This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmvis_n_192099.65 499.61 499.77 4999.38 20599.37 9499.58 10999.62 3799.41 699.87 1999.92 1298.81 44100.00 199.97 199.93 1799.94 7
test_fmvsm_n_192099.69 299.66 199.78 4699.84 3199.44 8899.58 10999.69 1899.43 499.98 499.91 1698.62 68100.00 199.97 199.95 1199.90 10
test_vis1_n_192098.63 15398.40 16099.31 13699.86 2097.94 23999.67 6499.62 3799.43 499.99 299.91 1687.29 355100.00 199.92 799.92 1999.98 2
test_fmvsmconf_n99.70 199.64 299.87 1199.80 4899.66 5399.48 17199.64 3499.45 299.92 999.92 1298.62 6899.99 499.96 499.99 199.96 5
patch_mono-299.26 6399.62 398.16 28399.81 4294.59 34499.52 14499.64 3499.33 1099.73 5599.90 2299.00 2299.99 499.69 1299.98 499.89 13
h-mvs3397.70 26197.28 28098.97 18399.70 9797.27 26199.36 22399.45 18798.94 4999.66 7699.64 18594.93 19899.99 499.48 3484.36 37599.65 122
xiu_mvs_v1_base_debu99.29 5899.27 5399.34 12999.63 12598.97 14699.12 28199.51 10998.86 5599.84 2399.47 24898.18 9499.99 499.50 2999.31 15099.08 213
xiu_mvs_v1_base99.29 5899.27 5399.34 12999.63 12598.97 14699.12 28199.51 10998.86 5599.84 2399.47 24898.18 9499.99 499.50 2999.31 15099.08 213
xiu_mvs_v1_base_debi99.29 5899.27 5399.34 12999.63 12598.97 14699.12 28199.51 10998.86 5599.84 2399.47 24898.18 9499.99 499.50 2999.31 15099.08 213
EPNet98.86 12198.71 12599.30 14197.20 36898.18 22199.62 8898.91 32599.28 1398.63 28699.81 8495.96 16299.99 499.24 6199.72 11199.73 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_cas_vis1_n_192099.16 7699.01 8899.61 7799.81 4298.86 16899.65 7599.64 3499.39 799.97 799.94 493.20 26499.98 1199.55 2299.91 2499.99 1
test_vis1_n97.92 22497.44 25899.34 12999.53 15798.08 22799.74 4499.49 13799.15 17100.00 199.94 479.51 37699.98 1199.88 899.76 10399.97 3
xiu_mvs_v2_base99.26 6399.25 5799.29 14499.53 15798.91 16299.02 30499.45 18798.80 6499.71 6199.26 30298.94 2999.98 1199.34 4899.23 15498.98 227
PS-MVSNAJ99.32 5499.32 3699.30 14199.57 14698.94 15898.97 31799.46 17698.92 5299.71 6199.24 30499.01 1899.98 1199.35 4499.66 12198.97 228
QAPM98.67 14998.30 16799.80 4099.20 24999.67 5199.77 3499.72 1194.74 34298.73 26799.90 2295.78 17299.98 1196.96 27899.88 4499.76 80
3Dnovator97.25 999.24 6799.05 7699.81 3899.12 26799.66 5399.84 1399.74 1099.09 2798.92 24299.90 2295.94 16599.98 1198.95 8699.92 1999.79 67
OpenMVScopyleft96.50 1698.47 15998.12 17999.52 10499.04 28599.53 7699.82 1799.72 1194.56 34598.08 31599.88 3294.73 21599.98 1197.47 24899.76 10399.06 219
test_fmvsmconf0.1_n99.55 1199.45 1899.86 2199.44 19099.65 5799.50 15699.61 4299.45 299.87 1999.92 1297.31 11899.97 1899.95 599.99 199.97 3
test_fmvs1_n98.41 16598.14 17699.21 15599.82 3897.71 25199.74 4499.49 13799.32 1199.99 299.95 285.32 36299.97 1899.82 999.84 7099.96 5
CANet_DTU98.97 11198.87 10899.25 15099.33 21898.42 21399.08 29099.30 26899.16 1699.43 13399.75 13195.27 18999.97 1898.56 15199.95 1199.36 192
MTAPA99.52 1499.39 2399.89 499.90 499.86 1399.66 6999.47 16798.79 6599.68 6799.81 8498.43 8199.97 1898.88 9599.90 3299.83 42
PGM-MVS99.45 2999.31 4399.86 2199.87 1599.78 3699.58 10999.65 3297.84 16499.71 6199.80 9799.12 1399.97 1898.33 17299.87 4799.83 42
mPP-MVS99.44 3399.30 4599.86 2199.88 1199.79 3099.69 5599.48 14998.12 13199.50 11999.75 13198.78 4899.97 1898.57 14899.89 4199.83 42
CP-MVS99.45 2999.32 3699.85 2799.83 3699.75 3999.69 5599.52 9598.07 14199.53 11499.63 19198.93 3399.97 1898.74 12099.91 2499.83 42
SteuartSystems-ACMMP99.54 1299.42 1999.87 1199.82 3899.81 2599.59 10199.51 10998.62 7699.79 3699.83 6499.28 499.97 1898.48 15899.90 3299.84 33
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 7298.97 9499.82 3599.17 26099.68 4899.81 2099.51 10999.20 1598.72 26899.89 2695.68 17799.97 1898.86 10399.86 5599.81 54
mvsany_test199.50 1699.46 1799.62 7699.61 13599.09 12998.94 32399.48 14999.10 2399.96 899.91 1698.85 3999.96 2799.72 1199.58 13099.82 47
test_fmvs198.88 11798.79 11999.16 16099.69 10197.61 25399.55 13299.49 13799.32 1199.98 499.91 1691.41 31199.96 2799.82 999.92 1999.90 10
DVP-MVS++99.59 699.50 1199.88 599.51 16399.88 899.87 999.51 10998.99 4099.88 1499.81 8499.27 599.96 2798.85 10599.80 9099.81 54
MSC_two_6792asdad99.87 1199.51 16399.76 3799.33 25099.96 2798.87 9899.84 7099.89 13
No_MVS99.87 1199.51 16399.76 3799.33 25099.96 2798.87 9899.84 7099.89 13
ZD-MVS99.71 9299.79 3099.61 4296.84 26199.56 10799.54 22498.58 7099.96 2796.93 28199.75 105
SED-MVS99.61 599.52 999.88 599.84 3199.90 299.60 9599.48 14999.08 2899.91 1099.81 8499.20 799.96 2798.91 9299.85 6299.79 67
test_241102_TWO99.48 14999.08 2899.88 1499.81 8498.94 2999.96 2798.91 9299.84 7099.88 19
ZNCC-MVS99.47 2599.33 3499.87 1199.87 1599.81 2599.64 7899.67 2398.08 14099.55 11199.64 18598.91 3499.96 2798.72 12399.90 3299.82 47
DVP-MVScopyleft99.57 1099.47 1599.88 599.85 2599.89 499.57 11699.37 23299.10 2399.81 3199.80 9798.94 2999.96 2798.93 8999.86 5599.81 54
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4099.81 3199.80 9799.09 1499.96 2798.85 10599.90 3299.88 19
test_0728_SECOND99.91 299.84 3199.89 499.57 11699.51 10999.96 2798.93 8999.86 5599.88 19
SR-MVS99.43 3699.29 4999.86 2199.75 6999.83 1699.59 10199.62 3798.21 11799.73 5599.79 10898.68 6299.96 2798.44 16399.77 10099.79 67
DPE-MVScopyleft99.46 2799.32 3699.91 299.78 5299.88 899.36 22399.51 10998.73 7099.88 1499.84 6098.72 5999.96 2798.16 18599.87 4799.88 19
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030499.42 3899.32 3699.72 5899.70 9799.27 10699.52 14497.57 37399.51 199.82 2999.78 11498.09 9899.96 2799.97 199.97 799.94 7
UA-Net99.42 3899.29 4999.80 4099.62 13199.55 7199.50 15699.70 1598.79 6599.77 4599.96 197.45 11399.96 2798.92 9199.90 3299.89 13
HFP-MVS99.49 1899.37 2699.86 2199.87 1599.80 2799.66 6999.67 2398.15 12699.68 6799.69 16199.06 1699.96 2798.69 12899.87 4799.84 33
region2R99.48 2299.35 3099.87 1199.88 1199.80 2799.65 7599.66 2798.13 13099.66 7699.68 16798.96 2499.96 2798.62 13699.87 4799.84 33
HPM-MVS++copyleft99.39 4799.23 6099.87 1199.75 6999.84 1599.43 19199.51 10998.68 7499.27 17799.53 22898.64 6799.96 2798.44 16399.80 9099.79 67
APDe-MVS99.66 399.57 699.92 199.77 5899.89 499.75 4199.56 6399.02 3399.88 1499.85 5099.18 1099.96 2799.22 6299.92 1999.90 10
ACMMPR99.49 1899.36 2899.86 2199.87 1599.79 3099.66 6999.67 2398.15 12699.67 7199.69 16198.95 2799.96 2798.69 12899.87 4799.84 33
MP-MVScopyleft99.33 5399.15 6699.87 1199.88 1199.82 2299.66 6999.46 17698.09 13699.48 12399.74 13698.29 8999.96 2797.93 20199.87 4799.82 47
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS99.11 9298.90 10399.74 5599.80 4899.46 8699.59 10199.49 13797.03 24899.63 8999.69 16197.27 12199.96 2797.82 21199.84 7099.81 54
PVSNet_Blended_VisFu99.36 5099.28 5199.61 7799.86 2099.07 13499.47 17799.93 297.66 18599.71 6199.86 4597.73 10899.96 2799.47 3699.82 8399.79 67
UGNet98.87 11898.69 12799.40 12399.22 24698.72 18199.44 18799.68 2099.24 1499.18 20099.42 25892.74 27499.96 2799.34 4899.94 1699.53 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 5499.32 3699.32 13599.85 2598.29 21699.71 5199.66 2798.11 13399.41 14099.80 9798.37 8699.96 2798.99 8299.96 1099.72 96
ACMMPcopyleft99.45 2999.32 3699.82 3599.89 899.67 5199.62 8899.69 1898.12 13199.63 8999.84 6098.73 5899.96 2798.55 15499.83 7999.81 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.01_n99.22 6999.03 8099.79 4398.42 34899.48 8399.55 13299.51 10999.39 799.78 4199.93 794.80 20799.95 5499.93 699.95 1199.94 7
