This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21199.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test_vis1_n_192098.63 15998.40 16699.31 14399.86 2097.94 24799.67 6499.62 4199.43 799.99 299.91 2087.29 364100.00 199.92 1299.92 2499.98 2
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
patch_mono-299.26 6899.62 598.16 29199.81 4694.59 35499.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
h-mvs3397.70 26797.28 28798.97 19199.70 10197.27 27099.36 23099.45 19398.94 5499.66 8399.64 19294.93 20499.99 499.48 4184.36 38599.65 129
xiu_mvs_v1_base_debu99.29 6299.27 5799.34 13699.63 13098.97 15399.12 29199.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 222
xiu_mvs_v1_base99.29 6299.27 5799.34 13699.63 13098.97 15399.12 29199.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 222
xiu_mvs_v1_base_debi99.29 6299.27 5799.34 13699.63 13098.97 15399.12 29199.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 222
EPNet98.86 12798.71 13199.30 14897.20 37798.18 22999.62 8898.91 33299.28 1698.63 29499.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM99.74 6199.31 10799.52 14898.87 33899.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
test_cas_vis1_n_192099.16 8299.01 9499.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3199.99 1
test_vis1_n97.92 23097.44 26599.34 13699.53 16298.08 23599.74 4499.49 14399.15 20100.00 199.94 679.51 38699.98 1399.88 1499.76 11099.97 4
xiu_mvs_v2_base99.26 6899.25 6199.29 15199.53 16298.91 16999.02 31499.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 236
PS-MVSNAJ99.32 5899.32 4099.30 14899.57 15198.94 16598.97 32799.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 237
QAPM98.67 15598.30 17399.80 4699.20 25599.67 5199.77 3499.72 1194.74 35298.73 27599.90 2695.78 17799.98 1396.96 28699.88 5199.76 87
3Dnovator97.25 999.24 7399.05 8299.81 4499.12 27499.66 5399.84 1399.74 1099.09 3298.92 25099.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
OpenMVScopyleft96.50 1698.47 16598.12 18599.52 11199.04 29299.53 8299.82 1799.72 1194.56 35598.08 32499.88 3694.73 22199.98 1397.47 25599.76 11099.06 228
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_fmvs1_n98.41 17198.14 18299.21 16299.82 4297.71 25999.74 4499.49 14399.32 1499.99 299.95 385.32 37199.97 2199.82 1699.84 7799.96 7
CANet_DTU98.97 11798.87 11499.25 15799.33 22498.42 22199.08 30099.30 27599.16 1999.43 14099.75 13895.27 19599.97 2198.56 15899.95 1699.36 200
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17199.71 6899.80 10399.12 1399.97 2198.33 17999.87 5499.83 49
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 7898.97 10099.82 4199.17 26699.68 4899.81 2099.51 11599.20 1898.72 27699.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
mvsany_test199.50 2099.46 2099.62 8399.61 14099.09 13698.94 33399.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
test_fmvs198.88 12398.79 12599.16 16799.69 10697.61 26299.55 13499.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2499.90 17
DVP-MVS++99.59 899.50 1399.88 599.51 16999.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
MSC_two_6792asdad99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
No_MVS99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
ZD-MVS99.71 9699.79 3099.61 4896.84 27199.56 11499.54 23198.58 7299.96 3096.93 28999.75 112
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17099.77 10799.79 74
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19299.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38399.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
UA-Net99.42 4299.29 5399.80 4699.62 13699.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
HPM-MVS++copyleft99.39 5199.23 6499.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17099.80 9799.79 74
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
MP-MVScopyleft99.33 5799.15 7099.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 20899.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 9898.90 10999.74 6199.80 5299.46 9299.59 10199.49 14397.03 25899.63 9699.69 16897.27 12499.96 3097.82 21899.84 7799.81 61
PVSNet_Blended_VisFu99.36 5499.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19399.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
UGNet98.87 12498.69 13399.40 13099.22 25298.72 18899.44 19499.68 2099.24 1799.18 20799.42 26592.74 28399.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 5899.32 4099.32 14299.85 2698.29 22499.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.01_n99.22 7599.03 8699.79 4998.42 35799.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
GST-MVS99.40 5099.24 6299.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17399.86 6299.81 61
CANet99.25 7299.14 7199.59 8799.41 20299.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
MP-MVS-pluss99.37 5399.20 6699.88 599.90 499.87 1299.30 24599.52 10197.18 24099.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4299.27 5799.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 5996.67 301
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
RPMNet96.72 30995.90 32199.19 16499.18 26098.49 21299.22 27699.52 10188.72 38599.56 11497.38 37994.08 25199.95 5986.87 38998.58 20699.14 214
sss99.17 8099.05 8299.53 10599.62 13698.97 15399.36 23099.62 4197.83 17299.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
fmvsm_s_conf0.1_n_a99.26 6899.06 8199.85 2899.52 16699.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2499.98 2
fmvsm_s_conf0.1_n99.29 6299.10 7599.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 31195.45 32999.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40298.81 4499.94 6998.79 12399.86 6299.84 40
旧先验298.96 32896.70 27899.47 13199.94 6998.19 188
新几何199.75 5899.75 7399.59 7099.54 8596.76 27499.29 17999.64 19298.43 8399.94 6996.92 29199.66 12899.72 103
testdata99.54 9799.75 7398.95 16299.51 11597.07 25299.43 14099.70 15898.87 3799.94 6997.76 22599.64 13199.72 103
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 19799.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 7699.10 7599.45 12399.89 898.52 20899.39 21999.94 198.73 7699.11 21699.89 3095.50 18799.94 6999.50 3699.97 799.89 20
APD-MVScopyleft99.27 6699.08 7999.84 3999.75 7399.79 3099.50 16399.50 13597.16 24299.77 5199.82 7698.78 4899.94 6997.56 24699.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 30699.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 10698.88 11399.61 8499.62 13699.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21499.72 103
DeepC-MVS98.35 299.30 6099.19 6799.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 6699.12 7399.74 6199.18 26099.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 17999.84 7799.52 167
SDMVSNet99.11 9898.90 10999.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22599.72 103
FE-MVS98.48 16498.17 17899.40 13099.54 16198.96 15799.68 6198.81 34495.54 33699.62 10099.70 15893.82 26099.93 8497.35 26399.46 14499.32 205
SF-MVS99.38 5299.24 6299.79 4999.79 5499.68 4899.57 11699.54 8597.82 17699.71 6899.80 10398.95 2799.93 8498.19 18899.84 7799.74 92
dcpmvs_299.23 7499.58 798.16 29199.83 3994.68 35299.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
Anonymous2024052998.09 20097.68 23699.34 13699.66 11998.44 21899.40 21599.43 20793.67 36299.22 19599.89 3090.23 33699.93 8499.26 6798.33 21999.66 125
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
无先验98.99 32199.51 11596.89 26899.93 8497.53 24999.72 103
VDDNet97.55 28097.02 29899.16 16799.49 18098.12 23499.38 22499.30 27595.35 33899.68 7499.90 2682.62 38199.93 8499.31 5898.13 23699.42 193
