This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268899.19 8299.10 8199.45 13299.89 898.52 21699.39 23099.94 198.73 8199.11 22799.89 3295.50 19499.94 7299.50 4199.97 799.89 19
PVSNet_Blended_VisFu99.36 5999.28 6099.61 9199.86 2099.07 14999.47 19499.93 297.66 20899.71 7799.86 5297.73 11599.96 3299.47 4899.82 9699.79 77
PVSNet_BlendedMVS98.86 13998.80 13399.03 19399.76 6698.79 19099.28 26899.91 397.42 23899.67 8799.37 29297.53 11899.88 14398.98 9897.29 29598.42 355
PVSNet_Blended99.08 11298.97 10699.42 13799.76 6698.79 19098.78 36899.91 396.74 29399.67 8799.49 25597.53 11899.88 14398.98 9899.85 7599.60 152
HyFIR lowres test99.11 10698.92 11599.65 7799.90 499.37 10599.02 33299.91 397.67 20799.59 12099.75 14295.90 18199.73 22199.53 3799.02 19299.86 32
MVS_111021_LR99.41 5199.33 4499.65 7799.77 6399.51 9098.94 35299.85 698.82 6999.65 9999.74 14798.51 8199.80 19698.83 12899.89 5499.64 140
MVS_111021_HR99.41 5199.32 4699.66 7399.72 9499.47 9698.95 35099.85 698.82 6999.54 13099.73 15398.51 8199.74 21598.91 10999.88 5799.77 85
PHI-MVS99.30 6699.17 7599.70 7099.56 16099.52 8999.58 11799.80 897.12 26499.62 11199.73 15398.58 7599.90 12698.61 15799.91 3499.68 123
PatchMatch-RL98.84 14998.62 15799.52 11899.71 9999.28 12099.06 32299.77 997.74 19899.50 13799.53 24295.41 19699.84 16497.17 29499.64 13899.44 204
3Dnovator97.25 999.24 7999.05 8899.81 4799.12 29399.66 5699.84 1299.74 1099.09 3698.92 26199.90 2795.94 17899.98 1398.95 10299.92 2799.79 77
QAPM98.67 16498.30 18299.80 4999.20 27199.67 5499.77 3499.72 1194.74 37198.73 28799.90 2795.78 18599.98 1396.96 30499.88 5799.76 90
OpenMVScopyleft96.50 1698.47 17398.12 19499.52 11899.04 31199.53 8699.82 1699.72 1194.56 37498.08 34199.88 3994.73 22999.98 1397.47 27299.76 11799.06 249
CHOSEN 280x42099.12 10199.13 7899.08 18699.66 12497.89 25598.43 39399.71 1398.88 6399.62 11199.76 13996.63 15199.70 23799.46 4999.99 199.66 129
MSLP-MVS++99.46 3499.47 2099.44 13699.60 15099.16 13499.41 21899.71 1398.98 5299.45 14599.78 12799.19 999.54 27199.28 6799.84 8399.63 145
UA-Net99.42 4799.29 5899.80 4999.62 14199.55 8199.50 17399.70 1598.79 7499.77 5899.96 197.45 12099.96 3298.92 10899.90 4399.89 19
PVSNet_094.43 1996.09 34295.47 34997.94 32499.31 24494.34 37997.81 40899.70 1597.12 26497.46 35998.75 37089.71 35099.79 19997.69 25281.69 41199.68 123
AdaColmapbinary99.01 12598.80 13399.66 7399.56 16099.54 8399.18 29899.70 1598.18 14099.35 17699.63 20496.32 16499.90 12697.48 27099.77 11499.55 166
test_fmvsm_n_192099.69 499.66 399.78 5599.84 3299.44 9999.58 11799.69 1899.43 799.98 699.91 2098.62 73100.00 199.97 199.95 1799.90 16
ACMMPcopyleft99.45 3899.32 4699.82 4499.89 899.67 5499.62 9599.69 1898.12 14899.63 10799.84 6798.73 6399.96 3298.55 17299.83 9299.81 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS99.53 1999.42 2599.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 17099.74 14798.81 4799.94 7298.79 13399.86 6899.84 42
X-MVStestdata96.55 33195.45 35099.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 17064.01 42498.81 4799.94 7298.79 13399.86 6899.84 42
UGNet98.87 13698.69 14599.40 13999.22 26898.72 19599.44 20499.68 2099.24 1799.18 21899.42 27592.74 29199.96 3299.34 6099.94 2399.53 174
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3199.84 3299.65 6099.51 16699.67 2399.13 2499.98 699.92 1496.60 15299.96 3299.95 799.96 1299.95 9
ZNCC-MVS99.47 3299.33 4499.87 1499.87 1599.81 2899.64 8499.67 2398.08 15799.55 12999.64 19898.91 3799.96 3298.72 14099.90 4399.82 57
GST-MVS99.40 5499.24 6899.85 3199.86 2099.79 3399.60 10299.67 2397.97 17099.63 10799.68 17998.52 8099.95 6298.38 18599.86 6899.81 64
HFP-MVS99.49 2599.37 3699.86 2499.87 1599.80 3099.66 7599.67 2398.15 14299.68 8399.69 17299.06 1699.96 3298.69 14599.87 6099.84 42
ACMMPR99.49 2599.36 3899.86 2499.87 1599.79 3399.66 7599.67 2398.15 14299.67 8799.69 17298.95 3099.96 3298.69 14599.87 6099.84 42
region2R99.48 2999.35 4099.87 1499.88 1199.80 3099.65 8199.66 2898.13 14799.66 9299.68 17998.96 2599.96 3298.62 15499.87 6099.84 42
EU-MVSNet97.98 23098.03 20697.81 33698.72 35796.65 32299.66 7599.66 2898.09 15398.35 32699.82 8195.25 20598.01 39397.41 27795.30 34398.78 269
DELS-MVS99.48 2999.42 2599.65 7799.72 9499.40 10499.05 32499.66 2899.14 2399.57 12499.80 10898.46 8499.94 7299.57 3299.84 8399.60 152
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Vis-MVSNetpermissive99.12 10198.97 10699.56 10199.78 5699.10 14399.68 6699.66 2898.49 10099.86 3399.87 4894.77 22699.84 16499.19 7599.41 15799.74 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG99.32 6499.32 4699.32 15399.85 2698.29 23199.71 5599.66 2898.11 15099.41 15999.80 10898.37 9299.96 3298.99 9799.96 1299.72 106
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3199.83 3999.64 6699.52 15799.65 3399.10 3199.98 699.92 1497.35 12599.96 3299.94 999.92 2799.95 9
SDMVSNet99.11 10698.90 11899.75 6199.81 4699.59 7399.81 2099.65 3398.78 7799.64 10499.88 3994.56 23999.93 9099.67 2398.26 23799.72 106
PGM-MVS99.45 3899.31 5299.86 2499.87 1599.78 3999.58 11799.65 3397.84 18599.71 7799.80 10899.12 1399.97 2198.33 19299.87 6099.83 52
test_fmvsmconf_n99.70 399.64 499.87 1499.80 5299.66 5699.48 18899.64 3699.45 599.92 1699.92 1498.62 7399.99 499.96 699.99 199.96 7
test_cas_vis1_n_192099.16 8899.01 10099.61 9199.81 4698.86 18199.65 8199.64 3699.39 1099.97 1399.94 693.20 28199.98 1399.55 3499.91 3499.99 1
patch_mono-299.26 7499.62 598.16 30699.81 4694.59 37499.52 15799.64 3699.33 1399.73 7099.90 2799.00 2299.99 499.69 2199.98 499.89 19
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3199.86 2099.61 7099.56 13099.63 3999.48 399.98 699.83 7298.75 5899.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 3199.84 3299.63 6799.56 13099.63 3999.47 499.98 699.82 8198.75 5899.99 499.97 199.97 799.94 11
fmvsm_s_conf0.1_n_a99.26 7499.06 8799.85 3199.52 17399.62 6899.54 14899.62 4198.69 8499.99 299.96 194.47 24599.94 7299.88 1399.92 2799.98 2
fmvsm_s_conf0.1_n99.29 6899.10 8199.86 2499.70 10499.65 6099.53 15699.62 4198.74 8099.99 299.95 394.53 24399.94 7299.89 1299.96 1299.97 4
test_fmvsmvis_n_192099.65 699.61 699.77 5899.38 22499.37 10599.58 11799.62 4199.41 999.87 2999.92 1498.81 47100.00 199.97 199.93 2599.94 11
sd_testset98.75 15798.57 16499.29 16299.81 4698.26 23399.56 13099.62 4198.78 7799.64 10499.88 3992.02 31399.88 14399.54 3598.26 23799.72 106
test_vis1_n_192098.63 16898.40 17599.31 15499.86 2097.94 25499.67 6999.62 4199.43 799.99 299.91 2087.29 378100.00 199.92 1199.92 2799.98 2
SR-MVS99.43 4599.29 5899.86 2499.75 7699.83 1999.59 10999.62 4198.21 13599.73 7099.79 12098.68 6799.96 3298.44 18299.77 11499.79 77
sss99.17 8699.05 8899.53 11299.62 14198.97 16199.36 24299.62 4197.83 18699.67 8799.65 19297.37 12499.95 6299.19 7599.19 17499.68 123
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2499.44 20699.65 6099.50 17399.61 4899.45 599.87 2999.92 1497.31 12699.97 2199.95 799.99 199.97 4
ZD-MVS99.71 9999.79 3399.61 4896.84 28999.56 12599.54 23898.58 7599.96 3296.93 30799.75 119
D2MVS98.41 17998.50 16998.15 30999.26 25696.62 32399.40 22699.61 4897.71 20098.98 25299.36 29596.04 17299.67 24598.70 14297.41 29198.15 373
tfpnnormal97.84 25397.47 27098.98 19999.20 27199.22 12899.64 8499.61 4896.32 32698.27 33299.70 16293.35 27799.44 28295.69 34295.40 34198.27 365
AllTest98.87 13698.72 14199.31 15499.86 2098.48 22299.56 13099.61 4897.85 18399.36 17399.85 5795.95 17699.85 15796.66 32099.83 9299.59 156
TestCases99.31 15499.86 2098.48 22299.61 4897.85 18399.36 17399.85 5795.95 17699.85 15796.66 32099.83 9299.59 156
FC-MVSNet-test98.75 15798.62 15799.15 18399.08 30499.45 9899.86 1199.60 5498.23 13298.70 29599.82 8196.80 14499.22 32399.07 8996.38 31398.79 268
mamv499.33 6299.42 2599.07 18799.67 11497.73 26299.42 21599.60 5498.15 14299.94 1599.91 2098.42 8899.94 7299.72 1999.96 1299.54 168
PVSNet96.02 1798.85 14698.84 13098.89 21999.73 9097.28 28098.32 39999.60 5497.86 18099.50 13799.57 22796.75 14799.86 15198.56 16999.70 12999.54 168
LTVRE_ROB97.16 1298.02 22397.90 22098.40 28699.23 26496.80 31599.70 5699.60 5497.12 26498.18 33899.70 16291.73 32199.72 22598.39 18497.45 28698.68 298
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FIs98.78 15498.63 15299.23 17399.18 27799.54 8399.83 1599.59 5898.28 12398.79 28299.81 9596.75 14799.37 29499.08 8896.38 31398.78 269
