This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18299.65 2399.78 10499.41 195
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 16899.69 1999.85 6999.48 178
RRT_MVS98.70 15098.66 13898.83 22398.90 30898.45 21699.89 299.28 28197.76 18098.94 24699.92 1496.98 13499.25 29799.28 6397.00 28598.80 246
mvsmamba98.92 12098.87 11499.08 17399.07 28499.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28399.38 4897.40 27298.73 260
MVSFormer99.17 8099.12 7399.29 15199.51 16998.94 16599.88 499.46 18297.55 20299.80 4099.65 18697.39 11699.28 29299.03 8599.85 6999.65 129
test_djsdf98.67 15598.57 15598.98 18898.70 33798.91 16999.88 499.46 18297.55 20299.22 19599.88 3695.73 17999.28 29299.03 8597.62 24898.75 255
OurMVSNet-221017-097.88 23497.77 22598.19 28898.71 33696.53 30999.88 499.00 31997.79 17798.78 27099.94 691.68 31299.35 28097.21 26896.99 28698.69 272
EC-MVSNet99.44 3799.39 2799.58 9099.56 15599.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 21899.64 2499.82 9099.54 161
DVP-MVS++99.59 899.50 1399.88 599.51 16999.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
K. test v397.10 30096.79 30198.01 30098.72 33496.33 31699.87 997.05 38497.59 19696.16 36199.80 10388.71 34799.04 32996.69 29996.55 29298.65 294
FC-MVSNet-test98.75 14598.62 14699.15 17099.08 28399.45 9399.86 1299.60 5498.23 12198.70 28299.82 7696.80 13999.22 30499.07 8396.38 29598.79 247
v7n97.87 23697.52 25098.92 19898.76 33098.58 20099.84 1399.46 18296.20 31498.91 25099.70 15894.89 20799.44 26096.03 31393.89 34898.75 255
DTE-MVSNet97.51 28397.19 29198.46 26298.63 34398.13 23299.84 1399.48 15596.68 27797.97 32999.67 18092.92 27698.56 36096.88 29292.60 36398.70 268
3Dnovator97.25 999.24 7399.05 8299.81 4499.12 27399.66 5399.84 1399.74 1099.09 3298.92 24999.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
FIs98.78 14298.63 14199.23 16199.18 26099.54 7999.83 1699.59 5798.28 11398.79 26999.81 9096.75 14299.37 27399.08 8296.38 29598.78 248
test_fmvs392.10 34791.77 35093.08 36196.19 37986.25 38399.82 1798.62 36196.65 28095.19 36996.90 38155.05 39695.93 38996.63 30390.92 37197.06 378
jajsoiax98.43 16898.28 17498.88 20998.60 34798.43 21899.82 1799.53 9698.19 12798.63 29399.80 10393.22 27199.44 26099.22 6997.50 26098.77 251
OpenMVScopyleft96.50 1698.47 16598.12 18599.52 11199.04 29199.53 8299.82 1799.72 1194.56 35398.08 32299.88 3694.73 22099.98 1397.47 25599.76 11099.06 227
SDMVSNet99.11 9898.90 10999.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23099.93 8499.67 2198.26 22499.72 103
nrg03098.64 15898.42 16499.28 15499.05 29099.69 4799.81 2099.46 18298.04 15499.01 23499.82 7696.69 14499.38 26899.34 5594.59 33698.78 248
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 19699.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 8898.99 9699.53 10599.65 12599.06 14299.81 2099.33 25797.43 21799.60 10699.88 3697.14 12699.84 15199.13 7698.94 18599.69 115
3Dnovator+97.12 1399.18 7898.97 10099.82 4199.17 26699.68 4899.81 2099.51 11599.20 1898.72 27599.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
FA-MVS(test-final)98.75 14598.53 15999.41 12999.55 15999.05 14499.80 2599.01 31896.59 28999.58 11099.59 21295.39 18999.90 11697.78 22199.49 14399.28 208
bld_raw_dy_0_6498.69 15298.58 15498.99 18698.88 31198.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 28999.09 8097.27 27798.71 263
GeoE98.85 13498.62 14699.53 10599.61 14099.08 13999.80 2599.51 11597.10 24899.31 17499.78 12195.23 19899.77 18998.21 18699.03 18099.75 88
canonicalmvs99.02 11198.86 11799.51 11399.42 19999.32 10499.80 2599.48 15598.63 8299.31 17498.81 35197.09 12999.75 19599.27 6697.90 24099.47 184
v897.95 22697.63 24298.93 19698.95 30598.81 18399.80 2599.41 21296.03 32899.10 21999.42 26594.92 20599.30 29096.94 28794.08 34598.66 292
Vis-MVSNet (Re-imp)98.87 12498.72 12999.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18799.43 26497.91 20999.11 17199.62 142
Anonymous2024052196.20 31795.89 32097.13 33597.72 36794.96 34799.79 3199.29 27993.01 36797.20 34999.03 33389.69 34098.36 36491.16 37196.13 30098.07 355
PS-MVSNAJss98.92 12098.92 10698.90 20498.78 32698.53 20499.78 3299.54 8598.07 14899.00 23899.76 13599.01 1899.37 27399.13 7697.23 27998.81 245
PEN-MVS97.76 25497.44 26498.72 23598.77 32998.54 20399.78 3299.51 11597.06 25298.29 31599.64 19292.63 28998.89 35198.09 19593.16 35698.72 261
anonymousdsp98.44 16798.28 17498.94 19498.50 35298.96 15799.77 3499.50 13597.07 25098.87 25899.77 12994.76 21899.28 29298.66 13997.60 24998.57 322
SixPastTwentyTwo97.50 28497.33 28198.03 29798.65 34196.23 31999.77 3498.68 35997.14 24197.90 33099.93 990.45 33099.18 31297.00 28196.43 29498.67 284
QAPM98.67 15598.30 17399.80 4699.20 25599.67 5199.77 3499.72 1194.74 35098.73 27499.90 2695.78 17799.98 1396.96 28599.88 5199.76 87
SSC-MVS92.73 34693.73 34289.72 37195.02 38981.38 39199.76 3799.23 29094.87 34792.80 38098.93 34394.71 22291.37 39574.49 39593.80 34996.42 382
test_vis3_rt87.04 35385.81 35690.73 36893.99 39181.96 38999.76 3790.23 40392.81 36981.35 39191.56 39140.06 40099.07 32694.27 34688.23 37891.15 391
dcpmvs_299.23 7499.58 798.16 29099.83 3994.68 35099.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18599.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
v1097.85 23997.52 25098.86 21798.99 29898.67 19199.75 4199.41 21295.70 33298.98 24099.41 26994.75 21999.23 30196.01 31594.63 33598.67 284
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IS-MVSNet99.05 10798.87 11499.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 22598.09 19599.13 17099.73 97
test_vis1_n97.92 23097.44 26499.34 13699.53 16298.08 23499.74 4499.49 14399.15 20100.00 199.94 679.51 38499.98 1399.88 1499.76 11099.97 4
test_fmvs1_n98.41 17198.14 18299.21 16299.82 4297.71 25899.74 4499.49 14399.32 1499.99 299.95 385.32 37099.97 2199.82 1699.84 7799.96 7
tttt051798.42 16998.14 18299.28 15499.66 11998.38 22199.74 4496.85 38597.68 18999.79 4299.74 14391.39 32099.89 12698.83 11899.56 13899.57 156
WB-MVS93.10 34494.10 33890.12 37095.51 38781.88 39099.73 4799.27 28495.05 34393.09 37998.91 34794.70 22391.89 39476.62 39394.02 34796.58 381
test_fmvs297.25 29597.30 28497.09 33799.43 19793.31 36899.73 4798.87 33898.83 6499.28 18099.80 10384.45 37399.66 22897.88 21197.45 26698.30 344
baseline99.15 8499.02 9099.53 10599.66 11999.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18299.51 3599.14 16999.67 122
RPSCF98.22 18598.62 14696.99 33899.82 4291.58 37799.72 4999.44 20196.61 28599.66 8399.89 3095.92 17199.82 16897.46 25699.10 17499.57 156
CSCG99.32 5899.32 4099.32 14299.85 2698.29 22399.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
dmvs_re98.08 20298.16 17997.85 31099.55 15994.67 35199.70 5298.92 32898.15 13399.06 22899.35 28693.67 26499.25 29797.77 22497.25 27899.64 136
