This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 987.24 1459.15 5988.18 187.15 365.04 1484.26 591.86 667.01 190.84 379.48 491.38 288.42 9
SED-MVS81.56 282.30 279.32 1287.77 458.90 6887.82 786.78 1064.18 3085.97 191.84 866.87 390.83 578.63 1590.87 588.23 14
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1786.83 865.51 1083.81 1090.51 2163.71 1289.23 1881.51 188.44 2788.09 19
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVScopyleft80.84 481.64 378.42 3287.75 759.07 6387.85 585.03 3464.26 2783.82 892.00 364.82 890.75 878.66 1390.61 1185.45 108
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft80.56 580.98 579.29 1487.27 1360.56 4185.71 2586.42 1463.28 4283.27 1391.83 1064.96 790.47 1076.41 2489.67 1886.84 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft80.28 680.39 779.95 386.60 2361.95 1986.33 1385.75 2162.49 6082.20 1592.28 156.53 3389.70 1579.85 391.48 188.19 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS80.16 780.59 678.86 2786.64 2160.02 4588.12 386.42 1462.94 4982.40 1492.12 259.64 1889.76 1478.70 1188.32 3186.79 59
HPM-MVS++copyleft79.88 880.14 879.10 2088.17 164.80 186.59 1283.70 6065.37 1178.78 2290.64 1758.63 2487.24 4979.00 1090.37 1485.26 118
CNVR-MVS79.84 979.97 979.45 1087.90 262.17 1784.37 3485.03 3466.96 377.58 2790.06 3459.47 2089.13 2078.67 1289.73 1687.03 51
SteuartSystems-ACMMP79.48 1079.31 1079.98 283.01 7262.18 1687.60 985.83 1966.69 778.03 2690.98 1454.26 5090.06 1278.42 1789.02 2387.69 31
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1884.92 5660.32 4483.03 5585.33 2762.86 5280.17 1790.03 3661.76 1488.95 2274.21 3288.67 2688.12 18
SF-MVS78.82 1279.22 1177.60 4282.88 7457.83 7984.99 3088.13 261.86 7379.16 2090.75 1657.96 2587.09 5877.08 2190.18 1587.87 24
ZNCC-MVS78.82 1278.67 1579.30 1386.43 2862.05 1886.62 1186.01 1863.32 4175.08 3790.47 2453.96 5488.68 2576.48 2389.63 2087.16 49
ACMMP_NAP78.77 1478.78 1378.74 2885.44 4561.04 3183.84 4785.16 3062.88 5178.10 2491.26 1352.51 6788.39 2879.34 690.52 1386.78 60
NCCC78.58 1578.31 1779.39 1187.51 1262.61 1385.20 2984.42 4266.73 674.67 4689.38 4755.30 4189.18 1974.19 3387.34 4186.38 66
DeepC-MVS69.38 278.56 1678.14 2079.83 683.60 6361.62 2384.17 4086.85 663.23 4473.84 5590.25 3057.68 2789.96 1374.62 3089.03 2287.89 22
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.78.44 1778.28 1878.90 2584.96 5261.41 2684.03 4383.82 5859.34 11579.37 1989.76 4359.84 1687.62 4576.69 2286.74 5087.68 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss78.35 1878.46 1678.03 3884.96 5259.52 5282.93 5785.39 2662.15 6576.41 3191.51 1152.47 6986.78 6580.66 289.64 1987.80 28
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft78.35 1878.26 1978.64 2986.54 2563.47 486.02 1983.55 6463.89 3573.60 5790.60 1854.85 4686.72 6677.20 2088.06 3585.74 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS78.14 2077.85 2278.99 2486.05 3861.82 2285.84 2085.21 2963.56 3974.29 5090.03 3652.56 6688.53 2774.79 2988.34 2986.63 63
APD-MVScopyleft78.02 2178.04 2177.98 3986.44 2760.81 3885.52 2684.36 4360.61 8779.05 2190.30 2855.54 4088.32 3073.48 4087.03 4384.83 129
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS78.01 2277.65 2379.10 2086.71 1962.81 886.29 1484.32 4462.82 5373.96 5390.50 2253.20 6388.35 2974.02 3587.05 4286.13 80
ACMMPR77.71 2377.23 2679.16 1686.75 1862.93 786.29 1484.24 4562.82 5373.55 5890.56 2049.80 9688.24 3174.02 3587.03 4386.32 74
SD-MVS77.70 2477.62 2477.93 4084.47 5961.88 2184.55 3283.87 5660.37 9479.89 1889.38 4754.97 4485.58 9576.12 2584.94 6086.33 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
region2R77.67 2577.18 2779.15 1786.76 1762.95 686.29 1484.16 4762.81 5573.30 6090.58 1949.90 9488.21 3273.78 3787.03 4386.29 77
MCST-MVS77.48 2677.45 2577.54 4386.67 2058.36 7583.22 5386.93 556.91 15374.91 4188.19 5959.15 2287.68 4473.67 3887.45 4086.57 64
HPM-MVScopyleft77.28 2776.85 2878.54 3085.00 5160.81 3882.91 5885.08 3162.57 5873.09 6689.97 3950.90 9087.48 4775.30 2686.85 4887.33 47
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DeepC-MVS_fast68.24 377.25 2876.63 3179.12 1986.15 3460.86 3684.71 3184.85 3861.98 7273.06 6788.88 5353.72 5789.06 2168.27 6588.04 3687.42 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS77.17 2976.56 3279.00 2286.32 2962.62 1185.83 2183.92 5164.55 2172.17 7990.01 3847.95 11688.01 3671.55 5286.74 5086.37 68
CP-MVS77.12 3076.68 3078.43 3186.05 3863.18 587.55 1083.45 6762.44 6272.68 7290.50 2248.18 11487.34 4873.59 3985.71 5684.76 133
CSCG76.92 3176.75 2977.41 4483.96 6259.60 5082.95 5686.50 1360.78 8575.27 3584.83 12060.76 1586.56 7167.86 7187.87 3986.06 82
MTAPA76.90 3276.42 3378.35 3386.08 3763.57 274.92 19580.97 12165.13 1375.77 3390.88 1548.63 10986.66 6877.23 1988.17 3384.81 130
PGM-MVS76.77 3376.06 3678.88 2686.14 3562.73 982.55 6583.74 5961.71 7472.45 7890.34 2748.48 11288.13 3372.32 4586.85 4885.78 91
mPP-MVS76.54 3475.93 3878.34 3486.47 2663.50 385.74 2482.28 8962.90 5071.77 8290.26 2946.61 13986.55 7271.71 5085.66 5784.97 126
CANet76.46 3575.93 3878.06 3781.29 9257.53 8382.35 6783.31 7367.78 170.09 9686.34 9354.92 4588.90 2372.68 4484.55 6387.76 30
CDPH-MVS76.31 3675.67 4278.22 3585.35 4859.14 6181.31 8584.02 4856.32 16574.05 5188.98 5253.34 6287.92 3969.23 6388.42 2887.59 36
train_agg76.27 3776.15 3576.64 5385.58 4361.59 2481.62 8081.26 11355.86 17374.93 3988.81 5453.70 5884.68 11675.24 2888.33 3083.65 169
CS-MVS76.25 3875.98 3777.06 4880.15 11455.63 11584.51 3383.90 5363.24 4373.30 6087.27 7455.06 4386.30 8171.78 4984.58 6289.25 4
casdiffmvs_mvgpermissive76.14 3976.30 3475.66 6976.46 20651.83 17379.67 10785.08 3165.02 1775.84 3288.58 5859.42 2185.08 10672.75 4383.93 7090.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS76.13 4075.70 4177.40 4685.87 4061.20 2985.52 2682.19 9059.99 10375.10 3690.35 2647.66 12086.52 7371.64 5182.99 7684.47 139
ACMMPcopyleft76.02 4175.33 4478.07 3685.20 4961.91 2085.49 2884.44 4163.04 4769.80 10689.74 4445.43 15287.16 5372.01 4782.87 8185.14 119
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS75.87 4275.36 4377.41 4480.62 10555.91 11084.28 3785.78 2056.08 17173.41 5986.58 8850.94 8988.54 2670.79 5589.71 1787.79 29
DROMVSNet75.84 4375.87 4075.74 6778.86 14052.65 15583.73 4886.08 1763.47 4072.77 7187.25 7553.13 6487.93 3871.97 4885.57 5886.66 62
3Dnovator+66.72 475.84 4374.57 5179.66 882.40 7659.92 4785.83 2186.32 1666.92 567.80 14489.24 4942.03 18389.38 1764.07 10386.50 5389.69 2
CS-MVS-test75.62 4575.31 4576.56 5580.63 10455.13 12383.88 4685.22 2862.05 6971.49 8686.03 10053.83 5686.36 7967.74 7286.91 4788.19 16
DPM-MVS75.47 4675.00 4776.88 4981.38 9159.16 5879.94 10085.71 2256.59 16172.46 7686.76 7956.89 3187.86 4166.36 8488.91 2583.64 170
APD-MVS_3200maxsize74.96 4774.39 5376.67 5282.20 7858.24 7683.67 4983.29 7458.41 12973.71 5690.14 3145.62 14585.99 8569.64 5982.85 8285.78 91
TSAR-MVS + GP.74.90 4874.15 5577.17 4782.00 8058.77 7181.80 7778.57 15958.58 12674.32 4984.51 13055.94 3887.22 5067.11 7984.48 6585.52 104
