498.34 9399.51 27598.70 14598.93 19999.67 129
EPNet_dtu98.03 22497.96 21698.23 30598.27 38495.54 35699.23 29198.75 36999.02 4597.82 35699.71 16196.11 17099.48 27693.04 38499.65 14099.69 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs5depth96.66 33296.22 33697.97 32497.00 40696.28 33898.66 38399.03 33296.61 30896.93 37899.79 12387.20 38299.47 27796.65 32594.13 36898.16 375
EG-PatchMatch MVS95.97 34795.69 34896.81 37097.78 39192.79 39699.16 30398.93 34296.16 34294.08 39999.22 32882.72 40399.47 27795.67 34797.50 28498.17 374
MVP-Stereo97.81 26397.75 24397.99 32397.53 39596.60 32898.96 35098.85 35997.22 25997.23 36999.36 29895.28 20199.46 27995.51 34999.78 11497.92 393
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 17398.67 15098.30 29899.35 23495.59 35399.50 17399.55 8198.60 9499.39 16999.83 7594.48 24699.45 28098.75 13998.56 22399.85 38
test-LLR98.06 21697.90 22398.55 26798.79 34697.10 29398.67 38097.75 40197.34 24798.61 31398.85 36594.45 24899.45 28097.25 28899.38 16199.10 241
TESTMET0.1,197.55 29797.27 30798.40 28998.93 32996.53 32998.67 38097.61 40496.96 28398.64 30899.28 31988.63 36999.45 28097.30 28699.38 16199.21 236
test-mter97.49 30797.13 31298.55 26798.79 34697.10 29398.67 38097.75 40196.65 30398.61 31398.85 36588.23 37399.45 28097.25 28899.38 16199.10 241
mvs_anonymous99.03 12398.99 10599.16 18299.38 22798.52 21999.51 16699.38 24197.79 19499.38 17199.81 9897.30 12799.45 28099.35 5898.99 19699.51 185
tfpnnormal97.84 25697.47 27398.98 20299.20 27499.22 13199.64 8499.61 4996.32 32998.27 33599.70 16593.35 28099.44 28595.69 34595.40 34498.27 368
v7n97.87 24997.52 26598.92 21398.76 35698.58 21199.84 1299.46 19496.20 33898.91 26599.70 16594.89 21899.44 28596.03 33693.89 37398.75 280
jajsoiax98.43 17998.28 18698.88 22498.60 37398.43 22999.82 1699.53 10398.19 14098.63 31099.80 11193.22 28399.44 28599.22 7697.50 28498.77 276
mvs_tets98.40 18598.23 18898.91 21798.67 36698.51 22199.66 7599.53 10398.19 14098.65 30799.81 9892.75 29299.44 28599.31 6697.48 28898.77 276
Vis-MVSNet (Re-imp)98.87 13998.72 14499.31 15799.71 10298.88 18099.80 2599.44 21397.91 17899.36 17699.78 13095.49 19599.43 28997.91 22899.11 18499.62 150
OPU-MVS99.64 8699.56 16399.72 4799.60 10299.70 16599.27 599.42 29098.24 20299.80 10599.79 79
Anonymous2023121197.88 24797.54 26498.90 21999.71 10298.53 21599.48 18899.57 6894.16 38098.81 28199.68 18293.23 28199.42 29098.84 12894.42 36398.76 278
ttmdpeth97.80 26597.63 25698.29 29998.77 35497.38 28099.64 8499.36 25098.78 8096.30 38499.58 22592.34 31399.39 29298.36 19295.58 33998.10 378
VPNet97.84 25697.44 28199.01 19899.21 27298.94 17499.48 18899.57 6898.38 11499.28 19299.73 15688.89 36199.39 29299.19 7893.27 38098.71 287
nrg03098.64 17098.42 17699.28 16999.05 31399.69 5399.81 2099.46 19498.04 16899.01 24999.82 8496.69 14999.38 29499.34 6394.59 36098.78 272
GA-MVS97.85 25297.47 27399.00 20099.38 22797.99 25098.57 38999.15 31597.04 27898.90 26799.30 31589.83 35299.38 29496.70 32098.33 23499.62 150
UniMVSNet (Re)98.29 19498.00 21299.13 18799.00 31899.36 11199.49 18499.51 12297.95 17498.97 25799.13 33896.30 16599.38 29498.36 19293.34 37898.66 316
