This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
9.1478.75 1483.10 6984.15 4388.26 159.90 10678.57 2390.36 2757.51 3086.86 6477.39 2389.52 21
SF-MVS78.82 1279.22 1177.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2587.09 6077.08 2690.18 1587.87 26
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 11
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 37
MCST-MVS77.48 2777.45 2677.54 4586.67 2058.36 7683.22 5586.93 556.91 15774.91 4588.19 6259.15 2287.68 4673.67 5187.45 4286.57 69
DeepC-MVS69.38 278.56 1778.14 2179.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6390.25 3257.68 2789.96 1474.62 4389.03 2287.89 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 21
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 16
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 35
CSCG76.92 3276.75 3077.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3784.83 13360.76 1586.56 7367.86 8487.87 4186.06 89
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft80.16 780.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1889.76 1578.70 1388.32 3186.79 61
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+66.72 475.84 4474.57 5279.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 15789.24 5142.03 19789.38 1964.07 11686.50 5589.69 2
EC-MVSNet75.84 4475.87 4175.74 6978.86 14152.65 16883.73 5086.08 1763.47 4272.77 8487.25 8053.13 6987.93 4071.97 6185.57 6086.66 66
ZNCC-MVS78.82 1278.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4090.47 2653.96 5788.68 2776.48 2889.63 2087.16 51
SteuartSystems-ACMMP79.48 1079.31 1079.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5390.06 1378.42 1989.02 2387.69 33
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS75.87 4375.36 4477.41 4680.62 10655.91 11384.28 3985.78 2056.08 17573.41 6786.58 9450.94 10188.54 2870.79 6889.71 1787.79 31
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3489.70 1679.85 591.48 188.19 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS75.47 4775.00 4876.88 5181.38 9159.16 5979.94 10285.71 2256.59 16572.46 8986.76 8556.89 3287.86 4366.36 9788.91 2583.64 181
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
IU-MVS87.77 459.15 6085.53 2553.93 22084.64 379.07 1190.87 588.37 13
MP-MVS-pluss78.35 1978.46 1778.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3391.51 1152.47 7786.78 6780.66 489.64 1987.80 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 20
CS-MVS-test75.62 4675.31 4676.56 5780.63 10555.13 13083.88 4885.22 2862.05 7171.49 9986.03 11153.83 5986.36 8167.74 8586.91 4988.19 18
GST-MVS78.14 2177.85 2378.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5790.03 3852.56 7488.53 2974.79 4288.34 2986.63 68
ACMMP_NAP78.77 1478.78 1378.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7588.39 3079.34 890.52 1386.78 62
HPM-MVScopyleft77.28 2876.85 2978.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7789.97 4150.90 10287.48 4975.30 3686.85 5087.33 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs_mvgpermissive76.14 4076.30 3575.66 7176.46 21051.83 18679.67 10985.08 3165.02 1975.84 3488.58 6059.42 2185.08 10872.75 5683.93 7290.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive74.80 5074.89 5074.53 9875.59 22250.37 20478.17 13185.06 3362.80 5874.40 5487.86 7057.88 2683.61 13869.46 7582.79 8589.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNVR-MVS79.84 979.97 979.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2089.13 2278.67 1489.73 1687.03 53
ETV-MVS74.46 5773.84 6076.33 6079.27 13155.24 12979.22 11585.00 3664.97 2172.65 8679.46 24853.65 6687.87 4267.45 9082.91 8185.89 96
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7886.38 72
DeepC-MVS_fast68.24 377.25 2976.63 3279.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 7888.88 5553.72 6289.06 2368.27 7888.04 3887.42 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CLD-MVS73.33 6572.68 6975.29 8078.82 14353.33 15678.23 12884.79 3961.30 8170.41 10681.04 21652.41 7887.12 5864.61 11582.49 8885.41 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline74.61 5474.70 5174.34 10275.70 21849.99 21277.54 14884.63 4062.73 5973.98 6087.79 7357.67 2883.82 13469.49 7382.74 8689.20 6
ACMMPcopyleft76.02 4275.33 4578.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 11989.74 4645.43 16687.16 5572.01 6082.87 8385.14 129
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5189.38 4955.30 4289.18 2174.19 4687.34 4386.38 72
APD-MVScopyleft78.02 2278.04 2277.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4188.32 3273.48 5387.03 4584.83 139
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS78.01 2377.65 2479.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6190.50 2453.20 6888.35 3174.02 4887.05 4486.13 87
ACMMPR77.71 2477.23 2779.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6690.56 2249.80 10988.24 3374.02 4887.03 4586.32 80
DELS-MVS74.76 5174.46 5375.65 7277.84 17252.25 17875.59 19284.17 4663.76 3873.15 7382.79 17459.58 1986.80 6667.24 9186.04 5787.89 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R77.67 2677.18 2879.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 6890.58 2149.90 10788.21 3473.78 5087.03 4586.29 83
CDPH-MVS76.31 3775.67 4378.22 3785.35 4859.14 6281.31 8784.02 4856.32 16974.05 5988.98 5453.34 6787.92 4169.23 7688.42 2887.59 38
HQP_MVS74.31 5873.73 6176.06 6281.41 8956.31 10284.22 4084.01 4964.52 2569.27 12786.10 10845.26 17087.21 5368.16 8180.58 10384.65 144
plane_prior584.01 4987.21 5368.16 8180.58 10384.65 144
MM79.99 260.01 4686.19 1783.93 5173.19 177.08 3091.21 1557.23 3190.73 1083.35 188.12 3589.22 5
XVS77.17 3076.56 3379.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9290.01 4047.95 12988.01 3871.55 6586.74 5286.37 74
X-MVStestdata70.21 11867.28 17079.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 926.49 39647.95 12988.01 3871.55 6586.74 5286.37 74
CS-MVS76.25 3975.98 3877.06 5080.15 11555.63 12084.51 3583.90 5463.24 4573.30 6887.27 7955.06 4486.30 8371.78 6284.58 6489.25 4
HQP3-MVS83.90 5480.35 107
HQP-MVS73.45 6472.80 6875.40 7680.66 10254.94 13182.31 7183.90 5462.10 6867.85 15285.54 12645.46 16486.93 6267.04 9380.35 10784.32 151
canonicalmvs74.67 5374.98 4973.71 12178.94 14050.56 20280.23 9683.87 5760.30 10077.15 2986.56 9559.65 1782.00 17466.01 10182.12 8988.58 10
SD-MVS77.70 2577.62 2577.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4685.58 9776.12 3184.94 6286.33 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.78.44 1878.28 1978.90 2684.96 5261.41 2684.03 4583.82 5959.34 11779.37 1989.76 4559.84 1687.62 4776.69 2786.74 5287.68 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS76.77 3476.06 3778.88 2786.14 3562.73 982.55 6783.74 6061.71 7672.45 9190.34 2948.48 12588.13 3572.32 5886.85 5085.78 99
HPM-MVS++copyleft79.88 880.14 879.10 2188.17 164.80 186.59 1283.70 6165.37 1378.78 2290.64 1958.63 2487.24 5179.00 1290.37 1485.26 127
OPM-MVS74.73 5274.25 5576.19 6180.81 10159.01 6782.60 6683.64 6263.74 3972.52 8887.49 7447.18 14485.88 9069.47 7480.78 9983.66 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FOURS186.12 3660.82 3788.18 183.61 6360.87 8481.50 16
FIs70.82 10671.43 8368.98 22778.33 15738.14 32576.96 16483.59 6461.02 8367.33 16586.73 8755.07 4381.64 17954.61 19279.22 12387.14 52