SR-MVS-dyc-post99.45 2999.31 4399.85 2799.76 6199.82 2299.63 8299.52 9598.38 9599.76 5099.82 7198.53 7499.95 5498.61 13999.81 8699.77 75
GST-MVS99.40 4699.24 5899.85 2799.86 2099.79 3099.60 9599.67 2397.97 15299.63 8999.68 16798.52 7599.95 5498.38 16699.86 5599.81 54
CANet99.25 6699.14 6799.59 8099.41 19699.16 11899.35 22899.57 5898.82 6099.51 11899.61 20096.46 14799.95 5499.59 1899.98 499.65 122
MP-MVS-pluss99.37 4999.20 6299.88 599.90 499.87 1299.30 23899.52 9597.18 23199.60 9999.79 10898.79 4799.95 5498.83 11199.91 2499.83 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 3899.27 5399.88 599.89 899.80 2799.67 6499.50 12998.70 7299.77 4599.49 24098.21 9299.95 5498.46 16299.77 10099.88 19
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata299.95 5496.67 293
APD-MVS_3200maxsize99.48 2299.35 3099.85 2799.76 6199.83 1699.63 8299.54 7998.36 9999.79 3699.82 7198.86 3899.95 5498.62 13699.81 8699.78 73
RPMNet96.72 30095.90 31299.19 15799.18 25498.49 20599.22 26799.52 9588.72 37599.56 10797.38 36994.08 24399.95 5486.87 37898.58 19899.14 205
sss99.17 7499.05 7699.53 9899.62 13198.97 14699.36 22399.62 3797.83 16599.67 7199.65 17997.37 11799.95 5499.19 6499.19 15799.68 112
TSAR-MVS + MP.99.58 799.50 1199.81 3899.91 199.66 5399.63 8299.39 21798.91 5399.78 4199.85 5099.36 299.94 6498.84 10899.88 4499.82 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS99.53 1399.42 1999.87 1199.85 2599.83 1699.69 5599.68 2098.98 4399.37 15399.74 13698.81 4499.94 6498.79 11699.86 5599.84 33
X-MVStestdata96.55 30295.45 32099.87 1199.85 2599.83 1699.69 5599.68 2098.98 4399.37 15364.01 39298.81 4499.94 6498.79 11699.86 5599.84 33
旧先验298.96 31896.70 26899.47 12499.94 6498.19 181
新几何199.75 5299.75 6999.59 6499.54 7996.76 26499.29 17299.64 18598.43 8199.94 6496.92 28399.66 12199.72 96
testdata99.54 9099.75 6998.95 15599.51 10997.07 24399.43 13399.70 15198.87 3799.94 6497.76 21899.64 12499.72 96
HPM-MVScopyleft99.42 3899.28 5199.83 3499.90 499.72 4299.81 2099.54 7997.59 18999.68 6799.63 19198.91 3499.94 6498.58 14599.91 2499.84 33
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 7099.10 7199.45 11699.89 898.52 20199.39 21299.94 198.73 7099.11 20999.89 2695.50 18199.94 6499.50 2999.97 799.89 13
APD-MVScopyleft99.27 6199.08 7499.84 3399.75 6999.79 3099.50 15699.50 12997.16 23399.77 4599.82 7198.78 4899.94 6497.56 23999.86 5599.80 63
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2299.42 1999.65 6699.72 8799.40 9399.05 29699.66 2799.14 1899.57 10699.80 9798.46 7999.94 6499.57 2099.84 7099.60 139
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 10098.88 10799.61 7799.62 13199.16 11899.37 21999.56 6398.04 14799.53 11499.62 19696.84 13599.94 6498.85 10598.49 20699.72 96
DeepC-MVS98.35 299.30 5699.19 6399.64 7199.82 3899.23 11199.62 8899.55 7198.94 4999.63 8999.95 295.82 17199.94 6499.37 4399.97 799.73 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 6199.12 6999.74 5599.18 25499.75 3999.56 12299.57 5898.45 8999.49 12299.85 5097.77 10799.94 6498.33 17299.84 7099.52 160
SDMVSNet99.11 9298.90 10399.75 5299.81 4299.59 6499.81 2099.65 3298.78 6899.64 8699.88 3294.56 22599.93 7799.67 1498.26 21699.72 96
FE-MVS98.48 15898.17 17299.40 12399.54 15698.96 15099.68 6198.81 33695.54 32699.62 9399.70 15193.82 25199.93 7797.35 25599.46 13799.32 197
SF-MVS99.38 4899.24 5899.79 4399.79 5099.68 4899.57 11699.54 7997.82 16999.71 6199.80 9798.95 2799.93 7798.19 18199.84 7099.74 85
dcpmvs_299.23 6899.58 598.16 28399.83 3694.68 34299.76 3799.52 9599.07 3099.98 499.88 3298.56 7299.93 7799.67 1499.98 499.87 24
Anonymous2024052998.09 19497.68 23099.34 12999.66 11498.44 21099.40 20899.43 20193.67 35299.22 18899.89 2690.23 32799.93 7799.26 6098.33 21099.66 118
ACMMP_NAP99.47 2599.34 3299.88 599.87 1599.86 1399.47 17799.48 14998.05 14699.76 5099.86 4598.82 4399.93 7798.82 11599.91 2499.84 33
EI-MVSNet-UG-set99.58 799.57 699.64 7199.78 5299.14 12499.60 9599.45 18799.01 3599.90 1299.83 6498.98 2399.93 7799.59 1899.95 1199.86 26
无先验98.99 31199.51 10996.89 25899.93 7797.53 24299.72 96
VDDNet97.55 27397.02 29099.16 16099.49 17498.12 22699.38 21799.30 26895.35 32899.68 6799.90 2282.62 37299.93 7799.31 5198.13 22799.42 185
ab-mvs98.86 12198.63 13599.54 9099.64 12299.19 11399.44 18799.54 7997.77 17299.30 16999.81 8494.20 23799.93 7799.17 6798.82 18999.49 170
F-COLMAP99.19 7099.04 7899.64 7199.78 5299.27 10699.42 19899.54 7997.29 22299.41 14099.59 20598.42 8399.93 7798.19 18199.69 11699.73 90
Anonymous20240521198.30 17597.98 19699.26 14999.57 14698.16 22299.41 20098.55 35596.03 32099.19 19799.74 13691.87 29899.92 8899.16 6898.29 21599.70 106
EI-MVSNet-Vis-set99.58 799.56 899.64 7199.78 5299.15 12399.61 9499.45 18799.01 3599.89 1399.82 7199.01 1899.92 8899.56 2199.95 1199.85 29
VDD-MVS97.73 25597.35 27098.88 20299.47 18397.12 26899.34 23198.85 33298.19 12099.67 7199.85 5082.98 37099.92 8899.49 3398.32 21499.60 139
VNet99.11 9298.90 10399.73 5799.52 16199.56 6999.41 20099.39 21799.01 3599.74 5499.78 11495.56 17999.92 8899.52 2798.18 22399.72 96
XVG-OURS-SEG-HR98.69 14698.62 14098.89 20099.71 9297.74 24699.12 28199.54 7998.44 9299.42 13699.71 14794.20 23799.92 8898.54 15598.90 18399.00 224
HPM-MVS_fast99.51 1599.40 2299.85 2799.91 199.79 3099.76 3799.56 6397.72 17899.76 5099.75 13199.13 1299.92 8899.07 7699.92 1999.85 29
HY-MVS97.30 798.85 12898.64 13499.47 11399.42 19399.08 13299.62 8899.36 23397.39 21599.28 17399.68 16796.44 14999.92 8898.37 16898.22 21899.40 189
DP-MVS99.16 7698.95 9899.78 4699.77 5899.53 7699.41 20099.50 12997.03 24899.04 22499.88 3297.39 11499.92 8898.66 13299.90 3299.87 24
IB-MVS95.67 1896.22 30895.44 32198.57 23999.21 24796.70 29498.65 35197.74 37196.71 26797.27 33898.54 35386.03 35899.92 8898.47 16186.30 37399.10 208
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 1899.39 2399.77 4999.63 12599.59 6499.36 22399.46 17699.07 3099.79 3699.82 7198.85 3999.92 8898.68 13099.87 4799.82 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 7199.72 8799.40 20899.51 10997.53 19999.64 8699.78 11498.84 4199.91 9897.63 23099.82 83
SMA-MVScopyleft99.44 3399.30 4599.85 2799.73 8399.83 1699.56 12299.47 16797.45 20799.78 4199.82 7199.18 1099.91 9898.79 11699.89 4199.81 54
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 10699.65 5799.05 29699.41 20696.22 30598.95 23799.49 24098.77 5199.91 98
train_agg99.02 10598.77 12099.77 4999.67 10699.65 5799.05 29699.41 20696.28 29998.95 23799.49 24098.76 5299.91 9897.63 23099.72 11199.75 81
test_899.67 10699.61 6299.03 30199.41 20696.28 29998.93 24199.48 24598.76 5299.91 98
agg_prior99.67 10699.62 6199.40 21498.87 25199.91 98
原ACMM199.65 6699.73 8399.33 9799.47 16797.46 20499.12 20799.66 17898.67 6499.91 9897.70 22799.69 11699.71 105
LFMVS97.90 22797.35 27099.54 9099.52 16199.01 14199.39 21298.24 36197.10 24199.65 8299.79 10884.79 36499.91 9899.28 5698.38 20899.69 108
XVG-OURS98.73 14298.68 12898.88 20299.70 9797.73 24798.92 32599.55 7198.52 8499.45 12799.84 6095.27 18999.91 9898.08 19298.84 18799.00 224
PLCcopyleft97.94 499.02 10598.85 11299.53 9899.66 11499.01 14199.24 26299.52 9596.85 26099.27 17799.48 24598.25 9199.91 9897.76 21899.62 12799.65 122
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 26897.06 28999.47 11399.61 13599.09 12998.04 37699.25 28091.24 36798.51 29599.70 15194.55 22799.91 9892.76 35699.85 6299.42 185
