This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6388.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 16
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4567.01 190.33 1273.16 5491.15 488.23 22
SED-MVS81.56 282.30 279.32 1387.77 458.90 7287.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 22
test_241102_ONE87.77 458.90 7286.78 1064.20 3185.97 191.34 1566.87 390.78 7
PC_three_145255.09 21084.46 489.84 4666.68 589.41 1874.24 4491.38 288.42 16
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 41
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6787.85 585.03 3664.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072687.75 759.07 6787.86 486.83 864.26 2984.19 791.92 564.82 8
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
test_one_060187.58 959.30 6086.84 765.01 2083.80 1191.86 664.03 11
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2563.71 1289.23 2081.51 288.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_274.55 6375.23 5372.48 15982.34 8053.34 16077.87 14181.46 11157.80 15875.49 4186.81 9162.22 1377.75 25871.09 7382.02 9786.34 82
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4683.03 6085.33 2862.86 5480.17 1790.03 4161.76 1488.95 2474.21 4588.67 2688.12 26
CSCG76.92 3376.75 3177.41 4983.96 6459.60 5482.95 6186.50 1360.78 8975.27 4384.83 14060.76 1586.56 7667.86 8987.87 4186.06 94
TSAR-MVS + MP.78.44 1978.28 1978.90 2784.96 5261.41 2684.03 4883.82 6359.34 12679.37 1989.76 4859.84 1687.62 5176.69 2786.74 5387.68 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
sasdasda74.67 5974.98 5573.71 12678.94 14650.56 20680.23 9883.87 6060.30 10377.15 3286.56 10359.65 1782.00 17966.01 10782.12 9488.58 14
canonicalmvs74.67 5974.98 5573.71 12678.94 14650.56 20680.23 9883.87 6060.30 10377.15 3286.56 10359.65 1782.00 17966.01 10782.12 9488.58 14
APDe-MVScopyleft80.16 880.59 678.86 2986.64 2160.02 4888.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1678.70 1388.32 3186.79 67
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DELS-MVS74.76 5774.46 6075.65 7877.84 18452.25 18375.59 19784.17 4963.76 3873.15 7982.79 18059.58 2086.80 6967.24 9686.04 5987.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3985.03 3666.96 577.58 2990.06 3959.47 2189.13 2278.67 1489.73 1687.03 59
casdiffmvs_mvgpermissive76.14 4576.30 3975.66 7776.46 22651.83 19179.67 11185.08 3365.02 1975.84 3888.58 6359.42 2285.08 11172.75 5783.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MCST-MVS77.48 2877.45 2777.54 4786.67 2058.36 7983.22 5886.93 556.91 16874.91 5188.19 6559.15 2387.68 5073.67 5187.45 4386.57 75
nrg03072.96 7873.01 7472.84 15275.41 24150.24 21080.02 10282.89 9158.36 14474.44 6086.73 9458.90 2480.83 20665.84 11074.46 18987.44 48
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 2158.63 2587.24 5479.00 1290.37 1485.26 132
SF-MVS78.82 1379.22 1277.60 4682.88 7757.83 8484.99 3188.13 261.86 7579.16 2090.75 2057.96 2687.09 6377.08 2690.18 1587.87 32
casdiffmvspermissive74.80 5674.89 5774.53 10175.59 23850.37 20978.17 13585.06 3562.80 5874.40 6187.86 7357.88 2783.61 14369.46 8182.79 9089.59 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MGCFI-Net72.45 8773.34 7369.81 22077.77 18643.21 29675.84 19481.18 12559.59 12275.45 4286.64 9757.74 2877.94 25363.92 12681.90 9988.30 19
DeepC-MVS69.38 278.56 1778.14 2279.83 783.60 6561.62 2384.17 4586.85 663.23 4673.84 6990.25 3557.68 2989.96 1574.62 4389.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline74.61 6174.70 5874.34 10575.70 23449.99 21777.54 15184.63 4262.73 5973.98 6687.79 7657.67 3083.82 13969.49 7982.74 9189.20 7
patch_mono-269.85 13571.09 10266.16 26979.11 14354.80 13871.97 26374.31 24653.50 23970.90 11184.17 15557.63 3163.31 35266.17 10482.02 9780.38 253
9.1478.75 1583.10 7284.15 4688.26 159.90 11278.57 2390.36 3057.51 3286.86 6877.39 2389.52 21
MM80.20 780.28 879.99 282.19 8260.01 4986.19 1783.93 5473.19 177.08 3491.21 1757.23 3390.73 1083.35 188.12 3489.22 6
MVSMamba_PlusPlus75.75 5175.44 4976.67 6080.84 10553.06 16678.62 12585.13 3259.65 11771.53 10687.47 7856.92 3488.17 3572.18 6386.63 5688.80 10
DPM-MVS75.47 5375.00 5476.88 5481.38 9659.16 6279.94 10485.71 2256.59 17672.46 9586.76 9256.89 3587.86 4566.36 10388.91 2583.64 188
UniMVSNet_NR-MVSNet71.11 10971.00 10471.44 18379.20 13944.13 28576.02 19082.60 9466.48 1168.20 15184.60 14856.82 3682.82 16354.62 19970.43 24787.36 54
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1779.85 591.48 188.19 24
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
balanced_conf0376.58 3876.55 3776.68 5981.73 8852.90 16980.94 9185.70 2361.12 8474.90 5287.17 8656.46 3888.14 3672.87 5688.03 3889.00 8
Effi-MVS+73.31 7472.54 7975.62 7977.87 18253.64 15379.62 11379.61 15161.63 7772.02 10082.61 18556.44 3985.97 9163.99 12579.07 13687.25 56
alignmvs73.86 6973.99 6473.45 13978.20 16950.50 20878.57 12782.43 9559.40 12476.57 3586.71 9656.42 4081.23 19665.84 11081.79 10088.62 12
test_prior281.75 8160.37 9975.01 4789.06 5556.22 4172.19 6288.96 24
ZD-MVS86.64 2160.38 4582.70 9357.95 15378.10 2490.06 3956.12 4288.84 2674.05 4787.00 49
TSAR-MVS + GP.74.90 5574.15 6377.17 5282.00 8458.77 7581.80 8078.57 17258.58 13974.32 6384.51 15155.94 4387.22 5767.11 9784.48 7185.52 115
MVS_Test72.45 8772.46 8072.42 16374.88 24748.50 24076.28 18283.14 8659.40 12472.46 9584.68 14355.66 4481.12 19765.98 10979.66 12387.63 42
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 9279.05 2190.30 3355.54 4588.32 3273.48 5387.03 4684.83 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3084.42 4566.73 874.67 5889.38 5255.30 4689.18 2174.19 4687.34 4486.38 78
FIs70.82 11671.43 9268.98 23378.33 16638.14 34076.96 16783.59 6861.02 8567.33 17386.73 9455.07 4781.64 18554.61 20179.22 13187.14 58
CS-MVS76.25 4475.98 4377.06 5380.15 12155.63 12384.51 3883.90 5763.24 4573.30 7487.27 8455.06 4886.30 8671.78 6784.58 6689.25 5
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3783.87 6060.37 9979.89 1889.38 5254.97 4985.58 10076.12 3184.94 6486.33 84
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CANet76.46 4075.93 4478.06 3981.29 9757.53 8882.35 7283.31 8067.78 370.09 11886.34 11054.92 5088.90 2572.68 5884.55 6787.76 38
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 7190.60 2254.85 5186.72 7177.20 2588.06 3685.74 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvsmconf_n73.01 7772.59 7874.27 10871.28 30955.88 11778.21 13475.56 22354.31 22974.86 5387.80 7554.72 5280.23 22078.07 2178.48 14586.70 69
mvs_anonymous68.03 17967.51 16869.59 22372.08 29444.57 28271.99 26275.23 23151.67 25467.06 17882.57 18654.68 5377.94 25356.56 18175.71 18286.26 90
test1277.76 4584.52 5858.41 7883.36 7672.93 8754.61 5488.05 3988.12 3486.81 66
FC-MVSNet-test69.80 13770.58 11267.46 24977.61 19834.73 37376.05 18883.19 8460.84 8765.88 20286.46 10754.52 5580.76 20952.52 21678.12 14986.91 62
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7562.18 1687.60 985.83 1966.69 978.03 2690.98 1854.26 5690.06 1478.42 1989.02 2387.69 39
Skip Steuart: Steuart Systems R&D Blog.