WR-MVS_H98.13 19697.87 21698.90 20499.02 29398.84 17799.70 5299.59 5797.27 23098.40 30899.19 31795.53 18599.23 30198.34 17893.78 35098.61 316
LTVRE_ROB97.16 1298.02 21497.90 21198.40 27199.23 24996.80 30099.70 5299.60 5497.12 24498.18 31999.70 15891.73 31199.72 20698.39 17297.45 26698.68 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_f91.90 34891.26 35293.84 35895.52 38685.92 38499.69 5598.53 36595.31 33793.87 37596.37 38455.33 39598.27 36595.70 32190.98 37097.32 377
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 30995.45 32799.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40098.81 4499.94 6998.79 12399.86 6299.84 40
V4298.06 20497.79 22098.86 21798.98 30198.84 17799.69 5599.34 25096.53 29199.30 17699.37 28094.67 22599.32 28697.57 24594.66 33498.42 336
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
FE-MVS98.48 16498.17 17899.40 13099.54 16198.96 15799.68 6198.81 34495.54 33499.62 10099.70 15893.82 25999.93 8497.35 26299.46 14499.32 205
PS-CasMVS97.93 22797.59 24598.95 19398.99 29899.06 14299.68 6199.52 10197.13 24298.31 31399.68 17492.44 29899.05 32898.51 16394.08 34598.75 255
Vis-MVSNetpermissive99.12 9498.97 10099.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21799.84 15199.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n_192098.63 15998.40 16699.31 14399.86 2097.94 24699.67 6499.62 4199.43 799.99 299.91 2087.29 363100.00 199.92 1299.92 2499.98 2
EIA-MVS99.18 7899.09 7899.45 12399.49 18099.18 12299.67 6499.53 9697.66 19299.40 15299.44 26198.10 9999.81 17398.94 9499.62 13499.35 201
MSP-MVS99.42 4299.27 5799.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 10298.97 10099.48 11799.49 18099.14 13199.67 6499.34 25097.31 22799.58 11099.76 13597.65 11299.82 16898.87 10599.07 17799.46 186
CP-MVSNet98.09 20097.78 22399.01 18298.97 30399.24 11799.67 6499.46 18297.25 23298.48 30599.64 19293.79 26099.06 32798.63 14294.10 34498.74 258
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
mvs_tets98.40 17498.23 17698.91 20298.67 34098.51 21099.66 6999.53 9698.19 12798.65 29199.81 9092.75 28099.44 26099.31 5897.48 26498.77 251
EU-MVSNet97.98 22198.03 19797.81 31698.72 33496.65 30599.66 6999.66 2898.09 14398.35 31199.82 7695.25 19798.01 37197.41 26095.30 32298.78 248
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
MP-MVScopyleft99.33 5799.15 7099.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 20899.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_cas_vis1_n_192099.16 8299.01 9499.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27299.98 1399.55 2999.91 3199.99 1
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
TranMVSNet+NR-MVSNet97.93 22797.66 23898.76 23398.78 32698.62 19699.65 7599.49 14397.76 18098.49 30499.60 21094.23 24398.97 34598.00 20492.90 35898.70 268
mvsany_test393.77 34293.45 34694.74 35695.78 38288.01 38299.64 7898.25 36898.28 11394.31 37397.97 37368.89 38898.51 36297.50 25190.37 37297.71 369
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
tfpnnormal97.84 24297.47 25698.98 18899.20 25599.22 11999.64 7899.61 4896.32 30598.27 31699.70 15893.35 26899.44 26095.69 32295.40 32098.27 346
casdiffmvs_mvgpermissive99.15 8499.02 9099.55 9699.66 11999.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17399.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
iter_conf_final98.71 14998.61 15298.99 18699.49 18098.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 20999.38 26899.30 6197.52 25698.64 296
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 31596.03 31696.79 34697.31 37394.14 35899.63 8299.08 31096.17 31797.04 35399.06 33093.94 25497.76 37786.96 38695.06 32798.47 330
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
EPNet98.86 12798.71 13199.30 14897.20 37598.18 22899.62 8898.91 33299.28 1698.63 29399.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 11998.67 13599.72 6599.85 2699.53 8299.62 8899.59 5792.65 37099.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
HY-MVS97.30 798.85 13498.64 14099.47 12099.42 19999.08 13999.62 8899.36 24097.39 22299.28 18099.68 17496.44 15499.92 9598.37 17598.22 22699.40 197
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6099.19 6799.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
test250696.81 30696.65 30397.29 33299.74 8092.21 37599.60 9585.06 40499.13 2299.77 5199.93 987.82 36199.85 14599.38 4899.38 14999.80 70
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
OPU-MVS99.64 7899.56 15599.72 4299.60 9599.70 15899.27 599.42 26598.24 18599.80 9799.79 74
GST-MVS99.40 5099.24 6299.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17399.86 6299.81 61
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
ACMH97.28 898.10 19997.99 20198.44 26699.41 20296.96 29499.60 9599.56 6998.09 14398.15 32099.91 2090.87 32799.70 21898.88 10297.45 26698.67 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ECVR-MVScopyleft98.04 21098.05 19598.00 30299.74 8094.37 35599.59 10194.98 39499.13 2299.66 8399.93 990.67 32999.84 15199.40 4799.38 14999.80 70
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17099.77 10799.79 74
thres100view90097.76 25497.45 25998.69 23799.72 9197.86 25099.59 10198.74 35197.93 16299.26 18898.62 35791.75 30999.83 16293.22 35798.18 23198.37 342
thres600view797.86 23897.51 25298.92 19899.72 9197.95 24499.59 10198.74 35197.94 16199.27 18498.62 35791.75 30999.86 13993.73 35298.19 23098.96 238
LCM-MVSNet-Re97.83 24498.15 18196.87 34499.30 23292.25 37499.59 10198.26 36797.43 21796.20 36099.13 32396.27 15998.73 35798.17 19198.99 18399.64 136
baseline198.31 17997.95 20699.38 13499.50 17898.74 18699.59 10198.93 32698.41 10099.14 21199.60 21094.59 22899.79 18298.48 16593.29 35499.61 144
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 9898.90 10999.74 6199.80 5299.46 9299.59 10199.49 14397.03 25699.63 9699.69 16897.27 12499.96 3097.82 21899.84 7799.81 61
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21199.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
dmvs_testset95.02 33196.12 31391.72 36599.10 27880.43 39399.58 10997.87 37697.47 21095.22 36798.82 35093.99 25295.18 39088.09 38294.91 33299.56 158
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test111198.04 21098.11 18697.83 31399.74 8093.82 36099.58 10995.40 39399.12 2599.65 8999.93 990.73 32899.84 15199.43 4699.38 14999.82 54
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17199.71 6899.80 10399.12 1399.97 2198.33 17999.87 5499.83 49
LPG-MVS_test98.22 18598.13 18498.49 25599.33 22497.05 28399.58 10999.55 7797.46 21199.24 19099.83 6892.58 29099.72 20698.09 19597.51 25898.68 277
PHI-MVS99.30 6099.17 6999.70 6799.56 15599.52 8599.58 10999.80 897.12 24499.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
