This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft79.88 880.14 879.10 2088.17 164.80 186.59 1283.70 6065.37 1178.78 2290.64 1758.63 2487.24 4979.00 1090.37 1485.26 118
MTAPA76.90 3276.42 3378.35 3386.08 3763.57 274.92 19580.97 12165.13 1375.77 3390.88 1548.63 10986.66 6877.23 1988.17 3384.81 130
mPP-MVS76.54 3475.93 3878.34 3486.47 2663.50 385.74 2482.28 8962.90 5071.77 8290.26 2946.61 13986.55 7271.71 5085.66 5784.97 126
MP-MVScopyleft78.35 1878.26 1978.64 2986.54 2563.47 486.02 1983.55 6463.89 3573.60 5790.60 1854.85 4686.72 6677.20 2088.06 3585.74 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS77.12 3076.68 3078.43 3186.05 3863.18 587.55 1083.45 6762.44 6272.68 7290.50 2248.18 11487.34 4873.59 3985.71 5684.76 133
region2R77.67 2577.18 2779.15 1786.76 1762.95 686.29 1484.16 4762.81 5573.30 6090.58 1949.90 9488.21 3273.78 3787.03 4386.29 77
ACMMPR77.71 2377.23 2679.16 1686.75 1862.93 786.29 1484.24 4562.82 5373.55 5890.56 2049.80 9688.24 3174.02 3587.03 4386.32 74
HFP-MVS78.01 2277.65 2379.10 2086.71 1962.81 886.29 1484.32 4462.82 5373.96 5390.50 2253.20 6388.35 2974.02 3587.05 4286.13 80
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1786.83 865.51 1083.81 1090.51 2163.71 1289.23 1881.51 188.44 2788.09 19
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS76.77 3376.06 3678.88 2686.14 3562.73 982.55 6583.74 5961.71 7472.45 7890.34 2748.48 11288.13 3372.32 4586.85 4885.78 91
XVS77.17 2976.56 3279.00 2286.32 2962.62 1185.83 2183.92 5164.55 2172.17 7990.01 3847.95 11688.01 3671.55 5286.74 5086.37 68
X-MVStestdata70.21 11067.28 15779.00 2286.32 2962.62 1185.83 2183.92 5164.55 2172.17 796.49 37447.95 11688.01 3671.55 5286.74 5086.37 68
NCCC78.58 1578.31 1779.39 1187.51 1262.61 1385.20 2984.42 4266.73 674.67 4689.38 4755.30 4189.18 1974.19 3387.34 4186.38 66
test_prior462.51 1482.08 75
Effi-MVS+-dtu69.64 12667.53 14675.95 6276.10 21062.29 1580.20 9676.06 20459.83 10865.26 19577.09 26341.56 19184.02 12860.60 13571.09 21581.53 207
SteuartSystems-ACMMP79.48 1079.31 1079.98 283.01 7262.18 1687.60 985.83 1966.69 778.03 2690.98 1454.26 5090.06 1278.42 1789.02 2387.69 31
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS79.84 979.97 979.45 1087.90 262.17 1784.37 3485.03 3466.96 377.58 2790.06 3459.47 2089.13 2078.67 1289.73 1687.03 51
ZNCC-MVS78.82 1278.67 1579.30 1386.43 2862.05 1886.62 1186.01 1863.32 4175.08 3790.47 2453.96 5488.68 2576.48 2389.63 2087.16 49
SMA-MVScopyleft80.28 680.39 779.95 386.60 2361.95 1986.33 1385.75 2162.49 6082.20 1592.28 156.53 3389.70 1579.85 391.48 188.19 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPcopyleft76.02 4175.33 4478.07 3685.20 4961.91 2085.49 2884.44 4163.04 4769.80 10689.74 4445.43 15287.16 5372.01 4782.87 8185.14 119
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS77.70 2477.62 2477.93 4084.47 5961.88 2184.55 3283.87 5660.37 9479.89 1889.38 4754.97 4485.58 9576.12 2584.94 6086.33 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS78.14 2077.85 2278.99 2486.05 3861.82 2285.84 2085.21 2963.56 3974.29 5090.03 3652.56 6688.53 2774.79 2988.34 2986.63 63
DeepC-MVS69.38 278.56 1678.14 2079.83 683.60 6361.62 2384.17 4086.85 663.23 4473.84 5590.25 3057.68 2789.96 1374.62 3089.03 2287.89 22
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TEST985.58 4361.59 2481.62 8081.26 11355.65 18274.93 3988.81 5453.70 5884.68 116
train_agg76.27 3776.15 3576.64 5385.58 4361.59 2481.62 8081.26 11355.86 17374.93 3988.81 5453.70 5884.68 11675.24 2888.33 3083.65 169
TSAR-MVS + MP.78.44 1778.28 1878.90 2584.96 5261.41 2684.03 4383.82 5859.34 11579.37 1989.76 4359.84 1687.62 4576.69 2286.74 5087.68 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CPTT-MVS72.78 6972.08 7374.87 8484.88 5761.41 2684.15 4177.86 17755.27 18867.51 15088.08 6241.93 18581.85 17469.04 6480.01 10981.35 212
save fliter86.17 3361.30 2883.98 4579.66 13859.00 118
SR-MVS76.13 4075.70 4177.40 4685.87 4061.20 2985.52 2682.19 9059.99 10375.10 3690.35 2647.66 12086.52 7371.64 5182.99 7684.47 139
新几何170.76 18285.66 4161.13 3066.43 28844.68 30070.29 9486.64 8441.29 19575.23 26649.72 21581.75 9475.93 277
MSC_two_6792asdad79.95 387.24 1461.04 3185.62 2390.96 179.31 790.65 887.85 25
No_MVS79.95 387.24 1461.04 3185.62 2390.96 179.31 790.65 887.85 25
ACMMP_NAP78.77 1478.78 1378.74 2885.44 4561.04 3183.84 4785.16 3062.88 5178.10 2491.26 1352.51 6788.39 2879.34 690.52 1386.78 60
test_885.40 4660.96 3481.54 8381.18 11655.86 17374.81 4288.80 5653.70 5884.45 120
OPU-MVS79.83 687.54 1160.93 3587.82 789.89 4067.01 190.33 1173.16 4191.15 488.23 14
DeepC-MVS_fast68.24 377.25 2876.63 3179.12 1986.15 3460.86 3684.71 3184.85 3861.98 7273.06 6788.88 5353.72 5789.06 2168.27 6588.04 3687.42 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FOURS186.12 3660.82 3788.18 183.61 6260.87 8281.50 16
HPM-MVScopyleft77.28 2776.85 2878.54 3085.00 5160.81 3882.91 5885.08 3162.57 5873.09 6689.97 3950.90 9087.48 4775.30 2686.85 4887.33 47
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft78.02 2178.04 2177.98 3986.44 2760.81 3885.52 2684.36 4360.61 8779.05 2190.30 2855.54 4088.32 3073.48 4087.03 4384.83 129
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR74.02 5973.46 6375.69 6883.01 7260.63 4077.29 14778.40 17061.18 8070.58 9185.97 10254.18 5284.00 12967.52 7682.98 7882.45 194
DPE-MVScopyleft80.56 580.98 579.29 1487.27 1360.56 4185.71 2586.42 1463.28 4283.27 1391.83 1064.96 790.47 1076.41 2489.67 1886.84 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part287.58 960.47 4283.42 12
ZD-MVS86.64 2160.38 4382.70 8557.95 13878.10 2490.06 3456.12 3788.84 2474.05 3487.00 46
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1884.92 5660.32 4483.03 5585.33 2762.86 5280.17 1790.03 3661.76 1488.95 2274.21 3288.67 2688.12 18
APDe-MVS80.16 780.59 678.86 2786.64 2160.02 4588.12 386.42 1462.94 4982.40 1492.12 259.64 1889.76 1478.70 1188.32 3186.79 59
agg_prior85.04 5059.96 4681.04 11974.68 4584.04 126
3Dnovator+66.72 475.84 4374.57 5179.66 882.40 7659.92 4785.83 2186.32 1666.92 567.80 14489.24 4942.03 18389.38 1764.07 10386.50 5389.69 2
SR-MVS-dyc-post74.57 5473.90 5776.58 5483.49 6559.87 4884.29 3581.36 10658.07 13573.14 6490.07 3244.74 15985.84 8968.20 6681.76 9284.03 149
