This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft80.28 680.39 779.95 386.60 2361.95 1986.33 1385.75 2162.49 6082.20 1592.28 156.53 3389.70 1579.85 391.48 188.19 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++81.67 182.40 179.47 987.24 1459.15 5988.18 187.15 365.04 1484.26 591.86 667.01 190.84 379.48 491.38 288.42 9
PC_three_145255.09 19384.46 489.84 4166.68 589.41 1674.24 3191.38 288.42 9
OPU-MVS79.83 687.54 1160.93 3587.82 789.89 4067.01 190.33 1173.16 4191.15 488.23 14
SED-MVS81.56 282.30 279.32 1287.77 458.90 6887.82 786.78 1064.18 3085.97 191.84 866.87 390.83 578.63 1590.87 588.23 14
IU-MVS87.77 459.15 5985.53 2553.93 21284.64 379.07 990.87 588.37 11
test_241102_TWO86.73 1264.18 3084.26 591.84 865.19 690.83 578.63 1590.70 787.65 33
MSC_two_6792asdad79.95 387.24 1461.04 3185.62 2390.96 179.31 790.65 887.85 25
No_MVS79.95 387.24 1461.04 3185.62 2390.96 179.31 790.65 887.85 25
test_0728_THIRD65.04 1483.82 892.00 364.69 1090.75 879.48 490.63 1088.09 19
DVP-MVScopyleft80.84 481.64 378.42 3287.75 759.07 6387.85 585.03 3464.26 2783.82 892.00 364.82 890.75 878.66 1390.61 1185.45 108
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND79.19 1587.82 359.11 6287.85 587.15 390.84 378.66 1390.61 1187.62 35
ACMMP_NAP78.77 1478.78 1378.74 2885.44 4561.04 3183.84 4785.16 3062.88 5178.10 2491.26 1352.51 6788.39 2879.34 690.52 1386.78 60
HPM-MVS++copyleft79.88 880.14 879.10 2088.17 164.80 186.59 1283.70 6065.37 1178.78 2290.64 1758.63 2487.24 4979.00 1090.37 1485.26 118
SF-MVS78.82 1279.22 1177.60 4282.88 7457.83 7984.99 3088.13 261.86 7379.16 2090.75 1657.96 2587.09 5877.08 2190.18 1587.87 24
CNVR-MVS79.84 979.97 979.45 1087.90 262.17 1784.37 3485.03 3466.96 377.58 2790.06 3459.47 2089.13 2078.67 1289.73 1687.03 51
PHI-MVS75.87 4275.36 4377.41 4480.62 10555.91 11084.28 3785.78 2056.08 17173.41 5986.58 8850.94 8988.54 2670.79 5589.71 1787.79 29
DPE-MVScopyleft80.56 580.98 579.29 1487.27 1360.56 4185.71 2586.42 1463.28 4283.27 1391.83 1064.96 790.47 1076.41 2489.67 1886.84 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss78.35 1878.46 1678.03 3884.96 5259.52 5282.93 5785.39 2662.15 6576.41 3191.51 1152.47 6986.78 6580.66 289.64 1987.80 28
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS78.82 1278.67 1579.30 1386.43 2862.05 1886.62 1186.01 1863.32 4175.08 3790.47 2453.96 5488.68 2576.48 2389.63 2087.16 49
9.1478.75 1483.10 6984.15 4188.26 159.90 10478.57 2390.36 2557.51 3086.86 6277.39 1889.52 21
DeepC-MVS69.38 278.56 1678.14 2079.83 683.60 6361.62 2384.17 4086.85 663.23 4473.84 5590.25 3057.68 2789.96 1374.62 3089.03 2287.89 22
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP79.48 1079.31 1079.98 283.01 7262.18 1687.60 985.83 1966.69 778.03 2690.98 1454.26 5090.06 1278.42 1789.02 2387.69 31
Skip Steuart: Steuart Systems R&D Blog.
test_prior281.75 7860.37 9475.01 3889.06 5056.22 3672.19 4688.96 24
DPM-MVS75.47 4675.00 4776.88 4981.38 9159.16 5879.94 10085.71 2256.59 16172.46 7686.76 7956.89 3187.86 4166.36 8488.91 2583.64 170
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1884.92 5660.32 4483.03 5585.33 2762.86 5280.17 1790.03 3661.76 1488.95 2274.21 3288.67 2688.12 18
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1786.83 865.51 1083.81 1090.51 2163.71 1289.23 1881.51 188.44 2788.09 19
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CDPH-MVS76.31 3675.67 4278.22 3585.35 4859.14 6181.31 8584.02 4856.32 16574.05 5188.98 5253.34 6287.92 3969.23 6388.42 2887.59 36
GST-MVS78.14 2077.85 2278.99 2486.05 3861.82 2285.84 2085.21 2963.56 3974.29 5090.03 3652.56 6688.53 2774.79 2988.34 2986.63 63
train_agg76.27 3776.15 3576.64 5385.58 4361.59 2481.62 8081.26 11355.86 17374.93 3988.81 5453.70 5884.68 11675.24 2888.33 3083.65 169
APDe-MVS80.16 780.59 678.86 2786.64 2160.02 4588.12 386.42 1462.94 4982.40 1492.12 259.64 1889.76 1478.70 1188.32 3186.79 59
test9_res75.28 2788.31 3283.81 158
MTAPA76.90 3276.42 3378.35 3386.08 3763.57 274.92 19580.97 12165.13 1375.77 3390.88 1548.63 10986.66 6877.23 1988.17 3384.81 130
test1277.76 4184.52 5858.41 7483.36 7172.93 6954.61 4888.05 3588.12 3486.81 58
MP-MVScopyleft78.35 1878.26 1978.64 2986.54 2563.47 486.02 1983.55 6463.89 3573.60 5790.60 1854.85 4686.72 6677.20 2088.06 3585.74 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast68.24 377.25 2876.63 3179.12 1986.15 3460.86 3684.71 3184.85 3861.98 7273.06 6788.88 5353.72 5789.06 2168.27 6588.04 3687.42 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
原ACMM174.69 8785.39 4759.40 5383.42 6851.47 23770.27 9586.61 8648.61 11086.51 7453.85 18287.96 3778.16 253
agg_prior273.09 4287.93 3884.33 140
CSCG76.92 3176.75 2977.41 4483.96 6259.60 5082.95 5686.50 1360.78 8575.27 3584.83 12060.76 1586.56 7167.86 7187.87 3986.06 82
MCST-MVS77.48 2677.45 2577.54 4386.67 2058.36 7583.22 5386.93 556.91 15374.91 4188.19 5959.15 2287.68 4473.67 3887.45 4086.57 64
NCCC78.58 1578.31 1779.39 1187.51 1262.61 1385.20 2984.42 4266.73 674.67 4689.38 4755.30 4189.18 1974.19 3387.34 4186.38 66
HFP-MVS78.01 2277.65 2379.10 2086.71 1962.81 886.29 1484.32 4462.82 5373.96 5390.50 2253.20 6388.35 2974.02 3587.05 4286.13 80
region2R77.67 2577.18 2779.15 1786.76 1762.95 686.29 1484.16 4762.81 5573.30 6090.58 1949.90 9488.21 3273.78 3787.03 4386.29 77
ACMMPR77.71 2377.23 2679.16 1686.75 1862.93 786.29 1484.24 4562.82 5373.55 5890.56 2049.80 9688.24 3174.02 3587.03 4386.32 74
APD-MVScopyleft78.02 2178.04 2177.98 3986.44 2760.81 3885.52 2684.36 4360.61 8779.05 2190.30 2855.54 4088.32 3073.48 4087.03 4384.83 129
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS86.64 2160.38 4382.70 8557.95 13878.10 2490.06 3456.12 3788.84 2474.05 3487.00 46
CS-MVS-test75.62 4575.31 4576.56 5580.63 10455.13 12383.88 4685.22 2862.05 6971.49 8686.03 10053.83 5686.36 7967.74 7286.91 4788.19 16
PGM-MVS76.77 3376.06 3678.88 2686.14 3562.73 982.55 6583.74 5961.71 7472.45 7890.34 2748.48 11288.13 3372.32 4586.85 4885.78 91
HPM-MVScopyleft77.28 2776.85 2878.54 3085.00 5160.81 3882.91 5885.08 3162.57 5873.09 6689.97 3950.90 9087.48 4775.30 2686.85 4887.33 47
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.78.44 1778.28 1878.90 2584.96 5261.41 2684.03 4383.82 5859.34 11579.37 1989.76 4359.84 1687.62 4576.69 2286.74 5087.68 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS77.17 2976.56 3279.00 2286.32 2962.62 1185.83 2183.92 5164.55 2172.17 7990.01 3847.95 11688.01 3671.55 5286.74 5086.37 68
X-MVStestdata70.21 11067.28 15779.00 2286.32 2962.62 1185.83 2183.92 5164.55 2172.17 796.49 37447.95 11688.01 3671.55 5286.74 5086.37 68
3Dnovator+66.72 475.84 4374.57 5179.66 882.40 7659.92 4785.83 2186.32 1666.92 567.80 14489.24 4942.03 18389.38 1764.07 10386.50 5389.69 2
EPNet73.09 6772.16 7175.90 6375.95 21256.28 10183.05 5472.39 24966.53 865.27 19287.00 7650.40 9285.47 10062.48 11986.32 5485.94 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS74.76 5074.46 5275.65 7077.84 17152.25 16575.59 17984.17 4663.76 3673.15 6382.79 16159.58 1986.80 6467.24 7886.04 5587.89 22