casdiffmvspermissive74.80 4974.89 4974.53 9675.59 21850.37 19178.17 12685.06 3362.80 5674.40 4887.86 6657.88 2683.61 13669.46 6282.79 8389.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS74.76 5074.46 5275.65 7077.84 17152.25 16575.59 17984.17 4663.76 3673.15 6382.79 16159.58 1986.80 6467.24 7886.04 5587.89 22
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPM-MVS74.73 5174.25 5476.19 5980.81 10059.01 6682.60 6483.64 6163.74 3772.52 7587.49 6947.18 13085.88 8869.47 6180.78 9783.66 168
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
canonicalmvs74.67 5274.98 4873.71 11678.94 13950.56 18980.23 9483.87 5660.30 9877.15 2886.56 8959.65 1782.00 17266.01 8882.12 8788.58 8
baseline74.61 5374.70 5074.34 10075.70 21449.99 19977.54 13984.63 4062.73 5773.98 5287.79 6857.67 2883.82 13269.49 6082.74 8489.20 5
SR-MVS-dyc-post74.57 5473.90 5776.58 5483.49 6559.87 4884.29 3581.36 10658.07 13573.14 6490.07 3244.74 15985.84 8968.20 6681.76 9284.03 149
dcpmvs_274.55 5575.23 4672.48 14782.34 7753.34 14477.87 13081.46 10257.80 14275.49 3486.81 7862.22 1377.75 24671.09 5482.02 8986.34 70
ETV-MVS74.46 5673.84 5976.33 5879.27 13055.24 12279.22 11385.00 3664.97 1972.65 7379.46 23353.65 6187.87 4067.45 7782.91 7985.89 88
HQP_MVS74.31 5773.73 6076.06 6081.41 8956.31 9984.22 3884.01 4964.52 2369.27 11486.10 9745.26 15687.21 5168.16 6880.58 10184.65 134
HPM-MVS_fast74.30 5873.46 6376.80 5084.45 6059.04 6583.65 5081.05 11860.15 10070.43 9289.84 4141.09 19885.59 9467.61 7582.90 8085.77 94
MVS_111021_HR74.02 5973.46 6375.69 6883.01 7260.63 4077.29 14778.40 17061.18 8070.58 9185.97 10254.18 5284.00 12967.52 7682.98 7882.45 194
MG-MVS73.96 6073.89 5874.16 10385.65 4249.69 20481.59 8281.29 11261.45 7671.05 8888.11 6051.77 7887.73 4361.05 13283.09 7485.05 123
alignmvs73.86 6173.99 5673.45 12778.20 15950.50 19078.57 12182.43 8759.40 11376.57 2986.71 8356.42 3581.23 18865.84 9081.79 9188.62 6
MSLP-MVS++73.77 6273.47 6274.66 8983.02 7159.29 5782.30 7281.88 9459.34 11571.59 8586.83 7745.94 14383.65 13565.09 9785.22 5981.06 219
HQP-MVS73.45 6372.80 6775.40 7480.66 10154.94 12482.31 6983.90 5362.10 6667.85 13985.54 11345.46 15086.93 6067.04 8080.35 10584.32 141
CLD-MVS73.33 6472.68 6875.29 7878.82 14253.33 14578.23 12584.79 3961.30 7970.41 9381.04 20152.41 7087.12 5664.61 10282.49 8685.41 112
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+73.31 6572.54 6975.62 7177.87 17053.64 13679.62 10979.61 13961.63 7572.02 8182.61 16656.44 3485.97 8663.99 10679.07 12587.25 48
UA-Net73.13 6672.93 6673.76 11283.58 6451.66 17478.75 11677.66 18167.75 272.61 7489.42 4549.82 9583.29 14153.61 18483.14 7386.32 74
EPNet73.09 6772.16 7175.90 6375.95 21256.28 10183.05 5472.39 24966.53 865.27 19287.00 7650.40 9285.47 10062.48 11986.32 5485.94 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
nrg03072.96 6873.01 6572.84 14075.41 22150.24 19280.02 9882.89 8358.36 13174.44 4786.73 8158.90 2380.83 19865.84 9074.46 16787.44 40
CPTT-MVS72.78 6972.08 7374.87 8484.88 5761.41 2684.15 4177.86 17755.27 18867.51 15088.08 6241.93 18581.85 17469.04 6480.01 10981.35 212
LPG-MVS_test72.74 7071.74 7575.76 6580.22 10957.51 8482.55 6583.40 6961.32 7766.67 16587.33 7239.15 21186.59 6967.70 7377.30 14683.19 180
h-mvs3372.71 7171.49 7876.40 5681.99 8159.58 5176.92 15676.74 19760.40 9174.81 4285.95 10445.54 14885.76 9170.41 5770.61 21983.86 157
PAPM_NR72.63 7271.80 7475.13 8181.72 8453.42 14379.91 10283.28 7559.14 11766.31 17285.90 10551.86 7786.06 8257.45 15280.62 9985.91 86
VDD-MVS72.50 7372.09 7273.75 11481.58 8549.69 20477.76 13477.63 18263.21 4573.21 6289.02 5142.14 18283.32 14061.72 12682.50 8588.25 13
3Dnovator64.47 572.49 7471.39 8175.79 6477.70 17458.99 6780.66 9283.15 7862.24 6465.46 18886.59 8742.38 18185.52 9659.59 14484.72 6182.85 188
MVS_Test72.45 7572.46 7072.42 15174.88 22648.50 21976.28 16783.14 7959.40 11372.46 7684.68 12255.66 3981.12 18965.98 8979.66 11387.63 34
EI-MVSNet-Vis-set72.42 7671.59 7674.91 8278.47 15154.02 13277.05 15279.33 14565.03 1671.68 8479.35 23652.75 6584.89 11266.46 8374.23 17085.83 90
ACMP63.53 672.30 7771.20 8675.59 7380.28 10757.54 8282.74 6182.84 8460.58 8865.24 19686.18 9539.25 20986.03 8466.95 8276.79 15283.22 178
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PS-MVSNAJss72.24 7871.21 8575.31 7678.50 14955.93 10981.63 7982.12 9156.24 16870.02 10085.68 11047.05 13284.34 12265.27 9674.41 16985.67 98
Vis-MVSNetpermissive72.18 7971.37 8274.61 9281.29 9255.41 12080.90 8878.28 17260.73 8669.23 11788.09 6144.36 16482.65 16057.68 15181.75 9485.77 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS72.17 8071.41 8074.45 9881.95 8257.22 8784.03 4380.38 13059.89 10768.40 12682.33 17349.64 9787.83 4251.87 19884.16 6978.30 251
EPP-MVSNet72.16 8171.31 8474.71 8678.68 14649.70 20282.10 7481.65 9860.40 9165.94 17785.84 10651.74 7986.37 7855.93 16179.55 11688.07 21
DP-MVS Recon72.15 8270.73 9276.40 5686.57 2457.99 7881.15 8782.96 8057.03 15066.78 16185.56 11144.50 16288.11 3451.77 20080.23 10883.10 183
EI-MVSNet-UG-set71.92 8371.06 8874.52 9777.98 16853.56 13876.62 16079.16 14664.40 2571.18 8778.95 24152.19 7384.66 11865.47 9473.57 17885.32 115
VDDNet71.81 8471.33 8373.26 13482.80 7547.60 23178.74 11775.27 21359.59 11272.94 6889.40 4641.51 19383.91 13058.75 14882.99 7688.26 12
EIA-MVS71.78 8570.60 9375.30 7779.85 11853.54 13977.27 14883.26 7657.92 13966.49 16779.39 23452.07 7586.69 6760.05 13879.14 12485.66 99
LFMVS71.78 8571.59 7672.32 15283.40 6746.38 24079.75 10571.08 25664.18 3072.80 7088.64 5742.58 17883.72 13357.41 15384.49 6486.86 56
PAPR71.72 8770.82 9174.41 9981.20 9651.17 17679.55 11083.33 7255.81 17766.93 16084.61 12650.95 8886.06 8255.79 16479.20 12286.00 83
IS-MVSNet71.57 8871.00 8973.27 13378.86 14045.63 25180.22 9578.69 15664.14 3366.46 16887.36 7149.30 10085.60 9350.26 21183.71 7288.59 7
MAR-MVS71.51 8970.15 10175.60 7281.84 8359.39 5481.38 8482.90 8254.90 20168.08 13578.70 24247.73 11885.51 9751.68 20284.17 6881.88 204
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSFormer71.50 9070.38 9874.88 8378.76 14357.15 9282.79 5978.48 16351.26 24169.49 10983.22 15543.99 16783.24 14266.06 8679.37 11784.23 144
PVSNet_Blended_VisFu71.45 9170.39 9774.65 9082.01 7958.82 7079.93 10180.35 13155.09 19365.82 18382.16 17949.17 10382.64 16160.34 13678.62 13382.50 193
OMC-MVS71.40 9270.60 9373.78 11076.60 20253.15 14879.74 10679.78 13558.37 13068.75 12186.45 9145.43 15280.60 20262.58 11777.73 13987.58 37
mvsmamba71.15 9369.54 10975.99 6177.61 18253.46 14181.95 7675.11 21957.73 14366.95 15985.96 10337.14 23487.56 4667.94 7075.49 16386.97 52
UniMVSNet_NR-MVSNet71.11 9471.00 8971.44 16579.20 13244.13 26276.02 17582.60 8666.48 968.20 12984.60 12756.82 3282.82 15654.62 17570.43 22187.36 46
hse-mvs271.04 9569.86 10474.60 9379.58 12257.12 9473.96 21175.25 21460.40 9174.81 4281.95 18445.54 14882.90 14970.41 5766.83 26783.77 162
GeoE71.01 9670.15 10173.60 12379.57 12352.17 16678.93 11578.12 17458.02 13767.76 14783.87 14252.36 7182.72 15856.90 15575.79 15985.92 85
