This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21999.37 10499.58 11199.62 4199.41 999.87 2799.92 1498.81 44100.00 199.97 199.93 2799.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9899.58 11199.69 1899.43 799.98 699.91 2198.62 70100.00 199.97 199.95 1899.90 16
test_vis1_n_192098.63 16498.40 17099.31 15099.86 2097.94 25099.67 6799.62 4199.43 799.99 299.91 2187.29 368100.00 199.92 1199.92 2999.98 2
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12499.63 3999.48 399.98 699.83 7098.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12499.63 3999.47 499.98 699.82 7998.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1799.92 1498.62 7099.99 499.96 699.99 199.96 7
patch_mono-299.26 7399.62 598.16 29999.81 4694.59 36299.52 14999.64 3699.33 1399.73 6699.90 2899.00 2299.99 499.69 2099.98 499.89 19
h-mvs3397.70 27197.28 29298.97 19799.70 10197.27 27499.36 23399.45 19998.94 5499.66 8799.64 19394.93 20999.99 499.48 4584.36 39599.65 129
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14399.63 13398.97 15899.12 29899.51 11798.86 6099.84 3499.47 25698.18 9799.99 499.50 4099.31 16399.08 237
xiu_mvs_v1_base99.29 6799.27 6299.34 14399.63 13398.97 15899.12 29899.51 11798.86 6099.84 3499.47 25698.18 9799.99 499.50 4099.31 16399.08 237
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14399.63 13398.97 15899.12 29899.51 11798.86 6099.84 3499.47 25698.18 9799.99 499.50 4099.31 16399.08 237
EPNet98.86 13598.71 13999.30 15597.20 38898.18 23299.62 9098.91 33799.28 1698.63 29899.81 9395.96 17399.99 499.24 7199.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM99.40 5299.28 5999.74 6199.67 11299.31 11399.52 14998.87 34499.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 799.94 11
test_cas_vis1_n_192099.16 8799.01 9999.61 8899.81 4698.86 17899.65 7899.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3399.91 3699.99 1
test_vis1_n97.92 23497.44 26999.34 14399.53 16698.08 23899.74 4599.49 14799.15 20100.00 199.94 679.51 39699.98 1399.88 1399.76 11599.97 4
xiu_mvs_v2_base99.26 7399.25 6699.29 15899.53 16698.91 17299.02 32199.45 19998.80 6999.71 7299.26 31198.94 2999.98 1399.34 5999.23 16798.98 251
PS-MVSNAJ99.32 6399.32 4499.30 15599.57 15498.94 16898.97 33599.46 18898.92 5799.71 7299.24 31399.01 1899.98 1399.35 5599.66 13398.97 252
QAPM98.67 16098.30 17799.80 4699.20 26399.67 5199.77 3399.72 1194.74 36098.73 27999.90 2895.78 18399.98 1396.96 29499.88 5699.76 87
3Dnovator97.25 999.24 7899.05 8799.81 4499.12 28599.66 5399.84 1199.74 1099.09 3298.92 25499.90 2895.94 17699.98 1398.95 9699.92 2999.79 74
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30399.53 8499.82 1599.72 1194.56 36398.08 33299.88 3794.73 22599.98 1397.47 26299.76 11599.06 243
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20199.65 5799.50 16399.61 4899.45 599.87 2799.92 1497.31 12599.97 2199.95 799.99 199.97 4
test_fmvs1_n98.41 17598.14 18699.21 17099.82 4297.71 26399.74 4599.49 14799.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8299.96 7
CANet_DTU98.97 12698.87 12199.25 16599.33 23198.42 22499.08 30799.30 27899.16 1999.43 14699.75 13995.27 20099.97 2198.56 16199.95 1899.36 212
MVS_030499.15 8998.96 10999.73 6498.92 31999.37 10499.37 22896.92 39399.51 299.66 8799.78 12496.69 14899.97 2199.84 1599.97 799.84 39
MTAPA99.52 1799.39 3099.89 499.90 499.86 1399.66 7299.47 17998.79 7099.68 7899.81 9398.43 8399.97 2198.88 10599.90 4499.83 49
PGM-MVS99.45 3699.31 5199.86 2199.87 1599.78 3699.58 11199.65 3397.84 17699.71 7299.80 10699.12 1399.97 2198.33 18399.87 5999.83 49
mPP-MVS99.44 4099.30 5399.86 2199.88 1199.79 3099.69 5899.48 15998.12 14299.50 13299.75 13998.78 4899.97 2198.57 15899.89 5399.83 49
CP-MVS99.45 3699.32 4499.85 2899.83 3999.75 3999.69 5899.52 10398.07 15299.53 12799.63 19998.93 3399.97 2198.74 13099.91 3699.83 49
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10399.51 11798.62 8499.79 4699.83 7099.28 499.97 2198.48 16899.90 4499.84 39
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 8398.97 10599.82 4199.17 27799.68 4899.81 1999.51 11799.20 1898.72 28099.89 3295.68 18799.97 2198.86 11399.86 6799.81 61
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14999.65 3399.10 2799.98 699.92 1497.35 12499.96 3199.94 999.92 2999.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2799.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 15199.96 3199.95 799.96 1299.95 9
mvsany_test199.50 2099.46 2099.62 8699.61 14399.09 14198.94 34199.48 15999.10 2799.96 1499.91 2198.85 3999.96 3199.72 1899.58 14399.82 54
test_fmvs198.88 13198.79 13399.16 17599.69 10597.61 26699.55 13699.49 14799.32 1499.98 699.91 2191.41 32399.96 3199.82 1699.92 2999.90 16
DVP-MVS++99.59 899.50 1399.88 599.51 17499.88 899.87 799.51 11798.99 4599.88 2299.81 9399.27 599.96 3198.85 11599.80 10299.81 61
MSC_two_6792asdad99.87 1199.51 17499.76 3799.33 26099.96 3198.87 10899.84 8299.89 19
No_MVS99.87 1199.51 17499.76 3799.33 26099.96 3198.87 10899.84 8299.89 19
ZD-MVS99.71 9699.79 3099.61 4896.84 27999.56 12099.54 23298.58 7299.96 3196.93 29799.75 117
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9799.48 15999.08 3399.91 1899.81 9399.20 799.96 3198.91 10299.85 7499.79 74
test_241102_TWO99.48 15999.08 3399.88 2299.81 9398.94 2999.96 3198.91 10299.84 8299.88 25
ZNCC-MVS99.47 3099.33 4299.87 1199.87 1599.81 2599.64 8199.67 2398.08 15199.55 12499.64 19398.91 3499.96 3198.72 13399.90 4499.82 54
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11899.37 24299.10 2799.81 4199.80 10698.94 2999.96 3198.93 9999.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 4199.80 10699.09 1499.96 3198.85 11599.90 4499.88 25
test_0728_SECOND99.91 299.84 3299.89 499.57 11899.51 11799.96 3198.93 9999.86 6799.88 25
SR-MVS99.43 4399.29 5799.86 2199.75 7399.83 1699.59 10399.62 4198.21 12999.73 6699.79 11898.68 6499.96 3198.44 17499.77 11299.79 74
DPE-MVScopyleft99.46 3299.32 4499.91 299.78 5699.88 899.36 23399.51 11798.73 7699.88 2299.84 6598.72 6199.96 3198.16 19699.87 5999.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UA-Net99.42 4599.29 5799.80 4699.62 13999.55 7999.50 16399.70 1598.79 7099.77 5599.96 197.45 11999.96 3198.92 10199.90 4499.89 19
HFP-MVS99.49 2299.37 3499.86 2199.87 1599.80 2799.66 7299.67 2398.15 13699.68 7899.69 16999.06 1699.96 3198.69 13899.87 5999.84 39
region2R99.48 2699.35 3899.87 1199.88 1199.80 2799.65 7899.66 2898.13 14099.66 8799.68 17598.96 2499.96 3198.62 14699.87 5999.84 39
HPM-MVS++copyleft99.39 5499.23 6999.87 1199.75 7399.84 1599.43 19999.51 11798.68 8199.27 18899.53 23698.64 6999.96 3198.44 17499.80 10299.79 74
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4099.56 7199.02 3899.88 2299.85 5499.18 1099.96 3199.22 7299.92 2999.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR99.49 2299.36 3699.86 2199.87 1599.79 3099.66 7299.67 2398.15 13699.67 8299.69 16998.95 2799.96 3198.69 13899.87 5999.84 39
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7299.46 18898.09 14799.48 13699.74 14498.29 9299.96 3197.93 21499.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 10498.90 11699.74 6199.80 5299.46 9699.59 10399.49 14797.03 26699.63 10299.69 16997.27 12899.96 3197.82 22599.84 8299.81 61