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CP-MVS77.12 3076.68 3078.43 3186.05 3863.18 587.55 1083.45 6762.44 6272.68 7290.50 2248.18 11487.34 4873.59 3985.71 5684.76 133
mPP-MVS76.54 3475.93 3878.34 3486.47 2663.50 385.74 2482.28 8962.90 5071.77 8290.26 2946.61 13986.55 7271.71 5085.66 5784.97 126
DROMVSNet75.84 4375.87 4075.74 6778.86 14052.65 15583.73 4886.08 1763.47 4072.77 7187.25 7553.13 6487.93 3871.97 4885.57 5886.66 62
MSLP-MVS++73.77 6273.47 6274.66 8983.02 7159.29 5782.30 7281.88 9459.34 11571.59 8586.83 7745.94 14383.65 13565.09 9785.22 5981.06 219
SD-MVS77.70 2477.62 2477.93 4084.47 5961.88 2184.55 3283.87 5660.37 9479.89 1889.38 4754.97 4485.58 9576.12 2584.94 6086.33 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator64.47 572.49 7471.39 8175.79 6477.70 17458.99 6780.66 9283.15 7862.24 6465.46 18886.59 8742.38 18185.52 9659.59 14484.72 6182.85 188
CS-MVS76.25 3875.98 3777.06 4880.15 11455.63 11584.51 3383.90 5363.24 4373.30 6087.27 7455.06 4386.30 8171.78 4984.58 6289.25 4
CANet76.46 3575.93 3878.06 3781.29 9257.53 8382.35 6783.31 7367.78 170.09 9686.34 9354.92 4588.90 2372.68 4484.55 6387.76 30
LFMVS71.78 8571.59 7672.32 15283.40 6746.38 24079.75 10571.08 25664.18 3072.80 7088.64 5742.58 17883.72 13357.41 15384.49 6486.86 56
TSAR-MVS + GP.74.90 4874.15 5577.17 4782.00 8058.77 7181.80 7778.57 15958.58 12674.32 4984.51 13055.94 3887.22 5067.11 7984.48 6585.52 104
test250665.33 20764.61 20067.50 22879.46 12534.19 34274.43 20551.92 34558.72 12266.75 16388.05 6325.99 32580.92 19651.94 19784.25 6687.39 42
ECVR-MVScopyleft67.72 16667.51 14768.35 22279.46 12536.29 33274.79 19866.93 28558.72 12267.19 15488.05 6336.10 24281.38 18352.07 19584.25 6687.39 42
MAR-MVS71.51 8970.15 10175.60 7281.84 8359.39 5481.38 8482.90 8254.90 20168.08 13578.70 24247.73 11885.51 9751.68 20284.17 6881.88 204
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS72.17 8071.41 8074.45 9881.95 8257.22 8784.03 4380.38 13059.89 10768.40 12682.33 17349.64 9787.83 4251.87 19884.16 6978.30 251
casdiffmvs_mvgpermissive76.14 3976.30 3475.66 6976.46 20651.83 17379.67 10785.08 3165.02 1775.84 3288.58 5859.42 2185.08 10672.75 4383.93 7090.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111167.21 17367.14 16467.42 23079.24 13134.76 33773.89 21665.65 29258.71 12466.96 15887.95 6536.09 24380.53 20352.03 19683.79 7186.97 52
IS-MVSNet71.57 8871.00 8973.27 13378.86 14045.63 25180.22 9578.69 15664.14 3366.46 16887.36 7149.30 10085.60 9350.26 21183.71 7288.59 7
UA-Net73.13 6672.93 6673.76 11283.58 6451.66 17478.75 11677.66 18167.75 272.61 7489.42 4549.82 9583.29 14153.61 18483.14 7386.32 74
MG-MVS73.96 6073.89 5874.16 10385.65 4249.69 20481.59 8281.29 11261.45 7671.05 8888.11 6051.77 7887.73 4361.05 13283.09 7485.05 123
OpenMVScopyleft61.03 968.85 14067.56 14372.70 14474.26 24253.99 13381.21 8681.34 11052.70 22362.75 22685.55 11238.86 21484.14 12448.41 22783.01 7579.97 235
SR-MVS76.13 4075.70 4177.40 4685.87 4061.20 2985.52 2682.19 9059.99 10375.10 3690.35 2647.66 12086.52 7371.64 5182.99 7684.47 139
VDDNet71.81 8471.33 8373.26 13482.80 7547.60 23178.74 11775.27 21359.59 11272.94 6889.40 4641.51 19383.91 13058.75 14882.99 7688.26 12
MVS_111021_HR74.02 5973.46 6375.69 6883.01 7260.63 4077.29 14778.40 17061.18 8070.58 9185.97 10254.18 5284.00 12967.52 7682.98 7882.45 194
ETV-MVS74.46 5673.84 5976.33 5879.27 13055.24 12279.22 11385.00 3664.97 1972.65 7379.46 23353.65 6187.87 4067.45 7782.91 7985.89 88
HPM-MVS_fast74.30 5873.46 6376.80 5084.45 6059.04 6583.65 5081.05 11860.15 10070.43 9289.84 4141.09 19885.59 9467.61 7582.90 8085.77 94
ACMMPcopyleft76.02 4175.33 4478.07 3685.20 4961.91 2085.49 2884.44 4163.04 4769.80 10689.74 4445.43 15287.16 5372.01 4782.87 8185.14 119
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize74.96 4774.39 5376.67 5282.20 7858.24 7683.67 4983.29 7458.41 12973.71 5690.14 3145.62 14585.99 8569.64 5982.85 8285.78 91
casdiffmvspermissive74.80 4974.89 4974.53 9675.59 21850.37 19178.17 12685.06 3362.80 5674.40 4887.86 6657.88 2683.61 13669.46 6282.79 8389.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline74.61 5374.70 5074.34 10075.70 21449.99 19977.54 13984.63 4062.73 5773.98 5287.79 6857.67 2883.82 13269.49 6082.74 8489.20 5
VDD-MVS72.50 7372.09 7273.75 11481.58 8549.69 20477.76 13477.63 18263.21 4573.21 6289.02 5142.14 18283.32 14061.72 12682.50 8588.25 13
CLD-MVS73.33 6472.68 6875.29 7878.82 14253.33 14578.23 12584.79 3961.30 7970.41 9381.04 20152.41 7087.12 5664.61 10282.49 8685.41 112
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
canonicalmvs74.67 5274.98 4873.71 11678.94 13950.56 18980.23 9483.87 5660.30 9877.15 2886.56 8959.65 1782.00 17266.01 8882.12 8788.58 8
MVS67.37 17166.33 17770.51 18875.46 22050.94 17973.95 21281.85 9541.57 32462.54 23178.57 24747.98 11585.47 10052.97 18982.05 8875.14 284
patch_mono-269.85 11771.09 8766.16 24579.11 13654.80 12871.97 24374.31 23053.50 21770.90 8984.17 13457.63 2963.31 31666.17 8582.02 8980.38 229
dcpmvs_274.55 5575.23 4672.48 14782.34 7753.34 14477.87 13081.46 10257.80 14275.49 3486.81 7862.22 1377.75 24671.09 5482.02 8986.34 70
alignmvs73.86 6173.99 5673.45 12778.20 15950.50 19078.57 12182.43 8759.40 11376.57 2986.71 8356.42 3581.23 18865.84 9081.79 9188.62 6
SR-MVS-dyc-post74.57 5473.90 5776.58 5483.49 6559.87 4884.29 3581.36 10658.07 13573.14 6490.07 3244.74 15985.84 8968.20 6681.76 9284.03 149
RE-MVS-def73.71 6183.49 6559.87 4884.29 3581.36 10658.07 13573.14 6490.07 3243.06 17468.20 6681.76 9284.03 149
新几何170.76 18285.66 4161.13 3066.43 28844.68 30070.29 9486.64 8441.29 19575.23 26649.72 21581.75 9475.93 277
Vis-MVSNetpermissive72.18 7971.37 8274.61 9281.29 9255.41 12080.90 8878.28 17260.73 8669.23 11788.09 6144.36 16482.65 16057.68 15181.75 9485.77 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VNet69.68 12470.19 10068.16 22479.73 12041.63 28770.53 26277.38 18760.37 9470.69 9086.63 8551.08 8677.09 25453.61 18481.69 9685.75 96
OPM-MVS74.73 5174.25 5476.19 5980.81 10059.01 6682.60 6483.64 6163.74 3772.52 7587.49 6947.18 13085.88 8869.47 6180.78 9783.66 168
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
旧先验183.04 7053.15 14867.52 27987.85 6744.08 16580.76 9878.03 258
PAPM_NR72.63 7271.80 7475.13 8181.72 8453.42 14379.91 10283.28 7559.14 11766.31 17285.90 10551.86 7786.06 8257.45 15280.62 9985.91 86
Vis-MVSNet (Re-imp)63.69 22263.88 20563.14 27374.75 23131.04 35571.16 25463.64 30556.32 16559.80 25884.99 11844.51 16175.46 26539.12 29680.62 9982.92 185
HQP_MVS74.31 5773.73 6076.06 6081.41 8956.31 9984.22 3884.01 4964.52 2369.27 11486.10 9745.26 15687.21 5168.16 6880.58 10184.65 134
plane_prior584.01 4987.21 5168.16 6880.58 10184.65 134
UGNet68.81 14167.39 15273.06 13678.33 15654.47 13079.77 10475.40 21260.45 9063.22 22084.40 13132.71 27880.91 19751.71 20180.56 10383.81 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
plane_prior56.31 9983.58 5163.19 4680.48 104
HQP3-MVS83.90 5380.35 105
HQP-MVS73.45 6372.80 6775.40 7480.66 10154.94 12482.31 6983.90 5362.10 6667.85 13985.54 11345.46 15086.93 6067.04 8080.35 10584.32 141