PCF-MVS61.88 870.95 9769.49 11175.35 7577.63 17755.71 11276.04 17481.81 9650.30 25069.66 10785.40 11652.51 6784.89 11251.82 19980.24 10785.45 108
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t70.83 9869.56 10874.64 9186.21 3154.63 12982.34 6881.81 9648.22 26863.01 22385.83 10740.92 19987.10 5757.91 15079.79 11082.18 197
FIs70.82 9971.43 7968.98 21478.33 15638.14 30976.96 15483.59 6361.02 8167.33 15286.73 8155.07 4281.64 17754.61 17779.22 12187.14 50
ACMM61.98 770.80 10069.73 10674.02 10480.59 10658.59 7382.68 6282.02 9355.46 18567.18 15584.39 13238.51 21683.17 14460.65 13476.10 15780.30 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
diffmvspermissive70.69 10170.43 9671.46 16469.45 30248.95 21472.93 22778.46 16557.27 14771.69 8383.97 14151.48 8177.92 24370.70 5677.95 13887.53 38
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)70.63 10270.20 9971.89 15478.55 14845.29 25375.94 17682.92 8163.68 3868.16 13283.59 14853.89 5583.49 13953.97 18071.12 21486.89 55
xiu_mvs_v2_base70.52 10369.75 10572.84 14081.21 9555.63 11575.11 18978.92 15054.92 20069.96 10379.68 22847.00 13682.09 17161.60 12879.37 11780.81 223
PS-MVSNAJ70.51 10469.70 10772.93 13881.52 8655.79 11174.92 19579.00 14855.04 19869.88 10478.66 24347.05 13282.19 16961.61 12779.58 11480.83 222
v2v48270.50 10569.45 11373.66 11872.62 26050.03 19877.58 13680.51 12859.90 10469.52 10882.14 18047.53 12384.88 11465.07 9870.17 22786.09 81
v114470.42 10669.31 11473.76 11273.22 24850.64 18677.83 13281.43 10358.58 12669.40 11281.16 19847.53 12385.29 10564.01 10570.64 21785.34 114
TranMVSNet+NR-MVSNet70.36 10770.10 10371.17 17578.64 14742.97 27476.53 16281.16 11766.95 468.53 12585.42 11551.61 8083.07 14552.32 19269.70 23987.46 39
v870.33 10869.28 11573.49 12573.15 25050.22 19378.62 12080.78 12460.79 8466.45 16982.11 18249.35 9984.98 10963.58 11068.71 25385.28 116
Fast-Effi-MVS+70.28 10969.12 11873.73 11578.50 14951.50 17575.01 19279.46 14356.16 17068.59 12279.55 23153.97 5384.05 12553.34 18677.53 14285.65 100
X-MVStestdata70.21 11067.28 15779.00 2286.32 2962.62 1185.83 2183.92 5164.55 2172.17 796.49 37447.95 11688.01 3671.55 5286.74 5086.37 68
v1070.21 11069.02 11973.81 10973.51 24750.92 18178.74 11781.39 10460.05 10266.39 17081.83 18747.58 12285.41 10362.80 11668.86 25285.09 122
QAPM70.05 11268.81 12273.78 11076.54 20453.43 14283.23 5283.48 6552.89 22265.90 17986.29 9441.55 19286.49 7551.01 20578.40 13581.42 208
DU-MVS70.01 11369.53 11071.44 16578.05 16544.13 26275.01 19281.51 10164.37 2668.20 12984.52 12849.12 10682.82 15654.62 17570.43 22187.37 44
AdaColmapbinary69.99 11468.66 12573.97 10684.94 5457.83 7982.63 6378.71 15556.28 16764.34 20884.14 13541.57 19087.06 5946.45 24078.88 12677.02 268
v119269.97 11568.68 12473.85 10773.19 24950.94 17977.68 13581.36 10657.51 14568.95 12080.85 20845.28 15585.33 10462.97 11570.37 22385.27 117
Anonymous2024052969.91 11669.02 11972.56 14580.19 11247.65 22977.56 13880.99 12055.45 18669.88 10486.76 7939.24 21082.18 17054.04 17977.10 14887.85 25
patch_mono-269.85 11771.09 8766.16 24579.11 13654.80 12871.97 24374.31 23053.50 21770.90 8984.17 13457.63 2963.31 31666.17 8582.02 8980.38 229
FA-MVS(test-final)69.82 11868.48 12773.84 10878.44 15250.04 19775.58 18178.99 14958.16 13367.59 14882.14 18042.66 17685.63 9256.60 15676.19 15685.84 89
iter_conf_final69.82 11868.02 13675.23 7979.38 12752.91 15280.11 9773.96 23654.99 19968.04 13683.59 14829.05 30287.16 5365.41 9577.62 14085.63 101
FC-MVSNet-test69.80 12070.58 9567.46 22977.61 18234.73 33876.05 17383.19 7760.84 8365.88 18186.46 9054.52 4980.76 20152.52 19178.12 13686.91 54
v14419269.71 12168.51 12673.33 13273.10 25150.13 19577.54 13980.64 12556.65 15568.57 12480.55 21146.87 13784.96 11162.98 11469.66 24084.89 128
test_yl69.69 12269.13 11671.36 16978.37 15445.74 24774.71 19980.20 13257.91 14070.01 10183.83 14342.44 17982.87 15254.97 17179.72 11185.48 106
DCV-MVSNet69.69 12269.13 11671.36 16978.37 15445.74 24774.71 19980.20 13257.91 14070.01 10183.83 14342.44 17982.87 15254.97 17179.72 11185.48 106
VNet69.68 12470.19 10068.16 22479.73 12041.63 28770.53 26277.38 18760.37 9470.69 9086.63 8551.08 8677.09 25453.61 18481.69 9685.75 96
jason69.65 12568.39 13273.43 12978.27 15856.88 9677.12 15073.71 23946.53 28669.34 11383.22 15543.37 17179.18 22264.77 9979.20 12284.23 144
jason: jason.
Effi-MVS+-dtu69.64 12667.53 14675.95 6276.10 21062.29 1580.20 9676.06 20459.83 10865.26 19577.09 26341.56 19184.02 12860.60 13571.09 21581.53 207
lupinMVS69.57 12768.28 13373.44 12878.76 14357.15 9276.57 16173.29 24346.19 28969.49 10982.18 17643.99 16779.23 22164.66 10079.37 11783.93 152
NR-MVSNet69.54 12868.85 12171.59 16378.05 16543.81 26674.20 20780.86 12365.18 1262.76 22584.52 12852.35 7283.59 13750.96 20770.78 21687.37 44
MVS_111021_LR69.50 12968.78 12371.65 16178.38 15359.33 5574.82 19770.11 26358.08 13467.83 14384.68 12241.96 18476.34 26265.62 9377.54 14179.30 245
v192192069.47 13068.17 13473.36 13173.06 25250.10 19677.39 14280.56 12656.58 16268.59 12280.37 21344.72 16084.98 10962.47 12069.82 23585.00 124
test_djsdf69.45 13167.74 13874.58 9474.57 23554.92 12682.79 5978.48 16351.26 24165.41 18983.49 15338.37 21883.24 14266.06 8669.25 24685.56 103
RRT_MVS69.42 13267.49 14975.21 8078.01 16752.56 15982.23 7378.15 17355.84 17565.65 18485.07 11730.86 28986.83 6361.56 13070.00 23086.24 79
iter_conf0569.40 13367.62 14274.73 8577.84 17151.13 17779.28 11273.71 23954.62 20368.17 13183.59 14828.68 30787.16 5365.74 9276.95 14985.91 86
Anonymous2023121169.28 13468.47 12971.73 15880.28 10747.18 23579.98 9982.37 8854.61 20467.24 15384.01 13939.43 20782.41 16755.45 16972.83 19285.62 102
EI-MVSNet69.27 13568.44 13171.73 15874.47 23649.39 20975.20 18778.45 16659.60 10969.16 11876.51 27351.29 8282.50 16459.86 14371.45 21283.30 175
v124069.24 13667.91 13773.25 13573.02 25449.82 20077.21 14980.54 12756.43 16468.34 12880.51 21243.33 17284.99 10762.03 12469.77 23884.95 127
IterMVS-LS69.22 13768.48 12771.43 16774.44 23849.40 20876.23 16877.55 18359.60 10965.85 18281.59 19351.28 8381.58 18059.87 14269.90 23483.30 175
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet69.02 13869.47 11267.69 22777.42 18641.00 29174.04 20979.68 13760.06 10169.26 11684.81 12151.06 8777.58 24854.44 17874.43 16884.48 138
v7n69.01 13967.36 15473.98 10572.51 26352.65 15578.54 12381.30 11160.26 9962.67 22781.62 19043.61 16984.49 11957.01 15468.70 25484.79 131
OpenMVScopyleft61.03 968.85 14067.56 14372.70 14474.26 24253.99 13381.21 8681.34 11052.70 22362.75 22685.55 11238.86 21484.14 12448.41 22783.01 7579.97 235
XVG-OURS-SEG-HR68.81 14167.47 15072.82 14274.40 23956.87 9770.59 26179.04 14754.77 20266.99 15786.01 10139.57 20678.21 23962.54 11873.33 18483.37 174
BH-RMVSNet68.81 14167.42 15172.97 13780.11 11552.53 16074.26 20676.29 20058.48 12868.38 12784.20 13342.59 17783.83 13146.53 23975.91 15882.56 189
UGNet68.81 14167.39 15273.06 13678.33 15654.47 13079.77 10475.40 21260.45 9063.22 22084.40 13132.71 27880.91 19751.71 20180.56 10383.81 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS68.76 14467.37 15372.90 13974.32 24157.22 8770.09 26878.81 15255.24 18967.79 14585.81 10936.54 24178.28 23862.04 12375.74 16083.19 180