RE-MVS-def73.71 6183.49 6559.87 4884.29 3581.36 10658.07 13573.14 6490.07 3243.06 17468.20 6681.76 9284.03 149
CSCG76.92 3176.75 2977.41 4483.96 6259.60 5082.95 5686.50 1360.78 8575.27 3584.83 12060.76 1586.56 7167.86 7187.87 3986.06 82
h-mvs3372.71 7171.49 7876.40 5681.99 8159.58 5176.92 15676.74 19760.40 9174.81 4285.95 10445.54 14885.76 9170.41 5770.61 21983.86 157
MP-MVS-pluss78.35 1878.46 1678.03 3884.96 5259.52 5282.93 5785.39 2662.15 6576.41 3191.51 1152.47 6986.78 6580.66 289.64 1987.80 28
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
原ACMM174.69 8785.39 4759.40 5383.42 6851.47 23770.27 9586.61 8648.61 11086.51 7453.85 18287.96 3778.16 253
MAR-MVS71.51 8970.15 10175.60 7281.84 8359.39 5481.38 8482.90 8254.90 20168.08 13578.70 24247.73 11885.51 9751.68 20284.17 6881.88 204
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_111021_LR69.50 12968.78 12371.65 16178.38 15359.33 5574.82 19770.11 26358.08 13467.83 14384.68 12241.96 18476.34 26265.62 9377.54 14179.30 245
test_one_060187.58 959.30 5686.84 765.01 1883.80 1191.86 664.03 11
MSLP-MVS++73.77 6273.47 6274.66 8983.02 7159.29 5782.30 7281.88 9459.34 11571.59 8586.83 7745.94 14383.65 13565.09 9785.22 5981.06 219
DPM-MVS75.47 4675.00 4776.88 4981.38 9159.16 5879.94 10085.71 2256.59 16172.46 7686.76 7956.89 3187.86 4166.36 8488.91 2583.64 170
DVP-MVS++81.67 182.40 179.47 987.24 1459.15 5988.18 187.15 365.04 1484.26 591.86 667.01 190.84 379.48 491.38 288.42 9
IU-MVS87.77 459.15 5985.53 2553.93 21284.64 379.07 990.87 588.37 11
CDPH-MVS76.31 3675.67 4278.22 3585.35 4859.14 6181.31 8584.02 4856.32 16574.05 5188.98 5253.34 6287.92 3969.23 6388.42 2887.59 36
test_0728_SECOND79.19 1587.82 359.11 6287.85 587.15 390.84 378.66 1390.61 1187.62 35
DVP-MVScopyleft80.84 481.64 378.42 3287.75 759.07 6387.85 585.03 3464.26 2783.82 892.00 364.82 890.75 878.66 1390.61 1185.45 108
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072687.75 759.07 6387.86 486.83 864.26 2784.19 791.92 564.82 8
HPM-MVS_fast74.30 5873.46 6376.80 5084.45 6059.04 6583.65 5081.05 11860.15 10070.43 9289.84 4141.09 19885.59 9467.61 7582.90 8085.77 94
OPM-MVS74.73 5174.25 5476.19 5980.81 10059.01 6682.60 6483.64 6163.74 3772.52 7587.49 6947.18 13085.88 8869.47 6180.78 9783.66 168
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
3Dnovator64.47 572.49 7471.39 8175.79 6477.70 17458.99 6780.66 9283.15 7862.24 6465.46 18886.59 8742.38 18185.52 9659.59 14484.72 6182.85 188
SED-MVS81.56 282.30 279.32 1287.77 458.90 6887.82 786.78 1064.18 3085.97 191.84 866.87 390.83 578.63 1590.87 588.23 14
test_241102_ONE87.77 458.90 6886.78 1064.20 2985.97 191.34 1266.87 390.78 7
PVSNet_Blended_VisFu71.45 9170.39 9774.65 9082.01 7958.82 7079.93 10180.35 13155.09 19365.82 18382.16 17949.17 10382.64 16160.34 13678.62 13382.50 193
TSAR-MVS + GP.74.90 4874.15 5577.17 4782.00 8058.77 7181.80 7778.57 15958.58 12674.32 4984.51 13055.94 3887.22 5067.11 7984.48 6585.52 104
test22283.14 6858.68 7272.57 23463.45 30641.78 32067.56 14986.12 9637.13 23578.73 13174.98 288
ACMM61.98 770.80 10069.73 10674.02 10480.59 10658.59 7382.68 6282.02 9355.46 18567.18 15584.39 13238.51 21683.17 14460.65 13476.10 15780.30 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test1277.76 4184.52 5858.41 7483.36 7172.93 6954.61 4888.05 3588.12 3486.81 58
MCST-MVS77.48 2677.45 2577.54 4386.67 2058.36 7583.22 5386.93 556.91 15374.91 4188.19 5959.15 2287.68 4473.67 3887.45 4086.57 64
APD-MVS_3200maxsize74.96 4774.39 5376.67 5282.20 7858.24 7683.67 4983.29 7458.41 12973.71 5690.14 3145.62 14585.99 8569.64 5982.85 8285.78 91
CNLPA65.43 20464.02 20369.68 20278.73 14558.07 7777.82 13370.71 26051.49 23661.57 24483.58 15138.23 22170.82 28443.90 26470.10 22980.16 232
DP-MVS Recon72.15 8270.73 9276.40 5686.57 2457.99 7881.15 8782.96 8057.03 15066.78 16185.56 11144.50 16288.11 3451.77 20080.23 10883.10 183
SF-MVS78.82 1279.22 1177.60 4282.88 7457.83 7984.99 3088.13 261.86 7379.16 2090.75 1657.96 2587.09 5877.08 2190.18 1587.87 24
AdaColmapbinary69.99 11468.66 12573.97 10684.94 5457.83 7982.63 6378.71 15556.28 16764.34 20884.14 13541.57 19087.06 5946.45 24078.88 12677.02 268
Fast-Effi-MVS+-dtu67.37 17165.33 19473.48 12672.94 25557.78 8177.47 14176.88 19357.60 14461.97 23876.85 26739.31 20880.49 20654.72 17470.28 22682.17 199
ACMP63.53 672.30 7771.20 8675.59 7380.28 10757.54 8282.74 6182.84 8460.58 8865.24 19686.18 9539.25 20986.03 8466.95 8276.79 15283.22 178
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CANet76.46 3575.93 3878.06 3781.29 9257.53 8382.35 6783.31 7367.78 170.09 9686.34 9354.92 4588.90 2372.68 4484.55 6387.76 30
LPG-MVS_test72.74 7071.74 7575.76 6580.22 10957.51 8482.55 6583.40 6961.32 7766.67 16587.33 7239.15 21186.59 6967.70 7377.30 14683.19 180
LGP-MVS_train75.76 6580.22 10957.51 8483.40 6961.32 7766.67 16587.33 7239.15 21186.59 6967.70 7377.30 14683.19 180
test_prior76.69 5184.20 6157.27 8684.88 3786.43 7686.38 66
XVG-OURS68.76 14467.37 15372.90 13974.32 24157.22 8770.09 26878.81 15255.24 18967.79 14585.81 10936.54 24178.28 23862.04 12375.74 16083.19 180
API-MVS72.17 8071.41 8074.45 9881.95 8257.22 8784.03 4380.38 13059.89 10768.40 12682.33 17349.64 9787.83 4251.87 19884.16 6978.30 251
xiu_mvs_v1_base_debu68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
xiu_mvs_v1_base68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
xiu_mvs_v1_base_debi68.58 14767.28 15772.48 14778.19 16057.19 8975.28 18475.09 22051.61 23270.04 9781.41 19532.79 27479.02 22963.81 10777.31 14381.22 214
MVSFormer71.50 9070.38 9874.88 8378.76 14357.15 9282.79 5978.48 16351.26 24169.49 10983.22 15543.99 16783.24 14266.06 8679.37 11784.23 144
lupinMVS69.57 12768.28 13373.44 12878.76 14357.15 9276.57 16173.29 24346.19 28969.49 10982.18 17643.99 16779.23 22164.66 10079.37 11783.93 152
hse-mvs271.04 9569.86 10474.60 9379.58 12257.12 9473.96 21175.25 21460.40 9174.81 4281.95 18445.54 14882.90 14970.41 5766.83 26783.77 162
AUN-MVS68.45 15266.41 17474.57 9579.53 12457.08 9573.93 21475.23 21554.44 20966.69 16481.85 18637.10 23682.89 15062.07 12266.84 26683.75 163
jason69.65 12568.39 13273.43 12978.27 15856.88 9677.12 15073.71 23946.53 28669.34 11383.22 15543.37 17179.18 22264.77 9979.20 12284.23 144
jason: jason.