segment_acmp54.23 57
MVS_111021_HR74.02 6773.46 7175.69 7683.01 7560.63 4077.29 15978.40 18361.18 8370.58 11385.97 12254.18 5884.00 13667.52 9482.98 8582.45 214
MVS_030478.45 1878.28 1978.98 2680.73 10757.91 8384.68 3581.64 10768.35 275.77 3990.38 2953.98 5990.26 1381.30 387.68 4288.77 11
Fast-Effi-MVS+70.28 12769.12 13673.73 12578.50 15751.50 19375.01 21079.46 15556.16 18668.59 14479.55 25253.97 6084.05 13253.34 21177.53 15785.65 112
ZNCC-MVS78.82 1378.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4690.47 2853.96 6188.68 2776.48 2889.63 2087.16 57
UniMVSNet (Re)70.63 11970.20 11871.89 16978.55 15645.29 27575.94 19182.92 8863.68 4068.16 15483.59 16953.89 6283.49 14653.97 20571.12 24086.89 63
SPE-MVS-test75.62 5275.31 5276.56 6480.63 11155.13 13383.88 5185.22 2962.05 7171.49 10786.03 12053.83 6386.36 8467.74 9086.91 5088.19 24
test_fmvsmconf0.1_n72.81 7972.33 8174.24 10969.89 33155.81 11878.22 13375.40 22754.17 23175.00 4888.03 7153.82 6480.23 22078.08 2078.34 14886.69 70
fmvsm_l_conf0.5_n70.99 11270.82 10671.48 18171.45 30254.40 14277.18 16270.46 28048.67 29675.17 4486.86 8953.77 6576.86 27476.33 3077.51 15883.17 201
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3484.85 4061.98 7473.06 8488.88 5853.72 6689.06 2368.27 8488.04 3787.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TEST985.58 4361.59 2481.62 8381.26 12255.65 19774.93 4988.81 5953.70 6784.68 123
train_agg76.27 4376.15 4076.64 6285.58 4361.59 2481.62 8381.26 12255.86 18974.93 4988.81 5953.70 6784.68 12375.24 3888.33 3083.65 187
test_885.40 4660.96 3481.54 8681.18 12555.86 18974.81 5488.80 6153.70 6784.45 127
ETV-MVS74.46 6473.84 6776.33 6779.27 13755.24 13279.22 11785.00 3864.97 2172.65 9279.46 25453.65 7087.87 4467.45 9582.91 8685.89 100
CDPH-MVS76.31 4275.67 4878.22 3785.35 4859.14 6581.31 8884.02 5156.32 18174.05 6588.98 5753.34 7187.92 4369.23 8288.42 2887.59 44
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 6790.50 2653.20 7288.35 3174.02 4887.05 4586.13 92
EC-MVSNet75.84 4975.87 4675.74 7578.86 14852.65 17483.73 5386.08 1763.47 4272.77 9087.25 8553.13 7387.93 4271.97 6685.57 6286.66 72
test_fmvsm_n_192071.73 10171.14 10173.50 13672.52 28556.53 10475.60 19676.16 21348.11 30577.22 3185.56 13153.10 7477.43 26274.86 4077.14 16586.55 76
fmvsm_l_conf0.5_n_a70.50 12270.27 11771.18 19371.30 30854.09 14576.89 17069.87 28447.90 30974.37 6286.49 10653.07 7576.69 27975.41 3577.11 16682.76 208
EI-MVSNet-Vis-set72.42 8971.59 8874.91 8878.47 15954.02 14677.05 16579.33 15765.03 1871.68 10479.35 25852.75 7684.89 11866.46 10274.23 19385.83 102
fmvsm_s_conf0.5_n_a69.54 14668.74 14371.93 16872.47 28753.82 14978.25 13162.26 34649.78 28273.12 8286.21 11352.66 7776.79 27675.02 3968.88 27985.18 133
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 3063.56 4174.29 6490.03 4152.56 7888.53 2974.79 4288.34 2986.63 74
ACMMP_NAP78.77 1578.78 1478.74 3085.44 4561.04 3183.84 5285.16 3162.88 5378.10 2491.26 1652.51 7988.39 3079.34 890.52 1386.78 68
PCF-MVS61.88 870.95 11369.49 12975.35 8377.63 19355.71 12076.04 18981.81 10450.30 27569.66 12985.40 13752.51 7984.89 11851.82 22480.24 11785.45 121
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MP-MVS-pluss78.35 2078.46 1778.03 4084.96 5259.52 5682.93 6285.39 2762.15 6776.41 3791.51 1152.47 8186.78 7080.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CLD-MVS73.33 7372.68 7775.29 8678.82 15053.33 16178.23 13284.79 4161.30 8170.41 11581.04 22252.41 8287.12 6164.61 12182.49 9385.41 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GeoE71.01 11170.15 12073.60 13479.57 13152.17 18478.93 12078.12 18658.02 15067.76 16883.87 16352.36 8382.72 16556.90 17975.79 18085.92 98
NR-MVSNet69.54 14668.85 13971.59 18078.05 17743.81 29074.20 22780.86 13465.18 1462.76 25484.52 14952.35 8483.59 14450.96 23270.78 24287.37 52
fmvsm_s_conf0.5_n69.58 14468.84 14071.79 17372.31 29252.90 16977.90 14062.43 34449.97 28072.85 8885.90 12452.21 8576.49 28275.75 3370.26 25485.97 96
EI-MVSNet-UG-set71.92 9771.06 10374.52 10277.98 18053.56 15576.62 17479.16 15864.40 2771.18 10978.95 26352.19 8684.66 12565.47 11373.57 20485.32 128
miper_ehance_all_eth68.03 17967.24 18170.40 20870.54 31846.21 26473.98 23078.68 17055.07 21366.05 19677.80 28252.16 8781.31 19361.53 15069.32 27183.67 184
EIA-MVS71.78 9970.60 11075.30 8579.85 12553.54 15677.27 16083.26 8357.92 15466.49 18879.39 25652.07 8886.69 7260.05 15879.14 13585.66 111
fmvsm_s_conf0.1_n_a69.32 15268.44 15271.96 16770.91 31353.78 15078.12 13662.30 34549.35 28873.20 7886.55 10551.99 8976.79 27674.83 4168.68 28485.32 128
c3_l68.33 17367.56 16470.62 20470.87 31446.21 26474.47 22378.80 16656.22 18566.19 19478.53 27151.88 9081.40 19062.08 14169.04 27784.25 160
PAPM_NR72.63 8471.80 8675.13 8781.72 8953.42 15979.91 10683.28 8259.14 12866.31 19385.90 12451.86 9186.06 8757.45 17680.62 10985.91 99
test_fmvsmvis_n_192070.84 11470.38 11572.22 16671.16 31055.39 13075.86 19272.21 26749.03 29273.28 7686.17 11551.83 9277.29 26675.80 3278.05 15083.98 169
MG-MVS73.96 6873.89 6674.16 11185.65 4249.69 22281.59 8581.29 12161.45 7871.05 11088.11 6651.77 9387.73 4761.05 15183.09 8185.05 139
EPP-MVSNet72.16 9571.31 9774.71 9178.68 15449.70 22082.10 7881.65 10660.40 9665.94 19885.84 12651.74 9486.37 8355.93 18579.55 12688.07 29
fmvsm_s_conf0.1_n69.41 15168.60 14671.83 17171.07 31152.88 17177.85 14362.44 34349.58 28572.97 8586.22 11251.68 9576.48 28375.53 3470.10 25786.14 91
TranMVSNet+NR-MVSNet70.36 12570.10 12271.17 19478.64 15542.97 29976.53 17781.16 12766.95 668.53 14785.42 13651.61 9683.07 15252.32 21769.70 26787.46 47
diffmvspermissive70.69 11870.43 11371.46 18269.45 33748.95 23472.93 24778.46 17857.27 16271.69 10383.97 16251.48 9777.92 25570.70 7577.95 15287.53 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet69.27 15468.44 15271.73 17574.47 25849.39 22775.20 20578.45 17959.60 11969.16 14076.51 30551.29 9882.50 17159.86 16371.45 23783.30 193
IterMVS-LS69.22 15668.48 14871.43 18574.44 26049.40 22676.23 18377.55 19559.60 11965.85 20381.59 21451.28 9981.58 18859.87 16269.90 26283.30 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)64.72 23364.33 22365.87 27775.22 24338.56 33674.66 22075.08 23858.90 13261.79 27082.63 18451.18 10078.07 25243.63 29755.87 36680.99 244
miper_enhance_ethall67.11 20066.09 20470.17 21269.21 34045.98 26672.85 24978.41 18251.38 26165.65 20575.98 31451.17 10181.25 19460.82 15369.32 27183.29 195
VNet69.68 14170.19 11968.16 24379.73 12741.63 31270.53 28377.38 19960.37 9970.69 11286.63 9951.08 10277.09 26953.61 20981.69 10585.75 108
VPA-MVSNet69.02 15769.47 13067.69 24777.42 20341.00 31774.04 22979.68 14960.06 10969.26 13884.81 14151.06 10377.58 26054.44 20274.43 19184.48 155
PAPR71.72 10270.82 10674.41 10481.20 10151.17 19479.55 11583.33 7955.81 19266.93 18184.61 14750.95 10486.06 8755.79 18879.20 13286.00 95
PHI-MVS75.87 4875.36 5077.41 4980.62 11255.91 11684.28 4285.78 2056.08 18773.41 7386.58 10250.94 10588.54 2870.79 7489.71 1787.79 37
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6385.08 3362.57 6073.09 8389.97 4450.90 10687.48 5275.30 3686.85 5187.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
reproduce-ours76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 119
our_new_method76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 119
WR-MVS_H67.02 20266.92 18667.33 25377.95 18137.75 34477.57 14982.11 10062.03 7362.65 25782.48 19150.57 10979.46 22842.91 30464.01 31884.79 148
EPNet73.09 7672.16 8375.90 7175.95 23256.28 10783.05 5972.39 26566.53 1065.27 21287.00 8750.40 11085.47 10562.48 13986.32 5885.94 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WR-MVS68.47 17068.47 15068.44 24080.20 11839.84 32473.75 23976.07 21664.68 2268.11 15683.63 16850.39 11179.14 23849.78 23769.66 26886.34 82
test_fmvsmconf0.01_n72.17 9371.50 9074.16 11167.96 34955.58 12678.06 13874.67 24154.19 23074.54 5988.23 6450.35 11280.24 21978.07 2177.46 15986.65 73