FIs98.78 15798.63 15599.23 17699.18 28099.54 8699.83 1599.59 6098.28 12698.79 28599.81 9896.75 14799.37 29799.08 9196.38 31698.78 272
PS-MVSNAJss98.92 13598.92 11898.90 21998.78 34998.53 21599.78 3299.54 9098.07 16199.00 25399.76 14299.01 1899.37 29799.13 8497.23 30098.81 270
CDS-MVSNet99.09 11499.03 9599.25 17299.42 21298.73 19799.45 20099.46 19498.11 15399.46 14799.77 13898.01 10899.37 29798.70 14598.92 20199.66 132
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 35195.16 35697.51 35199.30 24893.69 38998.88 36195.78 41685.09 41398.78 28692.65 41691.29 33599.37 29794.85 36399.85 7799.46 202
v119297.81 26397.44 28198.91 21798.88 33598.68 20099.51 16699.34 26296.18 34099.20 21499.34 30594.03 26399.36 30195.32 35595.18 34898.69 296
EI-MVSNet98.67 16798.67 15098.68 25399.35 23497.97 25199.50 17399.38 24196.93 28899.20 21499.83 7597.87 11099.36 30198.38 18897.56 27798.71 287
MVSTER98.49 17498.32 18399.00 20099.35 23499.02 15799.54 14899.38 24197.41 24299.20 21499.73 15693.86 27199.36 30198.87 11897.56 27798.62 329
gg-mvs-nofinetune96.17 34395.32 35598.73 24798.79 34698.14 24299.38 23894.09 42291.07 40398.07 34791.04 42089.62 35699.35 30496.75 31799.09 18898.68 301
pm-mvs197.68 28697.28 30498.88 22499.06 31098.62 20799.50 17399.45 20596.32 32997.87 35499.79 12392.47 30699.35 30497.54 26893.54 37798.67 308
OurMVSNet-221017-097.88 24797.77 23898.19 30798.71 36296.53 32999.88 499.00 33597.79 19498.78 28699.94 691.68 32599.35 30497.21 29096.99 30798.69 296
EGC-MVSNET82.80 38577.86 39197.62 34797.91 38896.12 34499.33 25599.28 2938.40 42825.05 42999.27 32284.11 39899.33 30789.20 40298.22 24297.42 402
pmmvs696.53 33596.09 34097.82 33898.69 36495.47 35899.37 24099.47 18593.46 38897.41 36399.78 13087.06 38399.33 30796.92 31292.70 38798.65 318
V4298.06 21697.79 23398.86 23198.98 32498.84 18699.69 6099.34 26296.53 31599.30 18899.37 29594.67 23599.32 30997.57 26594.66 35898.42 358
lessismore_v097.79 34098.69 36495.44 36194.75 42095.71 39099.87 5188.69 36599.32 30995.89 33994.93 35598.62 329
OpenMVS_ROBcopyleft92.34 2094.38 36593.70 37196.41 37597.38 39793.17 39499.06 32598.75 36986.58 41194.84 39798.26 39081.53 40899.32 30989.01 40397.87 26196.76 405
v897.95 23897.63 25698.93 21198.95 32898.81 19299.80 2599.41 22496.03 35299.10 23399.42 27894.92 21699.30 31296.94 30994.08 37098.66 316
v192192097.80 26597.45 27698.84 23598.80 34598.53 21599.52 15799.34 26296.15 34499.24 20399.47 26793.98 26599.29 31395.40 35395.13 35098.69 296
anonymousdsp98.44 17898.28 18698.94 20998.50 37998.96 16899.77 3499.50 14297.07 27398.87 27399.77 13894.76 22899.28 31498.66 15297.60 27398.57 344
MVSFormer99.17 8999.12 8299.29 16599.51 17998.94 17499.88 499.46 19497.55 22299.80 5099.65 19597.39 12199.28 31499.03 9699.85 7799.65 136
test_djsdf98.67 16798.57 16798.98 20298.70 36398.91 17899.88 499.46 19497.55 22299.22 20899.88 4295.73 18799.28 31499.03 9697.62 27298.75 280
cascas97.69 28497.43 28598.48 27398.60 37397.30 28298.18 40799.39 23392.96 39298.41 32598.78 37293.77 27499.27 31798.16 20998.61 21798.86 267
v14419297.92 24297.60 25998.87 22898.83 34498.65 20399.55 14499.34 26296.20 33899.32 18499.40 28694.36 25099.26 31896.37 33295.03 35298.70 292