ab-mvs98.86 12798.63 14199.54 9799.64 12799.19 12099.44 19499.54 8597.77 17999.30 17699.81 9094.20 24599.93 8499.17 7498.82 19699.49 177
F-COLMAP99.19 7699.04 8499.64 7899.78 5699.27 11399.42 20599.54 8597.29 23199.41 14799.59 21298.42 8599.93 8498.19 18899.69 12399.73 97
Anonymous20240521198.30 18197.98 20299.26 15699.57 15198.16 23099.41 20798.55 36496.03 33099.19 20499.74 14391.87 30799.92 9599.16 7598.29 22499.70 113
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
VDD-MVS97.73 26197.35 27798.88 21099.47 18997.12 27899.34 23898.85 34098.19 12799.67 7899.85 5482.98 37999.92 9599.49 4098.32 22399.60 146
VNet99.11 9898.90 10999.73 6499.52 16699.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18599.92 9599.52 3498.18 23299.72 103
XVG-OURS-SEG-HR98.69 15298.62 14698.89 20899.71 9697.74 25499.12 29199.54 8598.44 9999.42 14399.71 15494.20 24599.92 9598.54 16298.90 19099.00 233
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18599.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
HY-MVS97.30 798.85 13498.64 14099.47 12099.42 19999.08 13999.62 8899.36 24097.39 22399.28 18099.68 17496.44 15499.92 9598.37 17598.22 22799.40 197
DP-MVS99.16 8298.95 10499.78 5299.77 6299.53 8299.41 20799.50 13597.03 25899.04 23299.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
IB-MVS95.67 1896.22 31795.44 33098.57 24799.21 25396.70 30498.65 36197.74 38196.71 27797.27 34898.54 36186.03 36799.92 9598.47 16886.30 38399.10 217
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13099.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 7599.72 9199.40 21599.51 11597.53 20799.64 9399.78 12198.84 4199.91 10597.63 23799.82 90
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 21599.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11199.65 5799.05 30699.41 21296.22 31598.95 24599.49 24798.77 5199.91 105
train_agg99.02 11198.77 12699.77 5599.67 11199.65 5799.05 30699.41 21296.28 30998.95 24599.49 24798.76 5299.91 10597.63 23799.72 11899.75 88
test_899.67 11199.61 6799.03 31199.41 21296.28 30998.93 24999.48 25298.76 5299.91 105
agg_prior99.67 11199.62 6599.40 22098.87 25999.91 105
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21299.12 21499.66 18598.67 6699.91 10597.70 23499.69 12399.71 112
LFMVS97.90 23397.35 27799.54 9799.52 16699.01 14899.39 21998.24 37197.10 25099.65 8999.79 11584.79 37399.91 10599.28 6398.38 21699.69 115
XVG-OURS98.73 14898.68 13498.88 21099.70 10197.73 25598.92 33599.55 7798.52 9199.45 13499.84 6495.27 19599.91 10598.08 19998.84 19499.00 233
PLCcopyleft97.94 499.02 11198.85 11899.53 10599.66 11999.01 14899.24 27199.52 10196.85 27099.27 18499.48 25298.25 9399.91 10597.76 22599.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 27497.06 29799.47 12099.61 14099.09 13698.04 38699.25 28791.24 37798.51 30399.70 15894.55 23399.91 10592.76 36699.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_vis1_rt95.81 32695.65 32696.32 35399.67 11191.35 38099.49 17496.74 39098.25 11795.24 36898.10 37374.96 38799.90 11699.53 3298.85 19397.70 372
FA-MVS(test-final)98.75 14598.53 15999.41 12999.55 15999.05 14499.80 2599.01 31896.59 29199.58 11099.59 21295.39 19099.90 11697.78 22199.49 14399.28 208
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 24999.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
CDPH-MVS99.13 8898.91 10899.80 4699.75 7399.71 4499.15 28599.41 21296.60 28999.60 10699.55 22698.83 4299.90 11697.48 25399.83 8699.78 80
NCCC99.34 5699.19 6799.79 4999.61 14099.65 5799.30 24599.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18499.63 13399.80 70
114514_t98.93 11998.67 13599.72 6599.85 2699.53 8299.62 8899.59 5792.65 37299.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
1112_ss98.98 11598.77 12699.59 8799.68 11099.02 14699.25 26999.48 15597.23 23799.13 21299.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
PHI-MVS99.30 6099.17 6999.70 6799.56 15599.52 8599.58 10999.80 897.12 24699.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
AdaColmapbinary99.01 11498.80 12299.66 6999.56 15599.54 7999.18 28099.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25399.77 10799.55 159
COLMAP_ROBcopyleft97.56 698.86 12798.75 12899.17 16699.88 1198.53 20499.34 23899.59 5797.55 20398.70 28399.89 3095.83 17599.90 11698.10 19499.90 3999.08 222
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 17798.03 19799.31 14399.63 13098.56 20199.54 13996.75 38997.53 20799.73 6299.65 18691.25 32499.89 12698.62 14399.56 13899.48 178
tttt051798.42 16998.14 18299.28 15499.66 11998.38 22299.74 4496.85 38797.68 19099.79 4299.74 14391.39 32199.89 12698.83 11899.56 13899.57 156
test1299.75 5899.64 12799.61 6799.29 27999.21 19898.38 8799.89 12699.74 11599.74 92
Test_1112_low_res98.89 12298.66 13899.57 9299.69 10698.95 16299.03 31199.47 17396.98 26099.15 21099.23 31296.77 14199.89 12698.83 11898.78 19999.86 33
CNLPA99.14 8698.99 9699.59 8799.58 14999.41 9899.16 28299.44 20198.45 9699.19 20499.49 24798.08 10199.89 12697.73 22999.75 11299.48 178
sd_testset98.75 14598.57 15599.29 15199.81 4698.26 22699.56 12299.62 4198.78 7399.64 9399.88 3692.02 30499.88 13199.54 3098.26 22599.72 103
APD_test195.87 32496.49 30894.00 35999.53 16284.01 38799.54 13999.32 26795.91 33297.99 32999.85 5485.49 37099.88 13191.96 36998.84 19498.12 354
diffmvspermissive99.14 8699.02 9099.51 11399.61 14098.96 15799.28 25399.49 14398.46 9599.72 6799.71 15496.50 15099.88 13199.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 12798.80 12299.03 18199.76 6598.79 18499.28 25399.91 397.42 22099.67 7899.37 28097.53 11399.88 13198.98 9097.29 27898.42 337
PVSNet_Blended99.08 10498.97 10099.42 12899.76 6598.79 18498.78 34999.91 396.74 27599.67 7899.49 24797.53 11399.88 13198.98 9099.85 6999.60 146
MVS97.28 29496.55 30699.48 11798.78 32798.95 16299.27 25899.39 22383.53 38998.08 32499.54 23196.97 13599.87 13694.23 34899.16 16599.63 140
MG-MVS99.13 8899.02 9099.45 12399.57 15198.63 19599.07 30199.34 25098.99 4599.61 10399.82 7697.98 10499.87 13697.00 28299.80 9799.85 36
MSDG98.98 11598.80 12299.53 10599.76 6599.19 12098.75 35299.55 7797.25 23499.47 13199.77 12997.82 10799.87 13696.93 28999.90 3999.54 161
ETV-MVS99.26 6899.21 6599.40 13099.46 19099.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 13999.10 7999.59 13699.04 229
thisisatest051598.14 19597.79 22099.19 16499.50 17898.50 21198.61 36396.82 38896.95 26499.54 11999.43 26391.66 31699.86 13998.08 19999.51 14299.22 211
thres600view797.86 23897.51 25398.92 19999.72 9197.95 24599.59 10198.74 35197.94 16199.27 18498.62 35891.75 31099.86 13993.73 35398.19 23198.96 239
lupinMVS99.13 8899.01 9499.46 12299.51 16998.94 16599.05 30699.16 30197.86 16799.80 4099.56 22397.39 11699.86 13998.94 9499.85 6999.58 154
PVSNet96.02 1798.85 13498.84 11998.89 20899.73 8797.28 26998.32 37999.60 5497.86 16799.50 12699.57 22096.75 14299.86 13998.56 15899.70 12299.54 161
MAR-MVS98.86 12798.63 14199.54 9799.37 21499.66 5399.45 18899.54 8596.61 28799.01 23599.40 27297.09 12999.86 13997.68 23699.53 14199.10 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250696.81 30896.65 30497.29 33499.74 8092.21 37799.60 9585.06 40699.13 2299.77 5199.93 987.82 36299.85 14599.38 4899.38 14999.80 70
AllTest98.87 12498.72 12999.31 14399.86 2098.48 21499.56 12299.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30299.83 8699.59 150
TestCases99.31 14399.86 2098.48 21499.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30299.83 8699.59 150
jason99.13 8899.03 8699.45 12399.46 19098.87 17299.12 29199.26 28598.03 15699.79 4299.65 18697.02 13299.85 14599.02 8799.90 3999.65 129
jason: jason.
