| MM | | | 80.20 7 | 80.28 8 | 79.99 2 | 82.19 82 | 60.01 49 | 86.19 17 | 83.93 54 | 73.19 1 | 77.08 34 | 91.21 17 | 57.23 33 | 90.73 10 | 83.35 1 | 88.12 34 | 89.22 6 |
|
| MVS_0304 | | | 78.45 18 | 78.28 19 | 78.98 26 | 80.73 107 | 57.91 83 | 84.68 35 | 81.64 107 | 68.35 2 | 75.77 39 | 90.38 29 | 53.98 59 | 90.26 13 | 81.30 3 | 87.68 42 | 88.77 11 |
|
| CANet | | | 76.46 40 | 75.93 44 | 78.06 39 | 81.29 97 | 57.53 88 | 82.35 72 | 83.31 80 | 67.78 3 | 70.09 120 | 86.34 112 | 54.92 50 | 88.90 25 | 72.68 60 | 84.55 67 | 87.76 38 |
|
| UA-Net | | | 73.13 75 | 72.93 75 | 73.76 121 | 83.58 66 | 51.66 192 | 78.75 121 | 77.66 193 | 67.75 4 | 72.61 95 | 89.42 50 | 49.82 114 | 83.29 148 | 53.61 211 | 83.14 80 | 86.32 87 |
|
| CNVR-MVS | | | 79.84 10 | 79.97 10 | 79.45 11 | 87.90 2 | 62.17 17 | 84.37 39 | 85.03 36 | 66.96 5 | 77.58 29 | 90.06 39 | 59.47 21 | 89.13 22 | 78.67 14 | 89.73 16 | 87.03 59 |
|
| TranMVSNet+NR-MVSNet | | | 70.36 125 | 70.10 122 | 71.17 196 | 78.64 155 | 42.97 301 | 76.53 177 | 81.16 127 | 66.95 6 | 68.53 149 | 85.42 138 | 51.61 96 | 83.07 152 | 52.32 219 | 69.70 269 | 87.46 47 |
|
| 3Dnovator+ | | 66.72 4 | 75.84 49 | 74.57 59 | 79.66 9 | 82.40 79 | 59.92 51 | 85.83 22 | 86.32 16 | 66.92 7 | 67.80 167 | 89.24 54 | 42.03 208 | 89.38 19 | 64.07 124 | 86.50 57 | 89.69 3 |
|
| NCCC | | | 78.58 16 | 78.31 18 | 79.39 12 | 87.51 12 | 62.61 13 | 85.20 30 | 84.42 45 | 66.73 8 | 74.67 60 | 89.38 52 | 55.30 46 | 89.18 21 | 74.19 48 | 87.34 44 | 86.38 79 |
|
| SteuartSystems-ACMMP | | | 79.48 11 | 79.31 11 | 79.98 3 | 83.01 75 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 9 | 78.03 26 | 90.98 18 | 54.26 56 | 90.06 14 | 78.42 19 | 89.02 23 | 87.69 39 |
| Skip Steuart: Steuart Systems R&D Blog. |
| EPNet | | | 73.09 76 | 72.16 83 | 75.90 71 | 75.95 232 | 56.28 107 | 83.05 59 | 72.39 265 | 66.53 10 | 65.27 214 | 87.00 89 | 50.40 110 | 85.47 105 | 62.48 141 | 86.32 58 | 85.94 99 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| UniMVSNet_NR-MVSNet | | | 71.11 109 | 71.00 104 | 71.44 185 | 79.20 139 | 44.13 287 | 76.02 190 | 82.60 94 | 66.48 11 | 68.20 153 | 84.60 150 | 56.82 36 | 82.82 163 | 54.62 201 | 70.43 249 | 87.36 54 |
|
| MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 18 | 86.83 8 | 65.51 12 | 83.81 10 | 90.51 25 | 63.71 12 | 89.23 20 | 81.51 2 | 88.44 27 | 88.09 27 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 79.88 9 | 80.14 9 | 79.10 21 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 65 | 65.37 13 | 78.78 22 | 90.64 21 | 58.63 25 | 87.24 54 | 79.00 12 | 90.37 14 | 85.26 134 |
|
| NR-MVSNet | | | 69.54 148 | 68.85 141 | 71.59 180 | 78.05 177 | 43.81 292 | 74.20 227 | 80.86 134 | 65.18 14 | 62.76 256 | 84.52 151 | 52.35 84 | 83.59 144 | 50.96 234 | 70.78 244 | 87.37 52 |
|
| MTAPA | | | 76.90 34 | 76.42 38 | 78.35 35 | 86.08 37 | 63.57 2 | 74.92 214 | 80.97 132 | 65.13 15 | 75.77 39 | 90.88 19 | 48.63 129 | 86.66 73 | 77.23 24 | 88.17 33 | 84.81 149 |
|
| DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 10 | 87.24 14 | 59.15 63 | 88.18 1 | 87.15 3 | 65.04 16 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 6 | 91.38 2 | 88.42 16 |
|
| test_0728_THIRD | | | | | | | | | | 65.04 16 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 6 | 90.63 10 | 88.09 27 |
|
| EI-MVSNet-Vis-set | | | 72.42 89 | 71.59 88 | 74.91 88 | 78.47 159 | 54.02 146 | 77.05 165 | 79.33 157 | 65.03 18 | 71.68 106 | 79.35 260 | 52.75 76 | 84.89 118 | 66.46 104 | 74.23 193 | 85.83 104 |
|
| casdiffmvs_mvg |  | | 76.14 45 | 76.30 39 | 75.66 77 | 76.46 226 | 51.83 191 | 79.67 111 | 85.08 33 | 65.02 19 | 75.84 38 | 88.58 63 | 59.42 22 | 85.08 111 | 72.75 59 | 83.93 76 | 90.08 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_one_0601 | | | | | | 87.58 9 | 59.30 60 | | 86.84 7 | 65.01 20 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
| ETV-MVS | | | 74.46 64 | 73.84 67 | 76.33 67 | 79.27 137 | 55.24 132 | 79.22 117 | 85.00 38 | 64.97 21 | 72.65 94 | 79.46 256 | 53.65 70 | 87.87 44 | 67.45 97 | 82.91 86 | 85.89 102 |
|
| WR-MVS | | | 68.47 172 | 68.47 152 | 68.44 242 | 80.20 118 | 39.84 326 | 73.75 239 | 76.07 216 | 64.68 22 | 68.11 158 | 83.63 170 | 50.39 111 | 79.14 238 | 49.78 239 | 69.66 270 | 86.34 83 |
|
| XVS | | | 77.17 31 | 76.56 36 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 55 | 64.55 23 | 72.17 100 | 90.01 43 | 47.95 136 | 88.01 40 | 71.55 72 | 86.74 53 | 86.37 81 |
|
| X-MVStestdata | | | 70.21 128 | 67.28 179 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 55 | 64.55 23 | 72.17 100 | 6.49 422 | 47.95 136 | 88.01 40 | 71.55 72 | 86.74 53 | 86.37 81 |
|
| HQP_MVS | | | 74.31 65 | 73.73 68 | 76.06 69 | 81.41 94 | 56.31 105 | 84.22 43 | 84.01 52 | 64.52 25 | 69.27 138 | 86.10 119 | 45.26 178 | 87.21 58 | 68.16 89 | 80.58 111 | 84.65 153 |
|
| plane_prior2 | | | | | | | | 84.22 43 | | 64.52 25 | | | | | | | |
|
| EI-MVSNet-UG-set | | | 71.92 97 | 71.06 103 | 74.52 102 | 77.98 180 | 53.56 155 | 76.62 174 | 79.16 158 | 64.40 27 | 71.18 111 | 78.95 265 | 52.19 86 | 84.66 125 | 65.47 115 | 73.57 204 | 85.32 130 |
|
| DU-MVS | | | 70.01 131 | 69.53 128 | 71.44 185 | 78.05 177 | 44.13 287 | 75.01 210 | 81.51 110 | 64.37 28 | 68.20 153 | 84.52 151 | 49.12 126 | 82.82 163 | 54.62 201 | 70.43 249 | 87.37 52 |
|
| DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 34 | 87.75 7 | 59.07 67 | 87.85 5 | 85.03 36 | 64.26 29 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 15 | 90.61 11 | 85.45 123 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 87.75 7 | 59.07 67 | 87.86 4 | 86.83 8 | 64.26 29 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
| test_241102_ONE | | | | | | 87.77 4 | 58.90 72 | | 86.78 10 | 64.20 31 | 85.97 1 | 91.34 15 | 66.87 3 | 90.78 7 | | | |
|
| SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 13 | 87.77 4 | 58.90 72 | 87.82 7 | 86.78 10 | 64.18 32 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 17 | 90.87 5 | 88.23 22 |
|
| test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 32 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 17 | 90.70 7 | 87.65 41 |
|
| LFMVS | | | 71.78 99 | 71.59 88 | 72.32 164 | 83.40 70 | 46.38 263 | 79.75 109 | 71.08 274 | 64.18 32 | 72.80 91 | 88.64 62 | 42.58 203 | 83.72 140 | 57.41 179 | 84.49 70 | 86.86 64 |
|
| IS-MVSNet | | | 71.57 103 | 71.00 104 | 73.27 145 | 78.86 148 | 45.63 274 | 80.22 100 | 78.69 169 | 64.14 35 | 66.46 191 | 87.36 83 | 49.30 120 | 85.60 98 | 50.26 238 | 83.71 79 | 88.59 13 |
|
| plane_prior3 | | | | | | | 56.09 111 | | | 63.92 36 | 69.27 138 | | | | | | |
|
| MP-MVS |  | | 78.35 20 | 78.26 21 | 78.64 31 | 86.54 25 | 63.47 4 | 86.02 20 | 83.55 69 | 63.89 37 | 73.60 73 | 90.60 22 | 54.85 51 | 86.72 71 | 77.20 25 | 88.06 36 | 85.74 111 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| DELS-MVS | | | 74.76 57 | 74.46 60 | 75.65 78 | 77.84 184 | 52.25 183 | 75.59 197 | 84.17 49 | 63.76 38 | 73.15 81 | 82.79 182 | 59.58 20 | 86.80 69 | 67.24 98 | 86.04 59 | 87.89 30 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| OPM-MVS | | | 74.73 58 | 74.25 62 | 76.19 68 | 80.81 106 | 59.01 70 | 82.60 69 | 83.64 66 | 63.74 39 | 72.52 96 | 87.49 79 | 47.18 152 | 85.88 93 | 69.47 82 | 80.78 107 | 83.66 188 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| UniMVSNet (Re) | | | 70.63 119 | 70.20 118 | 71.89 169 | 78.55 156 | 45.29 277 | 75.94 191 | 82.92 88 | 63.68 40 | 68.16 156 | 83.59 171 | 53.89 62 | 83.49 146 | 53.97 207 | 71.12 242 | 86.89 63 |
|
| GST-MVS | | | 78.14 22 | 77.85 24 | 78.99 25 | 86.05 38 | 61.82 22 | 85.84 21 | 85.21 30 | 63.56 41 | 74.29 66 | 90.03 41 | 52.56 78 | 88.53 29 | 74.79 44 | 88.34 29 | 86.63 74 |
|
| EC-MVSNet | | | 75.84 49 | 75.87 46 | 75.74 75 | 78.86 148 | 52.65 174 | 83.73 53 | 86.08 17 | 63.47 42 | 72.77 92 | 87.25 87 | 53.13 73 | 87.93 42 | 71.97 68 | 85.57 62 | 86.66 72 |
|
| ZNCC-MVS | | | 78.82 13 | 78.67 16 | 79.30 14 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 43 | 75.08 48 | 90.47 28 | 53.96 61 | 88.68 27 | 76.48 28 | 89.63 20 | 87.16 57 |
|
| DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 15 | 87.27 13 | 60.56 41 | 85.71 26 | 86.42 14 | 63.28 44 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 11 | 76.41 29 | 89.67 18 | 86.84 65 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| CS-MVS | | | 76.25 44 | 75.98 43 | 77.06 53 | 80.15 121 | 55.63 123 | 84.51 38 | 83.90 57 | 63.24 45 | 73.30 76 | 87.27 86 | 55.06 48 | 86.30 86 | 71.78 69 | 84.58 66 | 89.25 5 |
|
| DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 22 | 79.83 7 | 83.60 65 | 61.62 23 | 84.17 45 | 86.85 6 | 63.23 46 | 73.84 71 | 90.25 35 | 57.68 29 | 89.96 15 | 74.62 45 | 89.03 22 | 87.89 30 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| VDD-MVS | | | 72.50 85 | 72.09 84 | 73.75 123 | 81.58 90 | 49.69 224 | 77.76 146 | 77.63 194 | 63.21 47 | 73.21 79 | 89.02 56 | 42.14 207 | 83.32 147 | 61.72 148 | 82.50 92 | 88.25 21 |