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_vis1_rt95.81 31795.65 31796.32 34399.67 10691.35 36999.49 16796.74 38098.25 11095.24 35898.10 36374.96 37799.90 10999.53 2598.85 18697.70 363
FA-MVS(test-final)98.75 13998.53 15399.41 12299.55 15499.05 13799.80 2599.01 31196.59 28199.58 10399.59 20595.39 18499.90 10997.78 21499.49 13699.28 200
MCST-MVS99.43 3699.30 4599.82 3599.79 5099.74 4199.29 24299.40 21498.79 6599.52 11699.62 19698.91 3499.90 10998.64 13499.75 10599.82 47
CDPH-MVS99.13 8298.91 10299.80 4099.75 6999.71 4499.15 27699.41 20696.60 27999.60 9999.55 21998.83 4299.90 10997.48 24699.83 7999.78 73
NCCC99.34 5299.19 6399.79 4399.61 13599.65 5799.30 23899.48 14998.86 5599.21 19199.63 19198.72 5999.90 10998.25 17799.63 12699.80 63
114514_t98.93 11398.67 12999.72 5899.85 2599.53 7699.62 8899.59 5192.65 36299.71 6199.78 11498.06 10099.90 10998.84 10899.91 2499.74 85
1112_ss98.98 10998.77 12099.59 8099.68 10599.02 13999.25 26099.48 14997.23 22899.13 20599.58 20996.93 13499.90 10998.87 9898.78 19299.84 33
PHI-MVS99.30 5699.17 6599.70 6099.56 15099.52 7999.58 10999.80 897.12 23799.62 9399.73 14298.58 7099.90 10998.61 13999.91 2499.68 112
AdaColmapbinary99.01 10898.80 11699.66 6299.56 15099.54 7399.18 27199.70 1598.18 12499.35 16099.63 19196.32 15299.90 10997.48 24699.77 10099.55 152
COLMAP_ROBcopyleft97.56 698.86 12198.75 12299.17 15999.88 1198.53 19799.34 23199.59 5197.55 19598.70 27599.89 2695.83 17099.90 10998.10 18799.90 3299.08 213
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 17198.03 19199.31 13699.63 12598.56 19499.54 13796.75 37997.53 19999.73 5599.65 17991.25 31599.89 11998.62 13699.56 13199.48 171
tttt051798.42 16398.14 17699.28 14799.66 11498.38 21499.74 4496.85 37797.68 18299.79 3699.74 13691.39 31299.89 11998.83 11199.56 13199.57 149
test1299.75 5299.64 12299.61 6299.29 27299.21 19198.38 8599.89 11999.74 10899.74 85
Test_1112_low_res98.89 11698.66 13299.57 8599.69 10198.95 15599.03 30199.47 16796.98 25099.15 20399.23 30596.77 13899.89 11998.83 11198.78 19299.86 26
CNLPA99.14 8098.99 9099.59 8099.58 14499.41 9299.16 27399.44 19598.45 8999.19 19799.49 24098.08 9999.89 11997.73 22299.75 10599.48 171
sd_testset98.75 13998.57 14999.29 14499.81 4298.26 21899.56 12299.62 3798.78 6899.64 8699.88 3292.02 29599.88 12499.54 2398.26 21699.72 96
APD_test195.87 31596.49 29994.00 34999.53 15784.01 37699.54 13799.32 26095.91 32297.99 32099.85 5085.49 36199.88 12491.96 35998.84 18798.12 345
diffmvspermissive99.14 8099.02 8499.51 10699.61 13598.96 15099.28 24599.49 13798.46 8899.72 6099.71 14796.50 14699.88 12499.31 5199.11 16499.67 115
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 12198.80 11699.03 17399.76 6198.79 17799.28 24599.91 397.42 21299.67 7199.37 27397.53 11199.88 12498.98 8397.29 26898.42 328
PVSNet_Blended99.08 9898.97 9499.42 12199.76 6198.79 17798.78 33999.91 396.74 26599.67 7199.49 24097.53 11199.88 12498.98 8399.85 6299.60 139
MVS97.28 28796.55 29899.48 11098.78 31998.95 15599.27 25099.39 21783.53 37998.08 31599.54 22496.97 13299.87 12994.23 33999.16 15899.63 133
MG-MVS99.13 8299.02 8499.45 11699.57 14698.63 18899.07 29199.34 24398.99 4099.61 9699.82 7197.98 10299.87 12997.00 27499.80 9099.85 29
MSDG98.98 10998.80 11699.53 9899.76 6199.19 11398.75 34299.55 7197.25 22599.47 12499.77 12297.82 10599.87 12996.93 28199.90 3299.54 154
ETV-MVS99.26 6399.21 6199.40 12399.46 18499.30 10299.56 12299.52 9598.52 8499.44 13299.27 30098.41 8499.86 13299.10 7299.59 12999.04 220
thisisatest051598.14 18997.79 21499.19 15799.50 17298.50 20498.61 35396.82 37896.95 25499.54 11299.43 25691.66 30799.86 13298.08 19299.51 13599.22 203
thres600view797.86 23297.51 24698.92 19199.72 8797.95 23799.59 10198.74 34397.94 15499.27 17798.62 35091.75 30199.86 13293.73 34498.19 22298.96 230
lupinMVS99.13 8299.01 8899.46 11599.51 16398.94 15899.05 29699.16 29497.86 16099.80 3499.56 21697.39 11499.86 13298.94 8799.85 6299.58 147
PVSNet96.02 1798.85 12898.84 11398.89 20099.73 8397.28 26098.32 36999.60 4897.86 16099.50 11999.57 21396.75 13999.86 13298.56 15199.70 11599.54 154
MAR-MVS98.86 12198.63 13599.54 9099.37 20899.66 5399.45 18199.54 7996.61 27799.01 22799.40 26597.09 12699.86 13297.68 22999.53 13499.10 208
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250696.81 29996.65 29697.29 32599.74 7692.21 36699.60 9585.06 39699.13 1999.77 4599.93 787.82 35399.85 13899.38 4199.38 14299.80 63
AllTest98.87 11898.72 12399.31 13699.86 2098.48 20799.56 12299.61 4297.85 16299.36 15799.85 5095.95 16399.85 13896.66 29499.83 7999.59 143
TestCases99.31 13699.86 2098.48 20799.61 4297.85 16299.36 15799.85 5095.95 16399.85 13896.66 29499.83 7999.59 143
jason99.13 8299.03 8099.45 11699.46 18498.87 16599.12 28199.26 27898.03 14999.79 3699.65 17997.02 12999.85 13899.02 8099.90 3299.65 122
jason: jason.
CNVR-MVS99.42 3899.30 4599.78 4699.62 13199.71 4499.26 25899.52 9598.82 6099.39 14899.71 14798.96 2499.85 13898.59 14499.80 9099.77 75
PAPM_NR99.04 10298.84 11399.66 6299.74 7699.44 8899.39 21299.38 22497.70 18099.28 17399.28 29798.34 8799.85 13896.96 27899.45 13899.69 108
test111198.04 20498.11 18097.83 30699.74 7693.82 35299.58 10995.40 38599.12 2199.65 8299.93 790.73 32099.84 14499.43 3999.38 14299.82 47
ECVR-MVScopyleft98.04 20498.05 18998.00 29599.74 7694.37 34799.59 10194.98 38699.13 1999.66 7699.93 790.67 32199.84 14499.40 4099.38 14299.80 63
test_yl98.86 12198.63 13599.54 9099.49 17499.18 11599.50 15699.07 30698.22 11599.61 9699.51 23495.37 18599.84 14498.60 14298.33 21099.59 143
DCV-MVSNet98.86 12198.63 13599.54 9099.49 17499.18 11599.50 15699.07 30698.22 11599.61 9699.51 23495.37 18599.84 14498.60 14298.33 21099.59 143
Fast-Effi-MVS+98.70 14498.43 15799.51 10699.51 16399.28 10499.52 14499.47 16796.11 31599.01 22799.34 28396.20 15699.84 14497.88 20498.82 18999.39 190
TSAR-MVS + GP.99.36 5099.36 2899.36 12899.67 10698.61 19199.07 29199.33 25099.00 3899.82 2999.81 8499.06 1699.84 14499.09 7399.42 14099.65 122
tpmrst98.33 17298.48 15597.90 30199.16 26294.78 34099.31 23699.11 29997.27 22399.45 12799.59 20595.33 18799.84 14498.48 15898.61 19599.09 212
Vis-MVSNetpermissive99.12 8898.97 9499.56 8799.78 5299.10 12899.68 6199.66 2798.49 8699.86 2199.87 4094.77 21299.84 14499.19 6499.41 14199.74 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 15398.34 16399.51 10699.40 20199.03 13898.80 33799.36 23396.33 29699.00 23199.12 31998.46 7999.84 14495.23 32699.37 14999.66 118
PatchMatch-RL98.84 13198.62 14099.52 10499.71 9299.28 10499.06 29499.77 997.74 17799.50 11999.53 22895.41 18399.84 14497.17 26899.64 12499.44 183
EPP-MVSNet99.13 8298.99 9099.53 9899.65 12099.06 13599.81 2099.33 25097.43 21099.60 9999.88 3297.14 12399.84 14499.13 6998.94 17899.69 108
thres100view90097.76 24897.45 25398.69 23099.72 8797.86 24399.59 10198.74 34397.93 15599.26 18198.62 35091.75 30199.83 15593.22 34998.18 22398.37 334
tfpn200view997.72 25797.38 26698.72 22899.69 10197.96 23599.50 15698.73 34897.83 16599.17 20198.45 35591.67 30599.83 15593.22 34998.18 22398.37 334
test_prior99.68 6199.67 10699.48 8399.56 6399.83 15599.74 85
131498.68 14898.54 15299.11 16598.89 30398.65 18699.27 25099.49 13796.89 25897.99 32099.56 21697.72 10999.83 15597.74 22199.27 15398.84 236
thres40097.77 24797.38 26698.92 19199.69 10197.96 23599.50 15698.73 34897.83 16599.17 20198.45 35591.67 30599.83 15593.22 34998.18 22398.96 230