XVG-OURS-SEG-HR68.81 14167.47 15072.82 14274.40 23956.87 9770.59 26179.04 14754.77 20266.99 15786.01 10139.57 20678.21 23962.54 11873.33 18483.37 174
DP-MVS65.68 20063.66 20971.75 15784.93 5556.87 9780.74 9173.16 24453.06 21959.09 26782.35 17236.79 24085.94 8732.82 32969.96 23272.45 312
HQP_MVS74.31 5773.73 6076.06 6081.41 8956.31 9984.22 3884.01 4964.52 2369.27 11486.10 9745.26 15687.21 5168.16 6880.58 10184.65 134
plane_prior56.31 9983.58 5163.19 4680.48 104
EPNet73.09 6772.16 7175.90 6375.95 21256.28 10183.05 5472.39 24966.53 865.27 19287.00 7650.40 9285.47 10062.48 11986.32 5485.94 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268865.08 21162.84 22071.82 15681.49 8856.26 10266.32 28874.20 23340.53 32963.16 22278.65 24441.30 19477.80 24545.80 24674.09 17181.40 209
plane_prior681.20 9656.24 10345.26 156
anonymousdsp67.00 18264.82 19973.57 12470.09 29356.13 10476.35 16577.35 18848.43 26664.99 20280.84 20933.01 27180.34 20764.66 10067.64 26284.23 144
plane_prior356.09 10563.92 3469.27 114
PatchMatch-RL56.25 27854.55 28361.32 28677.06 19356.07 10665.57 29354.10 34244.13 30753.49 31771.27 31325.20 32966.78 30436.52 31363.66 28961.12 346
NP-MVS80.98 9956.05 10785.54 113
plane_prior781.41 8955.96 108
PS-MVSNAJss72.24 7871.21 8575.31 7678.50 14955.93 10981.63 7982.12 9156.24 16870.02 10085.68 11047.05 13284.34 12265.27 9674.41 16985.67 98
PHI-MVS75.87 4275.36 4377.41 4480.62 10555.91 11084.28 3785.78 2056.08 17173.41 5986.58 8850.94 8988.54 2670.79 5589.71 1787.79 29
PS-MVSNAJ70.51 10469.70 10772.93 13881.52 8655.79 11174.92 19579.00 14855.04 19869.88 10478.66 24347.05 13282.19 16961.61 12779.58 11480.83 222
PCF-MVS61.88 870.95 9769.49 11175.35 7577.63 17755.71 11276.04 17481.81 9650.30 25069.66 10785.40 11652.51 6784.89 11251.82 19980.24 10785.45 108
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LS3D64.71 21462.50 22471.34 17179.72 12155.71 11279.82 10374.72 22548.50 26556.62 28484.62 12533.59 26682.34 16829.65 34875.23 16575.97 276
HyFIR lowres test65.67 20163.01 21873.67 11779.97 11755.65 11469.07 27675.52 21042.68 31863.53 21877.95 25140.43 20081.64 17746.01 24471.91 20683.73 164
CS-MVS76.25 3875.98 3777.06 4880.15 11455.63 11584.51 3383.90 5363.24 4373.30 6087.27 7455.06 4386.30 8171.78 4984.58 6289.25 4
xiu_mvs_v2_base70.52 10369.75 10572.84 14081.21 9555.63 11575.11 18978.92 15054.92 20069.96 10379.68 22847.00 13682.09 17161.60 12879.37 11780.81 223
ET-MVSNet_ETH3D67.96 16165.72 18874.68 8876.67 20055.62 11775.11 18974.74 22452.91 22160.03 25380.12 21933.68 26482.64 16161.86 12576.34 15585.78 91
MVP-Stereo65.41 20563.80 20770.22 19077.62 18155.53 11876.30 16678.53 16150.59 24956.47 28678.65 24439.84 20382.68 15944.10 26272.12 20572.44 313
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jajsoiax68.25 15566.45 17073.66 11875.62 21655.49 11980.82 8978.51 16252.33 22764.33 20984.11 13628.28 30981.81 17663.48 11170.62 21883.67 166
Vis-MVSNetpermissive72.18 7971.37 8274.61 9281.29 9255.41 12080.90 8878.28 17260.73 8669.23 11788.09 6144.36 16482.65 16057.68 15181.75 9485.77 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvs_tets68.18 15766.36 17673.63 12175.61 21755.35 12180.77 9078.56 16052.48 22664.27 21184.10 13727.45 31581.84 17563.45 11270.56 22083.69 165
ETV-MVS74.46 5673.84 5976.33 5879.27 13055.24 12279.22 11385.00 3664.97 1972.65 7379.46 23353.65 6187.87 4067.45 7782.91 7985.89 88
CS-MVS-test75.62 4575.31 4576.56 5580.63 10455.13 12383.88 4685.22 2862.05 6971.49 8686.03 10053.83 5686.36 7967.74 7286.91 4788.19 16
HQP5-MVS54.94 124
HQP-MVS73.45 6372.80 6775.40 7480.66 10154.94 12482.31 6983.90 5362.10 6667.85 13985.54 11345.46 15086.93 6067.04 8080.35 10584.32 141
test_djsdf69.45 13167.74 13874.58 9474.57 23554.92 12682.79 5978.48 16351.26 24165.41 18983.49 15338.37 21883.24 14266.06 8669.25 24685.56 103
PLCcopyleft56.13 1465.09 21063.21 21670.72 18481.04 9854.87 12778.57 12177.47 18448.51 26455.71 28981.89 18533.71 26379.71 21341.66 28470.37 22377.58 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
patch_mono-269.85 11771.09 8766.16 24579.11 13654.80 12871.97 24374.31 23053.50 21770.90 8984.17 13457.63 2963.31 31666.17 8582.02 8980.38 229
114514_t70.83 9869.56 10874.64 9186.21 3154.63 12982.34 6881.81 9648.22 26863.01 22385.83 10740.92 19987.10 5757.91 15079.79 11082.18 197
UGNet68.81 14167.39 15273.06 13678.33 15654.47 13079.77 10475.40 21260.45 9063.22 22084.40 13132.71 27880.91 19751.71 20180.56 10383.81 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_040263.25 22861.01 24169.96 19580.00 11654.37 13176.86 15872.02 25154.58 20658.71 27080.79 21035.00 25184.36 12126.41 35764.71 28271.15 328
EI-MVSNet-Vis-set72.42 7671.59 7674.91 8278.47 15154.02 13277.05 15279.33 14565.03 1671.68 8479.35 23652.75 6584.89 11266.46 8374.23 17085.83 90
OpenMVScopyleft61.03 968.85 14067.56 14372.70 14474.26 24253.99 13381.21 8681.34 11052.70 22362.75 22685.55 11238.86 21484.14 12448.41 22783.01 7579.97 235
pmmvs461.48 24759.39 24867.76 22671.57 27553.86 13471.42 24865.34 29544.20 30559.46 26277.92 25335.90 24474.71 26843.87 26564.87 28174.71 293
TAMVS66.78 18765.27 19571.33 17279.16 13553.67 13573.84 21869.59 26752.32 22865.28 19181.72 18944.49 16377.40 25142.32 27878.66 13282.92 185
Effi-MVS+73.31 6572.54 6975.62 7177.87 17053.64 13679.62 10979.61 13961.63 7572.02 8182.61 16656.44 3485.97 8663.99 10679.07 12587.25 48
F-COLMAP63.05 23160.87 24469.58 20676.99 19653.63 13778.12 12876.16 20147.97 27252.41 32081.61 19127.87 31178.11 24040.07 29066.66 26877.00 269
EI-MVSNet-UG-set71.92 8371.06 8874.52 9777.98 16853.56 13876.62 16079.16 14664.40 2571.18 8778.95 24152.19 7384.66 11865.47 9473.57 17885.32 115
EIA-MVS71.78 8570.60 9375.30 7779.85 11853.54 13977.27 14883.26 7657.92 13966.49 16779.39 23452.07 7586.69 6760.05 13879.14 12485.66 99
EG-PatchMatch MVS64.71 21462.87 21970.22 19077.68 17553.48 14077.99 12978.82 15153.37 21856.03 28877.41 26224.75 33284.04 12646.37 24173.42 18373.14 304
mvsmamba71.15 9369.54 10975.99 6177.61 18253.46 14181.95 7675.11 21957.73 14366.95 15985.96 10337.14 23487.56 4667.94 7075.49 16386.97 52
QAPM70.05 11268.81 12273.78 11076.54 20453.43 14283.23 5283.48 6552.89 22265.90 17986.29 9441.55 19286.49 7551.01 20578.40 13581.42 208
PAPM_NR72.63 7271.80 7475.13 8181.72 8453.42 14379.91 10283.28 7559.14 11766.31 17285.90 10551.86 7786.06 8257.45 15280.62 9985.91 86
dcpmvs_274.55 5575.23 4672.48 14782.34 7753.34 14477.87 13081.46 10257.80 14275.49 3486.81 7862.22 1377.75 24671.09 5482.02 8986.34 70
CLD-MVS73.33 6472.68 6875.29 7878.82 14253.33 14578.23 12584.79 3961.30 7970.41 9381.04 20152.41 7087.12 5664.61 10282.49 8685.41 112
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
bld_raw_dy_0_6464.87 21263.22 21569.83 20174.79 23053.32 14678.15 12762.02 31651.20 24360.17 25183.12 15924.15 33474.20 27363.08 11372.33 20081.96 201
BH-untuned68.27 15467.29 15671.21 17379.74 11953.22 14776.06 17277.46 18657.19 14866.10 17481.61 19145.37 15483.50 13845.42 25476.68 15476.91 272
旧先验183.04 7053.15 14867.52 27987.85 6744.08 16580.76 9878.03 258
OMC-MVS71.40 9270.60 9373.78 11076.60 20253.15 14879.74 10679.78 13558.37 13068.75 12186.45 9145.43 15280.60 20262.58 11777.73 13987.58 37
CDS-MVSNet66.80 18665.37 19271.10 17778.98 13853.13 15073.27 22471.07 25752.15 22964.72 20480.23 21843.56 17077.10 25345.48 25278.88 12683.05 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