SF-MVS99.38 5299.24 6299.79 4999.79 5499.68 4899.57 11699.54 8597.82 17699.71 6899.80 10398.95 2799.93 8498.19 18899.84 7799.74 92
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
Effi-MVS+-dtu98.78 14298.89 11298.47 26199.33 22496.91 29699.57 11699.30 27598.47 9499.41 14798.99 33796.78 14099.74 19698.73 12999.38 14998.74 258
v2v48298.06 20497.77 22598.92 19898.90 30898.82 18199.57 11699.36 24096.65 28099.19 20499.35 28694.20 24499.25 29797.72 23194.97 32998.69 272
DSMNet-mixed97.25 29597.35 27696.95 34197.84 36393.61 36699.57 11696.63 38996.13 32298.87 25898.61 35994.59 22897.70 37895.08 33698.86 19299.55 159
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
sd_testset98.75 14598.57 15599.29 15199.81 4698.26 22599.56 12299.62 4198.78 7399.64 9399.88 3692.02 30399.88 13199.54 3098.26 22499.72 103
KD-MVS_self_test95.00 33294.34 33796.96 34097.07 37895.39 33899.56 12299.44 20195.11 34097.13 35197.32 37991.86 30797.27 38190.35 37481.23 38898.23 350
ETV-MVS99.26 6899.21 6599.40 13099.46 19099.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 13999.10 7999.59 13699.04 228
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 21499.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 12498.72 12999.31 14399.86 2098.48 21499.56 12299.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30199.83 8699.59 150
casdiffmvspermissive99.13 8898.98 9999.56 9499.65 12599.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16299.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS98.38 17598.09 19099.24 15999.26 24399.32 10499.56 12299.55 7797.45 21498.71 27699.83 6893.23 26999.63 24198.88 10296.32 29798.76 253
ACMH+97.24 1097.92 23097.78 22398.32 27899.46 19096.68 30499.56 12299.54 8598.41 10097.79 33699.87 4490.18 33699.66 22898.05 20397.18 28298.62 307
ACMM97.58 598.37 17698.34 16998.48 25799.41 20297.10 27799.56 12299.45 19398.53 9099.04 23199.85 5493.00 27499.71 21298.74 12797.45 26698.64 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6699.12 7399.74 6199.18 26099.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 17999.84 7799.52 167
test_fmvsmconf0.01_n99.22 7599.03 8699.79 4998.42 35599.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21299.95 5999.93 1199.95 1699.94 11
test_fmvs198.88 12398.79 12599.16 16799.69 10697.61 26099.55 13499.49 14399.32 1499.98 699.91 2091.41 31999.96 3099.82 1699.92 2499.90 17
v14419297.92 23097.60 24498.87 21398.83 32198.65 19399.55 13499.34 25096.20 31499.32 17299.40 27294.36 23999.26 29696.37 30995.03 32898.70 268
iter_conf0598.55 16298.44 16298.87 21399.34 22298.60 19999.55 13499.42 20998.21 12499.37 16099.77 12993.55 26599.38 26899.30 6197.48 26498.63 304
API-MVS99.04 10899.03 8699.06 17699.40 20799.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 18796.98 28399.78 10498.07 355
fmvsm_s_conf0.1_n_a99.26 6899.06 8199.85 2899.52 16699.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23699.94 6999.88 1499.92 2499.98 2
APD_test195.87 32296.49 30694.00 35799.53 16284.01 38599.54 13999.32 26795.91 33097.99 32799.85 5485.49 36999.88 13191.96 36798.84 19498.12 353
thisisatest053098.35 17798.03 19799.31 14399.63 13098.56 20199.54 13996.75 38797.53 20699.73 6299.65 18691.25 32399.89 12698.62 14399.56 13899.48 178
MTMP99.54 13998.88 336
v114497.98 22197.69 23598.85 22098.87 31598.66 19299.54 13999.35 24696.27 30999.23 19499.35 28694.67 22599.23 30196.73 29695.16 32598.68 277
v14897.79 25297.55 24698.50 25498.74 33197.72 25599.54 13999.33 25796.26 31098.90 25299.51 24194.68 22499.14 31497.83 21793.15 35798.63 304
CostFormer97.72 26397.73 23297.71 32099.15 27194.02 35999.54 13999.02 31794.67 35199.04 23199.35 28692.35 30099.77 18998.50 16497.94 23999.34 203
MVSTER98.49 16398.32 17199.00 18499.35 21899.02 14699.54 13999.38 23197.41 22099.20 20199.73 14993.86 25899.36 27798.87 10597.56 25398.62 307
fmvsm_s_conf0.1_n99.29 6299.10 7599.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23499.94 6999.89 1399.96 1299.97 4
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
MM99.74 6199.31 10799.52 14898.87 33899.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
patch_mono-299.26 6899.62 598.16 29099.81 4694.59 35299.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
Fast-Effi-MVS+-dtu98.77 14498.83 12198.60 24199.41 20296.99 29099.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18297.95 20799.45 14599.02 231
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38199.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
Fast-Effi-MVS+98.70 15098.43 16399.51 11399.51 16999.28 11199.52 14899.47 17396.11 32399.01 23499.34 29096.20 16199.84 15197.88 21198.82 19699.39 198
v192192097.80 25197.45 25998.84 22198.80 32298.53 20499.52 14899.34 25096.15 32099.24 19099.47 25593.98 25399.29 29195.40 33095.13 32698.69 272
MIMVSNet195.51 32695.04 33196.92 34397.38 37095.60 32999.52 14899.50 13593.65 36196.97 35599.17 31885.28 37196.56 38688.36 38195.55 31798.60 319
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
UniMVSNet_ETH3D97.32 29296.81 30098.87 21399.40 20797.46 26399.51 15699.53 9695.86 33198.54 30199.77 12982.44 38199.66 22898.68 13797.52 25699.50 176
alignmvs98.81 13898.56 15799.58 9099.43 19799.42 9699.51 15698.96 32498.61 8499.35 16798.92 34694.78 21499.77 18999.35 5198.11 23699.54 161
v119297.81 24997.44 26498.91 20298.88 31198.68 19099.51 15699.34 25096.18 31699.20 20199.34 29094.03 25199.36 27795.32 33295.18 32498.69 272
test20.0396.12 31995.96 31896.63 34797.44 36995.45 33699.51 15699.38 23196.55 29096.16 36199.25 31093.76 26296.17 38787.35 38594.22 34298.27 346
mvs_anonymous99.03 11098.99 9699.16 16799.38 21198.52 20899.51 15699.38 23197.79 17799.38 15899.81 9097.30 12299.45 25599.35 5198.99 18399.51 173
TAMVS99.12 9499.08 7999.24 15999.46 19098.55 20299.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25198.70 13298.93 18699.67 122
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_yl98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19099.84 15198.60 14998.33 21899.59 150
DCV-MVSNet98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19099.84 15198.60 14998.33 21899.59 150
tfpn200view997.72 26397.38 27298.72 23599.69 10697.96 24299.50 16398.73 35697.83 17299.17 20898.45 36291.67 31399.83 16293.22 35798.18 23198.37 342
UA-Net99.42 4299.29 5399.80 4699.62 13699.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
pm-mvs197.68 27097.28 28698.88 20999.06 28798.62 19699.50 16399.45 19396.32 30597.87 33299.79 11592.47 29499.35 28097.54 24893.54 35298.67 284
EI-MVSNet98.67 15598.67 13598.68 23899.35 21897.97 24099.50 16399.38 23196.93 26599.20 20199.83 6897.87 10599.36 27798.38 17397.56 25398.71 263
CVMVSNet98.57 16198.67 13598.30 28099.35 21895.59 33099.50 16399.55 7798.60 8599.39 15599.83 6894.48 23599.45 25598.75 12698.56 20899.85 36