CNVR-MVS99.42 4299.30 4999.78 5299.62 13699.71 4499.26 26799.52 10198.82 6599.39 15599.71 15498.96 2499.85 14598.59 15199.80 9799.77 82
PAPM_NR99.04 10898.84 11999.66 6999.74 8099.44 9499.39 21999.38 23197.70 18899.28 18099.28 30498.34 8999.85 14596.96 28699.45 14599.69 115
testing22297.16 29996.50 30799.16 16799.16 26898.47 21699.27 25898.66 36097.71 18698.23 31898.15 36982.28 38399.84 15197.36 26297.66 24799.18 213
test111198.04 21098.11 18697.83 31499.74 8093.82 36299.58 10995.40 39599.12 2599.65 8999.93 990.73 32999.84 15199.43 4699.38 14999.82 54
ECVR-MVScopyleft98.04 21098.05 19598.00 30399.74 8094.37 35799.59 10194.98 39699.13 2299.66 8399.93 990.67 33099.84 15199.40 4799.38 14999.80 70
test_yl98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15198.60 14998.33 21999.59 150
DCV-MVSNet98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15198.60 14998.33 21999.59 150
Fast-Effi-MVS+98.70 15098.43 16399.51 11399.51 16999.28 11199.52 14899.47 17396.11 32599.01 23599.34 29096.20 16199.84 15197.88 21198.82 19699.39 198
TSAR-MVS + GP.99.36 5499.36 3299.36 13599.67 11198.61 19899.07 30199.33 25799.00 4399.82 3599.81 9099.06 1699.84 15199.09 8099.42 14799.65 129
tpmrst98.33 17898.48 16197.90 30999.16 26894.78 35099.31 24399.11 30697.27 23299.45 13499.59 21295.33 19399.84 15198.48 16598.61 20399.09 221
Vis-MVSNetpermissive99.12 9498.97 10099.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21899.84 15199.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 15998.34 16999.51 11399.40 20799.03 14598.80 34799.36 24096.33 30699.00 23999.12 32698.46 8199.84 15195.23 33599.37 15699.66 125
PatchMatch-RL98.84 13798.62 14699.52 11199.71 9699.28 11199.06 30499.77 997.74 18499.50 12699.53 23595.41 18999.84 15197.17 27699.64 13199.44 191
EPP-MVSNet99.13 8898.99 9699.53 10599.65 12599.06 14299.81 2099.33 25797.43 21899.60 10699.88 3697.14 12699.84 15199.13 7698.94 18599.69 115
thres100view90097.76 25497.45 26098.69 23899.72 9197.86 25199.59 10198.74 35197.93 16299.26 18898.62 35891.75 31099.83 16393.22 35898.18 23298.37 343
tfpn200view997.72 26397.38 27398.72 23699.69 10697.96 24399.50 16398.73 35697.83 17299.17 20898.45 36391.67 31499.83 16393.22 35898.18 23298.37 343
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16399.74 92
131498.68 15498.54 15899.11 17398.89 31198.65 19399.27 25899.49 14396.89 26897.99 32999.56 22397.72 11199.83 16397.74 22899.27 16098.84 245
thres40097.77 25397.38 27398.92 19999.69 10697.96 24399.50 16398.73 35697.83 17299.17 20898.45 36391.67 31499.83 16393.22 35898.18 23298.96 239
casdiffmvspermissive99.13 8898.98 9999.56 9499.65 12599.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16399.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 16999.69 1999.85 6999.48 178
MVS_Test99.10 10298.97 10099.48 11799.49 18099.14 13199.67 6499.34 25097.31 22999.58 11099.76 13597.65 11299.82 16998.87 10599.07 17799.46 186
dp97.75 25897.80 21997.59 32699.10 27993.71 36599.32 24198.88 33696.48 29899.08 22399.55 22692.67 28999.82 16996.52 30598.58 20699.24 210
RPSCF98.22 18598.62 14696.99 34099.82 4291.58 37999.72 4999.44 20196.61 28799.66 8399.89 3095.92 17199.82 16997.46 25699.10 17499.57 156
PMMVS98.80 14198.62 14699.34 13699.27 24198.70 18998.76 35199.31 27197.34 22699.21 19899.07 32897.20 12599.82 16998.56 15898.87 19199.52 167
EIA-MVS99.18 7899.09 7899.45 12399.49 18099.18 12299.67 6499.53 9697.66 19399.40 15299.44 26198.10 9999.81 17498.94 9499.62 13499.35 201
Effi-MVS+98.81 13898.59 15399.48 11799.46 19099.12 13498.08 38599.50 13597.50 21099.38 15899.41 26996.37 15699.81 17499.11 7898.54 21199.51 173
thres20097.61 27897.28 28798.62 24199.64 12798.03 23799.26 26798.74 35197.68 19099.09 22298.32 36791.66 31699.81 17492.88 36398.22 22798.03 359
tpmvs97.98 22198.02 19997.84 31399.04 29294.73 35199.31 24399.20 29696.10 32998.76 27399.42 26594.94 20399.81 17496.97 28598.45 21598.97 237
casdiffmvs_mvgpermissive99.15 8499.02 9099.55 9699.66 11999.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17499.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 13899.37 3097.12 33899.60 14591.75 37898.61 36399.44 20199.35 1299.83 3499.85 5498.70 6399.81 17499.02 8799.91 3199.81 61
DPM-MVS98.95 11898.71 13199.66 6999.63 13099.55 7798.64 36299.10 30797.93 16299.42 14399.55 22698.67 6699.80 18095.80 32099.68 12699.61 144
DP-MVS Recon99.12 9498.95 10499.65 7399.74 8099.70 4699.27 25899.57 6496.40 30599.42 14399.68 17498.75 5599.80 18097.98 20599.72 11899.44 191
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33399.85 698.82 6599.65 8999.74 14398.51 7899.80 18098.83 11899.89 4899.64 136
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18399.65 2399.78 10499.41 195
Fast-Effi-MVS+-dtu98.77 14498.83 12198.60 24299.41 20296.99 29299.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18397.95 20799.45 14599.02 232
baseline198.31 17997.95 20699.38 13499.50 17898.74 18699.59 10198.93 32698.41 10099.14 21199.60 21094.59 22999.79 18398.48 16593.29 35699.61 144
baseline99.15 8499.02 9099.53 10599.66 11999.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18399.51 3599.14 16999.67 122
PVSNet_094.43 1996.09 32295.47 32897.94 30699.31 23194.34 35997.81 38799.70 1597.12 24697.46 34298.75 35589.71 34099.79 18397.69 23581.69 38999.68 119
API-MVS99.04 10899.03 8699.06 17799.40 20799.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 18896.98 28499.78 10498.07 356
OMC-MVS99.08 10499.04 8499.20 16399.67 11198.22 22899.28 25399.52 10198.07 14899.66 8399.81 9097.79 10899.78 18897.79 22099.81 9399.60 146
GeoE98.85 13498.62 14699.53 10599.61 14099.08 13999.80 2599.51 11597.10 25099.31 17499.78 12195.23 19999.77 19098.21 18699.03 18099.75 88
alignmvs98.81 13898.56 15799.58 9099.43 19799.42 9699.51 15698.96 32498.61 8499.35 16798.92 34794.78 21599.77 19099.35 5198.11 23799.54 161
tpm cat197.39 29197.36 27597.50 32999.17 26693.73 36499.43 19899.31 27191.27 37698.71 27799.08 32794.31 24399.77 19096.41 30998.50 21399.00 233
CostFormer97.72 26397.73 23297.71 32199.15 27294.02 36199.54 13999.02 31794.67 35399.04 23299.35 28692.35 30199.77 19098.50 16497.94 24099.34 203
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 194
MDTV_nov1_ep1398.32 17199.11 27694.44 35699.27 25898.74 35197.51 20999.40 15299.62 20394.78 21599.76 19497.59 24098.81 198
canonicalmvs99.02 11198.86 11799.51 11399.42 19999.32 10499.80 2599.48 15598.63 8299.31 17498.81 35297.09 12999.75 19699.27 6697.90 24199.47 184