PCF-MVS61.88 870.95 9769.49 11175.35 7577.63 17755.71 11276.04 17481.81 9650.30 25069.66 10785.40 11652.51 6784.89 11251.82 19980.24 10785.45 108
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DP-MVS Recon72.15 8270.73 9276.40 5686.57 2457.99 7881.15 8782.96 8057.03 15066.78 16185.56 11144.50 16288.11 3451.77 20080.23 10883.10 183
CPTT-MVS72.78 6972.08 7374.87 8484.88 5761.41 2684.15 4177.86 17755.27 18867.51 15088.08 6241.93 18581.85 17469.04 6480.01 10981.35 212
114514_t70.83 9869.56 10874.64 9186.21 3154.63 12982.34 6881.81 9648.22 26863.01 22385.83 10740.92 19987.10 5757.91 15079.79 11082.18 197
test_yl69.69 12269.13 11671.36 16978.37 15445.74 24774.71 19980.20 13257.91 14070.01 10183.83 14342.44 17982.87 15254.97 17179.72 11185.48 106
DCV-MVSNet69.69 12269.13 11671.36 16978.37 15445.74 24774.71 19980.20 13257.91 14070.01 10183.83 14342.44 17982.87 15254.97 17179.72 11185.48 106
MVS_Test72.45 7572.46 7072.42 15174.88 22648.50 21976.28 16783.14 7959.40 11372.46 7684.68 12255.66 3981.12 18965.98 8979.66 11387.63 34
PS-MVSNAJ70.51 10469.70 10772.93 13881.52 8655.79 11174.92 19579.00 14855.04 19869.88 10478.66 24347.05 13282.19 16961.61 12779.58 11480.83 222
PVSNet_Blended68.59 14667.72 13971.19 17477.03 19450.57 18772.51 23581.52 9951.91 23064.22 21377.77 25949.13 10482.87 15255.82 16279.58 11480.14 233
EPP-MVSNet72.16 8171.31 8474.71 8678.68 14649.70 20282.10 7481.65 9860.40 9165.94 17785.84 10651.74 7986.37 7855.93 16179.55 11688.07 21
xiu_mvs_v2_base70.52 10369.75 10572.84 14081.21 9555.63 11575.11 18978.92 15054.92 20069.96 10379.68 22847.00 13682.09 17161.60 12879.37 11780.81 223
MVSFormer71.50 9070.38 9874.88 8378.76 14357.15 9282.79 5978.48 16351.26 24169.49 10983.22 15543.99 16783.24 14266.06 8679.37 11784.23 144
lupinMVS69.57 12768.28 13373.44 12878.76 14357.15 9276.57 16173.29 24346.19 28969.49 10982.18 17643.99 16779.23 22164.66 10079.37 11783.93 152
PAPM67.92 16266.69 16771.63 16278.09 16349.02 21277.09 15181.24 11551.04 24460.91 24783.98 14047.71 11984.99 10740.81 28779.32 12080.90 221
FIs70.82 9971.43 7968.98 21478.33 15638.14 30976.96 15483.59 6361.02 8167.33 15286.73 8155.07 4281.64 17754.61 17779.22 12187.14 50
jason69.65 12568.39 13273.43 12978.27 15856.88 9677.12 15073.71 23946.53 28669.34 11383.22 15543.37 17179.18 22264.77 9979.20 12284.23 144
jason: jason.
PAPR71.72 8770.82 9174.41 9981.20 9651.17 17679.55 11083.33 7255.81 17766.93 16084.61 12650.95 8886.06 8255.79 16479.20 12286.00 83
EIA-MVS71.78 8570.60 9375.30 7779.85 11853.54 13977.27 14883.26 7657.92 13966.49 16779.39 23452.07 7586.69 6760.05 13879.14 12485.66 99
Effi-MVS+73.31 6572.54 6975.62 7177.87 17053.64 13679.62 10979.61 13961.63 7572.02 8182.61 16656.44 3485.97 8663.99 10679.07 12587.25 48
gg-mvs-nofinetune57.86 26856.43 27262.18 27972.62 26035.35 33466.57 28556.33 33450.65 24757.64 27957.10 35430.65 29076.36 26137.38 30478.88 12674.82 291
CDS-MVSNet66.80 18665.37 19271.10 17778.98 13853.13 15073.27 22471.07 25752.15 22964.72 20480.23 21843.56 17077.10 25345.48 25278.88 12683.05 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
AdaColmapbinary69.99 11468.66 12573.97 10684.94 5457.83 7982.63 6378.71 15556.28 16764.34 20884.14 13541.57 19087.06 5946.45 24078.88 12677.02 268
Anonymous20240521166.84 18565.99 18469.40 20880.19 11242.21 27971.11 25671.31 25558.80 12167.90 13786.39 9229.83 29779.65 21449.60 21878.78 12986.33 72
CANet_DTU68.18 15767.71 14169.59 20474.83 22846.24 24278.66 11976.85 19459.60 10963.45 21982.09 18335.25 24877.41 25059.88 14178.76 13085.14 119
test22283.14 6858.68 7272.57 23463.45 30641.78 32067.56 14986.12 9637.13 23578.73 13174.98 288
TAMVS66.78 18765.27 19571.33 17279.16 13553.67 13573.84 21869.59 26752.32 22865.28 19181.72 18944.49 16377.40 25142.32 27878.66 13282.92 185
PVSNet_Blended_VisFu71.45 9170.39 9774.65 9082.01 7958.82 7079.93 10180.35 13155.09 19365.82 18382.16 17949.17 10382.64 16160.34 13678.62 13382.50 193
testdata64.66 26381.52 8652.93 15165.29 29646.09 29073.88 5487.46 7038.08 22366.26 30853.31 18778.48 13474.78 292
QAPM70.05 11268.81 12273.78 11076.54 20453.43 14283.23 5283.48 6552.89 22265.90 17986.29 9441.55 19286.49 7551.01 20578.40 13581.42 208
FC-MVSNet-test69.80 12070.58 9567.46 22977.61 18234.73 33876.05 17383.19 7760.84 8365.88 18186.46 9054.52 4980.76 20152.52 19178.12 13686.91 54
LCM-MVSNet-Re61.88 24261.35 23663.46 26974.58 23431.48 35461.42 31458.14 32758.71 12453.02 31979.55 23143.07 17376.80 25745.69 24777.96 13782.11 200
diffmvspermissive70.69 10170.43 9671.46 16469.45 30248.95 21472.93 22778.46 16557.27 14771.69 8383.97 14151.48 8177.92 24370.70 5677.95 13887.53 38
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OMC-MVS71.40 9270.60 9373.78 11076.60 20253.15 14879.74 10679.78 13558.37 13068.75 12186.45 9145.43 15280.60 20262.58 11777.73 13987.58 37
iter_conf_final69.82 11868.02 13675.23 7979.38 12752.91 15280.11 9773.96 23654.99 19968.04 13683.59 14829.05 30287.16 5365.41 9577.62 14085.63 101
MVS_111021_LR69.50 12968.78 12371.65 16178.38 15359.33 5574.82 19770.11 26358.08 13467.83 14384.68 12241.96 18476.34 26265.62 9377.54 14179.30 245
Fast-Effi-MVS+70.28 10969.12 11873.73 11578.50 14951.50 17575.01 19279.46 14356.16 17068.59 12279.55 23153.97 5384.05 12553.34 18677.53 14285.65 100
xiu_mvs_v1_base_debu68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
xiu_mvs_v1_base68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
xiu_mvs_v1_base_debi68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
LPG-MVS_test72.74 7071.74 7575.76 6580.22 10957.51 8482.55 6583.40 6961.32 7766.67 16587.33 7239.15 21186.59 6967.70 7377.30 14683.19 180
LGP-MVS_train75.76 6580.22 10957.51 8483.40 6961.32 7766.67 16587.33 7239.15 21186.59 6967.70 7377.30 14683.19 180
Anonymous2024052969.91 11669.02 11972.56 14580.19 11247.65 22977.56 13880.99 12055.45 18669.88 10486.76 7939.24 21082.18 17054.04 17977.10 14887.85 25
iter_conf0569.40 13367.62 14274.73 8577.84 17151.13 17779.28 11273.71 23954.62 20368.17 13183.59 14828.68 30787.16 5365.74 9276.95 14985.91 86
EPNet_dtu61.90 24161.97 23061.68 28272.89 25639.78 29675.85 17765.62 29355.09 19354.56 30479.36 23537.59 22667.02 30339.80 29376.95 14978.25 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS59.36 1066.60 19065.20 19670.81 18176.63 20148.75 21676.52 16380.04 13450.64 24865.24 19684.93 11939.15 21178.54 23536.77 30776.88 15185.14 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP63.53 672.30 7771.20 8675.59 7380.28 10757.54 8282.74 6182.84 8460.58 8865.24 19686.18 9539.25 20986.03 8466.95 8276.79 15283.22 178
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
cascas65.98 19763.42 21273.64 12077.26 19052.58 15872.26 23977.21 19048.56 26361.21 24674.60 29332.57 28285.82 9050.38 21076.75 15382.52 192
BH-untuned68.27 15467.29 15671.21 17379.74 11953.22 14776.06 17277.46 18657.19 14866.10 17481.61 19145.37 15483.50 13845.42 25476.68 15476.91 272
ET-MVSNet_ETH3D67.96 16165.72 18874.68 8876.67 20055.62 11775.11 18974.74 22452.91 22160.03 25380.12 21933.68 26482.64 16161.86 12576.34 15585.78 91