VPA-MVSNet98.29 18297.95 20699.30 14899.16 26899.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29299.65 23399.35 5194.46 33798.72 261
thres40097.77 25397.38 27298.92 19899.69 10697.96 24299.50 16398.73 35697.83 17299.17 20898.45 36291.67 31399.83 16293.22 35798.18 23198.96 238
APD-MVScopyleft99.27 6699.08 7999.84 3999.75 7399.79 3099.50 16399.50 13597.16 24099.77 5199.82 7698.78 4899.94 6997.56 24699.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_rt95.81 32495.65 32496.32 35199.67 11191.35 37899.49 17496.74 38898.25 11795.24 36698.10 37174.96 38599.90 11699.53 3298.85 19397.70 371
TransMVSNet (Re)97.15 29896.58 30498.86 21799.12 27398.85 17699.49 17498.91 33295.48 33597.16 35099.80 10393.38 26799.11 32294.16 34991.73 36598.62 307
UniMVSNet (Re)98.29 18298.00 20099.13 17199.00 29599.36 10299.49 17499.51 11597.95 16098.97 24299.13 32396.30 15899.38 26898.36 17793.34 35398.66 292
EPMVS97.82 24797.65 23998.35 27598.88 31195.98 32399.49 17494.71 39697.57 19999.26 18899.48 25292.46 29799.71 21297.87 21399.08 17699.35 201
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
Anonymous2023121197.88 23497.54 24998.90 20499.71 9698.53 20499.48 17899.57 6494.16 35698.81 26599.68 17493.23 26999.42 26598.84 11594.42 33998.76 253
v124097.69 26897.32 28298.79 23098.85 31998.43 21899.48 17899.36 24096.11 32399.27 18499.36 28393.76 26299.24 30094.46 34395.23 32398.70 268
VPNet97.84 24297.44 26499.01 18299.21 25398.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34699.39 26799.19 7193.27 35598.71 263
UniMVSNet_NR-MVSNet98.22 18597.97 20398.96 19198.92 30798.98 15099.48 17899.53 9697.76 18098.71 27699.46 25996.43 15599.22 30498.57 15592.87 36098.69 272
TDRefinement95.42 32894.57 33597.97 30489.83 39696.11 32299.48 17898.75 34896.74 27396.68 35699.88 3688.65 35099.71 21298.37 17582.74 38698.09 354
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
NR-MVSNet97.97 22497.61 24399.02 18198.87 31599.26 11599.47 18499.42 20997.63 19497.08 35299.50 24495.07 20199.13 31797.86 21493.59 35198.68 277
PVSNet_Blended_VisFu99.36 5499.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19299.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
SD-MVS99.41 4799.52 1199.05 17899.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 37898.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing397.28 29396.76 30298.82 22499.37 21498.07 23599.45 18899.36 24097.56 20197.89 33198.95 34283.70 37698.82 35296.03 31398.56 20899.58 154
tt080597.97 22497.77 22598.57 24699.59 14796.61 30799.45 18899.08 31098.21 12498.88 25599.80 10388.66 34999.70 21898.58 15297.72 24499.39 198
tpm297.44 28997.34 27997.74 31999.15 27194.36 35699.45 18898.94 32593.45 36598.90 25299.44 26191.35 32199.59 24597.31 26398.07 23799.29 207
FMVSNet297.72 26397.36 27498.80 22999.51 16998.84 17799.45 18899.42 20996.49 29398.86 26299.29 30290.26 33298.98 33896.44 30696.56 29198.58 321
CDS-MVSNet99.09 10399.03 8699.25 15799.42 19998.73 18799.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27398.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 12798.63 14199.54 9799.37 21499.66 5399.45 18899.54 8596.61 28599.01 23499.40 27297.09 12999.86 13997.68 23699.53 14199.10 216
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet98.87 12498.69 13399.40 13099.22 25298.72 18899.44 19499.68 2099.24 1799.18 20799.42 26592.74 28299.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 12798.63 14199.54 9799.64 12799.19 12099.44 19499.54 8597.77 17999.30 17699.81 9094.20 24499.93 8499.17 7498.82 19699.49 177
test_040296.64 30896.24 31197.85 31098.85 31996.43 31399.44 19499.26 28593.52 36296.98 35499.52 23888.52 35299.20 31192.58 36697.50 26097.93 366
ACMP97.20 1198.06 20497.94 20898.45 26399.37 21497.01 28899.44 19499.49 14397.54 20598.45 30699.79 11591.95 30599.72 20697.91 20997.49 26398.62 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 26398.55 35098.16 22999.43 19893.68 39897.23 34798.46 36189.30 34399.22 30495.43 32998.22 22697.98 363
HPM-MVS++copyleft99.39 5199.23 6499.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17099.80 9799.79 74
tpm cat197.39 29097.36 27497.50 32799.17 26693.73 36299.43 19899.31 27191.27 37498.71 27699.08 32794.31 24299.77 18996.41 30898.50 21299.00 232
tpm97.67 27397.55 24698.03 29799.02 29395.01 34599.43 19898.54 36496.44 29999.12 21499.34 29091.83 30899.60 24497.75 22796.46 29399.48 178
GBi-Net97.68 27097.48 25498.29 28199.51 16997.26 27099.43 19899.48 15596.49 29399.07 22499.32 29790.26 33298.98 33897.10 27696.65 28898.62 307
test197.68 27097.48 25498.29 28199.51 16997.26 27099.43 19899.48 15596.49 29399.07 22499.32 29790.26 33298.98 33897.10 27696.65 28898.62 307
FMVSNet196.84 30596.36 30998.29 28199.32 23097.26 27099.43 19899.48 15595.11 34098.55 30099.32 29783.95 37598.98 33895.81 31896.26 29898.62 307
testgi97.65 27597.50 25398.13 29499.36 21796.45 31299.42 20599.48 15597.76 18097.87 33299.45 26091.09 32498.81 35394.53 34298.52 21199.13 215
F-COLMAP99.19 7699.04 8499.64 7899.78 5699.27 11399.42 20599.54 8597.29 22999.41 14799.59 21298.42 8599.93 8498.19 18899.69 12399.73 97
Anonymous20240521198.30 18197.98 20299.26 15699.57 15198.16 22999.41 20798.55 36396.03 32899.19 20499.74 14391.87 30699.92 9599.16 7598.29 22399.70 113
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14599.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25099.28 6399.84 7799.63 140
VNet99.11 9898.90 10999.73 6499.52 16699.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18499.92 9599.52 3498.18 23199.72 103
baseline297.87 23697.55 24698.82 22499.18 26098.02 23799.41 20796.58 39096.97 25996.51 35799.17 31893.43 26699.57 24697.71 23299.03 18098.86 242
DU-MVS98.08 20297.79 22098.96 19198.87 31598.98 15099.41 20799.45 19397.87 16698.71 27699.50 24494.82 20999.22 30498.57 15592.87 36098.68 277
Baseline_NR-MVSNet97.76 25497.45 25998.68 23899.09 28198.29 22399.41 20798.85 34095.65 33398.63 29399.67 18094.82 20999.10 32498.07 20292.89 35998.64 296
XVG-ACMP-BASELINE97.83 24497.71 23498.20 28799.11 27596.33 31699.41 20799.52 10198.06 15299.05 23099.50 24489.64 34199.73 20297.73 22997.38 27498.53 324
DP-MVS99.16 8298.95 10499.78 5299.77 6299.53 8299.41 20799.50 13597.03 25699.04 23199.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
9.1499.10 7599.72 9199.40 21599.51 11597.53 20699.64 9399.78 12198.84 4199.91 10597.63 23799.82 90
D2MVS98.41 17198.50 16098.15 29399.26 24396.62 30699.40 21599.61 4897.71 18698.98 24099.36 28396.04 16499.67 22598.70 13297.41 27198.15 352
Anonymous2024052998.09 20097.68 23699.34 13699.66 11998.44 21799.40 21599.43 20793.67 36099.22 19599.89 3090.23 33599.93 8499.26 6798.33 21899.66 125
FMVSNet398.03 21297.76 22998.84 22199.39 21098.98 15099.40 21599.38 23196.67 27899.07 22499.28 30492.93 27598.98 33897.10 27696.65 28898.56 323