Effi-MVS+-dtu98.78 14298.89 11298.47 26299.33 22496.91 29899.57 11699.30 27598.47 9499.41 14798.99 33796.78 14099.74 19798.73 12999.38 14998.74 259
patchmatchnet-post98.70 35694.79 21499.74 197
SCA98.19 18998.16 17998.27 28699.30 23295.55 33399.07 30198.97 32297.57 20099.43 14099.57 22092.72 28499.74 19797.58 24199.20 16399.52 167
BH-untuned98.42 16998.36 16798.59 24399.49 18096.70 30499.27 25899.13 30597.24 23698.80 26899.38 27795.75 17899.74 19797.07 28099.16 16599.33 204
BH-RMVSNet98.41 17198.08 19199.40 13099.41 20298.83 18099.30 24598.77 34797.70 18898.94 24799.65 18692.91 27999.74 19796.52 30599.55 14099.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33199.85 698.82 6599.54 11999.73 14998.51 7899.74 19798.91 9999.88 5199.77 82
test_post65.99 40094.65 22899.73 203
XVG-ACMP-BASELINE97.83 24497.71 23498.20 28899.11 27696.33 31899.41 20799.52 10198.06 15299.05 23199.50 24489.64 34299.73 20397.73 22997.38 27698.53 325
HyFIR lowres test99.11 9898.92 10699.65 7399.90 499.37 10099.02 31499.91 397.67 19299.59 10999.75 13895.90 17399.73 20399.53 3299.02 18299.86 33
DeepMVS_CXcopyleft93.34 36299.29 23682.27 39099.22 29285.15 38796.33 36199.05 33190.97 32799.73 20393.57 35597.77 24498.01 360
Patchmatch-test97.93 22797.65 23998.77 23399.18 26097.07 28399.03 31199.14 30496.16 32098.74 27499.57 22094.56 23199.72 20793.36 35799.11 17199.52 167
LPG-MVS_test98.22 18598.13 18498.49 25699.33 22497.05 28599.58 10999.55 7797.46 21299.24 19099.83 6892.58 29199.72 20798.09 19597.51 26098.68 278
LGP-MVS_train98.49 25699.33 22497.05 28599.55 7797.46 21299.24 19099.83 6892.58 29199.72 20798.09 19597.51 26098.68 278
BH-w/o98.00 21997.89 21598.32 27999.35 21896.20 32299.01 31998.90 33496.42 30398.38 31099.00 33695.26 19799.72 20796.06 31398.61 20399.03 230
ACMP97.20 1198.06 20497.94 20898.45 26499.37 21497.01 29099.44 19499.49 14397.54 20698.45 30799.79 11591.95 30699.72 20797.91 20997.49 26598.62 308
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 21497.90 21198.40 27299.23 24996.80 30299.70 5299.60 5497.12 24698.18 32199.70 15891.73 31299.72 20798.39 17297.45 26898.68 278
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 27265.14 40194.18 24899.71 21397.58 241
ADS-MVSNet98.20 18898.08 19198.56 25099.33 22496.48 31399.23 27299.15 30296.24 31399.10 21999.67 18094.11 24999.71 21396.81 29499.05 17899.48 178
JIA-IIPM97.50 28597.02 29898.93 19798.73 33497.80 25399.30 24598.97 32291.73 37598.91 25194.86 38995.10 20199.71 21397.58 24197.98 23999.28 208
EPMVS97.82 24797.65 23998.35 27698.88 31295.98 32599.49 17494.71 39897.57 20099.26 18899.48 25292.46 29899.71 21397.87 21399.08 17699.35 201
TDRefinement95.42 33094.57 33797.97 30589.83 39896.11 32499.48 17898.75 34896.74 27596.68 35899.88 3688.65 35199.71 21398.37 17582.74 38898.09 355
ACMM97.58 598.37 17698.34 16998.48 25899.41 20297.10 27999.56 12299.45 19398.53 9099.04 23299.85 5493.00 27599.71 21398.74 12797.45 26898.64 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 22497.77 22598.57 24799.59 14796.61 30999.45 18899.08 31098.21 12498.88 25699.80 10388.66 35099.70 21998.58 15297.72 24599.39 198
CHOSEN 280x42099.12 9499.13 7299.08 17499.66 11997.89 24898.43 37399.71 1398.88 5999.62 10099.76 13596.63 14599.70 21999.46 4499.99 199.66 125
EC-MVSNet99.44 3799.39 2799.58 9099.56 15599.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 21999.64 2499.82 9099.54 161
PatchmatchNetpermissive98.31 17998.36 16798.19 28999.16 26895.32 34199.27 25898.92 32897.37 22499.37 16099.58 21694.90 20799.70 21997.43 25999.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 19997.99 20198.44 26799.41 20296.96 29699.60 9599.56 6998.09 14398.15 32299.91 2090.87 32899.70 21998.88 10297.45 26898.67 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS98.27 18498.22 17798.44 26799.29 23696.97 29499.39 21999.47 17398.97 5199.11 21699.61 20792.71 28699.69 22497.78 22197.63 24898.67 285
plane_prior599.47 17399.69 22497.78 22197.63 24898.67 285
D2MVS98.41 17198.50 16098.15 29499.26 24396.62 30899.40 21599.61 4897.71 18698.98 24199.36 28396.04 16499.67 22698.70 13297.41 27398.15 353
IS-MVSNet99.05 10798.87 11499.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 22698.09 19599.13 17099.73 97
CLD-MVS98.16 19398.10 18798.33 27799.29 23696.82 30198.75 35299.44 20197.83 17299.13 21299.55 22692.92 27799.67 22698.32 18197.69 24698.48 329
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 29697.30 28597.09 33999.43 19793.31 37099.73 4798.87 33898.83 6499.28 18099.80 10384.45 37499.66 22997.88 21197.45 26898.30 345
AUN-MVS96.88 30696.31 31298.59 24399.48 18897.04 28899.27 25899.22 29297.44 21798.51 30399.41 26991.97 30599.66 22997.71 23283.83 38699.07 227
UniMVSNet_ETH3D97.32 29396.81 30198.87 21499.40 20797.46 26599.51 15699.53 9695.86 33398.54 30299.77 12982.44 38299.66 22998.68 13797.52 25899.50 176
OPM-MVS98.19 18998.10 18798.45 26498.88 31297.07 28399.28 25399.38 23198.57 8699.22 19599.81 9092.12 30299.66 22998.08 19997.54 25798.61 317
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 23097.78 22398.32 27999.46 19096.68 30699.56 12299.54 8598.41 10097.79 33899.87 4490.18 33799.66 22998.05 20397.18 28498.62 308
hse-mvs297.50 28597.14 29398.59 24399.49 18097.05 28599.28 25399.22 29298.94 5499.66 8399.42 26594.93 20499.65 23499.48 4183.80 38799.08 222
VPA-MVSNet98.29 18297.95 20699.30 14899.16 26899.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29399.65 23499.35 5194.46 33998.72 262
TR-MVS97.76 25497.41 27198.82 22599.06 28897.87 24998.87 34198.56 36396.63 28698.68 28599.22 31392.49 29499.65 23495.40 33197.79 24398.95 241
gm-plane-assit98.54 35392.96 37294.65 35499.15 32199.64 23797.56 246
HQP4-MVS98.66 28699.64 23798.64 297
HQP-MVS98.02 21497.90 21198.37 27599.19 25796.83 29998.98 32499.39 22398.24 11898.66 28699.40 27292.47 29599.64 23797.19 27397.58 25398.64 297
PAPM97.59 27997.09 29699.07 17699.06 28898.26 22698.30 38099.10 30794.88 34898.08 32499.34 29096.27 15999.64 23789.87 37798.92 18899.31 206
TAPA-MVS97.07 1597.74 26097.34 28098.94 19599.70 10197.53 26399.25 26999.51 11591.90 37499.30 17699.63 19898.78 4899.64 23788.09 38499.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 17598.09 19099.24 15999.26 24399.32 10499.56 12299.55 7797.45 21598.71 27799.83 6893.23 27099.63 24298.88 10296.32 29998.76 254
ITE_SJBPF98.08 29699.29 23696.37 31698.92 32898.34 10898.83 26499.75 13891.09 32599.62 24395.82 31897.40 27498.25 349