V4268.65 14567.35 15572.56 14568.93 30750.18 19472.90 22879.47 14256.92 15269.45 11180.26 21746.29 14182.99 14664.07 10367.82 26084.53 136
PVSNet_Blended68.59 14667.72 13971.19 17477.03 19450.57 18772.51 23581.52 9951.91 23064.22 21377.77 25949.13 10482.87 15255.82 16279.58 11480.14 233
xiu_mvs_v1_base_debu68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
xiu_mvs_v1_base68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
xiu_mvs_v1_base_debi68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
PVSNet_BlendedMVS68.56 15067.72 13971.07 17877.03 19450.57 18774.50 20381.52 9953.66 21664.22 21379.72 22749.13 10482.87 15255.82 16273.92 17379.77 240
WR-MVS68.47 15168.47 12968.44 22180.20 11139.84 29573.75 21976.07 20364.68 2068.11 13483.63 14750.39 9379.14 22749.78 21269.66 24086.34 70
AUN-MVS68.45 15266.41 17474.57 9579.53 12457.08 9573.93 21475.23 21554.44 20966.69 16481.85 18637.10 23682.89 15062.07 12266.84 26683.75 163
c3_l68.33 15367.56 14370.62 18570.87 28246.21 24374.47 20478.80 15356.22 16966.19 17378.53 24851.88 7681.40 18262.08 12169.04 24984.25 143
BH-untuned68.27 15467.29 15671.21 17379.74 11953.22 14776.06 17277.46 18657.19 14866.10 17481.61 19145.37 15483.50 13845.42 25476.68 15476.91 272
jajsoiax68.25 15566.45 17073.66 11875.62 21655.49 11980.82 8978.51 16252.33 22764.33 20984.11 13628.28 30981.81 17663.48 11170.62 21883.67 166
v14868.24 15667.19 16371.40 16870.43 28747.77 22875.76 17877.03 19258.91 11967.36 15180.10 22048.60 11181.89 17360.01 13966.52 27084.53 136
CANet_DTU68.18 15767.71 14169.59 20474.83 22846.24 24278.66 11976.85 19459.60 10963.45 21982.09 18335.25 24877.41 25059.88 14178.76 13085.14 119
mvs_tets68.18 15766.36 17673.63 12175.61 21755.35 12180.77 9078.56 16052.48 22664.27 21184.10 13727.45 31581.84 17563.45 11270.56 22083.69 165
miper_ehance_all_eth68.03 15967.24 16170.40 18970.54 28546.21 24373.98 21078.68 15755.07 19666.05 17577.80 25752.16 7481.31 18561.53 13169.32 24383.67 166
mvs_anonymous68.03 15967.51 14769.59 20472.08 26844.57 26071.99 24275.23 21551.67 23167.06 15682.57 16754.68 4777.94 24256.56 15775.71 16186.26 78
ET-MVSNet_ETH3D67.96 16165.72 18874.68 8876.67 20055.62 11775.11 18974.74 22452.91 22160.03 25380.12 21933.68 26482.64 16161.86 12576.34 15585.78 91
thisisatest053067.92 16265.78 18774.33 10176.29 20751.03 17876.89 15774.25 23253.67 21565.59 18681.76 18835.15 24985.50 9855.94 16072.47 19786.47 65
PAPM67.92 16266.69 16771.63 16278.09 16349.02 21277.09 15181.24 11551.04 24460.91 24783.98 14047.71 11984.99 10740.81 28779.32 12080.90 221
tttt051767.83 16465.66 18974.33 10176.69 19950.82 18377.86 13173.99 23554.54 20764.64 20682.53 16935.06 25085.50 9855.71 16569.91 23386.67 61
tt080567.77 16567.24 16169.34 20974.87 22740.08 29377.36 14381.37 10555.31 18766.33 17184.65 12437.35 22982.55 16355.65 16772.28 20385.39 113
ECVR-MVScopyleft67.72 16667.51 14768.35 22279.46 12536.29 33274.79 19866.93 28558.72 12267.19 15488.05 6336.10 24281.38 18352.07 19584.25 6687.39 42
eth_miper_zixun_eth67.63 16766.28 18071.67 16071.60 27448.33 22173.68 22077.88 17655.80 17865.91 17878.62 24647.35 12982.88 15159.45 14566.25 27183.81 158
UniMVSNet_ETH3D67.60 16867.07 16569.18 21377.39 18742.29 27874.18 20875.59 20960.37 9466.77 16286.06 9937.64 22578.93 23452.16 19473.49 18086.32 74
VPNet67.52 16968.11 13565.74 25479.18 13336.80 32472.17 24072.83 24662.04 7067.79 14585.83 10748.88 10876.60 25951.30 20372.97 19183.81 158
cl2267.47 17066.45 17070.54 18769.85 29846.49 23973.85 21777.35 18855.07 19665.51 18777.92 25347.64 12181.10 19061.58 12969.32 24384.01 151
Fast-Effi-MVS+-dtu67.37 17165.33 19473.48 12672.94 25557.78 8177.47 14176.88 19357.60 14461.97 23876.85 26739.31 20880.49 20654.72 17470.28 22682.17 199
MVS67.37 17166.33 17770.51 18875.46 22050.94 17973.95 21281.85 9541.57 32462.54 23178.57 24747.98 11585.47 10052.97 18982.05 8875.14 284
test111167.21 17367.14 16467.42 23079.24 13134.76 33773.89 21665.65 29258.71 12466.96 15887.95 6536.09 24380.53 20352.03 19683.79 7186.97 52
GBi-Net67.21 17366.55 16869.19 21077.63 17743.33 26977.31 14477.83 17856.62 15865.04 19982.70 16241.85 18680.33 20847.18 23472.76 19383.92 153
test167.21 17366.55 16869.19 21077.63 17743.33 26977.31 14477.83 17856.62 15865.04 19982.70 16241.85 18680.33 20847.18 23472.76 19383.92 153
cl____67.18 17666.26 18169.94 19670.20 29045.74 24773.30 22276.83 19555.10 19165.27 19279.57 23047.39 12780.53 20359.41 14769.22 24783.53 172
DIV-MVS_self_test67.18 17666.26 18169.94 19670.20 29045.74 24773.29 22376.83 19555.10 19165.27 19279.58 22947.38 12880.53 20359.43 14669.22 24783.54 171
MVSTER67.16 17865.58 19171.88 15570.37 28949.70 20270.25 26778.45 16651.52 23569.16 11880.37 21338.45 21782.50 16460.19 13771.46 21183.44 173
miper_enhance_ethall67.11 17966.09 18370.17 19369.21 30445.98 24572.85 22978.41 16951.38 23865.65 18475.98 28151.17 8581.25 18660.82 13369.32 24383.29 177
Baseline_NR-MVSNet67.05 18067.56 14365.50 25675.65 21537.70 31575.42 18274.65 22659.90 10468.14 13383.15 15849.12 10677.20 25252.23 19369.78 23681.60 206
WR-MVS_H67.02 18166.92 16667.33 23377.95 16937.75 31377.57 13782.11 9262.03 7162.65 22882.48 17050.57 9179.46 21742.91 27464.01 28684.79 131
anonymousdsp67.00 18264.82 19973.57 12470.09 29356.13 10476.35 16577.35 18848.43 26664.99 20280.84 20933.01 27180.34 20764.66 10067.64 26284.23 144
FMVSNet266.93 18366.31 17968.79 21777.63 17742.98 27376.11 17077.47 18456.62 15865.22 19882.17 17841.85 18680.18 21147.05 23772.72 19683.20 179
BH-w/o66.85 18465.83 18669.90 19979.29 12852.46 16274.66 20176.65 19854.51 20864.85 20378.12 24945.59 14782.95 14843.26 27075.54 16274.27 297
Anonymous20240521166.84 18565.99 18469.40 20880.19 11242.21 27971.11 25671.31 25558.80 12167.90 13786.39 9229.83 29779.65 21449.60 21878.78 12986.33 72
CDS-MVSNet66.80 18665.37 19271.10 17778.98 13853.13 15073.27 22471.07 25752.15 22964.72 20480.23 21843.56 17077.10 25345.48 25278.88 12683.05 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS66.78 18765.27 19571.33 17279.16 13553.67 13573.84 21869.59 26752.32 22865.28 19181.72 18944.49 16377.40 25142.32 27878.66 13282.92 185
FMVSNet166.70 18865.87 18569.19 21077.49 18543.33 26977.31 14477.83 17856.45 16364.60 20782.70 16238.08 22380.33 20846.08 24372.31 20283.92 153
ab-mvs66.65 18966.42 17367.37 23176.17 20941.73 28470.41 26576.14 20253.99 21165.98 17683.51 15249.48 9876.24 26348.60 22573.46 18284.14 147
PEN-MVS66.60 19066.45 17067.04 23477.11 19236.56 32677.03 15380.42 12962.95 4862.51 23384.03 13846.69 13879.07 22844.22 25863.08 29585.51 105
TAPA-MVS59.36 1066.60 19065.20 19670.81 18176.63 20148.75 21676.52 16380.04 13450.64 24865.24 19684.93 11939.15 21178.54 23536.77 30776.88 15185.14 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS66.59 19265.07 19771.17 17579.18 13349.63 20673.48 22175.20 21752.95 22067.90 13780.33 21639.81 20483.68 13443.20 27173.56 17980.20 231