|
| plane_prior | | | | | | | 56.31 105 | 83.58 56 | | 63.19 48 | | | | | | 80.48 114 | |
|
| ACMMP |  | | 76.02 47 | 75.33 51 | 78.07 38 | 85.20 49 | 61.91 20 | 85.49 29 | 84.44 44 | 63.04 49 | 69.80 130 | 89.74 49 | 45.43 174 | 87.16 60 | 72.01 66 | 82.87 88 | 85.14 136 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| PEN-MVS | | | 66.60 213 | 66.45 193 | 67.04 256 | 77.11 211 | 36.56 359 | 77.03 166 | 80.42 141 | 62.95 50 | 62.51 264 | 84.03 161 | 46.69 160 | 79.07 239 | 44.22 289 | 63.08 330 | 85.51 118 |
|
| APDe-MVS |  | | 80.16 8 | 80.59 6 | 78.86 29 | 86.64 21 | 60.02 48 | 88.12 3 | 86.42 14 | 62.94 51 | 82.40 14 | 92.12 2 | 59.64 19 | 89.76 16 | 78.70 13 | 88.32 31 | 86.79 67 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| mPP-MVS | | | 76.54 39 | 75.93 44 | 78.34 36 | 86.47 26 | 63.50 3 | 85.74 25 | 82.28 97 | 62.90 52 | 71.77 104 | 90.26 34 | 46.61 161 | 86.55 77 | 71.71 70 | 85.66 61 | 84.97 145 |
|
| ACMMP_NAP | | | 78.77 15 | 78.78 14 | 78.74 30 | 85.44 45 | 61.04 31 | 83.84 52 | 85.16 31 | 62.88 53 | 78.10 24 | 91.26 16 | 52.51 79 | 88.39 30 | 79.34 8 | 90.52 13 | 86.78 68 |
|
| DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 19 | 84.92 56 | 60.32 46 | 83.03 60 | 85.33 28 | 62.86 54 | 80.17 17 | 90.03 41 | 61.76 14 | 88.95 24 | 74.21 47 | 88.67 26 | 88.12 26 |
|
| HFP-MVS | | | 78.01 24 | 77.65 25 | 79.10 21 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 47 | 62.82 55 | 73.96 69 | 90.50 26 | 53.20 72 | 88.35 31 | 74.02 50 | 87.05 45 | 86.13 94 |
|
| ACMMPR | | | 77.71 25 | 77.23 28 | 79.16 17 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 48 | 62.82 55 | 73.55 74 | 90.56 24 | 49.80 115 | 88.24 33 | 74.02 50 | 87.03 46 | 86.32 87 |
|
| region2R | | | 77.67 27 | 77.18 29 | 79.15 18 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 50 | 62.81 57 | 73.30 76 | 90.58 23 | 49.90 113 | 88.21 34 | 73.78 52 | 87.03 46 | 86.29 91 |
|
| casdiffmvs |  | | 74.80 56 | 74.89 57 | 74.53 101 | 75.59 238 | 50.37 211 | 78.17 135 | 85.06 35 | 62.80 58 | 74.40 63 | 87.86 73 | 57.88 27 | 83.61 143 | 69.46 83 | 82.79 90 | 89.59 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline | | | 74.61 61 | 74.70 58 | 74.34 105 | 75.70 234 | 49.99 219 | 77.54 151 | 84.63 42 | 62.73 59 | 73.98 68 | 87.79 76 | 57.67 30 | 83.82 139 | 69.49 81 | 82.74 91 | 89.20 7 |
|
| HPM-MVS |  | | 77.28 29 | 76.85 30 | 78.54 32 | 85.00 51 | 60.81 38 | 82.91 63 | 85.08 33 | 62.57 60 | 73.09 85 | 89.97 44 | 50.90 106 | 87.48 52 | 75.30 38 | 86.85 51 | 87.33 55 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| DTE-MVSNet | | | 65.58 225 | 65.34 216 | 66.31 267 | 76.06 231 | 34.79 372 | 76.43 179 | 79.38 156 | 62.55 61 | 61.66 274 | 83.83 166 | 45.60 168 | 79.15 237 | 41.64 318 | 60.88 345 | 85.00 142 |
|
| SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 4 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 62 | 82.20 15 | 92.28 1 | 56.53 37 | 89.70 17 | 79.85 5 | 91.48 1 | 88.19 24 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| CP-MVSNet | | | 66.49 216 | 66.41 197 | 66.72 258 | 77.67 191 | 36.33 362 | 76.83 173 | 79.52 153 | 62.45 63 | 62.54 262 | 83.47 175 | 46.32 162 | 78.37 247 | 45.47 284 | 63.43 327 | 85.45 123 |
|
| CP-MVS | | | 77.12 32 | 76.68 32 | 78.43 33 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 72 | 62.44 64 | 72.68 93 | 90.50 26 | 48.18 134 | 87.34 53 | 73.59 54 | 85.71 60 | 84.76 152 |
|
| PS-CasMVS | | | 66.42 217 | 66.32 201 | 66.70 260 | 77.60 199 | 36.30 364 | 76.94 168 | 79.61 151 | 62.36 65 | 62.43 266 | 83.66 169 | 45.69 166 | 78.37 247 | 45.35 286 | 63.26 328 | 85.42 126 |
|
| 3Dnovator | | 64.47 5 | 72.49 86 | 71.39 94 | 75.79 72 | 77.70 189 | 58.99 71 | 80.66 96 | 83.15 85 | 62.24 66 | 65.46 210 | 86.59 103 | 42.38 206 | 85.52 101 | 59.59 166 | 84.72 65 | 82.85 209 |
|
| MP-MVS-pluss | | | 78.35 20 | 78.46 17 | 78.03 40 | 84.96 52 | 59.52 56 | 82.93 62 | 85.39 27 | 62.15 67 | 76.41 37 | 91.51 11 | 52.47 81 | 86.78 70 | 80.66 4 | 89.64 19 | 87.80 36 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HQP-NCC | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 162 | | | | | | |
|
| ACMP_Plane | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 162 | | | | | | |
|
| HQP-MVS | | | 73.45 71 | 72.80 76 | 75.40 82 | 80.66 108 | 54.94 134 | 82.31 74 | 83.90 57 | 62.10 68 | 67.85 162 | 85.54 136 | 45.46 172 | 86.93 66 | 67.04 100 | 80.35 115 | 84.32 160 |
|
| SPE-MVS-test | | | 75.62 52 | 75.31 52 | 76.56 64 | 80.63 111 | 55.13 133 | 83.88 51 | 85.22 29 | 62.05 71 | 71.49 109 | 86.03 122 | 53.83 63 | 86.36 84 | 67.74 92 | 86.91 50 | 88.19 24 |
|
| VPNet | | | 67.52 192 | 68.11 159 | 65.74 280 | 79.18 140 | 36.80 357 | 72.17 262 | 72.83 262 | 62.04 72 | 67.79 168 | 85.83 129 | 48.88 128 | 76.60 283 | 51.30 230 | 72.97 217 | 83.81 178 |
|
| WR-MVS_H | | | 67.02 204 | 66.92 188 | 67.33 255 | 77.95 181 | 37.75 346 | 77.57 149 | 82.11 100 | 62.03 73 | 62.65 259 | 82.48 193 | 50.57 109 | 79.46 228 | 42.91 306 | 64.01 320 | 84.79 150 |
|
| DeepC-MVS_fast | | 68.24 3 | 77.25 30 | 76.63 33 | 79.12 20 | 86.15 34 | 60.86 36 | 84.71 34 | 84.85 40 | 61.98 74 | 73.06 86 | 88.88 58 | 53.72 66 | 89.06 23 | 68.27 86 | 88.04 37 | 87.42 49 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 46 | 82.88 77 | 57.83 84 | 84.99 31 | 88.13 2 | 61.86 75 | 79.16 20 | 90.75 20 | 57.96 26 | 87.09 63 | 77.08 26 | 90.18 15 | 87.87 32 |
|
| PGM-MVS | | | 76.77 37 | 76.06 42 | 78.88 28 | 86.14 35 | 62.73 9 | 82.55 70 | 83.74 64 | 61.71 76 | 72.45 99 | 90.34 32 | 48.48 132 | 88.13 37 | 72.32 63 | 86.85 51 | 85.78 105 |
|
| Effi-MVS+ | | | 73.31 74 | 72.54 79 | 75.62 79 | 77.87 182 | 53.64 153 | 79.62 113 | 79.61 151 | 61.63 77 | 72.02 102 | 82.61 187 | 56.44 39 | 85.97 91 | 63.99 127 | 79.07 136 | 87.25 56 |
|
| MG-MVS | | | 73.96 68 | 73.89 66 | 74.16 111 | 85.65 42 | 49.69 224 | 81.59 85 | 81.29 121 | 61.45 78 | 71.05 112 | 88.11 66 | 51.77 93 | 87.73 47 | 61.05 153 | 83.09 81 | 85.05 141 |
|
| LPG-MVS_test | | | 72.74 81 | 71.74 87 | 75.76 73 | 80.22 116 | 57.51 89 | 82.55 70 | 83.40 74 | 61.32 79 | 66.67 188 | 87.33 84 | 39.15 242 | 86.59 74 | 67.70 93 | 77.30 163 | 83.19 200 |
|
| LGP-MVS_train | | | | | 75.76 73 | 80.22 116 | 57.51 89 | | 83.40 74 | 61.32 79 | 66.67 188 | 87.33 84 | 39.15 242 | 86.59 74 | 67.70 93 | 77.30 163 | 83.19 200 |
|
| CLD-MVS | | | 73.33 73 | 72.68 77 | 75.29 86 | 78.82 150 | 53.33 161 | 78.23 132 | 84.79 41 | 61.30 81 | 70.41 117 | 81.04 224 | 52.41 82 | 87.12 61 | 64.61 123 | 82.49 93 | 85.41 127 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| RRT-MVS | | | 71.46 106 | 70.70 109 | 73.74 124 | 77.76 187 | 49.30 230 | 76.60 175 | 80.45 140 | 61.25 82 | 68.17 155 | 84.78 144 | 44.64 183 | 84.90 117 | 64.79 119 | 77.88 153 | 87.03 59 |
|
| MVS_111021_HR | | | 74.02 67 | 73.46 71 | 75.69 76 | 83.01 75 | 60.63 40 | 77.29 159 | 78.40 183 | 61.18 83 | 70.58 115 | 85.97 124 | 54.18 58 | 84.00 136 | 67.52 96 | 82.98 85 | 82.45 216 |
|
| balanced_conf03 | | | 76.58 38 | 76.55 37 | 76.68 59 | 81.73 88 | 52.90 169 | 80.94 91 | 85.70 23 | 61.12 84 | 74.90 54 | 87.17 88 | 56.46 38 | 88.14 36 | 72.87 58 | 88.03 38 | 89.00 8 |
|
| FIs | | | 70.82 116 | 71.43 92 | 68.98 235 | 78.33 166 | 38.14 342 | 76.96 167 | 83.59 68 | 61.02 85 | 67.33 175 | 86.73 96 | 55.07 47 | 81.64 185 | 54.61 203 | 79.22 131 | 87.14 58 |
|
| FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 67 | 60.87 86 | 81.50 16 | | | | | | |
|
| FC-MVSNet-test | | | 69.80 138 | 70.58 112 | 67.46 251 | 77.61 198 | 34.73 375 | 76.05 188 | 83.19 84 | 60.84 87 | 65.88 204 | 86.46 109 | 54.52 55 | 80.76 209 | 52.52 218 | 78.12 149 | 86.91 62 |
|
| v8 | | | 70.33 126 | 69.28 133 | 73.49 137 | 73.15 272 | 50.22 213 | 78.62 125 | 80.78 135 | 60.79 88 | 66.45 192 | 82.11 205 | 49.35 119 | 84.98 114 | 63.58 133 | 68.71 284 | 85.28 132 |
|
| CSCG | | | 76.92 33 | 76.75 31 | 77.41 49 | 83.96 64 | 59.60 54 | 82.95 61 | 86.50 13 | 60.78 89 | 75.27 43 | 84.83 142 | 60.76 15 | 86.56 76 | 67.86 91 | 87.87 41 | 86.06 96 |
|
| Vis-MVSNet |  | | 72.18 92 | 71.37 95 | 74.61 97 | 81.29 97 | 55.41 129 | 80.90 92 | 78.28 185 | 60.73 90 | 69.23 141 | 88.09 67 | 44.36 187 | 82.65 167 | 57.68 176 | 81.75 103 | 85.77 108 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| BP-MVS1 | | | 73.41 72 | 72.25 82 | 76.88 54 | 76.68 219 | 53.70 151 | 79.15 118 | 81.07 128 | 60.66 91 | 71.81 103 | 87.39 82 | 40.93 225 | 87.24 54 | 71.23 74 | 81.29 106 | 89.71 2 |
|