LFMVS97.90 23397.35 27699.54 9799.52 16699.01 14899.39 21998.24 36997.10 24899.65 8999.79 11584.79 37299.91 10599.28 6398.38 21599.69 115
HQP_MVS98.27 18498.22 17798.44 26699.29 23696.97 29299.39 21999.47 17398.97 5199.11 21699.61 20792.71 28599.69 22397.78 22197.63 24698.67 284
plane_prior299.39 21998.97 51
CHOSEN 1792x268899.19 7699.10 7599.45 12399.89 898.52 20899.39 21999.94 198.73 7699.11 21699.89 3095.50 18699.94 6999.50 3699.97 799.89 20
PAPM_NR99.04 10898.84 11999.66 6999.74 8099.44 9499.39 21999.38 23197.70 18799.28 18099.28 30498.34 8999.85 14596.96 28599.45 14599.69 115
gg-mvs-nofinetune96.17 31895.32 32998.73 23498.79 32398.14 23199.38 22494.09 39791.07 37798.07 32591.04 39389.62 34299.35 28096.75 29599.09 17598.68 277
VDDNet97.55 27997.02 29799.16 16799.49 18098.12 23399.38 22499.30 27595.35 33699.68 7499.90 2682.62 38099.93 8499.31 5898.13 23599.42 193
pmmvs696.53 31096.09 31597.82 31598.69 33895.47 33599.37 22699.47 17393.46 36497.41 34199.78 12187.06 36499.33 28396.92 29092.70 36298.65 294
PM-MVS92.96 34592.23 34995.14 35595.61 38389.98 38199.37 22698.21 37094.80 34995.04 37197.69 37465.06 38997.90 37494.30 34489.98 37597.54 375
WTY-MVS99.06 10698.88 11399.61 8499.62 13699.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21399.72 103
IterMVS-LS98.46 16698.42 16498.58 24599.59 14798.00 23899.37 22699.43 20796.94 26499.07 22499.59 21297.87 10599.03 33198.32 18195.62 31598.71 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3397.70 26797.28 28698.97 19099.70 10197.27 26899.36 23099.45 19398.94 5499.66 8399.64 19294.93 20399.99 499.48 4184.36 38399.65 129
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19299.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UnsupCasMVSNet_eth96.44 31296.12 31397.40 32998.65 34195.65 32899.36 23099.51 11597.13 24296.04 36398.99 33788.40 35398.17 36796.71 29790.27 37398.40 339
sss99.17 8099.05 8299.53 10599.62 13698.97 15399.36 23099.62 4197.83 17299.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13099.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 7299.14 7199.59 8799.41 20299.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
pmmvs-eth3d95.34 33094.73 33397.15 33395.53 38595.94 32499.35 23599.10 30795.13 33893.55 37697.54 37588.15 35797.91 37394.58 34189.69 37697.61 372
MDTV_nov1_ep13_2view95.18 34399.35 23596.84 26999.58 11095.19 19997.82 21899.46 186
VDD-MVS97.73 26197.35 27698.88 20999.47 18997.12 27699.34 23898.85 34098.19 12799.67 7899.85 5482.98 37899.92 9599.49 4098.32 22299.60 146
COLMAP_ROBcopyleft97.56 698.86 12798.75 12899.17 16699.88 1198.53 20499.34 23899.59 5797.55 20298.70 28299.89 3095.83 17599.90 11698.10 19499.90 3999.08 221
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EGC-MVSNET82.80 35777.86 36397.62 32297.91 36196.12 32199.33 24099.28 2818.40 40125.05 40299.27 30784.11 37499.33 28389.20 37798.22 22697.42 376
FMVSNet596.43 31396.19 31297.15 33399.11 27595.89 32599.32 24199.52 10194.47 35598.34 31299.07 32887.54 36297.07 38292.61 36595.72 31398.47 330
dp97.75 25897.80 21997.59 32499.10 27893.71 36399.32 24198.88 33696.48 29699.08 22399.55 22692.67 28899.82 16896.52 30498.58 20599.24 210
tpmvs97.98 22198.02 19997.84 31299.04 29194.73 34999.31 24399.20 29696.10 32798.76 27299.42 26594.94 20299.81 17396.97 28498.45 21498.97 236
tpmrst98.33 17898.48 16197.90 30899.16 26894.78 34899.31 24399.11 30697.27 23099.45 13499.59 21295.33 19299.84 15198.48 16598.61 20299.09 220
MP-MVS-pluss99.37 5399.20 6699.88 599.90 499.87 1299.30 24599.52 10197.18 23899.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5699.19 6799.79 4999.61 14099.65 5799.30 24599.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18499.63 13399.80 70
JIA-IIPM97.50 28497.02 29798.93 19698.73 33297.80 25299.30 24598.97 32291.73 37398.91 25094.86 38795.10 20099.71 21297.58 24197.98 23899.28 208
BH-RMVSNet98.41 17198.08 19199.40 13099.41 20298.83 18099.30 24598.77 34797.70 18798.94 24699.65 18692.91 27899.74 19696.52 30499.55 14099.64 136
Syy-MVS97.09 30197.14 29296.95 34199.00 29592.73 37299.29 24999.39 22397.06 25297.41 34198.15 36893.92 25698.68 35891.71 36898.34 21699.45 189
myMVS_eth3d96.89 30396.37 30898.43 26899.00 29597.16 27499.29 24999.39 22397.06 25297.41 34198.15 36883.46 37798.68 35895.27 33398.34 21699.45 189
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 24999.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
LF4IMVS97.52 28197.46 25897.70 32198.98 30195.55 33199.29 24998.82 34398.07 14898.66 28599.64 19289.97 33799.61 24397.01 28096.68 28797.94 365
hse-mvs297.50 28497.14 29298.59 24299.49 18097.05 28399.28 25399.22 29298.94 5499.66 8399.42 26594.93 20399.65 23399.48 4183.80 38599.08 221
OPM-MVS98.19 18998.10 18798.45 26398.88 31197.07 28199.28 25399.38 23198.57 8699.22 19599.81 9092.12 30199.66 22898.08 19997.54 25598.61 316
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive99.14 8699.02 9099.51 11399.61 14098.96 15799.28 25399.49 14398.46 9599.72 6799.71 15496.50 15099.88 13199.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 12798.80 12299.03 18099.76 6598.79 18499.28 25399.91 397.42 21999.67 7899.37 28097.53 11399.88 13198.98 9097.29 27698.42 336
OMC-MVS99.08 10499.04 8499.20 16399.67 11198.22 22799.28 25399.52 10198.07 14899.66 8399.81 9097.79 10899.78 18797.79 22099.81 9399.60 146
AUN-MVS96.88 30496.31 31098.59 24299.48 18897.04 28699.27 25899.22 29297.44 21698.51 30299.41 26991.97 30499.66 22897.71 23283.83 38499.07 226
pmmvs597.52 28197.30 28498.16 29098.57 34996.73 30199.27 25898.90 33496.14 32198.37 31099.53 23591.54 31899.14 31497.51 25095.87 30898.63 304
131498.68 15498.54 15899.11 17298.89 31098.65 19399.27 25899.49 14396.89 26697.99 32799.56 22397.72 11199.83 16297.74 22899.27 16098.84 244
MVS97.28 29396.55 30599.48 11798.78 32698.95 16299.27 25899.39 22383.53 38798.08 32299.54 23196.97 13599.87 13694.23 34799.16 16599.63 140
BH-untuned98.42 16998.36 16798.59 24299.49 18096.70 30299.27 25899.13 30597.24 23498.80 26799.38 27795.75 17899.74 19697.07 27999.16 16599.33 204
MDTV_nov1_ep1398.32 17199.11 27594.44 35499.27 25898.74 35197.51 20899.40 15299.62 20394.78 21499.76 19397.59 24098.81 198
DP-MVS Recon99.12 9498.95 10499.65 7399.74 8099.70 4699.27 25899.57 6496.40 30399.42 14399.68 17498.75 5599.80 17997.98 20599.72 11899.44 191
PatchmatchNetpermissive98.31 17998.36 16798.19 28899.16 26895.32 33999.27 25898.92 32897.37 22399.37 16099.58 21694.90 20699.70 21897.43 25999.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 27797.28 28698.62 24099.64 12798.03 23699.26 26698.74 35197.68 18999.09 22298.32 36691.66 31599.81 17392.88 36198.22 22698.03 358