MP-MVScopyleft78.35 1978.26 2078.64 3186.54 2563.47 486.02 2083.55 6563.89 3773.60 6590.60 2054.85 4886.72 6877.20 2588.06 3785.74 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM70.05 12068.81 13173.78 11576.54 20853.43 15383.23 5483.48 6652.89 23065.90 19386.29 10241.55 20686.49 7751.01 22078.40 13881.42 221
test1183.47 67
CP-MVS77.12 3176.68 3178.43 3386.05 3863.18 587.55 1083.45 6862.44 6472.68 8590.50 2448.18 12787.34 5073.59 5285.71 5884.76 143
原ACMM174.69 8985.39 4759.40 5483.42 6951.47 24570.27 10886.61 9248.61 12386.51 7653.85 19787.96 3978.16 268
LPG-MVS_test72.74 7371.74 7875.76 6780.22 11057.51 8682.55 6783.40 7061.32 7966.67 17987.33 7739.15 22886.59 7167.70 8677.30 15383.19 191
LGP-MVS_train75.76 6780.22 11057.51 8683.40 7061.32 7966.67 17987.33 7739.15 22886.59 7167.70 8677.30 15383.19 191
test1277.76 4384.52 5858.41 7583.36 7272.93 8154.61 5188.05 3788.12 3586.81 60
PAPR71.72 9270.82 9674.41 10181.20 9651.17 18979.55 11283.33 7355.81 18166.93 17484.61 13950.95 10086.06 8455.79 17979.20 12486.00 90
CANet76.46 3675.93 3978.06 3981.29 9257.53 8582.35 6983.31 7467.78 370.09 10986.34 10154.92 4788.90 2572.68 5784.55 6587.76 32
APD-MVS_3200maxsize74.96 4874.39 5476.67 5482.20 7858.24 7783.67 5183.29 7558.41 13173.71 6490.14 3345.62 15985.99 8769.64 7282.85 8485.78 99
PAPM_NR72.63 7571.80 7775.13 8381.72 8453.42 15479.91 10483.28 7659.14 11966.31 18685.90 11651.86 8786.06 8457.45 16780.62 10185.91 94
EIA-MVS71.78 8970.60 9975.30 7979.85 11953.54 15077.27 15783.26 7757.92 14366.49 18179.39 24952.07 8486.69 6960.05 15279.14 12685.66 107
FC-MVSNet-test69.80 12870.58 10167.46 24377.61 18334.73 35476.05 18483.19 7860.84 8565.88 19586.46 9854.52 5280.76 20352.52 20678.12 14086.91 56
3Dnovator64.47 572.49 7771.39 8575.79 6677.70 17558.99 6880.66 9483.15 7962.24 6665.46 20286.59 9342.38 19585.52 9859.59 15884.72 6382.85 200
MVS_Test72.45 7872.46 7272.42 15774.88 23048.50 23376.28 17883.14 8059.40 11572.46 8984.68 13555.66 4081.12 19165.98 10279.66 11587.63 36
DP-MVS Recon72.15 8670.73 9876.40 5886.57 2457.99 7981.15 8982.96 8157.03 15466.78 17585.56 12344.50 17688.11 3651.77 21580.23 11083.10 195
UniMVSNet (Re)70.63 10970.20 10771.89 16378.55 14945.29 26875.94 18782.92 8263.68 4068.16 14583.59 16153.89 5883.49 14153.97 19571.12 22586.89 57
MAR-MVS71.51 9470.15 10975.60 7481.84 8359.39 5581.38 8682.90 8354.90 20568.08 14878.70 25747.73 13285.51 9951.68 21784.17 7081.88 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
nrg03072.96 7073.01 6672.84 14675.41 22550.24 20580.02 10082.89 8458.36 13374.44 5386.73 8758.90 2380.83 20065.84 10374.46 17687.44 42
ACMP63.53 672.30 8071.20 9075.59 7580.28 10857.54 8482.74 6382.84 8560.58 9065.24 21086.18 10539.25 22686.03 8666.95 9576.79 16183.22 189
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ZD-MVS86.64 2160.38 4382.70 8657.95 14278.10 2490.06 3656.12 3888.84 2674.05 4787.00 48
UniMVSNet_NR-MVSNet71.11 9971.00 9471.44 17779.20 13344.13 27776.02 18682.60 8766.48 1168.20 14284.60 14056.82 3382.82 15854.62 19070.43 23287.36 48
alignmvs73.86 6273.99 5773.45 13378.20 16050.50 20378.57 12382.43 8859.40 11576.57 3186.71 8956.42 3681.23 19065.84 10381.79 9388.62 8
Anonymous2023121169.28 14668.47 14071.73 16980.28 10847.18 24979.98 10182.37 8954.61 20967.24 16684.01 15239.43 22382.41 16955.45 18472.83 20385.62 110
mPP-MVS76.54 3575.93 3978.34 3686.47 2663.50 385.74 2582.28 9062.90 5271.77 9590.26 3146.61 15386.55 7471.71 6385.66 5984.97 136
SR-MVS76.13 4175.70 4277.40 4885.87 4061.20 2985.52 2782.19 9159.99 10575.10 3990.35 2847.66 13486.52 7571.64 6482.99 7884.47 149
PS-MVSNAJss72.24 8171.21 8975.31 7878.50 15055.93 11281.63 8182.12 9256.24 17270.02 11385.68 12247.05 14684.34 12465.27 10974.41 17885.67 106
WR-MVS_H67.02 19466.92 17967.33 24777.95 17037.75 32977.57 14682.11 9362.03 7362.65 24482.48 18550.57 10379.46 22242.91 29064.01 30384.79 141
ACMM61.98 770.80 10769.73 11474.02 10980.59 10758.59 7482.68 6482.02 9455.46 18967.18 16884.39 14538.51 23383.17 14660.65 14876.10 16680.30 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSLP-MVS++73.77 6373.47 6374.66 9183.02 7159.29 5882.30 7481.88 9559.34 11771.59 9886.83 8345.94 15783.65 13765.09 11085.22 6181.06 234
MVS67.37 18466.33 19070.51 20175.46 22450.94 19273.95 22581.85 9641.57 34562.54 24778.57 26247.98 12885.47 10252.97 20482.05 9075.14 300
114514_t70.83 10569.56 11674.64 9386.21 3154.63 13682.34 7081.81 9748.22 28563.01 23985.83 11940.92 21487.10 5957.91 16479.79 11282.18 210
PCF-MVS61.88 870.95 10369.49 11975.35 7777.63 17855.71 11776.04 18581.81 9750.30 26169.66 12085.40 12952.51 7584.89 11451.82 21480.24 10985.45 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet72.16 8571.31 8874.71 8878.68 14749.70 21582.10 7681.65 9960.40 9365.94 19185.84 11851.74 9086.37 8055.93 17679.55 11888.07 23
PVSNet_BlendedMVS68.56 16267.72 15271.07 19177.03 19850.57 20074.50 21681.52 10053.66 22464.22 22979.72 24249.13 11782.87 15455.82 17773.92 18279.77 255
PVSNet_Blended68.59 15867.72 15271.19 18677.03 19850.57 20072.51 24881.52 10051.91 23864.22 22977.77 27549.13 11782.87 15455.82 17779.58 11680.14 248
DU-MVS70.01 12169.53 11871.44 17778.05 16644.13 27775.01 20581.51 10264.37 2868.20 14284.52 14149.12 11982.82 15854.62 19070.43 23287.37 46
dcpmvs_274.55 5675.23 4772.48 15382.34 7753.34 15577.87 13881.46 10357.80 14675.49 3686.81 8462.22 1377.75 25171.09 6782.02 9186.34 76
v114470.42 11469.31 12273.76 11773.22 25450.64 19977.83 14181.43 10458.58 12869.40 12581.16 21347.53 13785.29 10764.01 11870.64 22885.34 122
v1070.21 11869.02 12773.81 11473.51 25350.92 19478.74 11981.39 10560.05 10466.39 18481.83 20247.58 13685.41 10562.80 13068.86 26685.09 132
tt080567.77 17867.24 17469.34 22274.87 23140.08 30977.36 15281.37 10655.31 19166.33 18584.65 13737.35 24682.55 16555.65 18272.28 21485.39 121
SR-MVS-dyc-post74.57 5573.90 5876.58 5683.49 6559.87 4984.29 3781.36 10758.07 13773.14 7490.07 3444.74 17385.84 9168.20 7981.76 9484.03 159
RE-MVS-def73.71 6283.49 6559.87 4984.29 3781.36 10758.07 13773.14 7490.07 3443.06 18868.20 7981.76 9484.03 159
v119269.97 12368.68 13473.85 11273.19 25550.94 19277.68 14481.36 10757.51 14968.95 13380.85 22345.28 16985.33 10662.97 12970.37 23485.27 126
RPMNet61.53 25958.42 27070.86 19369.96 31052.07 18165.31 31381.36 10743.20 33559.36 27970.15 34035.37 26585.47 10236.42 33064.65 29875.06 301
OpenMVScopyleft61.03 968.85 15267.56 15672.70 15074.26 24853.99 14281.21 8881.34 11152.70 23162.75 24285.55 12538.86 23184.14 12648.41 24283.01 7779.97 250
MVS_030478.73 1578.75 1478.66 3080.82 10057.62 8385.31 3081.31 11270.51 274.17 5891.24 1454.99 4589.56 1782.29 288.13 3488.80 7
v7n69.01 15167.36 16773.98 11072.51 27052.65 16878.54 12581.30 11360.26 10162.67 24381.62 20543.61 18384.49 12157.01 16968.70 26884.79 141
MG-MVS73.96 6173.89 5974.16 10785.65 4249.69 21781.59 8481.29 11461.45 7871.05 10188.11 6351.77 8987.73 4561.05 14683.09 7685.05 133
TEST985.58 4361.59 2481.62 8281.26 11555.65 18674.93 4388.81 5653.70 6384.68 118
train_agg76.27 3876.15 3676.64 5585.58 4361.59 2481.62 8281.26 11555.86 17774.93 4388.81 5653.70 6384.68 11875.24 3888.33 3083.65 180
PAPM67.92 17566.69 18071.63 17378.09 16449.02 22577.09 16181.24 11751.04 25360.91 26383.98 15347.71 13384.99 10940.81 30279.32 12280.90 236
test_885.40 4660.96 3481.54 8581.18 11855.86 17774.81 4788.80 5853.70 6384.45 122