PVSNet_Blended_VisFu99.36 5899.28 5999.61 8899.86 2099.07 14699.47 18599.93 297.66 19999.71 7299.86 4997.73 11499.96 3199.47 4799.82 9599.79 74
UGNet98.87 13298.69 14199.40 13699.22 26098.72 19299.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3199.34 5999.94 2599.53 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 6399.32 4499.32 14999.85 2698.29 22799.71 5399.66 2898.11 14499.41 15399.80 10698.37 8999.96 3198.99 9299.96 1299.72 103
ACMMPcopyleft99.45 3699.32 4499.82 4199.89 899.67 5199.62 9099.69 1898.12 14299.63 10299.84 6598.73 6099.96 3198.55 16499.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.01_n99.22 8099.03 9199.79 4998.42 36899.48 9399.55 13699.51 11799.39 1099.78 5199.93 994.80 21799.95 5999.93 1099.95 1899.94 11
SR-MVS-dyc-post99.45 3699.31 5199.85 2899.76 6599.82 2299.63 8599.52 10398.38 10599.76 6099.82 7998.53 7699.95 5998.61 14999.81 9899.77 82
GST-MVS99.40 5299.24 6799.85 2899.86 2099.79 3099.60 9799.67 2397.97 16399.63 10299.68 17598.52 7799.95 5998.38 17799.86 6799.81 61
CANet99.25 7799.14 7699.59 9199.41 20999.16 13199.35 23899.57 6698.82 6599.51 13199.61 20896.46 15899.95 5999.59 2899.98 499.65 129
MP-MVS-pluss99.37 5799.20 7199.88 599.90 499.87 1299.30 24999.52 10397.18 24899.60 11299.79 11898.79 4799.95 5998.83 12199.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4599.27 6299.88 599.89 899.80 2799.67 6799.50 13798.70 7899.77 5599.49 24898.21 9599.95 5998.46 17299.77 11299.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 5996.67 309
APD-MVS_3200maxsize99.48 2699.35 3899.85 2899.76 6599.83 1699.63 8599.54 8798.36 10999.79 4699.82 7998.86 3899.95 5998.62 14699.81 9899.78 80
RPMNet96.72 31895.90 33099.19 17299.18 26998.49 21699.22 28299.52 10388.72 39599.56 12097.38 38994.08 25599.95 5986.87 39798.58 21399.14 229
sss99.17 8599.05 8799.53 10999.62 13998.97 15899.36 23399.62 4197.83 17799.67 8299.65 18797.37 12399.95 5999.19 7499.19 17099.68 119
MVSMamba_PlusPlus99.46 3299.41 2699.64 8099.68 10999.50 8999.75 4099.50 13798.27 11899.87 2799.92 1498.09 10199.94 6999.65 2499.95 1899.47 189
fmvsm_s_conf0.1_n_a99.26 7399.06 8699.85 2899.52 17199.62 6599.54 14099.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1399.92 2999.98 2
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10199.65 5799.53 14899.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1299.96 1299.97 4
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8599.39 22698.91 5899.78 5199.85 5499.36 299.94 6998.84 11899.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
iter_conf0599.48 2699.40 2799.71 6799.68 10999.61 6799.49 17499.58 6298.27 11899.95 1599.92 1498.09 10199.94 6999.65 2499.96 1299.58 154
mamv499.33 6199.42 2299.07 18399.67 11297.73 25899.42 20699.60 5498.15 13699.94 1699.91 2198.42 8599.94 6999.72 1899.96 1299.54 163
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5899.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12699.86 6799.84 39
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5899.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6799.84 39
旧先验298.96 33696.70 28699.47 13799.94 6998.19 192
新几何199.75 5899.75 7399.59 7199.54 8796.76 28299.29 18299.64 19398.43 8399.94 6996.92 29999.66 13399.72 103
testdata99.54 10199.75 7398.95 16599.51 11797.07 26099.43 14699.70 15998.87 3799.94 6997.76 23299.64 13699.72 103
HPM-MVScopyleft99.42 4599.28 5999.83 4099.90 499.72 4299.81 1999.54 8797.59 20499.68 7899.63 19998.91 3499.94 6998.58 15599.91 3699.84 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 8199.10 8099.45 12999.89 898.52 21299.39 22199.94 198.73 7699.11 22199.89 3295.50 19299.94 6999.50 4099.97 799.89 19
APD-MVScopyleft99.27 7199.08 8499.84 3999.75 7399.79 3099.50 16399.50 13797.16 25099.77 5599.82 7998.78 4899.94 6997.56 25399.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2699.42 2299.65 7599.72 9199.40 10399.05 31399.66 2899.14 2199.57 11999.80 10698.46 8199.94 6999.57 3199.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 11298.88 12099.61 8899.62 13999.16 13199.37 22899.56 7198.04 15899.53 12799.62 20496.84 14299.94 6998.85 11598.49 22199.72 103
DeepC-MVS98.35 299.30 6599.19 7299.64 8099.82 4299.23 12499.62 9099.55 7998.94 5499.63 10299.95 395.82 18299.94 6999.37 5499.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 7199.12 7899.74 6199.18 26999.75 3999.56 12499.57 6698.45 9899.49 13599.85 5497.77 11399.94 6998.33 18399.84 8299.52 170
SDMVSNet99.11 10498.90 11699.75 5899.81 4699.59 7199.81 1999.65 3398.78 7399.64 9999.88 3794.56 23599.93 8799.67 2298.26 23299.72 103
FE-MVS98.48 16898.17 18299.40 13699.54 16598.96 16299.68 6498.81 35195.54 34499.62 10699.70 15993.82 26499.93 8797.35 27199.46 15099.32 218
SF-MVS99.38 5699.24 6799.79 4999.79 5499.68 4899.57 11899.54 8797.82 18199.71 7299.80 10698.95 2799.93 8798.19 19299.84 8299.74 92
dcpmvs_299.23 7999.58 798.16 29999.83 3994.68 36099.76 3699.52 10399.07 3599.98 699.88 3798.56 7499.93 8799.67 2299.98 499.87 30
Anonymous2024052998.09 20497.68 24099.34 14399.66 12298.44 22199.40 21799.43 21393.67 37099.22 19999.89 3290.23 33999.93 8799.26 7098.33 22699.66 125
ACMMP_NAP99.47 3099.34 4099.88 599.87 1599.86 1399.47 18599.48 15998.05 15799.76 6099.86 4998.82 4399.93 8798.82 12599.91 3699.84 39
EI-MVSNet-UG-set99.58 999.57 899.64 8099.78 5699.14 13699.60 9799.45 19999.01 4099.90 2099.83 7098.98 2399.93 8799.59 2899.95 1899.86 32
无先验98.99 32999.51 11796.89 27699.93 8797.53 25699.72 103
VDDNet97.55 28597.02 30499.16 17599.49 18598.12 23799.38 22699.30 27895.35 34699.68 7899.90 2882.62 38999.93 8799.31 6298.13 24399.42 202
ab-mvs98.86 13598.63 14899.54 10199.64 13099.19 12699.44 19599.54 8797.77 18599.30 17999.81 9394.20 24999.93 8799.17 7898.82 20299.49 182
F-COLMAP99.19 8199.04 8999.64 8099.78 5699.27 11999.42 20699.54 8797.29 23999.41 15399.59 21398.42 8599.93 8798.19 19299.69 12899.73 97
Anonymous20240521198.30 18597.98 20699.26 16499.57 15498.16 23399.41 20998.55 37196.03 33899.19 20899.74 14491.87 31099.92 9899.16 7998.29 23199.70 113
EI-MVSNet-Vis-set99.58 999.56 1099.64 8099.78 5699.15 13599.61 9699.45 19999.01 4099.89 2199.82 7999.01 1899.92 9899.56 3299.95 1899.85 35
VDD-MVS97.73 26597.35 28198.88 21699.47 19397.12 28299.34 24198.85 34698.19 13199.67 8299.85 5482.98 38799.92 9899.49 4498.32 23099.60 146
VNet99.11 10498.90 11699.73 6499.52 17199.56 7799.41 20999.39 22699.01 4099.74 6499.78 12495.56 19099.92 9899.52 3898.18 23999.72 103
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21499.71 9697.74 25799.12 29899.54 8798.44 10199.42 14999.71 15594.20 24999.92 9898.54 16598.90 19699.00 248
mvsmamba99.06 11298.96 10999.36 14199.47 19398.64 19999.70 5499.05 31897.61 20399.65 9499.83 7096.54 15499.92 9899.19 7499.62 13999.51 177
HPM-MVS_fast99.51 1899.40 2799.85 2899.91 199.79 3099.76 3699.56 7197.72 19099.76 6099.75 13999.13 1299.92 9899.07 8699.92 2999.85 35
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20499.08 14499.62 9099.36 24397.39 23199.28 18399.68 17596.44 16099.92 9898.37 17998.22 23499.40 206
DP-MVS99.16 8798.95 11199.78 5299.77 6299.53 8499.41 20999.50 13797.03 26699.04 23799.88 3797.39 12099.92 9898.66 14299.90 4499.87 30