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7490.58 2349.90 11388.21 3473.78 5087.03 4686.29 89
UA-Net73.13 7572.93 7573.76 12183.58 6651.66 19278.75 12177.66 19367.75 472.61 9389.42 5049.82 11483.29 14853.61 20983.14 8086.32 86
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 7290.56 2449.80 11588.24 3374.02 4887.03 4686.32 86
API-MVS72.17 9371.41 9374.45 10381.95 8657.22 9284.03 4880.38 14259.89 11568.40 14882.33 19449.64 11687.83 4651.87 22384.16 7578.30 279
reproduce_model76.43 4176.08 4177.49 4883.47 6960.09 4784.60 3682.90 8959.65 11777.31 3091.43 1249.62 11787.24 5471.99 6583.75 7885.14 134
ab-mvs66.65 21066.42 19467.37 25176.17 22941.73 30970.41 28676.14 21553.99 23365.98 19783.51 17149.48 11876.24 28748.60 25073.46 20884.14 164
v870.33 12669.28 13373.49 13773.15 27250.22 21178.62 12580.78 13560.79 8866.45 19082.11 20349.35 11984.98 11463.58 13168.71 28285.28 130
IS-MVSNet71.57 10371.00 10473.27 14578.86 14845.63 27280.22 10078.69 16964.14 3566.46 18987.36 8149.30 12085.60 9850.26 23683.71 7988.59 13
XXY-MVS60.68 27761.67 25757.70 33970.43 32138.45 33864.19 33766.47 31248.05 30763.22 24480.86 22849.28 12160.47 36145.25 28567.28 29474.19 333
cdsmvs_eth3d_5k17.50 38823.34 3870.00 4080.00 4310.00 4320.00 41978.63 1710.00 4260.00 42782.18 19749.25 1220.00 4250.00 4260.00 4230.00 423
PVSNet_Blended_VisFu71.45 10770.39 11474.65 9582.01 8358.82 7479.93 10580.35 14355.09 21065.82 20482.16 20049.17 12382.64 16860.34 15678.62 14482.50 213
PVSNet_BlendedMVS68.56 16967.72 16171.07 19777.03 21350.57 20474.50 22281.52 10853.66 23864.22 23679.72 24849.13 12482.87 15955.82 18673.92 19779.77 266
PVSNet_Blended68.59 16567.72 16171.19 19277.03 21350.57 20472.51 25581.52 10851.91 25364.22 23677.77 28549.13 12482.87 15955.82 18679.58 12480.14 257
DU-MVS70.01 13169.53 12871.44 18378.05 17744.13 28575.01 21081.51 11064.37 2868.20 15184.52 14949.12 12682.82 16354.62 19970.43 24787.37 52
Baseline_NR-MVSNet67.05 20167.56 16465.50 28175.65 23537.70 34675.42 20074.65 24259.90 11268.14 15583.15 17849.12 12677.20 26752.23 21869.78 26481.60 227
VPNet67.52 19068.11 15765.74 27879.18 14036.80 35572.17 26072.83 26262.04 7267.79 16685.83 12748.88 12876.60 28151.30 22872.97 21783.81 176
MTAPA76.90 3476.42 3878.35 3586.08 3763.57 274.92 21480.97 13265.13 1575.77 3990.88 1948.63 12986.66 7377.23 2488.17 3384.81 147
原ACMM174.69 9285.39 4759.40 5783.42 7351.47 26070.27 11786.61 10048.61 13086.51 7953.85 20787.96 3978.16 281
v14868.24 17667.19 18371.40 18670.43 32147.77 24975.76 19577.03 20458.91 13167.36 17280.10 24148.60 13181.89 18160.01 15966.52 30084.53 153
PGM-MVS76.77 3776.06 4278.88 2886.14 3562.73 982.55 7083.74 6461.71 7672.45 9790.34 3248.48 13288.13 3772.32 6186.85 5185.78 103
Test By Simon48.33 133
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7262.44 6472.68 9190.50 2648.18 13487.34 5373.59 5285.71 6084.76 150
MVS67.37 19266.33 19870.51 20775.46 24050.94 19673.95 23281.85 10341.57 36462.54 26078.57 27047.98 13585.47 10552.97 21482.05 9675.14 318
XVS77.17 3176.56 3679.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 9890.01 4347.95 13688.01 4071.55 7086.74 5386.37 80
X-MVStestdata70.21 12867.28 17779.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 986.49 42047.95 13688.01 4071.55 7086.74 5386.37 80
SDMVSNet68.03 17968.10 15867.84 24577.13 20948.72 23865.32 32879.10 15958.02 15065.08 21982.55 18747.83 13873.40 29963.92 12673.92 19781.41 230
MAR-MVS71.51 10470.15 12075.60 8081.84 8759.39 5881.38 8782.90 8954.90 21868.08 15778.70 26447.73 13985.51 10251.68 22784.17 7481.88 225
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM67.92 18366.69 18771.63 17978.09 17549.02 23177.09 16481.24 12451.04 26760.91 28083.98 16147.71 14084.99 11240.81 31779.32 13080.90 245
SR-MVS76.13 4675.70 4777.40 5185.87 4061.20 2985.52 2782.19 9859.99 11175.10 4590.35 3147.66 14186.52 7871.64 6982.99 8384.47 156
cl2267.47 19166.45 19170.54 20669.85 33246.49 26073.85 23777.35 20055.07 21365.51 20777.92 27847.64 14281.10 19861.58 14969.32 27184.01 168
v1070.21 12869.02 13773.81 11873.51 26950.92 19878.74 12281.39 11360.05 11066.39 19181.83 20847.58 14385.41 10862.80 13668.86 28185.09 138
mamv456.85 30758.00 29553.43 36172.46 28854.47 14057.56 37354.74 37638.81 37857.42 31879.45 25547.57 14438.70 41360.88 15253.07 37467.11 383
v114470.42 12469.31 13273.76 12173.22 27050.64 20377.83 14481.43 11258.58 13969.40 13481.16 21947.53 14585.29 11064.01 12470.64 24385.34 127
v2v48270.50 12269.45 13173.66 12972.62 28250.03 21677.58 14880.51 13959.90 11269.52 13082.14 20147.53 14584.88 12065.07 11670.17 25586.09 93
pm-mvs165.24 22964.97 21966.04 27372.38 28939.40 33072.62 25275.63 22155.53 19962.35 26683.18 17747.45 14776.47 28449.06 24766.54 29982.24 218
HY-MVS56.14 1364.55 23763.89 22666.55 26174.73 25241.02 31469.96 29174.43 24349.29 28961.66 27280.92 22647.43 14876.68 28044.91 28671.69 23381.94 223
cl____67.18 19766.26 20269.94 21570.20 32445.74 26873.30 24276.83 20755.10 20865.27 21279.57 25147.39 14980.53 21159.41 16769.22 27583.53 190
DIV-MVS_self_test67.18 19766.26 20269.94 21570.20 32445.74 26873.29 24376.83 20755.10 20865.27 21279.58 25047.38 15080.53 21159.43 16669.22 27583.54 189
eth_miper_zixun_eth67.63 18866.28 20171.67 17771.60 30048.33 24273.68 24077.88 18855.80 19365.91 19978.62 26947.35 15182.88 15859.45 16566.25 30183.81 176
OPM-MVS74.73 5874.25 6276.19 6880.81 10659.01 7082.60 6983.64 6663.74 3972.52 9487.49 7747.18 15285.88 9369.47 8080.78 10783.66 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline163.81 24563.87 22863.62 29676.29 22736.36 35871.78 26667.29 30656.05 18864.23 23582.95 17947.11 15374.41 29647.30 26161.85 33780.10 258
pcd_1.5k_mvsjas3.92 3945.23 3970.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 42647.05 1540.00 4250.00 4260.00 4230.00 423
PS-MVSNAJss72.24 9171.21 9975.31 8478.50 15755.93 11581.63 8282.12 9956.24 18470.02 12285.68 13047.05 15484.34 12965.27 11474.41 19285.67 110
PS-MVSNAJ70.51 12169.70 12672.93 15081.52 9155.79 11974.92 21479.00 16155.04 21569.88 12678.66 26647.05 15482.19 17661.61 14779.58 12480.83 246
WTY-MVS59.75 28660.39 27357.85 33772.32 29137.83 34361.05 35664.18 33045.95 33261.91 26879.11 26147.01 15760.88 36042.50 30769.49 27074.83 324
xiu_mvs_v2_base70.52 12069.75 12472.84 15281.21 10055.63 12375.11 20778.92 16354.92 21769.96 12579.68 24947.00 15882.09 17861.60 14879.37 12780.81 247
v14419269.71 13868.51 14773.33 14473.10 27350.13 21377.54 15180.64 13656.65 17068.57 14680.55 23246.87 15984.96 11662.98 13469.66 26884.89 145
PEN-MVS66.60 21166.45 19167.04 25477.11 21136.56 35777.03 16680.42 14162.95 5062.51 26284.03 15946.69 16079.07 23944.22 28763.08 32885.51 116
mPP-MVS76.54 3975.93 4478.34 3686.47 2663.50 385.74 2582.28 9762.90 5271.77 10290.26 3446.61 16186.55 7771.71 6885.66 6184.97 143
CP-MVSNet66.49 21466.41 19566.72 25677.67 19136.33 36076.83 17379.52 15362.45 6362.54 26083.47 17346.32 16278.37 24745.47 28263.43 32585.45 121
V4268.65 16467.35 17572.56 15768.93 34350.18 21272.90 24879.47 15456.92 16769.45 13380.26 23846.29 16382.99 15364.07 12267.82 28984.53 153
1112_ss64.00 24463.36 23665.93 27579.28 13642.58 30171.35 26972.36 26646.41 32560.55 28277.89 28046.27 16473.28 30046.18 27069.97 25981.92 224
MSLP-MVS++73.77 7073.47 7074.66 9483.02 7459.29 6182.30 7781.88 10259.34 12671.59 10586.83 9045.94 16583.65 14265.09 11585.22 6381.06 242
PS-CasMVS66.42 21566.32 19966.70 25877.60 19936.30 36276.94 16879.61 15162.36 6562.43 26483.66 16745.69 16678.37 24745.35 28463.26 32685.42 124
APD-MVS_3200maxsize74.96 5474.39 6176.67 6082.20 8158.24 8083.67 5483.29 8158.41 14273.71 7090.14 3645.62 16785.99 9069.64 7882.85 8985.78 103
DTE-MVSNet65.58 22365.34 21466.31 26576.06 23134.79 37076.43 17979.38 15662.55 6161.66 27283.83 16445.60 16879.15 23741.64 31660.88 34385.00 140