TranMVSNet+NR-MVSNet70.36 11570.10 11171.17 18878.64 14842.97 28976.53 17381.16 11966.95 668.53 13885.42 12851.61 9283.07 14752.32 20769.70 25287.46 41
HPM-MVS_fast74.30 5973.46 6476.80 5284.45 6059.04 6683.65 5281.05 12060.15 10270.43 10589.84 4341.09 21385.59 9667.61 8882.90 8285.77 102
agg_prior85.04 5059.96 4781.04 12174.68 5084.04 128
Anonymous2024052969.91 12469.02 12772.56 15180.19 11347.65 24377.56 14780.99 12255.45 19069.88 11786.76 8539.24 22782.18 17254.04 19477.10 15787.85 27
MTGPAbinary80.97 123
MTAPA76.90 3376.42 3478.35 3586.08 3763.57 274.92 20880.97 12365.13 1575.77 3590.88 1748.63 12286.66 7077.23 2488.17 3384.81 140
NR-MVSNet69.54 13768.85 12971.59 17478.05 16643.81 28174.20 22080.86 12565.18 1462.76 24184.52 14152.35 8083.59 13950.96 22270.78 22787.37 46
v870.33 11669.28 12373.49 13173.15 25650.22 20678.62 12280.78 12660.79 8666.45 18382.11 19749.35 11284.98 11163.58 12468.71 26785.28 125
v14419269.71 12968.51 13773.33 13873.10 25750.13 20877.54 14880.64 12756.65 15968.57 13780.55 22646.87 15184.96 11362.98 12869.66 25384.89 138
v192192069.47 14068.17 14673.36 13773.06 25850.10 20977.39 15180.56 12856.58 16668.59 13580.37 22844.72 17484.98 11162.47 13469.82 24885.00 134
v124069.24 14867.91 15073.25 14173.02 26049.82 21377.21 15880.54 12956.43 16868.34 14180.51 22743.33 18684.99 10962.03 13869.77 25184.95 137
v2v48270.50 11269.45 12173.66 12372.62 26650.03 21177.58 14580.51 13059.90 10669.52 12182.14 19547.53 13784.88 11665.07 11170.17 23986.09 88
PEN-MVS66.60 20366.45 18367.04 24877.11 19636.56 34277.03 16380.42 13162.95 5062.51 24984.03 15146.69 15279.07 23344.22 27463.08 31385.51 113
API-MVS72.17 8371.41 8474.45 10081.95 8257.22 8984.03 4580.38 13259.89 10968.40 13982.33 18849.64 11087.83 4451.87 21384.16 7178.30 266
PVSNet_Blended_VisFu71.45 9670.39 10374.65 9282.01 7958.82 7179.93 10380.35 13355.09 19765.82 19782.16 19449.17 11682.64 16360.34 15078.62 13582.50 206
test_yl69.69 13069.13 12471.36 18178.37 15545.74 26174.71 21280.20 13457.91 14470.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
DCV-MVSNet69.69 13069.13 12471.36 18178.37 15545.74 26174.71 21280.20 13457.91 14470.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
TAPA-MVS59.36 1066.60 20365.20 20970.81 19476.63 20548.75 22976.52 17480.04 13650.64 25865.24 21084.93 13239.15 22878.54 24036.77 32376.88 16085.14 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS71.40 9770.60 9973.78 11576.60 20653.15 15979.74 10879.78 13758.37 13268.75 13486.45 9945.43 16680.60 20462.58 13177.73 14487.58 39
ACMH55.70 1565.20 22263.57 22470.07 20778.07 16552.01 18479.48 11379.69 13855.75 18356.59 30380.98 21827.12 33880.94 19642.90 29171.58 22177.25 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet69.02 15069.47 12067.69 24177.42 18841.00 30774.04 22279.68 13960.06 10369.26 12984.81 13451.06 9977.58 25354.44 19374.43 17784.48 148
save fliter86.17 3361.30 2883.98 4779.66 14059.00 120
Effi-MVS+73.31 6672.54 7175.62 7377.87 17153.64 14779.62 11179.61 14161.63 7772.02 9482.61 17956.44 3585.97 8863.99 11979.07 12787.25 50
PS-CasMVS66.42 20766.32 19166.70 25277.60 18536.30 34776.94 16579.61 14162.36 6562.43 25183.66 15945.69 15878.37 24145.35 27163.26 31185.42 119
CP-MVSNet66.49 20666.41 18766.72 25077.67 17736.33 34576.83 17079.52 14362.45 6362.54 24783.47 16746.32 15478.37 24145.47 26963.43 31085.45 116
V4268.65 15767.35 16872.56 15168.93 32350.18 20772.90 24179.47 14456.92 15669.45 12480.26 23246.29 15582.99 14864.07 11667.82 27484.53 146
Fast-Effi-MVS+70.28 11769.12 12673.73 12078.50 15051.50 18875.01 20579.46 14556.16 17468.59 13579.55 24653.97 5684.05 12753.34 20177.53 14785.65 108
DTE-MVSNet65.58 21565.34 20666.31 25576.06 21534.79 35176.43 17579.38 14662.55 6161.66 25883.83 15645.60 16079.15 23141.64 30160.88 32885.00 134
EI-MVSNet-Vis-set72.42 7971.59 7974.91 8478.47 15254.02 14177.05 16279.33 14765.03 1871.68 9779.35 25152.75 7284.89 11466.46 9674.23 17985.83 98
EI-MVSNet-UG-set71.92 8771.06 9374.52 9977.98 16953.56 14976.62 17179.16 14864.40 2771.18 10078.95 25652.19 8284.66 12065.47 10773.57 18985.32 123
SDMVSNet68.03 17168.10 14867.84 23977.13 19448.72 23165.32 31279.10 14958.02 13965.08 21382.55 18147.83 13173.40 28763.92 12073.92 18281.41 222
XVG-OURS-SEG-HR68.81 15367.47 16372.82 14874.40 24556.87 9970.59 27479.04 15054.77 20666.99 17186.01 11239.57 22278.21 24462.54 13273.33 19583.37 185
PS-MVSNAJ70.51 11169.70 11572.93 14481.52 8655.79 11674.92 20879.00 15155.04 20269.88 11778.66 25847.05 14682.19 17161.61 14179.58 11680.83 237
FA-MVS(test-final)69.82 12668.48 13873.84 11378.44 15350.04 21075.58 19478.99 15258.16 13567.59 16182.14 19542.66 19085.63 9456.60 17176.19 16585.84 97
xiu_mvs_v2_base70.52 11069.75 11372.84 14681.21 9555.63 12075.11 20278.92 15354.92 20469.96 11679.68 24347.00 15082.09 17361.60 14279.37 11980.81 238
EG-PatchMatch MVS64.71 22762.87 23370.22 20377.68 17653.48 15177.99 13678.82 15453.37 22656.03 30877.41 27824.75 35384.04 12846.37 25773.42 19473.14 319
XVG-OURS68.76 15667.37 16672.90 14574.32 24757.22 8970.09 28178.81 15555.24 19367.79 15885.81 12136.54 25878.28 24362.04 13775.74 16983.19 191
c3_l68.33 16567.56 15670.62 19870.87 29746.21 25774.47 21778.80 15656.22 17366.19 18778.53 26351.88 8681.40 18462.08 13569.04 26284.25 153
ambc65.13 27563.72 35437.07 33747.66 37578.78 15754.37 32771.42 32911.24 38280.94 19645.64 26453.85 35677.38 277
AdaColmapbinary69.99 12268.66 13573.97 11184.94 5457.83 8082.63 6578.71 15856.28 17164.34 22484.14 14841.57 20487.06 6146.45 25678.88 12877.02 283
IS-MVSNet71.57 9371.00 9473.27 13978.86 14145.63 26580.22 9778.69 15964.14 3566.46 18287.36 7649.30 11385.60 9550.26 22683.71 7488.59 9
miper_ehance_all_eth68.03 17167.24 17470.40 20270.54 30046.21 25773.98 22378.68 16055.07 20066.05 18977.80 27252.16 8381.31 18761.53 14569.32 25683.67 177
cdsmvs_eth3d_5k17.50 36323.34 3620.00 3840.00 4060.00 4080.00 39578.63 1610.00 4020.00 40382.18 19149.25 1150.00 4010.00 4020.00 3990.00 399
TSAR-MVS + GP.74.90 4974.15 5677.17 4982.00 8058.77 7281.80 7978.57 16258.58 12874.32 5684.51 14355.94 3987.22 5267.11 9284.48 6785.52 112
mvs_tets68.18 16966.36 18973.63 12675.61 22155.35 12880.77 9278.56 16352.48 23464.27 22784.10 15027.45 33681.84 17763.45 12670.56 23183.69 176
MVP-Stereo65.41 21863.80 22170.22 20377.62 18255.53 12476.30 17778.53 16450.59 25956.47 30678.65 25939.84 21982.68 16144.10 27872.12 21672.44 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jajsoiax68.25 16766.45 18373.66 12375.62 22055.49 12580.82 9178.51 16552.33 23564.33 22584.11 14928.28 33081.81 17863.48 12570.62 22983.67 177
MVSFormer71.50 9570.38 10474.88 8578.76 14457.15 9482.79 6178.48 16651.26 24969.49 12283.22 16843.99 18183.24 14466.06 9979.37 11984.23 154
test_djsdf69.45 14167.74 15174.58 9674.57 24154.92 13382.79 6178.48 16651.26 24965.41 20383.49 16638.37 23583.24 14466.06 9969.25 25985.56 111
diffmvspermissive70.69 10870.43 10271.46 17669.45 31748.95 22772.93 24078.46 16857.27 15171.69 9683.97 15451.48 9377.92 24870.70 6977.95 14387.53 40
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet69.27 14768.44 14271.73 16974.47 24249.39 22275.20 20078.45 16959.60 11169.16 13176.51 28951.29 9482.50 16659.86 15771.45 22383.30 186