IB-MVS95.67 1896.22 32695.44 33998.57 25499.21 26196.70 31098.65 36997.74 38896.71 28597.27 35698.54 36686.03 37199.92 9898.47 17186.30 39399.10 232
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 2299.39 3099.77 5599.63 13399.59 7199.36 23399.46 18899.07 3599.79 4699.82 7998.85 3999.92 9898.68 14099.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
balanced_conf0399.46 3299.39 3099.67 7099.55 16299.58 7699.74 4599.51 11798.42 10299.87 2799.84 6598.05 10599.91 10999.58 3099.94 2599.52 170
9.1499.10 8099.72 9199.40 21799.51 11797.53 21499.64 9999.78 12498.84 4199.91 10997.63 24499.82 95
SMA-MVScopyleft99.44 4099.30 5399.85 2899.73 8799.83 1699.56 12499.47 17997.45 22399.78 5199.82 7999.18 1099.91 10998.79 12699.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 11299.65 5799.05 31399.41 21796.22 32398.95 25099.49 24898.77 5199.91 109
train_agg99.02 11898.77 13499.77 5599.67 11299.65 5799.05 31399.41 21796.28 31798.95 25099.49 24898.76 5299.91 10997.63 24499.72 12399.75 88
test_899.67 11299.61 6799.03 31899.41 21796.28 31798.93 25399.48 25398.76 5299.91 109
agg_prior99.67 11299.62 6599.40 22398.87 26399.91 109
原ACMM199.65 7599.73 8799.33 10899.47 17997.46 22099.12 21999.66 18698.67 6699.91 10997.70 24199.69 12899.71 112
LFMVS97.90 23797.35 28199.54 10199.52 17199.01 15399.39 22198.24 37897.10 25899.65 9499.79 11884.79 38099.91 10999.28 6698.38 22399.69 115
XVG-OURS98.73 15698.68 14298.88 21699.70 10197.73 25898.92 34399.55 7998.52 9399.45 14099.84 6595.27 20099.91 10998.08 20398.84 20099.00 248
PLCcopyleft97.94 499.02 11898.85 12599.53 10999.66 12299.01 15399.24 27799.52 10396.85 27899.27 18899.48 25398.25 9499.91 10997.76 23299.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 27897.06 30399.47 12699.61 14399.09 14198.04 39599.25 28991.24 38698.51 30899.70 15994.55 23799.91 10992.76 37499.85 7499.42 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UWE-MVS97.58 28497.29 29198.48 26599.09 29396.25 32899.01 32696.61 39997.86 17199.19 20899.01 33888.72 35199.90 12197.38 26998.69 20899.28 221
test_vis1_rt95.81 33595.65 33596.32 36199.67 11291.35 38899.49 17496.74 39798.25 12295.24 37798.10 38274.96 39799.90 12199.53 3698.85 19997.70 382
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16299.05 14999.80 2499.01 32296.59 29999.58 11699.59 21395.39 19599.90 12197.78 22899.49 14999.28 221
bld_raw_conf0399.39 5499.32 4499.62 8699.53 16699.50 8999.75 4099.50 13798.13 14099.87 2799.85 5497.89 10899.90 12199.39 5299.95 1899.47 189
MCST-MVS99.43 4399.30 5399.82 4199.79 5499.74 4199.29 25499.40 22398.79 7099.52 12999.62 20498.91 3499.90 12198.64 14499.75 11799.82 54
CDPH-MVS99.13 9498.91 11599.80 4699.75 7399.71 4499.15 29299.41 21796.60 29799.60 11299.55 22798.83 4299.90 12197.48 26099.83 9199.78 80
NCCC99.34 6099.19 7299.79 4999.61 14399.65 5799.30 24999.48 15998.86 6099.21 20299.63 19998.72 6199.90 12198.25 18899.63 13899.80 70
114514_t98.93 12898.67 14399.72 6699.85 2699.53 8499.62 9099.59 5892.65 38199.71 7299.78 12498.06 10499.90 12198.84 11899.91 3699.74 92
1112_ss98.98 12498.77 13499.59 9199.68 10999.02 15199.25 27599.48 15997.23 24599.13 21799.58 21796.93 14199.90 12198.87 10898.78 20599.84 39
PHI-MVS99.30 6599.17 7499.70 6899.56 15899.52 8799.58 11199.80 897.12 25499.62 10699.73 15098.58 7299.90 12198.61 14999.91 3699.68 119
AdaColmapbinary99.01 12298.80 13099.66 7199.56 15899.54 8199.18 28799.70 1598.18 13499.35 17099.63 19996.32 16399.90 12197.48 26099.77 11299.55 161
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17499.88 1198.53 20899.34 24199.59 5897.55 21098.70 28799.89 3295.83 18199.90 12198.10 19899.90 4499.08 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 18198.03 20199.31 15099.63 13398.56 20599.54 14096.75 39697.53 21499.73 6699.65 18791.25 32799.89 13398.62 14699.56 14499.48 183
tttt051798.42 17398.14 18699.28 16299.66 12298.38 22599.74 4596.85 39497.68 19699.79 4699.74 14491.39 32499.89 13398.83 12199.56 14499.57 158
test1299.75 5899.64 13099.61 6799.29 28299.21 20298.38 8899.89 13399.74 12099.74 92
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10598.95 16599.03 31899.47 17996.98 26899.15 21599.23 31496.77 14599.89 13398.83 12198.78 20599.86 32
CNLPA99.14 9298.99 10199.59 9199.58 15299.41 10299.16 28999.44 20798.45 9899.19 20899.49 24898.08 10399.89 13397.73 23699.75 11799.48 183
sd_testset98.75 15398.57 16099.29 15899.81 4698.26 22999.56 12499.62 4198.78 7399.64 9999.88 3792.02 30799.88 13899.54 3498.26 23299.72 103
APD_test195.87 33396.49 31794.00 36899.53 16684.01 39799.54 14099.32 27095.91 34097.99 33799.85 5485.49 37599.88 13891.96 37798.84 20098.12 364
diffmvspermissive99.14 9299.02 9599.51 11799.61 14398.96 16299.28 25999.49 14798.46 9799.72 7199.71 15596.50 15699.88 13899.31 6299.11 17799.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18799.28 25999.91 397.42 22899.67 8299.37 28297.53 11799.88 13898.98 9397.29 28998.42 347
PVSNet_Blended99.08 11098.97 10599.42 13499.76 6598.79 18798.78 35799.91 396.74 28399.67 8299.49 24897.53 11799.88 13898.98 9399.85 7499.60 146
MVS97.28 30396.55 31599.48 12398.78 33798.95 16599.27 26499.39 22683.53 39998.08 33299.54 23296.97 13999.87 14394.23 35699.16 17199.63 140
MG-MVS99.13 9499.02 9599.45 12999.57 15498.63 20099.07 30899.34 25398.99 4599.61 10999.82 7997.98 10799.87 14397.00 29099.80 10299.85 35
MSDG98.98 12498.80 13099.53 10999.76 6599.19 12698.75 36099.55 7997.25 24299.47 13799.77 13297.82 11199.87 14396.93 29799.90 4499.54 163
ETV-MVS99.26 7399.21 7099.40 13699.46 19599.30 11599.56 12499.52 10398.52 9399.44 14599.27 30998.41 8799.86 14699.10 8399.59 14299.04 244
thisisatest051598.14 19997.79 22499.19 17299.50 18398.50 21598.61 37196.82 39596.95 27299.54 12599.43 26491.66 31999.86 14698.08 20399.51 14899.22 226
thres600view797.86 24297.51 25798.92 20599.72 9197.95 24899.59 10398.74 35897.94 16599.27 18898.62 36391.75 31399.86 14693.73 36198.19 23898.96 254
lupinMVS99.13 9499.01 9999.46 12899.51 17498.94 16899.05 31399.16 30397.86 17199.80 4499.56 22497.39 12099.86 14698.94 9799.85 7499.58 154
PVSNet96.02 1798.85 14298.84 12798.89 21499.73 8797.28 27398.32 38799.60 5497.86 17199.50 13299.57 22196.75 14699.86 14698.56 16199.70 12799.54 163
MAR-MVS98.86 13598.63 14899.54 10199.37 22299.66 5399.45 18999.54 8796.61 29599.01 24099.40 27397.09 13299.86 14697.68 24399.53 14799.10 232
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing9197.44 29797.02 30498.71 24299.18 26996.89 30499.19 28599.04 31997.78 18498.31 31998.29 37585.41 37699.85 15298.01 20997.95 24899.39 207
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9785.06 41699.13 2299.77 5599.93 987.82 36699.85 15299.38 5399.38 15599.80 70
AllTest98.87 13298.72 13799.31 15099.86 2098.48 21899.56 12499.61 4897.85 17499.36 16799.85 5495.95 17499.85 15296.66 31099.83 9199.59 150
TestCases99.31 15099.86 2098.48 21899.61 4897.85 17499.36 16799.85 5495.95 17499.85 15296.66 31099.83 9199.59 150
jason99.13 9499.03 9199.45 12999.46 19598.87 17599.12 29899.26 28798.03 16099.79 4699.65 18797.02 13799.85 15299.02 9099.90 4499.65 129
jason: jason.