| APD-MVS |  | | 78.02 23 | 78.04 23 | 77.98 41 | 86.44 27 | 60.81 38 | 85.52 27 | 84.36 46 | 60.61 92 | 79.05 21 | 90.30 33 | 55.54 45 | 88.32 32 | 73.48 55 | 87.03 46 | 84.83 148 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ACMP | | 63.53 6 | 72.30 90 | 71.20 100 | 75.59 81 | 80.28 114 | 57.54 87 | 82.74 66 | 82.84 92 | 60.58 93 | 65.24 218 | 86.18 116 | 39.25 240 | 86.03 89 | 66.95 103 | 76.79 170 | 83.22 198 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| testdata1 | | | | | | | | 72.65 252 | | 60.50 94 | | | | | | | |
|
| UGNet | | | 68.81 162 | 67.39 174 | 73.06 148 | 78.33 166 | 54.47 140 | 79.77 108 | 75.40 227 | 60.45 95 | 63.22 246 | 84.40 154 | 32.71 315 | 80.91 205 | 51.71 228 | 80.56 113 | 83.81 178 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| h-mvs33 | | | 72.71 82 | 71.49 91 | 76.40 65 | 81.99 85 | 59.58 55 | 76.92 169 | 76.74 209 | 60.40 96 | 74.81 56 | 85.95 125 | 45.54 170 | 85.76 96 | 70.41 78 | 70.61 247 | 83.86 177 |
|
| hse-mvs2 | | | 71.04 110 | 69.86 123 | 74.60 98 | 79.58 130 | 57.12 99 | 73.96 231 | 75.25 230 | 60.40 96 | 74.81 56 | 81.95 207 | 45.54 170 | 82.90 156 | 70.41 78 | 66.83 299 | 83.77 182 |
|
| EPP-MVSNet | | | 72.16 95 | 71.31 97 | 74.71 91 | 78.68 154 | 49.70 222 | 82.10 78 | 81.65 106 | 60.40 96 | 65.94 200 | 85.84 128 | 51.74 94 | 86.37 83 | 55.93 187 | 79.55 126 | 88.07 29 |
|
| UniMVSNet_ETH3D | | | 67.60 191 | 67.07 187 | 69.18 234 | 77.39 204 | 42.29 305 | 74.18 228 | 75.59 222 | 60.37 99 | 66.77 185 | 86.06 121 | 37.64 257 | 78.93 245 | 52.16 221 | 73.49 206 | 86.32 87 |
|
| test_prior2 | | | | | | | | 81.75 81 | | 60.37 99 | 75.01 49 | 89.06 55 | 56.22 41 | | 72.19 64 | 88.96 24 | |
|
| SD-MVS | | | 77.70 26 | 77.62 26 | 77.93 42 | 84.47 59 | 61.88 21 | 84.55 37 | 83.87 60 | 60.37 99 | 79.89 18 | 89.38 52 | 54.97 49 | 85.58 100 | 76.12 31 | 84.94 64 | 86.33 85 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| VNet | | | 69.68 142 | 70.19 119 | 68.16 245 | 79.73 127 | 41.63 314 | 70.53 285 | 77.38 199 | 60.37 99 | 70.69 114 | 86.63 101 | 51.08 102 | 77.09 269 | 53.61 211 | 81.69 105 | 85.75 110 |
|
| sasdasda | | | 74.67 59 | 74.98 55 | 73.71 126 | 78.94 146 | 50.56 208 | 80.23 98 | 83.87 60 | 60.30 103 | 77.15 32 | 86.56 105 | 59.65 17 | 82.00 179 | 66.01 109 | 82.12 94 | 88.58 14 |
|
| canonicalmvs | | | 74.67 59 | 74.98 55 | 73.71 126 | 78.94 146 | 50.56 208 | 80.23 98 | 83.87 60 | 60.30 103 | 77.15 32 | 86.56 105 | 59.65 17 | 82.00 179 | 66.01 109 | 82.12 94 | 88.58 14 |
|
| v7n | | | 69.01 160 | 67.36 176 | 73.98 114 | 72.51 286 | 52.65 174 | 78.54 129 | 81.30 120 | 60.26 105 | 62.67 258 | 81.62 213 | 43.61 193 | 84.49 126 | 57.01 180 | 68.70 285 | 84.79 150 |
|
| reproduce-ours | | | 76.90 34 | 76.58 34 | 77.87 43 | 83.99 62 | 60.46 43 | 84.75 32 | 83.34 77 | 60.22 106 | 77.85 27 | 91.42 13 | 50.67 107 | 87.69 48 | 72.46 61 | 84.53 68 | 85.46 121 |
|
| our_new_method | | | 76.90 34 | 76.58 34 | 77.87 43 | 83.99 62 | 60.46 43 | 84.75 32 | 83.34 77 | 60.22 106 | 77.85 27 | 91.42 13 | 50.67 107 | 87.69 48 | 72.46 61 | 84.53 68 | 85.46 121 |
|
| HPM-MVS_fast | | | 74.30 66 | 73.46 71 | 76.80 56 | 84.45 60 | 59.04 69 | 83.65 55 | 81.05 129 | 60.15 108 | 70.43 116 | 89.84 46 | 41.09 224 | 85.59 99 | 67.61 95 | 82.90 87 | 85.77 108 |
|
| VPA-MVSNet | | | 69.02 159 | 69.47 130 | 67.69 249 | 77.42 203 | 41.00 319 | 74.04 229 | 79.68 149 | 60.06 109 | 69.26 140 | 84.81 143 | 51.06 103 | 77.58 260 | 54.44 204 | 74.43 191 | 84.48 157 |
|
| v10 | | | 70.21 128 | 69.02 138 | 73.81 118 | 73.51 269 | 50.92 200 | 78.74 122 | 81.39 113 | 60.05 110 | 66.39 193 | 81.83 210 | 47.58 143 | 85.41 108 | 62.80 138 | 68.86 283 | 85.09 140 |
|
| SR-MVS | | | 76.13 46 | 75.70 47 | 77.40 51 | 85.87 40 | 61.20 29 | 85.52 27 | 82.19 98 | 59.99 111 | 75.10 47 | 90.35 31 | 47.66 141 | 86.52 78 | 71.64 71 | 82.99 83 | 84.47 158 |
|
| 9.14 | | | | 78.75 15 | | 83.10 72 | | 84.15 46 | 88.26 1 | 59.90 112 | 78.57 23 | 90.36 30 | 57.51 32 | 86.86 68 | 77.39 23 | 89.52 21 | |
|
| v2v482 | | | 70.50 122 | 69.45 131 | 73.66 129 | 72.62 282 | 50.03 218 | 77.58 148 | 80.51 139 | 59.90 112 | 69.52 132 | 82.14 203 | 47.53 145 | 84.88 120 | 65.07 118 | 70.17 257 | 86.09 95 |
|
| Baseline_NR-MVSNet | | | 67.05 203 | 67.56 166 | 65.50 283 | 75.65 235 | 37.70 348 | 75.42 200 | 74.65 242 | 59.90 112 | 68.14 157 | 83.15 180 | 49.12 126 | 77.20 267 | 52.23 220 | 69.78 266 | 81.60 229 |
|
| API-MVS | | | 72.17 93 | 71.41 93 | 74.45 103 | 81.95 86 | 57.22 92 | 84.03 48 | 80.38 142 | 59.89 115 | 68.40 150 | 82.33 196 | 49.64 116 | 87.83 46 | 51.87 225 | 84.16 75 | 78.30 281 |
|
| Effi-MVS+-dtu | | | 69.64 144 | 67.53 169 | 75.95 70 | 76.10 230 | 62.29 15 | 80.20 101 | 76.06 217 | 59.83 116 | 65.26 217 | 77.09 295 | 41.56 216 | 84.02 135 | 60.60 157 | 71.09 243 | 81.53 230 |
|
| reproduce_model | | | 76.43 41 | 76.08 41 | 77.49 48 | 83.47 69 | 60.09 47 | 84.60 36 | 82.90 89 | 59.65 117 | 77.31 30 | 91.43 12 | 49.62 117 | 87.24 54 | 71.99 67 | 83.75 78 | 85.14 136 |
|
| MVSMamba_PlusPlus | | | 75.75 51 | 75.44 49 | 76.67 60 | 80.84 105 | 53.06 166 | 78.62 125 | 85.13 32 | 59.65 117 | 71.53 108 | 87.47 80 | 56.92 34 | 88.17 35 | 72.18 65 | 86.63 56 | 88.80 10 |
|
| CANet_DTU | | | 68.18 179 | 67.71 165 | 69.59 225 | 74.83 249 | 46.24 265 | 78.66 124 | 76.85 206 | 59.60 119 | 63.45 244 | 82.09 206 | 35.25 281 | 77.41 263 | 59.88 163 | 78.76 141 | 85.14 136 |
|
| EI-MVSNet | | | 69.27 156 | 68.44 154 | 71.73 175 | 74.47 258 | 49.39 229 | 75.20 205 | 78.45 179 | 59.60 119 | 69.16 142 | 76.51 307 | 51.29 98 | 82.50 171 | 59.86 165 | 71.45 239 | 83.30 195 |
|
| IterMVS-LS | | | 69.22 158 | 68.48 150 | 71.43 187 | 74.44 260 | 49.40 228 | 76.23 183 | 77.55 195 | 59.60 119 | 65.85 205 | 81.59 216 | 51.28 99 | 81.58 188 | 59.87 164 | 69.90 264 | 83.30 195 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MGCFI-Net | | | 72.45 87 | 73.34 73 | 69.81 222 | 77.77 186 | 43.21 298 | 75.84 194 | 81.18 125 | 59.59 122 | 75.45 42 | 86.64 99 | 57.74 28 | 77.94 253 | 63.92 128 | 81.90 99 | 88.30 19 |
|
| VDDNet | | | 71.81 98 | 71.33 96 | 73.26 146 | 82.80 78 | 47.60 254 | 78.74 122 | 75.27 229 | 59.59 122 | 72.94 88 | 89.40 51 | 41.51 218 | 83.91 137 | 58.75 171 | 82.99 83 | 88.26 20 |
|
| alignmvs | | | 73.86 69 | 73.99 64 | 73.45 139 | 78.20 169 | 50.50 210 | 78.57 127 | 82.43 95 | 59.40 124 | 76.57 35 | 86.71 98 | 56.42 40 | 81.23 196 | 65.84 112 | 81.79 100 | 88.62 12 |
|
| MVS_Test | | | 72.45 87 | 72.46 80 | 72.42 163 | 74.88 247 | 48.50 242 | 76.28 182 | 83.14 86 | 59.40 124 | 72.46 97 | 84.68 145 | 55.66 44 | 81.12 197 | 65.98 111 | 79.66 123 | 87.63 42 |
|
| TSAR-MVS + MP. | | | 78.44 19 | 78.28 19 | 78.90 27 | 84.96 52 | 61.41 26 | 84.03 48 | 83.82 63 | 59.34 126 | 79.37 19 | 89.76 48 | 59.84 16 | 87.62 51 | 76.69 27 | 86.74 53 | 87.68 40 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| MSLP-MVS++ | | | 73.77 70 | 73.47 70 | 74.66 94 | 83.02 74 | 59.29 61 | 82.30 77 | 81.88 102 | 59.34 126 | 71.59 107 | 86.83 92 | 45.94 165 | 83.65 142 | 65.09 117 | 85.22 63 | 81.06 244 |
|
| PAPM_NR | | | 72.63 84 | 71.80 86 | 75.13 87 | 81.72 89 | 53.42 159 | 79.91 106 | 83.28 82 | 59.14 128 | 66.31 195 | 85.90 126 | 51.86 91 | 86.06 87 | 57.45 178 | 80.62 109 | 85.91 101 |
|
| testing91 | | | 64.46 240 | 63.80 231 | 66.47 264 | 78.43 161 | 40.06 324 | 67.63 309 | 69.59 288 | 59.06 129 | 63.18 248 | 78.05 276 | 34.05 293 | 76.99 273 | 48.30 255 | 75.87 179 | 82.37 218 |
|
| save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 50 | 79.66 150 | 59.00 130 | | | | | | | |
|
| v148 | | | 68.24 178 | 67.19 185 | 71.40 188 | 70.43 323 | 47.77 251 | 75.76 195 | 77.03 204 | 58.91 131 | 67.36 174 | 80.10 243 | 48.60 131 | 81.89 181 | 60.01 161 | 66.52 302 | 84.53 155 |
|
| TransMVSNet (Re) | | | 64.72 235 | 64.33 225 | 65.87 279 | 75.22 243 | 38.56 338 | 74.66 220 | 75.08 238 | 58.90 132 | 61.79 272 | 82.63 186 | 51.18 100 | 78.07 252 | 43.63 299 | 55.87 368 | 80.99 246 |
|
| Anonymous202405211 | | | 66.84 208 | 65.99 207 | 69.40 229 | 80.19 119 | 42.21 307 | 71.11 278 | 71.31 273 | 58.80 133 | 67.90 160 | 86.39 111 | 29.83 337 | 79.65 225 | 49.60 245 | 78.78 140 | 86.33 85 |
|
| test2506 | | | 65.33 230 | 64.61 223 | 67.50 250 | 79.46 133 | 34.19 380 | 74.43 225 | 51.92 386 | 58.72 134 | 66.75 186 | 88.05 69 | 25.99 367 | 80.92 204 | 51.94 224 | 84.25 72 | 87.39 50 |
|
| ECVR-MVS |  | | 67.72 189 | 67.51 170 | 68.35 243 | 79.46 133 | 36.29 365 | 74.79 217 | 66.93 311 | 58.72 134 | 67.19 177 | 88.05 69 | 36.10 274 | 81.38 191 | 52.07 222 | 84.25 72 | 87.39 50 |
|
| test1111 | | | 67.21 196 | 67.14 186 | 67.42 252 | 79.24 138 | 34.76 374 | 73.89 236 | 65.65 320 | 58.71 136 | 66.96 182 | 87.95 72 | 36.09 275 | 80.53 211 | 52.03 223 | 83.79 77 | 86.97 61 |
|
| LCM-MVSNet-Re | | | 61.88 271 | 61.35 263 | 63.46 299 | 74.58 256 | 31.48 393 | 61.42 353 | 58.14 364 | 58.71 136 | 53.02 360 | 79.55 254 | 43.07 197 | 76.80 277 | 45.69 277 | 77.96 151 | 82.11 224 |
|