WR-MVS_H98.13 20597.87 22598.90 21699.02 31398.84 18399.70 5699.59 5897.27 25098.40 32399.19 32995.53 19399.23 31998.34 19193.78 37298.61 335
114514_t98.93 13198.67 14799.72 6999.85 2699.53 8699.62 9599.59 5892.65 39399.71 7799.78 12798.06 10699.90 12698.84 12599.91 3499.74 95
COLMAP_ROBcopyleft97.56 698.86 13998.75 13999.17 17899.88 1198.53 21299.34 25099.59 5897.55 21998.70 29599.89 3295.83 18399.90 12698.10 20899.90 4399.08 243
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SPE-MVS-test99.49 2599.48 1899.54 10499.78 5699.30 11799.89 299.58 6298.56 9499.73 7099.69 17298.55 7899.82 18499.69 2199.85 7599.48 188
VPA-MVSNet98.29 19197.95 21599.30 15999.16 28799.54 8399.50 17399.58 6298.27 12599.35 17699.37 29292.53 30199.65 25399.35 5594.46 35898.72 282
EC-MVSNet99.44 4299.39 3299.58 9799.56 16099.49 9299.88 499.58 6298.38 11199.73 7099.69 17298.20 9999.70 23799.64 2799.82 9699.54 168
CANet99.25 7899.14 7799.59 9499.41 21499.16 13499.35 24799.57 6598.82 6999.51 13699.61 21396.46 15999.95 6299.59 2999.98 499.65 133
Anonymous2023121197.88 24497.54 26198.90 21699.71 9998.53 21299.48 18899.57 6594.16 37798.81 27899.68 17993.23 27899.42 28798.84 12594.42 36098.76 275
VPNet97.84 25397.44 27899.01 19599.21 26998.94 17199.48 18899.57 6598.38 11199.28 18999.73 15388.89 35899.39 28999.19 7593.27 37798.71 284
DP-MVS Recon99.12 10198.95 11299.65 7799.74 8399.70 4999.27 27399.57 6596.40 32499.42 15599.68 17998.75 5899.80 19697.98 22199.72 12599.44 204
LS3D99.27 7299.12 7999.74 6499.18 27799.75 4299.56 13099.57 6598.45 10499.49 14099.85 5797.77 11499.94 7298.33 19299.84 8399.52 175
FOURS199.91 199.93 199.87 899.56 7099.10 3199.81 43
test_prior99.68 7199.67 11499.48 9499.56 7099.83 17799.74 95
APDe-MVScopyleft99.66 599.57 899.92 199.77 6399.89 499.75 4299.56 7099.02 4299.88 2499.85 5799.18 1099.96 3299.22 7399.92 2799.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast99.51 2199.40 3099.85 3199.91 199.79 3399.76 3799.56 7097.72 19999.76 6499.75 14299.13 1299.92 10299.07 8999.92 2799.85 36
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10399.66 12499.09 14499.64 8499.56 7098.26 12799.45 14599.87 4896.03 17399.81 18999.54 3599.15 17899.73 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS99.06 11598.88 12399.61 9199.62 14199.16 13499.37 23799.56 7098.04 16599.53 13299.62 20996.84 14399.94 7298.85 12298.49 22599.72 106
API-MVS99.04 11899.03 9299.06 18999.40 21999.31 11599.55 14499.56 7098.54 9699.33 18099.39 28798.76 5599.78 20496.98 30299.78 11198.07 377
ACMH97.28 898.10 20897.99 21098.44 28199.41 21496.96 30799.60 10299.56 7098.09 15398.15 33999.91 2090.87 33799.70 23798.88 11297.45 28698.67 305
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
reproduce_model99.63 799.54 1199.90 499.78 5699.88 899.56 13099.55 7899.15 2199.90 1999.90 2799.00 2299.97 2199.11 8399.91 3499.86 32
CS-MVS99.50 2399.48 1899.54 10499.76 6699.42 10199.90 199.55 7898.56 9499.78 5499.70 16298.65 7199.79 19999.65 2599.78 11199.41 209
CVMVSNet98.57 17098.67 14798.30 29599.35 23195.59 35099.50 17399.55 7898.60 9199.39 16699.83 7294.48 24499.45 27798.75 13698.56 22099.85 36
XVG-OURS98.73 16098.68 14698.88 22199.70 10497.73 26298.92 35499.55 7898.52 9899.45 14599.84 6795.27 20299.91 11498.08 21398.84 20499.00 254
LPG-MVS_test98.22 19498.13 19398.49 26899.33 23697.05 29699.58 11799.55 7897.46 22999.24 20099.83 7292.58 29999.72 22598.09 20997.51 27998.68 298
LGP-MVS_train98.49 26899.33 23697.05 29699.55 7897.46 22999.24 20099.83 7292.58 29999.72 22598.09 20997.51 27998.68 298
XXY-MVS98.38 18398.09 19999.24 17199.26 25699.32 11199.56 13099.55 7897.45 23298.71 28999.83 7293.23 27899.63 26298.88 11296.32 31598.76 275
DeepC-MVS98.35 299.30 6699.19 7399.64 8399.82 4299.23 12799.62 9599.55 7898.94 5899.63 10799.95 395.82 18499.94 7299.37 5499.97 799.73 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG98.98 12798.80 13399.53 11299.76 6699.19 12998.75 37199.55 7897.25 25299.47 14299.77 13597.82 11299.87 14896.93 30799.90 4399.54 168
reproduce-ours99.61 899.52 1299.90 499.76 6699.88 899.52 15799.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9199.90 4399.85 36
our_new_method99.61 899.52 1299.90 499.76 6699.88 899.52 15799.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9199.90 4399.85 36
SF-MVS99.38 5799.24 6899.79 5299.79 5499.68 5199.57 12499.54 8797.82 19099.71 7799.80 10898.95 3099.93 9098.19 20299.84 8399.74 95
PS-MVSNAJss98.92 13298.92 11598.90 21698.78 34698.53 21299.78 3299.54 8798.07 15899.00 25099.76 13999.01 1899.37 29499.13 8197.23 29798.81 267
新几何199.75 6199.75 7699.59 7399.54 8796.76 29299.29 18899.64 19898.43 8699.94 7296.92 30999.66 13599.72 106
旧先验199.74 8399.59 7399.54 8799.69 17298.47 8399.68 13399.73 100
APD-MVS_3200maxsize99.48 2999.35 4099.85 3199.76 6699.83 1999.63 9099.54 8798.36 11599.79 4999.82 8198.86 4199.95 6298.62 15499.81 9999.78 83
XVG-OURS-SEG-HR98.69 16298.62 15798.89 21999.71 9997.74 26199.12 30999.54 8798.44 10799.42 15599.71 15894.20 25399.92 10298.54 17398.90 20099.00 254
HPM-MVScopyleft99.42 4799.28 6099.83 4399.90 499.72 4599.81 2099.54 8797.59 21399.68 8399.63 20498.91 3799.94 7298.58 16399.91 3499.84 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs98.86 13998.63 15299.54 10499.64 13299.19 12999.44 20499.54 8797.77 19499.30 18599.81 9594.20 25399.93 9099.17 7998.82 20699.49 187
F-COLMAP99.19 8299.04 9099.64 8399.78 5699.27 12299.42 21599.54 8797.29 24999.41 15999.59 21898.42 8899.93 9098.19 20299.69 13099.73 100
ACMH+97.24 1097.92 23997.78 23398.32 29399.46 19996.68 32199.56 13099.54 8798.41 10997.79 35599.87 4890.18 34699.66 24898.05 21797.18 30098.62 326
MAR-MVS98.86 13998.63 15299.54 10499.37 22799.66 5699.45 19899.54 8796.61 30599.01 24699.40 28397.09 13399.86 15197.68 25399.53 14999.10 238
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UniMVSNet_ETH3D97.32 31196.81 31998.87 22599.40 21997.46 27499.51 16699.53 10095.86 35298.54 31699.77 13582.44 40299.66 24898.68 14797.52 27899.50 186
EIA-MVS99.18 8499.09 8499.45 13299.49 18999.18 13199.67 6999.53 10097.66 20899.40 16499.44 27198.10 10399.81 18998.94 10399.62 14199.35 218
jajsoiax98.43 17698.28 18398.88 22198.60 37098.43 22699.82 1699.53 10098.19 13798.63 30799.80 10893.22 28099.44 28299.22 7397.50 28198.77 273
mvs_tets98.40 18298.23 18598.91 21498.67 36398.51 21899.66 7599.53 10098.19 13798.65 30499.81 9592.75 28999.44 28299.31 6397.48 28598.77 273
UniMVSNet_NR-MVSNet98.22 19497.97 21298.96 20298.92 32898.98 15899.48 18899.53 10097.76 19598.71 28999.46 26896.43 16299.22 32398.57 16692.87 38298.69 293
SR-MVS-dyc-post99.45 3899.31 5299.85 3199.76 6699.82 2599.63 9099.52 10598.38 11199.76 6499.82 8198.53 7999.95 6298.61 15799.81 9999.77 85
RE-MVS-def99.34 4299.76 6699.82 2599.63 9099.52 10598.38 11199.76 6499.82 8198.75 5898.61 15799.81 9999.77 85
dcpmvs_299.23 8099.58 798.16 30699.83 3994.68 37299.76 3799.52 10599.07 3999.98 699.88 3998.56 7799.93 9099.67 2399.98 499.87 30
ETV-MVS99.26 7499.21 7199.40 13999.46 19999.30 11799.56 13099.52 10598.52 9899.44 15099.27 31998.41 9099.86 15199.10 8699.59 14499.04 250
MP-MVS-pluss99.37 5899.20 7299.88 899.90 499.87 1599.30 25899.52 10597.18 25899.60 11799.79 12098.79 5099.95 6298.83 12899.91 3499.83 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS99.41 5199.52 1299.05 19199.74 8399.68 5199.46 19799.52 10599.11 3099.88 2499.91 2099.43 197.70 40098.72 14099.93 2599.77 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PS-CasMVS97.93 23697.59 25798.95 20498.99 31899.06 15099.68 6699.52 10597.13 26298.31 32899.68 17992.44 30799.05 34898.51 17494.08 36798.75 277
XVG-ACMP-BASELINE97.83 25597.71 24498.20 30399.11 29596.33 33399.41 21899.52 10598.06 16299.05 24299.50 25289.64 35299.73 22197.73 24697.38 29398.53 343
CNVR-MVS99.42 4799.30 5499.78 5599.62 14199.71 4799.26 28299.52 10598.82 6999.39 16699.71 15898.96 2599.85 15798.59 16299.80 10399.77 85
CP-MVS99.45 3899.32 4699.85 3199.83 3999.75 4299.69 6099.52 10598.07 15899.53 13299.63 20498.93 3699.97 2198.74 13799.91 3499.83 52
RPMNet96.72 32895.90 34199.19 17699.18 27798.49 22099.22 29299.52 10588.72 40799.56 12597.38 40194.08 25999.95 6286.87 40998.58 21799.14 235
FMVSNet596.43 33596.19 33497.15 35599.11 29595.89 34599.32 25399.52 10594.47 37698.34 32799.07 34087.54 37797.07 40592.61 38795.72 33398.47 349