dmvs_re98.08 21498.16 19197.85 33399.55 16794.67 37699.70 5698.92 34598.15 14599.06 24399.35 30193.67 27799.25 31997.77 24497.25 29999.64 143
v2v48298.06 21697.77 23898.92 21398.90 33398.82 19099.57 12499.36 25096.65 30399.19 21799.35 30194.20 25599.25 31997.72 25194.97 35398.69 296
v124097.69 28497.32 29998.79 24398.85 34298.43 22999.48 18899.36 25096.11 34799.27 19799.36 29893.76 27599.24 32194.46 36795.23 34798.70 292
WBMVS97.74 27597.50 26898.46 27999.24 26597.43 27899.21 29799.42 22197.45 23598.96 25999.41 28288.83 36299.23 32298.94 10696.02 32498.71 287
v114497.98 23397.69 24898.85 23498.87 33898.66 20299.54 14899.35 25796.27 33399.23 20799.35 30194.67 23599.23 32296.73 31895.16 34998.68 301
v1097.85 25297.52 26598.86 23198.99 32198.67 20199.75 4299.41 22495.70 35698.98 25599.41 28294.75 22999.23 32296.01 33894.63 35998.67 308
WR-MVS_H98.13 20897.87 22898.90 21999.02 31698.84 18699.70 5699.59 6097.27 25398.40 32699.19 33295.53 19399.23 32298.34 19493.78 37598.61 338
miper_enhance_ethall98.16 20598.08 20398.41 28798.96 32797.72 26798.45 39599.32 27996.95 28598.97 25799.17 33397.06 13699.22 32697.86 23395.99 32798.29 367
GG-mvs-BLEND98.45 28198.55 37798.16 24099.43 21193.68 42397.23 36998.46 38189.30 35799.22 32695.43 35298.22 24297.98 389
FC-MVSNet-test98.75 16098.62 16099.15 18699.08 30799.45 10199.86 1199.60 5598.23 13598.70 29899.82 8496.80 14499.22 32699.07 9296.38 31698.79 271
UniMVSNet_NR-MVSNet98.22 19797.97 21598.96 20598.92 33198.98 16199.48 18899.53 10397.76 19898.71 29299.46 27196.43 16299.22 32698.57 16992.87 38598.69 296
DU-MVS98.08 21497.79 23398.96 20598.87 33898.98 16199.41 22199.45 20597.87 18298.71 29299.50 25594.82 22099.22 32698.57 16992.87 38598.68 301
cl____98.01 22997.84 23198.55 26799.25 26397.97 25198.71 37899.34 26296.47 32298.59 31699.54 24195.65 19099.21 33197.21 29095.77 33398.46 355
WR-MVS98.06 21697.73 24599.06 19298.86 34199.25 12899.19 29999.35 25797.30 25198.66 30199.43 27693.94 26699.21 33198.58 16694.28 36598.71 287
test_040296.64 33396.24 33597.85 33398.85 34296.43 33399.44 20699.26 29793.52 38696.98 37699.52 24888.52 37099.20 33392.58 39197.50 28497.93 392
SixPastTwentyTwo97.50 30297.33 29898.03 31798.65 36796.23 34199.77 3498.68 38197.14 26497.90 35299.93 1090.45 34399.18 33497.00 30396.43 31598.67 308
cl2297.85 25297.64 25598.48 27399.09 30497.87 25998.60 38899.33 26997.11 27098.87 27399.22 32892.38 31199.17 33598.21 20395.99 32798.42 358
WB-MVSnew97.65 29197.65 25297.63 34698.78 34997.62 27399.13 30998.33 39097.36 24699.07 23898.94 35995.64 19199.15 33692.95 38598.68 21696.12 412
IterMVS-SCA-FT97.82 26197.75 24398.06 31699.57 15996.36 33599.02 33599.49 15297.18 26198.71 29299.72 16092.72 29599.14 33797.44 27895.86 33298.67 308
pmmvs597.52 29997.30 30198.16 30998.57 37696.73 31999.27 27698.90 35296.14 34598.37 32899.53 24591.54 33199.14 33797.51 27095.87 33198.63 327
v14897.79 26797.55 26198.50 27098.74 35797.72 26799.54 14899.33 26996.26 33498.90 26799.51 25294.68 23499.14 33797.83 23793.15 38298.63 327