FA-MVS(test-final)69.82 11868.48 12773.84 10878.44 15250.04 19775.58 18178.99 14958.16 13367.59 14882.14 18042.66 17685.63 9256.60 15676.19 15685.84 89
ACMM61.98 770.80 10069.73 10674.02 10480.59 10658.59 7382.68 6282.02 9355.46 18567.18 15584.39 13238.51 21683.17 14460.65 13476.10 15780.30 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-RMVSNet68.81 14167.42 15172.97 13780.11 11552.53 16074.26 20676.29 20058.48 12868.38 12784.20 13342.59 17783.83 13146.53 23975.91 15882.56 189
GeoE71.01 9670.15 10173.60 12379.57 12352.17 16678.93 11578.12 17458.02 13767.76 14783.87 14252.36 7182.72 15856.90 15575.79 15985.92 85
XVG-OURS68.76 14467.37 15372.90 13974.32 24157.22 8770.09 26878.81 15255.24 18967.79 14585.81 10936.54 24178.28 23862.04 12375.74 16083.19 180
mvs_anonymous68.03 15967.51 14769.59 20472.08 26844.57 26071.99 24275.23 21551.67 23167.06 15682.57 16754.68 4777.94 24256.56 15775.71 16186.26 78
BH-w/o66.85 18465.83 18669.90 19979.29 12852.46 16274.66 20176.65 19854.51 20864.85 20378.12 24945.59 14782.95 14843.26 27075.54 16274.27 297
thisisatest051565.83 19963.50 21172.82 14273.75 24549.50 20771.32 25073.12 24549.39 25663.82 21576.50 27534.95 25284.84 11553.20 18875.49 16384.13 148
mvsmamba71.15 9369.54 10975.99 6177.61 18253.46 14181.95 7675.11 21957.73 14366.95 15985.96 10337.14 23487.56 4667.94 7075.49 16386.97 52
LS3D64.71 21462.50 22471.34 17179.72 12155.71 11279.82 10374.72 22548.50 26556.62 28484.62 12533.59 26682.34 16829.65 34875.23 16575.97 276
GG-mvs-BLEND62.34 27871.36 28037.04 32269.20 27557.33 33154.73 30265.48 34230.37 29277.82 24434.82 32074.93 16672.17 318
nrg03072.96 6873.01 6572.84 14075.41 22150.24 19280.02 9882.89 8358.36 13174.44 4786.73 8158.90 2380.83 19865.84 9074.46 16787.44 40
VPA-MVSNet69.02 13869.47 11267.69 22777.42 18641.00 29174.04 20979.68 13760.06 10169.26 11684.81 12151.06 8777.58 24854.44 17874.43 16884.48 138
PS-MVSNAJss72.24 7871.21 8575.31 7678.50 14955.93 10981.63 7982.12 9156.24 16870.02 10085.68 11047.05 13284.34 12265.27 9674.41 16985.67 98
EI-MVSNet-Vis-set72.42 7671.59 7674.91 8278.47 15154.02 13277.05 15279.33 14565.03 1671.68 8479.35 23652.75 6584.89 11266.46 8374.23 17085.83 90
CHOSEN 1792x268865.08 21162.84 22071.82 15681.49 8856.26 10266.32 28874.20 23340.53 32963.16 22278.65 24441.30 19477.80 24545.80 24674.09 17181.40 209
ACMMP++_ref74.07 172
PVSNet_BlendedMVS68.56 15067.72 13971.07 17877.03 19450.57 18774.50 20381.52 9953.66 21664.22 21379.72 22749.13 10482.87 15255.82 16273.92 17379.77 240
CMPMVSbinary42.80 2157.81 26955.97 27463.32 27060.98 34747.38 23364.66 30169.50 26832.06 34446.83 34077.80 25729.50 29971.36 28248.68 22473.75 17471.21 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch62.42 23561.46 23565.31 26075.21 22452.10 16772.05 24174.05 23446.41 28757.42 28174.36 29434.35 25877.57 24945.62 24973.67 17566.26 343
test-LLR58.15 26658.13 26158.22 29968.57 30844.80 25665.46 29457.92 32850.08 25255.44 29269.82 32332.62 27957.44 33649.66 21673.62 17672.41 314
test-mter56.42 27655.82 27558.22 29968.57 30844.80 25665.46 29457.92 32839.94 33455.44 29269.82 32321.92 34057.44 33649.66 21673.62 17672.41 314
EI-MVSNet-UG-set71.92 8371.06 8874.52 9777.98 16853.56 13876.62 16079.16 14664.40 2571.18 8778.95 24152.19 7384.66 11865.47 9473.57 17885.32 115
TR-MVS66.59 19265.07 19771.17 17579.18 13349.63 20673.48 22175.20 21752.95 22067.90 13780.33 21639.81 20483.68 13443.20 27173.56 17980.20 231
UniMVSNet_ETH3D67.60 16867.07 16569.18 21377.39 18742.29 27874.18 20875.59 20960.37 9466.77 16286.06 9937.64 22578.93 23452.16 19473.49 18086.32 74
FE-MVS65.91 19863.33 21473.63 12177.36 18851.95 17272.62 23275.81 20553.70 21465.31 19078.96 24028.81 30686.39 7743.93 26373.48 18182.55 190
ab-mvs66.65 18966.42 17367.37 23176.17 20941.73 28470.41 26576.14 20253.99 21165.98 17683.51 15249.48 9876.24 26348.60 22573.46 18284.14 147
EG-PatchMatch MVS64.71 21462.87 21970.22 19077.68 17553.48 14077.99 12978.82 15153.37 21856.03 28877.41 26224.75 33284.04 12646.37 24173.42 18373.14 304
XVG-OURS-SEG-HR68.81 14167.47 15072.82 14274.40 23956.87 9770.59 26179.04 14754.77 20266.99 15786.01 10139.57 20678.21 23962.54 11873.33 18483.37 174
thres20062.20 23861.16 24065.34 25975.38 22239.99 29469.60 27169.29 27155.64 18361.87 24076.99 26437.07 23778.96 23331.28 34173.28 18577.06 267
thres100view90063.28 22762.41 22565.89 25277.31 18938.66 30572.65 23069.11 27357.07 14962.45 23481.03 20237.01 23879.17 22331.84 33373.25 18679.83 238
tfpn200view963.18 22962.18 22866.21 24476.85 19739.62 29771.96 24469.44 26956.63 15662.61 22979.83 22337.18 23179.17 22331.84 33373.25 18679.83 238
thres40063.31 22562.18 22866.72 23676.85 19739.62 29771.96 24469.44 26956.63 15662.61 22979.83 22337.18 23179.17 22331.84 33373.25 18681.36 210
TESTMET0.1,155.28 28454.90 28156.42 30766.56 32143.67 26765.46 29456.27 33539.18 33653.83 31067.44 33524.21 33355.46 34648.04 22973.11 18970.13 334
thres600view763.30 22662.27 22666.41 24077.18 19138.87 30372.35 23769.11 27356.98 15162.37 23680.96 20437.01 23879.00 23231.43 34073.05 19081.36 210
VPNet67.52 16968.11 13565.74 25479.18 13336.80 32472.17 24072.83 24662.04 7067.79 14585.83 10748.88 10876.60 25951.30 20372.97 19183.81 158
Anonymous2023121169.28 13468.47 12971.73 15880.28 10747.18 23579.98 9982.37 8854.61 20467.24 15384.01 13939.43 20782.41 16755.45 16972.83 19285.62 102
GBi-Net67.21 17366.55 16869.19 21077.63 17743.33 26977.31 14477.83 17856.62 15865.04 19982.70 16241.85 18680.33 20847.18 23472.76 19383.92 153
test167.21 17366.55 16869.19 21077.63 17743.33 26977.31 14477.83 17856.62 15865.04 19982.70 16241.85 18680.33 20847.18 23472.76 19383.92 153
FMVSNet366.32 19565.61 19068.46 22076.48 20542.34 27774.98 19477.15 19155.83 17665.04 19981.16 19839.91 20280.14 21247.18 23472.76 19382.90 187
FMVSNet266.93 18366.31 17968.79 21777.63 17742.98 27376.11 17077.47 18456.62 15865.22 19882.17 17841.85 18680.18 21147.05 23772.72 19683.20 179
thisisatest053067.92 16265.78 18774.33 10176.29 20751.03 17876.89 15774.25 23253.67 21565.59 18681.76 18835.15 24985.50 9855.94 16072.47 19786.47 65
PVSNet50.76 1958.40 26357.39 26361.42 28475.53 21944.04 26461.43 31363.45 30647.04 28456.91 28273.61 30027.00 31964.76 31239.12 29672.40 19875.47 282
MIMVSNet57.35 27057.07 26658.22 29974.21 24337.18 31862.46 30860.88 32048.88 26155.29 29575.99 28031.68 28662.04 32131.87 33272.35 19975.43 283
bld_raw_dy_0_6464.87 21263.22 21569.83 20174.79 23053.32 14678.15 12762.02 31651.20 24360.17 25183.12 15924.15 33474.20 27363.08 11372.33 20081.96 201
131464.61 21663.21 21668.80 21671.87 27247.46 23273.95 21278.39 17142.88 31759.97 25476.60 27238.11 22279.39 21954.84 17372.32 20179.55 241
FMVSNet166.70 18865.87 18569.19 21077.49 18543.33 26977.31 14477.83 17856.45 16364.60 20782.70 16238.08 22380.33 20846.08 24372.31 20283.92 153
tt080567.77 16567.24 16169.34 20974.87 22740.08 29377.36 14381.37 10555.31 18766.33 17184.65 12437.35 22982.55 16355.65 16772.28 20385.39 113
ACMMP++72.16 204