OMC-MVS99.08 11299.04 9099.20 17599.67 11498.22 23599.28 26899.52 10598.07 15899.66 9299.81 9597.79 11399.78 20497.79 23799.81 9999.60 152
PLCcopyleft97.94 499.02 12198.85 12899.53 11299.66 12499.01 15699.24 28699.52 10596.85 28899.27 19499.48 26198.25 9799.91 11497.76 24299.62 14199.65 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_fmvsmconf0.01_n99.22 8199.03 9299.79 5298.42 37999.48 9499.55 14499.51 11999.39 1099.78 5499.93 994.80 22199.95 6299.93 1099.95 1799.94 11
balanced_conf0399.46 3499.39 3299.67 7299.55 16499.58 7899.74 4699.51 11998.42 10899.87 2999.84 6798.05 10799.91 11499.58 3199.94 2399.52 175
DVP-MVS++99.59 1199.50 1699.88 899.51 17699.88 899.87 899.51 11998.99 4999.88 2499.81 9599.27 599.96 3298.85 12299.80 10399.81 64
GeoE98.85 14698.62 15799.53 11299.61 14599.08 14799.80 2599.51 11997.10 26899.31 18299.78 12795.23 20699.77 20698.21 20099.03 19099.75 91
9.1499.10 8199.72 9499.40 22699.51 11997.53 22399.64 10499.78 12798.84 4499.91 11497.63 25499.82 96
test_0728_SECOND99.91 299.84 3299.89 499.57 12499.51 11999.96 3298.93 10699.86 6899.88 25
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5699.88 899.36 24299.51 11998.73 8199.88 2499.84 6798.72 6499.96 3298.16 20699.87 6099.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
xiu_mvs_v1_base_debu99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
xiu_mvs_v1_base99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
xiu_mvs_v1_base_debi99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
cdsmvs_eth3d_5k24.64 39232.85 3950.00 4080.00 4310.00 4330.00 41999.51 1190.00 4260.00 42799.56 23096.58 1530.00 4270.00 4260.00 4250.00 423
HPM-MVS++copyleft99.39 5699.23 7099.87 1499.75 7699.84 1899.43 20899.51 11998.68 8699.27 19499.53 24298.64 7299.96 3298.44 18299.80 10399.79 77
无先验98.99 34099.51 11996.89 28699.93 9097.53 26699.72 106
testdata99.54 10499.75 7698.95 16899.51 11997.07 27099.43 15299.70 16298.87 4099.94 7297.76 24299.64 13899.72 106
PEN-MVS97.76 26697.44 27898.72 24598.77 35198.54 21199.78 3299.51 11997.06 27298.29 33199.64 19892.63 29898.89 37398.09 20993.16 37898.72 282
UniMVSNet (Re)98.29 19198.00 20999.13 18499.00 31599.36 10899.49 18499.51 11997.95 17198.97 25499.13 33596.30 16599.38 29198.36 18993.34 37598.66 313
SteuartSystems-ACMMP99.54 1899.42 2599.87 1499.82 4299.81 2899.59 10999.51 11998.62 8999.79 4999.83 7299.28 499.97 2198.48 17699.90 4399.84 42
Skip Steuart: Steuart Systems R&D Blog.
UnsupCasMVSNet_eth96.44 33496.12 33597.40 35198.65 36495.65 34899.36 24299.51 11997.13 26296.04 38598.99 35088.40 36898.17 38996.71 31690.27 39698.40 358
3Dnovator+97.12 1399.18 8498.97 10699.82 4499.17 28599.68 5199.81 2099.51 11999.20 1898.72 28899.89 3295.68 18999.97 2198.86 12099.86 6899.81 64
TAPA-MVS97.07 1597.74 27297.34 29398.94 20699.70 10497.53 27299.25 28499.51 11991.90 39599.30 18599.63 20498.78 5199.64 25688.09 40499.87 6099.65 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVSMamba_PlusPlus99.46 3499.41 2999.64 8399.68 11299.50 9199.75 4299.50 13998.27 12599.87 2999.92 1498.09 10499.94 7299.65 2599.95 1799.47 194
test072699.85 2699.89 499.62 9599.50 13999.10 3199.86 3399.82 8198.94 32
MSP-MVS99.42 4799.27 6399.88 899.89 899.80 3099.67 6999.50 13998.70 8399.77 5899.49 25598.21 9899.95 6298.46 18099.77 11499.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Effi-MVS+98.81 15098.59 16399.48 12699.46 19999.12 14298.08 40699.50 13997.50 22799.38 16899.41 27996.37 16399.81 18999.11 8398.54 22299.51 182
anonymousdsp98.44 17598.28 18398.94 20698.50 37698.96 16599.77 3499.50 13997.07 27098.87 27099.77 13594.76 22799.28 31198.66 14997.60 27098.57 341
RRT-MVS98.91 13398.75 13999.39 14399.46 19998.61 20699.76 3799.50 13998.06 16299.81 4399.88 3993.91 26699.94 7299.11 8399.27 16999.61 149
casdiffmvspermissive99.13 9598.98 10599.56 10199.65 13099.16 13499.56 13099.50 13998.33 11999.41 15999.86 5295.92 17999.83 17799.45 5099.16 17599.70 117
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft99.27 7299.08 8599.84 4299.75 7699.79 3399.50 17399.50 13997.16 26099.77 5899.82 8198.78 5199.94 7297.56 26399.86 6899.80 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MIMVSNet195.51 34995.04 35496.92 36597.38 39495.60 34999.52 15799.50 13993.65 38296.97 37499.17 33085.28 39096.56 40988.36 40395.55 33898.60 338
DP-MVS99.16 8898.95 11299.78 5599.77 6399.53 8699.41 21899.50 13997.03 27699.04 24399.88 3997.39 12199.92 10298.66 14999.90 4399.87 30
test_vis1_n97.92 23997.44 27899.34 14799.53 16898.08 24299.74 4699.49 14999.15 21100.00 199.94 679.51 40899.98 1399.88 1399.76 11799.97 4
test_fmvs1_n98.41 17998.14 19199.21 17499.82 4297.71 26799.74 4699.49 14999.32 1499.99 299.95 385.32 38999.97 2199.82 1699.84 8399.96 7
test_fmvs198.88 13598.79 13699.16 17999.69 10897.61 27199.55 14499.49 14999.32 1499.98 699.91 2091.41 32999.96 3299.82 1699.92 2799.90 16
test_one_060199.81 4699.88 899.49 14998.97 5599.65 9999.81 9599.09 14
Fast-Effi-MVS+-dtu98.77 15698.83 13298.60 25499.41 21496.99 30399.52 15799.49 14998.11 15099.24 20099.34 30296.96 14199.79 19997.95 22399.45 15499.02 253
IterMVS-SCA-FT97.82 25897.75 24098.06 31399.57 15696.36 33299.02 33299.49 14997.18 25898.71 28999.72 15792.72 29299.14 33497.44 27595.86 32998.67 305
test22299.75 7699.49 9298.91 35699.49 14996.42 32299.34 17999.65 19298.28 9699.69 13099.72 106
131498.68 16398.54 16799.11 18598.89 33198.65 20099.27 27399.49 14996.89 28697.99 34699.56 23097.72 11699.83 17797.74 24599.27 16998.84 266
diffmvspermissive99.14 9399.02 9699.51 12099.61 14598.96 16599.28 26899.49 14998.46 10399.72 7599.71 15896.50 15799.88 14399.31 6399.11 18199.67 126
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet97.93 23697.66 24898.76 24398.78 34698.62 20499.65 8199.49 14997.76 19598.49 31999.60 21694.23 25298.97 36598.00 22092.90 38098.70 289
CPTT-MVS99.11 10698.90 11899.74 6499.80 5299.46 9799.59 10999.49 14997.03 27699.63 10799.69 17297.27 12999.96 3297.82 23599.84 8399.81 64
ACMP97.20 1198.06 21397.94 21798.45 27899.37 22797.01 30199.44 20499.49 14997.54 22298.45 32199.79 12091.95 31599.72 22597.91 22597.49 28498.62 326
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GDP-MVS99.08 11298.89 12199.64 8399.53 16899.34 10999.64 8499.48 16198.32 12099.77 5899.66 19095.14 20899.93 9098.97 10199.50 15199.64 140
MGCFI-Net99.01 12598.85 12899.50 12599.42 20999.26 12399.82 1699.48 16198.60 9199.28 18998.81 36597.04 13799.76 21099.29 6697.87 25899.47 194
sasdasda99.02 12198.86 12699.51 12099.42 20999.32 11199.80 2599.48 16198.63 8799.31 18298.81 36597.09 13399.75 21399.27 6997.90 25599.47 194
mvsany_test199.50 2399.46 2399.62 9099.61 14599.09 14498.94 35299.48 16199.10 3199.96 1499.91 2098.85 4299.96 3299.72 1999.58 14599.82 57
SED-MVS99.61 899.52 1299.88 899.84 3299.90 299.60 10299.48 16199.08 3799.91 1799.81 9599.20 799.96 3298.91 10999.85 7599.79 77
test_241102_TWO99.48 16199.08 3799.88 2499.81 9598.94 3299.96 3298.91 10999.84 8399.88 25
test_241102_ONE99.84 3299.90 299.48 16199.07 3999.91 1799.74 14799.20 799.76 210
ACMMP_NAP99.47 3299.34 4299.88 899.87 1599.86 1699.47 19499.48 16198.05 16499.76 6499.86 5298.82 4699.93 9098.82 13299.91 3499.84 42
canonicalmvs99.02 12198.86 12699.51 12099.42 20999.32 11199.80 2599.48 16198.63 8799.31 18298.81 36597.09 13399.75 21399.27 6997.90 25599.47 194
testgi97.65 28897.50 26598.13 31099.36 23096.45 32999.42 21599.48 16197.76 19597.87 35199.45 27091.09 33498.81 37594.53 36398.52 22399.13 237
DTE-MVSNet97.51 29897.19 30698.46 27698.63 36698.13 24099.84 1299.48 16196.68 29797.97 34899.67 18592.92 28598.56 38296.88 31192.60 38698.70 289
mPP-MVS99.44 4299.30 5499.86 2499.88 1199.79 3399.69 6099.48 16198.12 14899.50 13799.75 14298.78 5199.97 2198.57 16699.89 5499.83 52
baseline99.15 9099.02 9699.53 11299.66 12499.14 13999.72 5299.48 16198.35 11699.42 15599.84 6796.07 17199.79 19999.51 4099.14 17999.67 126
NCCC99.34 6199.19 7399.79 5299.61 14599.65 6099.30 25899.48 16198.86 6499.21 20899.63 20498.72 6499.90 12698.25 19899.63 14099.80 73
GBi-Net97.68 28397.48 26798.29 29699.51 17697.26 28399.43 20899.48 16196.49 31499.07 23599.32 30990.26 34298.98 35897.10 29596.65 30698.62 326
UnsupCasMVSNet_bld93.53 36692.51 37296.58 37197.38 39493.82 38298.24 40199.48 16191.10 39993.10 40096.66 40674.89 41098.37 38594.03 37187.71 40397.56 397