| testing99 | | | 64.05 244 | 63.29 241 | 66.34 266 | 78.17 173 | 39.76 328 | 67.33 314 | 68.00 302 | 58.60 138 | 63.03 251 | 78.10 275 | 32.57 320 | 76.94 275 | 48.22 256 | 75.58 183 | 82.34 219 |
|
| v1144 | | | 70.42 124 | 69.31 132 | 73.76 121 | 73.22 270 | 50.64 205 | 77.83 144 | 81.43 112 | 58.58 139 | 69.40 136 | 81.16 221 | 47.53 145 | 85.29 110 | 64.01 126 | 70.64 245 | 85.34 129 |
|
| TSAR-MVS + GP. | | | 74.90 55 | 74.15 63 | 77.17 52 | 82.00 84 | 58.77 75 | 81.80 80 | 78.57 172 | 58.58 139 | 74.32 65 | 84.51 153 | 55.94 43 | 87.22 57 | 67.11 99 | 84.48 71 | 85.52 117 |
|
| BH-RMVSNet | | | 68.81 162 | 67.42 173 | 72.97 149 | 80.11 122 | 52.53 178 | 74.26 226 | 76.29 212 | 58.48 141 | 68.38 151 | 84.20 156 | 42.59 202 | 83.83 138 | 46.53 269 | 75.91 178 | 82.56 211 |
|
| APD-MVS_3200maxsize | | | 74.96 54 | 74.39 61 | 76.67 60 | 82.20 81 | 58.24 80 | 83.67 54 | 83.29 81 | 58.41 142 | 73.71 72 | 90.14 36 | 45.62 167 | 85.99 90 | 69.64 80 | 82.85 89 | 85.78 105 |
|
| OMC-MVS | | | 71.40 108 | 70.60 110 | 73.78 119 | 76.60 222 | 53.15 163 | 79.74 110 | 79.78 147 | 58.37 143 | 68.75 145 | 86.45 110 | 45.43 174 | 80.60 210 | 62.58 139 | 77.73 154 | 87.58 45 |
|
| nrg030 | | | 72.96 78 | 73.01 74 | 72.84 152 | 75.41 241 | 50.24 212 | 80.02 102 | 82.89 91 | 58.36 144 | 74.44 62 | 86.73 96 | 58.90 24 | 80.83 206 | 65.84 112 | 74.46 189 | 87.44 48 |
|
| K. test v3 | | | 60.47 282 | 57.11 300 | 70.56 207 | 73.74 268 | 48.22 245 | 75.10 209 | 62.55 343 | 58.27 145 | 53.62 356 | 76.31 311 | 27.81 352 | 81.59 187 | 47.42 260 | 39.18 401 | 81.88 227 |
|
| FA-MVS(test-final) | | | 69.82 136 | 68.48 150 | 73.84 117 | 78.44 160 | 50.04 217 | 75.58 199 | 78.99 162 | 58.16 146 | 67.59 171 | 82.14 203 | 42.66 201 | 85.63 97 | 56.60 182 | 76.19 176 | 85.84 103 |
|
| MVS_111021_LR | | | 69.50 150 | 68.78 144 | 71.65 178 | 78.38 162 | 59.33 59 | 74.82 216 | 70.11 282 | 58.08 147 | 67.83 166 | 84.68 145 | 41.96 209 | 76.34 288 | 65.62 114 | 77.54 156 | 79.30 273 |
|
| SR-MVS-dyc-post | | | 74.57 62 | 73.90 65 | 76.58 63 | 83.49 67 | 59.87 52 | 84.29 40 | 81.36 115 | 58.07 148 | 73.14 82 | 90.07 37 | 44.74 181 | 85.84 94 | 68.20 87 | 81.76 101 | 84.03 168 |
|
| RE-MVS-def | | | | 73.71 69 | | 83.49 67 | 59.87 52 | 84.29 40 | 81.36 115 | 58.07 148 | 73.14 82 | 90.07 37 | 43.06 198 | | 68.20 87 | 81.76 101 | 84.03 168 |
|
| SDMVSNet | | | 68.03 181 | 68.10 160 | 67.84 247 | 77.13 209 | 48.72 240 | 65.32 330 | 79.10 159 | 58.02 150 | 65.08 221 | 82.55 189 | 47.83 138 | 73.40 301 | 63.92 128 | 73.92 197 | 81.41 232 |
|
| sd_testset | | | 64.46 240 | 64.45 224 | 64.51 293 | 77.13 209 | 42.25 306 | 62.67 346 | 72.11 268 | 58.02 150 | 65.08 221 | 82.55 189 | 41.22 223 | 69.88 322 | 47.32 262 | 73.92 197 | 81.41 232 |
|
| GeoE | | | 71.01 111 | 70.15 120 | 73.60 134 | 79.57 131 | 52.17 184 | 78.93 120 | 78.12 186 | 58.02 150 | 67.76 170 | 83.87 165 | 52.36 83 | 82.72 165 | 56.90 181 | 75.79 180 | 85.92 100 |
|
| ZD-MVS | | | | | | 86.64 21 | 60.38 45 | | 82.70 93 | 57.95 153 | 78.10 24 | 90.06 39 | 56.12 42 | 88.84 26 | 74.05 49 | 87.00 49 | |
|
| EIA-MVS | | | 71.78 99 | 70.60 110 | 75.30 85 | 79.85 125 | 53.54 156 | 77.27 160 | 83.26 83 | 57.92 154 | 66.49 190 | 79.39 258 | 52.07 88 | 86.69 72 | 60.05 160 | 79.14 135 | 85.66 113 |
|
| test_yl | | | 69.69 140 | 69.13 135 | 71.36 189 | 78.37 164 | 45.74 270 | 74.71 218 | 80.20 144 | 57.91 155 | 70.01 125 | 83.83 166 | 42.44 204 | 82.87 159 | 54.97 197 | 79.72 121 | 85.48 119 |
|
| DCV-MVSNet | | | 69.69 140 | 69.13 135 | 71.36 189 | 78.37 164 | 45.74 270 | 74.71 218 | 80.20 144 | 57.91 155 | 70.01 125 | 83.83 166 | 42.44 204 | 82.87 159 | 54.97 197 | 79.72 121 | 85.48 119 |
|
| MonoMVSNet | | | 64.15 243 | 63.31 240 | 66.69 261 | 70.51 321 | 44.12 289 | 74.47 223 | 74.21 249 | 57.81 157 | 63.03 251 | 76.62 303 | 38.33 250 | 77.31 265 | 54.22 205 | 60.59 350 | 78.64 279 |
|
| dcpmvs_2 | | | 74.55 63 | 75.23 53 | 72.48 159 | 82.34 80 | 53.34 160 | 77.87 141 | 81.46 111 | 57.80 158 | 75.49 41 | 86.81 93 | 62.22 13 | 77.75 258 | 71.09 75 | 82.02 97 | 86.34 83 |
|
| Fast-Effi-MVS+-dtu | | | 67.37 194 | 65.33 217 | 73.48 138 | 72.94 277 | 57.78 86 | 77.47 153 | 76.88 205 | 57.60 159 | 61.97 269 | 76.85 299 | 39.31 238 | 80.49 214 | 54.72 200 | 70.28 255 | 82.17 223 |
|
| v1192 | | | 69.97 133 | 68.68 146 | 73.85 116 | 73.19 271 | 50.94 198 | 77.68 147 | 81.36 115 | 57.51 160 | 68.95 144 | 80.85 231 | 45.28 177 | 85.33 109 | 62.97 137 | 70.37 251 | 85.27 133 |
|
| ACMH+ | | 57.40 11 | 66.12 219 | 64.06 226 | 72.30 165 | 77.79 185 | 52.83 172 | 80.39 97 | 78.03 187 | 57.30 161 | 57.47 318 | 82.55 189 | 27.68 353 | 84.17 130 | 45.54 280 | 69.78 266 | 79.90 263 |
|
| diffmvs |  | | 70.69 118 | 70.43 113 | 71.46 183 | 69.45 339 | 48.95 236 | 72.93 249 | 78.46 178 | 57.27 162 | 71.69 105 | 83.97 164 | 51.48 97 | 77.92 255 | 70.70 77 | 77.95 152 | 87.53 46 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| BH-untuned | | | 68.27 176 | 67.29 178 | 71.21 193 | 79.74 126 | 53.22 162 | 76.06 187 | 77.46 198 | 57.19 163 | 66.10 197 | 81.61 214 | 45.37 176 | 83.50 145 | 45.42 285 | 76.68 172 | 76.91 305 |
|
| thres100view900 | | | 63.28 253 | 62.41 251 | 65.89 278 | 77.31 206 | 38.66 337 | 72.65 252 | 69.11 295 | 57.07 164 | 62.45 265 | 81.03 225 | 37.01 269 | 79.17 234 | 31.84 371 | 73.25 212 | 79.83 265 |
|
| DP-MVS Recon | | | 72.15 96 | 70.73 108 | 76.40 65 | 86.57 24 | 57.99 82 | 81.15 90 | 82.96 87 | 57.03 165 | 66.78 184 | 85.56 133 | 44.50 185 | 88.11 38 | 51.77 227 | 80.23 118 | 83.10 204 |
|
| thres600view7 | | | 63.30 252 | 62.27 252 | 66.41 265 | 77.18 208 | 38.87 335 | 72.35 259 | 69.11 295 | 56.98 166 | 62.37 267 | 80.96 227 | 37.01 269 | 79.00 243 | 31.43 378 | 73.05 216 | 81.36 235 |
|
| V42 | | | 68.65 166 | 67.35 177 | 72.56 157 | 68.93 345 | 50.18 214 | 72.90 250 | 79.47 154 | 56.92 167 | 69.45 135 | 80.26 240 | 46.29 163 | 82.99 153 | 64.07 124 | 67.82 291 | 84.53 155 |
|
| MCST-MVS | | | 77.48 28 | 77.45 27 | 77.54 47 | 86.67 20 | 58.36 79 | 83.22 58 | 86.93 5 | 56.91 168 | 74.91 53 | 88.19 65 | 59.15 23 | 87.68 50 | 73.67 53 | 87.45 43 | 86.57 75 |
|
| GA-MVS | | | 65.53 226 | 63.70 233 | 71.02 200 | 70.87 316 | 48.10 246 | 70.48 286 | 74.40 244 | 56.69 169 | 64.70 229 | 76.77 300 | 33.66 301 | 81.10 198 | 55.42 196 | 70.32 254 | 83.87 176 |
|
| v144192 | | | 69.71 139 | 68.51 149 | 73.33 144 | 73.10 273 | 50.13 215 | 77.54 151 | 80.64 136 | 56.65 170 | 68.57 148 | 80.55 234 | 46.87 159 | 84.96 116 | 62.98 136 | 69.66 270 | 84.89 147 |
|
| tfpn200view9 | | | 63.18 255 | 62.18 254 | 66.21 270 | 76.85 216 | 39.62 329 | 71.96 266 | 69.44 291 | 56.63 171 | 62.61 260 | 79.83 246 | 37.18 263 | 79.17 234 | 31.84 371 | 73.25 212 | 79.83 265 |
|
| thres400 | | | 63.31 251 | 62.18 254 | 66.72 258 | 76.85 216 | 39.62 329 | 71.96 266 | 69.44 291 | 56.63 171 | 62.61 260 | 79.83 246 | 37.18 263 | 79.17 234 | 31.84 371 | 73.25 212 | 81.36 235 |
|
| GBi-Net | | | 67.21 196 | 66.55 191 | 69.19 231 | 77.63 193 | 43.33 295 | 77.31 156 | 77.83 190 | 56.62 173 | 65.04 223 | 82.70 183 | 41.85 211 | 80.33 216 | 47.18 264 | 72.76 220 | 83.92 173 |
|
| test1 | | | 67.21 196 | 66.55 191 | 69.19 231 | 77.63 193 | 43.33 295 | 77.31 156 | 77.83 190 | 56.62 173 | 65.04 223 | 82.70 183 | 41.85 211 | 80.33 216 | 47.18 264 | 72.76 220 | 83.92 173 |
|
| FMVSNet2 | | | 66.93 206 | 66.31 202 | 68.79 238 | 77.63 193 | 42.98 300 | 76.11 185 | 77.47 196 | 56.62 173 | 65.22 220 | 82.17 201 | 41.85 211 | 80.18 222 | 47.05 267 | 72.72 223 | 83.20 199 |
|
| DPM-MVS | | | 75.47 53 | 75.00 54 | 76.88 54 | 81.38 96 | 59.16 62 | 79.94 104 | 85.71 22 | 56.59 176 | 72.46 97 | 86.76 94 | 56.89 35 | 87.86 45 | 66.36 105 | 88.91 25 | 83.64 190 |
|
| v1921920 | | | 69.47 151 | 68.17 158 | 73.36 143 | 73.06 274 | 50.10 216 | 77.39 154 | 80.56 137 | 56.58 177 | 68.59 146 | 80.37 236 | 44.72 182 | 84.98 114 | 62.47 142 | 69.82 265 | 85.00 142 |
|
| FMVSNet1 | | | 66.70 211 | 65.87 208 | 69.19 231 | 77.49 201 | 43.33 295 | 77.31 156 | 77.83 190 | 56.45 178 | 64.60 231 | 82.70 183 | 38.08 255 | 80.33 216 | 46.08 273 | 72.31 229 | 83.92 173 |
|
| v1240 | | | 69.24 157 | 67.91 161 | 73.25 147 | 73.02 276 | 49.82 220 | 77.21 161 | 80.54 138 | 56.43 179 | 68.34 152 | 80.51 235 | 43.33 196 | 84.99 112 | 62.03 146 | 69.77 268 | 84.95 146 |
|
| testing222 | | | 62.29 266 | 61.31 264 | 65.25 288 | 77.87 182 | 38.53 339 | 68.34 304 | 66.31 317 | 56.37 180 | 63.15 250 | 77.58 290 | 28.47 347 | 76.18 291 | 37.04 340 | 76.65 173 | 81.05 245 |
|
| CDPH-MVS | | | 76.31 42 | 75.67 48 | 78.22 37 | 85.35 48 | 59.14 65 | 81.31 88 | 84.02 51 | 56.32 181 | 74.05 67 | 88.98 57 | 53.34 71 | 87.92 43 | 69.23 84 | 88.42 28 | 87.59 44 |
|
| Vis-MVSNet (Re-imp) | | | 63.69 248 | 63.88 229 | 63.14 303 | 74.75 251 | 31.04 394 | 71.16 276 | 63.64 336 | 56.32 181 | 59.80 294 | 84.99 140 | 44.51 184 | 75.46 293 | 39.12 328 | 80.62 109 | 82.92 206 |