MVP-Stereo65.41 20563.80 20770.22 19077.62 18155.53 11876.30 16678.53 16150.59 24956.47 28678.65 24439.84 20382.68 15944.10 26272.12 20572.44 313
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HyFIR lowres test65.67 20163.01 21873.67 11779.97 11755.65 11469.07 27675.52 21042.68 31863.53 21877.95 25140.43 20081.64 17746.01 24471.91 20683.73 164
XVG-ACMP-BASELINE64.36 21862.23 22770.74 18372.35 26552.45 16370.80 26078.45 16653.84 21359.87 25681.10 20016.24 34979.32 22055.64 16871.76 20780.47 226
HY-MVS56.14 1364.55 21763.89 20466.55 23974.73 23241.02 28969.96 26974.43 22749.29 25761.66 24280.92 20547.43 12676.68 25844.91 25771.69 20881.94 202
D2MVS62.30 23760.29 24668.34 22366.46 32248.42 22065.70 29173.42 24147.71 27458.16 27675.02 28930.51 29177.71 24753.96 18171.68 20978.90 249
ACMH55.70 1565.20 20963.57 21070.07 19478.07 16452.01 17179.48 11179.69 13655.75 17956.59 28580.98 20327.12 31780.94 19442.90 27571.58 21077.25 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVSTER67.16 17865.58 19171.88 15570.37 28949.70 20270.25 26778.45 16651.52 23569.16 11880.37 21338.45 21782.50 16460.19 13771.46 21183.44 173
EI-MVSNet69.27 13568.44 13171.73 15874.47 23649.39 20975.20 18778.45 16659.60 10969.16 11876.51 27351.29 8282.50 16459.86 14371.45 21283.30 175
LTVRE_ROB55.42 1663.15 23061.23 23968.92 21576.57 20347.80 22659.92 32276.39 19954.35 21058.67 27182.46 17129.44 30081.49 18142.12 28071.14 21377.46 261
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet (Re)70.63 10270.20 9971.89 15478.55 14845.29 25375.94 17682.92 8163.68 3868.16 13283.59 14853.89 5583.49 13953.97 18071.12 21486.89 55
Effi-MVS+-dtu69.64 12667.53 14675.95 6276.10 21062.29 1580.20 9676.06 20459.83 10865.26 19577.09 26341.56 19184.02 12860.60 13571.09 21581.53 207
NR-MVSNet69.54 12868.85 12171.59 16378.05 16543.81 26674.20 20780.86 12365.18 1262.76 22584.52 12852.35 7283.59 13750.96 20770.78 21687.37 44
v114470.42 10669.31 11473.76 11273.22 24850.64 18677.83 13281.43 10358.58 12669.40 11281.16 19847.53 12385.29 10564.01 10570.64 21785.34 114
jajsoiax68.25 15566.45 17073.66 11875.62 21655.49 11980.82 8978.51 16252.33 22764.33 20984.11 13628.28 30981.81 17663.48 11170.62 21883.67 166
h-mvs3372.71 7171.49 7876.40 5681.99 8159.58 5176.92 15676.74 19760.40 9174.81 4285.95 10445.54 14885.76 9170.41 5770.61 21983.86 157
mvs_tets68.18 15766.36 17673.63 12175.61 21755.35 12180.77 9078.56 16052.48 22664.27 21184.10 13727.45 31581.84 17563.45 11270.56 22083.69 165
UniMVSNet_NR-MVSNet71.11 9471.00 8971.44 16579.20 13244.13 26276.02 17582.60 8666.48 968.20 12984.60 12756.82 3282.82 15654.62 17570.43 22187.36 46
DU-MVS70.01 11369.53 11071.44 16578.05 16544.13 26275.01 19281.51 10164.37 2668.20 12984.52 12849.12 10682.82 15654.62 17570.43 22187.37 44
v119269.97 11568.68 12473.85 10773.19 24950.94 17977.68 13581.36 10657.51 14568.95 12080.85 20845.28 15585.33 10462.97 11570.37 22385.27 117
PLCcopyleft56.13 1465.09 21063.21 21670.72 18481.04 9854.87 12778.57 12177.47 18448.51 26455.71 28981.89 18533.71 26379.71 21341.66 28470.37 22377.58 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GA-MVS65.53 20363.70 20871.02 17970.87 28248.10 22370.48 26374.40 22856.69 15464.70 20576.77 26833.66 26581.10 19055.42 17070.32 22583.87 156
Fast-Effi-MVS+-dtu67.37 17165.33 19473.48 12672.94 25557.78 8177.47 14176.88 19357.60 14461.97 23876.85 26739.31 20880.49 20654.72 17470.28 22682.17 199
v2v48270.50 10569.45 11373.66 11872.62 26050.03 19877.58 13680.51 12859.90 10469.52 10882.14 18047.53 12384.88 11465.07 9870.17 22786.09 81
IB-MVS56.42 1265.40 20662.73 22273.40 13074.89 22552.78 15473.09 22675.13 21855.69 18058.48 27473.73 29932.86 27386.32 8050.63 20870.11 22881.10 218
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CNLPA65.43 20464.02 20369.68 20278.73 14558.07 7777.82 13370.71 26051.49 23661.57 24483.58 15138.23 22170.82 28443.90 26470.10 22980.16 232
RRT_MVS69.42 13267.49 14975.21 8078.01 16752.56 15982.23 7378.15 17355.84 17565.65 18485.07 11730.86 28986.83 6361.56 13070.00 23086.24 79
1112_ss64.00 22063.36 21365.93 25179.28 12942.58 27671.35 24972.36 25046.41 28760.55 24977.89 25546.27 14273.28 27446.18 24269.97 23181.92 203
DP-MVS65.68 20063.66 20971.75 15784.93 5556.87 9780.74 9173.16 24453.06 21959.09 26782.35 17236.79 24085.94 8732.82 32969.96 23272.45 312
tttt051767.83 16465.66 18974.33 10176.69 19950.82 18377.86 13173.99 23554.54 20764.64 20682.53 16935.06 25085.50 9855.71 16569.91 23386.67 61
IterMVS-LS69.22 13768.48 12771.43 16774.44 23849.40 20876.23 16877.55 18359.60 10965.85 18281.59 19351.28 8381.58 18059.87 14269.90 23483.30 175
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192069.47 13068.17 13473.36 13173.06 25250.10 19677.39 14280.56 12656.58 16268.59 12280.37 21344.72 16084.98 10962.47 12069.82 23585.00 124
Baseline_NR-MVSNet67.05 18067.56 14365.50 25675.65 21537.70 31575.42 18274.65 22659.90 10468.14 13383.15 15849.12 10677.20 25252.23 19369.78 23681.60 206
ACMH+57.40 1166.12 19664.06 20272.30 15377.79 17352.83 15380.39 9378.03 17557.30 14657.47 28082.55 16827.68 31384.17 12345.54 25069.78 23679.90 236
v124069.24 13667.91 13773.25 13573.02 25449.82 20077.21 14980.54 12756.43 16468.34 12880.51 21243.33 17284.99 10762.03 12469.77 23884.95 127
TranMVSNet+NR-MVSNet70.36 10770.10 10371.17 17578.64 14742.97 27476.53 16281.16 11766.95 468.53 12585.42 11551.61 8083.07 14552.32 19269.70 23987.46 39
v14419269.71 12168.51 12673.33 13273.10 25150.13 19577.54 13980.64 12556.65 15568.57 12480.55 21146.87 13784.96 11162.98 11469.66 24084.89 128
WR-MVS68.47 15168.47 12968.44 22180.20 11139.84 29573.75 21976.07 20364.68 2068.11 13483.63 14750.39 9379.14 22749.78 21269.66 24086.34 70
WTY-MVS59.75 25660.39 24557.85 30372.32 26637.83 31261.05 31964.18 30345.95 29461.91 23979.11 23947.01 13560.88 32442.50 27769.49 24274.83 290
cl2267.47 17066.45 17070.54 18769.85 29846.49 23973.85 21777.35 18855.07 19665.51 18777.92 25347.64 12181.10 19061.58 12969.32 24384.01 151
miper_ehance_all_eth68.03 15967.24 16170.40 18970.54 28546.21 24373.98 21078.68 15755.07 19666.05 17577.80 25752.16 7481.31 18561.53 13169.32 24383.67 166
miper_enhance_ethall67.11 17966.09 18370.17 19369.21 30445.98 24572.85 22978.41 16951.38 23865.65 18475.98 28151.17 8581.25 18660.82 13369.32 24383.29 177
test_djsdf69.45 13167.74 13874.58 9474.57 23554.92 12682.79 5978.48 16351.26 24165.41 18983.49 15338.37 21883.24 14266.06 8669.25 24685.56 103
cl____67.18 17666.26 18169.94 19670.20 29045.74 24773.30 22276.83 19555.10 19165.27 19279.57 23047.39 12780.53 20359.41 14769.22 24783.53 172
DIV-MVS_self_test67.18 17666.26 18169.94 19670.20 29045.74 24773.29 22376.83 19555.10 19165.27 19279.58 22947.38 12880.53 20359.43 14669.22 24783.54 171
c3_l68.33 15367.56 14370.62 18570.87 28246.21 24374.47 20478.80 15356.22 16966.19 17378.53 24851.88 7681.40 18262.08 12169.04 24984.25 143
CostFormer64.04 21962.51 22368.61 21971.88 27145.77 24671.30 25170.60 26147.55 27664.31 21076.61 27141.63 18979.62 21649.74 21469.00 25080.42 227