testdata64.66 26381.52 8652.93 15165.29 29646.09 29073.88 5487.46 7038.08 22366.26 30853.31 18778.48 13474.78 292
iter_conf_final69.82 11868.02 13675.23 7979.38 12752.91 15280.11 9773.96 23654.99 19968.04 13683.59 14829.05 30287.16 5365.41 9577.62 14085.63 101
ACMH+57.40 1166.12 19664.06 20272.30 15377.79 17352.83 15380.39 9378.03 17557.30 14657.47 28082.55 16827.68 31384.17 12345.54 25069.78 23679.90 236
IB-MVS56.42 1265.40 20662.73 22273.40 13074.89 22552.78 15473.09 22675.13 21855.69 18058.48 27473.73 29932.86 27386.32 8050.63 20870.11 22881.10 218
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v7n69.01 13967.36 15473.98 10572.51 26352.65 15578.54 12381.30 11160.26 9962.67 22781.62 19043.61 16984.49 11957.01 15468.70 25484.79 131
DROMVSNet75.84 4375.87 4075.74 6778.86 14052.65 15583.73 4886.08 1763.47 4072.77 7187.25 7553.13 6487.93 3871.97 4885.57 5886.66 62
MSDG61.81 24359.23 24969.55 20772.64 25952.63 15770.45 26475.81 20551.38 23853.70 31176.11 27729.52 29881.08 19237.70 30265.79 27574.93 289
cascas65.98 19763.42 21273.64 12077.26 19052.58 15872.26 23977.21 19048.56 26361.21 24674.60 29332.57 28285.82 9050.38 21076.75 15382.52 192
RRT_MVS69.42 13267.49 14975.21 8078.01 16752.56 15982.23 7378.15 17355.84 17565.65 18485.07 11730.86 28986.83 6361.56 13070.00 23086.24 79
BH-RMVSNet68.81 14167.42 15172.97 13780.11 11552.53 16074.26 20676.29 20058.48 12868.38 12784.20 13342.59 17783.83 13146.53 23975.91 15882.56 189
COLMAP_ROBcopyleft52.97 1761.27 24958.81 25268.64 21874.63 23352.51 16178.42 12473.30 24249.92 25450.96 32581.51 19423.06 33679.40 21831.63 33765.85 27374.01 300
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
BH-w/o66.85 18465.83 18669.90 19979.29 12852.46 16274.66 20176.65 19854.51 20864.85 20378.12 24945.59 14782.95 14843.26 27075.54 16274.27 297
XVG-ACMP-BASELINE64.36 21862.23 22770.74 18372.35 26552.45 16370.80 26078.45 16653.84 21359.87 25681.10 20016.24 34979.32 22055.64 16871.76 20780.47 226
pmmvs-eth3d58.81 26056.31 27366.30 24267.61 31452.42 16472.30 23864.76 29943.55 31154.94 29974.19 29628.95 30372.60 27643.31 26857.21 32373.88 301
DELS-MVS74.76 5074.46 5275.65 7077.84 17152.25 16575.59 17984.17 4663.76 3673.15 6382.79 16159.58 1986.80 6467.24 7886.04 5587.89 22
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GeoE71.01 9670.15 10173.60 12379.57 12352.17 16678.93 11578.12 17458.02 13767.76 14783.87 14252.36 7182.72 15856.90 15575.79 15985.92 85
MS-PatchMatch62.42 23561.46 23565.31 26075.21 22452.10 16772.05 24174.05 23446.41 28757.42 28174.36 29434.35 25877.57 24945.62 24973.67 17566.26 343
CR-MVSNet59.91 25457.90 26265.96 25069.96 29652.07 16865.31 29763.15 30942.48 31959.36 26374.84 29035.83 24570.75 28545.50 25164.65 28375.06 285
RPMNet61.53 24558.42 25670.86 18069.96 29652.07 16865.31 29781.36 10643.20 31459.36 26370.15 32135.37 24785.47 10036.42 31464.65 28375.06 285
IterMVS62.79 23261.27 23767.35 23269.37 30352.04 17071.17 25368.24 27852.63 22559.82 25776.91 26637.32 23072.36 27752.80 19063.19 29477.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH55.70 1565.20 20963.57 21070.07 19478.07 16452.01 17179.48 11179.69 13655.75 17956.59 28580.98 20327.12 31780.94 19442.90 27571.58 21077.25 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FE-MVS65.91 19863.33 21473.63 12177.36 18851.95 17272.62 23275.81 20553.70 21465.31 19078.96 24028.81 30686.39 7743.93 26373.48 18182.55 190
casdiffmvs_mvgpermissive76.14 3976.30 3475.66 6976.46 20651.83 17379.67 10785.08 3165.02 1775.84 3288.58 5859.42 2185.08 10672.75 4383.93 7090.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net73.13 6672.93 6673.76 11283.58 6451.66 17478.75 11677.66 18167.75 272.61 7489.42 4549.82 9583.29 14153.61 18483.14 7386.32 74
Fast-Effi-MVS+70.28 10969.12 11873.73 11578.50 14951.50 17575.01 19279.46 14356.16 17068.59 12279.55 23153.97 5384.05 12553.34 18677.53 14285.65 100
PAPR71.72 8770.82 9174.41 9981.20 9651.17 17679.55 11083.33 7255.81 17766.93 16084.61 12650.95 8886.06 8255.79 16479.20 12286.00 83
iter_conf0569.40 13367.62 14274.73 8577.84 17151.13 17779.28 11273.71 23954.62 20368.17 13183.59 14828.68 30787.16 5365.74 9276.95 14985.91 86
thisisatest053067.92 16265.78 18774.33 10176.29 20751.03 17876.89 15774.25 23253.67 21565.59 18681.76 18835.15 24985.50 9855.94 16072.47 19786.47 65
v119269.97 11568.68 12473.85 10773.19 24950.94 17977.68 13581.36 10657.51 14568.95 12080.85 20845.28 15585.33 10462.97 11570.37 22385.27 117
MVS67.37 17166.33 17770.51 18875.46 22050.94 17973.95 21281.85 9541.57 32462.54 23178.57 24747.98 11585.47 10052.97 18982.05 8875.14 284
v1070.21 11069.02 11973.81 10973.51 24750.92 18178.74 11781.39 10460.05 10266.39 17081.83 18747.58 12285.41 10362.80 11668.86 25285.09 122
PMMVS53.96 28953.26 29556.04 30862.60 34050.92 18161.17 31756.09 33632.81 34353.51 31666.84 33834.04 26059.93 32844.14 26168.18 25757.27 352
tttt051767.83 16465.66 18974.33 10176.69 19950.82 18377.86 13173.99 23554.54 20764.64 20682.53 16935.06 25085.50 9855.71 16569.91 23386.67 61
IterMVS-SCA-FT62.49 23361.52 23465.40 25871.99 27050.80 18471.15 25569.63 26645.71 29560.61 24877.93 25237.45 22765.99 30955.67 16663.50 29179.42 243
JIA-IIPM51.56 30247.68 31563.21 27264.61 33150.73 18547.71 35258.77 32542.90 31648.46 33551.72 35824.97 33070.24 29036.06 31653.89 33568.64 341
v114470.42 10669.31 11473.76 11273.22 24850.64 18677.83 13281.43 10358.58 12669.40 11281.16 19847.53 12385.29 10564.01 10570.64 21785.34 114
PVSNet_BlendedMVS68.56 15067.72 13971.07 17877.03 19450.57 18774.50 20381.52 9953.66 21664.22 21379.72 22749.13 10482.87 15255.82 16273.92 17379.77 240
PVSNet_Blended68.59 14667.72 13971.19 17477.03 19450.57 18772.51 23581.52 9951.91 23064.22 21377.77 25949.13 10482.87 15255.82 16279.58 11480.14 233
canonicalmvs74.67 5274.98 4873.71 11678.94 13950.56 18980.23 9483.87 5660.30 9877.15 2886.56 8959.65 1782.00 17266.01 8882.12 8788.58 8
alignmvs73.86 6173.99 5673.45 12778.20 15950.50 19078.57 12182.43 8759.40 11376.57 2986.71 8356.42 3581.23 18865.84 9081.79 9188.62 6
casdiffmvspermissive74.80 4974.89 4974.53 9675.59 21850.37 19178.17 12685.06 3362.80 5674.40 4887.86 6657.88 2683.61 13669.46 6282.79 8389.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
nrg03072.96 6873.01 6572.84 14075.41 22150.24 19280.02 9882.89 8358.36 13174.44 4786.73 8158.90 2380.83 19865.84 9074.46 16787.44 40
v870.33 10869.28 11573.49 12573.15 25050.22 19378.62 12080.78 12460.79 8466.45 16982.11 18249.35 9984.98 10963.58 11068.71 25385.28 116
V4268.65 14567.35 15572.56 14568.93 30750.18 19472.90 22879.47 14256.92 15269.45 11180.26 21746.29 14182.99 14664.07 10367.82 26084.53 136
v14419269.71 12168.51 12673.33 13273.10 25150.13 19577.54 13980.64 12556.65 15568.57 12480.55 21146.87 13784.96 11162.98 11469.66 24084.89 128
v192192069.47 13068.17 13473.36 13173.06 25250.10 19677.39 14280.56 12656.58 16268.59 12280.37 21344.72 16084.98 10962.47 12069.82 23585.00 124
FA-MVS(test-final)69.82 11868.48 12773.84 10878.44 15250.04 19775.58 18178.99 14958.16 13367.59 14882.14 18042.66 17685.63 9256.60 15676.19 15685.84 89
v2v48270.50 10569.45 11373.66 11872.62 26050.03 19877.58 13680.51 12859.90 10469.52 10882.14 18047.53 12384.88 11465.07 9870.17 22786.09 81
baseline74.61 5374.70 5074.34 10075.70 21449.99 19977.54 13984.63 4062.73 5773.98 5287.79 6857.67 2883.82 13269.49 6082.74 8489.20 5