LF4IMVS97.52 28297.46 25997.70 32298.98 30295.55 33399.29 24998.82 34398.07 14898.66 28699.64 19289.97 33899.61 24497.01 28196.68 28997.94 366
tpm97.67 27397.55 24798.03 29899.02 29495.01 34799.43 19898.54 36596.44 30199.12 21499.34 29091.83 30999.60 24597.75 22796.46 29599.48 178
tpm297.44 29097.34 28097.74 32099.15 27294.36 35899.45 18898.94 32593.45 36798.90 25399.44 26191.35 32299.59 24697.31 26498.07 23899.29 207
baseline297.87 23697.55 24798.82 22599.18 26098.02 23899.41 20796.58 39296.97 26196.51 35999.17 31893.43 26799.57 24797.71 23299.03 18098.86 243
MS-PatchMatch97.24 29897.32 28396.99 34098.45 35693.51 36998.82 34599.32 26797.41 22198.13 32399.30 30088.99 34699.56 24895.68 32499.80 9797.90 369
TinyColmap97.12 30196.89 30097.83 31499.07 28595.52 33698.57 36698.74 35197.58 19997.81 33799.79 11588.16 35799.56 24895.10 33697.21 28298.39 341
USDC97.34 29297.20 29197.75 31999.07 28595.20 34398.51 37099.04 31697.99 15898.31 31499.86 4989.02 34599.55 25095.67 32597.36 27798.49 328
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14599.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25199.28 6399.84 7799.63 140
TAMVS99.12 9499.08 7999.24 15999.46 19098.55 20299.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25298.70 13298.93 18699.67 122
EPNet_dtu98.03 21297.96 20498.23 28798.27 35995.54 33599.23 27298.75 34899.02 3897.82 33699.71 15496.11 16299.48 25393.04 36199.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS95.97 32395.69 32596.81 34797.78 36692.79 37399.16 28298.93 32696.16 32094.08 37699.22 31382.72 38099.47 25495.67 32597.50 26298.17 352
MVP-Stereo97.81 24997.75 23097.99 30497.53 37096.60 31098.96 32898.85 34097.22 23897.23 34999.36 28395.28 19499.46 25595.51 32799.78 10497.92 368
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 16198.67 13598.30 28199.35 21895.59 33299.50 16399.55 7798.60 8599.39 15599.83 6894.48 23699.45 25698.75 12698.56 20999.85 36
test-LLR98.06 20497.90 21198.55 25298.79 32497.10 27998.67 35897.75 37997.34 22698.61 29798.85 34994.45 23899.45 25697.25 26799.38 14999.10 217
TESTMET0.1,197.55 28097.27 29098.40 27298.93 30796.53 31198.67 35897.61 38296.96 26298.64 29399.28 30488.63 35299.45 25697.30 26599.38 14999.21 212
test-mter97.49 28897.13 29598.55 25298.79 32497.10 27998.67 35897.75 37996.65 28298.61 29798.85 34988.23 35699.45 25697.25 26799.38 14999.10 217
mvs_anonymous99.03 11098.99 9699.16 16799.38 21198.52 20899.51 15699.38 23197.79 17799.38 15899.81 9097.30 12299.45 25699.35 5198.99 18399.51 173
tfpnnormal97.84 24297.47 25798.98 18999.20 25599.22 11999.64 7899.61 4896.32 30798.27 31799.70 15893.35 26999.44 26195.69 32395.40 32298.27 347
v7n97.87 23697.52 25198.92 19998.76 33298.58 20099.84 1399.46 18296.20 31698.91 25199.70 15894.89 20899.44 26196.03 31493.89 35098.75 256
jajsoiax98.43 16898.28 17498.88 21098.60 34998.43 21999.82 1799.53 9698.19 12798.63 29499.80 10393.22 27299.44 26199.22 6997.50 26298.77 252
mvs_tets98.40 17498.23 17698.91 20398.67 34298.51 21099.66 6999.53 9698.19 12798.65 29299.81 9092.75 28199.44 26199.31 5897.48 26698.77 252
Vis-MVSNet (Re-imp)98.87 12498.72 12999.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18899.43 26597.91 20999.11 17199.62 142
OPU-MVS99.64 7899.56 15599.72 4299.60 9599.70 15899.27 599.42 26698.24 18599.80 9799.79 74
Anonymous2023121197.88 23497.54 25098.90 20599.71 9698.53 20499.48 17899.57 6494.16 35898.81 26699.68 17493.23 27099.42 26698.84 11594.42 34198.76 254
VPNet97.84 24297.44 26599.01 18399.21 25398.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34799.39 26899.19 7193.27 35798.71 264
iter_conf_final98.71 14998.61 15298.99 18799.49 18098.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 21099.38 26999.30 6197.52 25898.64 297
nrg03098.64 15898.42 16499.28 15499.05 29199.69 4799.81 2099.46 18298.04 15499.01 23599.82 7696.69 14499.38 26999.34 5594.59 33898.78 249
iter_conf0598.55 16298.44 16298.87 21499.34 22298.60 19999.55 13499.42 20998.21 12499.37 16099.77 12993.55 26699.38 26999.30 6197.48 26698.63 305
GA-MVS97.85 23997.47 25799.00 18599.38 21197.99 24098.57 36699.15 30297.04 25798.90 25399.30 30089.83 33999.38 26996.70 29998.33 21999.62 142
UniMVSNet (Re)98.29 18298.00 20099.13 17299.00 29699.36 10299.49 17499.51 11597.95 16098.97 24399.13 32396.30 15899.38 26998.36 17793.34 35598.66 293
FIs98.78 14298.63 14199.23 16199.18 26099.54 7999.83 1699.59 5798.28 11398.79 27099.81 9096.75 14299.37 27499.08 8296.38 29798.78 249
PS-MVSNAJss98.92 12098.92 10698.90 20598.78 32798.53 20499.78 3299.54 8598.07 14899.00 23999.76 13599.01 1899.37 27499.13 7697.23 28198.81 246
CDS-MVSNet99.09 10399.03 8699.25 15799.42 19998.73 18799.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27498.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 32795.16 33297.51 32899.30 23293.69 36698.88 33995.78 39385.09 38898.78 27192.65 39191.29 32399.37 27494.85 34099.85 6999.46 186
v119297.81 24997.44 26598.91 20398.88 31298.68 19099.51 15699.34 25096.18 31899.20 20199.34 29094.03 25299.36 27895.32 33395.18 32698.69 273
EI-MVSNet98.67 15598.67 13598.68 23999.35 21897.97 24199.50 16399.38 23196.93 26799.20 20199.83 6897.87 10599.36 27898.38 17397.56 25598.71 264
MVSTER98.49 16398.32 17199.00 18599.35 21899.02 14699.54 13999.38 23197.41 22199.20 20199.73 14993.86 25999.36 27898.87 10597.56 25598.62 308
gg-mvs-nofinetune96.17 32095.32 33198.73 23598.79 32498.14 23299.38 22494.09 39991.07 37998.07 32791.04 39589.62 34399.35 28196.75 29699.09 17598.68 278
pm-mvs197.68 27097.28 28798.88 21099.06 28898.62 19699.50 16399.45 19396.32 30797.87 33499.79 11592.47 29599.35 28197.54 24893.54 35498.67 285
OurMVSNet-221017-097.88 23497.77 22598.19 28998.71 33896.53 31199.88 499.00 31997.79 17798.78 27199.94 691.68 31399.35 28197.21 26996.99 28898.69 273
EGC-MVSNET82.80 35977.86 36597.62 32497.91 36396.12 32399.33 24099.28 2818.40 40325.05 40499.27 30784.11 37599.33 28489.20 37998.22 22797.42 377
pmmvs696.53 31296.09 31797.82 31698.69 34095.47 33799.37 22699.47 17393.46 36697.41 34399.78 12187.06 36599.33 28496.92 29192.70 36498.65 295
mvsmamba98.92 12098.87 11499.08 17499.07 28599.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28499.38 4897.40 27498.73 261
V4298.06 20497.79 22098.86 21898.98 30298.84 17799.69 5599.34 25096.53 29399.30 17699.37 28094.67 22699.32 28797.57 24594.66 33698.42 337