|
| AdaColmap |  | | 69.99 132 | 68.66 147 | 73.97 115 | 84.94 54 | 57.83 84 | 82.63 68 | 78.71 168 | 56.28 183 | 64.34 232 | 84.14 158 | 41.57 215 | 87.06 64 | 46.45 270 | 78.88 137 | 77.02 301 |
|
| PS-MVSNAJss | | | 72.24 91 | 71.21 99 | 75.31 84 | 78.50 157 | 55.93 115 | 81.63 82 | 82.12 99 | 56.24 184 | 70.02 124 | 85.68 132 | 47.05 154 | 84.34 129 | 65.27 116 | 74.41 192 | 85.67 112 |
|
| c3_l | | | 68.33 175 | 67.56 166 | 70.62 206 | 70.87 316 | 46.21 266 | 74.47 223 | 78.80 166 | 56.22 185 | 66.19 196 | 78.53 273 | 51.88 90 | 81.40 190 | 62.08 143 | 69.04 279 | 84.25 162 |
|
| Fast-Effi-MVS+ | | | 70.28 127 | 69.12 137 | 73.73 125 | 78.50 157 | 51.50 193 | 75.01 210 | 79.46 155 | 56.16 186 | 68.59 146 | 79.55 254 | 53.97 60 | 84.05 132 | 53.34 213 | 77.53 157 | 85.65 114 |
|
| PHI-MVS | | | 75.87 48 | 75.36 50 | 77.41 49 | 80.62 112 | 55.91 116 | 84.28 42 | 85.78 20 | 56.08 187 | 73.41 75 | 86.58 104 | 50.94 105 | 88.54 28 | 70.79 76 | 89.71 17 | 87.79 37 |
|
| baseline1 | | | 63.81 247 | 63.87 230 | 63.62 298 | 76.29 227 | 36.36 360 | 71.78 268 | 67.29 307 | 56.05 188 | 64.23 237 | 82.95 181 | 47.11 153 | 74.41 298 | 47.30 263 | 61.85 339 | 80.10 260 |
|
| train_agg | | | 76.27 43 | 76.15 40 | 76.64 62 | 85.58 43 | 61.59 24 | 81.62 83 | 81.26 122 | 55.86 189 | 74.93 51 | 88.81 59 | 53.70 67 | 84.68 123 | 75.24 40 | 88.33 30 | 83.65 189 |
|
| test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 86 | 81.18 125 | 55.86 189 | 74.81 56 | 88.80 61 | 53.70 67 | 84.45 127 | | | |
|
| FMVSNet3 | | | 66.32 218 | 65.61 213 | 68.46 241 | 76.48 225 | 42.34 304 | 74.98 212 | 77.15 203 | 55.83 191 | 65.04 223 | 81.16 221 | 39.91 231 | 80.14 223 | 47.18 264 | 72.76 220 | 82.90 208 |
|
| PAPR | | | 71.72 102 | 70.82 106 | 74.41 104 | 81.20 101 | 51.17 194 | 79.55 115 | 83.33 79 | 55.81 192 | 66.93 183 | 84.61 149 | 50.95 104 | 86.06 87 | 55.79 190 | 79.20 132 | 86.00 97 |
|
| eth_miper_zixun_eth | | | 67.63 190 | 66.28 203 | 71.67 177 | 71.60 302 | 48.33 244 | 73.68 240 | 77.88 188 | 55.80 193 | 65.91 201 | 78.62 271 | 47.35 151 | 82.88 158 | 59.45 167 | 66.25 303 | 83.81 178 |
|
| ACMH | | 55.70 15 | 65.20 232 | 63.57 235 | 70.07 215 | 78.07 176 | 52.01 189 | 79.48 116 | 79.69 148 | 55.75 194 | 56.59 325 | 80.98 226 | 27.12 358 | 80.94 202 | 42.90 307 | 71.58 237 | 77.25 299 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| IB-MVS | | 56.42 12 | 65.40 229 | 62.73 248 | 73.40 142 | 74.89 246 | 52.78 173 | 73.09 248 | 75.13 234 | 55.69 195 | 58.48 311 | 73.73 337 | 32.86 310 | 86.32 85 | 50.63 235 | 70.11 258 | 81.10 243 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CL-MVSNet_self_test | | | 61.53 274 | 60.94 271 | 63.30 301 | 68.95 344 | 36.93 356 | 67.60 310 | 72.80 263 | 55.67 196 | 59.95 291 | 76.63 302 | 45.01 180 | 72.22 308 | 39.74 326 | 62.09 338 | 80.74 250 |
|
| TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 83 | 81.26 122 | 55.65 197 | 74.93 51 | 88.81 59 | 53.70 67 | 84.68 123 | | | |
|
| thres200 | | | 62.20 267 | 61.16 269 | 65.34 286 | 75.38 242 | 39.99 325 | 69.60 296 | 69.29 293 | 55.64 198 | 61.87 271 | 76.99 296 | 37.07 268 | 78.96 244 | 31.28 379 | 73.28 211 | 77.06 300 |
|
| pm-mvs1 | | | 65.24 231 | 64.97 221 | 66.04 275 | 72.38 289 | 39.40 332 | 72.62 254 | 75.63 221 | 55.53 199 | 62.35 268 | 83.18 179 | 47.45 147 | 76.47 286 | 49.06 249 | 66.54 301 | 82.24 220 |
|
| testing11 | | | 62.81 258 | 61.90 257 | 65.54 282 | 78.38 162 | 40.76 321 | 67.59 311 | 66.78 313 | 55.48 200 | 60.13 286 | 77.11 294 | 31.67 326 | 76.79 278 | 45.53 281 | 74.45 190 | 79.06 274 |
|
| ACMM | | 61.98 7 | 70.80 117 | 69.73 125 | 74.02 113 | 80.59 113 | 58.59 77 | 82.68 67 | 82.02 101 | 55.46 201 | 67.18 178 | 84.39 155 | 38.51 247 | 83.17 151 | 60.65 156 | 76.10 177 | 80.30 256 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Anonymous20240529 | | | 69.91 134 | 69.02 138 | 72.56 157 | 80.19 119 | 47.65 252 | 77.56 150 | 80.99 131 | 55.45 202 | 69.88 128 | 86.76 94 | 39.24 241 | 82.18 177 | 54.04 206 | 77.10 167 | 87.85 33 |
|
| tt0805 | | | 67.77 188 | 67.24 183 | 69.34 230 | 74.87 248 | 40.08 323 | 77.36 155 | 81.37 114 | 55.31 203 | 66.33 194 | 84.65 147 | 37.35 261 | 82.55 170 | 55.65 193 | 72.28 230 | 85.39 128 |
|
| GDP-MVS | | | 72.64 83 | 71.28 98 | 76.70 57 | 77.72 188 | 54.22 144 | 79.57 114 | 84.45 43 | 55.30 204 | 71.38 110 | 86.97 90 | 39.94 230 | 87.00 65 | 67.02 102 | 79.20 132 | 88.89 9 |
|
| CPTT-MVS | | | 72.78 80 | 72.08 85 | 74.87 90 | 84.88 57 | 61.41 26 | 84.15 46 | 77.86 189 | 55.27 205 | 67.51 173 | 88.08 68 | 41.93 210 | 81.85 182 | 69.04 85 | 80.01 119 | 81.35 237 |
|
| XVG-OURS | | | 68.76 165 | 67.37 175 | 72.90 151 | 74.32 263 | 57.22 92 | 70.09 292 | 78.81 165 | 55.24 206 | 67.79 168 | 85.81 131 | 36.54 272 | 78.28 249 | 62.04 145 | 75.74 181 | 83.19 200 |
|
| tfpnnormal | | | 62.47 262 | 61.63 260 | 64.99 290 | 74.81 250 | 39.01 334 | 71.22 274 | 73.72 254 | 55.22 207 | 60.21 285 | 80.09 244 | 41.26 222 | 76.98 274 | 30.02 384 | 68.09 289 | 78.97 277 |
|
| cl____ | | | 67.18 199 | 66.26 204 | 69.94 217 | 70.20 326 | 45.74 270 | 73.30 243 | 76.83 207 | 55.10 208 | 65.27 214 | 79.57 253 | 47.39 149 | 80.53 211 | 59.41 169 | 69.22 277 | 83.53 192 |
|
| DIV-MVS_self_test | | | 67.18 199 | 66.26 204 | 69.94 217 | 70.20 326 | 45.74 270 | 73.29 245 | 76.83 207 | 55.10 208 | 65.27 214 | 79.58 252 | 47.38 150 | 80.53 211 | 59.43 168 | 69.22 277 | 83.54 191 |
|
| PC_three_1452 | | | | | | | | | | 55.09 210 | 84.46 4 | 89.84 46 | 66.68 5 | 89.41 18 | 74.24 46 | 91.38 2 | 88.42 16 |
|
| EPNet_dtu | | | 61.90 270 | 61.97 256 | 61.68 311 | 72.89 278 | 39.78 327 | 75.85 193 | 65.62 321 | 55.09 210 | 54.56 346 | 79.36 259 | 37.59 258 | 67.02 340 | 39.80 325 | 76.95 168 | 78.25 282 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PVSNet_Blended_VisFu | | | 71.45 107 | 70.39 114 | 74.65 95 | 82.01 83 | 58.82 74 | 79.93 105 | 80.35 143 | 55.09 210 | 65.82 206 | 82.16 202 | 49.17 123 | 82.64 168 | 60.34 158 | 78.62 144 | 82.50 215 |
|
| cl22 | | | 67.47 193 | 66.45 193 | 70.54 208 | 69.85 334 | 46.49 262 | 73.85 237 | 77.35 200 | 55.07 213 | 65.51 209 | 77.92 280 | 47.64 142 | 81.10 198 | 61.58 151 | 69.32 273 | 84.01 170 |
|
| miper_ehance_all_eth | | | 68.03 181 | 67.24 183 | 70.40 210 | 70.54 320 | 46.21 266 | 73.98 230 | 78.68 170 | 55.07 213 | 66.05 198 | 77.80 284 | 52.16 87 | 81.31 193 | 61.53 152 | 69.32 273 | 83.67 186 |
|
| fmvsm_s_conf0.5_n_2 | | | 69.82 136 | 69.27 134 | 71.46 183 | 72.00 296 | 51.08 195 | 73.30 243 | 67.79 303 | 55.06 215 | 75.24 44 | 87.51 78 | 44.02 190 | 77.00 272 | 75.67 34 | 72.86 218 | 86.31 90 |
|
| PS-MVSNAJ | | | 70.51 121 | 69.70 126 | 72.93 150 | 81.52 91 | 55.79 119 | 74.92 214 | 79.00 161 | 55.04 216 | 69.88 128 | 78.66 268 | 47.05 154 | 82.19 176 | 61.61 149 | 79.58 124 | 80.83 248 |
|
| fmvsm_s_conf0.1_n_2 | | | 69.64 144 | 69.01 140 | 71.52 181 | 71.66 301 | 51.04 196 | 73.39 242 | 67.14 309 | 55.02 217 | 75.11 46 | 87.64 77 | 42.94 200 | 77.01 271 | 75.55 35 | 72.63 224 | 86.52 77 |
|
| mmtdpeth | | | 60.40 283 | 59.12 284 | 64.27 296 | 69.59 336 | 48.99 234 | 70.67 283 | 70.06 283 | 54.96 218 | 62.78 254 | 73.26 341 | 27.00 360 | 67.66 333 | 58.44 174 | 45.29 393 | 76.16 310 |
|
| xiu_mvs_v2_base | | | 70.52 120 | 69.75 124 | 72.84 152 | 81.21 100 | 55.63 123 | 75.11 207 | 78.92 163 | 54.92 219 | 69.96 127 | 79.68 251 | 47.00 158 | 82.09 178 | 61.60 150 | 79.37 127 | 80.81 249 |
|
| MAR-MVS | | | 71.51 104 | 70.15 120 | 75.60 80 | 81.84 87 | 59.39 58 | 81.38 87 | 82.90 89 | 54.90 220 | 68.08 159 | 78.70 266 | 47.73 139 | 85.51 102 | 51.68 229 | 84.17 74 | 81.88 227 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| reproduce_monomvs | | | 62.56 260 | 61.20 268 | 66.62 262 | 70.62 319 | 44.30 286 | 70.13 291 | 73.13 260 | 54.78 221 | 61.13 280 | 76.37 310 | 25.63 370 | 75.63 292 | 58.75 171 | 60.29 351 | 79.93 262 |
|
| XVG-OURS-SEG-HR | | | 68.81 162 | 67.47 172 | 72.82 154 | 74.40 261 | 56.87 102 | 70.59 284 | 79.04 160 | 54.77 222 | 66.99 181 | 86.01 123 | 39.57 236 | 78.21 250 | 62.54 140 | 73.33 210 | 83.37 194 |
|
| testing3 | | | 56.54 311 | 55.92 313 | 58.41 333 | 77.52 200 | 27.93 403 | 69.72 295 | 56.36 373 | 54.75 223 | 58.63 309 | 77.80 284 | 20.88 386 | 71.75 311 | 25.31 400 | 62.25 336 | 75.53 317 |
|
| Anonymous20231211 | | | 69.28 155 | 68.47 152 | 71.73 175 | 80.28 114 | 47.18 258 | 79.98 103 | 82.37 96 | 54.61 224 | 67.24 176 | 84.01 162 | 39.43 237 | 82.41 174 | 55.45 195 | 72.83 219 | 85.62 115 |
|
| SixPastTwentyTwo | | | 61.65 273 | 58.80 288 | 70.20 213 | 75.80 233 | 47.22 257 | 75.59 197 | 69.68 286 | 54.61 224 | 54.11 350 | 79.26 261 | 27.07 359 | 82.96 154 | 43.27 301 | 49.79 386 | 80.41 254 |
|