v124069.24 13667.91 13773.25 13573.02 25449.82 20077.21 14980.54 12756.43 16468.34 12880.51 21243.33 17284.99 10762.03 12469.77 23884.95 127
CHOSEN 280x42047.83 31346.36 31752.24 33067.37 31649.78 20138.91 36443.11 36335.00 34143.27 35163.30 34728.95 30349.19 35836.53 31260.80 31057.76 351
MVSTER67.16 17865.58 19171.88 15570.37 28949.70 20270.25 26778.45 16651.52 23569.16 11880.37 21338.45 21782.50 16460.19 13771.46 21183.44 173
EPP-MVSNet72.16 8171.31 8474.71 8678.68 14649.70 20282.10 7481.65 9860.40 9165.94 17785.84 10651.74 7986.37 7855.93 16179.55 11688.07 21
VDD-MVS72.50 7372.09 7273.75 11481.58 8549.69 20477.76 13477.63 18263.21 4573.21 6289.02 5142.14 18283.32 14061.72 12682.50 8588.25 13
MG-MVS73.96 6073.89 5874.16 10385.65 4249.69 20481.59 8281.29 11261.45 7671.05 8888.11 6051.77 7887.73 4361.05 13283.09 7485.05 123
TR-MVS66.59 19265.07 19771.17 17579.18 13349.63 20673.48 22175.20 21752.95 22067.90 13780.33 21639.81 20483.68 13443.20 27173.56 17980.20 231
thisisatest051565.83 19963.50 21172.82 14273.75 24549.50 20771.32 25073.12 24549.39 25663.82 21576.50 27534.95 25284.84 11553.20 18875.49 16384.13 148
IterMVS-LS69.22 13768.48 12771.43 16774.44 23849.40 20876.23 16877.55 18359.60 10965.85 18281.59 19351.28 8381.58 18059.87 14269.90 23483.30 175
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet69.27 13568.44 13171.73 15874.47 23649.39 20975.20 18778.45 16659.60 10969.16 11876.51 27351.29 8282.50 16459.86 14371.45 21283.30 175
AllTest57.08 27354.65 28264.39 26571.44 27649.03 21069.92 27067.30 28045.97 29247.16 33879.77 22517.47 34567.56 30033.65 32459.16 31776.57 273
TestCases64.39 26571.44 27649.03 21067.30 28045.97 29247.16 33879.77 22517.47 34567.56 30033.65 32459.16 31776.57 273
PAPM67.92 16266.69 16771.63 16278.09 16349.02 21277.09 15181.24 11551.04 24460.91 24783.98 14047.71 11984.99 10740.81 28779.32 12080.90 221
ppachtmachnet_test58.06 26755.38 27866.10 24869.51 30048.99 21368.01 28066.13 29044.50 30254.05 30970.74 31532.09 28572.34 27836.68 31056.71 32776.99 271
diffmvspermissive70.69 10170.43 9671.46 16469.45 30248.95 21472.93 22778.46 16557.27 14771.69 8383.97 14151.48 8177.92 24370.70 5677.95 13887.53 38
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Patchmatch-RL test58.16 26555.49 27766.15 24667.92 31348.89 21560.66 32051.07 34847.86 27359.36 26362.71 34834.02 26172.27 27956.41 15859.40 31677.30 263
TAPA-MVS59.36 1066.60 19065.20 19670.81 18176.63 20148.75 21676.52 16380.04 13450.64 24865.24 19684.93 11939.15 21178.54 23536.77 30776.88 15185.14 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EGC-MVSNET42.47 32038.48 32754.46 31674.33 24048.73 21770.33 26651.10 3470.03 3770.18 37867.78 33413.28 35466.49 30618.91 36350.36 34448.15 359
MDA-MVSNet-bldmvs53.87 29150.81 30263.05 27466.25 32348.58 21856.93 33363.82 30448.09 27041.22 35370.48 31930.34 29368.00 29934.24 32245.92 35172.57 310
MVS_Test72.45 7572.46 7072.42 15174.88 22648.50 21976.28 16783.14 7959.40 11372.46 7684.68 12255.66 3981.12 18965.98 8979.66 11387.63 34
D2MVS62.30 23760.29 24668.34 22366.46 32248.42 22065.70 29173.42 24147.71 27458.16 27675.02 28930.51 29177.71 24753.96 18171.68 20978.90 249
eth_miper_zixun_eth67.63 16766.28 18071.67 16071.60 27448.33 22173.68 22077.88 17655.80 17865.91 17878.62 24647.35 12982.88 15159.45 14566.25 27183.81 158
K. test v360.47 25257.11 26570.56 18673.74 24648.22 22275.10 19162.55 31258.27 13253.62 31476.31 27627.81 31281.59 17947.42 23139.18 35981.88 204
GA-MVS65.53 20363.70 20871.02 17970.87 28248.10 22370.48 26374.40 22856.69 15464.70 20576.77 26833.66 26581.10 19055.42 17070.32 22583.87 156
SCA60.49 25158.38 25766.80 23574.14 24448.06 22463.35 30563.23 30849.13 25959.33 26672.10 30637.45 22774.27 27144.17 25962.57 29878.05 255
OurMVSNet-221017-061.37 24858.63 25569.61 20372.05 26948.06 22473.93 21472.51 24847.23 28254.74 30180.92 20521.49 34381.24 18748.57 22656.22 32879.53 242
lessismore_v069.91 19871.42 27847.80 22650.90 34950.39 33175.56 28427.43 31681.33 18445.91 24534.10 36580.59 225
LTVRE_ROB55.42 1663.15 23061.23 23968.92 21576.57 20347.80 22659.92 32276.39 19954.35 21058.67 27182.46 17129.44 30081.49 18142.12 28071.14 21377.46 261
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v14868.24 15667.19 16371.40 16870.43 28747.77 22875.76 17877.03 19258.91 11967.36 15180.10 22048.60 11181.89 17360.01 13966.52 27084.53 136
Anonymous2024052969.91 11669.02 11972.56 14580.19 11247.65 22977.56 13880.99 12055.45 18669.88 10486.76 7939.24 21082.18 17054.04 17977.10 14887.85 25
baseline263.42 22461.26 23869.89 20072.55 26247.62 23071.54 24768.38 27750.11 25154.82 30075.55 28543.06 17480.96 19348.13 22867.16 26581.11 217
VDDNet71.81 8471.33 8373.26 13482.80 7547.60 23178.74 11775.27 21359.59 11272.94 6889.40 4641.51 19383.91 13058.75 14882.99 7688.26 12
131464.61 21663.21 21668.80 21671.87 27247.46 23273.95 21278.39 17142.88 31759.97 25476.60 27238.11 22279.39 21954.84 17372.32 20179.55 241
CMPMVSbinary42.80 2157.81 26955.97 27463.32 27060.98 34747.38 23364.66 30169.50 26832.06 34446.83 34077.80 25729.50 29971.36 28248.68 22473.75 17471.21 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SixPastTwentyTwo61.65 24458.80 25370.20 19275.80 21347.22 23475.59 17969.68 26554.61 20454.11 30879.26 23727.07 31882.96 14743.27 26949.79 34680.41 228
Anonymous2023121169.28 13468.47 12971.73 15880.28 10747.18 23579.98 9982.37 8854.61 20467.24 15384.01 13939.43 20782.41 16755.45 16972.83 19285.62 102
tpm cat159.25 25856.95 26866.15 24672.19 26746.96 23668.09 27965.76 29140.03 33357.81 27870.56 31638.32 21974.51 26938.26 30061.50 30677.00 269
TDRefinement53.44 29550.72 30361.60 28364.31 33346.96 23670.89 25965.27 29741.78 32044.61 34777.98 25011.52 35966.36 30728.57 35251.59 34071.49 325
PatchmatchNetpermissive59.84 25558.24 25864.65 26473.05 25346.70 23869.42 27362.18 31447.55 27658.88 26971.96 30834.49 25669.16 29342.99 27363.60 29078.07 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl2267.47 17066.45 17070.54 18769.85 29846.49 23973.85 21777.35 18855.07 19665.51 18777.92 25347.64 12181.10 19061.58 12969.32 24384.01 151
LFMVS71.78 8571.59 7672.32 15283.40 6746.38 24079.75 10571.08 25664.18 3072.80 7088.64 5742.58 17883.72 13357.41 15384.49 6486.86 56
miper_lstm_enhance62.03 24060.88 24365.49 25766.71 32046.25 24156.29 33575.70 20750.68 24661.27 24575.48 28640.21 20168.03 29856.31 15965.25 27882.18 197
CANet_DTU68.18 15767.71 14169.59 20474.83 22846.24 24278.66 11976.85 19459.60 10963.45 21982.09 18335.25 24877.41 25059.88 14178.76 13085.14 119
miper_ehance_all_eth68.03 15967.24 16170.40 18970.54 28546.21 24373.98 21078.68 15755.07 19666.05 17577.80 25752.16 7481.31 18561.53 13169.32 24383.67 166
c3_l68.33 15367.56 14370.62 18570.87 28246.21 24374.47 20478.80 15356.22 16966.19 17378.53 24851.88 7681.40 18262.08 12169.04 24984.25 143
miper_enhance_ethall67.11 17966.09 18370.17 19369.21 30445.98 24572.85 22978.41 16951.38 23865.65 18475.98 28151.17 8581.25 18660.82 13369.32 24383.29 177
CostFormer64.04 21962.51 22368.61 21971.88 27145.77 24671.30 25170.60 26147.55 27664.31 21076.61 27141.63 18979.62 21649.74 21469.00 25080.42 227
cl____67.18 17666.26 18169.94 19670.20 29045.74 24773.30 22276.83 19555.10 19165.27 19279.57 23047.39 12780.53 20359.41 14769.22 24783.53 172