tpm262.07 23960.10 24767.99 22572.79 25743.86 26571.05 25866.85 28643.14 31562.77 22475.39 28738.32 21980.80 19941.69 28368.88 25179.32 244
v1070.21 11069.02 11973.81 10973.51 24750.92 18178.74 11781.39 10460.05 10266.39 17081.83 18747.58 12285.41 10362.80 11668.86 25285.09 122
v870.33 10869.28 11573.49 12573.15 25050.22 19378.62 12080.78 12460.79 8466.45 16982.11 18249.35 9984.98 10963.58 11068.71 25385.28 116
v7n69.01 13967.36 15473.98 10572.51 26352.65 15578.54 12381.30 11160.26 9962.67 22781.62 19043.61 16984.49 11957.01 15468.70 25484.79 131
MVS_030458.51 26157.36 26461.96 28170.04 29441.83 28269.40 27465.46 29450.73 24553.30 31874.06 29722.65 33770.18 29142.16 27968.44 25573.86 302
Test_1112_low_res62.32 23661.77 23164.00 26779.08 13739.53 29968.17 27870.17 26243.25 31359.03 26879.90 22244.08 16571.24 28343.79 26668.42 25681.25 213
PMMVS53.96 28953.26 29556.04 30862.60 34050.92 18161.17 31756.09 33632.81 34353.51 31666.84 33834.04 26059.93 32844.14 26168.18 25757.27 352
tfpnnormal62.47 23461.63 23364.99 26274.81 22939.01 30271.22 25273.72 23855.22 19060.21 25080.09 22141.26 19776.98 25630.02 34668.09 25878.97 248
Anonymous2023120655.10 28755.30 27954.48 31569.81 29933.94 34462.91 30762.13 31541.08 32655.18 29675.65 28332.75 27756.59 34130.32 34567.86 25972.91 305
V4268.65 14567.35 15572.56 14568.93 30750.18 19472.90 22879.47 14256.92 15269.45 11180.26 21746.29 14182.99 14664.07 10367.82 26084.53 136
MDTV_nov1_ep1357.00 26772.73 25838.26 30865.02 30064.73 30044.74 29955.46 29172.48 30432.61 28170.47 28637.47 30367.75 261
anonymousdsp67.00 18264.82 19973.57 12470.09 29356.13 10476.35 16577.35 18848.43 26664.99 20280.84 20933.01 27180.34 20764.66 10067.64 26284.23 144
OpenMVS_ROBcopyleft52.78 1860.03 25358.14 26065.69 25570.47 28644.82 25575.33 18370.86 25945.04 29756.06 28776.00 27826.89 32079.65 21435.36 31967.29 26372.60 309
XXY-MVS60.68 25061.67 23257.70 30570.43 28738.45 30764.19 30366.47 28748.05 27163.22 22080.86 20749.28 10160.47 32545.25 25667.28 26474.19 298
baseline263.42 22461.26 23869.89 20072.55 26247.62 23071.54 24768.38 27750.11 25154.82 30075.55 28543.06 17480.96 19348.13 22867.16 26581.11 217
AUN-MVS68.45 15266.41 17474.57 9579.53 12457.08 9573.93 21475.23 21554.44 20966.69 16481.85 18637.10 23682.89 15062.07 12266.84 26683.75 163
hse-mvs271.04 9569.86 10474.60 9379.58 12257.12 9473.96 21175.25 21460.40 9174.81 4281.95 18445.54 14882.90 14970.41 5766.83 26783.77 162
F-COLMAP63.05 23160.87 24469.58 20676.99 19653.63 13778.12 12876.16 20147.97 27252.41 32081.61 19127.87 31178.11 24040.07 29066.66 26877.00 269
pm-mvs165.24 20864.97 19866.04 24972.38 26439.40 30072.62 23275.63 20855.53 18462.35 23783.18 15747.45 12576.47 26049.06 22266.54 26982.24 196
v14868.24 15667.19 16371.40 16870.43 28747.77 22875.76 17877.03 19258.91 11967.36 15180.10 22048.60 11181.89 17360.01 13966.52 27084.53 136
eth_miper_zixun_eth67.63 16766.28 18071.67 16071.60 27448.33 22173.68 22077.88 17655.80 17865.91 17878.62 24647.35 12982.88 15159.45 14566.25 27183.81 158
sss56.17 27956.57 27054.96 31266.93 31836.32 33057.94 32861.69 31741.67 32258.64 27275.32 28838.72 21556.25 34242.04 28166.19 27272.31 317
COLMAP_ROBcopyleft52.97 1761.27 24958.81 25268.64 21874.63 23352.51 16178.42 12473.30 24249.92 25450.96 32581.51 19423.06 33679.40 21831.63 33765.85 27374.01 300
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet59.63 25759.14 25061.08 28774.47 23638.84 30475.20 18768.74 27531.15 34558.24 27576.51 27332.39 28368.58 29649.77 21365.84 27475.81 278
MSDG61.81 24359.23 24969.55 20772.64 25952.63 15770.45 26475.81 20551.38 23853.70 31176.11 27729.52 29881.08 19237.70 30265.79 27574.93 289
FMVSNet555.86 28054.93 28058.66 29771.05 28136.35 32864.18 30462.48 31346.76 28550.66 33074.73 29225.80 32664.04 31433.11 32765.57 27675.59 281
pmmvs556.47 27555.68 27658.86 29561.41 34436.71 32566.37 28762.75 31140.38 33053.70 31176.62 27034.56 25467.05 30240.02 29265.27 27772.83 307
miper_lstm_enhance62.03 24060.88 24365.49 25766.71 32046.25 24156.29 33575.70 20750.68 24661.27 24575.48 28640.21 20168.03 29856.31 15965.25 27882.18 197
tpm57.34 27158.16 25954.86 31371.80 27334.77 33667.47 28456.04 33748.20 26960.10 25276.92 26537.17 23353.41 35140.76 28865.01 27976.40 275
test_vis1_n_192058.86 25959.06 25158.25 29863.76 33443.14 27267.49 28366.36 28940.22 33165.89 18071.95 30931.04 28759.75 32959.94 14064.90 28071.85 321
pmmvs461.48 24759.39 24867.76 22671.57 27553.86 13471.42 24865.34 29544.20 30559.46 26277.92 25335.90 24474.71 26843.87 26564.87 28174.71 293
test_040263.25 22861.01 24169.96 19580.00 11654.37 13176.86 15872.02 25154.58 20658.71 27080.79 21035.00 25184.36 12126.41 35764.71 28271.15 328
CR-MVSNet59.91 25457.90 26265.96 25069.96 29652.07 16865.31 29763.15 30942.48 31959.36 26374.84 29035.83 24570.75 28545.50 25164.65 28375.06 285
RPMNet61.53 24558.42 25670.86 18069.96 29652.07 16865.31 29781.36 10643.20 31459.36 26370.15 32135.37 24785.47 10036.42 31464.65 28375.06 285
pmmvs663.69 22262.82 22166.27 24370.63 28439.27 30173.13 22575.47 21152.69 22459.75 26082.30 17439.71 20577.03 25547.40 23264.35 28582.53 191
Anonymous2024052155.30 28354.41 28557.96 30260.92 34941.73 28471.09 25771.06 25841.18 32548.65 33473.31 30116.93 34759.25 33142.54 27664.01 28672.90 306
WR-MVS_H67.02 18166.92 16667.33 23377.95 16937.75 31377.57 13782.11 9262.03 7162.65 22882.48 17050.57 9179.46 21742.91 27464.01 28684.79 131
test0.0.03 153.32 29653.59 29352.50 32762.81 33929.45 35859.51 32354.11 34150.08 25254.40 30674.31 29532.62 27955.92 34430.50 34463.95 28872.15 319
PatchMatch-RL56.25 27854.55 28361.32 28677.06 19356.07 10665.57 29354.10 34244.13 30753.49 31771.27 31325.20 32966.78 30436.52 31363.66 28961.12 346
PatchmatchNetpermissive59.84 25558.24 25864.65 26473.05 25346.70 23869.42 27362.18 31447.55 27658.88 26971.96 30834.49 25669.16 29342.99 27363.60 29078.07 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS-SCA-FT62.49 23361.52 23465.40 25871.99 27050.80 18471.15 25569.63 26645.71 29560.61 24877.93 25237.45 22765.99 30955.67 16663.50 29179.42 243
CP-MVSNet66.49 19366.41 17466.72 23677.67 17636.33 32976.83 15979.52 14162.45 6162.54 23183.47 15446.32 14078.37 23645.47 25363.43 29285.45 108
PS-CasMVS66.42 19466.32 17866.70 23877.60 18436.30 33176.94 15579.61 13962.36 6362.43 23583.66 14645.69 14478.37 23645.35 25563.26 29385.42 111
IterMVS62.79 23261.27 23767.35 23269.37 30352.04 17071.17 25368.24 27852.63 22559.82 25776.91 26637.32 23072.36 27752.80 19063.19 29477.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PEN-MVS66.60 19066.45 17067.04 23477.11 19236.56 32677.03 15380.42 12962.95 4862.51 23384.03 13846.69 13879.07 22844.22 25863.08 29585.51 105
tpmrst58.24 26458.70 25456.84 30666.97 31734.32 34069.57 27261.14 31947.17 28358.58 27371.60 31041.28 19660.41 32649.20 22062.84 29675.78 279
testgi51.90 30052.37 29750.51 33360.39 35023.55 37258.42 32658.15 32649.03 26051.83 32279.21 23822.39 33855.59 34529.24 35062.64 29772.40 316
SCA60.49 25158.38 25766.80 23574.14 24448.06 22463.35 30563.23 30849.13 25959.33 26672.10 30637.45 22774.27 27144.17 25962.57 29878.05 255