XVG-ACMP-BASELINE64.36 23262.23 24170.74 19672.35 27352.45 17670.80 27378.45 16953.84 22159.87 27281.10 21516.24 37179.32 22555.64 18371.76 21880.47 241
MVSTER67.16 19165.58 20471.88 16470.37 30449.70 21570.25 28078.45 16951.52 24369.16 13180.37 22838.45 23482.50 16660.19 15171.46 22283.44 184
miper_enhance_ethall67.11 19266.09 19670.17 20669.21 32045.98 25972.85 24278.41 17251.38 24665.65 19875.98 29751.17 9781.25 18860.82 14769.32 25683.29 188
MVS_111021_HR74.02 6073.46 6475.69 7083.01 7260.63 4077.29 15678.40 17361.18 8270.58 10485.97 11354.18 5584.00 13167.52 8982.98 8082.45 207
131464.61 22963.21 23068.80 22971.87 28147.46 24673.95 22578.39 17442.88 33859.97 27076.60 28838.11 23979.39 22454.84 18872.32 21279.55 256
Vis-MVSNetpermissive72.18 8271.37 8674.61 9481.29 9255.41 12680.90 9078.28 17560.73 8869.23 13088.09 6444.36 17882.65 16257.68 16581.75 9685.77 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RRT_MVS69.42 14267.49 16275.21 8278.01 16852.56 17282.23 7578.15 17655.84 17965.65 19885.07 13030.86 30986.83 6561.56 14470.00 24386.24 85
GeoE71.01 10170.15 10973.60 12879.57 12452.17 17978.93 11778.12 17758.02 13967.76 16083.87 15552.36 7982.72 16056.90 17075.79 16885.92 93
ACMH+57.40 1166.12 20964.06 21672.30 15977.79 17452.83 16680.39 9578.03 17857.30 15057.47 29782.55 18127.68 33484.17 12545.54 26669.78 24979.90 251
eth_miper_zixun_eth67.63 18066.28 19371.67 17171.60 28348.33 23573.68 23377.88 17955.80 18265.91 19278.62 26147.35 14382.88 15359.45 15966.25 28683.81 169
CPTT-MVS72.78 7272.08 7674.87 8684.88 5761.41 2684.15 4377.86 18055.27 19267.51 16388.08 6541.93 19981.85 17669.04 7780.01 11181.35 227
GBi-Net67.21 18666.55 18169.19 22377.63 17843.33 28477.31 15377.83 18156.62 16265.04 21582.70 17541.85 20080.33 21047.18 25072.76 20483.92 164
test167.21 18666.55 18169.19 22377.63 17843.33 28477.31 15377.83 18156.62 16265.04 21582.70 17541.85 20080.33 21047.18 25072.76 20483.92 164
FMVSNet166.70 20165.87 19869.19 22377.49 18743.33 28477.31 15377.83 18156.45 16764.60 22382.70 17538.08 24080.33 21046.08 25972.31 21383.92 164
UA-Net73.13 6772.93 6773.76 11783.58 6451.66 18778.75 11877.66 18467.75 472.61 8789.42 4749.82 10883.29 14353.61 19983.14 7586.32 80
VDD-MVS72.50 7672.09 7573.75 11981.58 8549.69 21777.76 14377.63 18563.21 4773.21 7189.02 5342.14 19683.32 14261.72 14082.50 8788.25 15
IterMVS-LS69.22 14968.48 13871.43 17974.44 24449.40 22176.23 17977.55 18659.60 11165.85 19681.59 20851.28 9581.58 18259.87 15669.90 24783.30 186
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet266.93 19666.31 19268.79 23077.63 17842.98 28876.11 18177.47 18756.62 16265.22 21282.17 19341.85 20080.18 21647.05 25372.72 20783.20 190
PLCcopyleft56.13 1465.09 22363.21 23070.72 19781.04 9854.87 13478.57 12377.47 18748.51 28155.71 30981.89 20033.71 28279.71 21841.66 29970.37 23477.58 275
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned68.27 16667.29 16971.21 18579.74 12053.22 15876.06 18377.46 18957.19 15266.10 18881.61 20645.37 16883.50 14045.42 27076.68 16376.91 287
VNet69.68 13270.19 10868.16 23779.73 12141.63 30270.53 27577.38 19060.37 9670.69 10386.63 9151.08 9877.09 26153.61 19981.69 9885.75 104
cl2267.47 18366.45 18370.54 20069.85 31346.49 25373.85 23077.35 19155.07 20065.51 20177.92 26847.64 13581.10 19261.58 14369.32 25684.01 161
anonymousdsp67.00 19564.82 21273.57 12970.09 30856.13 10776.35 17677.35 19148.43 28364.99 21880.84 22433.01 29080.34 20964.66 11367.64 27684.23 154
cascas65.98 21063.42 22673.64 12577.26 19252.58 17172.26 25277.21 19348.56 28061.21 26274.60 30932.57 30285.82 9250.38 22576.75 16282.52 205
FMVSNet366.32 20865.61 20368.46 23376.48 20942.34 29274.98 20777.15 19455.83 18065.04 21581.16 21339.91 21780.14 21747.18 25072.76 20482.90 199
v14868.24 16867.19 17671.40 18070.43 30247.77 24275.76 19077.03 19558.91 12167.36 16480.10 23548.60 12481.89 17560.01 15366.52 28584.53 146
Fast-Effi-MVS+-dtu67.37 18465.33 20773.48 13272.94 26157.78 8277.47 15076.88 19657.60 14861.97 25476.85 28339.31 22480.49 20854.72 18970.28 23782.17 212
CANet_DTU68.18 16967.71 15469.59 21774.83 23246.24 25678.66 12176.85 19759.60 11163.45 23582.09 19835.25 26677.41 25659.88 15578.76 13285.14 129
cl____67.18 18966.26 19469.94 20970.20 30545.74 26173.30 23576.83 19855.10 19565.27 20679.57 24547.39 14180.53 20559.41 16169.22 26083.53 183
DIV-MVS_self_test67.18 18966.26 19469.94 20970.20 30545.74 26173.29 23676.83 19855.10 19565.27 20679.58 24447.38 14280.53 20559.43 16069.22 26083.54 182
h-mvs3372.71 7471.49 8276.40 5881.99 8159.58 5276.92 16676.74 20060.40 9374.81 4785.95 11545.54 16285.76 9370.41 7070.61 23083.86 168
BH-w/o66.85 19765.83 19969.90 21279.29 12952.46 17574.66 21476.65 20154.51 21364.85 21978.12 26445.59 16182.95 15043.26 28675.54 17174.27 313
LTVRE_ROB55.42 1663.15 24461.23 25368.92 22876.57 20747.80 24059.92 34176.39 20254.35 21558.67 28782.46 18629.44 32181.49 18342.12 29571.14 22477.46 276
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-RMVSNet68.81 15367.42 16472.97 14380.11 11652.53 17374.26 21976.29 20358.48 13068.38 14084.20 14642.59 19183.83 13346.53 25575.91 16782.56 202
test_fmvsm_n_192071.73 9171.14 9173.50 13072.52 26956.53 10175.60 19176.16 20448.11 28777.22 2885.56 12353.10 7077.43 25574.86 4077.14 15586.55 70
F-COLMAP63.05 24560.87 25869.58 21976.99 20053.63 14878.12 13376.16 20447.97 29052.41 33981.61 20627.87 33278.11 24540.07 30566.66 28377.00 284
ab-mvs66.65 20266.42 18667.37 24576.17 21341.73 29970.41 27876.14 20653.99 21965.98 19083.51 16549.48 11176.24 27648.60 24073.46 19384.14 157
WR-MVS68.47 16368.47 14068.44 23480.20 11239.84 31173.75 23276.07 20764.68 2268.11 14783.63 16050.39 10579.14 23249.78 22769.66 25386.34 76
Effi-MVS+-dtu69.64 13467.53 15975.95 6476.10 21462.29 1580.20 9876.06 20859.83 11065.26 20977.09 27941.56 20584.02 13060.60 14971.09 22681.53 220
FE-MVS65.91 21163.33 22873.63 12677.36 19051.95 18572.62 24575.81 20953.70 22265.31 20478.96 25528.81 32786.39 7943.93 27973.48 19282.55 203
MSDG61.81 25759.23 26369.55 22072.64 26552.63 17070.45 27775.81 20951.38 24653.70 33176.11 29329.52 31981.08 19437.70 31765.79 29074.93 305
miper_lstm_enhance62.03 25460.88 25765.49 27166.71 33746.25 25556.29 35775.70 21150.68 25661.27 26175.48 30240.21 21668.03 31556.31 17465.25 29382.18 210
pm-mvs165.24 22164.97 21166.04 26372.38 27239.40 31672.62 24575.63 21255.53 18862.35 25383.18 17047.45 13976.47 27349.06 23766.54 28482.24 209
UniMVSNet_ETH3D67.60 18167.07 17869.18 22677.39 18942.29 29374.18 22175.59 21360.37 9666.77 17686.06 11037.64 24278.93 23952.16 20973.49 19186.32 80
test_fmvsmconf_n73.01 6972.59 7074.27 10571.28 29255.88 11478.21 13075.56 21454.31 21674.86 4687.80 7254.72 4980.23 21478.07 2178.48 13686.70 63
HyFIR lowres test65.67 21463.01 23273.67 12279.97 11855.65 11969.07 28975.52 21542.68 33963.53 23477.95 26640.43 21581.64 17946.01 26071.91 21783.73 175
pmmvs663.69 23662.82 23566.27 25770.63 29939.27 31773.13 23875.47 21652.69 23259.75 27682.30 18939.71 22177.03 26247.40 24764.35 30282.53 204
test_fmvsmconf0.1_n72.81 7172.33 7374.24 10669.89 31255.81 11578.22 12975.40 21754.17 21875.00 4288.03 6853.82 6080.23 21478.08 2078.34 13986.69 64
UGNet68.81 15367.39 16573.06 14278.33 15754.47 13779.77 10675.40 21760.45 9263.22 23684.40 14432.71 29780.91 19951.71 21680.56 10583.81 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet71.81 8871.33 8773.26 14082.80 7547.60 24578.74 11975.27 21959.59 11472.94 8089.40 4841.51 20783.91 13258.75 16282.99 7888.26 14