miper_ehance_all_eth98.18 20398.10 19998.41 28799.23 26797.72 26798.72 37799.31 28396.60 31198.88 27099.29 31797.29 12899.13 34097.60 25995.99 32798.38 363
NR-MVSNet97.97 23697.61 25899.02 19798.87 33899.26 12699.47 19599.42 22197.63 21397.08 37499.50 25595.07 21099.13 34097.86 23393.59 37698.68 301
IterMVS97.83 25897.77 23898.02 31999.58 15796.27 33999.02 33599.48 16497.22 25998.71 29299.70 16592.75 29299.13 34097.46 27696.00 32698.67 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 36694.90 35891.84 39197.24 40180.01 42198.52 39299.48 16489.01 40891.99 40899.67 18885.67 38899.13 34095.44 35197.03 30696.39 409
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 22197.96 21698.33 29499.26 25997.38 28098.56 39199.31 28396.65 30398.88 27099.52 24896.58 15399.12 34497.39 28195.53 34298.47 352
pmmvs498.13 20897.90 22398.81 24098.61 37298.87 18198.99 34399.21 30896.44 32399.06 24399.58 22595.90 18199.11 34597.18 29696.11 32398.46 355
TransMVSNet (Re)97.15 32196.58 32798.86 23199.12 29698.85 18599.49 18498.91 35095.48 35997.16 37299.80 11193.38 27999.11 34594.16 37391.73 39198.62 329
ambc93.06 38992.68 42082.36 41498.47 39498.73 37895.09 39597.41 40355.55 42199.10 34796.42 33091.32 39297.71 395
Baseline_NR-MVSNet97.76 26997.45 27698.68 25399.09 30498.29 23499.41 22198.85 35995.65 35798.63 31099.67 18894.82 22099.10 34798.07 21992.89 38498.64 320
test_vis3_rt87.04 38185.81 38490.73 39593.99 41981.96 41699.76 3790.23 43092.81 39481.35 41891.56 41840.06 42799.07 34994.27 37088.23 40591.15 418
CP-MVSNet98.09 21297.78 23699.01 19898.97 32699.24 12999.67 6999.46 19497.25 25598.48 32399.64 20193.79 27399.06 35098.63 15694.10 36998.74 283
PS-CasMVS97.93 23997.59 26098.95 20798.99 32199.06 15399.68 6699.52 10897.13 26598.31 33199.68 18292.44 31099.05 35198.51 17794.08 37098.75 280
K. test v397.10 32396.79 32398.01 32098.72 36096.33 33699.87 897.05 40797.59 21696.16 38699.80 11188.71 36499.04 35296.69 32196.55 31398.65 318
new_pmnet96.38 33996.03 34197.41 35398.13 38795.16 36899.05 32799.20 30993.94 38197.39 36698.79 37191.61 33099.04 35290.43 39895.77 33398.05 382
DIV-MVS_self_test98.01 22997.85 23098.48 27399.24 26597.95 25598.71 37899.35 25796.50 31698.60 31599.54 24195.72 18899.03 35497.21 29095.77 33398.46 355
IterMVS-LS98.46 17798.42 17698.58 26199.59 15598.00 24999.37 24099.43 21996.94 28799.07 23899.59 22197.87 11099.03 35498.32 19795.62 33898.71 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 29197.68 24997.55 35098.62 37094.97 37098.84 36599.30 28796.83 29498.19 34099.34 30597.01 13999.02 35695.00 36196.01 32598.64 320
Patchmtry97.75 27397.40 28898.81 24099.10 30198.87 18199.11 31899.33 26994.83 37298.81 28199.38 29294.33 25199.02 35696.10 33495.57 34098.53 346
N_pmnet94.95 36095.83 34692.31 39098.47 38079.33 42299.12 31292.81 42893.87 38297.68 35999.13 33893.87 27099.01 35891.38 39596.19 32198.59 342
CR-MVSNet98.17 20497.93 22198.87 22899.18 28098.49 22399.22 29599.33 26996.96 28399.56 12899.38 29294.33 25199.00 35994.83 36498.58 22099.14 238
c3_l98.12 21098.04 20898.38 29199.30 24897.69 27198.81 36899.33 26996.67 30198.83 27999.34 30597.11 13298.99 36097.58 26195.34 34598.48 350