casdiffmvspermissive99.13 8298.98 9399.56 8799.65 12099.16 11899.56 12299.50 12998.33 10399.41 14099.86 4595.92 16699.83 15599.45 3899.16 15899.70 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test99.49 1899.48 1399.54 9099.78 5299.30 10299.89 299.58 5598.56 8099.73 5599.69 16198.55 7399.82 16199.69 1299.85 6299.48 171
MVS_Test99.10 9698.97 9499.48 11099.49 17499.14 12499.67 6499.34 24397.31 22099.58 10399.76 12897.65 11099.82 16198.87 9899.07 17099.46 179
dp97.75 25297.80 21397.59 31799.10 27293.71 35599.32 23498.88 32996.48 28899.08 21699.55 21992.67 28099.82 16196.52 29798.58 19899.24 202
RPSCF98.22 17998.62 14096.99 33199.82 3891.58 36899.72 4999.44 19596.61 27799.66 7699.89 2695.92 16699.82 16197.46 24999.10 16799.57 149
PMMVS98.80 13598.62 14099.34 12999.27 23598.70 18298.76 34199.31 26497.34 21799.21 19199.07 32197.20 12299.82 16198.56 15198.87 18499.52 160
EIA-MVS99.18 7299.09 7399.45 11699.49 17499.18 11599.67 6499.53 9097.66 18599.40 14599.44 25498.10 9799.81 16698.94 8799.62 12799.35 193
Effi-MVS+98.81 13298.59 14799.48 11099.46 18499.12 12798.08 37599.50 12997.50 20299.38 15199.41 26296.37 15199.81 16699.11 7198.54 20399.51 166
thres20097.61 27197.28 28098.62 23399.64 12298.03 22999.26 25898.74 34397.68 18299.09 21598.32 35991.66 30799.81 16692.88 35398.22 21898.03 350
tpmvs97.98 21598.02 19397.84 30599.04 28594.73 34199.31 23699.20 28996.10 31998.76 26599.42 25894.94 19799.81 16696.97 27798.45 20798.97 228
casdiffmvs_mvgpermissive99.15 7899.02 8499.55 8999.66 11499.09 12999.64 7899.56 6398.26 10999.45 12799.87 4096.03 16099.81 16699.54 2399.15 16199.73 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepPCF-MVS98.18 398.81 13299.37 2697.12 32999.60 14091.75 36798.61 35399.44 19599.35 999.83 2899.85 5098.70 6199.81 16699.02 8099.91 2499.81 54
DPM-MVS98.95 11298.71 12599.66 6299.63 12599.55 7198.64 35299.10 30097.93 15599.42 13699.55 21998.67 6499.80 17295.80 31299.68 11999.61 137
DP-MVS Recon99.12 8898.95 9899.65 6699.74 7699.70 4699.27 25099.57 5896.40 29599.42 13699.68 16798.75 5599.80 17297.98 19899.72 11199.44 183
MVS_111021_LR99.41 4399.33 3499.65 6699.77 5899.51 8098.94 32399.85 698.82 6099.65 8299.74 13698.51 7699.80 17298.83 11199.89 4199.64 129
CS-MVS99.50 1699.48 1399.54 9099.76 6199.42 9099.90 199.55 7198.56 8099.78 4199.70 15198.65 6699.79 17599.65 1699.78 9799.41 187
Fast-Effi-MVS+-dtu98.77 13898.83 11598.60 23499.41 19696.99 28299.52 14499.49 13798.11 13399.24 18399.34 28396.96 13399.79 17597.95 20099.45 13899.02 223
baseline198.31 17397.95 20099.38 12799.50 17298.74 17999.59 10198.93 31998.41 9399.14 20499.60 20394.59 22399.79 17598.48 15893.29 34699.61 137
baseline99.15 7899.02 8499.53 9899.66 11499.14 12499.72 4999.48 14998.35 10099.42 13699.84 6096.07 15899.79 17599.51 2899.14 16299.67 115
PVSNet_094.43 1996.09 31395.47 31997.94 29899.31 22594.34 34997.81 37799.70 1597.12 23797.46 33398.75 34789.71 33199.79 17597.69 22881.69 37999.68 112
API-MVS99.04 10299.03 8099.06 16999.40 20199.31 10199.55 13299.56 6398.54 8299.33 16499.39 26998.76 5299.78 18096.98 27699.78 9798.07 347
OMC-MVS99.08 9899.04 7899.20 15699.67 10698.22 22099.28 24599.52 9598.07 14199.66 7699.81 8497.79 10699.78 18097.79 21399.81 8699.60 139
GeoE98.85 12898.62 14099.53 9899.61 13599.08 13299.80 2599.51 10997.10 24199.31 16799.78 11495.23 19399.77 18298.21 17999.03 17399.75 81
alignmvs98.81 13298.56 15199.58 8399.43 19199.42 9099.51 15098.96 31798.61 7799.35 16098.92 33994.78 20999.77 18299.35 4498.11 22899.54 154
tpm cat197.39 28497.36 26897.50 32099.17 26093.73 35499.43 19199.31 26491.27 36698.71 26999.08 32094.31 23599.77 18296.41 30198.50 20599.00 224
CostFormer97.72 25797.73 22697.71 31399.15 26594.02 35199.54 13799.02 31094.67 34399.04 22499.35 27992.35 29299.77 18298.50 15797.94 23199.34 195
test_241102_ONE99.84 3199.90 299.48 14999.07 3099.91 1099.74 13699.20 799.76 186
MDTV_nov1_ep1398.32 16599.11 26994.44 34699.27 25098.74 34397.51 20199.40 14599.62 19694.78 20999.76 18697.59 23398.81 191
canonicalmvs99.02 10598.86 11199.51 10699.42 19399.32 9899.80 2599.48 14998.63 7599.31 16798.81 34497.09 12699.75 18899.27 5997.90 23299.47 177
Effi-MVS+-dtu98.78 13698.89 10698.47 25499.33 21896.91 28899.57 11699.30 26898.47 8799.41 14098.99 33096.78 13799.74 18998.73 12299.38 14298.74 250
patchmatchnet-post98.70 34894.79 20899.74 189
SCA98.19 18398.16 17398.27 27899.30 22695.55 32399.07 29198.97 31597.57 19299.43 13399.57 21392.72 27599.74 18997.58 23499.20 15699.52 160
BH-untuned98.42 16398.36 16198.59 23599.49 17496.70 29499.27 25099.13 29897.24 22798.80 26099.38 27095.75 17399.74 18997.07 27299.16 15899.33 196
BH-RMVSNet98.41 16598.08 18599.40 12399.41 19698.83 17399.30 23898.77 33997.70 18098.94 23999.65 17992.91 27099.74 18996.52 29799.55 13399.64 129
MVS_111021_HR99.41 4399.32 3699.66 6299.72 8799.47 8598.95 32199.85 698.82 6099.54 11299.73 14298.51 7699.74 18998.91 9299.88 4499.77 75
test_post65.99 39094.65 22299.73 195
XVG-ACMP-BASELINE97.83 23897.71 22898.20 28099.11 26996.33 30899.41 20099.52 9598.06 14599.05 22399.50 23789.64 33399.73 19597.73 22297.38 26698.53 316
HyFIR lowres test99.11 9298.92 10099.65 6699.90 499.37 9499.02 30499.91 397.67 18499.59 10299.75 13195.90 16899.73 19599.53 2599.02 17599.86 26
DeepMVS_CXcopyleft93.34 35299.29 23082.27 37999.22 28585.15 37796.33 35199.05 32490.97 31899.73 19593.57 34697.77 23598.01 351
Patchmatch-test97.93 22197.65 23398.77 22599.18 25497.07 27399.03 30199.14 29796.16 31098.74 26699.57 21394.56 22599.72 19993.36 34899.11 16499.52 160
LPG-MVS_test98.22 17998.13 17898.49 24899.33 21897.05 27599.58 10999.55 7197.46 20499.24 18399.83 6492.58 28299.72 19998.09 18897.51 25098.68 269
LGP-MVS_train98.49 24899.33 21897.05 27599.55 7197.46 20499.24 18399.83 6492.58 28299.72 19998.09 18897.51 25098.68 269
BH-w/o98.00 21397.89 20998.32 27199.35 21296.20 31299.01 30998.90 32796.42 29398.38 30299.00 32995.26 19199.72 19996.06 30598.61 19599.03 221
ACMP97.20 1198.06 19897.94 20298.45 25699.37 20897.01 28099.44 18799.49 13797.54 19898.45 29999.79 10891.95 29799.72 19997.91 20297.49 25598.62 299
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 20897.90 20598.40 26499.23 24396.80 29299.70 5299.60 4897.12 23798.18 31299.70 15191.73 30399.72 19998.39 16597.45 25898.68 269
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 26365.14 39194.18 24099.71 20597.58 234
ADS-MVSNet98.20 18298.08 18598.56 24299.33 21896.48 30399.23 26399.15 29596.24 30399.10 21299.67 17394.11 24199.71 20596.81 28699.05 17199.48 171
JIA-IIPM97.50 27897.02 29098.93 18998.73 32597.80 24599.30 23898.97 31591.73 36598.91 24394.86 37995.10 19599.71 20597.58 23497.98 23099.28 200
EPMVS97.82 24197.65 23398.35 26898.88 30495.98 31599.49 16794.71 38897.57 19299.26 18199.48 24592.46 28999.71 20597.87 20699.08 16999.35 193
TDRefinement95.42 32194.57 32897.97 29789.83 38996.11 31499.48 17198.75 34096.74 26596.68 34899.88 3288.65 34299.71 20598.37 16882.74 37898.09 346
ACMM97.58 598.37 17098.34 16398.48 25099.41 19697.10 26999.56 12299.45 18798.53 8399.04 22499.85 5093.00 26699.71 20598.74 12097.45 25898.64 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080597.97 21897.77 21998.57 23999.59 14296.61 29999.45 18199.08 30398.21 11798.88 24899.80 9788.66 34199.70 21198.58 14597.72 23699.39 190
CHOSEN 280x42099.12 8899.13 6899.08 16699.66 11497.89 24098.43 36399.71 1398.88 5499.62 9399.76 12896.63 14299.70 21199.46 3799.99 199.66 118
EC-MVSNet99.44 3399.39 2399.58 8399.56 15099.49 8199.88 499.58 5598.38 9599.73 5599.69 16198.20 9399.70 21199.64 1799.82 8399.54 154