hse-mvs271.04 10069.86 11274.60 9579.58 12357.12 9673.96 22475.25 22060.40 9374.81 4781.95 19945.54 16282.90 15170.41 7066.83 28283.77 173
AUN-MVS68.45 16466.41 18774.57 9779.53 12557.08 9773.93 22775.23 22154.44 21466.69 17881.85 20137.10 25382.89 15262.07 13666.84 28183.75 174
mvs_anonymous68.03 17167.51 16069.59 21772.08 27744.57 27571.99 25575.23 22151.67 23967.06 17082.57 18054.68 5077.94 24756.56 17275.71 17086.26 84
TR-MVS66.59 20565.07 21071.17 18879.18 13449.63 21973.48 23475.20 22352.95 22867.90 15080.33 23139.81 22083.68 13643.20 28773.56 19080.20 246
IB-MVS56.42 1265.40 21962.73 23673.40 13674.89 22952.78 16773.09 23975.13 22455.69 18458.48 29173.73 31432.86 29286.32 8250.63 22370.11 24081.10 233
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvsmamba71.15 9869.54 11775.99 6377.61 18353.46 15281.95 7875.11 22557.73 14766.95 17385.96 11437.14 25187.56 4867.94 8375.49 17286.97 54
xiu_mvs_v1_base_debu68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
xiu_mvs_v1_base68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
xiu_mvs_v1_base_debi68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
TransMVSNet (Re)64.72 22664.33 21565.87 26775.22 22738.56 32274.66 21475.08 22958.90 12261.79 25782.63 17851.18 9678.07 24643.63 28355.87 34980.99 235
ET-MVSNet_ETH3D67.96 17465.72 20174.68 9076.67 20455.62 12275.11 20274.74 23052.91 22960.03 26980.12 23433.68 28382.64 16361.86 13976.34 16485.78 99
LS3D64.71 22762.50 23871.34 18379.72 12255.71 11779.82 10574.72 23148.50 28256.62 30284.62 13833.59 28582.34 17029.65 36475.23 17475.97 291
test_fmvsmconf0.01_n72.17 8371.50 8174.16 10767.96 32955.58 12378.06 13574.67 23254.19 21774.54 5288.23 6150.35 10680.24 21378.07 2177.46 14986.65 67
Baseline_NR-MVSNet67.05 19367.56 15665.50 27075.65 21937.70 33175.42 19574.65 23359.90 10668.14 14683.15 17149.12 11977.20 25952.23 20869.78 24981.60 219
HY-MVS56.14 1364.55 23063.89 21866.55 25374.73 23641.02 30469.96 28274.43 23449.29 27261.66 25880.92 22047.43 14076.68 26944.91 27371.69 21981.94 215
GA-MVS65.53 21663.70 22271.02 19270.87 29748.10 23770.48 27674.40 23556.69 15864.70 22176.77 28433.66 28481.10 19255.42 18570.32 23683.87 167
KD-MVS_self_test55.22 30253.89 30959.21 30657.80 37527.47 38157.75 35174.32 23647.38 29750.90 34570.00 34128.45 32970.30 30440.44 30457.92 34079.87 252
patch_mono-269.85 12571.09 9266.16 25979.11 13754.80 13571.97 25674.31 23753.50 22570.90 10284.17 14757.63 2963.31 33366.17 9882.02 9180.38 244
无先验79.66 11074.30 23848.40 28480.78 20253.62 19879.03 262
thisisatest053067.92 17565.78 20074.33 10376.29 21151.03 19176.89 16774.25 23953.67 22365.59 20081.76 20335.15 26785.50 10055.94 17572.47 20886.47 71
CHOSEN 1792x268865.08 22462.84 23471.82 16681.49 8856.26 10566.32 30174.20 24040.53 35063.16 23878.65 25941.30 20877.80 25045.80 26274.09 18081.40 224
MS-PatchMatch62.42 24961.46 24965.31 27475.21 22852.10 18072.05 25474.05 24146.41 30657.42 29974.36 31034.35 27677.57 25445.62 26573.67 18666.26 362
tttt051767.83 17765.66 20274.33 10376.69 20350.82 19677.86 13973.99 24254.54 21264.64 22282.53 18435.06 26885.50 10055.71 18069.91 24686.67 65
iter_conf_final69.82 12668.02 14975.23 8179.38 12852.91 16380.11 9973.96 24354.99 20368.04 14983.59 16129.05 32387.16 5565.41 10877.62 14585.63 109
USDC56.35 29354.24 30662.69 29164.74 34840.31 30865.05 31573.83 24443.93 32947.58 35677.71 27615.36 37375.05 28038.19 31661.81 32372.70 323
tfpnnormal62.47 24861.63 24764.99 27674.81 23339.01 31871.22 26573.72 24555.22 19460.21 26680.09 23641.26 21176.98 26330.02 36268.09 27278.97 263
iter_conf0569.40 14467.62 15574.73 8777.84 17251.13 19079.28 11473.71 24654.62 20868.17 14483.59 16128.68 32887.16 5565.74 10576.95 15885.91 94
jason69.65 13368.39 14473.43 13578.27 15956.88 9877.12 16073.71 24646.53 30569.34 12683.22 16843.37 18579.18 22764.77 11279.20 12484.23 154
jason: jason.
D2MVS62.30 25160.29 26068.34 23666.46 34048.42 23465.70 30473.42 24847.71 29358.16 29375.02 30530.51 31177.71 25253.96 19671.68 22078.90 264
COLMAP_ROBcopyleft52.97 1761.27 26358.81 26668.64 23174.63 23952.51 17478.42 12673.30 24949.92 26650.96 34481.51 20923.06 35779.40 22331.63 35365.85 28874.01 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lupinMVS69.57 13668.28 14573.44 13478.76 14457.15 9476.57 17273.29 25046.19 30869.49 12282.18 19143.99 18179.23 22664.66 11379.37 11983.93 163
DP-MVS65.68 21363.66 22371.75 16884.93 5556.87 9980.74 9373.16 25153.06 22759.09 28382.35 18736.79 25785.94 8932.82 34569.96 24572.45 327
thisisatest051565.83 21263.50 22572.82 14873.75 25149.50 22071.32 26373.12 25249.39 27063.82 23176.50 29134.95 27084.84 11753.20 20375.49 17284.13 158
VPNet67.52 18268.11 14765.74 26879.18 13436.80 34072.17 25372.83 25362.04 7267.79 15885.83 11948.88 12176.60 27051.30 21872.97 20283.81 169
CL-MVSNet_self_test61.53 25960.94 25663.30 28668.95 32236.93 33967.60 29572.80 25455.67 18559.95 27176.63 28545.01 17272.22 29439.74 30962.09 32180.74 239
OurMVSNet-221017-061.37 26258.63 26969.61 21672.05 27848.06 23873.93 22772.51 25547.23 30154.74 32180.92 22021.49 36481.24 18948.57 24156.22 34879.53 257
EPNet73.09 6872.16 7475.90 6575.95 21656.28 10483.05 5672.39 25666.53 1065.27 20687.00 8150.40 10485.47 10262.48 13386.32 5685.94 92
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss64.00 23463.36 22765.93 26579.28 13042.58 29171.35 26272.36 25746.41 30660.55 26577.89 27046.27 15673.28 28846.18 25869.97 24481.92 216
test_fmvsmvis_n_192070.84 10470.38 10472.22 16071.16 29355.39 12775.86 18872.21 25849.03 27573.28 7086.17 10651.83 8877.29 25875.80 3278.05 14183.98 162
sd_testset64.46 23164.45 21464.51 27977.13 19442.25 29462.67 32572.11 25958.02 13965.08 21382.55 18141.22 21269.88 30647.32 24873.92 18281.41 222
test_040263.25 24261.01 25569.96 20880.00 11754.37 13976.86 16972.02 26054.58 21158.71 28680.79 22535.00 26984.36 12326.41 37564.71 29771.15 345
EU-MVSNet55.61 29954.41 30359.19 30765.41 34633.42 36272.44 24971.91 26128.81 36951.27 34273.87 31324.76 35269.08 30943.04 28858.20 33975.06 301
KD-MVS_2432*160053.45 31151.50 31959.30 30362.82 35637.14 33555.33 35871.79 26247.34 29955.09 31770.52 33621.91 36170.45 30235.72 33342.97 37470.31 350
miper_refine_blended53.45 31151.50 31959.30 30362.82 35637.14 33555.33 35871.79 26247.34 29955.09 31770.52 33621.91 36170.45 30235.72 33342.97 37470.31 350
Anonymous20240521166.84 19865.99 19769.40 22180.19 11342.21 29571.11 26971.31 26458.80 12367.90 15086.39 10029.83 31879.65 21949.60 23378.78 13186.33 78
LFMVS71.78 8971.59 7972.32 15883.40 6746.38 25479.75 10771.08 26564.18 3272.80 8388.64 5942.58 19283.72 13557.41 16884.49 6686.86 58
CDS-MVSNet66.80 19965.37 20571.10 19078.98 13953.13 16173.27 23771.07 26652.15 23764.72 22080.23 23343.56 18477.10 26045.48 26878.88 12883.05 196
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052155.30 30054.41 30357.96 31760.92 36941.73 29971.09 27071.06 26741.18 34648.65 35473.31 31616.93 36959.25 34942.54 29264.01 30372.90 321
OpenMVS_ROBcopyleft52.78 1860.03 26758.14 27465.69 26970.47 30144.82 27075.33 19670.86 26845.04 31756.06 30776.00 29426.89 34179.65 21935.36 33567.29 27872.60 324