test197.68 28397.48 26798.29 29699.51 17697.26 28399.43 20899.48 16196.49 31499.07 23599.32 30990.26 34298.98 35897.10 29596.65 30698.62 326
FMVSNet196.84 32696.36 33098.29 29699.32 24397.26 28399.43 20899.48 16195.11 36198.55 31599.32 30983.95 39698.98 35895.81 33896.26 31798.62 326
1112_ss98.98 12798.77 13799.59 9499.68 11299.02 15499.25 28499.48 16197.23 25599.13 22399.58 22296.93 14299.90 12698.87 11598.78 20999.84 42
IterMVS97.83 25597.77 23598.02 31699.58 15496.27 33699.02 33299.48 16197.22 25698.71 28999.70 16292.75 28999.13 33797.46 27396.00 32398.67 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 36394.90 35591.84 38897.24 39880.01 41898.52 38999.48 16189.01 40591.99 40599.67 18585.67 38599.13 33795.44 34897.03 30396.39 406
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SMA-MVScopyleft99.44 4299.30 5499.85 3199.73 9099.83 1999.56 13099.47 18297.45 23299.78 5499.82 8199.18 1099.91 11498.79 13399.89 5499.81 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTGPAbinary99.47 182
pmmvs696.53 33296.09 33797.82 33598.69 36195.47 35599.37 23799.47 18293.46 38597.41 36099.78 12787.06 38099.33 30496.92 30992.70 38498.65 315
Fast-Effi-MVS+98.70 16198.43 17299.51 12099.51 17699.28 12099.52 15799.47 18296.11 34499.01 24699.34 30296.20 16899.84 16497.88 22798.82 20699.39 212
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7599.47 18298.79 7499.68 8399.81 9598.43 8699.97 2198.88 11299.90 4399.83 52
原ACMM199.65 7799.73 9099.33 11099.47 18297.46 22999.12 22599.66 19098.67 6999.91 11497.70 25199.69 13099.71 115
HQP_MVS98.27 19398.22 18698.44 28199.29 24996.97 30599.39 23099.47 18298.97 5599.11 22799.61 21392.71 29499.69 24297.78 23897.63 26798.67 305
plane_prior599.47 18299.69 24297.78 23897.63 26798.67 305
Test_1112_low_res98.89 13498.66 15099.57 9999.69 10898.95 16899.03 32999.47 18296.98 27899.15 22199.23 32496.77 14699.89 13898.83 12898.78 20999.86 32
ppachtmachnet_test97.49 30497.45 27397.61 34598.62 36795.24 36198.80 36699.46 19196.11 34498.22 33599.62 20996.45 16098.97 36593.77 37295.97 32798.61 335
nrg03098.64 16798.42 17399.28 16699.05 31099.69 5099.81 2099.46 19198.04 16599.01 24699.82 8196.69 14999.38 29199.34 6094.59 35798.78 269
v7n97.87 24697.52 26298.92 21098.76 35398.58 20899.84 1299.46 19196.20 33598.91 26299.70 16294.89 21799.44 28296.03 33393.89 37098.75 277
PS-MVSNAJ99.32 6499.32 4699.30 15999.57 15698.94 17198.97 34699.46 19198.92 6199.71 7799.24 32399.01 1899.98 1399.35 5599.66 13598.97 258
MP-MVScopyleft99.33 6299.15 7699.87 1499.88 1199.82 2599.66 7599.46 19198.09 15399.48 14199.74 14798.29 9599.96 3297.93 22499.87 6099.82 57
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet98.09 20997.78 23399.01 19598.97 32399.24 12699.67 6999.46 19197.25 25298.48 32099.64 19893.79 27099.06 34798.63 15394.10 36698.74 280
MVSFormer99.17 8699.12 7999.29 16299.51 17698.94 17199.88 499.46 19197.55 21999.80 4799.65 19297.39 12199.28 31199.03 9399.85 7599.65 133
test_djsdf98.67 16498.57 16498.98 19998.70 36098.91 17599.88 499.46 19197.55 21999.22 20599.88 3995.73 18799.28 31199.03 9397.62 26998.75 277
CDS-MVSNet99.09 11199.03 9299.25 16999.42 20998.73 19499.45 19899.46 19198.11 15099.46 14499.77 13598.01 10899.37 29498.70 14298.92 19899.66 129
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 10199.08 8599.24 17199.46 19998.55 21099.51 16699.46 19198.09 15399.45 14599.82 8198.34 9399.51 27298.70 14298.93 19699.67 126
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 5899.63 13599.59 7399.36 24299.46 19199.07 3999.79 4999.82 8198.85 4299.92 10298.68 14799.87 6099.82 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3397.70 28097.28 30198.97 20199.70 10497.27 28199.36 24299.45 20298.94 5899.66 9299.64 19894.93 21399.99 499.48 4684.36 40799.65 133
xiu_mvs_v2_base99.26 7499.25 6799.29 16299.53 16898.91 17599.02 33299.45 20298.80 7399.71 7799.26 32198.94 3299.98 1399.34 6099.23 17198.98 257
EI-MVSNet-UG-set99.58 1299.57 899.64 8399.78 5699.14 13999.60 10299.45 20299.01 4499.90 1999.83 7298.98 2499.93 9099.59 2999.95 1799.86 32
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8399.78 5699.15 13899.61 10199.45 20299.01 4499.89 2199.82 8199.01 1899.92 10299.56 3399.95 1799.85 36
pm-mvs197.68 28397.28 30198.88 22199.06 30798.62 20499.50 17399.45 20296.32 32697.87 35199.79 12092.47 30399.35 30197.54 26593.54 37498.67 305
DU-MVS98.08 21197.79 23098.96 20298.87 33598.98 15899.41 21899.45 20297.87 17998.71 28999.50 25294.82 21999.22 32398.57 16692.87 38298.68 298
ACMM97.58 598.37 18598.34 17898.48 27099.41 21497.10 29099.56 13099.45 20298.53 9799.04 24399.85 5793.00 28399.71 23198.74 13797.45 28698.64 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft90.99 37490.15 37993.51 38298.73 35590.12 40293.98 41599.45 20279.32 41392.28 40394.91 41069.61 41197.98 39487.42 40695.67 33492.45 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
KD-MVS_self_test95.00 35594.34 36096.96 36297.07 40295.39 35999.56 13099.44 21095.11 36197.13 37097.32 40391.86 31797.27 40490.35 39681.23 41298.23 369
RPSCF98.22 19498.62 15796.99 36099.82 4291.58 39999.72 5299.44 21096.61 30599.66 9299.89 3295.92 17999.82 18497.46 27399.10 18499.57 163
Vis-MVSNet (Re-imp)98.87 13698.72 14199.31 15499.71 9998.88 17799.80 2599.44 21097.91 17599.36 17399.78 12795.49 19599.43 28697.91 22599.11 18199.62 147
CNLPA99.14 9398.99 10299.59 9499.58 15499.41 10399.16 30099.44 21098.45 10499.19 21499.49 25598.08 10599.89 13897.73 24699.75 11999.48 188
DeepPCF-MVS98.18 398.81 15099.37 3697.12 35899.60 15091.75 39898.61 38399.44 21099.35 1299.83 4199.85 5798.70 6699.81 18999.02 9599.91 3499.81 64
CLD-MVS98.16 20298.10 19698.33 29199.29 24996.82 31498.75 37199.44 21097.83 18699.13 22399.55 23392.92 28599.67 24598.32 19497.69 26598.48 347
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2024052998.09 20997.68 24699.34 14799.66 12498.44 22599.40 22699.43 21693.67 38199.22 20599.89 3290.23 34599.93 9099.26 7198.33 23199.66 129
IterMVS-LS98.46 17498.42 17398.58 25899.59 15298.00 24699.37 23799.43 21696.94 28499.07 23599.59 21897.87 11099.03 35198.32 19495.62 33598.71 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WBMVS97.74 27297.50 26598.46 27699.24 26297.43 27599.21 29499.42 21897.45 23298.96 25699.41 27988.83 35999.23 31998.94 10396.02 32198.71 284
NR-MVSNet97.97 23397.61 25599.02 19498.87 33599.26 12399.47 19499.42 21897.63 21097.08 37199.50 25295.07 21099.13 33797.86 23093.59 37398.68 298
FMVSNet297.72 27697.36 28898.80 23999.51 17698.84 18399.45 19899.42 21896.49 31498.86 27499.29 31490.26 34298.98 35896.44 32696.56 30998.58 340
TEST999.67 11499.65 6099.05 32499.41 22196.22 33498.95 25799.49 25598.77 5499.91 114
train_agg99.02 12198.77 13799.77 5899.67 11499.65 6099.05 32499.41 22196.28 32898.95 25799.49 25598.76 5599.91 11497.63 25499.72 12599.75 91
test_899.67 11499.61 7099.03 32999.41 22196.28 32898.93 26099.48 26198.76 5599.91 114
v897.95 23597.63 25398.93 20898.95 32598.81 18999.80 2599.41 22196.03 34999.10 23099.42 27594.92 21599.30 30996.94 30694.08 36798.66 313
v1097.85 24997.52 26298.86 22898.99 31898.67 19899.75 4299.41 22195.70 35398.98 25299.41 27994.75 22899.23 31996.01 33594.63 35698.67 305
CDPH-MVS99.13 9598.91 11799.80 4999.75 7699.71 4799.15 30399.41 22196.60 30899.60 11799.55 23398.83 4599.90 12697.48 27099.83 9299.78 83
save fliter99.76 6699.59 7399.14 30599.40 22799.00 47
agg_prior99.67 11499.62 6899.40 22798.87 27099.91 114
MCST-MVS99.43 4599.30 5499.82 4499.79 5499.74 4499.29 26399.40 22798.79 7499.52 13499.62 20998.91 3799.90 12698.64 15199.75 11999.82 57
Syy-MVS97.09 32197.14 30796.95 36399.00 31592.73 39499.29 26399.39 23097.06 27297.41 36098.15 39093.92 26598.68 38091.71 39098.34 22999.45 202
myMVS_eth3d96.89 32496.37 32998.43 28399.00 31597.16 28799.29 26399.39 23097.06 27297.41 36098.15 39083.46 39898.68 38095.27 35398.34 22999.45 202
TSAR-MVS + MP.99.58 1299.50 1699.81 4799.91 199.66 5699.63 9099.39 23098.91 6299.78 5499.85 5799.36 299.94 7298.84 12599.88 5799.82 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS97.28 31296.55 32599.48 12698.78 34698.95 16899.27 27399.39 23083.53 41198.08 34199.54 23896.97 14099.87 14894.23 36899.16 17599.63 145
VNet99.11 10698.90 11899.73 6799.52 17399.56 7999.41 21899.39 23099.01 4499.74 6899.78 12795.56 19299.92 10299.52 3998.18 24499.72 106