CNVR-MVS99.42 4599.30 5399.78 5299.62 13999.71 4499.26 27399.52 10398.82 6599.39 16099.71 15598.96 2499.85 15298.59 15499.80 10299.77 82
PAPM_NR99.04 11598.84 12799.66 7199.74 8099.44 9899.39 22199.38 23497.70 19499.28 18399.28 30698.34 9099.85 15296.96 29499.45 15199.69 115
testing9997.36 30096.94 30798.63 24799.18 26996.70 31099.30 24998.93 33097.71 19198.23 32498.26 37684.92 37999.84 15998.04 20897.85 25599.35 213
testing22297.16 30896.50 31699.16 17599.16 27998.47 22099.27 26498.66 36797.71 19198.23 32498.15 37882.28 39299.84 15997.36 27097.66 26199.18 228
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 11195.40 40399.12 2599.65 9499.93 990.73 33299.84 15999.43 5099.38 15599.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10394.98 40499.13 2299.66 8799.93 990.67 33399.84 15999.40 5199.38 15599.80 70
test_yl98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16399.07 31598.22 12799.61 10999.51 24295.37 19699.84 15998.60 15298.33 22699.59 150
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16399.07 31598.22 12799.61 10999.51 24295.37 19699.84 15998.60 15298.33 22699.59 150
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17499.28 11799.52 14999.47 17996.11 33399.01 24099.34 29296.20 16799.84 15997.88 21798.82 20299.39 207
TSAR-MVS + GP.99.36 5899.36 3699.36 14199.67 11298.61 20399.07 30899.33 26099.00 4399.82 4099.81 9399.06 1699.84 15999.09 8499.42 15399.65 129
tpmrst98.33 18298.48 16697.90 31799.16 27994.78 35899.31 24799.11 30897.27 24099.45 14099.59 21395.33 19899.84 15998.48 16898.61 21099.09 236
Vis-MVSNetpermissive99.12 10098.97 10599.56 9899.78 5699.10 14099.68 6499.66 2898.49 9599.86 3299.87 4594.77 22299.84 15999.19 7499.41 15499.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 16498.34 17399.51 11799.40 21499.03 15098.80 35599.36 24396.33 31499.00 24499.12 32898.46 8199.84 15995.23 34399.37 16299.66 125
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9699.28 11799.06 31199.77 997.74 18999.50 13299.53 23695.41 19499.84 15997.17 28499.64 13699.44 200
EPP-MVSNet99.13 9498.99 10199.53 10999.65 12899.06 14799.81 1999.33 26097.43 22699.60 11299.88 3797.14 13099.84 15999.13 8098.94 19199.69 115
testing1197.50 29097.10 30198.71 24299.20 26396.91 30299.29 25498.82 34997.89 16998.21 32798.40 37085.63 37499.83 17298.45 17398.04 24699.37 211
thres100view90097.76 25897.45 26498.69 24499.72 9197.86 25499.59 10398.74 35897.93 16699.26 19298.62 36391.75 31399.83 17293.22 36698.18 23998.37 353
tfpn200view997.72 26797.38 27798.72 24099.69 10597.96 24699.50 16398.73 36397.83 17799.17 21398.45 36891.67 31799.83 17293.22 36698.18 23998.37 353
test_prior99.68 6999.67 11299.48 9399.56 7199.83 17299.74 92
131498.68 15998.54 16399.11 18198.89 32298.65 19799.27 26499.49 14796.89 27697.99 33799.56 22497.72 11599.83 17297.74 23599.27 16698.84 260
thres40097.77 25797.38 27798.92 20599.69 10597.96 24699.50 16398.73 36397.83 17799.17 21398.45 36891.67 31799.83 17293.22 36698.18 23998.96 254
casdiffmvspermissive99.13 9498.98 10499.56 9899.65 12899.16 13199.56 12499.50 13798.33 11399.41 15399.86 4995.92 17799.83 17299.45 4999.16 17199.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11599.89 299.58 6298.56 8999.73 6699.69 16998.55 7599.82 17999.69 2099.85 7499.48 183
MVS_Test99.10 10898.97 10599.48 12399.49 18599.14 13699.67 6799.34 25397.31 23799.58 11699.76 13697.65 11699.82 17998.87 10899.07 18399.46 195
dp97.75 26297.80 22397.59 33499.10 29093.71 37399.32 24498.88 34296.48 30699.08 22899.55 22792.67 29299.82 17996.52 31398.58 21399.24 225
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5199.44 20796.61 29599.66 8799.89 3295.92 17799.82 17997.46 26399.10 18099.57 158
PMMVS98.80 14998.62 15399.34 14399.27 24898.70 19398.76 35999.31 27497.34 23499.21 20299.07 33097.20 12999.82 17998.56 16198.87 19799.52 170
EIA-MVS99.18 8399.09 8399.45 12999.49 18599.18 12899.67 6799.53 9897.66 19999.40 15899.44 26298.10 10099.81 18498.94 9799.62 13999.35 213
Effi-MVS+98.81 14698.59 15999.48 12399.46 19599.12 13998.08 39499.50 13797.50 21899.38 16299.41 27096.37 16299.81 18499.11 8298.54 21899.51 177
thres20097.61 28297.28 29298.62 24899.64 13098.03 24099.26 27398.74 35897.68 19699.09 22798.32 37491.66 31999.81 18492.88 37198.22 23498.03 369
tpmvs97.98 22598.02 20397.84 32199.04 30394.73 35999.31 24799.20 29896.10 33798.76 27799.42 26694.94 20899.81 18496.97 29398.45 22298.97 252
casdiffmvs_mvgpermissive99.15 8999.02 9599.55 10099.66 12299.09 14199.64 8199.56 7198.26 12199.45 14099.87 4596.03 17199.81 18499.54 3499.15 17499.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 14699.37 3497.12 34699.60 14891.75 38698.61 37199.44 20799.35 1299.83 3999.85 5498.70 6399.81 18499.02 9099.91 3699.81 61
DPM-MVS98.95 12798.71 13999.66 7199.63 13399.55 7998.64 37099.10 30997.93 16699.42 14999.55 22798.67 6699.80 19095.80 32899.68 13199.61 144
DP-MVS Recon99.12 10098.95 11199.65 7599.74 8099.70 4699.27 26499.57 6696.40 31399.42 14999.68 17598.75 5599.80 19097.98 21199.72 12399.44 200
MVS_111021_LR99.41 4999.33 4299.65 7599.77 6299.51 8898.94 34199.85 698.82 6599.65 9499.74 14498.51 7899.80 19098.83 12199.89 5399.64 136
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 10099.90 199.55 7998.56 8999.78 5199.70 15998.65 6899.79 19399.65 2499.78 10999.41 204
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 24999.41 20996.99 29699.52 14999.49 14798.11 14499.24 19499.34 29296.96 14099.79 19397.95 21399.45 15199.02 247
baseline198.31 18397.95 21099.38 14099.50 18398.74 19099.59 10398.93 33098.41 10399.14 21699.60 21194.59 23399.79 19398.48 16893.29 36699.61 144
baseline99.15 8999.02 9599.53 10999.66 12299.14 13699.72 5199.48 15998.35 11099.42 14999.84 6596.07 16999.79 19399.51 3999.14 17599.67 122
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23894.34 36797.81 39699.70 1597.12 25497.46 35098.75 36089.71 34399.79 19397.69 24281.69 39999.68 119
API-MVS99.04 11599.03 9199.06 18599.40 21499.31 11399.55 13699.56 7198.54 9199.33 17499.39 27798.76 5299.78 19896.98 29299.78 10998.07 366
OMC-MVS99.08 11099.04 8999.20 17199.67 11298.22 23199.28 25999.52 10398.07 15299.66 8799.81 9397.79 11299.78 19897.79 22799.81 9899.60 146
GeoE98.85 14298.62 15399.53 10999.61 14399.08 14499.80 2499.51 11797.10 25899.31 17699.78 12495.23 20499.77 20098.21 19099.03 18699.75 88
alignmvs98.81 14698.56 16299.58 9499.43 20299.42 10099.51 15698.96 32898.61 8599.35 17098.92 35094.78 21999.77 20099.35 5598.11 24499.54 163
tpm cat197.39 29997.36 27997.50 33799.17 27793.73 37299.43 19999.31 27491.27 38598.71 28199.08 32994.31 24799.77 20096.41 31798.50 22099.00 248
CostFormer97.72 26797.73 23697.71 32999.15 28394.02 36999.54 14099.02 32194.67 36199.04 23799.35 28892.35 30499.77 20098.50 16797.94 24999.34 216
MGCFI-Net99.01 12298.85 12599.50 12299.42 20499.26 12099.82 1599.48 15998.60 8699.28 18398.81 35597.04 13699.76 20499.29 6597.87 25399.47 189