lessismore_v097.79 31898.69 34095.44 33994.75 39795.71 36799.87 4488.69 34999.32 28795.89 31794.93 33398.62 308
OpenMVS_ROBcopyleft92.34 2094.38 34193.70 34796.41 35297.38 37293.17 37199.06 30498.75 34886.58 38694.84 37498.26 36881.53 38499.32 28789.01 38097.87 24296.76 380
bld_raw_dy_0_6498.69 15298.58 15498.99 18798.88 31298.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 29099.09 8097.27 27998.71 264
v897.95 22697.63 24398.93 19798.95 30698.81 18399.80 2599.41 21296.03 33099.10 21999.42 26594.92 20699.30 29196.94 28894.08 34798.66 293
v192192097.80 25197.45 26098.84 22298.80 32398.53 20499.52 14899.34 25096.15 32299.24 19099.47 25593.98 25499.29 29295.40 33195.13 32898.69 273
anonymousdsp98.44 16798.28 17498.94 19598.50 35498.96 15799.77 3499.50 13597.07 25298.87 25999.77 12994.76 21999.28 29398.66 13997.60 25198.57 323
MVSFormer99.17 8099.12 7399.29 15199.51 16998.94 16599.88 499.46 18297.55 20399.80 4099.65 18697.39 11699.28 29399.03 8599.85 6999.65 129
test_djsdf98.67 15598.57 15598.98 18998.70 33998.91 16999.88 499.46 18297.55 20399.22 19599.88 3695.73 17999.28 29399.03 8597.62 25098.75 256
cascas97.69 26897.43 26998.48 25898.60 34997.30 26898.18 38499.39 22392.96 37098.41 30898.78 35493.77 26299.27 29698.16 19298.61 20398.86 243
v14419297.92 23097.60 24598.87 21498.83 32298.65 19399.55 13499.34 25096.20 31699.32 17299.40 27294.36 24099.26 29796.37 31095.03 33098.70 269
dmvs_re98.08 20298.16 17997.85 31199.55 15994.67 35399.70 5298.92 32898.15 13399.06 22999.35 28693.67 26599.25 29897.77 22497.25 28099.64 136
RRT_MVS98.70 15098.66 13898.83 22498.90 30998.45 21799.89 299.28 28197.76 18098.94 24799.92 1496.98 13499.25 29899.28 6397.00 28798.80 247
v2v48298.06 20497.77 22598.92 19998.90 30998.82 18199.57 11699.36 24096.65 28299.19 20499.35 28694.20 24599.25 29897.72 23194.97 33198.69 273
v124097.69 26897.32 28398.79 23198.85 32098.43 21999.48 17899.36 24096.11 32599.27 18499.36 28393.76 26399.24 30194.46 34495.23 32598.70 269
v114497.98 22197.69 23598.85 22198.87 31698.66 19299.54 13999.35 24696.27 31199.23 19499.35 28694.67 22699.23 30296.73 29795.16 32798.68 278
v1097.85 23997.52 25198.86 21898.99 29998.67 19199.75 4199.41 21295.70 33498.98 24199.41 26994.75 22099.23 30296.01 31694.63 33798.67 285
WR-MVS_H98.13 19697.87 21698.90 20599.02 29498.84 17799.70 5299.59 5797.27 23298.40 30999.19 31795.53 18699.23 30298.34 17893.78 35298.61 317
miper_enhance_ethall98.16 19398.08 19198.41 27098.96 30597.72 25698.45 37299.32 26796.95 26498.97 24399.17 31897.06 13199.22 30597.86 21495.99 30698.29 346
GG-mvs-BLEND98.45 26498.55 35298.16 23099.43 19893.68 40097.23 34998.46 36289.30 34499.22 30595.43 33098.22 22797.98 364
FC-MVSNet-test98.75 14598.62 14699.15 17199.08 28499.45 9399.86 1299.60 5498.23 12198.70 28399.82 7696.80 13999.22 30599.07 8396.38 29798.79 248
UniMVSNet_NR-MVSNet98.22 18597.97 20398.96 19298.92 30898.98 15099.48 17899.53 9697.76 18098.71 27799.46 25996.43 15599.22 30598.57 15592.87 36298.69 273
DU-MVS98.08 20297.79 22098.96 19298.87 31698.98 15099.41 20799.45 19397.87 16698.71 27799.50 24494.82 21099.22 30598.57 15592.87 36298.68 278
cl____98.01 21797.84 21898.55 25299.25 24797.97 24198.71 35699.34 25096.47 30098.59 30099.54 23195.65 18399.21 31097.21 26995.77 31298.46 334
WR-MVS98.06 20497.73 23299.06 17798.86 31999.25 11699.19 27999.35 24697.30 23098.66 28699.43 26393.94 25599.21 31098.58 15294.28 34398.71 264
test_040296.64 31096.24 31397.85 31198.85 32096.43 31599.44 19499.26 28593.52 36496.98 35699.52 23888.52 35399.20 31292.58 36897.50 26297.93 367
SixPastTwentyTwo97.50 28597.33 28298.03 29898.65 34396.23 32199.77 3498.68 35997.14 24397.90 33299.93 990.45 33199.18 31397.00 28296.43 29698.67 285
cl2297.85 23997.64 24298.48 25899.09 28297.87 24998.60 36599.33 25797.11 24998.87 25999.22 31392.38 30099.17 31498.21 18695.99 30698.42 337
WB-MVSnew97.65 27597.65 23997.63 32398.78 32797.62 26199.13 28898.33 36897.36 22599.07 22498.94 34395.64 18499.15 31592.95 36298.68 20296.12 387
IterMVS-SCA-FT97.82 24797.75 23098.06 29799.57 15196.36 31799.02 31499.49 14397.18 24098.71 27799.72 15392.72 28499.14 31697.44 25895.86 31198.67 285
pmmvs597.52 28297.30 28598.16 29198.57 35196.73 30399.27 25898.90 33496.14 32398.37 31199.53 23591.54 31999.14 31697.51 25095.87 31098.63 305
v14897.79 25297.55 24798.50 25598.74 33397.72 25699.54 13999.33 25796.26 31298.90 25399.51 24194.68 22599.14 31697.83 21793.15 35998.63 305
miper_ehance_all_eth98.18 19198.10 18798.41 27099.23 24997.72 25698.72 35599.31 27196.60 28998.88 25699.29 30297.29 12399.13 31997.60 23995.99 30698.38 342
NR-MVSNet97.97 22497.61 24499.02 18298.87 31699.26 11599.47 18499.42 20997.63 19597.08 35499.50 24495.07 20299.13 31997.86 21493.59 35398.68 278
IterMVS97.83 24497.77 22598.02 30099.58 14996.27 32099.02 31499.48 15597.22 23898.71 27799.70 15892.75 28199.13 31997.46 25696.00 30598.67 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 34294.90 33491.84 36697.24 37680.01 39698.52 36999.48 15589.01 38391.99 38499.67 18085.67 36999.13 31995.44 32997.03 28696.39 384
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 20997.96 20498.33 27799.26 24397.38 26798.56 36899.31 27196.65 28298.88 25699.52 23896.58 14799.12 32397.39 26195.53 32098.47 331
pmmvs498.13 19697.90 21198.81 22898.61 34898.87 17298.99 32199.21 29596.44 30199.06 22999.58 21695.90 17399.11 32497.18 27596.11 30398.46 334
TransMVSNet (Re)97.15 30096.58 30598.86 21899.12 27498.85 17699.49 17498.91 33295.48 33797.16 35299.80 10393.38 26899.11 32494.16 35091.73 36798.62 308
ambc93.06 36492.68 39482.36 38998.47 37198.73 35695.09 37297.41 37855.55 39699.10 32696.42 30891.32 36897.71 370
Baseline_NR-MVSNet97.76 25497.45 26098.68 23999.09 28298.29 22499.41 20798.85 34095.65 33598.63 29499.67 18094.82 21099.10 32698.07 20292.89 36198.64 297
test_vis3_rt87.04 35585.81 35890.73 37093.99 39381.96 39199.76 3790.23 40592.81 37181.35 39391.56 39340.06 40299.07 32894.27 34788.23 38091.15 393
CP-MVSNet98.09 20097.78 22399.01 18398.97 30499.24 11799.67 6499.46 18297.25 23498.48 30699.64 19293.79 26199.06 32998.63 14294.10 34698.74 259
PS-CasMVS97.93 22797.59 24698.95 19498.99 29999.06 14299.68 6199.52 10197.13 24498.31 31499.68 17492.44 29999.05 33098.51 16394.08 34798.75 256
K. test v397.10 30296.79 30298.01 30198.72 33696.33 31899.87 997.05 38697.59 19796.16 36399.80 10388.71 34899.04 33196.69 30096.55 29498.65 295