HQP3-MVS99.39 23097.58 272
cascas97.69 28197.43 28298.48 27098.60 37097.30 27998.18 40499.39 23092.96 38998.41 32298.78 36993.77 27199.27 31498.16 20698.61 21498.86 264
HQP-MVS98.02 22397.90 22098.37 28999.19 27496.83 31298.98 34399.39 23098.24 12998.66 29899.40 28392.47 30399.64 25697.19 29197.58 27298.64 317
CL-MVSNet_self_test94.49 36093.97 36496.08 37496.16 40593.67 38798.33 39899.38 23895.13 35997.33 36498.15 39092.69 29696.57 40888.67 40179.87 41397.99 385
OPM-MVS98.19 19898.10 19698.45 27898.88 33297.07 29499.28 26899.38 23898.57 9399.22 20599.81 9592.12 31199.66 24898.08 21397.54 27698.61 335
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet98.67 16498.67 14798.68 25099.35 23197.97 24899.50 17399.38 23896.93 28599.20 21199.83 7297.87 11099.36 29898.38 18597.56 27498.71 284
test20.0396.12 34195.96 34096.63 36997.44 39395.45 35699.51 16699.38 23896.55 31196.16 38399.25 32293.76 27296.17 41087.35 40794.22 36398.27 365
mvs_anonymous99.03 12098.99 10299.16 17999.38 22498.52 21699.51 16699.38 23897.79 19199.38 16899.81 9597.30 12799.45 27799.35 5598.99 19399.51 182
MVSTER98.49 17198.32 18099.00 19799.35 23199.02 15499.54 14899.38 23897.41 23999.20 21199.73 15393.86 26899.36 29898.87 11597.56 27498.62 326
FMVSNet398.03 22197.76 23998.84 23299.39 22298.98 15899.40 22699.38 23896.67 29899.07 23599.28 31692.93 28498.98 35897.10 29596.65 30698.56 342
PAPM_NR99.04 11898.84 13099.66 7399.74 8399.44 9999.39 23099.38 23897.70 20399.28 18999.28 31698.34 9399.85 15796.96 30499.45 15499.69 119
DVP-MVScopyleft99.57 1599.47 2099.88 899.85 2699.89 499.57 12499.37 24699.10 3199.81 4399.80 10898.94 3299.96 3298.93 10699.86 6899.81 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ttmdpeth97.80 26297.63 25398.29 29698.77 35197.38 27799.64 8499.36 24798.78 7796.30 38199.58 22292.34 31099.39 28998.36 18995.58 33698.10 375
testing397.28 31296.76 32198.82 23499.37 22798.07 24399.45 19899.36 24797.56 21897.89 35098.95 35583.70 39798.82 37496.03 33398.56 22099.58 160
miper_lstm_enhance98.00 22897.91 21998.28 30099.34 23597.43 27598.88 35899.36 24796.48 31798.80 28099.55 23395.98 17498.91 37097.27 28495.50 34098.51 345
v124097.69 28197.32 29698.79 24098.85 33998.43 22699.48 18899.36 24796.11 34499.27 19499.36 29593.76 27299.24 31894.46 36495.23 34498.70 289
v2v48298.06 21397.77 23598.92 21098.90 33098.82 18799.57 12499.36 24796.65 30099.19 21499.35 29894.20 25399.25 31697.72 24894.97 35098.69 293
HY-MVS97.30 798.85 14698.64 15199.47 12999.42 20999.08 14799.62 9599.36 24797.39 24199.28 18999.68 17996.44 16199.92 10298.37 18798.22 23999.40 211
PAPR98.63 16898.34 17899.51 12099.40 21999.03 15398.80 36699.36 24796.33 32599.00 25099.12 33898.46 8499.84 16495.23 35499.37 16599.66 129
MVStest196.08 34395.48 34897.89 32898.93 32696.70 31799.56 13099.35 25492.69 39291.81 40699.46 26889.90 34898.96 36795.00 35892.61 38598.00 384
DIV-MVS_self_test98.01 22697.85 22798.48 27099.24 26297.95 25298.71 37599.35 25496.50 31398.60 31299.54 23895.72 18899.03 35197.21 28795.77 33098.46 352
v114497.98 23097.69 24598.85 23198.87 33598.66 19999.54 14899.35 25496.27 33099.23 20499.35 29894.67 23499.23 31996.73 31595.16 34698.68 298
WR-MVS98.06 21397.73 24299.06 18998.86 33899.25 12599.19 29699.35 25497.30 24898.66 29899.43 27393.94 26399.21 32898.58 16394.28 36298.71 284
test1199.35 254
cl____98.01 22697.84 22898.55 26499.25 26097.97 24898.71 37599.34 25996.47 31998.59 31399.54 23895.65 19099.21 32897.21 28795.77 33098.46 352
v14419297.92 23997.60 25698.87 22598.83 34198.65 20099.55 14499.34 25996.20 33599.32 18199.40 28394.36 24899.26 31596.37 32995.03 34998.70 289
v192192097.80 26297.45 27398.84 23298.80 34298.53 21299.52 15799.34 25996.15 34199.24 20099.47 26493.98 26299.29 31095.40 35095.13 34798.69 293
v119297.81 26097.44 27898.91 21498.88 33298.68 19799.51 16699.34 25996.18 33799.20 21199.34 30294.03 26099.36 29895.32 35295.18 34598.69 293
V4298.06 21397.79 23098.86 22898.98 32198.84 18399.69 6099.34 25996.53 31299.30 18599.37 29294.67 23499.32 30697.57 26294.66 35598.42 355
MVS_Test99.10 11098.97 10699.48 12699.49 18999.14 13999.67 6999.34 25997.31 24799.58 12199.76 13997.65 11799.82 18498.87 11599.07 18799.46 199
MG-MVS99.13 9599.02 9699.45 13299.57 15698.63 20399.07 31999.34 25998.99 4999.61 11499.82 8197.98 10999.87 14897.00 30099.80 10399.85 36
MSC_two_6792asdad99.87 1499.51 17699.76 4099.33 26699.96 3298.87 11599.84 8399.89 19
No_MVS99.87 1499.51 17699.76 4099.33 26699.96 3298.87 11599.84 8399.89 19
cl2297.85 24997.64 25298.48 27099.09 30197.87 25698.60 38599.33 26697.11 26798.87 27099.22 32592.38 30899.17 33298.21 20095.99 32498.42 355
c3_l98.12 20798.04 20598.38 28899.30 24597.69 26898.81 36599.33 26696.67 29898.83 27699.34 30297.11 13298.99 35797.58 25895.34 34298.48 347
v14897.79 26497.55 25898.50 26798.74 35497.72 26499.54 14899.33 26696.26 33198.90 26499.51 24994.68 23399.14 33497.83 23493.15 37998.63 324
MDA-MVSNet-bldmvs94.96 35693.98 36397.92 32598.24 38297.27 28199.15 30399.33 26693.80 38080.09 41899.03 34588.31 36997.86 39793.49 37694.36 36198.62 326
TSAR-MVS + GP.99.36 5999.36 3899.36 14599.67 11498.61 20699.07 31999.33 26699.00 4799.82 4299.81 9599.06 1699.84 16499.09 8799.42 15699.65 133
CR-MVSNet98.17 20197.93 21898.87 22599.18 27798.49 22099.22 29299.33 26696.96 28099.56 12599.38 28994.33 24999.00 35694.83 36198.58 21799.14 235
Patchmtry97.75 27097.40 28598.81 23799.10 29898.87 17899.11 31599.33 26694.83 36998.81 27899.38 28994.33 24999.02 35396.10 33195.57 33798.53 343
EPP-MVSNet99.13 9598.99 10299.53 11299.65 13099.06 15099.81 2099.33 26697.43 23699.60 11799.88 3997.14 13199.84 16499.13 8198.94 19599.69 119
APD_test195.87 34596.49 32794.00 38099.53 16884.01 40999.54 14899.32 27695.91 35197.99 34699.85 5785.49 38799.88 14391.96 38998.84 20498.12 374
IU-MVS99.84 3299.88 899.32 27698.30 12299.84 3598.86 12099.85 7599.89 19
miper_enhance_ethall98.16 20298.08 20098.41 28498.96 32497.72 26498.45 39299.32 27696.95 28298.97 25499.17 33097.06 13699.22 32397.86 23095.99 32498.29 364
MS-PatchMatch97.24 31697.32 29696.99 36098.45 37893.51 38998.82 36499.32 27697.41 23998.13 34099.30 31288.99 35799.56 26895.68 34399.80 10397.90 391
miper_ehance_all_eth98.18 20098.10 19698.41 28499.23 26497.72 26498.72 37499.31 28096.60 30898.88 26799.29 31497.29 12899.13 33797.60 25695.99 32498.38 360
eth_miper_zixun_eth98.05 21897.96 21398.33 29199.26 25697.38 27798.56 38899.31 28096.65 30098.88 26799.52 24596.58 15399.12 34197.39 27895.53 33998.47 349
tpm cat197.39 30897.36 28897.50 34999.17 28593.73 38499.43 20899.31 28091.27 39798.71 28999.08 33994.31 25199.77 20696.41 32898.50 22499.00 254
PMMVS98.80 15398.62 15799.34 14799.27 25498.70 19698.76 37099.31 28097.34 24499.21 20899.07 34097.20 13099.82 18498.56 16998.87 20199.52 175
our_test_397.65 28897.68 24697.55 34798.62 36794.97 36798.84 36299.30 28496.83 29198.19 33799.34 30297.01 13999.02 35395.00 35896.01 32298.64 317
Effi-MVS+-dtu98.78 15498.89 12198.47 27599.33 23696.91 30999.57 12499.30 28498.47 10299.41 15998.99 35096.78 14599.74 21598.73 13999.38 15898.74 280
CANet_DTU98.97 12998.87 12499.25 16999.33 23698.42 22899.08 31899.30 28499.16 2099.43 15299.75 14295.27 20299.97 2198.56 16999.95 1799.36 217
VDDNet97.55 29497.02 31399.16 17999.49 18998.12 24199.38 23599.30 28495.35 35799.68 8399.90 2782.62 40199.93 9099.31 6398.13 24899.42 206
Anonymous2024052196.20 33995.89 34297.13 35797.72 39194.96 36899.79 3199.29 28893.01 38897.20 36899.03 34589.69 35198.36 38691.16 39396.13 31998.07 377
test1299.75 6199.64 13299.61 7099.29 28899.21 20898.38 9199.89 13899.74 12299.74 95
mmtdpeth96.95 32396.71 32297.67 34299.33 23694.90 36999.89 299.28 29098.15 14299.72 7598.57 37686.56 38199.90 12699.82 1689.02 40098.20 370
EGC-MVSNET82.80 38277.86 38897.62 34497.91 38596.12 34199.33 25299.28 2908.40 42525.05 42699.27 31984.11 39599.33 30489.20 39998.22 23997.42 399
new-patchmatchnet94.48 36194.08 36295.67 37695.08 41392.41 39599.18 29899.28 29094.55 37593.49 39997.37 40287.86 37597.01 40691.57 39188.36 40197.61 395
WB-MVS93.10 36894.10 36190.12 39495.51 41281.88 41499.73 5099.27 29395.05 36493.09 40198.91 36194.70 23291.89 41876.62 41694.02 36996.58 404
jason99.13 9599.03 9299.45 13299.46 19998.87 17899.12 30999.26 29498.03 16799.79 4999.65 19297.02 13899.85 15799.02 9599.90 4399.65 133
jason: jason.