test0.0.03 197.71 28297.42 28698.56 26598.41 38397.82 26298.78 37198.63 38397.34 24798.05 34898.98 35594.45 24898.98 36195.04 36097.15 30498.89 266
PatchT97.03 32596.44 33198.79 24398.99 32198.34 23399.16 30399.07 32692.13 39799.52 13797.31 40794.54 24498.98 36188.54 40598.73 21499.03 254
GBi-Net97.68 28697.48 27098.29 29999.51 17997.26 28699.43 21199.48 16496.49 31799.07 23899.32 31290.26 34598.98 36197.10 29896.65 30998.62 329
test197.68 28697.48 27098.29 29999.51 17997.26 28699.43 21199.48 16496.49 31799.07 23899.32 31290.26 34598.98 36197.10 29896.65 30998.62 329
FMVSNet398.03 22497.76 24298.84 23599.39 22598.98 16199.40 22999.38 24196.67 30199.07 23899.28 31992.93 28798.98 36197.10 29896.65 30998.56 345
FMVSNet297.72 27997.36 29198.80 24299.51 17998.84 18699.45 20099.42 22196.49 31798.86 27799.29 31790.26 34598.98 36196.44 32996.56 31298.58 343
FMVSNet196.84 32996.36 33398.29 29999.32 24697.26 28699.43 21199.48 16495.11 36498.55 31899.32 31283.95 39998.98 36195.81 34196.26 32098.62 329
ppachtmachnet_test97.49 30797.45 27697.61 34898.62 37095.24 36498.80 36999.46 19496.11 34798.22 33899.62 21296.45 16098.97 36893.77 37595.97 33098.61 338
TranMVSNet+NR-MVSNet97.93 23997.66 25198.76 24698.78 34998.62 20799.65 8199.49 15297.76 19898.49 32299.60 21994.23 25498.97 36898.00 22392.90 38398.70 292
MVStest196.08 34695.48 35197.89 33198.93 32996.70 32099.56 13099.35 25792.69 39591.81 40999.46 27189.90 35198.96 37095.00 36192.61 38898.00 387
test_method91.10 37691.36 37890.31 39695.85 40973.72 42994.89 41799.25 29968.39 42095.82 38999.02 35080.50 41098.95 37193.64 37794.89 35798.25 370
ADS-MVSNet298.02 22698.07 20697.87 33299.33 23995.19 36699.23 29199.08 32396.24 33599.10 23399.67 18894.11 25998.93 37296.81 31599.05 19199.48 191
ET-MVSNet_ETH3D96.49 33695.64 35099.05 19499.53 17198.82 19098.84 36597.51 40597.63 21384.77 41499.21 33192.09 31598.91 37398.98 10192.21 39099.41 212
miper_lstm_enhance98.00 23197.91 22298.28 30399.34 23897.43 27898.88 36199.36 25096.48 32098.80 28399.55 23695.98 17498.91 37397.27 28795.50 34398.51 348
MonoMVSNet98.38 18698.47 17498.12 31498.59 37596.19 34399.72 5298.79 36797.89 18099.44 15399.52 24896.13 16998.90 37598.64 15497.54 27999.28 229
PEN-MVS97.76 26997.44 28198.72 24898.77 35498.54 21499.78 3299.51 12297.06 27598.29 33499.64 20192.63 30198.89 37698.09 21293.16 38198.72 285
testing397.28 31596.76 32498.82 23799.37 23098.07 24699.45 20099.36 25097.56 22197.89 35398.95 35883.70 40098.82 37796.03 33698.56 22399.58 163
testgi97.65 29197.50 26898.13 31399.36 23396.45 33299.42 21899.48 16497.76 19897.87 35499.45 27391.09 33798.81 37894.53 36698.52 22699.13 240
testf190.42 37990.68 38089.65 39997.78 39173.97 42799.13 30998.81 36489.62 40591.80 41098.93 36062.23 41998.80 37986.61 41391.17 39396.19 410
APD_test290.42 37990.68 38089.65 39997.78 39173.97 42799.13 30998.81 36489.62 40591.80 41098.93 36062.23 41998.80 37986.61 41391.17 39396.19 410
MIMVSNet97.73 27797.45 27698.57 26299.45 20897.50 27699.02 33598.98 33796.11 34799.41 16299.14 33790.28 34498.74 38195.74 34398.93 19999.47 197
LCM-MVSNet-Re97.83 25898.15 19396.87 36999.30 24892.25 39999.59 10998.26 39197.43 23996.20 38599.13 33896.27 16698.73 38298.17 20898.99 19699.64 143