PatchmatchNetpermissive98.31 17398.36 16198.19 28199.16 26295.32 33199.27 25098.92 32197.37 21699.37 15399.58 20994.90 20199.70 21197.43 25299.21 15599.54 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 19397.99 19598.44 25999.41 19696.96 28699.60 9599.56 6398.09 13698.15 31399.91 1690.87 31999.70 21198.88 9597.45 25898.67 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS98.27 17898.22 17198.44 25999.29 23096.97 28499.39 21299.47 16798.97 4699.11 20999.61 20092.71 27799.69 21697.78 21497.63 23898.67 276
plane_prior599.47 16799.69 21697.78 21497.63 23898.67 276
D2MVS98.41 16598.50 15498.15 28699.26 23796.62 29899.40 20899.61 4297.71 17998.98 23399.36 27696.04 15999.67 21898.70 12597.41 26398.15 344
IS-MVSNet99.05 10198.87 10899.57 8599.73 8399.32 9899.75 4199.20 28998.02 15099.56 10799.86 4596.54 14599.67 21898.09 18899.13 16399.73 90
CLD-MVS98.16 18798.10 18198.33 26999.29 23096.82 29198.75 34299.44 19597.83 16599.13 20599.55 21992.92 26899.67 21898.32 17497.69 23798.48 320
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs297.25 28997.30 27897.09 33099.43 19193.31 36099.73 4798.87 33198.83 5999.28 17399.80 9784.45 36599.66 22197.88 20497.45 25898.30 336
AUN-MVS96.88 29796.31 30398.59 23599.48 18297.04 27899.27 25099.22 28597.44 20998.51 29599.41 26291.97 29699.66 22197.71 22583.83 37699.07 218
UniMVSNet_ETH3D97.32 28696.81 29398.87 20699.40 20197.46 25699.51 15099.53 9095.86 32398.54 29499.77 12282.44 37399.66 22198.68 13097.52 24899.50 169
OPM-MVS98.19 18398.10 18198.45 25698.88 30497.07 27399.28 24599.38 22498.57 7999.22 18899.81 8492.12 29399.66 22198.08 19297.54 24798.61 308
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 22497.78 21798.32 27199.46 18496.68 29699.56 12299.54 7998.41 9397.79 32999.87 4090.18 32899.66 22198.05 19697.18 27498.62 299
hse-mvs297.50 27897.14 28698.59 23599.49 17497.05 27599.28 24599.22 28598.94 4999.66 7699.42 25894.93 19899.65 22699.48 3483.80 37799.08 213
VPA-MVSNet98.29 17697.95 20099.30 14199.16 26299.54 7399.50 15699.58 5598.27 10899.35 16099.37 27392.53 28499.65 22699.35 4494.46 32998.72 253
TR-MVS97.76 24897.41 26498.82 21799.06 28197.87 24198.87 33198.56 35496.63 27698.68 27799.22 30692.49 28599.65 22695.40 32297.79 23498.95 232
gm-plane-assit98.54 34492.96 36294.65 34499.15 31499.64 22997.56 239
HQP4-MVS98.66 27899.64 22998.64 288
HQP-MVS98.02 20897.90 20598.37 26799.19 25196.83 28998.98 31499.39 21798.24 11198.66 27899.40 26592.47 28699.64 22997.19 26597.58 24398.64 288
PAPM97.59 27297.09 28899.07 16899.06 28198.26 21898.30 37099.10 30094.88 33898.08 31599.34 28396.27 15499.64 22989.87 36698.92 18199.31 198
TAPA-MVS97.07 1597.74 25497.34 27398.94 18799.70 9797.53 25499.25 26099.51 10991.90 36499.30 16999.63 19198.78 4899.64 22988.09 37399.87 4799.65 122
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 16998.09 18499.24 15299.26 23799.32 9899.56 12299.55 7197.45 20798.71 26999.83 6493.23 26199.63 23498.88 9596.32 28998.76 245
ITE_SJBPF98.08 28899.29 23096.37 30698.92 32198.34 10198.83 25699.75 13191.09 31699.62 23595.82 31097.40 26498.25 340
LF4IMVS97.52 27597.46 25297.70 31498.98 29495.55 32399.29 24298.82 33598.07 14198.66 27899.64 18589.97 32999.61 23697.01 27396.68 27997.94 357
tpm97.67 26797.55 24098.03 29099.02 28795.01 33799.43 19198.54 35696.44 29199.12 20799.34 28391.83 30099.60 23797.75 22096.46 28599.48 171
tpm297.44 28397.34 27397.74 31299.15 26594.36 34899.45 18198.94 31893.45 35798.90 24599.44 25491.35 31399.59 23897.31 25698.07 22999.29 199
baseline297.87 23097.55 24098.82 21799.18 25498.02 23099.41 20096.58 38296.97 25196.51 34999.17 31193.43 25899.57 23997.71 22599.03 17398.86 234
MS-PatchMatch97.24 29197.32 27696.99 33198.45 34793.51 35998.82 33599.32 26097.41 21398.13 31499.30 29388.99 33799.56 24095.68 31699.80 9097.90 360
TinyColmap97.12 29396.89 29297.83 30699.07 27895.52 32698.57 35698.74 34397.58 19197.81 32899.79 10888.16 34899.56 24095.10 32797.21 27298.39 332
USDC97.34 28597.20 28497.75 31199.07 27895.20 33398.51 36099.04 30997.99 15198.31 30699.86 4589.02 33699.55 24295.67 31797.36 26798.49 319
MSLP-MVS++99.46 2799.47 1599.44 12099.60 14099.16 11899.41 20099.71 1398.98 4399.45 12799.78 11499.19 999.54 24399.28 5699.84 7099.63 133
TAMVS99.12 8899.08 7499.24 15299.46 18498.55 19599.51 15099.46 17698.09 13699.45 12799.82 7198.34 8799.51 24498.70 12598.93 17999.67 115
EPNet_dtu98.03 20697.96 19898.23 27998.27 35095.54 32599.23 26398.75 34099.02 3397.82 32799.71 14796.11 15799.48 24593.04 35299.65 12399.69 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS95.97 31495.69 31696.81 33797.78 35792.79 36399.16 27398.93 31996.16 31094.08 36699.22 30682.72 37199.47 24695.67 31797.50 25298.17 343
MVP-Stereo97.81 24397.75 22497.99 29697.53 36196.60 30098.96 31898.85 33297.22 22997.23 33999.36 27695.28 18899.46 24795.51 31999.78 9797.92 359
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 15598.67 12998.30 27399.35 21295.59 32299.50 15699.55 7198.60 7899.39 14899.83 6494.48 22999.45 24898.75 11998.56 20199.85 29
test-LLR98.06 19897.90 20598.55 24498.79 31697.10 26998.67 34897.75 36997.34 21798.61 28998.85 34194.45 23099.45 24897.25 25999.38 14299.10 208
TESTMET0.1,197.55 27397.27 28398.40 26498.93 29996.53 30198.67 34897.61 37296.96 25298.64 28599.28 29788.63 34399.45 24897.30 25799.38 14299.21 204
test-mter97.49 28197.13 28798.55 24498.79 31697.10 26998.67 34897.75 36996.65 27298.61 28998.85 34188.23 34799.45 24897.25 25999.38 14299.10 208
mvs_anonymous99.03 10498.99 9099.16 16099.38 20598.52 20199.51 15099.38 22497.79 17099.38 15199.81 8497.30 11999.45 24899.35 4498.99 17699.51 166
tfpnnormal97.84 23697.47 25098.98 18199.20 24999.22 11299.64 7899.61 4296.32 29798.27 30999.70 15193.35 26099.44 25395.69 31595.40 31298.27 338
v7n97.87 23097.52 24498.92 19198.76 32398.58 19399.84 1399.46 17696.20 30698.91 24399.70 15194.89 20299.44 25396.03 30693.89 34098.75 247
jajsoiax98.43 16298.28 16898.88 20298.60 34098.43 21199.82 1799.53 9098.19 12098.63 28699.80 9793.22 26399.44 25399.22 6297.50 25298.77 243
mvs_tets98.40 16898.23 17098.91 19598.67 33398.51 20399.66 6999.53 9098.19 12098.65 28499.81 8492.75 27299.44 25399.31 5197.48 25698.77 243
Vis-MVSNet (Re-imp)98.87 11898.72 12399.31 13699.71 9298.88 16499.80 2599.44 19597.91 15799.36 15799.78 11495.49 18299.43 25797.91 20299.11 16499.62 135
OPU-MVS99.64 7199.56 15099.72 4299.60 9599.70 15199.27 599.42 25898.24 17899.80 9099.79 67
Anonymous2023121197.88 22897.54 24398.90 19799.71 9298.53 19799.48 17199.57 5894.16 34898.81 25899.68 16793.23 26199.42 25898.84 10894.42 33198.76 245
VPNet97.84 23697.44 25899.01 17599.21 24798.94 15899.48 17199.57 5898.38 9599.28 17399.73 14288.89 33899.39 26099.19 6493.27 34798.71 255
iter_conf_final98.71 14398.61 14698.99 17999.49 17498.96 15099.63 8299.41 20698.19 12099.39 14899.77 12294.82 20499.38 26199.30 5497.52 24898.64 288
nrg03098.64 15298.42 15899.28 14799.05 28499.69 4799.81 2099.46 17698.04 14799.01 22799.82 7196.69 14199.38 26199.34 4894.59 32898.78 240
iter_conf0598.55 15698.44 15698.87 20699.34 21698.60 19299.55 13299.42 20398.21 11799.37 15399.77 12293.55 25799.38 26199.30 5497.48 25698.63 296
GA-MVS97.85 23397.47 25099.00 17799.38 20597.99 23298.57 35699.15 29597.04 24798.90 24599.30 29389.83 33099.38 26196.70 29198.33 21099.62 135
UniMVSNet (Re)98.29 17698.00 19499.13 16499.00 28999.36 9699.49 16799.51 10997.95 15398.97 23599.13 31696.30 15399.38 26198.36 17093.34 34598.66 284