test_040296.64 33096.24 33297.85 33098.85 33996.43 33099.44 20499.26 29493.52 38396.98 37399.52 24588.52 36799.20 33092.58 38897.50 28197.93 389
reproduce_monomvs97.89 24397.87 22597.96 32399.51 17695.45 35699.60 10299.25 29699.17 1998.85 27599.49 25589.29 35599.64 25699.35 5596.31 31698.78 269
test_method91.10 37391.36 37590.31 39395.85 40673.72 42694.89 41499.25 29668.39 41795.82 38699.02 34780.50 40798.95 36893.64 37494.89 35498.25 367
PCF-MVS97.08 1497.66 28797.06 31299.47 12999.61 14599.09 14498.04 40799.25 29691.24 39898.51 31799.70 16294.55 24199.91 11492.76 38699.85 7599.42 206
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MDA-MVSNet_test_wron95.45 35094.60 35798.01 31798.16 38397.21 28699.11 31599.24 29993.49 38480.73 41798.98 35293.02 28298.18 38894.22 36994.45 35998.64 317
SSC-MVS92.73 37093.73 36589.72 39595.02 41481.38 41599.76 3799.23 30094.87 36892.80 40298.93 35794.71 23191.37 41974.49 41893.80 37196.42 405
YYNet195.36 35294.51 35997.92 32597.89 38697.10 29099.10 31799.23 30093.26 38780.77 41699.04 34492.81 28898.02 39294.30 36594.18 36498.64 317
hse-mvs297.50 29997.14 30798.59 25599.49 18997.05 29699.28 26899.22 30298.94 5899.66 9299.42 27594.93 21399.65 25399.48 4683.80 40999.08 243
AUN-MVS96.88 32596.31 33198.59 25599.48 19697.04 29999.27 27399.22 30297.44 23598.51 31799.41 27991.97 31499.66 24897.71 24983.83 40899.07 248
DeepMVS_CXcopyleft93.34 38399.29 24982.27 41299.22 30285.15 40996.33 38099.05 34390.97 33699.73 22193.57 37597.77 26398.01 381
pmmvs498.13 20597.90 22098.81 23798.61 36998.87 17898.99 34099.21 30596.44 32099.06 24099.58 22295.90 18199.11 34297.18 29396.11 32098.46 352
KD-MVS_2432*160094.62 35893.72 36697.31 35297.19 40095.82 34698.34 39699.20 30695.00 36597.57 35798.35 38387.95 37398.10 39092.87 38477.00 41598.01 381
miper_refine_blended94.62 35893.72 36697.31 35297.19 40095.82 34698.34 39699.20 30695.00 36597.57 35798.35 38387.95 37398.10 39092.87 38477.00 41598.01 381
tpmvs97.98 23098.02 20897.84 33299.04 31194.73 37199.31 25699.20 30696.10 34898.76 28599.42 27594.94 21299.81 18996.97 30398.45 22698.97 258
new_pmnet96.38 33696.03 33897.41 35098.13 38495.16 36599.05 32499.20 30693.94 37897.39 36398.79 36891.61 32799.04 34990.43 39595.77 33098.05 379
IS-MVSNet99.05 11798.87 12499.57 9999.73 9099.32 11199.75 4299.20 30698.02 16899.56 12599.86 5296.54 15599.67 24598.09 20999.13 18099.73 100
lupinMVS99.13 9599.01 10099.46 13199.51 17698.94 17199.05 32499.16 31197.86 18099.80 4799.56 23097.39 12199.86 15198.94 10399.85 7599.58 160
GA-MVS97.85 24997.47 27099.00 19799.38 22497.99 24798.57 38699.15 31297.04 27598.90 26499.30 31289.83 34999.38 29196.70 31798.33 23199.62 147
ADS-MVSNet98.20 19798.08 20098.56 26299.33 23696.48 32899.23 28899.15 31296.24 33299.10 23099.67 18594.11 25799.71 23196.81 31299.05 18899.48 188
Patchmatch-test97.93 23697.65 24998.77 24299.18 27797.07 29499.03 32999.14 31496.16 33998.74 28699.57 22794.56 23999.72 22593.36 37799.11 18199.52 175
BH-untuned98.42 17798.36 17698.59 25599.49 18996.70 31799.27 27399.13 31597.24 25498.80 28099.38 28995.75 18699.74 21597.07 29899.16 17599.33 222
tpmrst98.33 18798.48 17097.90 32799.16 28794.78 37099.31 25699.11 31697.27 25099.45 14599.59 21895.33 20099.84 16498.48 17698.61 21499.09 242
DPM-MVS98.95 13098.71 14399.66 7399.63 13599.55 8198.64 38299.10 31797.93 17399.42 15599.55 23398.67 6999.80 19695.80 33999.68 13399.61 149
pmmvs-eth3d95.34 35394.73 35697.15 35595.53 41095.94 34499.35 24799.10 31795.13 35993.55 39897.54 39988.15 37297.91 39594.58 36289.69 39997.61 395
PAPM97.59 29297.09 31199.07 18799.06 30798.26 23398.30 40099.10 31794.88 36798.08 34199.34 30296.27 16699.64 25689.87 39798.92 19899.31 224
tt080597.97 23397.77 23598.57 25999.59 15296.61 32499.45 19899.08 32098.21 13598.88 26799.80 10888.66 36399.70 23798.58 16397.72 26499.39 212
Anonymous2023120696.22 33796.03 33896.79 36897.31 39794.14 38099.63 9099.08 32096.17 33897.04 37299.06 34293.94 26397.76 39986.96 40895.06 34898.47 349
ADS-MVSNet298.02 22398.07 20397.87 32999.33 23695.19 36399.23 28899.08 32096.24 33299.10 23099.67 18594.11 25798.93 36996.81 31299.05 18899.48 188
test_yl98.86 13998.63 15299.54 10499.49 18999.18 13199.50 17399.07 32398.22 13399.61 11499.51 24995.37 19899.84 16498.60 16098.33 23199.59 156
DCV-MVSNet98.86 13998.63 15299.54 10499.49 18999.18 13199.50 17399.07 32398.22 13399.61 11499.51 24995.37 19899.84 16498.60 16098.33 23199.59 156
PatchT97.03 32296.44 32898.79 24098.99 31898.34 23099.16 30099.07 32392.13 39499.52 13497.31 40494.54 24298.98 35888.54 40298.73 21199.03 251
mvsmamba99.06 11598.96 11099.36 14599.47 19798.64 20299.70 5699.05 32697.61 21299.65 9999.83 7296.54 15599.92 10299.19 7599.62 14199.51 182
testing9197.44 30697.02 31398.71 24799.18 27796.89 31199.19 29699.04 32797.78 19398.31 32898.29 38685.41 38899.85 15798.01 21997.95 25399.39 212
USDC97.34 31097.20 30597.75 33899.07 30595.20 36298.51 39099.04 32797.99 16998.31 32899.86 5289.02 35699.55 27095.67 34497.36 29498.49 346
mvs5depth96.66 32996.22 33397.97 32197.00 40396.28 33598.66 38099.03 32996.61 30596.93 37599.79 12087.20 37999.47 27496.65 32294.13 36598.16 372
CostFormer97.72 27697.73 24297.71 34099.15 29194.02 38199.54 14899.02 33094.67 37299.04 24399.35 29892.35 30999.77 20698.50 17597.94 25499.34 221
FA-MVS(test-final)98.75 15798.53 16899.41 13899.55 16499.05 15299.80 2599.01 33196.59 31099.58 12199.59 21895.39 19799.90 12697.78 23899.49 15299.28 226
OurMVSNet-221017-097.88 24497.77 23598.19 30498.71 35996.53 32699.88 499.00 33297.79 19198.78 28399.94 691.68 32299.35 30197.21 28796.99 30498.69 293
LCM-MVSNet86.80 38085.22 38491.53 39087.81 42280.96 41698.23 40398.99 33371.05 41590.13 41096.51 40748.45 42396.88 40790.51 39485.30 40696.76 402
MIMVSNet97.73 27497.45 27398.57 25999.45 20597.50 27399.02 33298.98 33496.11 34499.41 15999.14 33490.28 34198.74 37895.74 34098.93 19699.47 194
SCA98.19 19898.16 18898.27 30199.30 24595.55 35199.07 31998.97 33597.57 21699.43 15299.57 22792.72 29299.74 21597.58 25899.20 17399.52 175
JIA-IIPM97.50 29997.02 31398.93 20898.73 35597.80 26099.30 25898.97 33591.73 39698.91 26294.86 41195.10 20999.71 23197.58 25897.98 25299.28 226
alignmvs98.81 15098.56 16699.58 9799.43 20799.42 10199.51 16698.96 33798.61 9099.35 17698.92 36094.78 22399.77 20699.35 5598.11 24999.54 168
tpm297.44 30697.34 29397.74 33999.15 29194.36 37899.45 19898.94 33893.45 38698.90 26499.44 27191.35 33199.59 26697.31 28298.07 25099.29 225
testing9997.36 30996.94 31698.63 25299.18 27796.70 31799.30 25898.93 33997.71 20098.23 33398.26 38784.92 39199.84 16498.04 21897.85 26099.35 218
baseline198.31 18897.95 21599.38 14499.50 18798.74 19399.59 10998.93 33998.41 10999.14 22299.60 21694.59 23799.79 19998.48 17693.29 37699.61 149
EG-PatchMatch MVS95.97 34495.69 34596.81 36797.78 38892.79 39399.16 30098.93 33996.16 33994.08 39699.22 32582.72 40099.47 27495.67 34497.50 28198.17 371
BP-MVS199.12 10198.94 11499.65 7799.51 17699.30 11799.67 6998.92 34298.48 10199.84 3599.69 17294.96 21199.92 10299.62 2899.79 11099.71 115
dmvs_re98.08 21198.16 18897.85 33099.55 16494.67 37399.70 5698.92 34298.15 14299.06 24099.35 29893.67 27499.25 31697.77 24197.25 29699.64 140
PatchmatchNetpermissive98.31 18898.36 17698.19 30499.16 28795.32 36099.27 27398.92 34297.37 24299.37 17099.58 22294.90 21699.70 23797.43 27699.21 17299.54 168