test_241102_ONE99.84 3299.90 299.48 15999.07 3599.91 1899.74 14499.20 799.76 204
MDTV_nov1_ep1398.32 17599.11 28794.44 36499.27 26498.74 35897.51 21799.40 15899.62 20494.78 21999.76 20497.59 24798.81 204
sasdasda99.02 11898.86 12399.51 11799.42 20499.32 10999.80 2499.48 15998.63 8299.31 17698.81 35597.09 13299.75 20799.27 6897.90 25099.47 189
canonicalmvs99.02 11898.86 12399.51 11799.42 20499.32 10999.80 2499.48 15998.63 8299.31 17698.81 35597.09 13299.75 20799.27 6897.90 25099.47 189
Effi-MVS+-dtu98.78 15098.89 11998.47 27099.33 23196.91 30299.57 11899.30 27898.47 9699.41 15398.99 34096.78 14499.74 20998.73 13299.38 15598.74 273
patchmatchnet-post98.70 36194.79 21899.74 209
SCA98.19 19398.16 18398.27 29499.30 23995.55 34199.07 30898.97 32697.57 20799.43 14699.57 22192.72 28799.74 20997.58 24899.20 16999.52 170
BH-untuned98.42 17398.36 17198.59 25099.49 18596.70 31099.27 26499.13 30797.24 24498.80 27299.38 27995.75 18499.74 20997.07 28899.16 17199.33 217
BH-RMVSNet98.41 17598.08 19599.40 13699.41 20998.83 18399.30 24998.77 35497.70 19498.94 25299.65 18792.91 28299.74 20996.52 31399.55 14699.64 136
MVS_111021_HR99.41 4999.32 4499.66 7199.72 9199.47 9598.95 33999.85 698.82 6599.54 12599.73 15098.51 7899.74 20998.91 10299.88 5699.77 82
test_post65.99 41094.65 23299.73 215
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28796.33 32599.41 20999.52 10398.06 15699.05 23699.50 24589.64 34599.73 21597.73 23697.38 28798.53 335
HyFIR lowres test99.11 10498.92 11399.65 7599.90 499.37 10499.02 32199.91 397.67 19899.59 11599.75 13995.90 17999.73 21599.53 3699.02 18899.86 32
DeepMVS_CXcopyleft93.34 37199.29 24382.27 40099.22 29485.15 39796.33 37099.05 33390.97 33099.73 21593.57 36397.77 25898.01 370
Patchmatch-test97.93 23197.65 24398.77 23799.18 26997.07 28799.03 31899.14 30696.16 32898.74 27899.57 22194.56 23599.72 21993.36 36599.11 17799.52 170
LPG-MVS_test98.22 18998.13 18898.49 26399.33 23197.05 28999.58 11199.55 7997.46 22099.24 19499.83 7092.58 29499.72 21998.09 19997.51 27398.68 290
LGP-MVS_train98.49 26399.33 23197.05 28999.55 7997.46 22099.24 19499.83 7092.58 29499.72 21998.09 19997.51 27398.68 290
BH-w/o98.00 22397.89 21998.32 28799.35 22696.20 33099.01 32698.90 33996.42 31198.38 31599.00 33995.26 20299.72 21996.06 32198.61 21099.03 245
ACMP97.20 1198.06 20897.94 21298.45 27299.37 22297.01 29499.44 19599.49 14797.54 21398.45 31299.79 11891.95 30999.72 21997.91 21597.49 27898.62 318
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28099.23 25696.80 30899.70 5499.60 5497.12 25498.18 32999.70 15991.73 31599.72 21998.39 17697.45 28098.68 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 27865.14 41194.18 25299.71 22597.58 248
ADS-MVSNet98.20 19298.08 19598.56 25799.33 23196.48 32099.23 27899.15 30496.24 32199.10 22499.67 18194.11 25399.71 22596.81 30299.05 18499.48 183
JIA-IIPM97.50 29097.02 30498.93 20398.73 34597.80 25699.30 24998.97 32691.73 38498.91 25594.86 39995.10 20699.71 22597.58 24897.98 24799.28 221
EPMVS97.82 25197.65 24398.35 28498.88 32395.98 33399.49 17494.71 40697.57 20799.26 19299.48 25392.46 30199.71 22597.87 21999.08 18299.35 213
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 17998.75 35596.74 28396.68 36799.88 3788.65 35599.71 22598.37 17982.74 39898.09 365
ACMM97.58 598.37 18098.34 17398.48 26599.41 20997.10 28399.56 12499.45 19998.53 9299.04 23799.85 5493.00 27899.71 22598.74 13097.45 28098.64 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 22897.77 22998.57 25499.59 15096.61 31699.45 18999.08 31298.21 12998.88 26099.80 10688.66 35499.70 23198.58 15597.72 25999.39 207
CHOSEN 280x42099.12 10099.13 7799.08 18299.66 12297.89 25198.43 38199.71 1398.88 5999.62 10699.76 13696.63 15099.70 23199.46 4899.99 199.66 125
EC-MVSNet99.44 4099.39 3099.58 9499.56 15899.49 9199.88 399.58 6298.38 10599.73 6699.69 16998.20 9699.70 23199.64 2799.82 9599.54 163
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27995.32 34999.27 26498.92 33397.37 23299.37 16499.58 21794.90 21299.70 23197.43 26699.21 16899.54 163
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 20397.99 20598.44 27599.41 20996.96 30099.60 9799.56 7198.09 14798.15 33099.91 2190.87 33199.70 23198.88 10597.45 28098.67 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS97.50 29096.90 30899.29 15899.23 25698.78 18999.32 24498.90 33997.52 21698.56 30598.09 38384.72 38199.69 23697.86 22097.88 25299.39 207
HQP_MVS98.27 18898.22 18198.44 27599.29 24396.97 29899.39 22199.47 17998.97 5199.11 22199.61 20892.71 28999.69 23697.78 22897.63 26298.67 297
plane_prior599.47 17999.69 23697.78 22897.63 26298.67 297
D2MVS98.41 17598.50 16598.15 30299.26 25096.62 31599.40 21799.61 4897.71 19198.98 24699.36 28596.04 17099.67 23998.70 13597.41 28598.15 363
IS-MVSNet99.05 11498.87 12199.57 9699.73 8799.32 10999.75 4099.20 29898.02 16199.56 12099.86 4996.54 15499.67 23998.09 19999.13 17699.73 97
CLD-MVS98.16 19798.10 19198.33 28599.29 24396.82 30798.75 36099.44 20797.83 17799.13 21799.55 22792.92 28099.67 23998.32 18597.69 26098.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 30597.30 28997.09 34799.43 20293.31 37899.73 4998.87 34498.83 6499.28 18399.80 10684.45 38299.66 24297.88 21797.45 28098.30 355
AUN-MVS96.88 31596.31 32198.59 25099.48 19297.04 29299.27 26499.22 29497.44 22598.51 30899.41 27091.97 30899.66 24297.71 23983.83 39699.07 242
UniMVSNet_ETH3D97.32 30296.81 31098.87 22099.40 21497.46 26999.51 15699.53 9895.86 34198.54 30799.77 13282.44 39099.66 24298.68 14097.52 27299.50 181
OPM-MVS98.19 19398.10 19198.45 27298.88 32397.07 28799.28 25999.38 23498.57 8899.22 19999.81 9392.12 30599.66 24298.08 20397.54 27198.61 327
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19596.68 31399.56 12499.54 8798.41 10397.79 34699.87 4590.18 34099.66 24298.05 20797.18 29498.62 318
hse-mvs297.50 29097.14 29898.59 25099.49 18597.05 28999.28 25999.22 29498.94 5499.66 8799.42 26694.93 20999.65 24799.48 4583.80 39799.08 237
VPA-MVSNet98.29 18697.95 21099.30 15599.16 27999.54 8199.50 16399.58 6298.27 11899.35 17099.37 28292.53 29699.65 24799.35 5594.46 34998.72 275
TR-MVS97.76 25897.41 27598.82 22999.06 29997.87 25298.87 34998.56 37096.63 29498.68 28999.22 31592.49 29799.65 24795.40 33997.79 25798.95 256
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 25097.56 253
HQP4-MVS98.66 29099.64 25098.64 309
HQP-MVS98.02 21897.90 21598.37 28399.19 26696.83 30598.98 33299.39 22698.24 12398.66 29099.40 27392.47 29899.64 25097.19 28197.58 26798.64 309
PAPM97.59 28397.09 30299.07 18399.06 29998.26 22998.30 38899.10 30994.88 35698.08 33299.34 29296.27 16599.64 25089.87 38598.92 19499.31 219
TAPA-MVS97.07 1597.74 26497.34 28498.94 20199.70 10197.53 26799.25 27599.51 11791.90 38399.30 17999.63 19998.78 4899.64 25088.09 39299.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 17998.09 19499.24 16799.26 25099.32 10999.56 12499.55 7997.45 22398.71 28199.83 7093.23 27399.63 25598.88 10596.32 30998.76 268