CNLPA65.43 21764.02 21769.68 21578.73 14658.07 7877.82 14270.71 26951.49 24461.57 26083.58 16438.23 23870.82 29943.90 28070.10 24180.16 247
CostFormer64.04 23362.51 23768.61 23271.88 28045.77 26071.30 26470.60 27047.55 29564.31 22676.61 28741.63 20379.62 22149.74 22969.00 26380.42 242
fmvsm_l_conf0.5_n70.99 10270.82 9671.48 17571.45 28554.40 13877.18 15970.46 27148.67 27975.17 3886.86 8253.77 6176.86 26476.33 3077.51 14883.17 194
Test_1112_low_res62.32 25061.77 24564.00 28279.08 13839.53 31568.17 29170.17 27243.25 33459.03 28479.90 23744.08 17971.24 29843.79 28268.42 27081.25 228
MVS_111021_LR69.50 13968.78 13271.65 17278.38 15459.33 5674.82 21070.11 27358.08 13667.83 15684.68 13541.96 19876.34 27565.62 10677.54 14679.30 260
fmvsm_l_conf0.5_n_a70.50 11270.27 10671.18 18771.30 29154.09 14076.89 16769.87 27447.90 29174.37 5586.49 9753.07 7176.69 26875.41 3577.11 15682.76 201
ANet_high41.38 34337.47 35053.11 34339.73 39424.45 39056.94 35469.69 27547.65 29426.04 38752.32 37912.44 37762.38 33721.80 38110.61 39672.49 326
SixPastTwentyTwo61.65 25858.80 26770.20 20575.80 21747.22 24875.59 19269.68 27654.61 20954.11 32879.26 25227.07 33982.96 14943.27 28549.79 36680.41 243
IterMVS-SCA-FT62.49 24761.52 24865.40 27271.99 27950.80 19771.15 26869.63 27745.71 31460.61 26477.93 26737.45 24465.99 32655.67 18163.50 30979.42 258
TAMVS66.78 20065.27 20871.33 18479.16 13653.67 14673.84 23169.59 27852.32 23665.28 20581.72 20444.49 17777.40 25742.32 29478.66 13482.92 197
CMPMVSbinary42.80 2157.81 28255.97 29063.32 28560.98 36747.38 24764.66 31769.50 27932.06 36646.83 36077.80 27229.50 32071.36 29748.68 23973.75 18571.21 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tfpn200view963.18 24362.18 24266.21 25876.85 20139.62 31371.96 25769.44 28056.63 16062.61 24579.83 23837.18 24879.17 22831.84 34973.25 19779.83 253
thres40063.31 23962.18 24266.72 25076.85 20139.62 31371.96 25769.44 28056.63 16062.61 24579.83 23837.18 24879.17 22831.84 34973.25 19781.36 225
thres20062.20 25261.16 25465.34 27375.38 22639.99 31069.60 28569.29 28255.64 18761.87 25676.99 28037.07 25478.96 23831.28 35773.28 19677.06 282
UnsupCasMVSNet_eth53.16 31652.47 31455.23 33059.45 37133.39 36359.43 34369.13 28345.98 31050.35 35172.32 32029.30 32258.26 35542.02 29744.30 37274.05 315
thres100view90063.28 24162.41 23965.89 26677.31 19138.66 32172.65 24369.11 28457.07 15362.45 25081.03 21737.01 25579.17 22831.84 34973.25 19779.83 253
thres600view763.30 24062.27 24066.41 25477.18 19338.87 31972.35 25069.11 28456.98 15562.37 25280.96 21937.01 25579.00 23731.43 35673.05 20181.36 225
CVMVSNet59.63 27159.14 26461.08 30174.47 24238.84 32075.20 20068.74 28631.15 36758.24 29276.51 28932.39 30368.58 31149.77 22865.84 28975.81 293
TinyColmap54.14 30651.72 31761.40 29966.84 33641.97 29666.52 29968.51 28744.81 31842.69 37275.77 29811.66 37972.94 28931.96 34756.77 34669.27 358
baseline263.42 23861.26 25269.89 21372.55 26847.62 24471.54 26068.38 28850.11 26254.82 32075.55 30143.06 18880.96 19548.13 24367.16 28081.11 232
IterMVS62.79 24661.27 25167.35 24669.37 31852.04 18371.17 26668.24 28952.63 23359.82 27376.91 28237.32 24772.36 29152.80 20563.19 31277.66 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
旧先验183.04 7053.15 15967.52 29087.85 7144.08 17980.76 10078.03 273
AllTest57.08 28654.65 29964.39 28071.44 28649.03 22369.92 28367.30 29145.97 31147.16 35879.77 24017.47 36767.56 31733.65 34059.16 33676.57 288
TestCases64.39 28071.44 28649.03 22367.30 29145.97 31147.16 35879.77 24017.47 36767.56 31733.65 34059.16 33676.57 288
baseline163.81 23563.87 22063.62 28376.29 21136.36 34371.78 25967.29 29356.05 17664.23 22882.95 17347.11 14574.41 28347.30 24961.85 32280.10 249
tpmvs58.47 27556.95 28163.03 29070.20 30541.21 30367.90 29467.23 29449.62 26854.73 32270.84 33334.14 27776.24 27636.64 32761.29 32671.64 337
Gipumacopyleft34.77 35131.91 35543.33 36262.05 36237.87 32620.39 39167.03 29523.23 37918.41 39225.84 3924.24 39362.73 33514.71 38751.32 36129.38 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ECVR-MVScopyleft67.72 17967.51 16068.35 23579.46 12636.29 34874.79 21166.93 29658.72 12467.19 16788.05 6636.10 25981.38 18552.07 21084.25 6887.39 44
tpm262.07 25360.10 26167.99 23872.79 26343.86 28071.05 27166.85 29743.14 33662.77 24075.39 30338.32 23680.80 20141.69 29868.88 26479.32 259
XXY-MVS60.68 26461.67 24657.70 32070.43 30238.45 32364.19 31966.47 29848.05 28963.22 23680.86 22249.28 11460.47 34245.25 27267.28 27974.19 314
新几何170.76 19585.66 4161.13 3066.43 29944.68 32070.29 10786.64 9041.29 20975.23 27949.72 23081.75 9675.93 292
test_vis1_n_192058.86 27359.06 26558.25 31363.76 35243.14 28767.49 29666.36 30040.22 35265.89 19471.95 32631.04 30759.75 34759.94 15464.90 29571.85 336
ppachtmachnet_test58.06 28055.38 29566.10 26269.51 31548.99 22668.01 29366.13 30144.50 32254.05 32970.74 33432.09 30572.34 29236.68 32656.71 34776.99 286
tpm cat159.25 27256.95 28166.15 26072.19 27646.96 25068.09 29265.76 30240.03 35457.81 29570.56 33538.32 23674.51 28238.26 31561.50 32577.00 284
test111167.21 18667.14 17767.42 24479.24 13234.76 35373.89 22965.65 30358.71 12666.96 17287.95 6936.09 26080.53 20552.03 21183.79 7386.97 54
EPNet_dtu61.90 25561.97 24461.68 29672.89 26239.78 31275.85 18965.62 30455.09 19754.56 32479.36 25037.59 24367.02 32039.80 30876.95 15878.25 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs461.48 26159.39 26267.76 24071.57 28453.86 14371.42 26165.34 30544.20 32559.46 27877.92 26835.90 26174.71 28143.87 28164.87 29674.71 309
testdata64.66 27781.52 8652.93 16265.29 30646.09 30973.88 6287.46 7538.08 24066.26 32553.31 20278.48 13674.78 308
TDRefinement53.44 31350.72 32261.60 29764.31 35146.96 25070.89 27265.27 30741.78 34144.61 36777.98 26511.52 38166.36 32428.57 36851.59 36071.49 340
MIMVSNet155.17 30354.31 30557.77 31970.03 30932.01 36865.68 30564.81 30849.19 27346.75 36176.00 29425.53 34964.04 33128.65 36762.13 32077.26 280
pmmvs-eth3d58.81 27456.31 28866.30 25667.61 33152.42 17772.30 25164.76 30943.55 33154.94 31974.19 31228.95 32472.60 29043.31 28457.21 34373.88 317
MDTV_nov1_ep1357.00 28072.73 26438.26 32465.02 31664.73 31044.74 31955.46 31172.48 31932.61 30170.47 30137.47 31867.75 275
UnsupCasMVSNet_bld50.07 32748.87 32853.66 33960.97 36833.67 36157.62 35264.56 31139.47 35647.38 35764.02 36827.47 33559.32 34834.69 33743.68 37367.98 361
ITE_SJBPF62.09 29566.16 34244.55 27664.32 31247.36 29855.31 31480.34 23019.27 36662.68 33636.29 33162.39 31879.04 261
dmvs_re56.77 28856.83 28356.61 32369.23 31941.02 30458.37 34664.18 31350.59 25957.45 29871.42 32935.54 26458.94 35137.23 32067.45 27769.87 354
WTY-MVS59.75 27060.39 25957.85 31872.32 27437.83 32861.05 33764.18 31345.95 31361.91 25579.11 25447.01 14960.88 34142.50 29369.49 25574.83 306
MDA-MVSNet-bldmvs53.87 30950.81 32163.05 28966.25 34148.58 23256.93 35563.82 31548.09 28841.22 37370.48 33830.34 31368.00 31634.24 33845.92 37172.57 325
Vis-MVSNet (Re-imp)63.69 23663.88 21963.14 28874.75 23531.04 37171.16 26763.64 31656.32 16959.80 27484.99 13144.51 17575.46 27839.12 31180.62 10182.92 197
test22283.14 6858.68 7372.57 24763.45 31741.78 34167.56 16286.12 10737.13 25278.73 13374.98 304
PVSNet50.76 1958.40 27657.39 27761.42 29875.53 22344.04 27961.43 33163.45 31747.04 30356.91 30073.61 31527.00 34064.76 32939.12 31172.40 20975.47 298