DIV-MVS_self_test67.18 17666.26 18169.94 19670.20 29045.74 24773.29 22376.83 19555.10 19165.27 19279.58 22947.38 12880.53 20359.43 14669.22 24783.54 171
test_yl69.69 12269.13 11671.36 16978.37 15445.74 24774.71 19980.20 13257.91 14070.01 10183.83 14342.44 17982.87 15254.97 17179.72 11185.48 106
DCV-MVSNet69.69 12269.13 11671.36 16978.37 15445.74 24774.71 19980.20 13257.91 14070.01 10183.83 14342.44 17982.87 15254.97 17179.72 11185.48 106
IS-MVSNet71.57 8871.00 8973.27 13378.86 14045.63 25180.22 9578.69 15664.14 3366.46 16887.36 7149.30 10085.60 9350.26 21183.71 7288.59 7
our_test_356.49 27454.42 28462.68 27769.51 30045.48 25266.08 28961.49 31844.11 30850.73 32969.60 32633.05 27068.15 29738.38 29956.86 32474.40 295
UniMVSNet (Re)70.63 10270.20 9971.89 15478.55 14845.29 25375.94 17682.92 8163.68 3868.16 13283.59 14853.89 5583.49 13953.97 18071.12 21486.89 55
PM-MVS52.33 29950.19 30658.75 29662.10 34145.14 25465.75 29040.38 36543.60 31053.52 31572.65 3039.16 36565.87 31050.41 20954.18 33465.24 345
OpenMVS_ROBcopyleft52.78 1860.03 25358.14 26065.69 25570.47 28644.82 25575.33 18370.86 25945.04 29756.06 28776.00 27826.89 32079.65 21435.36 31967.29 26372.60 309
test-LLR58.15 26658.13 26158.22 29968.57 30844.80 25665.46 29457.92 32850.08 25255.44 29269.82 32332.62 27957.44 33649.66 21673.62 17672.41 314
test-mter56.42 27655.82 27558.22 29968.57 30844.80 25665.46 29457.92 32839.94 33455.44 29269.82 32321.92 34057.44 33649.66 21673.62 17672.41 314
PVSNet_043.31 2047.46 31545.64 31852.92 32567.60 31544.65 25854.06 34054.64 33841.59 32346.15 34358.75 35130.99 28858.66 33232.18 33024.81 36755.46 354
ADS-MVSNet251.33 30448.76 31059.07 29466.02 32644.60 25950.90 34659.76 32236.90 33750.74 32766.18 34026.38 32163.11 31727.17 35354.76 33269.50 337
mvs_anonymous68.03 15967.51 14769.59 20472.08 26844.57 26071.99 24275.23 21551.67 23167.06 15682.57 16754.68 4777.94 24256.56 15775.71 16186.26 78
ITE_SJBPF62.09 28066.16 32444.55 26164.32 30247.36 27955.31 29480.34 21519.27 34462.68 31936.29 31562.39 30079.04 246
UniMVSNet_NR-MVSNet71.11 9471.00 8971.44 16579.20 13244.13 26276.02 17582.60 8666.48 968.20 12984.60 12756.82 3282.82 15654.62 17570.43 22187.36 46
DU-MVS70.01 11369.53 11071.44 16578.05 16544.13 26275.01 19281.51 10164.37 2668.20 12984.52 12849.12 10682.82 15654.62 17570.43 22187.37 44
PVSNet50.76 1958.40 26357.39 26361.42 28475.53 21944.04 26461.43 31363.45 30647.04 28456.91 28273.61 30027.00 31964.76 31239.12 29672.40 19875.47 282
tpm262.07 23960.10 24767.99 22572.79 25743.86 26571.05 25866.85 28643.14 31562.77 22475.39 28738.32 21980.80 19941.69 28368.88 25179.32 244
NR-MVSNet69.54 12868.85 12171.59 16378.05 16543.81 26674.20 20780.86 12365.18 1262.76 22584.52 12852.35 7283.59 13750.96 20770.78 21687.37 44
TESTMET0.1,155.28 28454.90 28156.42 30766.56 32143.67 26765.46 29456.27 33539.18 33653.83 31067.44 33524.21 33355.46 34648.04 22973.11 18970.13 334
pmmvs344.92 31741.95 32253.86 31852.58 35943.55 26862.11 31146.90 35926.05 35440.63 35460.19 35011.08 36257.91 33531.83 33646.15 35060.11 347
GBi-Net67.21 17366.55 16869.19 21077.63 17743.33 26977.31 14477.83 17856.62 15865.04 19982.70 16241.85 18680.33 20847.18 23472.76 19383.92 153
test167.21 17366.55 16869.19 21077.63 17743.33 26977.31 14477.83 17856.62 15865.04 19982.70 16241.85 18680.33 20847.18 23472.76 19383.92 153
FMVSNet166.70 18865.87 18569.19 21077.49 18543.33 26977.31 14477.83 17856.45 16364.60 20782.70 16238.08 22380.33 20846.08 24372.31 20283.92 153
test_vis1_n_192058.86 25959.06 25158.25 29863.76 33443.14 27267.49 28366.36 28940.22 33165.89 18071.95 30931.04 28759.75 32959.94 14064.90 28071.85 321
FMVSNet266.93 18366.31 17968.79 21777.63 17742.98 27376.11 17077.47 18456.62 15865.22 19882.17 17841.85 18680.18 21147.05 23772.72 19683.20 179
TranMVSNet+NR-MVSNet70.36 10770.10 10371.17 17578.64 14742.97 27476.53 16281.16 11766.95 468.53 12585.42 11551.61 8083.07 14552.32 19269.70 23987.46 39
RPSCF55.80 28154.22 28960.53 28865.13 32942.91 27564.30 30257.62 33036.84 33958.05 27782.28 17528.01 31056.24 34337.14 30558.61 31982.44 195
1112_ss64.00 22063.36 21365.93 25179.28 12942.58 27671.35 24972.36 25046.41 28760.55 24977.89 25546.27 14273.28 27446.18 24269.97 23181.92 203
FMVSNet366.32 19565.61 19068.46 22076.48 20542.34 27774.98 19477.15 19155.83 17665.04 19981.16 19839.91 20280.14 21247.18 23472.76 19382.90 187
UniMVSNet_ETH3D67.60 16867.07 16569.18 21377.39 18742.29 27874.18 20875.59 20960.37 9466.77 16286.06 9937.64 22578.93 23452.16 19473.49 18086.32 74
Anonymous20240521166.84 18565.99 18469.40 20880.19 11242.21 27971.11 25671.31 25558.80 12167.90 13786.39 9229.83 29779.65 21449.60 21878.78 12986.33 72
TinyColmap54.14 28851.72 29861.40 28566.84 31941.97 28066.52 28668.51 27644.81 29842.69 35275.77 28211.66 35772.94 27531.96 33156.77 32669.27 339
MDA-MVSNet_test_wron50.71 30748.95 30856.00 31061.17 34541.84 28151.90 34556.45 33240.96 32744.79 34667.84 33230.04 29655.07 34836.71 30950.69 34371.11 329
MVS_030458.51 26157.36 26461.96 28170.04 29441.83 28269.40 27465.46 29450.73 24553.30 31874.06 29722.65 33770.18 29142.16 27968.44 25573.86 302
YYNet150.73 30648.96 30756.03 30961.10 34641.78 28351.94 34456.44 33340.94 32844.84 34567.80 33330.08 29555.08 34736.77 30750.71 34271.22 326
Anonymous2024052155.30 28354.41 28557.96 30260.92 34941.73 28471.09 25771.06 25841.18 32548.65 33473.31 30116.93 34759.25 33142.54 27664.01 28672.90 306
ab-mvs66.65 18966.42 17367.37 23176.17 20941.73 28470.41 26576.14 20253.99 21165.98 17683.51 15249.48 9876.24 26348.60 22573.46 18284.14 147
gm-plane-assit71.40 27941.72 28648.85 26273.31 30182.48 16648.90 223
VNet69.68 12470.19 10068.16 22479.73 12041.63 28770.53 26277.38 18760.37 9470.69 9086.63 8551.08 8677.09 25453.61 18481.69 9685.75 96
tpmvs58.47 26256.95 26863.03 27570.20 29041.21 28867.90 28167.23 28349.62 25554.73 30270.84 31434.14 25976.24 26336.64 31161.29 30771.64 322
HY-MVS56.14 1364.55 21763.89 20466.55 23974.73 23241.02 28969.96 26974.43 22749.29 25761.66 24280.92 20547.43 12676.68 25844.91 25771.69 20881.94 202
FPMVS42.18 32141.11 32345.39 33858.03 35341.01 29049.50 34853.81 34330.07 34633.71 36064.03 34411.69 35652.08 35614.01 36755.11 33043.09 363
VPA-MVSNet69.02 13869.47 11267.69 22777.42 18641.00 29174.04 20979.68 13760.06 10169.26 11684.81 12151.06 8777.58 24854.44 17874.43 16884.48 138
USDC56.35 27754.24 28862.69 27664.74 33040.31 29265.05 29973.83 23743.93 30947.58 33677.71 26015.36 35175.05 26738.19 30161.81 30472.70 308
tt080567.77 16567.24 16169.34 20974.87 22740.08 29377.36 14381.37 10555.31 18766.33 17184.65 12437.35 22982.55 16355.65 16772.28 20385.39 113
thres20062.20 23861.16 24065.34 25975.38 22239.99 29469.60 27169.29 27155.64 18361.87 24076.99 26437.07 23778.96 23331.28 34173.28 18577.06 267
WR-MVS68.47 15168.47 12968.44 22180.20 11139.84 29573.75 21976.07 20364.68 2068.11 13483.63 14750.39 9379.14 22749.78 21269.66 24086.34 70
EPNet_dtu61.90 24161.97 23061.68 28272.89 25639.78 29675.85 17765.62 29355.09 19354.56 30479.36 23537.59 22667.02 30339.80 29376.95 14978.25 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpn200view963.18 22962.18 22866.21 24476.85 19739.62 29771.96 24469.44 26956.63 15662.61 22979.83 22337.18 23179.17 22331.84 33373.25 18679.83 238
thres40063.31 22562.18 22866.72 23676.85 19739.62 29771.96 24469.44 26956.63 15662.61 22979.83 22337.18 23179.17 22331.84 33373.25 18681.36 210