BH-w/o66.85 20565.83 20769.90 21879.29 13552.46 18074.66 22076.65 21054.51 22664.85 22578.12 27245.59 16982.95 15543.26 30075.54 18474.27 332
h-mvs3372.71 8271.49 9176.40 6581.99 8559.58 5576.92 16976.74 20960.40 9674.81 5485.95 12345.54 17085.76 9670.41 7670.61 24583.86 175
hse-mvs271.04 11069.86 12374.60 9879.58 13057.12 9973.96 23175.25 23060.40 9674.81 5481.95 20545.54 17082.90 15670.41 7666.83 29783.77 180
HQP2-MVS45.46 172
HQP-MVS73.45 7172.80 7675.40 8280.66 10854.94 13482.31 7483.90 5762.10 6867.85 16085.54 13445.46 17286.93 6667.04 9880.35 11584.32 158
ACMMPcopyleft76.02 4775.33 5178.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 12889.74 4945.43 17487.16 6072.01 6482.87 8885.14 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS71.40 10870.60 11073.78 11976.60 22253.15 16379.74 11079.78 14758.37 14368.75 14386.45 10845.43 17480.60 21062.58 13777.73 15487.58 45
BH-untuned68.27 17467.29 17671.21 19179.74 12653.22 16276.06 18777.46 19857.19 16366.10 19581.61 21245.37 17683.50 14545.42 28376.68 17276.91 303
v119269.97 13368.68 14473.85 11673.19 27150.94 19677.68 14781.36 11557.51 16068.95 14280.85 22945.28 17785.33 10962.97 13570.37 24985.27 131
HQP_MVS74.31 6573.73 6876.06 6981.41 9456.31 10584.22 4384.01 5264.52 2569.27 13686.10 11745.26 17887.21 5868.16 8780.58 11184.65 151
plane_prior681.20 10156.24 10945.26 178
CL-MVSNet_self_test61.53 27260.94 26963.30 29968.95 34236.93 35467.60 30872.80 26355.67 19659.95 28976.63 30045.01 18072.22 30639.74 32462.09 33680.74 248
SR-MVS-dyc-post74.57 6273.90 6576.58 6383.49 6759.87 5284.29 4081.36 11558.07 14873.14 8090.07 3744.74 18185.84 9468.20 8581.76 10184.03 166
v192192069.47 14968.17 15673.36 14373.06 27450.10 21477.39 15480.56 13756.58 17768.59 14480.37 23444.72 18284.98 11462.47 14069.82 26385.00 140
RRT-MVS71.46 10670.70 10973.74 12477.76 18749.30 22876.60 17580.45 14061.25 8268.17 15384.78 14244.64 18384.90 11764.79 11777.88 15387.03 59
Vis-MVSNet (Re-imp)63.69 24663.88 22763.14 30174.75 25131.04 39271.16 27463.64 33456.32 18159.80 29284.99 13844.51 18475.46 29139.12 32680.62 10982.92 204
DP-MVS Recon72.15 9670.73 10876.40 6586.57 2457.99 8281.15 9082.96 8757.03 16566.78 18285.56 13144.50 18588.11 3851.77 22580.23 11883.10 202
TAMVS66.78 20865.27 21671.33 19079.16 14253.67 15273.84 23869.59 28852.32 25065.28 21181.72 21044.49 18677.40 26442.32 30878.66 14382.92 204
Vis-MVSNetpermissive72.18 9271.37 9574.61 9781.29 9755.41 12980.90 9278.28 18560.73 9069.23 13988.09 6744.36 18782.65 16757.68 17481.75 10385.77 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验183.04 7353.15 16367.52 30387.85 7444.08 18880.76 10878.03 286
Test_1112_low_res62.32 26261.77 25664.00 29579.08 14439.53 32968.17 30370.17 28143.25 35359.03 30279.90 24344.08 18871.24 31143.79 29568.42 28581.25 236
MVSFormer71.50 10570.38 11574.88 8978.76 15157.15 9782.79 6478.48 17651.26 26469.49 13183.22 17543.99 19083.24 14966.06 10579.37 12784.23 161
lupinMVS69.57 14568.28 15573.44 14078.76 15157.15 9776.57 17673.29 25846.19 32769.49 13182.18 19743.99 19079.23 23264.66 11979.37 12783.93 170
v7n69.01 15867.36 17473.98 11472.51 28652.65 17478.54 12981.30 12060.26 10562.67 25681.62 21143.61 19284.49 12657.01 17868.70 28384.79 148
CDS-MVSNet66.80 20765.37 21371.10 19678.98 14553.13 16573.27 24471.07 27552.15 25164.72 22680.23 23943.56 19377.10 26845.48 28178.88 13783.05 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
jason69.65 14268.39 15473.43 14178.27 16856.88 10177.12 16373.71 25546.53 32469.34 13583.22 17543.37 19479.18 23364.77 11879.20 13284.23 161
jason: jason.
v124069.24 15567.91 15973.25 14773.02 27649.82 21877.21 16180.54 13856.43 17968.34 15080.51 23343.33 19584.99 11262.03 14469.77 26684.95 144
LCM-MVSNet-Re61.88 26961.35 26163.46 29774.58 25631.48 39161.42 35158.14 36258.71 13653.02 35879.55 25243.07 19676.80 27545.69 27577.96 15182.11 222
RE-MVS-def73.71 6983.49 6759.87 5284.29 4081.36 11558.07 14873.14 8090.07 3743.06 19768.20 8581.76 10184.03 166
baseline263.42 24861.26 26469.89 21972.55 28447.62 25171.54 26768.38 29950.11 27754.82 34075.55 31943.06 19780.96 20148.13 25567.16 29581.11 240
FA-MVS(test-final)69.82 13668.48 14873.84 11778.44 16050.04 21575.58 19978.99 16258.16 14667.59 16982.14 20142.66 19985.63 9756.60 18076.19 17685.84 101
BH-RMVSNet68.81 16067.42 17172.97 14980.11 12252.53 17874.26 22676.29 21258.48 14168.38 14984.20 15442.59 20083.83 13846.53 26775.91 17882.56 209
LFMVS71.78 9971.59 8872.32 16483.40 7046.38 26179.75 10971.08 27464.18 3272.80 8988.64 6242.58 20183.72 14057.41 17784.49 7086.86 64
test_yl69.69 13969.13 13471.36 18778.37 16445.74 26874.71 21880.20 14457.91 15570.01 12383.83 16442.44 20282.87 15954.97 19579.72 12185.48 117
DCV-MVSNet69.69 13969.13 13471.36 18778.37 16445.74 26874.71 21880.20 14457.91 15570.01 12383.83 16442.44 20282.87 15954.97 19579.72 12185.48 117
3Dnovator64.47 572.49 8671.39 9475.79 7277.70 18958.99 7180.66 9683.15 8562.24 6665.46 20886.59 10142.38 20485.52 10159.59 16484.72 6582.85 207
VDD-MVS72.50 8572.09 8473.75 12381.58 9049.69 22277.76 14677.63 19463.21 4773.21 7789.02 5642.14 20583.32 14761.72 14682.50 9288.25 21
3Dnovator+66.72 475.84 4974.57 5979.66 982.40 7959.92 5185.83 2286.32 1666.92 767.80 16589.24 5442.03 20689.38 1964.07 12286.50 5789.69 3
MVS_111021_LR69.50 14868.78 14271.65 17878.38 16259.33 5974.82 21670.11 28258.08 14767.83 16484.68 14341.96 20776.34 28665.62 11277.54 15679.30 271
CPTT-MVS72.78 8072.08 8574.87 9084.88 5761.41 2684.15 4677.86 18955.27 20567.51 17188.08 6841.93 20881.85 18269.04 8380.01 11981.35 235
GBi-Net67.21 19466.55 18969.19 22977.63 19343.33 29377.31 15677.83 19056.62 17365.04 22182.70 18141.85 20980.33 21647.18 26272.76 21983.92 171
test167.21 19466.55 18969.19 22977.63 19343.33 29377.31 15677.83 19056.62 17365.04 22182.70 18141.85 20980.33 21647.18 26272.76 21983.92 171
FMVSNet266.93 20466.31 20068.79 23677.63 19342.98 29876.11 18577.47 19656.62 17365.22 21882.17 19941.85 20980.18 22247.05 26572.72 22283.20 197
CostFormer64.04 24362.51 24768.61 23871.88 29745.77 26771.30 27170.60 27947.55 31364.31 23276.61 30341.63 21279.62 22749.74 23969.00 27880.42 251
AdaColmapbinary69.99 13268.66 14573.97 11584.94 5457.83 8482.63 6878.71 16856.28 18364.34 23084.14 15641.57 21387.06 6446.45 26878.88 13777.02 299
Effi-MVS+-dtu69.64 14367.53 16775.95 7076.10 23062.29 1580.20 10176.06 21759.83 11665.26 21577.09 29341.56 21484.02 13560.60 15571.09 24181.53 228
QAPM70.05 13068.81 14173.78 11976.54 22453.43 15883.23 5783.48 7052.89 24465.90 20086.29 11141.55 21586.49 8051.01 23078.40 14781.42 229
VDDNet71.81 9871.33 9673.26 14682.80 7847.60 25278.74 12275.27 22959.59 12272.94 8689.40 5141.51 21683.91 13758.75 16982.99 8388.26 20
CHOSEN 1792x268865.08 23262.84 24471.82 17281.49 9356.26 10866.32 31674.20 25040.53 37063.16 24778.65 26741.30 21777.80 25745.80 27474.09 19481.40 232
新几何170.76 20185.66 4161.13 3066.43 31344.68 33970.29 11686.64 9741.29 21875.23 29249.72 24081.75 10375.93 310
tpmrst58.24 29658.70 28756.84 34166.97 35434.32 37669.57 29561.14 35247.17 32058.58 30871.60 35041.28 21960.41 36249.20 24562.84 32975.78 312
tfpnnormal62.47 26061.63 25864.99 28874.81 25039.01 33271.22 27273.72 25455.22 20760.21 28380.09 24241.26 22076.98 27230.02 38268.09 28778.97 275
sd_testset64.46 23864.45 22264.51 29177.13 20942.25 30462.67 34472.11 26858.02 15065.08 21982.55 18741.22 22169.88 32047.32 26073.92 19781.41 230
HPM-MVS_fast74.30 6673.46 7176.80 5684.45 6059.04 6983.65 5581.05 12960.15 10870.43 11489.84 4641.09 22285.59 9967.61 9382.90 8785.77 106
BP-MVS173.41 7272.25 8276.88 5476.68 21953.70 15179.15 11881.07 12860.66 9171.81 10187.39 8040.93 22387.24 5471.23 7281.29 10689.71 2
114514_t70.83 11569.56 12774.64 9686.21 3154.63 13982.34 7381.81 10448.22 30363.01 25185.83 12740.92 22487.10 6257.91 17379.79 12082.18 219
WB-MVSnew59.66 28759.69 27759.56 32175.19 24535.78 36769.34 29764.28 32946.88 32261.76 27175.79 31540.61 22565.20 34732.16 36571.21 23877.70 288