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ITE_SJBPF98.08 31299.29 24996.37 33198.92 34298.34 11798.83 27699.75 14291.09 33499.62 26395.82 33797.40 29298.25 367
FPMVS84.93 38185.65 38282.75 40286.77 42363.39 42898.35 39598.92 34274.11 41483.39 41398.98 35250.85 42192.40 41784.54 41394.97 35092.46 412
TransMVSNet (Re)97.15 31896.58 32498.86 22899.12 29398.85 18299.49 18498.91 34795.48 35697.16 36999.80 10893.38 27699.11 34294.16 37091.73 38898.62 326
EPNet98.86 13998.71 14399.30 15997.20 39998.18 23699.62 9598.91 34799.28 1698.63 30799.81 9595.96 17599.99 499.24 7299.72 12599.73 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETVMVS97.50 29996.90 31799.29 16299.23 26498.78 19299.32 25398.90 34997.52 22598.56 31498.09 39584.72 39399.69 24297.86 23097.88 25799.39 212
pmmvs597.52 29697.30 29898.16 30698.57 37396.73 31699.27 27398.90 34996.14 34298.37 32599.53 24291.54 32899.14 33497.51 26795.87 32898.63 324
BH-w/o98.00 22897.89 22498.32 29399.35 23196.20 33999.01 33798.90 34996.42 32298.38 32499.00 34995.26 20499.72 22596.06 33298.61 21499.03 251
MTMP99.54 14898.88 352
dp97.75 27097.80 22997.59 34699.10 29893.71 38599.32 25398.88 35296.48 31799.08 23499.55 23392.67 29799.82 18496.52 32498.58 21799.24 231
MM99.40 5499.28 6099.74 6499.67 11499.31 11599.52 15798.87 35499.55 199.74 6899.80 10896.47 15899.98 1399.97 199.97 799.94 11
test_fmvs297.25 31497.30 29897.09 35999.43 20793.31 39099.73 5098.87 35498.83 6899.28 18999.80 10884.45 39499.66 24897.88 22797.45 28698.30 363
MVP-Stereo97.81 26097.75 24097.99 32097.53 39296.60 32598.96 34798.85 35697.22 25697.23 36699.36 29595.28 20199.46 27695.51 34699.78 11197.92 390
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VDD-MVS97.73 27497.35 29098.88 22199.47 19797.12 28999.34 25098.85 35698.19 13799.67 8799.85 5782.98 39999.92 10299.49 4598.32 23599.60 152
Baseline_NR-MVSNet97.76 26697.45 27398.68 25099.09 30198.29 23199.41 21898.85 35695.65 35498.63 30799.67 18594.82 21999.10 34498.07 21692.89 38198.64 317
testing1197.50 29997.10 31098.71 24799.20 27196.91 30999.29 26398.82 35997.89 17798.21 33698.40 38185.63 38699.83 17798.45 18198.04 25199.37 216
LF4IMVS97.52 29697.46 27297.70 34198.98 32195.55 35199.29 26398.82 35998.07 15898.66 29899.64 19889.97 34799.61 26497.01 29996.68 30597.94 388
testf190.42 37690.68 37789.65 39697.78 38873.97 42499.13 30698.81 36189.62 40291.80 40798.93 35762.23 41698.80 37686.61 41091.17 39096.19 407
APD_test290.42 37690.68 37789.65 39697.78 38873.97 42499.13 30698.81 36189.62 40291.80 40798.93 35762.23 41698.80 37686.61 41091.17 39096.19 407
FE-MVS98.48 17298.17 18799.40 13999.54 16798.96 16599.68 6698.81 36195.54 35599.62 11199.70 16293.82 26999.93 9097.35 28199.46 15399.32 223
MonoMVSNet98.38 18398.47 17198.12 31198.59 37296.19 34099.72 5298.79 36497.89 17799.44 15099.52 24596.13 16998.90 37298.64 15197.54 27699.28 226
BH-RMVSNet98.41 17998.08 20099.40 13999.41 21498.83 18699.30 25898.77 36597.70 20398.94 25999.65 19292.91 28799.74 21596.52 32499.55 14899.64 140
EPNet_dtu98.03 22197.96 21398.23 30298.27 38195.54 35399.23 28898.75 36699.02 4297.82 35399.71 15896.11 17099.48 27393.04 38199.65 13799.69 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement95.42 35194.57 35897.97 32189.83 42196.11 34299.48 18898.75 36696.74 29396.68 37799.88 3988.65 36499.71 23198.37 18782.74 41098.09 376
OpenMVS_ROBcopyleft92.34 2094.38 36293.70 36896.41 37297.38 39493.17 39199.06 32298.75 36686.58 40894.84 39498.26 38781.53 40599.32 30689.01 40097.87 25896.76 402
UBG97.85 24997.48 26798.95 20499.25 26097.64 26999.24 28698.74 36997.90 17698.64 30598.20 38988.65 36499.81 18998.27 19798.40 22799.42 206
thres100view90097.76 26697.45 27398.69 24999.72 9497.86 25899.59 10998.74 36997.93 17399.26 19898.62 37391.75 31999.83 17793.22 37898.18 24498.37 361
thres600view797.86 24897.51 26498.92 21099.72 9497.95 25299.59 10998.74 36997.94 17299.27 19498.62 37391.75 31999.86 15193.73 37398.19 24398.96 260
thres20097.61 29197.28 30198.62 25399.64 13298.03 24499.26 28298.74 36997.68 20599.09 23398.32 38591.66 32599.81 18992.88 38398.22 23998.03 380
MDTV_nov1_ep1398.32 18099.11 29594.44 37699.27 27398.74 36997.51 22699.40 16499.62 20994.78 22399.76 21097.59 25798.81 208
TinyColmap97.12 31996.89 31897.83 33399.07 30595.52 35498.57 38698.74 36997.58 21597.81 35499.79 12088.16 37199.56 26895.10 35597.21 29898.39 359
tfpn200view997.72 27697.38 28698.72 24599.69 10897.96 25099.50 17398.73 37597.83 18699.17 21998.45 37991.67 32399.83 17793.22 37898.18 24498.37 361
ambc93.06 38692.68 41782.36 41198.47 39198.73 37595.09 39297.41 40055.55 41899.10 34496.42 32791.32 38997.71 392
thres40097.77 26597.38 28698.92 21099.69 10897.96 25099.50 17398.73 37597.83 18699.17 21998.45 37991.67 32399.83 17793.22 37898.18 24498.96 260
SixPastTwentyTwo97.50 29997.33 29598.03 31498.65 36496.23 33899.77 3498.68 37897.14 26197.90 34999.93 990.45 34099.18 33197.00 30096.43 31298.67 305
testing22297.16 31796.50 32699.16 17999.16 28798.47 22499.27 27398.66 37997.71 20098.23 33398.15 39082.28 40499.84 16497.36 28097.66 26699.18 234
test0.0.03 197.71 27997.42 28398.56 26298.41 38097.82 25998.78 36898.63 38097.34 24498.05 34598.98 35294.45 24698.98 35895.04 35797.15 30198.89 263
test_fmvs392.10 37191.77 37493.08 38596.19 40486.25 40599.82 1698.62 38196.65 30095.19 39196.90 40555.05 42095.93 41296.63 32390.92 39497.06 401
TR-MVS97.76 26697.41 28498.82 23499.06 30797.87 25698.87 36098.56 38296.63 30498.68 29799.22 32592.49 30299.65 25395.40 35097.79 26298.95 262
Anonymous20240521198.30 19097.98 21199.26 16899.57 15698.16 23799.41 21898.55 38396.03 34999.19 21499.74 14791.87 31699.92 10299.16 8098.29 23699.70 117
tpm97.67 28697.55 25898.03 31499.02 31395.01 36699.43 20898.54 38496.44 32099.12 22599.34 30291.83 31899.60 26597.75 24496.46 31199.48 188
test_f91.90 37291.26 37693.84 38195.52 41185.92 40699.69 6098.53 38595.31 35893.87 39796.37 40855.33 41998.27 38795.70 34190.98 39397.32 400
Patchmatch-RL test95.84 34695.81 34495.95 37595.61 40890.57 40198.24 40198.39 38695.10 36395.20 39098.67 37294.78 22397.77 39896.28 33090.02 39799.51 182
WB-MVSnew97.65 28897.65 24997.63 34398.78 34697.62 27099.13 30698.33 38797.36 24399.07 23598.94 35695.64 19199.15 33392.95 38298.68 21396.12 409
LCM-MVSNet-Re97.83 25598.15 19096.87 36699.30 24592.25 39699.59 10998.26 38897.43 23696.20 38299.13 33596.27 16698.73 37998.17 20598.99 19399.64 140
mvsany_test393.77 36593.45 36994.74 37895.78 40788.01 40499.64 8498.25 38998.28 12394.31 39597.97 39768.89 41298.51 38497.50 26890.37 39597.71 392
LFMVS97.90 24297.35 29099.54 10499.52 17399.01 15699.39 23098.24 39097.10 26899.65 9999.79 12084.79 39299.91 11499.28 6798.38 22899.69 119
PM-MVS92.96 36992.23 37395.14 37795.61 40889.98 40399.37 23798.21 39194.80 37095.04 39397.69 39865.06 41397.90 39694.30 36589.98 39897.54 398
PMVScopyleft70.75 2275.98 38874.97 38979.01 40470.98 42755.18 42993.37 41698.21 39165.08 42161.78 42293.83 41221.74 42992.53 41678.59 41491.12 39289.34 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs394.09 36493.25 37096.60 37094.76 41594.49 37598.92 35498.18 39389.66 40196.48 37998.06 39686.28 38297.33 40389.68 39887.20 40497.97 387
door-mid98.05 394