Test_1112_low_res62.32 23661.77 23164.00 26779.08 13739.53 29968.17 27870.17 26243.25 31359.03 26879.90 22244.08 16571.24 28343.79 26668.42 25681.25 213
pm-mvs165.24 20864.97 19866.04 24972.38 26439.40 30072.62 23275.63 20855.53 18462.35 23783.18 15747.45 12576.47 26049.06 22266.54 26982.24 196
pmmvs663.69 22262.82 22166.27 24370.63 28439.27 30173.13 22575.47 21152.69 22459.75 26082.30 17439.71 20577.03 25547.40 23264.35 28582.53 191
tfpnnormal62.47 23461.63 23364.99 26274.81 22939.01 30271.22 25273.72 23855.22 19060.21 25080.09 22141.26 19776.98 25630.02 34668.09 25878.97 248
thres600view763.30 22662.27 22666.41 24077.18 19138.87 30372.35 23769.11 27356.98 15162.37 23680.96 20437.01 23879.00 23231.43 34073.05 19081.36 210
CVMVSNet59.63 25759.14 25061.08 28774.47 23638.84 30475.20 18768.74 27531.15 34558.24 27576.51 27332.39 28368.58 29649.77 21365.84 27475.81 278
thres100view90063.28 22762.41 22565.89 25277.31 18938.66 30572.65 23069.11 27357.07 14962.45 23481.03 20237.01 23879.17 22331.84 33373.25 18679.83 238
TransMVSNet (Re)64.72 21364.33 20165.87 25375.22 22338.56 30674.66 20175.08 22358.90 12061.79 24182.63 16551.18 8478.07 24143.63 26755.87 32980.99 220
XXY-MVS60.68 25061.67 23257.70 30570.43 28738.45 30764.19 30366.47 28748.05 27163.22 22080.86 20749.28 10160.47 32545.25 25667.28 26474.19 298
MDTV_nov1_ep1357.00 26772.73 25838.26 30865.02 30064.73 30044.74 29955.46 29172.48 30432.61 28170.47 28637.47 30367.75 261
FIs70.82 9971.43 7968.98 21478.33 15638.14 30976.96 15483.59 6361.02 8167.33 15286.73 8155.07 4281.64 17754.61 17779.22 12187.14 50
Gipumacopyleft34.77 33031.91 33443.33 34262.05 34237.87 31020.39 36967.03 28423.23 35718.41 37025.84 3704.24 37162.73 31814.71 36651.32 34129.38 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis1_rt41.35 32339.45 32547.03 33746.65 36637.86 31147.76 35138.65 36623.10 35844.21 34951.22 36011.20 36144.08 36339.27 29553.02 33759.14 348
WTY-MVS59.75 25660.39 24557.85 30372.32 26637.83 31261.05 31964.18 30345.95 29461.91 23979.11 23947.01 13560.88 32442.50 27769.49 24274.83 290
WR-MVS_H67.02 18166.92 16667.33 23377.95 16937.75 31377.57 13782.11 9262.03 7162.65 22882.48 17050.57 9179.46 21742.91 27464.01 28684.79 131
test_fmvs1_n51.37 30350.35 30554.42 31752.85 35737.71 31461.16 31851.93 34428.15 34963.81 21669.73 32513.72 35253.95 34951.16 20460.65 31271.59 323
Baseline_NR-MVSNet67.05 18067.56 14365.50 25675.65 21537.70 31575.42 18274.65 22659.90 10468.14 13383.15 15849.12 10677.20 25252.23 19369.78 23681.60 206
test_fmvs151.32 30550.48 30453.81 31953.57 35637.51 31660.63 32151.16 34628.02 35163.62 21769.23 32816.41 34853.93 35051.01 20560.70 31169.99 335
test_vis1_n49.89 30948.69 31153.50 32253.97 35537.38 31761.53 31247.33 35728.54 34859.62 26167.10 33713.52 35352.27 35449.07 22157.52 32270.84 330
MIMVSNet57.35 27057.07 26658.22 29974.21 24337.18 31862.46 30860.88 32048.88 26155.29 29575.99 28031.68 28662.04 32131.87 33272.35 19975.43 283
KD-MVS_2432*160053.45 29351.50 30059.30 28962.82 33737.14 31955.33 33671.79 25347.34 28055.09 29770.52 31721.91 34170.45 28735.72 31742.97 35470.31 332
miper_refine_blended53.45 29351.50 30059.30 28962.82 33737.14 31955.33 33671.79 25347.34 28055.09 29770.52 31721.91 34170.45 28735.72 31742.97 35470.31 332
ambc65.13 26163.72 33637.07 32147.66 35378.78 15454.37 30771.42 31111.24 36080.94 19445.64 24853.85 33677.38 262
GG-mvs-BLEND62.34 27871.36 28037.04 32269.20 27557.33 33154.73 30265.48 34230.37 29277.82 24434.82 32074.93 16672.17 318
CL-MVSNet_self_test61.53 24560.94 24263.30 27168.95 30636.93 32367.60 28272.80 24755.67 18159.95 25576.63 26945.01 15872.22 28039.74 29462.09 30280.74 224
VPNet67.52 16968.11 13565.74 25479.18 13336.80 32472.17 24072.83 24662.04 7067.79 14585.83 10748.88 10876.60 25951.30 20372.97 19183.81 158
pmmvs556.47 27555.68 27658.86 29561.41 34436.71 32566.37 28762.75 31140.38 33053.70 31176.62 27034.56 25467.05 30240.02 29265.27 27772.83 307
PEN-MVS66.60 19066.45 17067.04 23477.11 19236.56 32677.03 15380.42 12962.95 4862.51 23384.03 13846.69 13879.07 22844.22 25863.08 29585.51 105
baseline163.81 22163.87 20663.62 26876.29 20736.36 32771.78 24667.29 28256.05 17264.23 21282.95 16047.11 13174.41 27047.30 23361.85 30380.10 234
FMVSNet555.86 28054.93 28058.66 29771.05 28136.35 32864.18 30462.48 31346.76 28550.66 33074.73 29225.80 32664.04 31433.11 32765.57 27675.59 281
CP-MVSNet66.49 19366.41 17466.72 23677.67 17636.33 32976.83 15979.52 14162.45 6162.54 23183.47 15446.32 14078.37 23645.47 25363.43 29285.45 108
sss56.17 27956.57 27054.96 31266.93 31836.32 33057.94 32861.69 31741.67 32258.64 27275.32 28838.72 21556.25 34242.04 28166.19 27272.31 317
PS-CasMVS66.42 19466.32 17866.70 23877.60 18436.30 33176.94 15579.61 13962.36 6362.43 23583.66 14645.69 14478.37 23645.35 25563.26 29385.42 111
ECVR-MVScopyleft67.72 16667.51 14768.35 22279.46 12536.29 33274.79 19866.93 28558.72 12267.19 15488.05 6336.10 24281.38 18352.07 19584.25 6687.39 42
PMVScopyleft28.69 2236.22 32933.29 33345.02 34036.82 37535.98 33354.68 33948.74 35226.31 35321.02 36851.61 3592.88 37760.10 3279.99 37347.58 34938.99 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune57.86 26856.43 27262.18 27972.62 26035.35 33466.57 28556.33 33450.65 24757.64 27957.10 35430.65 29076.36 26137.38 30478.88 12674.82 291
DTE-MVSNet65.58 20265.34 19366.31 24176.06 21134.79 33576.43 16479.38 14462.55 5961.66 24283.83 14345.60 14679.15 22641.64 28660.88 30985.00 124
tpm57.34 27158.16 25954.86 31371.80 27334.77 33667.47 28456.04 33748.20 26960.10 25276.92 26537.17 23353.41 35140.76 28865.01 27976.40 275
test111167.21 17367.14 16467.42 23079.24 13134.76 33773.89 21665.65 29258.71 12466.96 15887.95 6536.09 24380.53 20352.03 19683.79 7186.97 52
FC-MVSNet-test69.80 12070.58 9567.46 22977.61 18234.73 33876.05 17383.19 7760.84 8365.88 18186.46 9054.52 4980.76 20152.52 19178.12 13686.91 54
Patchmtry57.16 27256.47 27159.23 29169.17 30534.58 33962.98 30663.15 30944.53 30156.83 28374.84 29035.83 24568.71 29540.03 29160.91 30874.39 296
tpmrst58.24 26458.70 25456.84 30666.97 31734.32 34069.57 27261.14 31947.17 28358.58 27371.60 31041.28 19660.41 32649.20 22062.84 29675.78 279
mvsany_test139.38 32538.16 32843.02 34349.05 36134.28 34144.16 36025.94 37622.74 36046.57 34262.21 34923.85 33541.16 36833.01 32835.91 36253.63 355
test250665.33 20764.61 20067.50 22879.46 12534.19 34274.43 20551.92 34558.72 12266.75 16388.05 6325.99 32580.92 19651.94 19784.25 6687.39 42
MVS-HIRNet45.52 31644.48 31948.65 33568.49 31034.05 34359.41 32544.50 36127.03 35237.96 35950.47 36226.16 32464.10 31326.74 35659.52 31547.82 361
Anonymous2023120655.10 28755.30 27954.48 31569.81 29933.94 34462.91 30762.13 31541.08 32655.18 29675.65 28332.75 27756.59 34130.32 34567.86 25972.91 305
UnsupCasMVSNet_bld50.07 30848.87 30953.66 32060.97 34833.67 34557.62 33164.56 30139.47 33547.38 33764.02 34627.47 31459.32 33034.69 32143.68 35367.98 342
EU-MVSNet55.61 28254.41 28559.19 29365.41 32833.42 34672.44 23671.91 25228.81 34751.27 32373.87 29824.76 33169.08 29443.04 27258.20 32075.06 285
UnsupCasMVSNet_eth53.16 29852.47 29655.23 31159.45 35133.39 34759.43 32469.13 27245.98 29150.35 33272.32 30529.30 30158.26 33442.02 28244.30 35274.05 299
APD_test137.39 32834.94 33144.72 34148.88 36233.19 34852.95 34344.00 36219.49 36327.28 36458.59 3523.18 37652.84 35218.92 36241.17 35748.14 360