new_pmnet96.38 31696.03 31897.41 33098.13 36295.16 34699.05 30699.20 29693.94 35997.39 34698.79 35391.61 31899.04 33190.43 37595.77 31298.05 358
DIV-MVS_self_test98.01 21797.85 21798.48 25899.24 24897.95 24598.71 35699.35 24696.50 29498.60 29999.54 23195.72 18099.03 33397.21 26995.77 31298.46 334
IterMVS-LS98.46 16698.42 16498.58 24699.59 14798.00 23999.37 22699.43 20796.94 26699.07 22499.59 21297.87 10599.03 33398.32 18195.62 31798.71 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 27597.68 23697.55 32798.62 34694.97 34898.84 34399.30 27596.83 27398.19 32099.34 29097.01 13399.02 33595.00 33996.01 30498.64 297
Patchmtry97.75 25897.40 27298.81 22899.10 27998.87 17299.11 29799.33 25794.83 35098.81 26699.38 27794.33 24199.02 33596.10 31295.57 31898.53 325
N_pmnet94.95 33695.83 32392.31 36598.47 35579.33 39799.12 29192.81 40393.87 36097.68 33999.13 32393.87 25899.01 33791.38 37296.19 30198.59 321
CR-MVSNet98.17 19297.93 20998.87 21499.18 26098.49 21299.22 27699.33 25796.96 26299.56 11499.38 27794.33 24199.00 33894.83 34198.58 20699.14 214
c3_l98.12 19898.04 19698.38 27499.30 23297.69 26098.81 34699.33 25796.67 28098.83 26499.34 29097.11 12898.99 33997.58 24195.34 32398.48 329
test0.0.03 197.71 26697.42 27098.56 25098.41 35897.82 25298.78 34998.63 36197.34 22698.05 32898.98 33994.45 23898.98 34095.04 33897.15 28598.89 242
PatchT97.03 30496.44 30998.79 23198.99 29998.34 22399.16 28299.07 31392.13 37399.52 12397.31 38294.54 23498.98 34088.54 38298.73 20199.03 230
GBi-Net97.68 27097.48 25598.29 28299.51 16997.26 27299.43 19899.48 15596.49 29599.07 22499.32 29790.26 33398.98 34097.10 27796.65 29098.62 308
test197.68 27097.48 25598.29 28299.51 16997.26 27299.43 19899.48 15596.49 29599.07 22499.32 29790.26 33398.98 34097.10 27796.65 29098.62 308
FMVSNet398.03 21297.76 22998.84 22299.39 21098.98 15099.40 21599.38 23196.67 28099.07 22499.28 30492.93 27698.98 34097.10 27796.65 29098.56 324
FMVSNet297.72 26397.36 27598.80 23099.51 16998.84 17799.45 18899.42 20996.49 29598.86 26399.29 30290.26 33398.98 34096.44 30796.56 29398.58 322
FMVSNet196.84 30796.36 31198.29 28299.32 23097.26 27299.43 19899.48 15595.11 34298.55 30199.32 29783.95 37698.98 34095.81 31996.26 30098.62 308
ppachtmachnet_test97.49 28897.45 26097.61 32598.62 34695.24 34298.80 34799.46 18296.11 32598.22 31999.62 20396.45 15398.97 34793.77 35295.97 30998.61 317
TranMVSNet+NR-MVSNet97.93 22797.66 23898.76 23498.78 32798.62 19699.65 7599.49 14397.76 18098.49 30599.60 21094.23 24498.97 34798.00 20492.90 36098.70 269
test_method91.10 35191.36 35390.31 37195.85 38373.72 40494.89 39299.25 28768.39 39595.82 36699.02 33580.50 38598.95 34993.64 35494.89 33598.25 349
ADS-MVSNet298.02 21498.07 19497.87 31099.33 22495.19 34499.23 27299.08 31096.24 31399.10 21999.67 18094.11 24998.93 35096.81 29499.05 17899.48 178
ET-MVSNet_ETH3D96.49 31395.64 32799.05 17999.53 16298.82 18198.84 34397.51 38497.63 19584.77 38999.21 31692.09 30398.91 35198.98 9092.21 36699.41 195
miper_lstm_enhance98.00 21997.91 21098.28 28599.34 22297.43 26698.88 33999.36 24096.48 29898.80 26899.55 22695.98 16698.91 35197.27 26695.50 32198.51 327
PEN-MVS97.76 25497.44 26598.72 23698.77 33198.54 20399.78 3299.51 11597.06 25498.29 31699.64 19292.63 29098.89 35398.09 19593.16 35898.72 262
testing397.28 29496.76 30398.82 22599.37 21498.07 23699.45 18899.36 24097.56 20297.89 33398.95 34283.70 37798.82 35496.03 31498.56 20999.58 154
testgi97.65 27597.50 25498.13 29599.36 21796.45 31499.42 20599.48 15597.76 18097.87 33499.45 26091.09 32598.81 35594.53 34398.52 21299.13 216
testf190.42 35390.68 35589.65 37497.78 36673.97 40299.13 28898.81 34489.62 38191.80 38598.93 34462.23 39498.80 35686.61 39091.17 36996.19 385
APD_test290.42 35390.68 35589.65 37497.78 36673.97 40299.13 28898.81 34489.62 38191.80 38598.93 34462.23 39498.80 35686.61 39091.17 36996.19 385
MIMVSNet97.73 26197.45 26098.57 24799.45 19597.50 26499.02 31498.98 32196.11 32599.41 14799.14 32290.28 33298.74 35895.74 32198.93 18699.47 184
LCM-MVSNet-Re97.83 24498.15 18196.87 34699.30 23292.25 37699.59 10198.26 36997.43 21896.20 36299.13 32396.27 15998.73 35998.17 19198.99 18399.64 136
Syy-MVS97.09 30397.14 29396.95 34399.00 29692.73 37499.29 24999.39 22397.06 25497.41 34398.15 36993.92 25798.68 36091.71 37098.34 21799.45 189
myMVS_eth3d96.89 30596.37 31098.43 26999.00 29697.16 27699.29 24999.39 22397.06 25497.41 34398.15 36983.46 37898.68 36095.27 33498.34 21799.45 189
DTE-MVSNet97.51 28497.19 29298.46 26398.63 34598.13 23399.84 1399.48 15596.68 27997.97 33199.67 18092.92 27798.56 36296.88 29392.60 36598.70 269
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36398.30 18399.80 9799.81 61
mvsany_test393.77 34493.45 34894.74 35895.78 38488.01 38499.64 7898.25 37098.28 11394.31 37597.97 37568.89 39098.51 36497.50 25190.37 37497.71 370
UnsupCasMVSNet_bld93.53 34592.51 35096.58 35197.38 37293.82 36298.24 38199.48 15591.10 37893.10 38096.66 38474.89 38898.37 36594.03 35187.71 38197.56 375
Anonymous2024052196.20 31995.89 32297.13 33797.72 36994.96 34999.79 3199.29 27993.01 36997.20 35199.03 33389.69 34198.36 36691.16 37396.13 30298.07 356
test_f91.90 35091.26 35493.84 36095.52 38885.92 38699.69 5598.53 36695.31 33993.87 37796.37 38655.33 39798.27 36795.70 32290.98 37297.32 378
MDA-MVSNet_test_wron95.45 32994.60 33698.01 30198.16 36197.21 27599.11 29799.24 28993.49 36580.73 39598.98 33993.02 27498.18 36894.22 34994.45 34098.64 297
UnsupCasMVSNet_eth96.44 31496.12 31597.40 33198.65 34395.65 33099.36 23099.51 11597.13 24496.04 36598.99 33788.40 35498.17 36996.71 29890.27 37598.40 340
KD-MVS_2432*160094.62 33793.72 34597.31 33297.19 37895.82 32898.34 37699.20 29695.00 34697.57 34098.35 36587.95 35998.10 37092.87 36477.00 39398.01 360
miper_refine_blended94.62 33793.72 34597.31 33297.19 37895.82 32898.34 37699.20 29695.00 34697.57 34098.35 36587.95 35998.10 37092.87 36477.00 39398.01 360
YYNet195.36 33194.51 33897.92 30797.89 36497.10 27999.10 29999.23 29093.26 36880.77 39499.04 33292.81 28098.02 37294.30 34594.18 34598.64 297
EU-MVSNet97.98 22198.03 19797.81 31798.72 33696.65 30799.66 6999.66 2898.09 14398.35 31299.82 7695.25 19898.01 37397.41 26095.30 32498.78 249
Gipumacopyleft90.99 35290.15 35793.51 36198.73 33490.12 38293.98 39399.45 19379.32 39192.28 38394.91 38869.61 38997.98 37487.42 38695.67 31692.45 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 33294.73 33597.15 33595.53 38795.94 32699.35 23599.10 30795.13 34093.55 37897.54 37788.15 35897.91 37594.58 34289.69 37897.61 373