| test_0402 | | | 63.25 254 | 61.01 270 | 69.96 216 | 80.00 123 | 54.37 143 | 76.86 172 | 72.02 269 | 54.58 226 | 58.71 306 | 80.79 233 | 35.00 284 | 84.36 128 | 26.41 398 | 64.71 314 | 71.15 367 |
|
| tttt0517 | | | 67.83 187 | 65.66 212 | 74.33 106 | 76.69 218 | 50.82 202 | 77.86 142 | 73.99 252 | 54.54 227 | 64.64 230 | 82.53 192 | 35.06 283 | 85.50 103 | 55.71 191 | 69.91 263 | 86.67 71 |
|
| BH-w/o | | | 66.85 207 | 65.83 209 | 69.90 220 | 79.29 135 | 52.46 180 | 74.66 220 | 76.65 210 | 54.51 228 | 64.85 227 | 78.12 274 | 45.59 169 | 82.95 155 | 43.26 302 | 75.54 184 | 74.27 334 |
|
| AUN-MVS | | | 68.45 174 | 66.41 197 | 74.57 100 | 79.53 132 | 57.08 100 | 73.93 234 | 75.23 231 | 54.44 229 | 66.69 187 | 81.85 209 | 37.10 267 | 82.89 157 | 62.07 144 | 66.84 298 | 83.75 183 |
|
| LTVRE_ROB | | 55.42 16 | 63.15 256 | 61.23 267 | 68.92 236 | 76.57 223 | 47.80 249 | 59.92 362 | 76.39 211 | 54.35 230 | 58.67 307 | 82.46 194 | 29.44 341 | 81.49 189 | 42.12 311 | 71.14 241 | 77.46 293 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test_fmvsmconf_n | | | 73.01 77 | 72.59 78 | 74.27 108 | 71.28 311 | 55.88 117 | 78.21 134 | 75.56 223 | 54.31 231 | 74.86 55 | 87.80 75 | 54.72 52 | 80.23 220 | 78.07 21 | 78.48 145 | 86.70 69 |
|
| test_fmvsmconf0.01_n | | | 72.17 93 | 71.50 90 | 74.16 111 | 67.96 351 | 55.58 126 | 78.06 138 | 74.67 241 | 54.19 232 | 74.54 61 | 88.23 64 | 50.35 112 | 80.24 219 | 78.07 21 | 77.46 159 | 86.65 73 |
|
| test_fmvsmconf0.1_n | | | 72.81 79 | 72.33 81 | 74.24 109 | 69.89 333 | 55.81 118 | 78.22 133 | 75.40 227 | 54.17 233 | 75.00 50 | 88.03 71 | 53.82 64 | 80.23 220 | 78.08 20 | 78.34 148 | 86.69 70 |
|
| ETVMVS | | | 59.51 292 | 58.81 286 | 61.58 313 | 77.46 202 | 34.87 371 | 64.94 335 | 59.35 359 | 54.06 234 | 61.08 281 | 76.67 301 | 29.54 338 | 71.87 310 | 32.16 367 | 74.07 195 | 78.01 289 |
|
| ab-mvs | | | 66.65 212 | 66.42 196 | 67.37 253 | 76.17 229 | 41.73 311 | 70.41 288 | 76.14 215 | 53.99 235 | 65.98 199 | 83.51 173 | 49.48 118 | 76.24 289 | 48.60 252 | 73.46 208 | 84.14 166 |
|
| IU-MVS | | | | | | 87.77 4 | 59.15 63 | | 85.53 26 | 53.93 236 | 84.64 3 | | | | 79.07 11 | 90.87 5 | 88.37 18 |
|
| XVG-ACMP-BASELINE | | | 64.36 242 | 62.23 253 | 70.74 204 | 72.35 290 | 52.45 181 | 70.80 282 | 78.45 179 | 53.84 237 | 59.87 292 | 81.10 223 | 16.24 394 | 79.32 231 | 55.64 194 | 71.76 234 | 80.47 252 |
|
| FE-MVS | | | 65.91 221 | 63.33 239 | 73.63 132 | 77.36 205 | 51.95 190 | 72.62 254 | 75.81 218 | 53.70 238 | 65.31 212 | 78.96 264 | 28.81 346 | 86.39 82 | 43.93 294 | 73.48 207 | 82.55 212 |
|
| thisisatest0530 | | | 67.92 185 | 65.78 210 | 74.33 106 | 76.29 227 | 51.03 197 | 76.89 170 | 74.25 248 | 53.67 239 | 65.59 208 | 81.76 211 | 35.15 282 | 85.50 103 | 55.94 186 | 72.47 225 | 86.47 78 |
|
| PVSNet_BlendedMVS | | | 68.56 171 | 67.72 163 | 71.07 199 | 77.03 213 | 50.57 206 | 74.50 222 | 81.52 108 | 53.66 240 | 64.22 238 | 79.72 250 | 49.13 124 | 82.87 159 | 55.82 188 | 73.92 197 | 79.77 268 |
|
| patch_mono-2 | | | 69.85 135 | 71.09 102 | 66.16 271 | 79.11 143 | 54.80 138 | 71.97 265 | 74.31 246 | 53.50 241 | 70.90 113 | 84.17 157 | 57.63 31 | 63.31 354 | 66.17 106 | 82.02 97 | 80.38 255 |
|
| EG-PatchMatch MVS | | | 64.71 236 | 62.87 245 | 70.22 211 | 77.68 190 | 53.48 157 | 77.99 139 | 78.82 164 | 53.37 242 | 56.03 330 | 77.41 292 | 24.75 375 | 84.04 133 | 46.37 271 | 73.42 209 | 73.14 340 |
|
| DP-MVS | | | 65.68 223 | 63.66 234 | 71.75 174 | 84.93 55 | 56.87 102 | 80.74 95 | 73.16 259 | 53.06 243 | 59.09 303 | 82.35 195 | 36.79 271 | 85.94 92 | 32.82 365 | 69.96 262 | 72.45 348 |
|
| TR-MVS | | | 66.59 215 | 65.07 220 | 71.17 196 | 79.18 140 | 49.63 226 | 73.48 241 | 75.20 233 | 52.95 244 | 67.90 160 | 80.33 239 | 39.81 234 | 83.68 141 | 43.20 303 | 73.56 205 | 80.20 257 |
|
| ET-MVSNet_ETH3D | | | 67.96 184 | 65.72 211 | 74.68 93 | 76.67 220 | 55.62 125 | 75.11 207 | 74.74 239 | 52.91 245 | 60.03 289 | 80.12 242 | 33.68 300 | 82.64 168 | 61.86 147 | 76.34 174 | 85.78 105 |
|
| QAPM | | | 70.05 130 | 68.81 143 | 73.78 119 | 76.54 224 | 53.43 158 | 83.23 57 | 83.48 70 | 52.89 246 | 65.90 202 | 86.29 113 | 41.55 217 | 86.49 80 | 51.01 232 | 78.40 147 | 81.42 231 |
|
| OpenMVS |  | 61.03 9 | 68.85 161 | 67.56 166 | 72.70 156 | 74.26 264 | 53.99 147 | 81.21 89 | 81.34 119 | 52.70 247 | 62.75 257 | 85.55 135 | 38.86 245 | 84.14 131 | 48.41 254 | 83.01 82 | 79.97 261 |
|
| pmmvs6 | | | 63.69 248 | 62.82 247 | 66.27 269 | 70.63 318 | 39.27 333 | 73.13 247 | 75.47 226 | 52.69 248 | 59.75 296 | 82.30 197 | 39.71 235 | 77.03 270 | 47.40 261 | 64.35 319 | 82.53 213 |
|
| IterMVS | | | 62.79 259 | 61.27 265 | 67.35 254 | 69.37 340 | 52.04 188 | 71.17 275 | 68.24 301 | 52.63 249 | 59.82 293 | 76.91 298 | 37.32 262 | 72.36 305 | 52.80 217 | 63.19 329 | 77.66 291 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| mvs_tets | | | 68.18 179 | 66.36 199 | 73.63 132 | 75.61 237 | 55.35 131 | 80.77 94 | 78.56 173 | 52.48 250 | 64.27 235 | 84.10 160 | 27.45 355 | 81.84 183 | 63.45 135 | 70.56 248 | 83.69 185 |
|
| jajsoiax | | | 68.25 177 | 66.45 193 | 73.66 129 | 75.62 236 | 55.49 128 | 80.82 93 | 78.51 175 | 52.33 251 | 64.33 233 | 84.11 159 | 28.28 349 | 81.81 184 | 63.48 134 | 70.62 246 | 83.67 186 |
|
| TAMVS | | | 66.78 210 | 65.27 218 | 71.33 192 | 79.16 142 | 53.67 152 | 73.84 238 | 69.59 288 | 52.32 252 | 65.28 213 | 81.72 212 | 44.49 186 | 77.40 264 | 42.32 310 | 78.66 143 | 82.92 206 |
|
| CDS-MVSNet | | | 66.80 209 | 65.37 215 | 71.10 198 | 78.98 145 | 53.13 165 | 73.27 246 | 71.07 275 | 52.15 253 | 64.72 228 | 80.23 241 | 43.56 194 | 77.10 268 | 45.48 283 | 78.88 137 | 83.05 205 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvsmamba | | | 68.47 172 | 66.56 190 | 74.21 110 | 79.60 129 | 52.95 167 | 74.94 213 | 75.48 225 | 52.09 254 | 60.10 287 | 83.27 176 | 36.54 272 | 84.70 122 | 59.32 170 | 77.69 155 | 84.99 144 |
|
| PVSNet_Blended | | | 68.59 167 | 67.72 163 | 71.19 194 | 77.03 213 | 50.57 206 | 72.51 257 | 81.52 108 | 51.91 255 | 64.22 238 | 77.77 287 | 49.13 124 | 82.87 159 | 55.82 188 | 79.58 124 | 80.14 259 |
|
| mvs_anonymous | | | 68.03 181 | 67.51 170 | 69.59 225 | 72.08 294 | 44.57 284 | 71.99 264 | 75.23 231 | 51.67 256 | 67.06 180 | 82.57 188 | 54.68 53 | 77.94 253 | 56.56 183 | 75.71 182 | 86.26 92 |
|
| xiu_mvs_v1_base_debu | | | 68.58 168 | 67.28 179 | 72.48 159 | 78.19 170 | 57.19 94 | 75.28 202 | 75.09 235 | 51.61 257 | 70.04 121 | 81.41 218 | 32.79 311 | 79.02 240 | 63.81 130 | 77.31 160 | 81.22 239 |
|
| xiu_mvs_v1_base | | | 68.58 168 | 67.28 179 | 72.48 159 | 78.19 170 | 57.19 94 | 75.28 202 | 75.09 235 | 51.61 257 | 70.04 121 | 81.41 218 | 32.79 311 | 79.02 240 | 63.81 130 | 77.31 160 | 81.22 239 |
|
| xiu_mvs_v1_base_debi | | | 68.58 168 | 67.28 179 | 72.48 159 | 78.19 170 | 57.19 94 | 75.28 202 | 75.09 235 | 51.61 257 | 70.04 121 | 81.41 218 | 32.79 311 | 79.02 240 | 63.81 130 | 77.31 160 | 81.22 239 |
|
| MVSTER | | | 67.16 201 | 65.58 214 | 71.88 170 | 70.37 325 | 49.70 222 | 70.25 290 | 78.45 179 | 51.52 260 | 69.16 142 | 80.37 236 | 38.45 248 | 82.50 171 | 60.19 159 | 71.46 238 | 83.44 193 |
|
| CNLPA | | | 65.43 227 | 64.02 227 | 69.68 223 | 78.73 153 | 58.07 81 | 77.82 145 | 70.71 278 | 51.49 261 | 61.57 276 | 83.58 172 | 38.23 253 | 70.82 314 | 43.90 295 | 70.10 259 | 80.16 258 |
|
| 原ACMM1 | | | | | 74.69 92 | 85.39 47 | 59.40 57 | | 83.42 73 | 51.47 262 | 70.27 119 | 86.61 102 | 48.61 130 | 86.51 79 | 53.85 209 | 87.96 39 | 78.16 283 |
|
| miper_enhance_ethall | | | 67.11 202 | 66.09 206 | 70.17 214 | 69.21 342 | 45.98 268 | 72.85 251 | 78.41 182 | 51.38 263 | 65.65 207 | 75.98 316 | 51.17 101 | 81.25 194 | 60.82 155 | 69.32 273 | 83.29 197 |
|
| MSDG | | | 61.81 272 | 59.23 282 | 69.55 228 | 72.64 281 | 52.63 176 | 70.45 287 | 75.81 218 | 51.38 263 | 53.70 353 | 76.11 312 | 29.52 339 | 81.08 200 | 37.70 335 | 65.79 307 | 74.93 325 |
|
| test20.03 | | | 53.87 332 | 54.02 330 | 53.41 364 | 61.47 385 | 28.11 402 | 61.30 354 | 59.21 360 | 51.34 265 | 52.09 362 | 77.43 291 | 33.29 305 | 58.55 375 | 29.76 385 | 60.27 352 | 73.58 339 |
|
| MVSFormer | | | 71.50 105 | 70.38 115 | 74.88 89 | 78.76 151 | 57.15 97 | 82.79 64 | 78.48 176 | 51.26 266 | 69.49 133 | 83.22 177 | 43.99 191 | 83.24 149 | 66.06 107 | 79.37 127 | 84.23 163 |
|
| test_djsdf | | | 69.45 152 | 67.74 162 | 74.58 99 | 74.57 257 | 54.92 136 | 82.79 64 | 78.48 176 | 51.26 266 | 65.41 211 | 83.49 174 | 38.37 249 | 83.24 149 | 66.06 107 | 69.25 276 | 85.56 116 |
|
| dmvs_testset | | | 50.16 349 | 51.90 339 | 44.94 384 | 66.49 361 | 11.78 424 | 61.01 359 | 51.50 387 | 51.17 268 | 50.30 374 | 67.44 378 | 39.28 239 | 60.29 365 | 22.38 404 | 57.49 361 | 62.76 389 |
|
| PAPM | | | 67.92 185 | 66.69 189 | 71.63 179 | 78.09 175 | 49.02 233 | 77.09 164 | 81.24 124 | 51.04 269 | 60.91 282 | 83.98 163 | 47.71 140 | 84.99 112 | 40.81 319 | 79.32 130 | 80.90 247 |