test_fmvs248.69 31147.49 31652.29 32948.63 36333.06 34957.76 32948.05 35525.71 35559.76 25969.60 32611.57 35852.23 35549.45 21956.86 32471.58 324
LF4IMVS42.95 31942.26 32145.04 33948.30 36432.50 35054.80 33848.49 35328.03 35040.51 35570.16 3209.24 36443.89 36431.63 33749.18 34858.72 349
dp51.89 30151.60 29952.77 32668.44 31132.45 35162.36 30954.57 33944.16 30649.31 33367.91 33128.87 30556.61 34033.89 32354.89 33169.24 340
MIMVSNet155.17 28654.31 28757.77 30470.03 29532.01 35265.68 29264.81 29849.19 25846.75 34176.00 27825.53 32864.04 31428.65 35162.13 30177.26 265
EPMVS53.96 28953.69 29254.79 31466.12 32531.96 35362.34 31049.05 35144.42 30455.54 29071.33 31230.22 29456.70 33941.65 28562.54 29975.71 280
LCM-MVSNet-Re61.88 24261.35 23663.46 26974.58 23431.48 35461.42 31458.14 32758.71 12453.02 31979.55 23143.07 17376.80 25745.69 24777.96 13782.11 200
Vis-MVSNet (Re-imp)63.69 22263.88 20563.14 27374.75 23131.04 35571.16 25463.64 30556.32 16559.80 25884.99 11844.51 16175.46 26539.12 29680.62 9982.92 185
Patchmatch-test49.08 31048.28 31251.50 33164.40 33230.85 35645.68 35648.46 35435.60 34046.10 34472.10 30634.47 25746.37 36127.08 35560.65 31277.27 264
ADS-MVSNet48.48 31247.77 31350.63 33266.02 32629.92 35750.90 34650.87 35036.90 33750.74 32766.18 34026.38 32152.47 35327.17 35354.76 33269.50 337
test0.0.03 153.32 29653.59 29352.50 32762.81 33929.45 35859.51 32354.11 34150.08 25254.40 30674.31 29532.62 27955.92 34430.50 34463.95 28872.15 319
LCM-MVSNet40.30 32435.88 33053.57 32142.24 36829.15 35945.21 35860.53 32122.23 36128.02 36350.98 3613.72 37461.78 32231.22 34238.76 36069.78 336
testf131.46 33528.89 33839.16 34541.99 37028.78 36046.45 35437.56 36714.28 37021.10 36648.96 3631.48 38047.11 35913.63 36834.56 36341.60 364
APD_test231.46 33528.89 33839.16 34541.99 37028.78 36046.45 35437.56 36714.28 37021.10 36648.96 3631.48 38047.11 35913.63 36834.56 36341.60 364
test20.0353.87 29154.02 29053.41 32361.47 34328.11 36261.30 31559.21 32351.34 24052.09 32177.43 26133.29 26958.55 33329.76 34760.27 31473.58 303
test_vis3_rt32.09 33330.20 33737.76 34835.36 37727.48 36340.60 36328.29 37516.69 36732.52 36140.53 3661.96 37837.40 37033.64 32642.21 35648.39 358
KD-MVS_self_test55.22 28553.89 29159.21 29257.80 35427.47 36457.75 33074.32 22947.38 27850.90 32670.00 32228.45 30870.30 28940.44 28957.92 32179.87 237
test_fmvs344.30 31842.55 32049.55 33442.83 36727.15 36553.03 34244.93 36022.03 36253.69 31364.94 3434.21 37249.63 35747.47 23049.82 34571.88 320
wuyk23d13.32 34312.52 34615.71 35747.54 36526.27 36631.06 3681.98 3824.93 3745.18 3771.94 3770.45 38218.54 3766.81 37612.83 3732.33 374
MDTV_nov1_ep13_2view25.89 36761.22 31640.10 33251.10 32432.97 27238.49 29878.61 250
MVEpermissive17.77 2321.41 34017.77 34532.34 35234.34 37825.44 36816.11 37024.11 37711.19 37213.22 37231.92 3681.58 37930.95 37410.47 37117.03 37040.62 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PatchT53.17 29753.44 29452.33 32868.29 31225.34 36958.21 32754.41 34044.46 30354.56 30469.05 32933.32 26860.94 32336.93 30661.76 30570.73 331
ANet_high41.38 32237.47 32953.11 32439.73 37324.45 37056.94 33269.69 26447.65 27526.04 36552.32 35712.44 35562.38 32021.80 36010.61 37472.49 311
mvsany_test332.62 33230.57 33638.77 34736.16 37624.20 37138.10 36520.63 37819.14 36440.36 35657.43 3535.06 36936.63 37129.59 34928.66 36655.49 353
testgi51.90 30052.37 29750.51 33360.39 35023.55 37258.42 32658.15 32649.03 26051.83 32279.21 23822.39 33855.59 34529.24 35062.64 29772.40 316
test_f31.86 33431.05 33534.28 35032.33 37921.86 37332.34 36630.46 37316.02 36839.78 35855.45 3554.80 37032.36 37330.61 34337.66 36148.64 357
E-PMN23.77 33822.73 34226.90 35442.02 36920.67 37442.66 36135.70 36917.43 36510.28 37525.05 3716.42 36742.39 36610.28 37214.71 37117.63 370
DSMNet-mixed39.30 32738.72 32641.03 34451.22 36019.66 37545.53 35731.35 37215.83 36939.80 35767.42 33622.19 33945.13 36222.43 35952.69 33858.31 350
EMVS22.97 33921.84 34326.36 35540.20 37219.53 37641.95 36234.64 37017.09 3669.73 37622.83 3727.29 36642.22 3679.18 37413.66 37217.32 371
new_pmnet34.13 33134.29 33233.64 35152.63 35818.23 37744.43 35933.90 37122.81 35930.89 36253.18 35610.48 36335.72 37220.77 36139.51 35846.98 362
DeepMVS_CXcopyleft12.03 35817.97 38010.91 37810.60 3817.46 37311.07 37428.36 3693.28 37511.29 3778.01 3759.74 37613.89 372
new-patchmatchnet47.56 31447.73 31447.06 33658.81 3529.37 37948.78 35059.21 32343.28 31244.22 34868.66 33025.67 32757.20 33831.57 33949.35 34774.62 294
PMMVS227.40 33725.91 34031.87 35339.46 3746.57 38031.17 36728.52 37423.96 35620.45 36948.94 3654.20 37337.94 36916.51 36419.97 36951.09 356
tmp_tt9.43 34411.14 3474.30 3592.38 3824.40 38113.62 37116.08 3800.39 37615.89 37113.06 37315.80 3505.54 37812.63 37010.46 3752.95 373
test_method19.68 34118.10 34424.41 35613.68 3813.11 38212.06 37242.37 3642.00 37511.97 37336.38 3675.77 36829.35 37515.06 36523.65 36840.76 366
N_pmnet39.35 32640.28 32436.54 34963.76 3341.62 38349.37 3490.76 38334.62 34243.61 35066.38 33926.25 32342.57 36526.02 35851.77 33965.44 344
test1234.73 3466.30 3490.02 3600.01 3830.01 38456.36 3340.00 3840.01 3780.04 3790.21 3790.01 3830.00 3790.03 3780.00 3770.04 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
cdsmvs_eth3d_5k17.50 34223.34 3410.00 3620.00 3850.00 3850.00 37378.63 1580.00 3800.00 38182.18 17649.25 1020.00 3790.00 3790.00 3770.00 377
pcd_1.5k_mvsjas3.92 3485.23 3510.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 38047.05 1320.00 3790.00 3790.00 3770.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
testmvs4.52 3476.03 3500.01 3610.01 3830.00 38553.86 3410.00 3840.01 3780.04 3790.27 3780.00 3840.00 3790.04 3770.00 3770.03 376
ab-mvs-re6.49 3458.65 3480.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 38177.89 2550.00 3840.00 3790.00 3790.00 3770.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3850.00 3730.00 3840.00 3800.00 3810.00 3800.00 3840.00 3790.00 3790.00 3770.00 377
PC_three_145255.09 19384.46 489.84 4166.68 589.41 1674.24 3191.38 288.42 9
eth-test20.00 385
eth-test0.00 385
test_241102_TWO86.73 1264.18 3084.26 591.84 865.19 690.83 578.63 1590.70 787.65 33
9.1478.75 1483.10 6984.15 4188.26 159.90 10478.57 2390.36 2557.51 3086.86 6277.39 1889.52 21
test_0728_THIRD65.04 1483.82 892.00 364.69 1090.75 879.48 490.63 1088.09 19
GSMVS78.05 255
sam_mvs134.74 25378.05 255
sam_mvs33.43 267
MTGPAbinary80.97 121
test_post168.67 2773.64 37532.39 28369.49 29244.17 259
test_post3.55 37633.90 26266.52 305
patchmatchnet-post64.03 34434.50 25574.27 271
MTMP86.03 1817.08 379
test9_res75.28 2788.31 3283.81 158
agg_prior273.09 4287.93 3884.33 140
test_prior281.75 7860.37 9475.01 3889.06 5056.22 3672.19 4688.96 24
旧先验276.08 17145.32 29676.55 3065.56 31158.75 148
新几何276.12 169
无先验79.66 10874.30 23148.40 26780.78 20053.62 18379.03 247
原ACMM279.02 114
testdata272.18 28146.95 238
segment_acmp54.23 51
testdata172.65 23060.50 89
plane_prior584.01 4987.21 5168.16 6880.58 10184.65 134
plane_prior486.10 97
plane_prior284.22 3864.52 23
plane_prior181.27 94
n20.00 384
nn0.00 384
door-mid47.19 358
test1183.47 66
door47.60 356
HQP-NCC80.66 10182.31 6962.10 6667.85 139
ACMP_Plane80.66 10182.31 6962.10 6667.85 139
BP-MVS67.04 80
HQP4-MVS67.85 13986.93 6084.32 141
HQP3-MVS83.90 5380.35 105
HQP2-MVS45.46 150
ACMMP++_ref74.07 172
ACMMP++72.16 204
Test By Simon48.33 113