ITE_SJBPF98.08 30499.29 24396.37 32398.92 33398.34 11198.83 26899.75 13991.09 32899.62 25695.82 32697.40 28698.25 359
LF4IMVS97.52 28797.46 26397.70 33098.98 31395.55 34199.29 25498.82 34998.07 15298.66 29099.64 19389.97 34199.61 25797.01 28996.68 29997.94 376
tpm97.67 27797.55 25198.03 30699.02 30595.01 35599.43 19998.54 37296.44 30999.12 21999.34 29291.83 31299.60 25897.75 23496.46 30599.48 183
tpm297.44 29797.34 28497.74 32899.15 28394.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25997.31 27298.07 24599.29 220
baseline297.87 24097.55 25198.82 22999.18 26998.02 24199.41 20996.58 40096.97 26996.51 36899.17 32093.43 27099.57 26097.71 23999.03 18698.86 258
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27097.41 22998.13 33199.30 30288.99 34999.56 26195.68 33299.80 10297.90 379
TinyColmap97.12 31096.89 30997.83 32299.07 29795.52 34498.57 37498.74 35897.58 20697.81 34599.79 11888.16 36199.56 26195.10 34497.21 29298.39 351
USDC97.34 30197.20 29697.75 32799.07 29795.20 35198.51 37899.04 31997.99 16298.31 31999.86 4989.02 34899.55 26395.67 33397.36 28898.49 338
MSLP-MVS++99.46 3299.47 1799.44 13399.60 14899.16 13199.41 20999.71 1398.98 4899.45 14099.78 12499.19 999.54 26499.28 6699.84 8299.63 140
TAMVS99.12 10099.08 8499.24 16799.46 19598.55 20699.51 15699.46 18898.09 14799.45 14099.82 7998.34 9099.51 26598.70 13598.93 19299.67 122
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27898.75 35599.02 3897.82 34499.71 15596.11 16899.48 26693.04 36999.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28998.93 33096.16 32894.08 38599.22 31582.72 38899.47 26795.67 33397.50 27598.17 362
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24697.23 35799.36 28595.28 19999.46 26895.51 33599.78 10997.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 16698.67 14398.30 28999.35 22695.59 34099.50 16399.55 7998.60 8699.39 16099.83 7094.48 24099.45 26998.75 12998.56 21699.85 35
test-LLR98.06 20897.90 21598.55 25998.79 33497.10 28398.67 36697.75 38697.34 23498.61 30198.85 35294.45 24299.45 26997.25 27599.38 15599.10 232
TESTMET0.1,197.55 28597.27 29598.40 28098.93 31896.53 31898.67 36697.61 38996.96 27098.64 29799.28 30688.63 35699.45 26997.30 27399.38 15599.21 227
test-mter97.49 29597.13 30098.55 25998.79 33497.10 28398.67 36697.75 38696.65 29098.61 30198.85 35288.23 36099.45 26997.25 27599.38 15599.10 232
mvs_anonymous99.03 11798.99 10199.16 17599.38 21998.52 21299.51 15699.38 23497.79 18299.38 16299.81 9397.30 12699.45 26999.35 5598.99 18999.51 177
tfpnnormal97.84 24697.47 26198.98 19599.20 26399.22 12599.64 8199.61 4896.32 31598.27 32399.70 15993.35 27299.44 27495.69 33195.40 33298.27 357
v7n97.87 24097.52 25598.92 20598.76 34398.58 20499.84 1199.46 18896.20 32498.91 25599.70 15994.89 21399.44 27496.03 32293.89 36098.75 270
jajsoiax98.43 17298.28 17898.88 21698.60 36098.43 22299.82 1599.53 9898.19 13198.63 29899.80 10693.22 27599.44 27499.22 7297.50 27598.77 266
mvs_tets98.40 17898.23 18098.91 20998.67 35398.51 21499.66 7299.53 9898.19 13198.65 29699.81 9392.75 28499.44 27499.31 6297.48 27998.77 266
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 15099.71 9698.88 17499.80 2499.44 20797.91 16899.36 16799.78 12495.49 19399.43 27897.91 21599.11 17799.62 142
OPU-MVS99.64 8099.56 15899.72 4299.60 9799.70 15999.27 599.42 27998.24 18999.80 10299.79 74
Anonymous2023121197.88 23897.54 25498.90 21199.71 9698.53 20899.48 17999.57 6694.16 36698.81 27099.68 17593.23 27399.42 27998.84 11894.42 35198.76 268
VPNet97.84 24697.44 26999.01 19199.21 26198.94 16899.48 17999.57 6698.38 10599.28 18399.73 15088.89 35099.39 28199.19 7493.27 36798.71 277
nrg03098.64 16398.42 16899.28 16299.05 30299.69 4799.81 1999.46 18898.04 15899.01 24099.82 7996.69 14899.38 28299.34 5994.59 34898.78 263
GA-MVS97.85 24397.47 26199.00 19399.38 21997.99 24398.57 37499.15 30497.04 26598.90 25799.30 30289.83 34299.38 28296.70 30798.33 22699.62 142
UniMVSNet (Re)98.29 18698.00 20499.13 18099.00 30799.36 10799.49 17499.51 11797.95 16498.97 24899.13 32596.30 16499.38 28298.36 18193.34 36598.66 305
FIs98.78 15098.63 14899.23 16999.18 26999.54 8199.83 1499.59 5898.28 11698.79 27499.81 9396.75 14699.37 28599.08 8596.38 30798.78 263
PS-MVSNAJss98.92 12998.92 11398.90 21198.78 33798.53 20899.78 3199.54 8798.07 15299.00 24499.76 13699.01 1899.37 28599.13 8097.23 29198.81 261
CDS-MVSNet99.09 10999.03 9199.25 16599.42 20498.73 19199.45 18999.46 18898.11 14499.46 13999.77 13298.01 10699.37 28598.70 13598.92 19499.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23993.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28594.85 34899.85 7499.46 195
v119297.81 25397.44 26998.91 20998.88 32398.68 19499.51 15699.34 25396.18 32699.20 20599.34 29294.03 25699.36 28995.32 34195.18 33698.69 285
EI-MVSNet98.67 16098.67 14398.68 24599.35 22697.97 24499.50 16399.38 23496.93 27599.20 20599.83 7097.87 10999.36 28998.38 17797.56 26998.71 277
MVSTER98.49 16798.32 17599.00 19399.35 22699.02 15199.54 14099.38 23497.41 22999.20 20599.73 15093.86 26399.36 28998.87 10897.56 26998.62 318
gg-mvs-nofinetune96.17 32995.32 34098.73 23998.79 33498.14 23599.38 22694.09 40791.07 38898.07 33591.04 40589.62 34699.35 29296.75 30499.09 18198.68 290
pm-mvs197.68 27497.28 29298.88 21699.06 29998.62 20199.50 16399.45 19996.32 31597.87 34299.79 11892.47 29899.35 29297.54 25593.54 36498.67 297
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18298.78 27599.94 691.68 31699.35 29297.21 27796.99 29898.69 285
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24399.28 2848.40 41325.05 41499.27 30984.11 38399.33 29589.20 38798.22 23497.42 387
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22899.47 17993.46 37497.41 35199.78 12487.06 36999.33 29596.92 29992.70 37498.65 307
V4298.06 20897.79 22498.86 22398.98 31398.84 18099.69 5899.34 25396.53 30199.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4588.69 35399.32 29795.89 32594.93 34398.62 318
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31198.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25396.76 390
v897.95 23097.63 24798.93 20398.95 31798.81 18699.80 2499.41 21796.03 33899.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 305
v192192097.80 25597.45 26498.84 22798.80 33398.53 20899.52 14999.34 25396.15 33099.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 285
anonymousdsp98.44 17198.28 17898.94 20198.50 36598.96 16299.77 3399.50 13797.07 26098.87 26399.77 13294.76 22399.28 30298.66 14297.60 26598.57 333
MVSFormer99.17 8599.12 7899.29 15899.51 17498.94 16899.88 399.46 18897.55 21099.80 4499.65 18797.39 12099.28 30299.03 8899.85 7499.65 129
test_djsdf98.67 16098.57 16098.98 19598.70 35098.91 17299.88 399.46 18897.55 21099.22 19999.88 3795.73 18599.28 30299.03 8897.62 26498.75 270