HyFIR lowres test65.67 22263.01 24273.67 12879.97 12455.65 12269.07 29975.52 22442.68 35863.53 24177.95 27640.43 22681.64 18546.01 27271.91 23183.73 182
miper_lstm_enhance62.03 26760.88 27065.49 28266.71 35746.25 26256.29 37875.70 22050.68 27061.27 27675.48 32140.21 22768.03 32956.31 18365.25 30882.18 219
GDP-MVS72.64 8371.28 9876.70 5777.72 18854.22 14479.57 11484.45 4355.30 20471.38 10886.97 8839.94 22887.00 6567.02 10079.20 13288.89 9
FMVSNet366.32 21665.61 21168.46 23976.48 22542.34 30274.98 21277.15 20355.83 19165.04 22181.16 21939.91 22980.14 22347.18 26272.76 21982.90 206
Syy-MVS56.00 31656.23 30955.32 34874.69 25326.44 40765.52 32357.49 36650.97 26856.52 32472.18 34339.89 23068.09 32724.20 39964.59 31571.44 361
MVP-Stereo65.41 22663.80 22970.22 20977.62 19755.53 12776.30 18178.53 17450.59 27356.47 32678.65 26739.84 23182.68 16644.10 29172.12 23072.44 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TR-MVS66.59 21365.07 21871.17 19479.18 14049.63 22473.48 24175.20 23352.95 24267.90 15880.33 23739.81 23283.68 14143.20 30173.56 20580.20 255
pmmvs663.69 24662.82 24566.27 26770.63 31639.27 33173.13 24575.47 22652.69 24659.75 29482.30 19539.71 23377.03 27047.40 25964.35 31782.53 211
XVG-OURS-SEG-HR68.81 16067.47 17072.82 15474.40 26156.87 10270.59 28279.04 16054.77 22066.99 17986.01 12139.57 23478.21 25062.54 13873.33 21083.37 192
Anonymous2023121169.28 15368.47 15071.73 17580.28 11447.18 25679.98 10382.37 9654.61 22267.24 17484.01 16039.43 23582.41 17455.45 19372.83 21885.62 113
Fast-Effi-MVS+-dtu67.37 19265.33 21573.48 13872.94 27757.78 8677.47 15376.88 20557.60 15961.97 26776.85 29739.31 23680.49 21454.72 19870.28 25382.17 221
dmvs_testset50.16 34751.90 33744.94 38266.49 35911.78 42261.01 35751.50 38551.17 26650.30 37267.44 37639.28 23760.29 36322.38 40257.49 35962.76 387
ACMP63.53 672.30 9071.20 10075.59 8180.28 11457.54 8782.74 6682.84 9260.58 9365.24 21686.18 11439.25 23886.03 8966.95 10176.79 17083.22 196
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052969.91 13469.02 13772.56 15780.19 11947.65 25077.56 15080.99 13155.45 20269.88 12686.76 9239.24 23982.18 17754.04 20477.10 16787.85 33
LPG-MVS_test72.74 8171.74 8775.76 7380.22 11657.51 8982.55 7083.40 7461.32 7966.67 18687.33 8239.15 24086.59 7467.70 9177.30 16383.19 198
LGP-MVS_train75.76 7380.22 11657.51 8983.40 7461.32 7966.67 18687.33 8239.15 24086.59 7467.70 9177.30 16383.19 198
TAPA-MVS59.36 1066.60 21165.20 21770.81 20076.63 22148.75 23676.52 17880.04 14650.64 27265.24 21684.93 13939.15 24078.54 24636.77 34076.88 16985.14 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft61.03 968.85 15967.56 16472.70 15674.26 26453.99 14781.21 8981.34 11952.70 24562.75 25585.55 13338.86 24384.14 13148.41 25283.01 8279.97 259
sss56.17 31556.57 30554.96 35066.93 35536.32 36157.94 36861.69 34941.67 36258.64 30675.32 32438.72 24456.25 38442.04 31166.19 30272.31 351
ACMM61.98 770.80 11769.73 12574.02 11380.59 11358.59 7782.68 6782.02 10155.46 20167.18 17684.39 15338.51 24583.17 15160.65 15476.10 17780.30 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVSTER67.16 19965.58 21271.88 17070.37 32349.70 22070.25 28878.45 17951.52 25869.16 14080.37 23438.45 24682.50 17160.19 15771.46 23683.44 191
test_djsdf69.45 15067.74 16074.58 9974.57 25754.92 13682.79 6478.48 17651.26 26465.41 20983.49 17238.37 24783.24 14966.06 10569.25 27485.56 114
MonoMVSNet64.15 24163.31 23866.69 25970.51 31944.12 28774.47 22374.21 24957.81 15763.03 24976.62 30138.33 24877.31 26554.22 20360.59 34878.64 277
tpm262.07 26660.10 27567.99 24472.79 27943.86 28971.05 27866.85 31043.14 35562.77 25375.39 32338.32 24980.80 20741.69 31368.88 27979.32 270
tpm cat159.25 29156.95 30166.15 27072.19 29346.96 25768.09 30465.76 31740.03 37457.81 31470.56 35738.32 24974.51 29538.26 33161.50 34077.00 300
CNLPA65.43 22564.02 22569.68 22178.73 15358.07 8177.82 14570.71 27851.49 25961.57 27483.58 17038.23 25170.82 31243.90 29370.10 25780.16 256
131464.61 23663.21 24068.80 23571.87 29847.46 25373.95 23278.39 18442.88 35759.97 28876.60 30438.11 25279.39 23054.84 19772.32 22679.55 267
testdata64.66 28981.52 9152.93 16865.29 32146.09 32873.88 6887.46 7938.08 25366.26 34353.31 21278.48 14574.78 326
FMVSNet166.70 20965.87 20669.19 22977.49 20143.33 29377.31 15677.83 19056.45 17864.60 22982.70 18138.08 25380.33 21646.08 27172.31 22783.92 171
UniMVSNet_ETH3D67.60 18967.07 18569.18 23277.39 20442.29 30374.18 22875.59 22260.37 9966.77 18386.06 11937.64 25578.93 24552.16 21973.49 20686.32 86
EPNet_dtu61.90 26861.97 25461.68 30972.89 27839.78 32575.85 19365.62 31955.09 21054.56 34479.36 25737.59 25667.02 33839.80 32376.95 16878.25 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT62.49 25961.52 25965.40 28371.99 29650.80 20171.15 27569.63 28745.71 33360.61 28177.93 27737.45 25765.99 34455.67 19063.50 32479.42 269
SCA60.49 27958.38 29066.80 25574.14 26648.06 24563.35 34163.23 33749.13 29159.33 30072.10 34537.45 25774.27 29744.17 28862.57 33178.05 283
tt080567.77 18667.24 18169.34 22874.87 24840.08 32177.36 15581.37 11455.31 20366.33 19284.65 14537.35 25982.55 17055.65 19172.28 22885.39 126
IterMVS62.79 25761.27 26367.35 25269.37 33852.04 18871.17 27368.24 30152.63 24759.82 29176.91 29637.32 26072.36 30352.80 21563.19 32777.66 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpn200view963.18 25362.18 25266.21 26876.85 21639.62 32771.96 26469.44 29156.63 17162.61 25879.83 24437.18 26179.17 23431.84 36973.25 21279.83 263
thres40063.31 24962.18 25266.72 25676.85 21639.62 32771.96 26469.44 29156.63 17162.61 25879.83 24437.18 26179.17 23431.84 36973.25 21281.36 233
tpm57.34 30358.16 29254.86 35171.80 29934.77 37167.47 31156.04 37548.20 30460.10 28576.92 29537.17 26353.41 39440.76 31865.01 30976.40 306
test22283.14 7158.68 7672.57 25463.45 33541.78 36067.56 17086.12 11637.13 26478.73 14274.98 322
AUN-MVS68.45 17266.41 19574.57 10079.53 13257.08 10073.93 23475.23 23154.44 22766.69 18581.85 20737.10 26582.89 15762.07 14266.84 29683.75 181
thres20062.20 26561.16 26765.34 28475.38 24239.99 32369.60 29469.29 29355.64 19861.87 26976.99 29437.07 26678.96 24431.28 37773.28 21177.06 298
thres100view90063.28 25162.41 24965.89 27677.31 20638.66 33572.65 25069.11 29557.07 16462.45 26381.03 22337.01 26779.17 23431.84 36973.25 21279.83 263
thres600view763.30 25062.27 25066.41 26377.18 20838.87 33372.35 25769.11 29556.98 16662.37 26580.96 22537.01 26779.00 24331.43 37673.05 21681.36 233
DP-MVS65.68 22163.66 23271.75 17484.93 5556.87 10280.74 9573.16 25953.06 24159.09 30182.35 19336.79 26985.94 9232.82 36369.96 26072.45 346
mvsmamba68.47 17066.56 18874.21 11079.60 12952.95 16774.94 21375.48 22552.09 25260.10 28583.27 17436.54 27084.70 12259.32 16877.69 15584.99 142
XVG-OURS68.76 16367.37 17372.90 15174.32 26357.22 9270.09 29078.81 16555.24 20667.79 16685.81 12936.54 27078.28 24962.04 14375.74 18183.19 198
ECVR-MVScopyleft67.72 18767.51 16868.35 24179.46 13336.29 36374.79 21766.93 30958.72 13467.19 17588.05 6936.10 27281.38 19152.07 22084.25 7287.39 50
test111167.21 19467.14 18467.42 25079.24 13834.76 37273.89 23665.65 31858.71 13666.96 18087.95 7236.09 27380.53 21152.03 22183.79 7786.97 61
pmmvs461.48 27459.39 27967.76 24671.57 30153.86 14871.42 26865.34 32044.20 34459.46 29677.92 27835.90 27474.71 29443.87 29464.87 31174.71 328
CR-MVSNet59.91 28457.90 29665.96 27469.96 32952.07 18665.31 32963.15 33842.48 35959.36 29774.84 32635.83 27570.75 31345.50 28064.65 31375.06 319
Patchmtry57.16 30456.47 30659.23 32469.17 34134.58 37462.98 34263.15 33844.53 34056.83 32174.84 32635.83 27568.71 32440.03 32160.91 34274.39 331
dmvs_re56.77 30856.83 30356.61 34269.23 33941.02 31458.37 36564.18 33050.59 27357.45 31771.42 35135.54 27758.94 37137.23 33667.45 29269.87 374
RPMNet61.53 27258.42 28970.86 19969.96 32952.07 18665.31 32981.36 11543.20 35459.36 29770.15 36235.37 27885.47 10536.42 34764.65 31375.06 319