EPMVS53.96 28953.69 29254.79 31466.12 32531.96 35362.34 31049.05 35144.42 30455.54 29071.33 31230.22 29456.70 33941.65 28562.54 29975.71 280
ITE_SJBPF62.09 28066.16 32444.55 26164.32 30247.36 27955.31 29480.34 21519.27 34462.68 31936.29 31562.39 30079.04 246
MIMVSNet155.17 28654.31 28757.77 30470.03 29532.01 35265.68 29264.81 29849.19 25846.75 34176.00 27825.53 32864.04 31428.65 35162.13 30177.26 265
CL-MVSNet_self_test61.53 24560.94 24263.30 27168.95 30636.93 32367.60 28272.80 24755.67 18159.95 25576.63 26945.01 15872.22 28039.74 29462.09 30280.74 224
baseline163.81 22163.87 20663.62 26876.29 20736.36 32771.78 24667.29 28256.05 17264.23 21282.95 16047.11 13174.41 27047.30 23361.85 30380.10 234
USDC56.35 27754.24 28862.69 27664.74 33040.31 29265.05 29973.83 23743.93 30947.58 33677.71 26015.36 35175.05 26738.19 30161.81 30472.70 308
PatchT53.17 29753.44 29452.33 32868.29 31225.34 36958.21 32754.41 34044.46 30354.56 30469.05 32933.32 26860.94 32336.93 30661.76 30570.73 331
tpm cat159.25 25856.95 26866.15 24672.19 26746.96 23668.09 27965.76 29140.03 33357.81 27870.56 31638.32 21974.51 26938.26 30061.50 30677.00 269
tpmvs58.47 26256.95 26863.03 27570.20 29041.21 28867.90 28167.23 28349.62 25554.73 30270.84 31434.14 25976.24 26336.64 31161.29 30771.64 322
Patchmtry57.16 27256.47 27159.23 29169.17 30534.58 33962.98 30663.15 30944.53 30156.83 28374.84 29035.83 24568.71 29540.03 29160.91 30874.39 296
DTE-MVSNet65.58 20265.34 19366.31 24176.06 21134.79 33576.43 16479.38 14462.55 5961.66 24283.83 14345.60 14679.15 22641.64 28660.88 30985.00 124
CHOSEN 280x42047.83 31346.36 31752.24 33067.37 31649.78 20138.91 36443.11 36335.00 34143.27 35163.30 34728.95 30349.19 35836.53 31260.80 31057.76 351
test_fmvs151.32 30550.48 30453.81 31953.57 35637.51 31660.63 32151.16 34628.02 35163.62 21769.23 32816.41 34853.93 35051.01 20560.70 31169.99 335
test_fmvs1_n51.37 30350.35 30554.42 31752.85 35737.71 31461.16 31851.93 34428.15 34963.81 21669.73 32513.72 35253.95 34951.16 20460.65 31271.59 323
Patchmatch-test49.08 31048.28 31251.50 33164.40 33230.85 35645.68 35648.46 35435.60 34046.10 34472.10 30634.47 25746.37 36127.08 35560.65 31277.27 264
test20.0353.87 29154.02 29053.41 32361.47 34328.11 36261.30 31559.21 32351.34 24052.09 32177.43 26133.29 26958.55 33329.76 34760.27 31473.58 303
MVS-HIRNet45.52 31644.48 31948.65 33568.49 31034.05 34359.41 32544.50 36127.03 35237.96 35950.47 36226.16 32464.10 31326.74 35659.52 31547.82 361
Patchmatch-RL test58.16 26555.49 27766.15 24667.92 31348.89 21560.66 32051.07 34847.86 27359.36 26362.71 34834.02 26172.27 27956.41 15859.40 31677.30 263
AllTest57.08 27354.65 28264.39 26571.44 27649.03 21069.92 27067.30 28045.97 29247.16 33879.77 22517.47 34567.56 30033.65 32459.16 31776.57 273
TestCases64.39 26571.44 27649.03 21067.30 28045.97 29247.16 33879.77 22517.47 34567.56 30033.65 32459.16 31776.57 273
RPSCF55.80 28154.22 28960.53 28865.13 32942.91 27564.30 30257.62 33036.84 33958.05 27782.28 17528.01 31056.24 34337.14 30558.61 31982.44 195
EU-MVSNet55.61 28254.41 28559.19 29365.41 32833.42 34672.44 23671.91 25228.81 34751.27 32373.87 29824.76 33169.08 29443.04 27258.20 32075.06 285
KD-MVS_self_test55.22 28553.89 29159.21 29257.80 35427.47 36457.75 33074.32 22947.38 27850.90 32670.00 32228.45 30870.30 28940.44 28957.92 32179.87 237
test_vis1_n49.89 30948.69 31153.50 32253.97 35537.38 31761.53 31247.33 35728.54 34859.62 26167.10 33713.52 35352.27 35449.07 22157.52 32270.84 330
pmmvs-eth3d58.81 26056.31 27366.30 24267.61 31452.42 16472.30 23864.76 29943.55 31154.94 29974.19 29628.95 30372.60 27643.31 26857.21 32373.88 301
test_fmvs248.69 31147.49 31652.29 32948.63 36333.06 34957.76 32948.05 35525.71 35559.76 25969.60 32611.57 35852.23 35549.45 21956.86 32471.58 324
our_test_356.49 27454.42 28462.68 27769.51 30045.48 25266.08 28961.49 31844.11 30850.73 32969.60 32633.05 27068.15 29738.38 29956.86 32474.40 295
TinyColmap54.14 28851.72 29861.40 28566.84 31941.97 28066.52 28668.51 27644.81 29842.69 35275.77 28211.66 35772.94 27531.96 33156.77 32669.27 339
ppachtmachnet_test58.06 26755.38 27866.10 24869.51 30048.99 21368.01 28066.13 29044.50 30254.05 30970.74 31532.09 28572.34 27836.68 31056.71 32776.99 271
OurMVSNet-221017-061.37 24858.63 25569.61 20372.05 26948.06 22473.93 21472.51 24847.23 28254.74 30180.92 20521.49 34381.24 18748.57 22656.22 32879.53 242
TransMVSNet (Re)64.72 21364.33 20165.87 25375.22 22338.56 30674.66 20175.08 22358.90 12061.79 24182.63 16551.18 8478.07 24143.63 26755.87 32980.99 220
FPMVS42.18 32141.11 32345.39 33858.03 35341.01 29049.50 34853.81 34330.07 34633.71 36064.03 34411.69 35652.08 35614.01 36755.11 33043.09 363
dp51.89 30151.60 29952.77 32668.44 31132.45 35162.36 30954.57 33944.16 30649.31 33367.91 33128.87 30556.61 34033.89 32354.89 33169.24 340
ADS-MVSNet251.33 30448.76 31059.07 29466.02 32644.60 25950.90 34659.76 32236.90 33750.74 32766.18 34026.38 32163.11 31727.17 35354.76 33269.50 337
ADS-MVSNet48.48 31247.77 31350.63 33266.02 32629.92 35750.90 34650.87 35036.90 33750.74 32766.18 34026.38 32152.47 35327.17 35354.76 33269.50 337
PM-MVS52.33 29950.19 30658.75 29662.10 34145.14 25465.75 29040.38 36543.60 31053.52 31572.65 3039.16 36565.87 31050.41 20954.18 33465.24 345
JIA-IIPM51.56 30247.68 31563.21 27264.61 33150.73 18547.71 35258.77 32542.90 31648.46 33551.72 35824.97 33070.24 29036.06 31653.89 33568.64 341
ambc65.13 26163.72 33637.07 32147.66 35378.78 15454.37 30771.42 31111.24 36080.94 19445.64 24853.85 33677.38 262
test_vis1_rt41.35 32339.45 32547.03 33746.65 36637.86 31147.76 35138.65 36623.10 35844.21 34951.22 36011.20 36144.08 36339.27 29553.02 33759.14 348
DSMNet-mixed39.30 32738.72 32641.03 34451.22 36019.66 37545.53 35731.35 37215.83 36939.80 35767.42 33622.19 33945.13 36222.43 35952.69 33858.31 350
N_pmnet39.35 32640.28 32436.54 34963.76 3341.62 38349.37 3490.76 38334.62 34243.61 35066.38 33926.25 32342.57 36526.02 35851.77 33965.44 344
TDRefinement53.44 29550.72 30361.60 28364.31 33346.96 23670.89 25965.27 29741.78 32044.61 34777.98 25011.52 35966.36 30728.57 35251.59 34071.49 325
Gipumacopyleft34.77 33031.91 33443.33 34262.05 34237.87 31020.39 36967.03 28423.23 35718.41 37025.84 3704.24 37162.73 31814.71 36651.32 34129.38 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet150.73 30648.96 30756.03 30961.10 34641.78 28351.94 34456.44 33340.94 32844.84 34567.80 33330.08 29555.08 34736.77 30750.71 34271.22 326
MDA-MVSNet_test_wron50.71 30748.95 30856.00 31061.17 34541.84 28151.90 34556.45 33240.96 32744.79 34667.84 33230.04 29655.07 34836.71 30950.69 34371.11 329
EGC-MVSNET42.47 32038.48 32754.46 31674.33 24048.73 21770.33 26651.10 3470.03 3770.18 37867.78 33413.28 35466.49 30618.91 36350.36 34448.15 359
test_fmvs344.30 31842.55 32049.55 33442.83 36727.15 36553.03 34244.93 36022.03 36253.69 31364.94 3434.21 37249.63 35747.47 23049.82 34571.88 320
SixPastTwentyTwo61.65 24458.80 25370.20 19275.80 21347.22 23475.59 17969.68 26554.61 20454.11 30879.26 23727.07 31882.96 14743.27 26949.79 34680.41 228