CP-MVSNet66.49 19366.41 17466.72 23677.67 17636.33 32976.83 15979.52 14162.45 6162.54 23183.47 15446.32 14078.37 23645.47 25363.43 29285.45 108
PS-CasMVS66.42 19466.32 17866.70 23877.60 18436.30 33176.94 15579.61 13962.36 6362.43 23583.66 14645.69 14478.37 23645.35 25563.26 29385.42 111
FMVSNet366.32 19565.61 19068.46 22076.48 20542.34 27774.98 19477.15 19155.83 17665.04 19981.16 19839.91 20280.14 21247.18 23472.76 19382.90 187
ACMH+57.40 1166.12 19664.06 20272.30 15377.79 17352.83 15380.39 9378.03 17557.30 14657.47 28082.55 16827.68 31384.17 12345.54 25069.78 23679.90 236
cascas65.98 19763.42 21273.64 12077.26 19052.58 15872.26 23977.21 19048.56 26361.21 24674.60 29332.57 28285.82 9050.38 21076.75 15382.52 192
FE-MVS65.91 19863.33 21473.63 12177.36 18851.95 17272.62 23275.81 20553.70 21465.31 19078.96 24028.81 30686.39 7743.93 26373.48 18182.55 190
thisisatest051565.83 19963.50 21172.82 14273.75 24549.50 20771.32 25073.12 24549.39 25663.82 21576.50 27534.95 25284.84 11553.20 18875.49 16384.13 148
DP-MVS65.68 20063.66 20971.75 15784.93 5556.87 9780.74 9173.16 24453.06 21959.09 26782.35 17236.79 24085.94 8732.82 32969.96 23272.45 312
HyFIR lowres test65.67 20163.01 21873.67 11779.97 11755.65 11469.07 27675.52 21042.68 31863.53 21877.95 25140.43 20081.64 17746.01 24471.91 20683.73 164
DTE-MVSNet65.58 20265.34 19366.31 24176.06 21134.79 33576.43 16479.38 14462.55 5961.66 24283.83 14345.60 14679.15 22641.64 28660.88 30985.00 124
GA-MVS65.53 20363.70 20871.02 17970.87 28248.10 22370.48 26374.40 22856.69 15464.70 20576.77 26833.66 26581.10 19055.42 17070.32 22583.87 156
CNLPA65.43 20464.02 20369.68 20278.73 14558.07 7777.82 13370.71 26051.49 23661.57 24483.58 15138.23 22170.82 28443.90 26470.10 22980.16 232
MVP-Stereo65.41 20563.80 20770.22 19077.62 18155.53 11876.30 16678.53 16150.59 24956.47 28678.65 24439.84 20382.68 15944.10 26272.12 20572.44 313
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IB-MVS56.42 1265.40 20662.73 22273.40 13074.89 22552.78 15473.09 22675.13 21855.69 18058.48 27473.73 29932.86 27386.32 8050.63 20870.11 22881.10 218
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250665.33 20764.61 20067.50 22879.46 12534.19 34274.43 20551.92 34558.72 12266.75 16388.05 6325.99 32580.92 19651.94 19784.25 6687.39 42
pm-mvs165.24 20864.97 19866.04 24972.38 26439.40 30072.62 23275.63 20855.53 18462.35 23783.18 15747.45 12576.47 26049.06 22266.54 26982.24 196
ACMH55.70 1565.20 20963.57 21070.07 19478.07 16452.01 17179.48 11179.69 13655.75 17956.59 28580.98 20327.12 31780.94 19442.90 27571.58 21077.25 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PLCcopyleft56.13 1465.09 21063.21 21670.72 18481.04 9854.87 12778.57 12177.47 18448.51 26455.71 28981.89 18533.71 26379.71 21341.66 28470.37 22377.58 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 1792x268865.08 21162.84 22071.82 15681.49 8856.26 10266.32 28874.20 23340.53 32963.16 22278.65 24441.30 19477.80 24545.80 24674.09 17181.40 209
bld_raw_dy_0_6464.87 21263.22 21569.83 20174.79 23053.32 14678.15 12762.02 31651.20 24360.17 25183.12 15924.15 33474.20 27363.08 11372.33 20081.96 201
TransMVSNet (Re)64.72 21364.33 20165.87 25375.22 22338.56 30674.66 20175.08 22358.90 12061.79 24182.63 16551.18 8478.07 24143.63 26755.87 32980.99 220
EG-PatchMatch MVS64.71 21462.87 21970.22 19077.68 17553.48 14077.99 12978.82 15153.37 21856.03 28877.41 26224.75 33284.04 12646.37 24173.42 18373.14 304
LS3D64.71 21462.50 22471.34 17179.72 12155.71 11279.82 10374.72 22548.50 26556.62 28484.62 12533.59 26682.34 16829.65 34875.23 16575.97 276
131464.61 21663.21 21668.80 21671.87 27247.46 23273.95 21278.39 17142.88 31759.97 25476.60 27238.11 22279.39 21954.84 17372.32 20179.55 241
HY-MVS56.14 1364.55 21763.89 20466.55 23974.73 23241.02 28969.96 26974.43 22749.29 25761.66 24280.92 20547.43 12676.68 25844.91 25771.69 20881.94 202
XVG-ACMP-BASELINE64.36 21862.23 22770.74 18372.35 26552.45 16370.80 26078.45 16653.84 21359.87 25681.10 20016.24 34979.32 22055.64 16871.76 20780.47 226
CostFormer64.04 21962.51 22368.61 21971.88 27145.77 24671.30 25170.60 26147.55 27664.31 21076.61 27141.63 18979.62 21649.74 21469.00 25080.42 227
1112_ss64.00 22063.36 21365.93 25179.28 12942.58 27671.35 24972.36 25046.41 28760.55 24977.89 25546.27 14273.28 27446.18 24269.97 23181.92 203
baseline163.81 22163.87 20663.62 26876.29 20736.36 32771.78 24667.29 28256.05 17264.23 21282.95 16047.11 13174.41 27047.30 23361.85 30380.10 234
pmmvs663.69 22262.82 22166.27 24370.63 28439.27 30173.13 22575.47 21152.69 22459.75 26082.30 17439.71 20577.03 25547.40 23264.35 28582.53 191
Vis-MVSNet (Re-imp)63.69 22263.88 20563.14 27374.75 23131.04 35571.16 25463.64 30556.32 16559.80 25884.99 11844.51 16175.46 26539.12 29680.62 9982.92 185
baseline263.42 22461.26 23869.89 20072.55 26247.62 23071.54 24768.38 27750.11 25154.82 30075.55 28543.06 17480.96 19348.13 22867.16 26581.11 217
thres40063.31 22562.18 22866.72 23676.85 19739.62 29771.96 24469.44 26956.63 15662.61 22979.83 22337.18 23179.17 22331.84 33373.25 18681.36 210
thres600view763.30 22662.27 22666.41 24077.18 19138.87 30372.35 23769.11 27356.98 15162.37 23680.96 20437.01 23879.00 23231.43 34073.05 19081.36 210
thres100view90063.28 22762.41 22565.89 25277.31 18938.66 30572.65 23069.11 27357.07 14962.45 23481.03 20237.01 23879.17 22331.84 33373.25 18679.83 238
test_040263.25 22861.01 24169.96 19580.00 11654.37 13176.86 15872.02 25154.58 20658.71 27080.79 21035.00 25184.36 12126.41 35764.71 28271.15 328
tfpn200view963.18 22962.18 22866.21 24476.85 19739.62 29771.96 24469.44 26956.63 15662.61 22979.83 22337.18 23179.17 22331.84 33373.25 18679.83 238
LTVRE_ROB55.42 1663.15 23061.23 23968.92 21576.57 20347.80 22659.92 32276.39 19954.35 21058.67 27182.46 17129.44 30081.49 18142.12 28071.14 21377.46 261
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
F-COLMAP63.05 23160.87 24469.58 20676.99 19653.63 13778.12 12876.16 20147.97 27252.41 32081.61 19127.87 31178.11 24040.07 29066.66 26877.00 269
IterMVS62.79 23261.27 23767.35 23269.37 30352.04 17071.17 25368.24 27852.63 22559.82 25776.91 26637.32 23072.36 27752.80 19063.19 29477.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT62.49 23361.52 23465.40 25871.99 27050.80 18471.15 25569.63 26645.71 29560.61 24877.93 25237.45 22765.99 30955.67 16663.50 29179.42 243
tfpnnormal62.47 23461.63 23364.99 26274.81 22939.01 30271.22 25273.72 23855.22 19060.21 25080.09 22141.26 19776.98 25630.02 34668.09 25878.97 248
MS-PatchMatch62.42 23561.46 23565.31 26075.21 22452.10 16772.05 24174.05 23446.41 28757.42 28174.36 29434.35 25877.57 24945.62 24973.67 17566.26 343
Test_1112_low_res62.32 23661.77 23164.00 26779.08 13739.53 29968.17 27870.17 26243.25 31359.03 26879.90 22244.08 16571.24 28343.79 26668.42 25681.25 213
D2MVS62.30 23760.29 24668.34 22366.46 32248.42 22065.70 29173.42 24147.71 27458.16 27675.02 28930.51 29177.71 24753.96 18171.68 20978.90 249
thres20062.20 23861.16 24065.34 25975.38 22239.99 29469.60 27169.29 27155.64 18361.87 24076.99 26437.07 23778.96 23331.28 34173.28 18577.06 267