tmp_tt82.80 38281.52 38586.66 39866.61 42868.44 42792.79 41797.92 39568.96 41680.04 41999.85 5785.77 38496.15 41197.86 23043.89 42195.39 411
door97.92 395
dmvs_testset95.02 35496.12 33591.72 38999.10 29880.43 41799.58 11797.87 39797.47 22895.22 38998.82 36493.99 26195.18 41488.09 40494.91 35399.56 165
test-LLR98.06 21397.90 22098.55 26498.79 34397.10 29098.67 37797.75 39897.34 24498.61 31098.85 36294.45 24699.45 27797.25 28599.38 15899.10 238
test-mter97.49 30497.13 30998.55 26498.79 34397.10 29098.67 37797.75 39896.65 30098.61 31098.85 36288.23 37099.45 27797.25 28599.38 15899.10 238
IB-MVS95.67 1896.22 33795.44 35198.57 25999.21 26996.70 31798.65 38197.74 40096.71 29597.27 36598.54 37786.03 38399.92 10298.47 17986.30 40599.10 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,197.55 29497.27 30498.40 28698.93 32696.53 32698.67 37797.61 40196.96 28098.64 30599.28 31688.63 36699.45 27797.30 28399.38 15899.21 233
ET-MVSNet_ETH3D96.49 33395.64 34799.05 19199.53 16898.82 18798.84 36297.51 40297.63 21084.77 41199.21 32892.09 31298.91 37098.98 9892.21 38799.41 209
PMMVS286.87 37985.37 38391.35 39190.21 42083.80 41098.89 35797.45 40383.13 41291.67 40995.03 40948.49 42294.70 41585.86 41277.62 41495.54 410
K. test v397.10 32096.79 32098.01 31798.72 35796.33 33399.87 897.05 40497.59 21396.16 38399.80 10888.71 36199.04 34996.69 31896.55 31098.65 315
MVS_030499.15 9098.96 11099.73 6798.92 32899.37 10599.37 23796.92 40599.51 299.66 9299.78 12796.69 14999.97 2199.84 1599.97 799.84 42
tttt051798.42 17798.14 19199.28 16699.66 12498.38 22999.74 4696.85 40697.68 20599.79 4999.74 14791.39 33099.89 13898.83 12899.56 14699.57 163
thisisatest051598.14 20497.79 23099.19 17699.50 18798.50 21998.61 38396.82 40796.95 28299.54 13099.43 27391.66 32599.86 15198.08 21399.51 15099.22 232
thisisatest053098.35 18698.03 20699.31 15499.63 13598.56 20999.54 14896.75 40897.53 22399.73 7099.65 19291.25 33399.89 13898.62 15499.56 14699.48 188
test_vis1_rt95.81 34795.65 34696.32 37399.67 11491.35 40099.49 18496.74 40998.25 12895.24 38898.10 39474.96 40999.90 12699.53 3798.85 20397.70 394
DSMNet-mixed97.25 31497.35 29096.95 36397.84 38793.61 38899.57 12496.63 41096.13 34398.87 27098.61 37594.59 23797.70 40095.08 35698.86 20299.55 166
UWE-MVS97.58 29397.29 30098.48 27099.09 30196.25 33799.01 33796.61 41197.86 18099.19 21499.01 34888.72 36099.90 12697.38 27998.69 21299.28 226
baseline297.87 24697.55 25898.82 23499.18 27798.02 24599.41 21896.58 41296.97 27996.51 37899.17 33093.43 27599.57 26797.71 24999.03 19098.86 264
MVS-HIRNet95.75 34895.16 35397.51 34899.30 24593.69 38698.88 35895.78 41385.09 41098.78 28392.65 41391.29 33299.37 29494.85 36099.85 7599.46 199
E-PMN80.61 38479.88 38682.81 40190.75 41976.38 42297.69 40995.76 41466.44 41983.52 41292.25 41462.54 41587.16 42168.53 42061.40 41884.89 419
test111198.04 21998.11 19597.83 33399.74 8393.82 38299.58 11795.40 41599.12 2999.65 9999.93 990.73 33899.84 16499.43 5199.38 15899.82 57
ECVR-MVScopyleft98.04 21998.05 20498.00 31999.74 8394.37 37799.59 10994.98 41699.13 2499.66 9299.93 990.67 33999.84 16499.40 5299.38 15899.80 73
lessismore_v097.79 33798.69 36195.44 35894.75 41795.71 38799.87 4888.69 36299.32 30695.89 33694.93 35298.62 326
EPMVS97.82 25897.65 24998.35 29098.88 33295.98 34399.49 18494.71 41897.57 21699.26 19899.48 26192.46 30699.71 23197.87 22999.08 18699.35 218
gg-mvs-nofinetune96.17 34095.32 35298.73 24498.79 34398.14 23999.38 23594.09 41991.07 40098.07 34491.04 41789.62 35399.35 30196.75 31499.09 18598.68 298
GG-mvs-BLEND98.45 27898.55 37498.16 23799.43 20893.68 42097.23 36698.46 37889.30 35499.22 32395.43 34998.22 23997.98 386
dongtai93.26 36792.93 37194.25 37999.39 22285.68 40797.68 41093.27 42192.87 39096.85 37699.39 28782.33 40397.48 40276.78 41597.80 26199.58 160
MVEpermissive76.82 2176.91 38774.31 39184.70 39985.38 42576.05 42396.88 41393.17 42267.39 41871.28 42089.01 41921.66 43087.69 42071.74 41972.29 41790.35 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
kuosan90.92 37590.11 38093.34 38398.78 34685.59 40898.15 40593.16 42389.37 40492.07 40498.38 38281.48 40695.19 41362.54 42297.04 30299.25 230
ANet_high77.30 38674.86 39084.62 40075.88 42677.61 42097.63 41193.15 42488.81 40664.27 42189.29 41836.51 42583.93 42375.89 41752.31 42092.33 414
N_pmnet94.95 35795.83 34392.31 38798.47 37779.33 41999.12 30992.81 42593.87 37997.68 35699.13 33593.87 26799.01 35591.38 39296.19 31898.59 339
EMVS80.02 38579.22 38782.43 40391.19 41876.40 42197.55 41292.49 42666.36 42083.01 41491.27 41664.63 41485.79 42265.82 42160.65 41985.08 418
test_vis3_rt87.04 37885.81 38190.73 39293.99 41681.96 41399.76 3790.23 42792.81 39181.35 41591.56 41540.06 42499.07 34694.27 36788.23 40291.15 415
test250696.81 32796.65 32397.29 35499.74 8392.21 39799.60 10285.06 42899.13 2499.77 5899.93 987.82 37699.85 15799.38 5399.38 15899.80 73
testmvs39.17 39043.78 39225.37 40736.04 43016.84 43298.36 39426.56 42920.06 42338.51 42467.32 42029.64 42715.30 42637.59 42439.90 42243.98 421
wuyk23d40.18 38941.29 39436.84 40586.18 42449.12 43079.73 41822.81 43027.64 42225.46 42528.45 42521.98 42848.89 42455.80 42323.56 42412.51 422
test12339.01 39142.50 39328.53 40639.17 42920.91 43198.75 37119.17 43119.83 42438.57 42366.67 42133.16 42615.42 42537.50 42529.66 42349.26 420
mmdepth0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.13 3950.17 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4271.57 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas8.27 39411.03 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 42799.01 180.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
n20.00 432
nn0.00 432
ab-mvs-re8.30 39311.06 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.58 2220.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS97.16 28795.47 347
PC_three_145298.18 14099.84 3599.70 16299.31 398.52 38398.30 19699.80 10399.81 64
eth-test20.00 431
eth-test0.00 431
OPU-MVS99.64 8399.56 16099.72 4599.60 10299.70 16299.27 599.42 28798.24 19999.80 10399.79 77
test_0728_THIRD98.99 4999.81 4399.80 10899.09 1499.96 3298.85 12299.90 4399.88 25
GSMVS99.52 175
test_part299.81 4699.83 1999.77 58
sam_mvs194.86 21899.52 175
sam_mvs94.72 230
test_post199.23 28865.14 42394.18 25699.71 23197.58 258
test_post65.99 42294.65 23699.73 221
patchmatchnet-post98.70 37194.79 22299.74 215
gm-plane-assit98.54 37592.96 39294.65 37399.15 33399.64 25697.56 263
test9_res97.49 26999.72 12599.75 91
agg_prior297.21 28799.73 12499.75 91
test_prior499.56 7998.99 340
test_prior298.96 34798.34 11799.01 24699.52 24598.68 6797.96 22299.74 122
旧先验298.96 34796.70 29699.47 14299.94 7298.19 202
新几何299.01 337
原ACMM298.95 350
testdata299.95 6296.67 319
segment_acmp98.96 25
testdata198.85 36198.32 120
plane_prior799.29 24997.03 300
plane_prior699.27 25496.98 30492.71 294
plane_prior499.61 213
plane_prior397.00 30298.69 8499.11 227
plane_prior299.39 23098.97 55
plane_prior199.26 256
plane_prior96.97 30599.21 29498.45 10497.60 270
HQP5-MVS96.83 312
HQP-NCC99.19 27498.98 34398.24 12998.66 298
ACMP_Plane99.19 27498.98 34398.24 12998.66 298
BP-MVS97.19 291
HQP4-MVS98.66 29899.64 25698.64 317
HQP2-MVS92.47 303
NP-MVS99.23 26496.92 30899.40 283
MDTV_nov1_ep13_2view95.18 36499.35 24796.84 28999.58 12195.19 20797.82 23599.46 199
ACMMP++_ref97.19 299
ACMMP++97.43 290
Test By Simon98.75 58