SCA60.49 26558.38 27166.80 24974.14 25048.06 23863.35 32263.23 31949.13 27459.33 28272.10 32337.45 24474.27 28444.17 27562.57 31678.05 270
CR-MVSNet59.91 26857.90 27665.96 26469.96 31052.07 18165.31 31363.15 32042.48 34059.36 27974.84 30635.83 26270.75 30045.50 26764.65 29875.06 301
Patchmtry57.16 28556.47 28659.23 30569.17 32134.58 35562.98 32363.15 32044.53 32156.83 30174.84 30635.83 26268.71 31040.03 30660.91 32774.39 312
pmmvs556.47 29155.68 29358.86 30961.41 36436.71 34166.37 30062.75 32240.38 35153.70 33176.62 28634.56 27267.05 31940.02 30765.27 29272.83 322
K. test v360.47 26657.11 27870.56 19973.74 25248.22 23675.10 20462.55 32358.27 13453.62 33476.31 29227.81 33381.59 18147.42 24639.18 37981.88 217
FMVSNet555.86 29754.93 29758.66 31171.05 29536.35 34464.18 32062.48 32446.76 30450.66 34974.73 30825.80 34764.04 33133.11 34365.57 29175.59 296
fmvsm_s_conf0.1_n69.41 14368.60 13671.83 16571.07 29452.88 16577.85 14062.44 32549.58 26972.97 7986.22 10351.68 9176.48 27275.53 3470.10 24186.14 86
fmvsm_s_conf0.5_n69.58 13568.84 13071.79 16772.31 27552.90 16477.90 13762.43 32649.97 26572.85 8285.90 11652.21 8176.49 27175.75 3370.26 23885.97 91
fmvsm_s_conf0.1_n_a69.32 14568.44 14271.96 16170.91 29653.78 14578.12 13362.30 32749.35 27173.20 7286.55 9651.99 8576.79 26674.83 4168.68 26985.32 123
fmvsm_s_conf0.5_n_a69.54 13768.74 13371.93 16272.47 27153.82 14478.25 12762.26 32849.78 26773.12 7686.21 10452.66 7376.79 26675.02 3968.88 26485.18 128
PatchmatchNetpermissive59.84 26958.24 27264.65 27873.05 25946.70 25269.42 28762.18 32947.55 29558.88 28571.96 32534.49 27469.16 30842.99 28963.60 30778.07 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023120655.10 30455.30 29654.48 33469.81 31433.94 36062.91 32462.13 33041.08 34755.18 31675.65 29932.75 29656.59 36330.32 36167.86 27372.91 320
bld_raw_dy_0_6464.87 22563.22 22969.83 21474.79 23453.32 15778.15 13262.02 33151.20 25160.17 26783.12 17224.15 35574.20 28663.08 12772.33 21181.96 214
sss56.17 29556.57 28554.96 33166.93 33536.32 34657.94 34961.69 33241.67 34358.64 28875.32 30438.72 23256.25 36442.04 29666.19 28772.31 332
our_test_356.49 29054.42 30262.68 29269.51 31545.48 26666.08 30261.49 33344.11 32850.73 34869.60 34533.05 28968.15 31238.38 31456.86 34474.40 311
test_cas_vis1_n_192056.91 28756.71 28457.51 32159.13 37245.40 26763.58 32161.29 33436.24 36167.14 16971.85 32729.89 31756.69 36157.65 16663.58 30870.46 349
tpmrst58.24 27758.70 26856.84 32266.97 33434.32 35669.57 28661.14 33547.17 30258.58 29071.60 32841.28 21060.41 34349.20 23562.84 31475.78 294
MIMVSNet57.35 28357.07 27958.22 31474.21 24937.18 33462.46 32660.88 33648.88 27755.29 31575.99 29631.68 30662.04 33831.87 34872.35 21075.43 299
LCM-MVSNet40.30 34535.88 35153.57 34042.24 38929.15 37545.21 38060.53 33722.23 38328.02 38550.98 3833.72 39661.78 33931.22 35838.76 38069.78 355
ADS-MVSNet251.33 32248.76 32959.07 30866.02 34444.60 27450.90 36859.76 33836.90 35850.74 34666.18 36226.38 34263.11 33427.17 37154.76 35269.50 356
new-patchmatchnet47.56 33347.73 33347.06 35558.81 3739.37 40148.78 37259.21 33943.28 33344.22 36868.66 34925.67 34857.20 35931.57 35549.35 36774.62 310
test20.0353.87 30954.02 30853.41 34261.47 36328.11 37861.30 33359.21 33951.34 24852.09 34077.43 27733.29 28858.55 35329.76 36360.27 33373.58 318
JIA-IIPM51.56 32047.68 33463.21 28764.61 34950.73 19847.71 37458.77 34142.90 33748.46 35551.72 38024.97 35170.24 30536.06 33253.89 35568.64 360
testgi51.90 31852.37 31550.51 35260.39 37023.55 39258.42 34558.15 34249.03 27551.83 34179.21 25322.39 35855.59 36729.24 36662.64 31572.40 331
LCM-MVSNet-Re61.88 25661.35 25063.46 28474.58 24031.48 37061.42 33258.14 34358.71 12653.02 33879.55 24643.07 18776.80 26545.69 26377.96 14282.11 213
test-LLR58.15 27958.13 27558.22 31468.57 32444.80 27165.46 30957.92 34450.08 26355.44 31269.82 34232.62 29957.44 35749.66 23173.62 18772.41 329
test-mter56.42 29255.82 29258.22 31468.57 32444.80 27165.46 30957.92 34439.94 35555.44 31269.82 34221.92 36057.44 35749.66 23173.62 18772.41 329
RPSCF55.80 29854.22 30760.53 30265.13 34742.91 29064.30 31857.62 34636.84 36058.05 29482.28 19028.01 33156.24 36537.14 32158.61 33882.44 208
Syy-MVS56.00 29656.23 28955.32 32974.69 23726.44 38565.52 30757.49 34750.97 25456.52 30472.18 32139.89 21868.09 31324.20 37864.59 30071.44 341
myMVS_eth3d54.86 30554.61 30055.61 32874.69 23727.31 38265.52 30757.49 34750.97 25456.52 30472.18 32121.87 36368.09 31327.70 37064.59 30071.44 341
GG-mvs-BLEND62.34 29371.36 29037.04 33869.20 28857.33 34954.73 32265.48 36430.37 31277.82 24934.82 33674.93 17572.17 333
MDA-MVSNet_test_wron50.71 32548.95 32756.00 32761.17 36541.84 29751.90 36756.45 35040.96 34844.79 36667.84 35130.04 31655.07 37036.71 32550.69 36371.11 346
YYNet150.73 32448.96 32656.03 32661.10 36641.78 29851.94 36656.44 35140.94 34944.84 36567.80 35230.08 31555.08 36936.77 32350.71 36271.22 343
testing356.54 28955.92 29158.41 31277.52 18627.93 37969.72 28456.36 35254.75 20758.63 28977.80 27220.88 36571.75 29625.31 37762.25 31975.53 297
gg-mvs-nofinetune57.86 28156.43 28762.18 29472.62 26635.35 35066.57 29856.33 35350.65 25757.64 29657.10 37630.65 31076.36 27437.38 31978.88 12874.82 307
TESTMET0.1,155.28 30154.90 29856.42 32466.56 33843.67 28265.46 30956.27 35439.18 35753.83 33067.44 35424.21 35455.46 36848.04 24473.11 20070.13 352
PMMVS53.96 30753.26 31356.04 32562.60 35950.92 19461.17 33556.09 35532.81 36553.51 33666.84 35934.04 27859.93 34644.14 27768.18 27157.27 374
tpm57.34 28458.16 27354.86 33271.80 28234.77 35267.47 29756.04 35648.20 28660.10 26876.92 28137.17 25053.41 37340.76 30365.01 29476.40 290
PVSNet_043.31 2047.46 33445.64 33752.92 34467.60 33244.65 27354.06 36254.64 35741.59 34446.15 36358.75 37330.99 30858.66 35232.18 34624.81 38855.46 376
dp51.89 31951.60 31852.77 34568.44 32732.45 36762.36 32754.57 35844.16 32649.31 35367.91 35028.87 32656.61 36233.89 33954.89 35169.24 359
PatchT53.17 31553.44 31252.33 34768.29 32825.34 38958.21 34754.41 35944.46 32354.56 32469.05 34833.32 28760.94 34036.93 32261.76 32470.73 348
test0.0.03 153.32 31453.59 31152.50 34662.81 35829.45 37459.51 34254.11 36050.08 26354.40 32674.31 31132.62 29955.92 36630.50 36063.95 30572.15 334
PatchMatch-RL56.25 29454.55 30161.32 30077.06 19756.07 10965.57 30654.10 36144.13 32753.49 33771.27 33225.20 35066.78 32136.52 32963.66 30661.12 366
FPMVS42.18 34141.11 34445.39 35758.03 37441.01 30649.50 37053.81 36230.07 36833.71 38264.03 36611.69 37852.08 37814.01 38855.11 35043.09 385
test_fmvs1_n51.37 32150.35 32454.42 33652.85 37837.71 33061.16 33651.93 36328.15 37163.81 23269.73 34413.72 37453.95 37151.16 21960.65 33171.59 338
test250665.33 22064.61 21367.50 24279.46 12634.19 35874.43 21851.92 36458.72 12466.75 17788.05 6625.99 34680.92 19851.94 21284.25 6887.39 44
dmvs_testset50.16 32651.90 31644.94 36066.49 33911.78 39861.01 33851.50 36551.17 25250.30 35267.44 35439.28 22560.29 34422.38 38057.49 34262.76 365
test_fmvs151.32 32350.48 32353.81 33853.57 37737.51 33260.63 34051.16 36628.02 37363.62 23369.23 34716.41 37053.93 37251.01 22060.70 33069.99 353
EGC-MVSNET42.47 34038.48 34854.46 33574.33 24648.73 23070.33 27951.10 3670.03 3990.18 40067.78 35313.28 37666.49 32318.91 38450.36 36448.15 381