CNVR-MVS99.42 4299.30 4999.78 5299.62 13699.71 4499.26 26699.52 10198.82 6599.39 15599.71 15498.96 2499.85 14598.59 15199.80 9799.77 82
1112_ss98.98 11598.77 12699.59 8799.68 11099.02 14699.25 26899.48 15597.23 23599.13 21299.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
TAPA-MVS97.07 1597.74 26097.34 27998.94 19499.70 10197.53 26199.25 26899.51 11591.90 37299.30 17699.63 19898.78 4899.64 23688.09 38299.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.94 499.02 11198.85 11899.53 10599.66 11999.01 14899.24 27099.52 10196.85 26899.27 18499.48 25298.25 9399.91 10597.76 22599.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_post199.23 27165.14 39994.18 24799.71 21297.58 241
ADS-MVSNet298.02 21498.07 19497.87 30999.33 22495.19 34299.23 27199.08 31096.24 31199.10 21999.67 18094.11 24898.93 34896.81 29399.05 17899.48 178
ADS-MVSNet98.20 18898.08 19198.56 24999.33 22496.48 31199.23 27199.15 30296.24 31199.10 21999.67 18094.11 24899.71 21296.81 29399.05 17899.48 178
EPNet_dtu98.03 21297.96 20498.23 28698.27 35795.54 33399.23 27198.75 34899.02 3897.82 33499.71 15496.11 16299.48 25293.04 36099.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 19297.93 20998.87 21399.18 26098.49 21299.22 27599.33 25796.96 26099.56 11499.38 27794.33 24099.00 33694.83 34098.58 20599.14 213
RPMNet96.72 30795.90 31999.19 16499.18 26098.49 21299.22 27599.52 10188.72 38399.56 11497.38 37794.08 25099.95 5986.87 38798.58 20599.14 213
plane_prior96.97 29299.21 27798.45 9697.60 249
WR-MVS98.06 20497.73 23299.06 17698.86 31899.25 11699.19 27899.35 24697.30 22898.66 28599.43 26393.94 25499.21 30998.58 15294.28 34198.71 263
new-patchmatchnet94.48 33894.08 33995.67 35495.08 38892.41 37399.18 27999.28 28194.55 35493.49 37797.37 37887.86 36097.01 38391.57 36988.36 37797.61 372
AdaColmapbinary99.01 11498.80 12299.66 6999.56 15599.54 7999.18 27999.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25399.77 10799.55 159
EG-PatchMatch MVS95.97 32195.69 32396.81 34597.78 36492.79 37199.16 28198.93 32696.16 31894.08 37499.22 31382.72 37999.47 25395.67 32497.50 26098.17 351
PatchT97.03 30296.44 30798.79 23098.99 29898.34 22299.16 28199.07 31392.13 37199.52 12397.31 38094.54 23398.98 33888.54 38098.73 20199.03 229
CNLPA99.14 8698.99 9699.59 8799.58 14999.41 9899.16 28199.44 20198.45 9699.19 20499.49 24798.08 10199.89 12697.73 22999.75 11299.48 178
MDA-MVSNet-bldmvs94.96 33393.98 34097.92 30698.24 35897.27 26899.15 28499.33 25793.80 35980.09 39499.03 33388.31 35497.86 37593.49 35594.36 34098.62 307
CDPH-MVS99.13 8898.91 10899.80 4699.75 7399.71 4499.15 28499.41 21296.60 28799.60 10699.55 22698.83 4299.90 11697.48 25399.83 8699.78 80
save fliter99.76 6599.59 7099.14 28699.40 22099.00 43
testf190.42 35190.68 35389.65 37297.78 36473.97 40099.13 28798.81 34489.62 37991.80 38398.93 34362.23 39298.80 35486.61 38891.17 36796.19 384
APD_test290.42 35190.68 35389.65 37297.78 36473.97 40099.13 28798.81 34489.62 37991.80 38398.93 34362.23 39298.80 35486.61 38891.17 36796.19 384
xiu_mvs_v1_base_debu99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
xiu_mvs_v1_base99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
xiu_mvs_v1_base_debi99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
XVG-OURS-SEG-HR98.69 15298.62 14698.89 20799.71 9697.74 25399.12 28999.54 8598.44 9999.42 14399.71 15494.20 24499.92 9598.54 16298.90 19099.00 232
jason99.13 8899.03 8699.45 12399.46 19098.87 17299.12 28999.26 28598.03 15699.79 4299.65 18697.02 13299.85 14599.02 8799.90 3999.65 129
jason: jason.
N_pmnet94.95 33495.83 32192.31 36398.47 35379.33 39599.12 28992.81 40193.87 35897.68 33799.13 32393.87 25799.01 33591.38 37096.19 29998.59 320
MDA-MVSNet_test_wron95.45 32794.60 33498.01 30098.16 35997.21 27399.11 29599.24 28993.49 36380.73 39398.98 33993.02 27398.18 36694.22 34894.45 33898.64 296
Patchmtry97.75 25897.40 27198.81 22799.10 27898.87 17299.11 29599.33 25794.83 34898.81 26599.38 27794.33 24099.02 33396.10 31195.57 31698.53 324
YYNet195.36 32994.51 33697.92 30697.89 36297.10 27799.10 29799.23 29093.26 36680.77 39299.04 33292.81 27998.02 37094.30 34494.18 34398.64 296
CANet_DTU98.97 11798.87 11499.25 15799.33 22498.42 22099.08 29899.30 27599.16 1999.43 14099.75 13895.27 19499.97 2198.56 15899.95 1699.36 200
SCA98.19 18998.16 17998.27 28599.30 23295.55 33199.07 29998.97 32297.57 19999.43 14099.57 22092.72 28399.74 19697.58 24199.20 16399.52 167
TSAR-MVS + GP.99.36 5499.36 3299.36 13599.67 11198.61 19899.07 29999.33 25799.00 4399.82 3599.81 9099.06 1699.84 15199.09 8099.42 14799.65 129
MG-MVS99.13 8899.02 9099.45 12399.57 15198.63 19599.07 29999.34 25098.99 4599.61 10399.82 7697.98 10499.87 13697.00 28199.80 9799.85 36
PatchMatch-RL98.84 13798.62 14699.52 11199.71 9699.28 11199.06 30299.77 997.74 18499.50 12699.53 23595.41 18899.84 15197.17 27599.64 13199.44 191
OpenMVS_ROBcopyleft92.34 2094.38 33993.70 34596.41 35097.38 37093.17 36999.06 30298.75 34886.58 38494.84 37298.26 36781.53 38299.32 28689.01 37897.87 24196.76 379
TEST999.67 11199.65 5799.05 30499.41 21296.22 31398.95 24499.49 24798.77 5199.91 105
train_agg99.02 11198.77 12699.77 5599.67 11199.65 5799.05 30499.41 21296.28 30798.95 24499.49 24798.76 5299.91 10597.63 23799.72 11899.75 88
lupinMVS99.13 8899.01 9499.46 12299.51 16998.94 16599.05 30499.16 30197.86 16799.80 4099.56 22397.39 11699.86 13998.94 9499.85 6999.58 154
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 30499.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 31496.03 31697.41 32898.13 36095.16 34499.05 30499.20 29693.94 35797.39 34498.79 35291.61 31799.04 32990.43 37395.77 31098.05 357
Patchmatch-test97.93 22797.65 23998.77 23299.18 26097.07 28199.03 30999.14 30496.16 31898.74 27399.57 22094.56 23099.72 20693.36 35699.11 17199.52 167
test_899.67 11199.61 6799.03 30999.41 21296.28 30798.93 24899.48 25298.76 5299.91 105
Test_1112_low_res98.89 12298.66 13899.57 9299.69 10698.95 16299.03 30999.47 17396.98 25899.15 21099.23 31296.77 14199.89 12698.83 11898.78 19999.86 33
IterMVS-SCA-FT97.82 24797.75 23098.06 29699.57 15196.36 31599.02 31299.49 14397.18 23898.71 27699.72 15392.72 28399.14 31497.44 25895.86 30998.67 284
xiu_mvs_v2_base99.26 6899.25 6199.29 15199.53 16298.91 16999.02 31299.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 235
MIMVSNet97.73 26197.45 25998.57 24699.45 19597.50 26299.02 31298.98 32196.11 32399.41 14799.14 32290.28 33198.74 35695.74 32098.93 18699.47 184
IterMVS97.83 24497.77 22598.02 29999.58 14996.27 31899.02 31299.48 15597.22 23698.71 27699.70 15892.75 28099.13 31797.46 25696.00 30398.67 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 9898.92 10699.65 7399.90 499.37 10099.02 31299.91 397.67 19199.59 10999.75 13895.90 17399.73 20299.53 3299.02 18299.86 33
新几何299.01 317