PM-MVS92.96 34792.23 35195.14 35795.61 38589.98 38399.37 22698.21 37294.80 35195.04 37397.69 37665.06 39197.90 37694.30 34589.98 37797.54 376
MDA-MVSNet-bldmvs94.96 33593.98 34297.92 30798.24 36097.27 27099.15 28599.33 25793.80 36180.09 39699.03 33388.31 35597.86 37793.49 35694.36 34298.62 308
Patchmatch-RL test95.84 32595.81 32495.95 35595.61 38590.57 38198.24 38198.39 36795.10 34495.20 37098.67 35794.78 21597.77 37896.28 31190.02 37699.51 173
Anonymous2023120696.22 31796.03 31896.79 34897.31 37594.14 36099.63 8299.08 31096.17 31997.04 35599.06 33093.94 25597.76 37986.96 38895.06 32998.47 331
SD-MVS99.41 4799.52 1199.05 17999.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 38098.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 29697.35 27796.95 34397.84 36593.61 36899.57 11696.63 39196.13 32498.87 25998.61 36094.59 22997.70 38095.08 33798.86 19299.55 159
pmmvs394.09 34393.25 34996.60 35094.76 39294.49 35598.92 33598.18 37489.66 38096.48 36098.06 37486.28 36697.33 38289.68 37887.20 38297.97 365
KD-MVS_self_test95.00 33494.34 33996.96 34297.07 38095.39 34099.56 12299.44 20195.11 34297.13 35397.32 38191.86 30897.27 38390.35 37681.23 39098.23 351
FMVSNet596.43 31596.19 31497.15 33599.11 27695.89 32799.32 24199.52 10194.47 35798.34 31399.07 32887.54 36397.07 38492.61 36795.72 31598.47 331
new-patchmatchnet94.48 34094.08 34195.67 35695.08 39092.41 37599.18 28099.28 28194.55 35693.49 37997.37 38087.86 36197.01 38591.57 37188.36 37997.61 373
LCM-MVSNet86.80 35785.22 36191.53 36887.81 39980.96 39498.23 38398.99 32071.05 39390.13 38896.51 38548.45 40196.88 38690.51 37485.30 38496.76 380
CL-MVSNet_self_test94.49 33993.97 34396.08 35496.16 38293.67 36798.33 37899.38 23195.13 34097.33 34798.15 36992.69 28896.57 38788.67 38179.87 39197.99 363
MIMVSNet195.51 32895.04 33396.92 34597.38 37295.60 33199.52 14899.50 13593.65 36396.97 35799.17 31885.28 37296.56 38888.36 38395.55 31998.60 320
test20.0396.12 32195.96 32096.63 34997.44 37195.45 33899.51 15699.38 23196.55 29296.16 36399.25 31093.76 26396.17 38987.35 38794.22 34498.27 347
tmp_tt82.80 35981.52 36286.66 37666.61 40568.44 40592.79 39597.92 37668.96 39480.04 39799.85 5485.77 36896.15 39097.86 21443.89 39995.39 389
test_fmvs392.10 34991.77 35293.08 36396.19 38186.25 38599.82 1798.62 36296.65 28295.19 37196.90 38355.05 39895.93 39196.63 30490.92 37397.06 379
dmvs_testset95.02 33396.12 31591.72 36799.10 27980.43 39599.58 10997.87 37897.47 21195.22 36998.82 35193.99 25395.18 39288.09 38494.91 33499.56 158
PMMVS286.87 35685.37 36091.35 36990.21 39783.80 38898.89 33897.45 38583.13 39091.67 38795.03 38748.49 40094.70 39385.86 39277.62 39295.54 388
PMVScopyleft70.75 2275.98 36574.97 36679.01 38270.98 40455.18 40793.37 39498.21 37265.08 39961.78 40093.83 39021.74 40792.53 39478.59 39491.12 37189.34 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 35885.65 35982.75 38086.77 40063.39 40698.35 37598.92 32874.11 39283.39 39198.98 33950.85 39992.40 39584.54 39394.97 33192.46 390
WB-MVS93.10 34694.10 34090.12 37295.51 38981.88 39299.73 4799.27 28495.05 34593.09 38198.91 34894.70 22491.89 39676.62 39594.02 34996.58 382
SSC-MVS92.73 34893.73 34489.72 37395.02 39181.38 39399.76 3799.23 29094.87 34992.80 38298.93 34494.71 22391.37 39774.49 39793.80 35196.42 383
MVEpermissive76.82 2176.91 36474.31 36884.70 37785.38 40276.05 40196.88 39193.17 40167.39 39671.28 39889.01 39721.66 40887.69 39871.74 39872.29 39590.35 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 36179.88 36382.81 37990.75 39676.38 40097.69 38895.76 39466.44 39783.52 39092.25 39262.54 39387.16 39968.53 39961.40 39684.89 397
EMVS80.02 36279.22 36482.43 38191.19 39576.40 39997.55 39092.49 40466.36 39883.01 39291.27 39464.63 39285.79 40065.82 40060.65 39785.08 396
ANet_high77.30 36374.86 36784.62 37875.88 40377.61 39897.63 38993.15 40288.81 38464.27 39989.29 39636.51 40383.93 40175.89 39652.31 39892.33 392
wuyk23d40.18 36641.29 37136.84 38386.18 40149.12 40879.73 39622.81 40827.64 40025.46 40328.45 40321.98 40648.89 40255.80 40123.56 40212.51 400
test12339.01 36842.50 37028.53 38439.17 40620.91 40998.75 35219.17 40919.83 40238.57 40166.67 39933.16 40415.42 40337.50 40329.66 40149.26 398
testmvs39.17 36743.78 36925.37 38536.04 40716.84 41098.36 37426.56 40720.06 40138.51 40267.32 39829.64 40515.30 40437.59 40239.90 40043.98 399
test_blank0.13 3720.17 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4051.57 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet_test0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
cdsmvs_eth3d_5k24.64 36932.85 3720.00 3860.00 4080.00 4110.00 39799.51 1150.00 4040.00 40599.56 22396.58 1470.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas8.27 37111.03 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 40599.01 180.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
ab-mvs-re8.30 37011.06 3730.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40599.58 2160.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
WAC-MVS97.16 27695.47 328
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
eth-test20.00 408
eth-test0.00 408
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
save fliter99.76 6599.59 7099.14 28799.40 22099.00 43
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20999.52 167
sam_mvs94.72 222
MTGPAbinary99.47 173
MTMP99.54 13998.88 336
test9_res97.49 25299.72 11899.75 88
agg_prior297.21 26999.73 11799.75 88
test_prior499.56 7598.99 321
test_prior298.96 32898.34 10899.01 23599.52 23898.68 6497.96 20699.74 115
新几何299.01 319
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
原ACMM298.95 331
test22299.75 7399.49 8798.91 33799.49 14396.42 30399.34 17099.65 18698.28 9299.69 12399.72 103
segment_acmp98.96 24
testdata198.85 34298.32 111
plane_prior799.29 23697.03 289
plane_prior699.27 24196.98 29392.71 286
plane_prior499.61 207
plane_prior397.00 29198.69 7999.11 216
plane_prior299.39 21998.97 51
plane_prior199.26 243
plane_prior96.97 29499.21 27898.45 9697.60 251
n20.00 410
nn0.00 410
door-mid98.05 375
test1199.35 246
door97.92 376
HQP5-MVS96.83 299
HQP-NCC99.19 25798.98 32498.24 11898.66 286
ACMP_Plane99.19 25798.98 32498.24 11898.66 286
BP-MVS97.19 273
HQP3-MVS99.39 22397.58 253
HQP2-MVS92.47 295
NP-MVS99.23 24996.92 29799.40 272
MDTV_nov1_ep13_2view95.18 34599.35 23596.84 27199.58 11095.19 20097.82 21899.46 186
ACMMP++_ref97.19 283
ACMMP++97.43 272
Test By Simon98.75 55