new-patchmatchnet47.56 31447.73 31447.06 33658.81 3529.37 37948.78 35059.21 32343.28 31244.22 34868.66 33025.67 32757.20 33831.57 33949.35 34774.62 294
LF4IMVS42.95 31942.26 32145.04 33948.30 36432.50 35054.80 33848.49 35328.03 35040.51 35570.16 3209.24 36443.89 36431.63 33749.18 34858.72 349
PMVScopyleft28.69 2236.22 32933.29 33345.02 34036.82 37535.98 33354.68 33948.74 35226.31 35321.02 36851.61 3592.88 37760.10 3279.99 37347.58 34938.99 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs344.92 31741.95 32253.86 31852.58 35943.55 26862.11 31146.90 35926.05 35440.63 35460.19 35011.08 36257.91 33531.83 33646.15 35060.11 347
MDA-MVSNet-bldmvs53.87 29150.81 30263.05 27466.25 32348.58 21856.93 33363.82 30448.09 27041.22 35370.48 31930.34 29368.00 29934.24 32245.92 35172.57 310
UnsupCasMVSNet_eth53.16 29852.47 29655.23 31159.45 35133.39 34759.43 32469.13 27245.98 29150.35 33272.32 30529.30 30158.26 33442.02 28244.30 35274.05 299
UnsupCasMVSNet_bld50.07 30848.87 30953.66 32060.97 34833.67 34557.62 33164.56 30139.47 33547.38 33764.02 34627.47 31459.32 33034.69 32143.68 35367.98 342
KD-MVS_2432*160053.45 29351.50 30059.30 28962.82 33737.14 31955.33 33671.79 25347.34 28055.09 29770.52 31721.91 34170.45 28735.72 31742.97 35470.31 332
miper_refine_blended53.45 29351.50 30059.30 28962.82 33737.14 31955.33 33671.79 25347.34 28055.09 29770.52 31721.91 34170.45 28735.72 31742.97 35470.31 332
test_vis3_rt32.09 33330.20 33737.76 34835.36 37727.48 36340.60 36328.29 37516.69 36732.52 36140.53 3661.96 37837.40 37033.64 32642.21 35648.39 358
APD_test137.39 32834.94 33144.72 34148.88 36233.19 34852.95 34344.00 36219.49 36327.28 36458.59 3523.18 37652.84 35218.92 36241.17 35748.14 360
new_pmnet34.13 33134.29 33233.64 35152.63 35818.23 37744.43 35933.90 37122.81 35930.89 36253.18 35610.48 36335.72 37220.77 36139.51 35846.98 362
K. test v360.47 25257.11 26570.56 18673.74 24648.22 22275.10 19162.55 31258.27 13253.62 31476.31 27627.81 31281.59 17947.42 23139.18 35981.88 204
LCM-MVSNet40.30 32435.88 33053.57 32142.24 36829.15 35945.21 35860.53 32122.23 36128.02 36350.98 3613.72 37461.78 32231.22 34238.76 36069.78 336
test_f31.86 33431.05 33534.28 35032.33 37921.86 37332.34 36630.46 37316.02 36839.78 35855.45 3554.80 37032.36 37330.61 34337.66 36148.64 357
mvsany_test139.38 32538.16 32843.02 34349.05 36134.28 34144.16 36025.94 37622.74 36046.57 34262.21 34923.85 33541.16 36833.01 32835.91 36253.63 355
testf131.46 33528.89 33839.16 34541.99 37028.78 36046.45 35437.56 36714.28 37021.10 36648.96 3631.48 38047.11 35913.63 36834.56 36341.60 364
APD_test231.46 33528.89 33839.16 34541.99 37028.78 36046.45 35437.56 36714.28 37021.10 36648.96 3631.48 38047.11 35913.63 36834.56 36341.60 364
lessismore_v069.91 19871.42 27847.80 22650.90 34950.39 33175.56 28427.43 31681.33 18445.91 24534.10 36580.59 225
mvsany_test332.62 33230.57 33638.77 34736.16 37624.20 37138.10 36520.63 37819.14 36440.36 35657.43 3535.06 36936.63 37129.59 34928.66 36655.49 353
PVSNet_043.31 2047.46 31545.64 31852.92 32567.60 31544.65 25854.06 34054.64 33841.59 32346.15 34358.75 35130.99 28858.66 33232.18 33024.81 36755.46 354
test_method19.68 34118.10 34424.41 35613.68 3813.11 38212.06 37242.37 3642.00 37511.97 37336.38 3675.77 36829.35 37515.06 36523.65 36840.76 366
PMMVS227.40 33725.91 34031.87 35339.46 3746.57 38031.17 36728.52 37423.96 35620.45 36948.94 3654.20 37337.94 36916.51 36419.97 36951.09 356
MVEpermissive17.77 2321.41 34017.77 34532.34 35234.34 37825.44 36816.11 37024.11 37711.19 37213.22 37231.92 3681.58 37930.95 37410.47 37117.03 37040.62 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN23.77 33822.73 34226.90 35442.02 36920.67 37442.66 36135.70 36917.43 36510.28 37525.05 3716.42 36742.39 36610.28 37214.71 37117.63 370
EMVS22.97 33921.84 34326.36 35540.20 37219.53 37641.95 36234.64 37017.09 3669.73 37622.83 3727.29 36642.22 3679.18 37413.66 37217.32 371
wuyk23d13.32 34312.52 34615.71 35747.54 36526.27 36631.06 3681.98 3824.93 3745.18 3771.94 3770.45 38218.54 3766.81 37612.83 3732.33 374
ANet_high41.38 32237.47 32953.11 32439.73 37324.45 37056.94 33269.69 26447.65 27526.04 36552.32 35712.44 35562.38 32021.80 36010.61 37472.49 311
tmp_tt9.43 34411.14 3474.30 3592.38 3824.40 38113.62 37116.08 3800.39 37615.89 37113.06 37315.80 3505.54 37812.63 37010.46 3752.95 373
DeepMVS_CXcopyleft12.03 35817.97 38010.91 37810.60 3817.46 37311.07 37428.36 3693.28 37511.29 3778.01 3759.74 37613.89 372
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
cdsmvs_eth3d_5k17.50 34223.34 3410.00 3620.00 3850.00 3850.00 37378.63 1580.00 3800.00 38182.18 17649.25 1020.00 3790.00 3790.00 3770.00 377
pcd_1.5k_mvsjas3.92 3485.23 3510.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 38047.05 1320.00 3790.00 3790.00 3770.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
testmvs4.52 3476.03 3500.01 3610.01 3830.00 38553.86 3410.00 3840.01 3780.04 3790.27 3780.00 3840.00 3790.04 3770.00 3770.03 376
test1234.73 3466.30 3490.02 3600.01 3830.01 38456.36 3340.00 3840.01 3780.04 3790.21 3790.01 3830.00 3790.03 3780.00 3770.04 375
ab-mvs-re6.49 3458.65 3480.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 38177.89 2550.00 3840.00 3790.00 3790.00 3770.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
FOURS186.12 3660.82 3788.18 183.61 6260.87 8281.50 16
test_one_060187.58 959.30 5686.84 765.01 1883.80 1191.86 664.03 11
eth-test20.00 385
eth-test0.00 385
test_241102_ONE87.77 458.90 6886.78 1064.20 2985.97 191.34 1266.87 390.78 7
save fliter86.17 3361.30 2883.98 4579.66 13859.00 118
test072687.75 759.07 6387.86 486.83 864.26 2784.19 791.92 564.82 8
GSMVS78.05 255
test_part287.58 960.47 4283.42 12
sam_mvs134.74 25378.05 255
sam_mvs33.43 267
MTGPAbinary80.97 121
test_post168.67 2773.64 37532.39 28369.49 29244.17 259
test_post3.55 37633.90 26266.52 305
patchmatchnet-post64.03 34434.50 25574.27 271
MTMP86.03 1817.08 379
gm-plane-assit71.40 27941.72 28648.85 26273.31 30182.48 16648.90 223
TEST985.58 4361.59 2481.62 8081.26 11355.65 18274.93 3988.81 5453.70 5884.68 116
test_885.40 4660.96 3481.54 8381.18 11655.86 17374.81 4288.80 5653.70 5884.45 120
agg_prior85.04 5059.96 4681.04 11974.68 4584.04 126
test_prior462.51 1482.08 75
test_prior76.69 5184.20 6157.27 8684.88 3786.43 7686.38 66
旧先验276.08 17145.32 29676.55 3065.56 31158.75 148
新几何276.12 169
无先验79.66 10874.30 23148.40 26780.78 20053.62 18379.03 247
原ACMM279.02 114
testdata272.18 28146.95 238
segment_acmp54.23 51
testdata172.65 23060.50 89
plane_prior781.41 8955.96 108
plane_prior681.20 9656.24 10345.26 156
plane_prior486.10 97
plane_prior356.09 10563.92 3469.27 114
plane_prior284.22 3864.52 23
plane_prior181.27 94
n20.00 384
nn0.00 384
door-mid47.19 358
test1183.47 66
door47.60 356
HQP5-MVS54.94 124
HQP-NCC80.66 10182.31 6962.10 6667.85 139
ACMP_Plane80.66 10182.31 6962.10 6667.85 139
BP-MVS67.04 80
HQP4-MVS67.85 13986.93 6084.32 141
HQP2-MVS45.46 150
NP-MVS80.98 9956.05 10785.54 113
MDTV_nov1_ep13_2view25.89 36761.22 31640.10 33251.10 32432.97 27238.49 29878.61 250
Test By Simon48.33 113