FIs98.78 13698.63 13599.23 15499.18 25499.54 7399.83 1699.59 5198.28 10698.79 26299.81 8496.75 13999.37 26699.08 7596.38 28798.78 240
PS-MVSNAJss98.92 11498.92 10098.90 19798.78 31998.53 19799.78 3299.54 7998.07 14199.00 23199.76 12899.01 1899.37 26699.13 6997.23 27198.81 237
CDS-MVSNet99.09 9799.03 8099.25 15099.42 19398.73 18099.45 18199.46 17698.11 13399.46 12699.77 12298.01 10199.37 26698.70 12598.92 18199.66 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 31895.16 32397.51 31999.30 22693.69 35698.88 32995.78 38385.09 37898.78 26392.65 38191.29 31499.37 26694.85 33199.85 6299.46 179
v119297.81 24397.44 25898.91 19598.88 30498.68 18399.51 15099.34 24396.18 30899.20 19499.34 28394.03 24499.36 27095.32 32495.18 31698.69 264
EI-MVSNet98.67 14998.67 12998.68 23199.35 21297.97 23399.50 15699.38 22496.93 25799.20 19499.83 6497.87 10399.36 27098.38 16697.56 24598.71 255
MVSTER98.49 15798.32 16599.00 17799.35 21299.02 13999.54 13799.38 22497.41 21399.20 19499.73 14293.86 25099.36 27098.87 9897.56 24598.62 299
gg-mvs-nofinetune96.17 31195.32 32298.73 22798.79 31698.14 22499.38 21794.09 38991.07 36998.07 31891.04 38589.62 33499.35 27396.75 28899.09 16898.68 269
pm-mvs197.68 26497.28 28098.88 20299.06 28198.62 18999.50 15699.45 18796.32 29797.87 32599.79 10892.47 28699.35 27397.54 24193.54 34498.67 276
OurMVSNet-221017-097.88 22897.77 21998.19 28198.71 32996.53 30199.88 499.00 31297.79 17098.78 26399.94 491.68 30499.35 27397.21 26196.99 27898.69 264
EGC-MVSNET82.80 35077.86 35697.62 31597.91 35496.12 31399.33 23399.28 2748.40 39325.05 39499.27 30084.11 36699.33 27689.20 36898.22 21897.42 368
pmmvs696.53 30396.09 30897.82 30898.69 33195.47 32799.37 21999.47 16793.46 35697.41 33499.78 11487.06 35699.33 27696.92 28392.70 35498.65 286
mvsmamba98.92 11498.87 10899.08 16699.07 27899.16 11899.88 499.51 10998.15 12699.40 14599.89 2697.12 12499.33 27699.38 4197.40 26498.73 252
V4298.06 19897.79 21498.86 21098.98 29498.84 17099.69 5599.34 24396.53 28399.30 16999.37 27394.67 22099.32 27997.57 23894.66 32698.42 328
lessismore_v097.79 31098.69 33195.44 32994.75 38795.71 35799.87 4088.69 34099.32 27995.89 30994.93 32398.62 299
OpenMVS_ROBcopyleft92.34 2094.38 33293.70 33896.41 34297.38 36393.17 36199.06 29498.75 34086.58 37694.84 36498.26 36081.53 37499.32 27989.01 36997.87 23396.76 371
bld_raw_dy_0_6498.69 14698.58 14898.99 17998.88 30498.96 15099.80 2599.41 20697.91 15799.32 16599.87 4095.70 17699.31 28299.09 7397.27 26998.71 255
v897.95 22097.63 23698.93 18998.95 29898.81 17699.80 2599.41 20696.03 32099.10 21299.42 25894.92 20099.30 28396.94 28094.08 33798.66 284
v192192097.80 24597.45 25398.84 21498.80 31598.53 19799.52 14499.34 24396.15 31299.24 18399.47 24893.98 24699.29 28495.40 32295.13 31898.69 264
anonymousdsp98.44 16198.28 16898.94 18798.50 34598.96 15099.77 3499.50 12997.07 24398.87 25199.77 12294.76 21399.28 28598.66 13297.60 24198.57 314
MVSFormer99.17 7499.12 6999.29 14499.51 16398.94 15899.88 499.46 17697.55 19599.80 3499.65 17997.39 11499.28 28599.03 7899.85 6299.65 122
test_djsdf98.67 14998.57 14998.98 18198.70 33098.91 16299.88 499.46 17697.55 19599.22 18899.88 3295.73 17499.28 28599.03 7897.62 24098.75 247
cascas97.69 26297.43 26298.48 25098.60 34097.30 25998.18 37499.39 21792.96 36098.41 30098.78 34693.77 25399.27 28898.16 18598.61 19598.86 234
v14419297.92 22497.60 23898.87 20698.83 31498.65 18699.55 13299.34 24396.20 30699.32 16599.40 26594.36 23299.26 28996.37 30295.03 32098.70 260
dmvs_re98.08 19698.16 17397.85 30399.55 15494.67 34399.70 5298.92 32198.15 12699.06 22199.35 27993.67 25699.25 29097.77 21797.25 27099.64 129
RRT_MVS98.70 14498.66 13298.83 21698.90 30198.45 20999.89 299.28 27497.76 17398.94 23999.92 1296.98 13199.25 29099.28 5697.00 27798.80 238
v2v48298.06 19897.77 21998.92 19198.90 30198.82 17499.57 11699.36 23396.65 27299.19 19799.35 27994.20 23799.25 29097.72 22494.97 32198.69 264
v124097.69 26297.32 27698.79 22398.85 31298.43 21199.48 17199.36 23396.11 31599.27 17799.36 27693.76 25499.24 29394.46 33595.23 31598.70 260
v114497.98 21597.69 22998.85 21398.87 30898.66 18599.54 13799.35 23996.27 30199.23 18799.35 27994.67 22099.23 29496.73 28995.16 31798.68 269
v1097.85 23397.52 24498.86 21098.99 29198.67 18499.75 4199.41 20695.70 32498.98 23399.41 26294.75 21499.23 29496.01 30894.63 32798.67 276
WR-MVS_H98.13 19097.87 21098.90 19799.02 28798.84 17099.70 5299.59 5197.27 22398.40 30199.19 31095.53 18099.23 29498.34 17193.78 34298.61 308
miper_enhance_ethall98.16 18798.08 18598.41 26298.96 29797.72 24898.45 36299.32 26096.95 25498.97 23599.17 31197.06 12899.22 29797.86 20795.99 29698.29 337
GG-mvs-BLEND98.45 25698.55 34398.16 22299.43 19193.68 39097.23 33998.46 35489.30 33599.22 29795.43 32198.22 21897.98 355
FC-MVSNet-test98.75 13998.62 14099.15 16399.08 27799.45 8799.86 1299.60 4898.23 11498.70 27599.82 7196.80 13699.22 29799.07 7696.38 28798.79 239
UniMVSNet_NR-MVSNet98.22 17997.97 19798.96 18498.92 30098.98 14399.48 17199.53 9097.76 17398.71 26999.46 25296.43 15099.22 29798.57 14892.87 35298.69 264
DU-MVS98.08 19697.79 21498.96 18498.87 30898.98 14399.41 20099.45 18797.87 15998.71 26999.50 23794.82 20499.22 29798.57 14892.87 35298.68 269
cl____98.01 21197.84 21298.55 24499.25 24197.97 23398.71 34699.34 24396.47 29098.59 29299.54 22495.65 17899.21 30297.21 26195.77 30298.46 325
WR-MVS98.06 19897.73 22699.06 16998.86 31199.25 10999.19 27099.35 23997.30 22198.66 27899.43 25693.94 24799.21 30298.58 14594.28 33398.71 255
test_040296.64 30196.24 30497.85 30398.85 31296.43 30599.44 18799.26 27893.52 35496.98 34699.52 23188.52 34499.20 30492.58 35897.50 25297.93 358
SixPastTwentyTwo97.50 27897.33 27598.03 29098.65 33496.23 31199.77 3498.68 35197.14 23497.90 32399.93 790.45 32299.18 30597.00 27496.43 28698.67 276
cl2297.85 23397.64 23598.48 25099.09 27597.87 24198.60 35599.33 25097.11 24098.87 25199.22 30692.38 29199.17 30698.21 17995.99 29698.42 328
IterMVS-SCA-FT97.82 24197.75 22498.06 28999.57 14696.36 30799.02 30499.49 13797.18 23198.71 26999.72 14692.72 27599.14 30797.44 25195.86 30198.67 276
pmmvs597.52 27597.30 27898.16 28398.57 34296.73 29399.27 25098.90 32796.14 31398.37 30399.53 22891.54 31099.14 30797.51 24395.87 30098.63 296
v14897.79 24697.55 24098.50 24798.74 32497.72 24899.54 13799.33 25096.26 30298.90 24599.51 23494.68 21999.14 30797.83 21093.15 34998.63 296
miper_ehance_all_eth98.18 18598.10 18198.41 26299.23 24397.72 24898.72 34599.31 26496.60 27998.88 24899.29 29597.29 12099.13 31097.60 23295.99 29698.38 333
NR-MVSNet97.97 21897.61 23799.02 17498.87 30899.26 10899.47 17799.42 20397.63 18797.08 34499.50 23795.07 19699.13 31097.86 20793.59 34398.68 269
IterMVS97.83 23897.77 21998.02 29299.58 14496.27 31099.02 30499.48 14997.22 22998.71 26999.70 15192.75 27299.13 31097.46 24996.00 29598.67 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 33394.90 32591.84 35697.24 36780.01 38598.52 35999.48 14989.01 37391.99 37499.67 17385.67 36099.13 31095.44 32097.03 27696.39 375
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 20397.96 19898.33 26999.26 23797.38 25898.56 35899.31 26496.65 27298.88 24899.52 23196.58 14399.12 31497.39 25495.53 31098.47 322
pmmvs498.13 19097.90 20598.81 22098.61 33998.87 16598.99 31199.21 28896.44 29199.06 22199.58 20995.90 16899.11 31597.18 26796.11 29398.46 325