tpm262.07 23960.10 24767.99 22572.79 25743.86 26571.05 25866.85 28643.14 31562.77 22475.39 28738.32 21980.80 19941.69 28368.88 25179.32 244
miper_lstm_enhance62.03 24060.88 24365.49 25766.71 32046.25 24156.29 33575.70 20750.68 24661.27 24575.48 28640.21 20168.03 29856.31 15965.25 27882.18 197
EPNet_dtu61.90 24161.97 23061.68 28272.89 25639.78 29675.85 17765.62 29355.09 19354.56 30479.36 23537.59 22667.02 30339.80 29376.95 14978.25 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LCM-MVSNet-Re61.88 24261.35 23663.46 26974.58 23431.48 35461.42 31458.14 32758.71 12453.02 31979.55 23143.07 17376.80 25745.69 24777.96 13782.11 200
MSDG61.81 24359.23 24969.55 20772.64 25952.63 15770.45 26475.81 20551.38 23853.70 31176.11 27729.52 29881.08 19237.70 30265.79 27574.93 289
SixPastTwentyTwo61.65 24458.80 25370.20 19275.80 21347.22 23475.59 17969.68 26554.61 20454.11 30879.26 23727.07 31882.96 14743.27 26949.79 34680.41 228
CL-MVSNet_self_test61.53 24560.94 24263.30 27168.95 30636.93 32367.60 28272.80 24755.67 18159.95 25576.63 26945.01 15872.22 28039.74 29462.09 30280.74 224
RPMNet61.53 24558.42 25670.86 18069.96 29652.07 16865.31 29781.36 10643.20 31459.36 26370.15 32135.37 24785.47 10036.42 31464.65 28375.06 285
pmmvs461.48 24759.39 24867.76 22671.57 27553.86 13471.42 24865.34 29544.20 30559.46 26277.92 25335.90 24474.71 26843.87 26564.87 28174.71 293
OurMVSNet-221017-061.37 24858.63 25569.61 20372.05 26948.06 22473.93 21472.51 24847.23 28254.74 30180.92 20521.49 34381.24 18748.57 22656.22 32879.53 242
COLMAP_ROBcopyleft52.97 1761.27 24958.81 25268.64 21874.63 23352.51 16178.42 12473.30 24249.92 25450.96 32581.51 19423.06 33679.40 21831.63 33765.85 27374.01 300
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XXY-MVS60.68 25061.67 23257.70 30570.43 28738.45 30764.19 30366.47 28748.05 27163.22 22080.86 20749.28 10160.47 32545.25 25667.28 26474.19 298
SCA60.49 25158.38 25766.80 23574.14 24448.06 22463.35 30563.23 30849.13 25959.33 26672.10 30637.45 22774.27 27144.17 25962.57 29878.05 255
K. test v360.47 25257.11 26570.56 18673.74 24648.22 22275.10 19162.55 31258.27 13253.62 31476.31 27627.81 31281.59 17947.42 23139.18 35981.88 204
OpenMVS_ROBcopyleft52.78 1860.03 25358.14 26065.69 25570.47 28644.82 25575.33 18370.86 25945.04 29756.06 28776.00 27826.89 32079.65 21435.36 31967.29 26372.60 309
CR-MVSNet59.91 25457.90 26265.96 25069.96 29652.07 16865.31 29763.15 30942.48 31959.36 26374.84 29035.83 24570.75 28545.50 25164.65 28375.06 285
PatchmatchNetpermissive59.84 25558.24 25864.65 26473.05 25346.70 23869.42 27362.18 31447.55 27658.88 26971.96 30834.49 25669.16 29342.99 27363.60 29078.07 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WTY-MVS59.75 25660.39 24557.85 30372.32 26637.83 31261.05 31964.18 30345.95 29461.91 23979.11 23947.01 13560.88 32442.50 27769.49 24274.83 290
CVMVSNet59.63 25759.14 25061.08 28774.47 23638.84 30475.20 18768.74 27531.15 34558.24 27576.51 27332.39 28368.58 29649.77 21365.84 27475.81 278
tpm cat159.25 25856.95 26866.15 24672.19 26746.96 23668.09 27965.76 29140.03 33357.81 27870.56 31638.32 21974.51 26938.26 30061.50 30677.00 269
test_vis1_n_192058.86 25959.06 25158.25 29863.76 33443.14 27267.49 28366.36 28940.22 33165.89 18071.95 30931.04 28759.75 32959.94 14064.90 28071.85 321
pmmvs-eth3d58.81 26056.31 27366.30 24267.61 31452.42 16472.30 23864.76 29943.55 31154.94 29974.19 29628.95 30372.60 27643.31 26857.21 32373.88 301
MVS_030458.51 26157.36 26461.96 28170.04 29441.83 28269.40 27465.46 29450.73 24553.30 31874.06 29722.65 33770.18 29142.16 27968.44 25573.86 302
tpmvs58.47 26256.95 26863.03 27570.20 29041.21 28867.90 28167.23 28349.62 25554.73 30270.84 31434.14 25976.24 26336.64 31161.29 30771.64 322
PVSNet50.76 1958.40 26357.39 26361.42 28475.53 21944.04 26461.43 31363.45 30647.04 28456.91 28273.61 30027.00 31964.76 31239.12 29672.40 19875.47 282
tpmrst58.24 26458.70 25456.84 30666.97 31734.32 34069.57 27261.14 31947.17 28358.58 27371.60 31041.28 19660.41 32649.20 22062.84 29675.78 279
Patchmatch-RL test58.16 26555.49 27766.15 24667.92 31348.89 21560.66 32051.07 34847.86 27359.36 26362.71 34834.02 26172.27 27956.41 15859.40 31677.30 263
test-LLR58.15 26658.13 26158.22 29968.57 30844.80 25665.46 29457.92 32850.08 25255.44 29269.82 32332.62 27957.44 33649.66 21673.62 17672.41 314
ppachtmachnet_test58.06 26755.38 27866.10 24869.51 30048.99 21368.01 28066.13 29044.50 30254.05 30970.74 31532.09 28572.34 27836.68 31056.71 32776.99 271
gg-mvs-nofinetune57.86 26856.43 27262.18 27972.62 26035.35 33466.57 28556.33 33450.65 24757.64 27957.10 35430.65 29076.36 26137.38 30478.88 12674.82 291
CMPMVSbinary42.80 2157.81 26955.97 27463.32 27060.98 34747.38 23364.66 30169.50 26832.06 34446.83 34077.80 25729.50 29971.36 28248.68 22473.75 17471.21 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet57.35 27057.07 26658.22 29974.21 24337.18 31862.46 30860.88 32048.88 26155.29 29575.99 28031.68 28662.04 32131.87 33272.35 19975.43 283
tpm57.34 27158.16 25954.86 31371.80 27334.77 33667.47 28456.04 33748.20 26960.10 25276.92 26537.17 23353.41 35140.76 28865.01 27976.40 275
Patchmtry57.16 27256.47 27159.23 29169.17 30534.58 33962.98 30663.15 30944.53 30156.83 28374.84 29035.83 24568.71 29540.03 29160.91 30874.39 296
AllTest57.08 27354.65 28264.39 26571.44 27649.03 21069.92 27067.30 28045.97 29247.16 33879.77 22517.47 34567.56 30033.65 32459.16 31776.57 273
our_test_356.49 27454.42 28462.68 27769.51 30045.48 25266.08 28961.49 31844.11 30850.73 32969.60 32633.05 27068.15 29738.38 29956.86 32474.40 295
pmmvs556.47 27555.68 27658.86 29561.41 34436.71 32566.37 28762.75 31140.38 33053.70 31176.62 27034.56 25467.05 30240.02 29265.27 27772.83 307
test-mter56.42 27655.82 27558.22 29968.57 30844.80 25665.46 29457.92 32839.94 33455.44 29269.82 32321.92 34057.44 33649.66 21673.62 17672.41 314
USDC56.35 27754.24 28862.69 27664.74 33040.31 29265.05 29973.83 23743.93 30947.58 33677.71 26015.36 35175.05 26738.19 30161.81 30472.70 308
PatchMatch-RL56.25 27854.55 28361.32 28677.06 19356.07 10665.57 29354.10 34244.13 30753.49 31771.27 31325.20 32966.78 30436.52 31363.66 28961.12 346
sss56.17 27956.57 27054.96 31266.93 31836.32 33057.94 32861.69 31741.67 32258.64 27275.32 28838.72 21556.25 34242.04 28166.19 27272.31 317
FMVSNet555.86 28054.93 28058.66 29771.05 28136.35 32864.18 30462.48 31346.76 28550.66 33074.73 29225.80 32664.04 31433.11 32765.57 27675.59 281
RPSCF55.80 28154.22 28960.53 28865.13 32942.91 27564.30 30257.62 33036.84 33958.05 27782.28 17528.01 31056.24 34337.14 30558.61 31982.44 195
EU-MVSNet55.61 28254.41 28559.19 29365.41 32833.42 34672.44 23671.91 25228.81 34751.27 32373.87 29824.76 33169.08 29443.04 27258.20 32075.06 285
Anonymous2024052155.30 28354.41 28557.96 30260.92 34941.73 28471.09 25771.06 25841.18 32548.65 33473.31 30116.93 34759.25 33142.54 27664.01 28672.90 306
TESTMET0.1,155.28 28454.90 28156.42 30766.56 32143.67 26765.46 29456.27 33539.18 33653.83 31067.44 33524.21 33355.46 34648.04 22973.11 18970.13 334