cascas97.69 27297.43 27398.48 26598.60 36097.30 27298.18 39299.39 22692.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 21098.86 258
v14419297.92 23497.60 24998.87 22098.83 33298.65 19799.55 13699.34 25396.20 32499.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 281
dmvs_re98.08 20698.16 18397.85 31999.55 16294.67 36199.70 5498.92 33398.15 13699.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
v2v48298.06 20897.77 22998.92 20598.90 32198.82 18499.57 11899.36 24396.65 29099.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 285
v124097.69 27297.32 28798.79 23598.85 33098.43 22299.48 17999.36 24396.11 33399.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 281
v114497.98 22597.69 23998.85 22698.87 32698.66 19699.54 14099.35 24996.27 31999.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 290
v1097.85 24397.52 25598.86 22398.99 31098.67 19599.75 4099.41 21795.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 297
WR-MVS_H98.13 20097.87 22098.90 21199.02 30598.84 18099.70 5499.59 5897.27 24098.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 327
miper_enhance_ethall98.16 19798.08 19598.41 27898.96 31697.72 26098.45 38099.32 27096.95 27298.97 24899.17 32097.06 13599.22 31397.86 22095.99 31698.29 356
GG-mvs-BLEND98.45 27298.55 36398.16 23399.43 19993.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23497.98 374
FC-MVSNet-test98.75 15398.62 15399.15 17999.08 29699.45 9799.86 1099.60 5498.23 12698.70 28799.82 7996.80 14399.22 31399.07 8696.38 30798.79 262
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 31998.98 15599.48 17999.53 9897.76 18698.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 285
DU-MVS98.08 20697.79 22498.96 19898.87 32698.98 15599.41 20999.45 19997.87 17098.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 290
cl____98.01 22197.84 22298.55 25999.25 25497.97 24498.71 36499.34 25396.47 30898.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
WR-MVS98.06 20897.73 23699.06 18598.86 32999.25 12299.19 28599.35 24997.30 23898.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 277
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19599.26 28793.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27597.93 377
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3398.68 36697.14 25197.90 34099.93 990.45 33499.18 32197.00 29096.43 30698.67 297
cl2297.85 24397.64 24698.48 26599.09 29397.87 25298.60 37399.33 26097.11 25798.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26599.13 29598.33 37597.36 23399.07 22998.94 34695.64 18999.15 32392.95 37098.68 20996.12 397
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15496.36 32499.02 32199.49 14797.18 24898.71 28199.72 15492.72 28799.14 32497.44 26595.86 32198.67 297
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26498.90 33996.14 33198.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 316
v14897.79 25697.55 25198.50 26298.74 34497.72 26099.54 14099.33 26096.26 32098.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 316
miper_ehance_all_eth98.18 19598.10 19198.41 27899.23 25697.72 26098.72 36399.31 27496.60 29798.88 26099.29 30497.29 12799.13 32797.60 24695.99 31698.38 352
NR-MVSNet97.97 22897.61 24899.02 19098.87 32699.26 12099.47 18599.42 21597.63 20197.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 290
IterMVS97.83 24897.77 22998.02 30899.58 15296.27 32799.02 32199.48 15997.22 24698.71 28199.70 15992.75 28499.13 32797.46 26396.00 31598.67 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 15989.01 39391.99 39499.67 18185.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 21397.96 20898.33 28599.26 25097.38 27198.56 37699.31 27496.65 29098.88 26099.52 23996.58 15299.12 33197.39 26895.53 33098.47 341
pmmvs498.13 20097.90 21598.81 23298.61 35998.87 17598.99 32999.21 29796.44 30999.06 23499.58 21795.90 17999.11 33297.18 28396.11 31398.46 344
TransMVSNet (Re)97.15 30996.58 31498.86 22399.12 28598.85 17999.49 17498.91 33795.48 34597.16 36099.80 10693.38 27199.11 33294.16 35891.73 37798.62 318
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
Baseline_NR-MVSNet97.76 25897.45 26498.68 24599.09 29398.29 22799.41 20998.85 34695.65 34398.63 29899.67 18194.82 21599.10 33498.07 20692.89 37198.64 309
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3690.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
CP-MVSNet98.09 20497.78 22799.01 19198.97 31599.24 12399.67 6799.46 18897.25 24298.48 31199.64 19393.79 26599.06 33798.63 14594.10 35698.74 273
PS-CasMVS97.93 23197.59 25098.95 20098.99 31099.06 14799.68 6499.52 10397.13 25298.31 31999.68 17592.44 30299.05 33898.51 16694.08 35798.75 270
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 797.05 39297.59 20496.16 37299.80 10688.71 35299.04 33996.69 30896.55 30498.65 307
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31399.20 29893.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
DIV-MVS_self_test98.01 22197.85 22198.48 26599.24 25597.95 24898.71 36499.35 24996.50 30298.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
IterMVS-LS98.46 17098.42 16898.58 25399.59 15098.00 24299.37 22899.43 21396.94 27499.07 22999.59 21397.87 10999.03 34198.32 18595.62 32798.71 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27896.83 28198.19 32899.34 29297.01 13899.02 34395.00 34796.01 31498.64 309
Patchmtry97.75 26297.40 27698.81 23299.10 29098.87 17599.11 30499.33 26094.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29892.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 331
CR-MVSNet98.17 19697.93 21398.87 22099.18 26998.49 21699.22 28299.33 26096.96 27099.56 12099.38 27994.33 24599.00 34694.83 34998.58 21399.14 229
c3_l98.12 20298.04 20098.38 28299.30 23997.69 26498.81 35499.33 26096.67 28898.83 26899.34 29297.11 13198.99 34797.58 24895.34 33398.48 339
test0.0.03 197.71 27097.42 27498.56 25798.41 36997.82 25598.78 35798.63 36897.34 23498.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 257
PatchT97.03 31396.44 31898.79 23598.99 31098.34 22699.16 28999.07 31592.13 38299.52 12997.31 39294.54 23898.98 34888.54 39098.73 20799.03 245
GBi-Net97.68 27497.48 25998.29 29099.51 17497.26 27699.43 19999.48 15996.49 30399.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
test197.68 27497.48 25998.29 29099.51 17497.26 27699.43 19999.48 15996.49 30399.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
FMVSNet398.03 21697.76 23398.84 22799.39 21798.98 15599.40 21799.38 23496.67 28899.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 334
FMVSNet297.72 26797.36 27998.80 23499.51 17498.84 18099.45 18999.42 21596.49 30398.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 332
FMVSNet196.84 31696.36 32098.29 29099.32 23797.26 27699.43 19999.48 15995.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 318