BH-w/o98.00 21997.89 21598.32 27899.35 21896.20 32099.01 31798.90 33496.42 30198.38 30999.00 33695.26 19699.72 20696.06 31298.61 20299.03 229
test_prior499.56 7598.99 319
无先验98.99 31999.51 11596.89 26699.93 8497.53 24999.72 103
pmmvs498.13 19697.90 21198.81 22798.61 34698.87 17298.99 31999.21 29596.44 29999.06 22899.58 21695.90 17399.11 32297.18 27496.11 30198.46 333
HQP-NCC99.19 25798.98 32298.24 11898.66 285
ACMP_Plane99.19 25798.98 32298.24 11898.66 285
HQP-MVS98.02 21497.90 21198.37 27499.19 25796.83 29798.98 32299.39 22398.24 11898.66 28599.40 27292.47 29499.64 23697.19 27297.58 25198.64 296
PS-MVSNAJ99.32 5899.32 4099.30 14899.57 15198.94 16598.97 32599.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 236
MVP-Stereo97.81 24997.75 23097.99 30397.53 36896.60 30898.96 32698.85 34097.22 23697.23 34799.36 28395.28 19399.46 25495.51 32699.78 10497.92 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior298.96 32698.34 10899.01 23499.52 23898.68 6497.96 20699.74 115
旧先验298.96 32696.70 27699.47 13199.94 6998.19 188
原ACMM298.95 329
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 32999.85 698.82 6599.54 11999.73 14998.51 7899.74 19698.91 9999.88 5199.77 82
mvsany_test199.50 2099.46 2099.62 8399.61 14099.09 13698.94 33199.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33199.85 698.82 6599.65 8999.74 14398.51 7899.80 17998.83 11899.89 4899.64 136
pmmvs394.09 34193.25 34796.60 34894.76 39094.49 35398.92 33398.18 37289.66 37896.48 35898.06 37286.28 36597.33 38089.68 37687.20 38097.97 364
XVG-OURS98.73 14898.68 13498.88 20999.70 10197.73 25498.92 33399.55 7798.52 9199.45 13499.84 6495.27 19499.91 10598.08 19998.84 19499.00 232
test22299.75 7399.49 8798.91 33599.49 14396.42 30199.34 17099.65 18698.28 9299.69 12399.72 103
PMMVS286.87 35485.37 35891.35 36790.21 39583.80 38698.89 33697.45 38383.13 38891.67 38595.03 38548.49 39894.70 39185.86 39077.62 39095.54 386
miper_lstm_enhance98.00 21997.91 21098.28 28499.34 22297.43 26498.88 33799.36 24096.48 29698.80 26799.55 22695.98 16698.91 34997.27 26595.50 31998.51 326
MVS-HIRNet95.75 32595.16 33097.51 32699.30 23293.69 36498.88 33795.78 39185.09 38698.78 27092.65 38991.29 32299.37 27394.85 33999.85 6999.46 186
TR-MVS97.76 25497.41 27098.82 22499.06 28797.87 24898.87 33998.56 36296.63 28498.68 28499.22 31392.49 29399.65 23395.40 33097.79 24298.95 240
testdata198.85 34098.32 111
ET-MVSNet_ETH3D96.49 31195.64 32599.05 17899.53 16298.82 18198.84 34197.51 38297.63 19484.77 38799.21 31692.09 30298.91 34998.98 9092.21 36499.41 195
our_test_397.65 27597.68 23697.55 32598.62 34494.97 34698.84 34199.30 27596.83 27198.19 31899.34 29097.01 13399.02 33395.00 33896.01 30298.64 296
MS-PatchMatch97.24 29797.32 28296.99 33898.45 35493.51 36798.82 34399.32 26797.41 22098.13 32199.30 30088.99 34599.56 24795.68 32399.80 9797.90 368
c3_l98.12 19898.04 19698.38 27399.30 23297.69 25998.81 34499.33 25796.67 27898.83 26399.34 29097.11 12898.99 33797.58 24195.34 32198.48 328
ppachtmachnet_test97.49 28797.45 25997.61 32398.62 34495.24 34098.80 34599.46 18296.11 32398.22 31799.62 20396.45 15398.97 34593.77 35195.97 30798.61 316
PAPR98.63 15998.34 16999.51 11399.40 20799.03 14598.80 34599.36 24096.33 30499.00 23899.12 32698.46 8199.84 15195.23 33499.37 15699.66 125
test0.0.03 197.71 26697.42 26998.56 24998.41 35697.82 25198.78 34798.63 36097.34 22498.05 32698.98 33994.45 23798.98 33895.04 33797.15 28398.89 241
PVSNet_Blended99.08 10498.97 10099.42 12899.76 6598.79 18498.78 34799.91 396.74 27399.67 7899.49 24797.53 11399.88 13198.98 9099.85 6999.60 146
PMMVS98.80 14198.62 14699.34 13699.27 24198.70 18998.76 34999.31 27197.34 22499.21 19899.07 32897.20 12599.82 16898.56 15898.87 19199.52 167
test12339.01 36642.50 36828.53 38239.17 40420.91 40798.75 35019.17 40719.83 40038.57 39966.67 39733.16 40215.42 40137.50 40129.66 39949.26 396
MSDG98.98 11598.80 12299.53 10599.76 6599.19 12098.75 35099.55 7797.25 23299.47 13199.77 12997.82 10799.87 13696.93 28899.90 3999.54 161
CLD-MVS98.16 19398.10 18798.33 27699.29 23696.82 29998.75 35099.44 20197.83 17299.13 21299.55 22692.92 27699.67 22598.32 18197.69 24598.48 328
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 19198.10 18798.41 26999.23 24997.72 25598.72 35399.31 27196.60 28798.88 25599.29 30297.29 12399.13 31797.60 23995.99 30498.38 341
cl____98.01 21797.84 21898.55 25199.25 24797.97 24098.71 35499.34 25096.47 29898.59 29999.54 23195.65 18399.21 30997.21 26895.77 31098.46 333
DIV-MVS_self_test98.01 21797.85 21798.48 25799.24 24897.95 24498.71 35499.35 24696.50 29298.60 29899.54 23195.72 18099.03 33197.21 26895.77 31098.46 333
test-LLR98.06 20497.90 21198.55 25198.79 32397.10 27798.67 35697.75 37797.34 22498.61 29698.85 34894.45 23799.45 25597.25 26699.38 14999.10 216
TESTMET0.1,197.55 27997.27 28998.40 27198.93 30696.53 30998.67 35697.61 38096.96 26098.64 29299.28 30488.63 35199.45 25597.30 26499.38 14999.21 212
test-mter97.49 28797.13 29498.55 25198.79 32397.10 27798.67 35697.75 37796.65 28098.61 29698.85 34888.23 35599.45 25597.25 26699.38 14999.10 216
IB-MVS95.67 1896.22 31595.44 32898.57 24699.21 25396.70 30298.65 35997.74 37996.71 27597.27 34698.54 36086.03 36699.92 9598.47 16886.30 38199.10 216
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 11898.71 13199.66 6999.63 13099.55 7798.64 36099.10 30797.93 16299.42 14399.55 22698.67 6699.80 17995.80 31999.68 12699.61 144
thisisatest051598.14 19597.79 22099.19 16499.50 17898.50 21198.61 36196.82 38696.95 26299.54 11999.43 26391.66 31599.86 13998.08 19999.51 14299.22 211
DeepPCF-MVS98.18 398.81 13899.37 3097.12 33699.60 14591.75 37698.61 36199.44 20199.35 1299.83 3499.85 5498.70 6399.81 17399.02 8799.91 3199.81 61
cl2297.85 23997.64 24198.48 25799.09 28197.87 24898.60 36399.33 25797.11 24798.87 25899.22 31392.38 29999.17 31398.21 18695.99 30498.42 336
GA-MVS97.85 23997.47 25699.00 18499.38 21197.99 23998.57 36499.15 30297.04 25598.90 25299.30 30089.83 33899.38 26896.70 29898.33 21899.62 142
TinyColmap97.12 29996.89 29997.83 31399.07 28495.52 33498.57 36498.74 35197.58 19897.81 33599.79 11588.16 35699.56 24795.10 33597.21 28098.39 340
eth_miper_zixun_eth98.05 20997.96 20498.33 27699.26 24397.38 26598.56 36699.31 27196.65 28098.88 25599.52 23896.58 14799.12 32197.39 26195.53 31898.47 330
CMPMVSbinary69.68 2394.13 34094.90 33291.84 36497.24 37480.01 39498.52 36799.48 15589.01 38191.99 38299.67 18085.67 36899.13 31795.44 32897.03 28496.39 383
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 29197.20 29097.75 31899.07 28495.20 34198.51 36899.04 31697.99 15898.31 31399.86 4989.02 34499.55 24995.67 32497.36 27598.49 327
ambc93.06 36292.68 39282.36 38798.47 36998.73 35695.09 37097.41 37655.55 39499.10 32496.42 30791.32 36697.71 369