KD-MVS_self_test55.22 28553.89 29159.21 29257.80 35427.47 36457.75 33074.32 22947.38 27850.90 32670.00 32228.45 30870.30 28940.44 28957.92 32179.87 237
MIMVSNet155.17 28654.31 28757.77 30470.03 29532.01 35265.68 29264.81 29849.19 25846.75 34176.00 27825.53 32864.04 31428.65 35162.13 30177.26 265
Anonymous2023120655.10 28755.30 27954.48 31569.81 29933.94 34462.91 30762.13 31541.08 32655.18 29675.65 28332.75 27756.59 34130.32 34567.86 25972.91 305
TinyColmap54.14 28851.72 29861.40 28566.84 31941.97 28066.52 28668.51 27644.81 29842.69 35275.77 28211.66 35772.94 27531.96 33156.77 32669.27 339
EPMVS53.96 28953.69 29254.79 31466.12 32531.96 35362.34 31049.05 35144.42 30455.54 29071.33 31230.22 29456.70 33941.65 28562.54 29975.71 280
PMMVS53.96 28953.26 29556.04 30862.60 34050.92 18161.17 31756.09 33632.81 34353.51 31666.84 33834.04 26059.93 32844.14 26168.18 25757.27 352
test20.0353.87 29154.02 29053.41 32361.47 34328.11 36261.30 31559.21 32351.34 24052.09 32177.43 26133.29 26958.55 33329.76 34760.27 31473.58 303
MDA-MVSNet-bldmvs53.87 29150.81 30263.05 27466.25 32348.58 21856.93 33363.82 30448.09 27041.22 35370.48 31930.34 29368.00 29934.24 32245.92 35172.57 310
KD-MVS_2432*160053.45 29351.50 30059.30 28962.82 33737.14 31955.33 33671.79 25347.34 28055.09 29770.52 31721.91 34170.45 28735.72 31742.97 35470.31 332
miper_refine_blended53.45 29351.50 30059.30 28962.82 33737.14 31955.33 33671.79 25347.34 28055.09 29770.52 31721.91 34170.45 28735.72 31742.97 35470.31 332
TDRefinement53.44 29550.72 30361.60 28364.31 33346.96 23670.89 25965.27 29741.78 32044.61 34777.98 25011.52 35966.36 30728.57 35251.59 34071.49 325
test0.0.03 153.32 29653.59 29352.50 32762.81 33929.45 35859.51 32354.11 34150.08 25254.40 30674.31 29532.62 27955.92 34430.50 34463.95 28872.15 319
PatchT53.17 29753.44 29452.33 32868.29 31225.34 36958.21 32754.41 34044.46 30354.56 30469.05 32933.32 26860.94 32336.93 30661.76 30570.73 331
UnsupCasMVSNet_eth53.16 29852.47 29655.23 31159.45 35133.39 34759.43 32469.13 27245.98 29150.35 33272.32 30529.30 30158.26 33442.02 28244.30 35274.05 299
PM-MVS52.33 29950.19 30658.75 29662.10 34145.14 25465.75 29040.38 36543.60 31053.52 31572.65 3039.16 36565.87 31050.41 20954.18 33465.24 345
testgi51.90 30052.37 29750.51 33360.39 35023.55 37258.42 32658.15 32649.03 26051.83 32279.21 23822.39 33855.59 34529.24 35062.64 29772.40 316
dp51.89 30151.60 29952.77 32668.44 31132.45 35162.36 30954.57 33944.16 30649.31 33367.91 33128.87 30556.61 34033.89 32354.89 33169.24 340
JIA-IIPM51.56 30247.68 31563.21 27264.61 33150.73 18547.71 35258.77 32542.90 31648.46 33551.72 35824.97 33070.24 29036.06 31653.89 33568.64 341
test_fmvs1_n51.37 30350.35 30554.42 31752.85 35737.71 31461.16 31851.93 34428.15 34963.81 21669.73 32513.72 35253.95 34951.16 20460.65 31271.59 323
ADS-MVSNet251.33 30448.76 31059.07 29466.02 32644.60 25950.90 34659.76 32236.90 33750.74 32766.18 34026.38 32163.11 31727.17 35354.76 33269.50 337
test_fmvs151.32 30550.48 30453.81 31953.57 35637.51 31660.63 32151.16 34628.02 35163.62 21769.23 32816.41 34853.93 35051.01 20560.70 31169.99 335
YYNet150.73 30648.96 30756.03 30961.10 34641.78 28351.94 34456.44 33340.94 32844.84 34567.80 33330.08 29555.08 34736.77 30750.71 34271.22 326
MDA-MVSNet_test_wron50.71 30748.95 30856.00 31061.17 34541.84 28151.90 34556.45 33240.96 32744.79 34667.84 33230.04 29655.07 34836.71 30950.69 34371.11 329
UnsupCasMVSNet_bld50.07 30848.87 30953.66 32060.97 34833.67 34557.62 33164.56 30139.47 33547.38 33764.02 34627.47 31459.32 33034.69 32143.68 35367.98 342
test_vis1_n49.89 30948.69 31153.50 32253.97 35537.38 31761.53 31247.33 35728.54 34859.62 26167.10 33713.52 35352.27 35449.07 22157.52 32270.84 330
Patchmatch-test49.08 31048.28 31251.50 33164.40 33230.85 35645.68 35648.46 35435.60 34046.10 34472.10 30634.47 25746.37 36127.08 35560.65 31277.27 264
test_fmvs248.69 31147.49 31652.29 32948.63 36333.06 34957.76 32948.05 35525.71 35559.76 25969.60 32611.57 35852.23 35549.45 21956.86 32471.58 324
ADS-MVSNet48.48 31247.77 31350.63 33266.02 32629.92 35750.90 34650.87 35036.90 33750.74 32766.18 34026.38 32152.47 35327.17 35354.76 33269.50 337
CHOSEN 280x42047.83 31346.36 31752.24 33067.37 31649.78 20138.91 36443.11 36335.00 34143.27 35163.30 34728.95 30349.19 35836.53 31260.80 31057.76 351
new-patchmatchnet47.56 31447.73 31447.06 33658.81 3529.37 37948.78 35059.21 32343.28 31244.22 34868.66 33025.67 32757.20 33831.57 33949.35 34774.62 294
PVSNet_043.31 2047.46 31545.64 31852.92 32567.60 31544.65 25854.06 34054.64 33841.59 32346.15 34358.75 35130.99 28858.66 33232.18 33024.81 36755.46 354
MVS-HIRNet45.52 31644.48 31948.65 33568.49 31034.05 34359.41 32544.50 36127.03 35237.96 35950.47 36226.16 32464.10 31326.74 35659.52 31547.82 361
pmmvs344.92 31741.95 32253.86 31852.58 35943.55 26862.11 31146.90 35926.05 35440.63 35460.19 35011.08 36257.91 33531.83 33646.15 35060.11 347
test_fmvs344.30 31842.55 32049.55 33442.83 36727.15 36553.03 34244.93 36022.03 36253.69 31364.94 3434.21 37249.63 35747.47 23049.82 34571.88 320
LF4IMVS42.95 31942.26 32145.04 33948.30 36432.50 35054.80 33848.49 35328.03 35040.51 35570.16 3209.24 36443.89 36431.63 33749.18 34858.72 349
EGC-MVSNET42.47 32038.48 32754.46 31674.33 24048.73 21770.33 26651.10 3470.03 3770.18 37867.78 33413.28 35466.49 30618.91 36350.36 34448.15 359
FPMVS42.18 32141.11 32345.39 33858.03 35341.01 29049.50 34853.81 34330.07 34633.71 36064.03 34411.69 35652.08 35614.01 36755.11 33043.09 363
ANet_high41.38 32237.47 32953.11 32439.73 37324.45 37056.94 33269.69 26447.65 27526.04 36552.32 35712.44 35562.38 32021.80 36010.61 37472.49 311
test_vis1_rt41.35 32339.45 32547.03 33746.65 36637.86 31147.76 35138.65 36623.10 35844.21 34951.22 36011.20 36144.08 36339.27 29553.02 33759.14 348
LCM-MVSNet40.30 32435.88 33053.57 32142.24 36829.15 35945.21 35860.53 32122.23 36128.02 36350.98 3613.72 37461.78 32231.22 34238.76 36069.78 336
mvsany_test139.38 32538.16 32843.02 34349.05 36134.28 34144.16 36025.94 37622.74 36046.57 34262.21 34923.85 33541.16 36833.01 32835.91 36253.63 355
N_pmnet39.35 32640.28 32436.54 34963.76 3341.62 38349.37 3490.76 38334.62 34243.61 35066.38 33926.25 32342.57 36526.02 35851.77 33965.44 344
DSMNet-mixed39.30 32738.72 32641.03 34451.22 36019.66 37545.53 35731.35 37215.83 36939.80 35767.42 33622.19 33945.13 36222.43 35952.69 33858.31 350
APD_test137.39 32834.94 33144.72 34148.88 36233.19 34852.95 34344.00 36219.49 36327.28 36458.59 3523.18 37652.84 35218.92 36241.17 35748.14 360
PMVScopyleft28.69 2236.22 32933.29 33345.02 34036.82 37535.98 33354.68 33948.74 35226.31 35321.02 36851.61 3592.88 37760.10 3279.99 37347.58 34938.99 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.77 33031.91 33443.33 34262.05 34237.87 31020.39 36967.03 28423.23 35718.41 37025.84 3704.24 37162.73 31814.71 36651.32 34129.38 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet34.13 33134.29 33233.64 35152.63 35818.23 37744.43 35933.90 37122.81 35930.89 36253.18 35610.48 36335.72 37220.77 36139.51 35846.98 362