CANet_DTU68.18 17767.71 16369.59 22374.83 24946.24 26378.66 12476.85 20659.60 11963.45 24282.09 20435.25 27977.41 26359.88 16178.76 14185.14 134
thisisatest053067.92 18365.78 20874.33 10676.29 22751.03 19576.89 17074.25 24853.67 23765.59 20681.76 20935.15 28085.50 10355.94 18472.47 22386.47 77
tttt051767.83 18565.66 21074.33 10676.69 21850.82 20077.86 14273.99 25254.54 22564.64 22882.53 19035.06 28185.50 10355.71 18969.91 26186.67 71
test_040263.25 25261.01 26869.96 21480.00 12354.37 14376.86 17272.02 26954.58 22458.71 30480.79 23135.00 28284.36 12826.41 39664.71 31271.15 365
thisisatest051565.83 22063.50 23472.82 15473.75 26749.50 22571.32 27073.12 26149.39 28763.82 23876.50 30734.95 28384.84 12153.20 21375.49 18584.13 165
sam_mvs134.74 28478.05 283
pmmvs556.47 31155.68 31358.86 32861.41 38436.71 35666.37 31562.75 34040.38 37153.70 35176.62 30134.56 28567.05 33740.02 32265.27 30772.83 341
patchmatchnet-post64.03 38834.50 28674.27 297
PatchmatchNetpermissive59.84 28558.24 29164.65 29073.05 27546.70 25969.42 29662.18 34747.55 31358.88 30371.96 34734.49 28769.16 32242.99 30363.60 32278.07 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmatch-test49.08 35048.28 35251.50 37264.40 37030.85 39345.68 40248.46 39535.60 38346.10 38572.10 34534.47 28846.37 40527.08 39460.65 34677.27 295
MS-PatchMatch62.42 26161.46 26065.31 28575.21 24452.10 18572.05 26174.05 25146.41 32557.42 31874.36 33034.35 28977.57 26145.62 27773.67 20166.26 384
tpmvs58.47 29456.95 30163.03 30370.20 32441.21 31367.90 30667.23 30749.62 28454.73 34270.84 35534.14 29076.24 28736.64 34461.29 34171.64 357
testing9164.46 23863.80 22966.47 26278.43 16140.06 32267.63 30769.59 28859.06 12963.18 24678.05 27434.05 29176.99 27148.30 25375.87 17982.37 216
PMMVS53.96 32853.26 33456.04 34462.60 37950.92 19861.17 35456.09 37432.81 38753.51 35666.84 38134.04 29259.93 36544.14 29068.18 28657.27 396
Patchmatch-RL test58.16 29755.49 31466.15 27067.92 35048.89 23560.66 35851.07 38847.86 31059.36 29762.71 39234.02 29372.27 30556.41 18259.40 35277.30 294
WB-MVS43.26 36043.41 36042.83 38663.32 37510.32 42458.17 36745.20 40245.42 33440.44 39767.26 37934.01 29458.98 37011.96 41524.88 40959.20 390
test_post3.55 42233.90 29566.52 340
WBMVS60.54 27860.61 27260.34 31978.00 17935.95 36564.55 33564.89 32349.63 28363.39 24378.70 26433.85 29667.65 33242.10 31070.35 25177.43 292
PLCcopyleft56.13 1465.09 23163.21 24070.72 20381.04 10354.87 13778.57 12777.47 19648.51 29955.71 32981.89 20633.71 29779.71 22441.66 31470.37 24977.58 290
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ET-MVSNet_ETH3D67.96 18265.72 20974.68 9376.67 22055.62 12575.11 20774.74 23952.91 24360.03 28780.12 24033.68 29882.64 16861.86 14576.34 17485.78 103
GA-MVS65.53 22463.70 23171.02 19870.87 31448.10 24470.48 28474.40 24456.69 16964.70 22776.77 29833.66 29981.10 19855.42 19470.32 25283.87 174
LS3D64.71 23462.50 24871.34 18979.72 12855.71 12079.82 10774.72 24048.50 30056.62 32284.62 14633.59 30082.34 17529.65 38475.23 18675.97 309
sam_mvs33.43 301
PatchT53.17 33653.44 33352.33 36968.29 34825.34 41158.21 36654.41 37944.46 34254.56 34469.05 37033.32 30260.94 35936.93 33961.76 33970.73 368
test20.0353.87 33054.02 32853.41 36261.47 38328.11 40061.30 35259.21 35851.34 26352.09 36077.43 28933.29 30358.55 37329.76 38360.27 35073.58 337
UBG59.62 28959.53 27859.89 32078.12 17435.92 36664.11 33960.81 35449.45 28661.34 27575.55 31933.05 30467.39 33638.68 32874.62 18876.35 307
our_test_356.49 31054.42 32262.68 30569.51 33545.48 27366.08 31761.49 35044.11 34750.73 36869.60 36733.05 30468.15 32638.38 33056.86 36174.40 330
anonymousdsp67.00 20364.82 22073.57 13570.09 32756.13 11076.35 18077.35 20048.43 30164.99 22480.84 23033.01 30680.34 21564.66 11967.64 29184.23 161
MDTV_nov1_ep13_2view25.89 40961.22 35340.10 37351.10 36332.97 30738.49 32978.61 278
IB-MVS56.42 1265.40 22762.73 24673.40 14274.89 24652.78 17373.09 24675.13 23455.69 19558.48 30973.73 33532.86 30886.32 8550.63 23370.11 25681.10 241
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
xiu_mvs_v1_base68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
xiu_mvs_v1_base_debi68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
Anonymous2023120655.10 32555.30 31654.48 35369.81 33333.94 38062.91 34362.13 34841.08 36655.18 33675.65 31732.75 31256.59 38330.32 38167.86 28872.91 339
UGNet68.81 16067.39 17273.06 14878.33 16654.47 14079.77 10875.40 22760.45 9563.22 24484.40 15232.71 31380.91 20551.71 22680.56 11383.81 176
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SSC-MVS41.96 36541.99 36441.90 38762.46 3809.28 42657.41 37444.32 40543.38 35138.30 40366.45 38232.67 31458.42 37410.98 41621.91 41257.99 394
test-LLR58.15 29858.13 29458.22 33368.57 34444.80 27865.46 32557.92 36350.08 27855.44 33269.82 36432.62 31557.44 37749.66 24173.62 20272.41 348
test0.0.03 153.32 33553.59 33252.50 36862.81 37829.45 39559.51 36154.11 38050.08 27854.40 34674.31 33132.62 31555.92 38630.50 38063.95 32072.15 353
MDTV_nov1_ep1357.00 30072.73 28038.26 33965.02 33264.73 32644.74 33855.46 33172.48 34132.61 31770.47 31437.47 33467.75 290
testing9964.05 24263.29 23966.34 26478.17 17339.76 32667.33 31268.00 30258.60 13863.03 24978.10 27332.57 31876.94 27348.22 25475.58 18382.34 217
cascas65.98 21863.42 23573.64 13177.26 20752.58 17772.26 25977.21 20248.56 29761.21 27774.60 32932.57 31885.82 9550.38 23576.75 17182.52 212
test_post168.67 3013.64 42132.39 32069.49 32144.17 288
CVMVSNet59.63 28859.14 28161.08 31774.47 25838.84 33475.20 20568.74 29731.15 39058.24 31076.51 30532.39 32068.58 32549.77 23865.84 30475.81 311
ppachtmachnet_test58.06 29955.38 31566.10 27269.51 33548.99 23268.01 30566.13 31644.50 34154.05 34970.74 35632.09 32272.34 30436.68 34356.71 36476.99 302
MIMVSNet57.35 30257.07 29958.22 33374.21 26537.18 34962.46 34560.88 35348.88 29455.29 33575.99 31331.68 32362.04 35731.87 36872.35 22575.43 317
testing1162.81 25661.90 25565.54 28078.38 16240.76 31967.59 30966.78 31155.48 20060.13 28477.11 29231.67 32476.79 27645.53 27974.45 19079.06 272
test_vis1_n_192058.86 29259.06 28358.25 33263.76 37243.14 29767.49 31066.36 31440.22 37265.89 20171.95 34831.04 32559.75 36659.94 16064.90 31071.85 355
PVSNet_043.31 2047.46 35545.64 35852.92 36567.60 35244.65 28054.06 38454.64 37741.59 36346.15 38458.75 39530.99 32658.66 37232.18 36424.81 41055.46 398
gg-mvs-nofinetune57.86 30056.43 30762.18 30772.62 28235.35 36866.57 31356.33 37250.65 27157.64 31557.10 39830.65 32776.36 28537.38 33578.88 13774.82 325
D2MVS62.30 26360.29 27468.34 24266.46 36048.42 24165.70 32073.42 25647.71 31158.16 31175.02 32530.51 32877.71 25953.96 20671.68 23478.90 276
GG-mvs-BLEND62.34 30671.36 30737.04 35369.20 29857.33 36854.73 34265.48 38630.37 32977.82 25634.82 35374.93 18772.17 352
MDA-MVSNet-bldmvs53.87 33050.81 34263.05 30266.25 36148.58 23956.93 37663.82 33248.09 30641.22 39470.48 36030.34 33068.00 33034.24 35545.92 39072.57 344
EPMVS53.96 32853.69 33154.79 35266.12 36331.96 39062.34 34749.05 39244.42 34355.54 33071.33 35330.22 33156.70 38041.65 31562.54 33275.71 313
YYNet150.73 34548.96 34756.03 34561.10 38641.78 30851.94 38956.44 37040.94 36844.84 38667.80 37430.08 33255.08 39036.77 34050.71 38071.22 363
MDA-MVSNet_test_wron50.71 34648.95 34856.00 34661.17 38541.84 30751.90 39056.45 36940.96 36744.79 38767.84 37330.04 33355.07 39136.71 34250.69 38171.11 366
test_cas_vis1_n_192056.91 30656.71 30457.51 34059.13 39445.40 27463.58 34061.29 35136.24 38267.14 17771.85 34929.89 33456.69 38157.65 17563.58 32370.46 369
Anonymous20240521166.84 20665.99 20569.40 22780.19 11942.21 30571.11 27671.31 27358.80 13367.90 15886.39 10929.83 33579.65 22549.60 24378.78 14086.33 84
ETVMVS59.51 29058.81 28461.58 31177.46 20234.87 36964.94 33359.35 35754.06 23261.08 27976.67 29929.54 33671.87 30832.16 36574.07 19578.01 287