miper_enhance_ethall98.16 19398.08 19198.41 26998.96 30497.72 25598.45 37099.32 26796.95 26298.97 24299.17 31897.06 13199.22 30497.86 21495.99 30498.29 345
CHOSEN 280x42099.12 9499.13 7299.08 17399.66 11997.89 24798.43 37199.71 1398.88 5999.62 10099.76 13596.63 14599.70 21899.46 4499.99 199.66 125
testmvs39.17 36543.78 36725.37 38336.04 40516.84 40898.36 37226.56 40520.06 39938.51 40067.32 39629.64 40315.30 40237.59 40039.90 39843.98 397
FPMVS84.93 35685.65 35782.75 37886.77 39863.39 40498.35 37398.92 32874.11 39083.39 38998.98 33950.85 39792.40 39384.54 39194.97 32992.46 388
KD-MVS_2432*160094.62 33593.72 34397.31 33097.19 37695.82 32698.34 37499.20 29695.00 34497.57 33898.35 36487.95 35898.10 36892.87 36277.00 39198.01 359
miper_refine_blended94.62 33593.72 34397.31 33097.19 37695.82 32698.34 37499.20 29695.00 34497.57 33898.35 36487.95 35898.10 36892.87 36277.00 39198.01 359
CL-MVSNet_self_test94.49 33793.97 34196.08 35296.16 38093.67 36598.33 37699.38 23195.13 33897.33 34598.15 36892.69 28796.57 38588.67 37979.87 38997.99 362
PVSNet96.02 1798.85 13498.84 11998.89 20799.73 8797.28 26798.32 37799.60 5497.86 16799.50 12699.57 22096.75 14299.86 13998.56 15899.70 12299.54 161
PAPM97.59 27897.09 29599.07 17599.06 28798.26 22598.30 37899.10 30794.88 34698.08 32299.34 29096.27 15999.64 23689.87 37598.92 18899.31 206
Patchmatch-RL test95.84 32395.81 32295.95 35395.61 38390.57 37998.24 37998.39 36695.10 34295.20 36898.67 35694.78 21497.77 37696.28 31090.02 37499.51 173
UnsupCasMVSNet_bld93.53 34392.51 34896.58 34997.38 37093.82 36098.24 37999.48 15591.10 37693.10 37896.66 38274.89 38698.37 36394.03 35087.71 37997.56 374
LCM-MVSNet86.80 35585.22 35991.53 36687.81 39780.96 39298.23 38198.99 32071.05 39190.13 38696.51 38348.45 39996.88 38490.51 37285.30 38296.76 379
cascas97.69 26897.43 26898.48 25798.60 34797.30 26698.18 38299.39 22392.96 36898.41 30798.78 35393.77 26199.27 29598.16 19298.61 20298.86 242
Effi-MVS+98.81 13898.59 15399.48 11799.46 19099.12 13498.08 38399.50 13597.50 20999.38 15899.41 26996.37 15699.81 17399.11 7898.54 21099.51 173
PCF-MVS97.08 1497.66 27497.06 29699.47 12099.61 14099.09 13698.04 38499.25 28791.24 37598.51 30299.70 15894.55 23299.91 10592.76 36499.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_094.43 1996.09 32095.47 32697.94 30599.31 23194.34 35797.81 38599.70 1597.12 24497.46 34098.75 35489.71 33999.79 18297.69 23581.69 38799.68 119
E-PMN80.61 35979.88 36182.81 37790.75 39476.38 39897.69 38695.76 39266.44 39583.52 38892.25 39062.54 39187.16 39768.53 39761.40 39484.89 395
ANet_high77.30 36174.86 36584.62 37675.88 40177.61 39697.63 38793.15 40088.81 38264.27 39789.29 39436.51 40183.93 39975.89 39452.31 39692.33 390
EMVS80.02 36079.22 36282.43 37991.19 39376.40 39797.55 38892.49 40266.36 39683.01 39091.27 39264.63 39085.79 39865.82 39860.65 39585.08 394
MVEpermissive76.82 2176.91 36274.31 36684.70 37585.38 40076.05 39996.88 38993.17 39967.39 39471.28 39689.01 39521.66 40687.69 39671.74 39672.29 39390.35 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 34991.36 35190.31 36995.85 38173.72 40294.89 39099.25 28768.39 39395.82 36499.02 33580.50 38398.95 34793.64 35394.89 33398.25 348
Gipumacopyleft90.99 35090.15 35593.51 35998.73 33290.12 38093.98 39199.45 19379.32 38992.28 38194.91 38669.61 38797.98 37287.42 38495.67 31492.45 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 36374.97 36479.01 38070.98 40255.18 40593.37 39298.21 37065.08 39761.78 39893.83 38821.74 40592.53 39278.59 39291.12 36989.34 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 35781.52 36086.66 37466.61 40368.44 40392.79 39397.92 37468.96 39280.04 39599.85 5485.77 36796.15 38897.86 21443.89 39795.39 387
wuyk23d40.18 36441.29 36936.84 38186.18 39949.12 40679.73 39422.81 40627.64 39825.46 40128.45 40121.98 40448.89 40055.80 39923.56 40012.51 398
test_blank0.13 3700.17 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4031.57 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.64 36732.85 3700.00 3840.00 4060.00 4090.00 39599.51 1150.00 4020.00 40399.56 22396.58 1470.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas8.27 36911.03 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 40399.01 180.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.30 36811.06 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.58 2160.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS97.16 27495.47 327
MSC_two_6792asdad99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36198.30 18399.80 9799.81 61
No_MVS99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
eth-test20.00 406
eth-test0.00 406
ZD-MVS99.71 9699.79 3099.61 4896.84 26999.56 11499.54 23198.58 7299.96 3096.93 28899.75 112
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 193
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20899.52 167
sam_mvs94.72 221
MTGPAbinary99.47 173
test_post65.99 39894.65 22799.73 202
patchmatchnet-post98.70 35594.79 21399.74 196
gm-plane-assit98.54 35192.96 37094.65 35299.15 32199.64 23697.56 246
test9_res97.49 25299.72 11899.75 88
agg_prior297.21 26899.73 11799.75 88
agg_prior99.67 11199.62 6599.40 22098.87 25899.91 105
TestCases99.31 14399.86 2098.48 21499.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30199.83 8699.59 150
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16299.74 92
新几何199.75 5899.75 7399.59 7099.54 8596.76 27299.29 17999.64 19298.43 8399.94 6996.92 29099.66 12899.72 103
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21199.12 21499.66 18598.67 6699.91 10597.70 23499.69 12399.71 112
testdata299.95 5996.67 300
segment_acmp98.96 24
testdata99.54 9799.75 7398.95 16299.51 11597.07 25099.43 14099.70 15898.87 3799.94 6997.76 22599.64 13199.72 103
test1299.75 5899.64 12799.61 6799.29 27999.21 19898.38 8799.89 12699.74 11599.74 92
plane_prior799.29 23697.03 287
plane_prior699.27 24196.98 29192.71 285
plane_prior599.47 17399.69 22397.78 22197.63 24698.67 284
plane_prior499.61 207
plane_prior397.00 28998.69 7999.11 216
plane_prior199.26 243
n20.00 408
nn0.00 408
door-mid98.05 373
lessismore_v097.79 31798.69 33895.44 33794.75 39595.71 36599.87 4488.69 34899.32 28695.89 31694.93 33198.62 307
LGP-MVS_train98.49 25599.33 22497.05 28399.55 7797.46 21199.24 19099.83 6892.58 29099.72 20698.09 19597.51 25898.68 277
test1199.35 246
door97.92 374
HQP5-MVS96.83 297
BP-MVS97.19 272
HQP4-MVS98.66 28599.64 23698.64 296
HQP3-MVS99.39 22397.58 251
HQP2-MVS92.47 294
NP-MVS99.23 24996.92 29599.40 272
ACMMP++_ref97.19 281
ACMMP++97.43 270
Test By Simon98.75 55
ITE_SJBPF98.08 29599.29 23696.37 31498.92 32898.34 10898.83 26399.75 13891.09 32499.62 24295.82 31797.40 27298.25 348
DeepMVS_CXcopyleft93.34 36099.29 23682.27 38899.22 29285.15 38596.33 35999.05 33190.97 32699.73 20293.57 35497.77 24398.01 359