mvsany_test332.62 33230.57 33638.77 34736.16 37624.20 37138.10 36520.63 37819.14 36440.36 35657.43 3535.06 36936.63 37129.59 34928.66 36655.49 353
test_vis3_rt32.09 33330.20 33737.76 34835.36 37727.48 36340.60 36328.29 37516.69 36732.52 36140.53 3661.96 37837.40 37033.64 32642.21 35648.39 358
test_f31.86 33431.05 33534.28 35032.33 37921.86 37332.34 36630.46 37316.02 36839.78 35855.45 3554.80 37032.36 37330.61 34337.66 36148.64 357
testf131.46 33528.89 33839.16 34541.99 37028.78 36046.45 35437.56 36714.28 37021.10 36648.96 3631.48 38047.11 35913.63 36834.56 36341.60 364
APD_test231.46 33528.89 33839.16 34541.99 37028.78 36046.45 35437.56 36714.28 37021.10 36648.96 3631.48 38047.11 35913.63 36834.56 36341.60 364
PMMVS227.40 33725.91 34031.87 35339.46 3746.57 38031.17 36728.52 37423.96 35620.45 36948.94 3654.20 37337.94 36916.51 36419.97 36951.09 356
E-PMN23.77 33822.73 34226.90 35442.02 36920.67 37442.66 36135.70 36917.43 36510.28 37525.05 3716.42 36742.39 36610.28 37214.71 37117.63 370
EMVS22.97 33921.84 34326.36 35540.20 37219.53 37641.95 36234.64 37017.09 3669.73 37622.83 3727.29 36642.22 3679.18 37413.66 37217.32 371
MVEpermissive17.77 2321.41 34017.77 34532.34 35234.34 37825.44 36816.11 37024.11 37711.19 37213.22 37231.92 3681.58 37930.95 37410.47 37117.03 37040.62 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.68 34118.10 34424.41 35613.68 3813.11 38212.06 37242.37 3642.00 37511.97 37336.38 3675.77 36829.35 37515.06 36523.65 36840.76 366
cdsmvs_eth3d_5k17.50 34223.34 3410.00 3620.00 3850.00 3850.00 37378.63 1580.00 3800.00 38182.18 17649.25 1020.00 3790.00 3790.00 3770.00 377
wuyk23d13.32 34312.52 34615.71 35747.54 36526.27 36631.06 3681.98 3824.93 3745.18 3771.94 3770.45 38218.54 3766.81 37612.83 3732.33 374
tmp_tt9.43 34411.14 3474.30 3592.38 3824.40 38113.62 37116.08 3800.39 37615.89 37113.06 37315.80 3505.54 37812.63 37010.46 3752.95 373
ab-mvs-re6.49 3458.65 3480.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 38177.89 2550.00 3840.00 3790.00 3790.00 3770.00 377
test1234.73 3466.30 3490.02 3600.01 3830.01 38456.36 3340.00 3840.01 3780.04 3790.21 3790.01 3830.00 3790.03 3780.00 3770.04 375
testmvs4.52 3476.03 3500.01 3610.01 3830.00 38553.86 3410.00 3840.01 3780.04 3790.27 3780.00 3840.00 3790.04 3770.00 3770.03 376
pcd_1.5k_mvsjas3.92 3485.23 3510.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 38047.05 1320.00 3790.00 3790.00 3770.00 377
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
FOURS186.12 3660.82 3788.18 183.61 6260.87 8281.50 16
MSC_two_6792asdad79.95 387.24 1461.04 3185.62 2390.96 179.31 790.65 887.85 25
PC_three_145255.09 19384.46 489.84 4166.68 589.41 1674.24 3191.38 288.42 9
No_MVS79.95 387.24 1461.04 3185.62 2390.96 179.31 790.65 887.85 25
test_one_060187.58 959.30 5686.84 765.01 1883.80 1191.86 664.03 11
eth-test20.00 385
eth-test0.00 385
ZD-MVS86.64 2160.38 4382.70 8557.95 13878.10 2490.06 3456.12 3788.84 2474.05 3487.00 46
RE-MVS-def73.71 6183.49 6559.87 4884.29 3581.36 10658.07 13573.14 6490.07 3243.06 17468.20 6681.76 9284.03 149
IU-MVS87.77 459.15 5985.53 2553.93 21284.64 379.07 990.87 588.37 11
OPU-MVS79.83 687.54 1160.93 3587.82 789.89 4067.01 190.33 1173.16 4191.15 488.23 14
test_241102_TWO86.73 1264.18 3084.26 591.84 865.19 690.83 578.63 1590.70 787.65 33
test_241102_ONE87.77 458.90 6886.78 1064.20 2985.97 191.34 1266.87 390.78 7
9.1478.75 1483.10 6984.15 4188.26 159.90 10478.57 2390.36 2557.51 3086.86 6277.39 1889.52 21
save fliter86.17 3361.30 2883.98 4579.66 13859.00 118
test_0728_THIRD65.04 1483.82 892.00 364.69 1090.75 879.48 490.63 1088.09 19
test_0728_SECOND79.19 1587.82 359.11 6287.85 587.15 390.84 378.66 1390.61 1187.62 35
test072687.75 759.07 6387.86 486.83 864.26 2784.19 791.92 564.82 8
GSMVS78.05 255
test_part287.58 960.47 4283.42 12
sam_mvs134.74 25378.05 255
sam_mvs33.43 267
ambc65.13 26163.72 33637.07 32147.66 35378.78 15454.37 30771.42 31111.24 36080.94 19445.64 24853.85 33677.38 262
MTGPAbinary80.97 121
test_post168.67 2773.64 37532.39 28369.49 29244.17 259
test_post3.55 37633.90 26266.52 305
patchmatchnet-post64.03 34434.50 25574.27 271
GG-mvs-BLEND62.34 27871.36 28037.04 32269.20 27557.33 33154.73 30265.48 34230.37 29277.82 24434.82 32074.93 16672.17 318
MTMP86.03 1817.08 379
gm-plane-assit71.40 27941.72 28648.85 26273.31 30182.48 16648.90 223
test9_res75.28 2788.31 3283.81 158
TEST985.58 4361.59 2481.62 8081.26 11355.65 18274.93 3988.81 5453.70 5884.68 116
test_885.40 4660.96 3481.54 8381.18 11655.86 17374.81 4288.80 5653.70 5884.45 120
agg_prior273.09 4287.93 3884.33 140
agg_prior85.04 5059.96 4681.04 11974.68 4584.04 126
TestCases64.39 26571.44 27649.03 21067.30 28045.97 29247.16 33879.77 22517.47 34567.56 30033.65 32459.16 31776.57 273
test_prior462.51 1482.08 75
test_prior281.75 7860.37 9475.01 3889.06 5056.22 3672.19 4688.96 24
test_prior76.69 5184.20 6157.27 8684.88 3786.43 7686.38 66
旧先验276.08 17145.32 29676.55 3065.56 31158.75 148
新几何276.12 169
新几何170.76 18285.66 4161.13 3066.43 28844.68 30070.29 9486.64 8441.29 19575.23 26649.72 21581.75 9475.93 277
旧先验183.04 7053.15 14867.52 27987.85 6744.08 16580.76 9878.03 258
无先验79.66 10874.30 23148.40 26780.78 20053.62 18379.03 247
原ACMM279.02 114
原ACMM174.69 8785.39 4759.40 5383.42 6851.47 23770.27 9586.61 8648.61 11086.51 7453.85 18287.96 3778.16 253
test22283.14 6858.68 7272.57 23463.45 30641.78 32067.56 14986.12 9637.13 23578.73 13174.98 288
testdata272.18 28146.95 238
segment_acmp54.23 51
testdata64.66 26381.52 8652.93 15165.29 29646.09 29073.88 5487.46 7038.08 22366.26 30853.31 18778.48 13474.78 292
testdata172.65 23060.50 89
test1277.76 4184.52 5858.41 7483.36 7172.93 6954.61 4888.05 3588.12 3486.81 58
plane_prior781.41 8955.96 108
plane_prior681.20 9656.24 10345.26 156
plane_prior584.01 4987.21 5168.16 6880.58 10184.65 134
plane_prior486.10 97
plane_prior356.09 10563.92 3469.27 114
plane_prior284.22 3864.52 23
plane_prior181.27 94
plane_prior56.31 9983.58 5163.19 4680.48 104
n20.00 384
nn0.00 384
door-mid47.19 358
lessismore_v069.91 19871.42 27847.80 22650.90 34950.39 33175.56 28427.43 31681.33 18445.91 24534.10 36580.59 225
LGP-MVS_train75.76 6580.22 10957.51 8483.40 6961.32 7766.67 16587.33 7239.15 21186.59 6967.70 7377.30 14683.19 180
test1183.47 66
door47.60 356
HQP5-MVS54.94 124
HQP-NCC80.66 10182.31 6962.10 6667.85 139
ACMP_Plane80.66 10182.31 6962.10 6667.85 139
BP-MVS67.04 80
HQP4-MVS67.85 13986.93 6084.32 141
HQP3-MVS83.90 5380.35 105
HQP2-MVS45.46 150
NP-MVS80.98 9956.05 10785.54 113
MDTV_nov1_ep13_2view25.89 36761.22 31640.10 33251.10 32432.97 27238.49 29878.61 250
MDTV_nov1_ep1357.00 26772.73 25838.26 30865.02 30064.73 30044.74 29955.46 29172.48 30432.61 28170.47 28637.47 30367.75 261
ACMMP++_ref74.07 172
ACMMP++72.16 204
Test By Simon48.33 113
ITE_SJBPF62.09 28066.16 32444.55 26164.32 30247.36 27955.31 29480.34 21519.27 34462.68 31936.29 31562.39 30079.04 246
DeepMVS_CXcopyleft12.03 35817.97 38010.91 37810.60 3817.46 37311.07 37428.36 3693.28 37511.29 3778.01 3759.74 37613.89 372