Syy-MVS97.09 32497.14 31096.95 36699.00 31892.73 39799.29 26699.39 23397.06 27597.41 36398.15 39393.92 26898.68 38391.71 39398.34 23299.45 205
myMVS_eth3d96.89 32796.37 33298.43 28699.00 31897.16 29099.29 26699.39 23397.06 27597.41 36398.15 39383.46 40198.68 38395.27 35698.34 23299.45 205
DTE-MVSNet97.51 30197.19 30998.46 27998.63 36998.13 24399.84 1299.48 16496.68 30097.97 35199.67 18892.92 28898.56 38596.88 31492.60 38998.70 292
PC_three_145298.18 14399.84 3899.70 16599.31 398.52 38698.30 19999.80 10599.81 66
mvsany_test393.77 36893.45 37294.74 38195.78 41088.01 40799.64 8498.25 39298.28 12694.31 39897.97 40068.89 41598.51 38797.50 27190.37 39897.71 395
UnsupCasMVSNet_bld93.53 36992.51 37596.58 37497.38 39793.82 38598.24 40499.48 16491.10 40293.10 40396.66 40974.89 41398.37 38894.03 37487.71 40697.56 400
Anonymous2024052196.20 34295.89 34597.13 36097.72 39494.96 37199.79 3199.29 29193.01 39197.20 37199.03 34889.69 35498.36 38991.16 39696.13 32298.07 380
test_f91.90 37591.26 37993.84 38495.52 41485.92 40999.69 6098.53 38895.31 36193.87 40096.37 41155.33 42298.27 39095.70 34490.98 39697.32 403
MDA-MVSNet_test_wron95.45 35394.60 36098.01 32098.16 38697.21 28999.11 31899.24 30293.49 38780.73 42098.98 35593.02 28598.18 39194.22 37294.45 36298.64 320
UnsupCasMVSNet_eth96.44 33796.12 33897.40 35498.65 36795.65 35199.36 24599.51 12297.13 26596.04 38898.99 35388.40 37198.17 39296.71 31990.27 39998.40 361
KD-MVS_2432*160094.62 36193.72 36997.31 35597.19 40395.82 34998.34 39999.20 30995.00 36897.57 36098.35 38687.95 37698.10 39392.87 38777.00 41898.01 384
miper_refine_blended94.62 36193.72 36997.31 35597.19 40395.82 34998.34 39999.20 30995.00 36897.57 36098.35 38687.95 37698.10 39392.87 38777.00 41898.01 384
YYNet195.36 35594.51 36297.92 32897.89 38997.10 29399.10 32099.23 30393.26 39080.77 41999.04 34792.81 29198.02 39594.30 36894.18 36798.64 320
EU-MVSNet97.98 23398.03 20997.81 33998.72 36096.65 32599.66 7599.66 2898.09 15698.35 32999.82 8495.25 20598.01 39697.41 28095.30 34698.78 272
Gipumacopyleft90.99 37790.15 38293.51 38598.73 35890.12 40593.98 41899.45 20579.32 41692.28 40694.91 41369.61 41497.98 39787.42 40995.67 33792.45 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 35694.73 35997.15 35895.53 41395.94 34799.35 25099.10 32095.13 36293.55 40197.54 40288.15 37597.91 39894.58 36589.69 40297.61 398
PM-MVS92.96 37292.23 37695.14 38095.61 41189.98 40699.37 24098.21 39494.80 37395.04 39697.69 40165.06 41697.90 39994.30 36889.98 40197.54 401
MDA-MVSNet-bldmvs94.96 35993.98 36697.92 32898.24 38597.27 28499.15 30699.33 26993.80 38380.09 42199.03 34888.31 37297.86 40093.49 37994.36 36498.62 329
Patchmatch-RL test95.84 34995.81 34795.95 37895.61 41190.57 40498.24 40498.39 38995.10 36695.20 39398.67 37594.78 22497.77 40196.28 33390.02 40099.51 185
Anonymous2023120696.22 34096.03 34196.79 37197.31 40094.14 38399.63 9099.08 32396.17 34197.04 37599.06 34593.94 26697.76 40286.96 41195.06 35198.47 352
SD-MVS99.41 5199.52 1299.05 19499.74 8699.68 5499.46 19899.52 10899.11 3399.88 2799.91 2399.43 197.70 40398.72 14399.93 2699.77 87