|
| Syy-MVS | | | 56.00 318 | 56.23 311 | 55.32 350 | 74.69 253 | 26.44 409 | 65.52 325 | 57.49 368 | 50.97 270 | 56.52 326 | 72.18 345 | 39.89 232 | 68.09 329 | 24.20 401 | 64.59 317 | 71.44 363 |
|
| myMVS_eth3d | | | 54.86 328 | 54.61 322 | 55.61 349 | 74.69 253 | 27.31 406 | 65.52 325 | 57.49 368 | 50.97 270 | 56.52 326 | 72.18 345 | 21.87 384 | 68.09 329 | 27.70 392 | 64.59 317 | 71.44 363 |
|
| miper_lstm_enhance | | | 62.03 269 | 60.88 272 | 65.49 284 | 66.71 359 | 46.25 264 | 56.29 380 | 75.70 220 | 50.68 272 | 61.27 278 | 75.48 323 | 40.21 229 | 68.03 331 | 56.31 185 | 65.25 310 | 82.18 221 |
|
| gg-mvs-nofinetune | | | 57.86 302 | 56.43 309 | 62.18 309 | 72.62 282 | 35.35 370 | 66.57 315 | 56.33 374 | 50.65 273 | 57.64 317 | 57.10 400 | 30.65 329 | 76.36 287 | 37.38 337 | 78.88 137 | 74.82 327 |
|
| TAPA-MVS | | 59.36 10 | 66.60 213 | 65.20 219 | 70.81 202 | 76.63 221 | 48.75 238 | 76.52 178 | 80.04 146 | 50.64 274 | 65.24 218 | 84.93 141 | 39.15 242 | 78.54 246 | 36.77 342 | 76.88 169 | 85.14 136 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| dmvs_re | | | 56.77 310 | 56.83 305 | 56.61 344 | 69.23 341 | 41.02 316 | 58.37 367 | 64.18 332 | 50.59 275 | 57.45 319 | 71.42 353 | 35.54 279 | 58.94 373 | 37.23 338 | 67.45 294 | 69.87 376 |
|
| MVP-Stereo | | | 65.41 228 | 63.80 231 | 70.22 211 | 77.62 197 | 55.53 127 | 76.30 181 | 78.53 174 | 50.59 275 | 56.47 328 | 78.65 269 | 39.84 233 | 82.68 166 | 44.10 293 | 72.12 232 | 72.44 349 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| PCF-MVS | | 61.88 8 | 70.95 113 | 69.49 129 | 75.35 83 | 77.63 193 | 55.71 120 | 76.04 189 | 81.81 104 | 50.30 277 | 69.66 131 | 85.40 139 | 52.51 79 | 84.89 118 | 51.82 226 | 80.24 117 | 85.45 123 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| mvs5depth | | | 55.64 321 | 53.81 332 | 61.11 318 | 59.39 395 | 40.98 320 | 65.89 320 | 68.28 300 | 50.21 278 | 58.11 314 | 75.42 324 | 17.03 390 | 67.63 335 | 43.79 297 | 46.21 390 | 74.73 329 |
|
| baseline2 | | | 63.42 250 | 61.26 266 | 69.89 221 | 72.55 284 | 47.62 253 | 71.54 269 | 68.38 299 | 50.11 279 | 54.82 342 | 75.55 321 | 43.06 198 | 80.96 201 | 48.13 257 | 67.16 297 | 81.11 242 |
|
| test-LLR | | | 58.15 300 | 58.13 296 | 58.22 335 | 68.57 346 | 44.80 280 | 65.46 327 | 57.92 365 | 50.08 280 | 55.44 334 | 69.82 366 | 32.62 317 | 57.44 379 | 49.66 243 | 73.62 202 | 72.41 350 |
|
| test0.0.03 1 | | | 53.32 337 | 53.59 334 | 52.50 370 | 62.81 380 | 29.45 397 | 59.51 363 | 54.11 382 | 50.08 280 | 54.40 348 | 74.31 333 | 32.62 317 | 55.92 388 | 30.50 382 | 63.95 322 | 72.15 355 |
|
| fmvsm_s_conf0.5_n | | | 69.58 146 | 68.84 142 | 71.79 173 | 72.31 292 | 52.90 169 | 77.90 140 | 62.43 346 | 49.97 282 | 72.85 90 | 85.90 126 | 52.21 85 | 76.49 284 | 75.75 33 | 70.26 256 | 85.97 98 |
|
| COLMAP_ROB |  | 52.97 17 | 61.27 278 | 58.81 286 | 68.64 239 | 74.63 255 | 52.51 179 | 78.42 130 | 73.30 257 | 49.92 283 | 50.96 366 | 81.51 217 | 23.06 378 | 79.40 229 | 31.63 375 | 65.85 305 | 74.01 337 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| fmvsm_s_conf0.5_n_a | | | 69.54 148 | 68.74 145 | 71.93 168 | 72.47 287 | 53.82 149 | 78.25 131 | 62.26 348 | 49.78 284 | 73.12 84 | 86.21 115 | 52.66 77 | 76.79 278 | 75.02 41 | 68.88 281 | 85.18 135 |
|
| WBMVS | | | 60.54 280 | 60.61 274 | 60.34 321 | 78.00 179 | 35.95 367 | 64.55 337 | 64.89 325 | 49.63 285 | 63.39 245 | 78.70 266 | 33.85 298 | 67.65 334 | 42.10 312 | 70.35 253 | 77.43 294 |
|
| tpmvs | | | 58.47 296 | 56.95 303 | 63.03 305 | 70.20 326 | 41.21 315 | 67.90 308 | 67.23 308 | 49.62 286 | 54.73 344 | 70.84 357 | 34.14 292 | 76.24 289 | 36.64 346 | 61.29 343 | 71.64 359 |
|
| fmvsm_s_conf0.1_n | | | 69.41 153 | 68.60 148 | 71.83 171 | 71.07 313 | 52.88 171 | 77.85 143 | 62.44 345 | 49.58 287 | 72.97 87 | 86.22 114 | 51.68 95 | 76.48 285 | 75.53 36 | 70.10 259 | 86.14 93 |
|
| UBG | | | 59.62 291 | 59.53 280 | 59.89 322 | 78.12 174 | 35.92 368 | 64.11 341 | 60.81 356 | 49.45 288 | 61.34 277 | 75.55 321 | 33.05 306 | 67.39 338 | 38.68 330 | 74.62 188 | 76.35 309 |
|
| thisisatest0515 | | | 65.83 222 | 63.50 236 | 72.82 154 | 73.75 267 | 49.50 227 | 71.32 272 | 73.12 261 | 49.39 289 | 63.82 240 | 76.50 309 | 34.95 285 | 84.84 121 | 53.20 215 | 75.49 185 | 84.13 167 |
|
| fmvsm_s_conf0.1_n_a | | | 69.32 154 | 68.44 154 | 71.96 167 | 70.91 315 | 53.78 150 | 78.12 136 | 62.30 347 | 49.35 290 | 73.20 80 | 86.55 107 | 51.99 89 | 76.79 278 | 74.83 43 | 68.68 286 | 85.32 130 |
|
| HY-MVS | | 56.14 13 | 64.55 239 | 63.89 228 | 66.55 263 | 74.73 252 | 41.02 316 | 69.96 293 | 74.43 243 | 49.29 291 | 61.66 274 | 80.92 228 | 47.43 148 | 76.68 282 | 44.91 288 | 71.69 235 | 81.94 225 |
|
| MIMVSNet1 | | | 55.17 326 | 54.31 327 | 57.77 340 | 70.03 330 | 32.01 391 | 65.68 323 | 64.81 326 | 49.19 292 | 46.75 384 | 76.00 313 | 25.53 371 | 64.04 352 | 28.65 389 | 62.13 337 | 77.26 298 |
|
| SCA | | | 60.49 281 | 58.38 292 | 66.80 257 | 74.14 266 | 48.06 247 | 63.35 343 | 63.23 339 | 49.13 293 | 59.33 302 | 72.10 347 | 37.45 259 | 74.27 299 | 44.17 290 | 62.57 333 | 78.05 285 |
|
| test_fmvsmvis_n_1920 | | | 70.84 114 | 70.38 115 | 72.22 166 | 71.16 312 | 55.39 130 | 75.86 192 | 72.21 267 | 49.03 294 | 73.28 78 | 86.17 117 | 51.83 92 | 77.29 266 | 75.80 32 | 78.05 150 | 83.98 171 |
|
| testgi | | | 51.90 341 | 52.37 338 | 50.51 376 | 60.39 393 | 23.55 416 | 58.42 366 | 58.15 363 | 49.03 294 | 51.83 363 | 79.21 262 | 22.39 379 | 55.59 389 | 29.24 388 | 62.64 332 | 72.40 352 |
|
| MIMVSNet | | | 57.35 304 | 57.07 301 | 58.22 335 | 74.21 265 | 37.18 351 | 62.46 347 | 60.88 355 | 48.88 296 | 55.29 337 | 75.99 315 | 31.68 325 | 62.04 359 | 31.87 370 | 72.35 227 | 75.43 319 |
|
| gm-plane-assit | | | | | | 71.40 308 | 41.72 313 | | | 48.85 297 | | 73.31 339 | | 82.48 173 | 48.90 250 | | |
|
| fmvsm_l_conf0.5_n | | | 70.99 112 | 70.82 106 | 71.48 182 | 71.45 304 | 54.40 142 | 77.18 162 | 70.46 280 | 48.67 298 | 75.17 45 | 86.86 91 | 53.77 65 | 76.86 276 | 76.33 30 | 77.51 158 | 83.17 203 |
|
| UWE-MVS | | | 60.18 284 | 59.78 278 | 61.39 316 | 77.67 191 | 33.92 383 | 69.04 302 | 63.82 334 | 48.56 299 | 64.27 235 | 77.64 289 | 27.20 357 | 70.40 319 | 33.56 362 | 76.24 175 | 79.83 265 |
|
| cascas | | | 65.98 220 | 63.42 237 | 73.64 131 | 77.26 207 | 52.58 177 | 72.26 261 | 77.21 202 | 48.56 299 | 61.21 279 | 74.60 331 | 32.57 320 | 85.82 95 | 50.38 237 | 76.75 171 | 82.52 214 |
|
| PLC |  | 56.13 14 | 65.09 233 | 63.21 242 | 70.72 205 | 81.04 103 | 54.87 137 | 78.57 127 | 77.47 196 | 48.51 301 | 55.71 331 | 81.89 208 | 33.71 299 | 79.71 224 | 41.66 316 | 70.37 251 | 77.58 292 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| LS3D | | | 64.71 236 | 62.50 250 | 71.34 191 | 79.72 128 | 55.71 120 | 79.82 107 | 74.72 240 | 48.50 302 | 56.62 324 | 84.62 148 | 33.59 302 | 82.34 175 | 29.65 386 | 75.23 186 | 75.97 311 |
|
| anonymousdsp | | | 67.00 205 | 64.82 222 | 73.57 135 | 70.09 329 | 56.13 110 | 76.35 180 | 77.35 200 | 48.43 303 | 64.99 226 | 80.84 232 | 33.01 308 | 80.34 215 | 64.66 121 | 67.64 293 | 84.23 163 |
|
| 无先验 | | | | | | | | 79.66 112 | 74.30 247 | 48.40 304 | | | | 80.78 208 | 53.62 210 | | 79.03 276 |
|
| 114514_t | | | 70.83 115 | 69.56 127 | 74.64 96 | 86.21 31 | 54.63 139 | 82.34 73 | 81.81 104 | 48.22 305 | 63.01 253 | 85.83 129 | 40.92 226 | 87.10 62 | 57.91 175 | 79.79 120 | 82.18 221 |
|
| tpm | | | 57.34 305 | 58.16 294 | 54.86 353 | 71.80 300 | 34.77 373 | 67.47 313 | 56.04 377 | 48.20 306 | 60.10 287 | 76.92 297 | 37.17 265 | 53.41 396 | 40.76 320 | 65.01 311 | 76.40 308 |
|
| test_fmvsm_n_1920 | | | 71.73 101 | 71.14 101 | 73.50 136 | 72.52 285 | 56.53 104 | 75.60 196 | 76.16 213 | 48.11 307 | 77.22 31 | 85.56 133 | 53.10 74 | 77.43 262 | 74.86 42 | 77.14 165 | 86.55 76 |
|
| MDA-MVSNet-bldmvs | | | 53.87 332 | 50.81 344 | 63.05 304 | 66.25 363 | 48.58 241 | 56.93 378 | 63.82 334 | 48.09 308 | 41.22 396 | 70.48 362 | 30.34 332 | 68.00 332 | 34.24 357 | 45.92 392 | 72.57 346 |
|
| XXY-MVS | | | 60.68 279 | 61.67 259 | 57.70 341 | 70.43 323 | 38.45 340 | 64.19 339 | 66.47 314 | 48.05 309 | 63.22 246 | 80.86 230 | 49.28 121 | 60.47 363 | 45.25 287 | 67.28 296 | 74.19 335 |
|
| F-COLMAP | | | 63.05 257 | 60.87 273 | 69.58 227 | 76.99 215 | 53.63 154 | 78.12 136 | 76.16 213 | 47.97 310 | 52.41 361 | 81.61 214 | 27.87 351 | 78.11 251 | 40.07 322 | 66.66 300 | 77.00 302 |
|
| fmvsm_l_conf0.5_n_a | | | 70.50 122 | 70.27 117 | 71.18 195 | 71.30 310 | 54.09 145 | 76.89 170 | 69.87 284 | 47.90 311 | 74.37 64 | 86.49 108 | 53.07 75 | 76.69 281 | 75.41 37 | 77.11 166 | 82.76 210 |
|
| Patchmatch-RL test | | | 58.16 299 | 55.49 316 | 66.15 272 | 67.92 352 | 48.89 237 | 60.66 360 | 51.07 390 | 47.86 312 | 59.36 299 | 62.71 394 | 34.02 295 | 72.27 307 | 56.41 184 | 59.40 354 | 77.30 296 |
|