MSDG61.81 27059.23 28069.55 22672.64 28152.63 17670.45 28575.81 21851.38 26153.70 35176.11 31029.52 33781.08 20037.70 33365.79 30574.93 323
CMPMVSbinary42.80 2157.81 30155.97 31063.32 29860.98 38847.38 25464.66 33469.50 29032.06 38846.83 38177.80 28229.50 33871.36 31048.68 24973.75 20071.21 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LTVRE_ROB55.42 1663.15 25461.23 26568.92 23476.57 22347.80 24759.92 36076.39 21154.35 22858.67 30582.46 19229.44 33981.49 18942.12 30971.14 23977.46 291
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UnsupCasMVSNet_eth53.16 33752.47 33555.23 34959.45 39233.39 38459.43 36269.13 29445.98 32950.35 37172.32 34229.30 34058.26 37542.02 31244.30 39274.05 334
CHOSEN 280x42047.83 35346.36 35752.24 37167.37 35349.78 21938.91 41043.11 40735.00 38443.27 39263.30 39128.95 34149.19 40136.53 34560.80 34457.76 395
pmmvs-eth3d58.81 29356.31 30866.30 26667.61 35152.42 18272.30 25864.76 32543.55 35054.94 33974.19 33228.95 34172.60 30243.31 29857.21 36073.88 336
dp51.89 34051.60 33952.77 36668.44 34732.45 38862.36 34654.57 37844.16 34549.31 37467.91 37228.87 34356.61 38233.89 35654.89 36869.24 379
FE-MVS65.91 21963.33 23773.63 13277.36 20551.95 19072.62 25275.81 21853.70 23665.31 21078.96 26228.81 34486.39 8243.93 29273.48 20782.55 210
testing22262.29 26461.31 26265.25 28677.87 18238.53 33768.34 30266.31 31556.37 18063.15 24877.58 28828.47 34576.18 28937.04 33876.65 17381.05 243
KD-MVS_self_test55.22 32353.89 32959.21 32557.80 39727.47 40357.75 37174.32 24547.38 31550.90 36570.00 36328.45 34670.30 31840.44 31957.92 35779.87 262
jajsoiax68.25 17566.45 19173.66 12975.62 23655.49 12880.82 9378.51 17552.33 24964.33 23184.11 15728.28 34781.81 18463.48 13270.62 24483.67 184
RPSCF55.80 31854.22 32760.53 31865.13 36742.91 30064.30 33657.62 36536.84 38158.05 31382.28 19628.01 34856.24 38537.14 33758.61 35582.44 215
F-COLMAP63.05 25560.87 27169.58 22576.99 21553.63 15478.12 13676.16 21347.97 30852.41 35981.61 21227.87 34978.11 25140.07 32066.66 29877.00 300
K. test v360.47 28057.11 29870.56 20573.74 26848.22 24375.10 20962.55 34158.27 14553.62 35476.31 30927.81 35081.59 18747.42 25839.18 39981.88 225
ACMH+57.40 1166.12 21764.06 22472.30 16577.79 18552.83 17280.39 9778.03 18757.30 16157.47 31682.55 18727.68 35184.17 13045.54 27869.78 26479.90 261
UnsupCasMVSNet_bld50.07 34848.87 34953.66 35860.97 38933.67 38257.62 37264.56 32739.47 37647.38 37864.02 39027.47 35259.32 36734.69 35443.68 39367.98 382
mvs_tets68.18 17766.36 19773.63 13275.61 23755.35 13180.77 9478.56 17352.48 24864.27 23384.10 15827.45 35381.84 18363.45 13370.56 24683.69 183
lessismore_v069.91 21771.42 30547.80 24750.90 38950.39 37075.56 31827.43 35481.33 19245.91 27334.10 40580.59 249
UWE-MVS60.18 28259.78 27661.39 31477.67 19133.92 38169.04 30063.82 33248.56 29764.27 23377.64 28727.20 35570.40 31733.56 36076.24 17579.83 263
ACMH55.70 1565.20 23063.57 23370.07 21378.07 17652.01 18979.48 11679.69 14855.75 19456.59 32380.98 22427.12 35680.94 20242.90 30571.58 23577.25 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo61.65 27158.80 28670.20 21175.80 23347.22 25575.59 19769.68 28654.61 22254.11 34879.26 25927.07 35782.96 15443.27 29949.79 38480.41 252
mmtdpeth60.40 28159.12 28264.27 29469.59 33448.99 23270.67 28170.06 28354.96 21662.78 25273.26 33927.00 35867.66 33158.44 17245.29 39176.16 308
PVSNet50.76 1958.40 29557.39 29761.42 31275.53 23944.04 28861.43 35063.45 33547.04 32156.91 32073.61 33627.00 35864.76 34839.12 32672.40 22475.47 316
OpenMVS_ROBcopyleft52.78 1860.03 28358.14 29365.69 27970.47 32044.82 27775.33 20170.86 27745.04 33656.06 32776.00 31126.89 36079.65 22535.36 35267.29 29372.60 343
ADS-MVSNet251.33 34348.76 35059.07 32766.02 36444.60 28150.90 39259.76 35636.90 37950.74 36666.18 38426.38 36163.11 35327.17 39254.76 36969.50 376
ADS-MVSNet48.48 35247.77 35350.63 37366.02 36429.92 39450.90 39250.87 39036.90 37950.74 36666.18 38426.38 36152.47 39627.17 39254.76 36969.50 376
N_pmnet39.35 37040.28 36736.54 39363.76 3721.62 43049.37 3950.76 42934.62 38543.61 39166.38 38326.25 36342.57 40926.02 39751.77 37765.44 385
MVS-HIRNet45.52 35744.48 35948.65 37668.49 34634.05 37959.41 36344.50 40427.03 39737.96 40450.47 40626.16 36464.10 34926.74 39559.52 35147.82 405
test250665.33 22864.61 22167.50 24879.46 13334.19 37874.43 22551.92 38458.72 13466.75 18488.05 6925.99 36580.92 20451.94 22284.25 7287.39 50
FMVSNet555.86 31754.93 31758.66 33071.05 31236.35 35964.18 33862.48 34246.76 32350.66 36974.73 32825.80 36664.04 35033.11 36165.57 30675.59 314
new-patchmatchnet47.56 35447.73 35447.06 37758.81 3959.37 42548.78 39659.21 35843.28 35244.22 38968.66 37125.67 36757.20 37931.57 37549.35 38574.62 329
reproduce_monomvs62.56 25861.20 26666.62 26070.62 31744.30 28470.13 28973.13 26054.78 21961.13 27876.37 30825.63 36875.63 29058.75 16960.29 34979.93 260
MIMVSNet155.17 32454.31 32557.77 33870.03 32832.01 38965.68 32164.81 32449.19 29046.75 38276.00 31125.53 36964.04 35028.65 38762.13 33577.26 296
PatchMatch-RL56.25 31454.55 32161.32 31577.06 21256.07 11265.57 32254.10 38144.13 34653.49 35771.27 35425.20 37066.78 33936.52 34663.66 32161.12 388
JIA-IIPM51.56 34147.68 35563.21 30064.61 36950.73 20247.71 39858.77 36042.90 35648.46 37651.72 40224.97 37170.24 31936.06 34953.89 37268.64 380
EU-MVSNet55.61 32054.41 32359.19 32665.41 36633.42 38372.44 25671.91 27028.81 39251.27 36273.87 33424.76 37269.08 32343.04 30258.20 35675.06 319
EG-PatchMatch MVS64.71 23462.87 24370.22 20977.68 19053.48 15777.99 13978.82 16453.37 24056.03 32877.41 29024.75 37384.04 13346.37 26973.42 20973.14 338
TESTMET0.1,155.28 32254.90 31856.42 34366.56 35843.67 29165.46 32556.27 37339.18 37753.83 35067.44 37624.21 37455.46 38848.04 25673.11 21570.13 372
mvsany_test139.38 36938.16 37243.02 38549.05 40634.28 37744.16 40625.94 42022.74 40646.57 38362.21 39323.85 37541.16 41233.01 36235.91 40253.63 399
COLMAP_ROBcopyleft52.97 1761.27 27658.81 28468.64 23774.63 25552.51 17978.42 13073.30 25749.92 28150.96 36481.51 21523.06 37679.40 22931.63 37365.85 30374.01 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testgi51.90 33952.37 33650.51 37460.39 39123.55 41458.42 36458.15 36149.03 29251.83 36179.21 26022.39 37755.59 38729.24 38662.64 33072.40 350
DSMNet-mixed39.30 37138.72 37041.03 38851.22 40519.66 41745.53 40331.35 41615.83 41539.80 39967.42 37822.19 37845.13 40622.43 40152.69 37658.31 393
test-mter56.42 31255.82 31258.22 33368.57 34444.80 27865.46 32557.92 36339.94 37555.44 33269.82 36421.92 37957.44 37749.66 24173.62 20272.41 348
KD-MVS_2432*160053.45 33251.50 34059.30 32262.82 37637.14 35055.33 37971.79 27147.34 31755.09 33770.52 35821.91 38070.45 31535.72 35042.97 39470.31 370
miper_refine_blended53.45 33251.50 34059.30 32262.82 37637.14 35055.33 37971.79 27147.34 31755.09 33770.52 35821.91 38070.45 31535.72 35042.97 39470.31 370
myMVS_eth3d54.86 32654.61 32055.61 34774.69 25327.31 40465.52 32357.49 36650.97 26856.52 32472.18 34321.87 38268.09 32727.70 39064.59 31571.44 361
OurMVSNet-221017-061.37 27558.63 28869.61 22272.05 29548.06 24573.93 23472.51 26447.23 31954.74 34180.92 22621.49 38381.24 19548.57 25156.22 36579.53 268
testing356.54 30955.92 31158.41 33177.52 20027.93 40169.72 29356.36 37154.75 22158.63 30777.80 28220.88 38471.75 30925.31 39862.25 33475.53 315
ITE_SJBPF62.09 30866.16 36244.55 28364.32 32847.36 31655.31 33480.34 23619.27 38562.68 35536.29 34862.39 33379.04 273
AllTest57.08 30554.65 31964.39 29271.44 30349.03 22969.92 29267.30 30445.97 33047.16 37979.77 24617.47 38667.56 33433.65 35759.16 35376.57 304
TestCases64.39 29271.44 30349.03 22967.30 30445.97 33047.16 37979.77 24617.47 38667.56 33433.65 35759.16 35376.57 304
mvs5depth55.64 31953.81 33061.11 31659.39 39340.98 31865.89 31868.28 30050.21 27658.11 31275.42 32217.03 38867.63 33343.79 29546.21 38874.73 327
Anonymous2024052155.30 32154.41 32357.96 33660.92 39041.73 30971.09 27771.06 27641.18 36548.65 37573.31 33716.93 38959.25 36842.54 30664.01 31872.90 340