TransMVSNet (Re)97.15 29296.58 29798.86 21099.12 26798.85 16999.49 16798.91 32595.48 32797.16 34299.80 9793.38 25999.11 31594.16 34191.73 35798.62 299
ambc93.06 35492.68 38582.36 37898.47 36198.73 34895.09 36297.41 36855.55 38699.10 31796.42 30091.32 35897.71 361
Baseline_NR-MVSNet97.76 24897.45 25398.68 23199.09 27598.29 21699.41 20098.85 33295.65 32598.63 28699.67 17394.82 20499.10 31798.07 19592.89 35198.64 288
test_vis3_rt87.04 34685.81 34990.73 36093.99 38481.96 38099.76 3790.23 39592.81 36181.35 38391.56 38340.06 39299.07 31994.27 33888.23 37091.15 383
CP-MVSNet98.09 19497.78 21799.01 17598.97 29699.24 11099.67 6499.46 17697.25 22598.48 29899.64 18593.79 25299.06 32098.63 13594.10 33698.74 250
PS-CasMVS97.93 22197.59 23998.95 18698.99 29199.06 13599.68 6199.52 9597.13 23598.31 30699.68 16792.44 29099.05 32198.51 15694.08 33798.75 247
K. test v397.10 29496.79 29498.01 29398.72 32796.33 30899.87 997.05 37697.59 18996.16 35399.80 9788.71 33999.04 32296.69 29296.55 28498.65 286
new_pmnet96.38 30796.03 30997.41 32198.13 35395.16 33699.05 29699.20 28993.94 34997.39 33698.79 34591.61 30999.04 32290.43 36495.77 30298.05 349
DIV-MVS_self_test98.01 21197.85 21198.48 25099.24 24297.95 23798.71 34699.35 23996.50 28498.60 29199.54 22495.72 17599.03 32497.21 26195.77 30298.46 325
IterMVS-LS98.46 16098.42 15898.58 23899.59 14298.00 23199.37 21999.43 20196.94 25699.07 21799.59 20597.87 10399.03 32498.32 17495.62 30798.71 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 26997.68 23097.55 31898.62 33794.97 33898.84 33399.30 26896.83 26398.19 31199.34 28397.01 13099.02 32695.00 33096.01 29498.64 288
Patchmtry97.75 25297.40 26598.81 22099.10 27298.87 16599.11 28799.33 25094.83 34098.81 25899.38 27094.33 23399.02 32696.10 30495.57 30898.53 316
N_pmnet94.95 32795.83 31492.31 35598.47 34679.33 38699.12 28192.81 39393.87 35097.68 33099.13 31693.87 24999.01 32891.38 36196.19 29198.59 312
CR-MVSNet98.17 18697.93 20398.87 20699.18 25498.49 20599.22 26799.33 25096.96 25299.56 10799.38 27094.33 23399.00 32994.83 33298.58 19899.14 205
c3_l98.12 19298.04 19098.38 26699.30 22697.69 25298.81 33699.33 25096.67 27098.83 25699.34 28397.11 12598.99 33097.58 23495.34 31398.48 320
test0.0.03 197.71 26097.42 26398.56 24298.41 34997.82 24498.78 33998.63 35297.34 21798.05 31998.98 33294.45 23098.98 33195.04 32997.15 27598.89 233
PatchT97.03 29596.44 30098.79 22398.99 29198.34 21599.16 27399.07 30692.13 36399.52 11697.31 37294.54 22898.98 33188.54 37198.73 19499.03 221
GBi-Net97.68 26497.48 24898.29 27499.51 16397.26 26399.43 19199.48 14996.49 28599.07 21799.32 29090.26 32498.98 33197.10 26996.65 28098.62 299
test197.68 26497.48 24898.29 27499.51 16397.26 26399.43 19199.48 14996.49 28599.07 21799.32 29090.26 32498.98 33197.10 26996.65 28098.62 299
FMVSNet398.03 20697.76 22398.84 21499.39 20498.98 14399.40 20899.38 22496.67 27099.07 21799.28 29792.93 26798.98 33197.10 26996.65 28098.56 315
FMVSNet297.72 25797.36 26898.80 22299.51 16398.84 17099.45 18199.42 20396.49 28598.86 25599.29 29590.26 32498.98 33196.44 29996.56 28398.58 313
FMVSNet196.84 29896.36 30298.29 27499.32 22497.26 26399.43 19199.48 14995.11 33298.55 29399.32 29083.95 36798.98 33195.81 31196.26 29098.62 299
ppachtmachnet_test97.49 28197.45 25397.61 31698.62 33795.24 33298.80 33799.46 17696.11 31598.22 31099.62 19696.45 14898.97 33893.77 34395.97 29998.61 308
TranMVSNet+NR-MVSNet97.93 22197.66 23298.76 22698.78 31998.62 18999.65 7599.49 13797.76 17398.49 29799.60 20394.23 23698.97 33898.00 19792.90 35098.70 260
test_method91.10 34291.36 34490.31 36195.85 37473.72 39394.89 38299.25 28068.39 38595.82 35699.02 32880.50 37598.95 34093.64 34594.89 32598.25 340
ADS-MVSNet298.02 20898.07 18897.87 30299.33 21895.19 33499.23 26399.08 30396.24 30399.10 21299.67 17394.11 24198.93 34196.81 28699.05 17199.48 171
ET-MVSNet_ETH3D96.49 30495.64 31899.05 17199.53 15798.82 17498.84 33397.51 37497.63 18784.77 37999.21 30992.09 29498.91 34298.98 8392.21 35699.41 187
miper_lstm_enhance98.00 21397.91 20498.28 27799.34 21697.43 25798.88 32999.36 23396.48 28898.80 26099.55 21995.98 16198.91 34297.27 25895.50 31198.51 318
PEN-MVS97.76 24897.44 25898.72 22898.77 32298.54 19699.78 3299.51 10997.06 24598.29 30899.64 18592.63 28198.89 34498.09 18893.16 34898.72 253
testing397.28 28796.76 29598.82 21799.37 20898.07 22899.45 18199.36 23397.56 19497.89 32498.95 33583.70 36898.82 34596.03 30698.56 20199.58 147
testgi97.65 26997.50 24798.13 28799.36 21196.45 30499.42 19899.48 14997.76 17397.87 32599.45 25391.09 31698.81 34694.53 33498.52 20499.13 207
testf190.42 34490.68 34689.65 36497.78 35773.97 39199.13 27998.81 33689.62 37191.80 37598.93 33662.23 38498.80 34786.61 37991.17 35996.19 376
APD_test290.42 34490.68 34689.65 36497.78 35773.97 39199.13 27998.81 33689.62 37191.80 37598.93 33662.23 38498.80 34786.61 37991.17 35996.19 376
MIMVSNet97.73 25597.45 25398.57 23999.45 18997.50 25599.02 30498.98 31496.11 31599.41 14099.14 31590.28 32398.74 34995.74 31398.93 17999.47 177
LCM-MVSNet-Re97.83 23898.15 17596.87 33699.30 22692.25 36599.59 10198.26 35997.43 21096.20 35299.13 31696.27 15498.73 35098.17 18498.99 17699.64 129
myMVS_eth3d96.89 29696.37 30198.43 26199.00 28997.16 26799.29 24299.39 21797.06 24597.41 33498.15 36183.46 36998.68 35195.27 32598.34 20999.45 182
DTE-MVSNet97.51 27797.19 28598.46 25598.63 33698.13 22599.84 1399.48 14996.68 26997.97 32299.67 17392.92 26898.56 35296.88 28592.60 35598.70 260
PC_three_145298.18 12499.84 2399.70 15199.31 398.52 35398.30 17699.80 9099.81 54
mvsany_test393.77 33593.45 33994.74 34895.78 37588.01 37399.64 7898.25 36098.28 10694.31 36597.97 36568.89 38098.51 35497.50 24490.37 36497.71 361
UnsupCasMVSNet_bld93.53 33692.51 34196.58 34197.38 36393.82 35298.24 37199.48 14991.10 36893.10 37096.66 37474.89 37898.37 35594.03 34287.71 37197.56 366
Anonymous2024052196.20 31095.89 31397.13 32897.72 36094.96 33999.79 3199.29 27293.01 35997.20 34199.03 32689.69 33298.36 35691.16 36296.13 29298.07 347
test_f91.90 34191.26 34593.84 35095.52 37985.92 37599.69 5598.53 35795.31 32993.87 36796.37 37655.33 38798.27 35795.70 31490.98 36297.32 369
MDA-MVSNet_test_wron95.45 32094.60 32798.01 29398.16 35297.21 26699.11 28799.24 28293.49 35580.73 38598.98 33293.02 26598.18 35894.22 34094.45 33098.64 288
UnsupCasMVSNet_eth96.44 30596.12 30697.40 32298.65 33495.65 32099.36 22399.51 10997.13 23596.04 35598.99 33088.40 34598.17 35996.71 29090.27 36598.40 331
KD-MVS_2432*160094.62 32893.72 33697.31 32397.19 36995.82 31898.34 36699.20 28995.00 33697.57 33198.35 35787.95 35098.10 36092.87 35477.00 38398.01 351
miper_refine_blended94.62 32893.72 33697.31 32397.19 36995.82 31898.34 36699.20 28995.00 33697.57 33198.35 35787.95 35098.10 36092.87 35477.00 38398.01 351
YYNet195.36 32294.51 32997.92 29997.89 35597.10 26999.10 28999.23 28393.26 35880.77 38499.04 32592.81 27198.02 36294.30 33694.18 33598.64 288
EU-MVSNet97.98 21598.03 19197.81 30998.72 32796.65 29799.66 6999.66 2798.09 13698.35 30499.82 7195.25 19298.01 36397.41 25395.30 31498.78 240
Gipumacopyleft90.99 34390.15 34893.51 35198.73 32590.12 37193.98 38399.45 18779.32 38192.28 37394.91 37869.61 37997.98 36487.42 37595.67 30692.45 381
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 32394.73 32697.15 32695.53 37895.94 31699.35 22899.10 30095.13 33093.55 36897.54 36788.15 34997.91 36594.58 33389.69 36897.61 364
PM-MVS92.96 33892.23 34295.14 34795.61 37689.98 37299.37 21998.21 36294.80 34195.04 36397.69 36665.06 38197.90 36694.30 33689.98 36797.54 367