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 31797.35 29396.95 36697.84 39093.61 39199.57 12496.63 41396.13 34698.87 27398.61 37894.59 23997.70 40395.08 35998.86 20599.55 169
dongtai93.26 37092.93 37494.25 38299.39 22585.68 41097.68 41393.27 42492.87 39396.85 37999.39 29082.33 40697.48 40576.78 41897.80 26499.58 163
pmmvs394.09 36793.25 37396.60 37394.76 41894.49 37898.92 35798.18 39689.66 40496.48 38298.06 39986.28 38597.33 40689.68 40187.20 40797.97 390
KD-MVS_self_test95.00 35894.34 36396.96 36597.07 40595.39 36299.56 13099.44 21395.11 36497.13 37397.32 40691.86 32097.27 40790.35 39981.23 41598.23 372
FMVSNet596.43 33896.19 33797.15 35899.11 29895.89 34899.32 25699.52 10894.47 37998.34 33099.07 34387.54 38097.07 40892.61 39095.72 33698.47 352
new-patchmatchnet94.48 36494.08 36595.67 37995.08 41692.41 39899.18 30199.28 29394.55 37893.49 40297.37 40587.86 37897.01 40991.57 39488.36 40497.61 398
LCM-MVSNet86.80 38385.22 38791.53 39387.81 42580.96 41998.23 40698.99 33671.05 41890.13 41396.51 41048.45 42696.88 41090.51 39785.30 40996.76 405
CL-MVSNet_self_test94.49 36393.97 36796.08 37796.16 40893.67 39098.33 40199.38 24195.13 36297.33 36798.15 39392.69 29996.57 41188.67 40479.87 41697.99 388
MIMVSNet195.51 35295.04 35796.92 36897.38 39795.60 35299.52 15799.50 14293.65 38596.97 37799.17 33385.28 39396.56 41288.36 40695.55 34198.60 341
test20.0396.12 34495.96 34396.63 37297.44 39695.45 35999.51 16699.38 24196.55 31496.16 38699.25 32593.76 27596.17 41387.35 41094.22 36698.27 368
tmp_tt82.80 38581.52 38886.66 40166.61 43168.44 43092.79 42097.92 39868.96 41980.04 42299.85 6085.77 38796.15 41497.86 23343.89 42495.39 414
test_fmvs392.10 37491.77 37793.08 38896.19 40786.25 40899.82 1698.62 38496.65 30395.19 39496.90 40855.05 42395.93 41596.63 32690.92 39797.06 404
kuosan90.92 37890.11 38393.34 38698.78 34985.59 41198.15 40893.16 42689.37 40792.07 40798.38 38581.48 40995.19 41662.54 42597.04 30599.25 233
dmvs_testset95.02 35796.12 33891.72 39299.10 30180.43 42099.58 11797.87 40097.47 23195.22 39298.82 36793.99 26495.18 41788.09 40794.91 35699.56 168
PMMVS286.87 38285.37 38691.35 39490.21 42383.80 41398.89 36097.45 40683.13 41591.67 41295.03 41248.49 42594.70 41885.86 41577.62 41795.54 413
PMVScopyleft70.75 2275.98 39174.97 39279.01 40770.98 43055.18 43293.37 41998.21 39465.08 42461.78 42593.83 41521.74 43292.53 41978.59 41791.12 39589.34 420
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 38485.65 38582.75 40586.77 42663.39 43198.35 39898.92 34574.11 41783.39 41698.98 35550.85 42492.40 42084.54 41694.97 35392.46 415
WB-MVS93.10 37194.10 36490.12 39795.51 41581.88 41799.73 5099.27 29695.05 36793.09 40498.91 36494.70 23391.89 42176.62 41994.02 37296.58 407
SSC-MVS92.73 37393.73 36889.72 39895.02 41781.38 41899.76 3799.23 30394.87 37192.80 40598.93 36094.71 23291.37 42274.49 42193.80 37496.42 408
MVEpermissive76.82 2176.91 39074.31 39484.70 40285.38 42876.05 42696.88 41693.17 42567.39 42171.28 42389.01 42221.66 43387.69 42371.74 42272.29 42090.35 419
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 38779.88 38982.81 40490.75 42276.38 42597.69 41295.76 41766.44 42283.52 41592.25 41762.54 41887.16 42468.53 42361.40 42184.89 422