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18896.11 33398.22 32699.62 20496.45 15998.97 35593.77 36095.97 31998.61 327
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23898.78 33798.62 20199.65 7899.49 14797.76 18698.49 31099.60 21194.23 24898.97 35598.00 21092.90 37098.70 281
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 28968.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23195.19 35299.23 27899.08 31296.24 32199.10 22499.67 18194.11 25398.93 35896.81 30299.05 18499.48 183
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18799.53 16698.82 18498.84 35197.51 39097.63 20184.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 204
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 23097.43 27098.88 34799.36 24396.48 30698.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
PEN-MVS97.76 25897.44 26998.72 24098.77 34298.54 20799.78 3199.51 11797.06 26298.29 32299.64 19392.63 29398.89 36198.09 19993.16 36898.72 275
testing397.28 30396.76 31298.82 22999.37 22298.07 23999.45 18999.36 24397.56 20997.89 34198.95 34583.70 38598.82 36296.03 32298.56 21699.58 154
testgi97.65 27997.50 25898.13 30399.36 22596.45 32199.42 20699.48 15997.76 18697.87 34299.45 26191.09 32898.81 36394.53 35198.52 21999.13 231
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
MIMVSNet97.73 26597.45 26498.57 25499.45 20097.50 26899.02 32198.98 32596.11 33399.41 15399.14 32490.28 33598.74 36695.74 32998.93 19299.47 189
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23992.25 38499.59 10398.26 37697.43 22696.20 37199.13 32596.27 16598.73 36798.17 19598.99 18999.64 136
Syy-MVS97.09 31297.14 29896.95 35199.00 30792.73 38299.29 25499.39 22697.06 26297.41 35198.15 37893.92 26198.68 36891.71 37898.34 22499.45 198
myMVS_eth3d96.89 31496.37 31998.43 27799.00 30797.16 28099.29 25499.39 22697.06 26297.41 35198.15 37883.46 38698.68 36895.27 34298.34 22499.45 198
DTE-MVSNet97.51 28997.19 29798.46 27198.63 35698.13 23699.84 1199.48 15996.68 28797.97 33999.67 18192.92 28098.56 37096.88 30192.60 37598.70 281
PC_three_145298.18 13499.84 3499.70 15999.31 398.52 37198.30 18799.80 10299.81 61
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 8198.25 37798.28 11694.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 15991.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3099.29 28293.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5898.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27999.11 30499.24 29193.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 309
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23399.51 11797.13 25296.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29895.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29895.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28399.10 30699.23 29293.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 309
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7299.66 2898.09 14798.35 31799.82 7995.25 20398.01 38197.41 26795.30 33498.78 263
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 19979.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23899.10 30995.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22898.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27499.15 29299.33 26093.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 318
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 177
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8599.08 31296.17 32797.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
SD-MVS99.41 4999.52 1199.05 18799.74 8099.68 4899.46 18899.52 10399.11 2699.88 2299.91 2199.43 197.70 38898.72 13399.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11896.63 39896.13 33298.87 26398.61 36594.59 23397.70 38895.08 34598.86 19899.55 161
dongtai93.26 35592.93 35994.25 36799.39 21785.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25699.58 154
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12499.44 20795.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
FMVSNet596.43 32496.19 32397.15 34399.11 28795.89 33599.32 24499.52 10394.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28799.28 28494.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23495.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14999.50 13793.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 330
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15699.38 23496.55 30096.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5485.77 37296.15 39997.86 22043.89 40995.39 399
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1598.62 36996.65 29095.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 224
dmvs_testset95.02 34296.12 32491.72 37799.10 29080.43 40599.58 11197.87 38597.47 21995.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 160
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39183.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4999.27 28695.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3699.23 29294.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1170.00 4140.00 41599.56 22496.58 1520.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2170.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 28095.47 336
FOURS199.91 199.93 199.87 799.56 7199.10 2799.81 41
test_one_060199.81 4699.88 899.49 14798.97 5199.65 9499.81 9399.09 14
eth-test20.00 419
eth-test0.00 419
RE-MVS-def99.34 4099.76 6599.82 2299.63 8599.52 10398.38 10599.76 6099.82 7998.75 5598.61 14999.81 9899.77 82
IU-MVS99.84 3299.88 899.32 27098.30 11599.84 3498.86 11399.85 7499.89 19
save fliter99.76 6599.59 7199.14 29499.40 22399.00 43
test072699.85 2699.89 499.62 9099.50 13799.10 2799.86 3299.82 7998.94 29
GSMVS99.52 170
test_part299.81 4699.83 1699.77 55
sam_mvs194.86 21499.52 170
sam_mvs94.72 226
MTGPAbinary99.47 179
MTMP99.54 14098.88 342
test9_res97.49 25999.72 12399.75 88
agg_prior297.21 27799.73 12299.75 88
test_prior499.56 7798.99 329
test_prior298.96 33698.34 11199.01 24099.52 23998.68 6497.96 21299.74 120
新几何299.01 326
旧先验199.74 8099.59 7199.54 8799.69 16998.47 8099.68 13199.73 97
原ACMM298.95 339
test22299.75 7399.49 9198.91 34599.49 14796.42 31199.34 17399.65 18798.28 9399.69 12899.72 103
segment_acmp98.96 24
testdata198.85 35098.32 114
plane_prior799.29 24397.03 293
plane_prior699.27 24896.98 29792.71 289
plane_prior499.61 208
plane_prior397.00 29598.69 7999.11 221
plane_prior299.39 22198.97 51
plane_prior199.26 250
plane_prior96.97 29899.21 28498.45 9897.60 265
n20.00 420
nn0.00 420
door-mid98.05 382
test1199.35 249
door97.92 383
HQP5-MVS96.83 305
HQP-NCC99.19 26698.98 33298.24 12398.66 290
ACMP_Plane99.19 26698.98 33298.24 12398.66 290
BP-MVS97.19 281
HQP3-MVS99.39 22697.58 267
HQP2-MVS92.47 298
NP-MVS99.23 25696.92 30199.40 273
MDTV_nov1_ep13_2view95.18 35399.35 23896.84 27999.58 11695.19 20597.82 22599.46 195
ACMMP++_ref97.19 293
ACMMP++97.43 284
Test By Simon98.75 55