MDA-MVSNet-bldmvs94.96 32693.98 33397.92 29998.24 35197.27 26199.15 27699.33 25093.80 35180.09 38699.03 32688.31 34697.86 36793.49 34794.36 33298.62 299
Patchmatch-RL test95.84 31695.81 31595.95 34595.61 37690.57 37098.24 37198.39 35895.10 33495.20 36098.67 34994.78 20997.77 36896.28 30390.02 36699.51 166
Anonymous2023120696.22 30896.03 30996.79 33897.31 36694.14 35099.63 8299.08 30396.17 30997.04 34599.06 32393.94 24797.76 36986.96 37795.06 31998.47 322
SD-MVS99.41 4399.52 999.05 17199.74 7699.68 4899.46 18099.52 9599.11 2299.88 1499.91 1699.43 197.70 37098.72 12399.93 1799.77 75
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 28997.35 27096.95 33497.84 35693.61 35899.57 11696.63 38196.13 31498.87 25198.61 35294.59 22397.70 37095.08 32898.86 18599.55 152
pmmvs394.09 33493.25 34096.60 34094.76 38394.49 34598.92 32598.18 36489.66 37096.48 35098.06 36486.28 35797.33 37289.68 36787.20 37297.97 356
KD-MVS_self_test95.00 32594.34 33096.96 33397.07 37195.39 33099.56 12299.44 19595.11 33297.13 34397.32 37191.86 29997.27 37390.35 36581.23 38098.23 342
FMVSNet596.43 30696.19 30597.15 32699.11 26995.89 31799.32 23499.52 9594.47 34798.34 30599.07 32187.54 35497.07 37492.61 35795.72 30598.47 322
new-patchmatchnet94.48 33194.08 33295.67 34695.08 38192.41 36499.18 27199.28 27494.55 34693.49 36997.37 37087.86 35297.01 37591.57 36088.36 36997.61 364
LCM-MVSNet86.80 34885.22 35291.53 35887.81 39080.96 38398.23 37398.99 31371.05 38390.13 37896.51 37548.45 39196.88 37690.51 36385.30 37496.76 371
CL-MVSNet_self_test94.49 33093.97 33496.08 34496.16 37393.67 35798.33 36899.38 22495.13 33097.33 33798.15 36192.69 27996.57 37788.67 37079.87 38197.99 354
MIMVSNet195.51 31995.04 32496.92 33597.38 36395.60 32199.52 14499.50 12993.65 35396.97 34799.17 31185.28 36396.56 37888.36 37295.55 30998.60 311
test20.0396.12 31295.96 31196.63 33997.44 36295.45 32899.51 15099.38 22496.55 28296.16 35399.25 30393.76 25496.17 37987.35 37694.22 33498.27 338
tmp_tt82.80 35081.52 35386.66 36666.61 39668.44 39492.79 38597.92 36668.96 38480.04 38799.85 5085.77 35996.15 38097.86 20743.89 38995.39 379
test_fmvs392.10 34091.77 34393.08 35396.19 37286.25 37499.82 1798.62 35396.65 27295.19 36196.90 37355.05 38895.93 38196.63 29690.92 36397.06 370
dmvs_testset95.02 32496.12 30691.72 35799.10 27280.43 38499.58 10997.87 36897.47 20395.22 35998.82 34393.99 24595.18 38288.09 37394.91 32499.56 151
PMMVS286.87 34785.37 35191.35 35990.21 38883.80 37798.89 32897.45 37583.13 38091.67 37795.03 37748.49 39094.70 38385.86 38177.62 38295.54 378
PMVScopyleft70.75 2275.98 35674.97 35779.01 37270.98 39555.18 39693.37 38498.21 36265.08 38961.78 39093.83 38021.74 39792.53 38478.59 38391.12 36189.34 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 34985.65 35082.75 37086.77 39163.39 39598.35 36598.92 32174.11 38283.39 38198.98 33250.85 38992.40 38584.54 38294.97 32192.46 380
WB-MVS93.10 33794.10 33190.12 36295.51 38081.88 38199.73 4799.27 27795.05 33593.09 37198.91 34094.70 21891.89 38676.62 38494.02 33996.58 373
SSC-MVS92.73 33993.73 33589.72 36395.02 38281.38 38299.76 3799.23 28394.87 33992.80 37298.93 33694.71 21791.37 38774.49 38693.80 34196.42 374
MVEpermissive76.82 2176.91 35574.31 35984.70 36785.38 39376.05 39096.88 38193.17 39167.39 38671.28 38889.01 38721.66 39887.69 38871.74 38772.29 38590.35 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 35279.88 35482.81 36990.75 38776.38 38997.69 37895.76 38466.44 38783.52 38092.25 38262.54 38387.16 38968.53 38861.40 38684.89 387
EMVS80.02 35379.22 35582.43 37191.19 38676.40 38897.55 38092.49 39466.36 38883.01 38291.27 38464.63 38285.79 39065.82 38960.65 38785.08 386
ANet_high77.30 35474.86 35884.62 36875.88 39477.61 38797.63 37993.15 39288.81 37464.27 38989.29 38636.51 39383.93 39175.89 38552.31 38892.33 382
wuyk23d40.18 35741.29 36236.84 37386.18 39249.12 39779.73 38622.81 39827.64 39025.46 39328.45 39321.98 39648.89 39255.80 39023.56 39212.51 390
test12339.01 35942.50 36128.53 37439.17 39720.91 39898.75 34219.17 39919.83 39238.57 39166.67 38933.16 39415.42 39337.50 39229.66 39149.26 388
testmvs39.17 35843.78 36025.37 37536.04 39816.84 39998.36 36426.56 39720.06 39138.51 39267.32 38829.64 39515.30 39437.59 39139.90 39043.98 389
test_blank0.13 3630.17 3660.00 3760.00 3990.00 4000.00 3870.00 4000.00 3940.00 3951.57 3940.00 3990.00 3950.00 3930.00 3930.00 391
uanet_test0.02 3640.03 3670.00 3760.00 3990.00 4000.00 3870.00 4000.00 3940.00 3950.27 3950.00 3990.00 3950.00 3930.00 3930.00 391
DCPMVS0.02 3640.03 3670.00 3760.00 3990.00 4000.00 3870.00 4000.00 3940.00 3950.27 3950.00 3990.00 3950.00 3930.00 3930.00 391
cdsmvs_eth3d_5k24.64 36032.85 3630.00 3760.00 3990.00 4000.00 38799.51 1090.00 3940.00 39599.56 21696.58 1430.00 3950.00 3930.00 3930.00 391
pcd_1.5k_mvsjas8.27 36211.03 3650.00 3760.00 3990.00 4000.00 3870.00 4000.00 3940.00 3950.27 39599.01 180.00 3950.00 3930.00 3930.00 391
sosnet-low-res0.02 3640.03 3670.00 3760.00 3990.00 4000.00 3870.00 4000.00 3940.00 3950.27 3950.00 3990.00 3950.00 3930.00 3930.00 391
sosnet0.02 3640.03 3670.00 3760.00 3990.00 4000.00 3870.00 4000.00 3940.00 3950.27 3950.00 3990.00 3950.00 3930.00 3930.00 391
uncertanet0.02 3640.03 3670.00 3760.00 3990.00 4000.00 3870.00 4000.00 3940.00 3950.27 3950.00 3990.00 3950.00 3930.00 3930.00 391
Regformer0.02 3640.03 3670.00 3760.00 3990.00 4000.00 3870.00 4000.00 3940.00 3950.27 3950.00 3990.00 3950.00 3930.00 3930.00 391
ab-mvs-re8.30 36111.06 3640.00 3760.00 3990.00 4000.00 3870.00 4000.00 3940.00 39599.58 2090.00 3990.00 3950.00 3930.00 3930.00 391
uanet0.02 3640.03 3670.00 3760.00 3990.00 4000.00 3870.00 4000.00 3940.00 3950.27 3950.00 3990.00 3950.00 3930.00 3930.00 391
FOURS199.91 199.93 199.87 999.56 6399.10 2399.81 31
test_one_060199.81 4299.88 899.49 13798.97 4699.65 8299.81 8499.09 14
eth-test20.00 399
eth-test0.00 399
RE-MVS-def99.34 3299.76 6199.82 2299.63 8299.52 9598.38 9599.76 5099.82 7198.75 5598.61 13999.81 8699.77 75
IU-MVS99.84 3199.88 899.32 26098.30 10599.84 2398.86 10399.85 6299.89 13
save fliter99.76 6199.59 6499.14 27899.40 21499.00 38
test072699.85 2599.89 499.62 8899.50 12999.10 2399.86 2199.82 7198.94 29
GSMVS99.52 160
test_part299.81 4299.83 1699.77 45
sam_mvs194.86 20399.52 160
sam_mvs94.72 216
MTGPAbinary99.47 167
MTMP99.54 13798.88 329
test9_res97.49 24599.72 11199.75 81
agg_prior297.21 26199.73 11099.75 81
test_prior499.56 6998.99 311
test_prior298.96 31898.34 10199.01 22799.52 23198.68 6297.96 19999.74 108
新几何299.01 309
旧先验199.74 7699.59 6499.54 7999.69 16198.47 7899.68 11999.73 90
原ACMM298.95 321
test22299.75 6999.49 8198.91 32799.49 13796.42 29399.34 16399.65 17998.28 9099.69 11699.72 96
segment_acmp98.96 24
testdata198.85 33298.32 104
plane_prior799.29 23097.03 279
plane_prior699.27 23596.98 28392.71 277
plane_prior499.61 200
plane_prior397.00 28198.69 7399.11 209
plane_prior299.39 21298.97 46
plane_prior199.26 237
plane_prior96.97 28499.21 26998.45 8997.60 241
n20.00 400
nn0.00 400
door-mid98.05 365
test1199.35 239
door97.92 366
HQP5-MVS96.83 289
HQP-NCC99.19 25198.98 31498.24 11198.66 278
ACMP_Plane99.19 25198.98 31498.24 11198.66 278
BP-MVS97.19 265
HQP3-MVS99.39 21797.58 243
HQP2-MVS92.47 286
NP-MVS99.23 24396.92 28799.40 265
MDTV_nov1_ep13_2view95.18 33599.35 22896.84 26199.58 10395.19 19497.82 21199.46 179
ACMMP++_ref97.19 273
ACMMP++97.43 262
Test By Simon98.75 55