dongtai34.52 37534.94 37533.26 39661.06 38716.00 42152.79 38823.78 42240.71 36939.33 40148.65 41016.91 39048.34 40212.18 41419.05 41435.44 413
test_fmvs151.32 34450.48 34453.81 35753.57 39937.51 34760.63 35951.16 38628.02 39663.62 24069.23 36916.41 39153.93 39351.01 23060.70 34569.99 373
XVG-ACMP-BASELINE64.36 24062.23 25170.74 20272.35 29052.45 18170.80 28078.45 17953.84 23559.87 29081.10 22116.24 39279.32 23155.64 19271.76 23280.47 250
kuosan29.62 38230.82 38126.02 40152.99 40016.22 42051.09 39122.71 42333.91 38633.99 40540.85 41115.89 39333.11 4187.59 42218.37 41528.72 415
tmp_tt9.43 39011.14 3934.30 4052.38 4284.40 42813.62 41716.08 4260.39 42215.89 41713.06 41915.80 3945.54 42412.63 41310.46 4212.95 419
USDC56.35 31354.24 32662.69 30464.74 36840.31 32065.05 33173.83 25343.93 34847.58 37777.71 28615.36 39575.05 29338.19 33261.81 33872.70 342
test_fmvs1_n51.37 34250.35 34554.42 35552.85 40137.71 34561.16 35551.93 38328.15 39463.81 23969.73 36613.72 39653.95 39251.16 22960.65 34671.59 358
test_vis1_n49.89 34948.69 35153.50 36053.97 39837.38 34861.53 34947.33 39928.54 39359.62 29567.10 38013.52 39752.27 39749.07 24657.52 35870.84 367
EGC-MVSNET42.47 36338.48 37154.46 35474.33 26248.73 23770.33 28751.10 3870.03 4230.18 42467.78 37513.28 39866.49 34118.91 40650.36 38248.15 403
MVStest142.65 36239.29 36952.71 36747.26 41134.58 37454.41 38350.84 39123.35 40239.31 40274.08 33312.57 39955.09 38923.32 40028.47 40868.47 381
ANet_high41.38 36637.47 37353.11 36439.73 41924.45 41256.94 37569.69 28547.65 31226.04 41152.32 40112.44 40062.38 35621.80 40310.61 42072.49 345
FPMVS42.18 36441.11 36645.39 37958.03 39641.01 31649.50 39453.81 38230.07 39133.71 40664.03 38811.69 40152.08 39914.01 41055.11 36743.09 407
TinyColmap54.14 32751.72 33861.40 31366.84 35641.97 30666.52 31468.51 29844.81 33742.69 39375.77 31611.66 40272.94 30131.96 36756.77 36369.27 378
test_fmvs248.69 35147.49 35652.29 37048.63 40833.06 38657.76 37048.05 39725.71 40059.76 29369.60 36711.57 40352.23 39849.45 24456.86 36171.58 359
TDRefinement53.44 33450.72 34361.60 31064.31 37146.96 25770.89 27965.27 32241.78 36044.61 38877.98 27511.52 40466.36 34228.57 38851.59 37871.49 360
ambc65.13 28763.72 37437.07 35247.66 39978.78 16754.37 34771.42 35111.24 40580.94 20245.64 27653.85 37377.38 293
test_vis1_rt41.35 36739.45 36847.03 37846.65 41237.86 34247.76 39738.65 41023.10 40444.21 39051.22 40411.20 40644.08 40739.27 32553.02 37559.14 391
pmmvs344.92 35841.95 36553.86 35652.58 40343.55 29262.11 34846.90 40126.05 39940.63 39560.19 39411.08 40757.91 37631.83 37246.15 38960.11 389
new_pmnet34.13 37634.29 37733.64 39552.63 40218.23 41944.43 40533.90 41522.81 40530.89 40853.18 40010.48 40835.72 41720.77 40439.51 39846.98 406
LF4IMVS42.95 36142.26 36345.04 38048.30 40932.50 38754.80 38148.49 39428.03 39540.51 39670.16 3619.24 40943.89 40831.63 37349.18 38658.72 392
PM-MVS52.33 33850.19 34658.75 32962.10 38145.14 27665.75 31940.38 40943.60 34953.52 35572.65 3409.16 41065.87 34550.41 23454.18 37165.24 386
ttmdpeth45.56 35642.95 36153.39 36352.33 40429.15 39657.77 36948.20 39631.81 38949.86 37377.21 2918.69 41159.16 36927.31 39133.40 40671.84 356
EMVS22.97 38521.84 38926.36 40040.20 41819.53 41841.95 40834.64 41417.09 4129.73 42222.83 4187.29 41242.22 4119.18 42013.66 41817.32 417
E-PMN23.77 38422.73 38826.90 39942.02 41520.67 41642.66 40735.70 41317.43 41110.28 42125.05 4176.42 41342.39 41010.28 41814.71 41717.63 416
test_method19.68 38718.10 39024.41 40213.68 4273.11 42912.06 41842.37 4082.00 42111.97 41936.38 4135.77 41429.35 42115.06 40823.65 41140.76 410
mvsany_test332.62 37730.57 38238.77 39136.16 42224.20 41338.10 41120.63 42419.14 41040.36 39857.43 3975.06 41536.63 41629.59 38528.66 40755.49 397
test_f31.86 37931.05 38034.28 39432.33 42521.86 41532.34 41230.46 41716.02 41439.78 40055.45 3994.80 41632.36 41930.61 37937.66 40148.64 401
Gipumacopyleft34.77 37431.91 37943.33 38462.05 38237.87 34120.39 41567.03 30823.23 40318.41 41625.84 4164.24 41762.73 35414.71 40951.32 37929.38 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs344.30 35942.55 36249.55 37542.83 41327.15 40653.03 38644.93 40322.03 40853.69 35364.94 3874.21 41849.63 40047.47 25749.82 38371.88 354
PMMVS227.40 38325.91 38631.87 39839.46 4206.57 42731.17 41328.52 41823.96 40120.45 41548.94 4094.20 41937.94 41416.51 40719.97 41351.09 400
LCM-MVSNet40.30 36835.88 37453.57 35942.24 41429.15 39645.21 40460.53 35522.23 40728.02 40950.98 4053.72 42061.78 35831.22 37838.76 40069.78 375
DeepMVS_CXcopyleft12.03 40417.97 42610.91 42310.60 4277.46 41911.07 42028.36 4153.28 42111.29 4238.01 4219.74 42213.89 418
APD_test137.39 37234.94 37544.72 38348.88 40733.19 38552.95 38744.00 40619.49 40927.28 41058.59 3963.18 42252.84 39518.92 40541.17 39748.14 404
PMVScopyleft28.69 2236.22 37333.29 37845.02 38136.82 42135.98 36454.68 38248.74 39326.31 39821.02 41451.61 4032.88 42360.10 3649.99 41947.58 38738.99 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt32.09 37830.20 38337.76 39235.36 42327.48 40240.60 40928.29 41916.69 41332.52 40740.53 4121.96 42437.40 41533.64 35942.21 39648.39 402
MVEpermissive17.77 2321.41 38617.77 39132.34 39734.34 42425.44 41016.11 41624.11 42111.19 41813.22 41831.92 4141.58 42530.95 42010.47 41717.03 41640.62 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf131.46 38028.89 38439.16 38941.99 41628.78 39846.45 40037.56 41114.28 41621.10 41248.96 4071.48 42647.11 40313.63 41134.56 40341.60 408
APD_test231.46 38028.89 38439.16 38941.99 41628.78 39846.45 40037.56 41114.28 41621.10 41248.96 4071.48 42647.11 40313.63 41134.56 40341.60 408
wuyk23d13.32 38912.52 39215.71 40347.54 41026.27 40831.06 4141.98 4284.93 4205.18 4231.94 4230.45 42818.54 4226.81 42312.83 4192.33 420
test1234.73 3926.30 3950.02 4060.01 4290.01 43156.36 3770.00 4300.01 4240.04 4250.21 4250.01 4290.00 4250.03 4250.00 4230.04 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
testmvs4.52 3936.03 3960.01 4070.01 4290.00 43253.86 3850.00 4300.01 4240.04 4250.27 4240.00 4300.00 4250.04 4240.00 4230.03 422
ab-mvs-re6.49 3918.65 3940.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 42777.89 2800.00 4300.00 4250.00 4260.00 4230.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
WAC-MVS27.31 40427.77 389
FOURS186.12 3660.82 3788.18 183.61 6760.87 8681.50 16
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
No_MVS79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
eth-test20.00 431
eth-test0.00 431
IU-MVS87.77 459.15 6385.53 2653.93 23484.64 379.07 1190.87 588.37 18
save fliter86.17 3361.30 2883.98 5079.66 15059.00 130
test_0728_SECOND79.19 1687.82 359.11 6687.85 587.15 390.84 378.66 1590.61 1187.62 43
GSMVS78.05 283
test_part287.58 960.47 4283.42 12
MTGPAbinary80.97 132
MTMP86.03 1917.08 425
gm-plane-assit71.40 30641.72 31148.85 29573.31 33782.48 17348.90 248
test9_res75.28 3788.31 3283.81 176
agg_prior273.09 5587.93 4084.33 157
agg_prior85.04 5059.96 5081.04 13074.68 5784.04 133
test_prior462.51 1482.08 79
test_prior76.69 5884.20 6157.27 9184.88 3986.43 8186.38 78
旧先验276.08 18645.32 33576.55 3665.56 34658.75 169
新几何276.12 184
无先验79.66 11274.30 24748.40 30280.78 20853.62 20879.03 274
原ACMM279.02 119
testdata272.18 30746.95 266
testdata172.65 25060.50 94
plane_prior781.41 9455.96 114
plane_prior584.01 5287.21 5868.16 8780.58 11184.65 151
plane_prior486.10 117
plane_prior356.09 11163.92 3669.27 136
plane_prior284.22 4364.52 25
plane_prior181.27 99
plane_prior56.31 10583.58 5663.19 4880.48 114
n20.00 430
nn0.00 430
door-mid47.19 400
test1183.47 71
door47.60 398
HQP5-MVS54.94 134
HQP-NCC80.66 10882.31 7462.10 6867.85 160
ACMP_Plane80.66 10882.31 7462.10 6867.85 160
BP-MVS67.04 98
HQP4-MVS67.85 16086.93 6684.32 158
HQP3-MVS83.90 5780.35 115
NP-MVS80.98 10456.05 11385.54 134
ACMMP++_ref74.07 195
ACMMP++72.16 229