EMVS80.02 38879.22 39082.43 40691.19 42176.40 42497.55 41592.49 42966.36 42383.01 41791.27 41964.63 41785.79 42565.82 42460.65 42285.08 421
ANet_high77.30 38974.86 39384.62 40375.88 42977.61 42397.63 41493.15 42788.81 40964.27 42489.29 42136.51 42883.93 42675.89 42052.31 42392.33 417
wuyk23d40.18 39241.29 39736.84 40886.18 42749.12 43379.73 42122.81 43327.64 42525.46 42828.45 42821.98 43148.89 42755.80 42623.56 42712.51 425
test12339.01 39442.50 39628.53 40939.17 43220.91 43498.75 37419.17 43419.83 42738.57 42666.67 42433.16 42915.42 42837.50 42829.66 42649.26 423
testmvs39.17 39343.78 39525.37 41036.04 43316.84 43598.36 39726.56 43220.06 42638.51 42767.32 42329.64 43015.30 42937.59 42739.90 42543.98 424
mmdepth0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.13 3980.17 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4301.57 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
cdsmvs_eth3d_5k24.64 39532.85 3980.00 4110.00 4340.00 4360.00 42299.51 1220.00 4290.00 43099.56 23396.58 1530.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas8.27 39711.03 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 43099.01 180.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
ab-mvs-re8.30 39611.06 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43099.58 2250.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS97.16 29095.47 350
FOURS199.91 199.93 199.87 899.56 7399.10 3499.81 46
test_one_060199.81 4699.88 899.49 15298.97 5899.65 10299.81 9899.09 14
eth-test20.00 434
eth-test0.00 434
RE-MVS-def99.34 4299.76 6899.82 2599.63 9099.52 10898.38 11499.76 6799.82 8498.75 5898.61 16099.81 10199.77 87
IU-MVS99.84 3299.88 899.32 27998.30 12599.84 3898.86 12399.85 7799.89 21
save fliter99.76 6899.59 7699.14 30899.40 23099.00 50
test072699.85 2699.89 499.62 9599.50 14299.10 3499.86 3699.82 8498.94 32
GSMVS99.52 178
test_part299.81 4699.83 1999.77 61
sam_mvs194.86 21999.52 178
sam_mvs94.72 231
MTGPAbinary99.47 185
MTMP99.54 14898.88 355
test9_res97.49 27299.72 12899.75 93
agg_prior297.21 29099.73 12799.75 93
test_prior499.56 8298.99 343
test_prior298.96 35098.34 12099.01 24999.52 24898.68 6797.96 22599.74 125
新几何299.01 340
旧先验199.74 8699.59 7699.54 9099.69 17598.47 8399.68 13699.73 102
原ACMM298.95 353
test22299.75 7899.49 9598.91 35999.49 15296.42 32599.34 18299.65 19598.28 9699.69 13399.72 109
segment_acmp98.96 25
testdata198.85 36498.32 123
plane_prior799.29 25297.03 303
plane_prior699.27 25796.98 30792.71 297
plane_prior499.61 216
plane_prior397.00 30598.69 8799.11 230
plane_prior299.39 23398.97 58
plane_prior199.26 259
plane_prior96.97 30899.21 29798.45 10797.60 273
n20.00 435
nn0.00 435
door-mid98.05 397
test1199.35 257
door97.92 398
HQP5-MVS96.83 315
HQP-NCC99.19 27798.98 34698.24 13298.66 301
ACMP_Plane99.19 27798.98 34698.24 13298.66 301
BP-MVS97.19 294
HQP3-MVS99.39 23397.58 275
HQP2-MVS92.47 306
NP-MVS99.23 26796.92 31199.40 286
MDTV_nov1_ep13_2view95.18 36799.35 25096.84 29299.58 12495.19 20797.82 23899.46 202
ACMMP++_ref97.19 302
ACMMP++97.43 293
Test By Simon98.75 58