Patchmatch-RL test58.16 27855.49 29466.15 26067.92 33048.89 22860.66 33951.07 36847.86 29259.36 27962.71 37034.02 27972.27 29356.41 17359.40 33577.30 278
lessismore_v069.91 21171.42 28847.80 24050.90 36950.39 35075.56 30027.43 33781.33 18645.91 26134.10 38580.59 240
ADS-MVSNet48.48 33147.77 33250.63 35166.02 34429.92 37350.90 36850.87 37036.90 35850.74 34666.18 36226.38 34252.47 37527.17 37154.76 35269.50 356
EPMVS53.96 30753.69 31054.79 33366.12 34331.96 36962.34 32849.05 37144.42 32455.54 31071.33 33130.22 31456.70 36041.65 30062.54 31775.71 295
PMVScopyleft28.69 2236.22 35033.29 35445.02 35936.82 39635.98 34954.68 36148.74 37226.31 37521.02 39051.61 3812.88 39960.10 3459.99 39647.58 36938.99 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LF4IMVS42.95 33942.26 34145.04 35848.30 38532.50 36654.80 36048.49 37328.03 37240.51 37570.16 3399.24 38643.89 38631.63 35349.18 36858.72 370
Patchmatch-test49.08 32948.28 33151.50 35064.40 35030.85 37245.68 37848.46 37435.60 36246.10 36472.10 32334.47 27546.37 38327.08 37360.65 33177.27 279
test_fmvs248.69 33047.49 33552.29 34848.63 38433.06 36557.76 35048.05 37525.71 37759.76 27569.60 34511.57 38052.23 37749.45 23456.86 34471.58 339
door47.60 376
test_vis1_n49.89 32848.69 33053.50 34153.97 37637.38 33361.53 33047.33 37728.54 37059.62 27767.10 35813.52 37552.27 37649.07 23657.52 34170.84 347
door-mid47.19 378
pmmvs344.92 33641.95 34353.86 33752.58 38043.55 28362.11 32946.90 37926.05 37640.63 37460.19 37211.08 38457.91 35631.83 35246.15 37060.11 367
WB-MVS43.26 33843.41 33942.83 36463.32 35510.32 40058.17 34845.20 38045.42 31540.44 37667.26 35734.01 28058.98 35011.96 39224.88 38759.20 368
test_fmvs344.30 33742.55 34049.55 35342.83 38827.15 38453.03 36444.93 38122.03 38453.69 33364.94 3654.21 39449.63 37947.47 24549.82 36571.88 335
MVS-HIRNet45.52 33544.48 33848.65 35468.49 32634.05 35959.41 34444.50 38227.03 37437.96 38150.47 38426.16 34564.10 33026.74 37459.52 33447.82 383
SSC-MVS41.96 34241.99 34241.90 36562.46 3609.28 40257.41 35344.32 38343.38 33238.30 38066.45 36032.67 29858.42 35410.98 39321.91 39057.99 372
APD_test137.39 34934.94 35244.72 36148.88 38333.19 36452.95 36544.00 38419.49 38527.28 38658.59 3743.18 39852.84 37418.92 38341.17 37748.14 382
CHOSEN 280x42047.83 33246.36 33652.24 34967.37 33349.78 21438.91 38643.11 38535.00 36343.27 37163.30 36928.95 32449.19 38036.53 32860.80 32957.76 373
test_method19.68 36218.10 36524.41 37813.68 4023.11 40512.06 39442.37 3862.00 39711.97 39536.38 3895.77 39029.35 39715.06 38623.65 38940.76 388
PM-MVS52.33 31750.19 32558.75 31062.10 36145.14 26965.75 30340.38 38743.60 33053.52 33572.65 3189.16 38765.87 32750.41 22454.18 35465.24 364
test_vis1_rt41.35 34439.45 34647.03 35646.65 38737.86 32747.76 37338.65 38823.10 38044.21 36951.22 38211.20 38344.08 38539.27 31053.02 35759.14 369
testf131.46 35628.89 35939.16 36741.99 39128.78 37646.45 37637.56 38914.28 39221.10 38848.96 3851.48 40247.11 38113.63 38934.56 38341.60 386
APD_test231.46 35628.89 35939.16 36741.99 39128.78 37646.45 37637.56 38914.28 39221.10 38848.96 3851.48 40247.11 38113.63 38934.56 38341.60 386
E-PMN23.77 35922.73 36326.90 37642.02 39020.67 39442.66 38335.70 39117.43 38710.28 39725.05 3936.42 38942.39 38810.28 39514.71 39317.63 392
EMVS22.97 36021.84 36426.36 37740.20 39319.53 39641.95 38434.64 39217.09 3889.73 39822.83 3947.29 38842.22 3899.18 39713.66 39417.32 393
new_pmnet34.13 35234.29 35333.64 37352.63 37918.23 39744.43 38133.90 39322.81 38130.89 38453.18 37810.48 38535.72 39420.77 38239.51 37846.98 384
DSMNet-mixed39.30 34838.72 34741.03 36651.22 38119.66 39545.53 37931.35 39415.83 39139.80 37867.42 35622.19 35945.13 38422.43 37952.69 35858.31 371
test_f31.86 35531.05 35634.28 37232.33 40021.86 39332.34 38830.46 39516.02 39039.78 37955.45 3774.80 39232.36 39530.61 35937.66 38148.64 379
PMMVS227.40 35825.91 36131.87 37539.46 3956.57 40331.17 38928.52 39623.96 37820.45 39148.94 3874.20 39537.94 39116.51 38519.97 39151.09 378
test_vis3_rt32.09 35430.20 35837.76 37035.36 39827.48 38040.60 38528.29 39716.69 38932.52 38340.53 3881.96 40037.40 39233.64 34242.21 37648.39 380
mvsany_test139.38 34638.16 34943.02 36349.05 38234.28 35744.16 38225.94 39822.74 38246.57 36262.21 37123.85 35641.16 39033.01 34435.91 38253.63 377
MVEpermissive17.77 2321.41 36117.77 36632.34 37434.34 39925.44 38816.11 39224.11 39911.19 39413.22 39431.92 3901.58 40130.95 39610.47 39417.03 39240.62 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mvsany_test332.62 35330.57 35738.77 36936.16 39724.20 39138.10 38720.63 40019.14 38640.36 37757.43 3755.06 39136.63 39329.59 36528.66 38655.49 375
MTMP86.03 1917.08 401
tmp_tt9.43 36511.14 3684.30 3812.38 4034.40 40413.62 39316.08 4020.39 39815.89 39313.06 39515.80 3725.54 40012.63 39110.46 3972.95 395
DeepMVS_CXcopyleft12.03 38017.97 40110.91 39910.60 4037.46 39511.07 39628.36 3913.28 39711.29 3998.01 3989.74 39813.89 394
wuyk23d13.32 36412.52 36715.71 37947.54 38626.27 38631.06 3901.98 4044.93 3965.18 3991.94 3990.45 40418.54 3986.81 39912.83 3952.33 396
N_pmnet39.35 34740.28 34536.54 37163.76 3521.62 40649.37 3710.76 40534.62 36443.61 37066.38 36126.25 34442.57 38726.02 37651.77 35965.44 363
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
pcd_1.5k_mvsjas3.92 3695.23 3720.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 40247.05 1460.00 4010.00 4020.00 3990.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
testmvs4.52 3686.03 3710.01 3830.01 4040.00 40853.86 3630.00 4060.01 4000.04 4010.27 4000.00 4060.00 4010.04 4000.00 3990.03 398
test1234.73 3676.30 3700.02 3820.01 4040.01 40756.36 3560.00 4060.01 4000.04 4010.21 4010.01 4050.00 4010.03 4010.00 3990.04 397
n20.00 406
nn0.00 406
ab-mvs-re6.49 3668.65 3690.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 40377.89 2700.00 4060.00 4010.00 4020.00 3990.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
WAC-MVS27.31 38227.77 369
PC_three_145255.09 19784.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 11
eth-test20.00 406
eth-test0.00 406
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 16
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 21
GSMVS78.05 270
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27178.05 270
sam_mvs33.43 286
test_post168.67 2903.64 39732.39 30369.49 30744.17 275
test_post3.55 39833.90 28166.52 322
patchmatchnet-post64.03 36634.50 27374.27 284
gm-plane-assit71.40 28941.72 30148.85 27873.31 31682.48 16848.90 238
test9_res75.28 3788.31 3283.81 169
agg_prior273.09 5587.93 4084.33 150
test_prior462.51 1482.08 77
test_prior281.75 8060.37 9675.01 4189.06 5256.22 3772.19 5988.96 24
旧先验276.08 18245.32 31676.55 3265.56 32858.75 162
新几何276.12 180
原ACMM279.02 116
testdata272.18 29546.95 254
segment_acmp54.23 54
testdata172.65 24360.50 91
plane_prior781.41 8955.96 111
plane_prior681.20 9656.24 10645.26 170
plane_prior486.10 108
plane_prior356.09 10863.92 3669.27 127
plane_prior284.22 4064.52 25
plane_prior181.27 94
plane_prior56.31 10283.58 5363.19 4880.48 106
HQP5-MVS54.94 131
HQP-NCC80.66 10282.31 7162.10 6867.85 152
ACMP_Plane80.66 10282.31 7162.10 6867.85 152
BP-MVS67.04 93
HQP4-MVS67.85 15286.93 6284.32 151
HQP2-MVS45.46 164
NP-MVS80.98 9956.05 11085.54 126
MDTV_nov1_ep13_2view25.89 38761.22 33440.10 35351.10 34332.97 29138.49 31378.61 265
ACMMP++_ref74.07 181
ACMMP++72.16 215
Test By Simon48.33 126