| D2MVS | | | 62.30 265 | 60.29 276 | 68.34 244 | 66.46 362 | 48.42 243 | 65.70 322 | 73.42 256 | 47.71 313 | 58.16 313 | 75.02 327 | 30.51 330 | 77.71 259 | 53.96 208 | 71.68 236 | 78.90 278 |
|
| ANet_high | | | 41.38 368 | 37.47 375 | 53.11 366 | 39.73 421 | 24.45 414 | 56.94 377 | 69.69 285 | 47.65 314 | 26.04 413 | 52.32 403 | 12.44 402 | 62.38 358 | 21.80 405 | 10.61 422 | 72.49 347 |
|
| CostFormer | | | 64.04 245 | 62.51 249 | 68.61 240 | 71.88 298 | 45.77 269 | 71.30 273 | 70.60 279 | 47.55 315 | 64.31 234 | 76.61 305 | 41.63 214 | 79.62 227 | 49.74 241 | 69.00 280 | 80.42 253 |
|
| PatchmatchNet |  | | 59.84 287 | 58.24 293 | 64.65 292 | 73.05 275 | 46.70 261 | 69.42 298 | 62.18 349 | 47.55 315 | 58.88 305 | 71.96 349 | 34.49 289 | 69.16 324 | 42.99 305 | 63.60 324 | 78.07 284 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| KD-MVS_self_test | | | 55.22 325 | 53.89 331 | 59.21 327 | 57.80 399 | 27.47 405 | 57.75 373 | 74.32 245 | 47.38 317 | 50.90 367 | 70.00 365 | 28.45 348 | 70.30 320 | 40.44 321 | 57.92 359 | 79.87 264 |
|
| ITE_SJBPF | | | | | 62.09 310 | 66.16 364 | 44.55 285 | | 64.32 330 | 47.36 318 | 55.31 336 | 80.34 238 | 19.27 387 | 62.68 357 | 36.29 350 | 62.39 335 | 79.04 275 |
|
| KD-MVS_2432*1600 | | | 53.45 334 | 51.50 342 | 59.30 324 | 62.82 378 | 37.14 352 | 55.33 381 | 71.79 271 | 47.34 319 | 55.09 339 | 70.52 360 | 21.91 382 | 70.45 317 | 35.72 352 | 42.97 396 | 70.31 372 |
|
| miper_refine_blended | | | 53.45 334 | 51.50 342 | 59.30 324 | 62.82 378 | 37.14 352 | 55.33 381 | 71.79 271 | 47.34 319 | 55.09 339 | 70.52 360 | 21.91 382 | 70.45 317 | 35.72 352 | 42.97 396 | 70.31 372 |
|
| OurMVSNet-221017-0 | | | 61.37 277 | 58.63 290 | 69.61 224 | 72.05 295 | 48.06 247 | 73.93 234 | 72.51 264 | 47.23 321 | 54.74 343 | 80.92 228 | 21.49 385 | 81.24 195 | 48.57 253 | 56.22 367 | 79.53 270 |
|
| tpmrst | | | 58.24 298 | 58.70 289 | 56.84 343 | 66.97 356 | 34.32 378 | 69.57 297 | 61.14 354 | 47.17 322 | 58.58 310 | 71.60 352 | 41.28 221 | 60.41 364 | 49.20 247 | 62.84 331 | 75.78 314 |
|
| PVSNet | | 50.76 19 | 58.40 297 | 57.39 299 | 61.42 314 | 75.53 239 | 44.04 290 | 61.43 352 | 63.45 337 | 47.04 323 | 56.91 322 | 73.61 338 | 27.00 360 | 64.76 350 | 39.12 328 | 72.40 226 | 75.47 318 |
|
| WB-MVSnew | | | 59.66 289 | 59.69 279 | 59.56 323 | 75.19 245 | 35.78 369 | 69.34 299 | 64.28 331 | 46.88 324 | 61.76 273 | 75.79 317 | 40.61 227 | 65.20 349 | 32.16 367 | 71.21 240 | 77.70 290 |
|
| FMVSNet5 | | | 55.86 319 | 54.93 319 | 58.66 332 | 71.05 314 | 36.35 361 | 64.18 340 | 62.48 344 | 46.76 325 | 50.66 371 | 74.73 330 | 25.80 368 | 64.04 352 | 33.11 363 | 65.57 308 | 75.59 316 |
|
| jason | | | 69.65 143 | 68.39 156 | 73.43 141 | 78.27 168 | 56.88 101 | 77.12 163 | 73.71 255 | 46.53 326 | 69.34 137 | 83.22 177 | 43.37 195 | 79.18 233 | 64.77 120 | 79.20 132 | 84.23 163 |
| jason: jason. |
| MS-PatchMatch | | | 62.42 263 | 61.46 262 | 65.31 287 | 75.21 244 | 52.10 185 | 72.05 263 | 74.05 251 | 46.41 327 | 57.42 320 | 74.36 332 | 34.35 291 | 77.57 261 | 45.62 279 | 73.67 201 | 66.26 386 |
|
| 1112_ss | | | 64.00 246 | 63.36 238 | 65.93 277 | 79.28 136 | 42.58 303 | 71.35 271 | 72.36 266 | 46.41 327 | 60.55 284 | 77.89 282 | 46.27 164 | 73.28 302 | 46.18 272 | 69.97 261 | 81.92 226 |
|
| lupinMVS | | | 69.57 147 | 68.28 157 | 73.44 140 | 78.76 151 | 57.15 97 | 76.57 176 | 73.29 258 | 46.19 329 | 69.49 133 | 82.18 199 | 43.99 191 | 79.23 232 | 64.66 121 | 79.37 127 | 83.93 172 |
|
| testdata | | | | | 64.66 291 | 81.52 91 | 52.93 168 | | 65.29 323 | 46.09 330 | 73.88 70 | 87.46 81 | 38.08 255 | 66.26 345 | 53.31 214 | 78.48 145 | 74.78 328 |
|
| UnsupCasMVSNet_eth | | | 53.16 339 | 52.47 337 | 55.23 351 | 59.45 394 | 33.39 386 | 59.43 364 | 69.13 294 | 45.98 331 | 50.35 373 | 72.32 344 | 29.30 342 | 58.26 377 | 42.02 314 | 44.30 394 | 74.05 336 |
|
| AllTest | | | 57.08 307 | 54.65 321 | 64.39 294 | 71.44 305 | 49.03 231 | 69.92 294 | 67.30 305 | 45.97 332 | 47.16 381 | 79.77 248 | 17.47 388 | 67.56 336 | 33.65 359 | 59.16 355 | 76.57 306 |
|
| TestCases | | | | | 64.39 294 | 71.44 305 | 49.03 231 | | 67.30 305 | 45.97 332 | 47.16 381 | 79.77 248 | 17.47 388 | 67.56 336 | 33.65 359 | 59.16 355 | 76.57 306 |
|
| WTY-MVS | | | 59.75 288 | 60.39 275 | 57.85 339 | 72.32 291 | 37.83 345 | 61.05 358 | 64.18 332 | 45.95 334 | 61.91 270 | 79.11 263 | 47.01 157 | 60.88 362 | 42.50 309 | 69.49 272 | 74.83 326 |
|
| IterMVS-SCA-FT | | | 62.49 261 | 61.52 261 | 65.40 285 | 71.99 297 | 50.80 203 | 71.15 277 | 69.63 287 | 45.71 335 | 60.61 283 | 77.93 279 | 37.45 259 | 65.99 346 | 55.67 192 | 63.50 326 | 79.42 271 |
|
| WB-MVS | | | 43.26 362 | 43.41 362 | 42.83 388 | 63.32 377 | 10.32 426 | 58.17 369 | 45.20 404 | 45.42 336 | 40.44 399 | 67.26 381 | 34.01 296 | 58.98 372 | 11.96 417 | 24.88 411 | 59.20 392 |
|
| 旧先验2 | | | | | | | | 76.08 186 | | 45.32 337 | 76.55 36 | | | 65.56 348 | 58.75 171 | | |
|
| OpenMVS_ROB |  | 52.78 18 | 60.03 285 | 58.14 295 | 65.69 281 | 70.47 322 | 44.82 279 | 75.33 201 | 70.86 277 | 45.04 338 | 56.06 329 | 76.00 313 | 26.89 362 | 79.65 225 | 35.36 354 | 67.29 295 | 72.60 345 |
|
| TinyColmap | | | 54.14 329 | 51.72 340 | 61.40 315 | 66.84 358 | 41.97 308 | 66.52 316 | 68.51 298 | 44.81 339 | 42.69 395 | 75.77 318 | 11.66 404 | 72.94 303 | 31.96 369 | 56.77 365 | 69.27 380 |
|
| MDTV_nov1_ep13 | | | | 57.00 302 | | 72.73 280 | 38.26 341 | 65.02 334 | 64.73 328 | 44.74 340 | 55.46 333 | 72.48 343 | 32.61 319 | 70.47 316 | 37.47 336 | 67.75 292 | |
|
| 新几何1 | | | | | 70.76 203 | 85.66 41 | 61.13 30 | | 66.43 315 | 44.68 341 | 70.29 118 | 86.64 99 | 41.29 220 | 75.23 294 | 49.72 242 | 81.75 103 | 75.93 312 |
|
| Patchmtry | | | 57.16 306 | 56.47 308 | 59.23 326 | 69.17 343 | 34.58 376 | 62.98 344 | 63.15 340 | 44.53 342 | 56.83 323 | 74.84 328 | 35.83 277 | 68.71 326 | 40.03 323 | 60.91 344 | 74.39 333 |
|
| ppachtmachnet_test | | | 58.06 301 | 55.38 317 | 66.10 274 | 69.51 337 | 48.99 234 | 68.01 307 | 66.13 318 | 44.50 343 | 54.05 351 | 70.74 358 | 32.09 324 | 72.34 306 | 36.68 345 | 56.71 366 | 76.99 304 |
|
| PatchT | | | 53.17 338 | 53.44 335 | 52.33 371 | 68.29 350 | 25.34 413 | 58.21 368 | 54.41 381 | 44.46 344 | 54.56 346 | 69.05 372 | 33.32 304 | 60.94 361 | 36.93 341 | 61.76 341 | 70.73 370 |
|
| EPMVS | | | 53.96 330 | 53.69 333 | 54.79 354 | 66.12 365 | 31.96 392 | 62.34 349 | 49.05 394 | 44.42 345 | 55.54 332 | 71.33 355 | 30.22 333 | 56.70 382 | 41.65 317 | 62.54 334 | 75.71 315 |
|
| pmmvs4 | | | 61.48 276 | 59.39 281 | 67.76 248 | 71.57 303 | 53.86 148 | 71.42 270 | 65.34 322 | 44.20 346 | 59.46 298 | 77.92 280 | 35.90 276 | 74.71 296 | 43.87 296 | 64.87 313 | 74.71 330 |
|
| dp | | | 51.89 342 | 51.60 341 | 52.77 368 | 68.44 349 | 32.45 390 | 62.36 348 | 54.57 380 | 44.16 347 | 49.31 376 | 67.91 374 | 28.87 345 | 56.61 384 | 33.89 358 | 54.89 370 | 69.24 381 |
|
| PatchMatch-RL | | | 56.25 316 | 54.55 323 | 61.32 317 | 77.06 212 | 56.07 112 | 65.57 324 | 54.10 383 | 44.13 348 | 53.49 359 | 71.27 356 | 25.20 372 | 66.78 341 | 36.52 348 | 63.66 323 | 61.12 390 |
|
| our_test_3 | | | 56.49 312 | 54.42 324 | 62.68 307 | 69.51 337 | 45.48 275 | 66.08 319 | 61.49 352 | 44.11 349 | 50.73 370 | 69.60 369 | 33.05 306 | 68.15 328 | 38.38 332 | 56.86 363 | 74.40 332 |
|
| USDC | | | 56.35 315 | 54.24 328 | 62.69 306 | 64.74 370 | 40.31 322 | 65.05 333 | 73.83 253 | 43.93 350 | 47.58 379 | 77.71 288 | 15.36 397 | 75.05 295 | 38.19 334 | 61.81 340 | 72.70 344 |
|
| PM-MVS | | | 52.33 340 | 50.19 348 | 58.75 331 | 62.10 383 | 45.14 278 | 65.75 321 | 40.38 411 | 43.60 351 | 53.52 357 | 72.65 342 | 9.16 412 | 65.87 347 | 50.41 236 | 54.18 373 | 65.24 388 |
|
| pmmvs-eth3d | | | 58.81 295 | 56.31 310 | 66.30 268 | 67.61 353 | 52.42 182 | 72.30 260 | 64.76 327 | 43.55 352 | 54.94 341 | 74.19 334 | 28.95 343 | 72.60 304 | 43.31 300 | 57.21 362 | 73.88 338 |
|
| SSC-MVS | | | 41.96 367 | 41.99 366 | 41.90 389 | 62.46 382 | 9.28 428 | 57.41 376 | 44.32 407 | 43.38 353 | 38.30 405 | 66.45 384 | 32.67 316 | 58.42 376 | 10.98 418 | 21.91 414 | 57.99 396 |
|
| new-patchmatchnet | | | 47.56 356 | 47.73 356 | 47.06 379 | 58.81 397 | 9.37 427 | 48.78 398 | 59.21 360 | 43.28 354 | 44.22 391 | 68.66 373 | 25.67 369 | 57.20 381 | 31.57 377 | 49.35 387 | 74.62 331 |
|
| Test_1112_low_res | | | 62.32 264 | 61.77 258 | 64.00 297 | 79.08 144 | 39.53 331 | 68.17 305 | 70.17 281 | 43.25 355 | 59.03 304 | 79.90 245 | 44.08 188 | 71.24 313 | 43.79 297 | 68.42 287 | 81.25 238 |
|
| RPMNet | | | 61.53 274 | 58.42 291 | 70.86 201 | 69.96 331 | 52.07 186 | 65.31 331 | 81.36 115 | 43.20 356 | 59.36 299 | 70.15 364 | 35.37 280 | 85.47 105 | 36.42 349 | 64.65 315 | 75.06 321 |
|
| tpm2 | | | 62.07 268 | 60.10 277 | 67.99 246 | 72.79 279 | 43.86 291 | 71.05 280 | 66.85 312 | 43.14 357 | 62.77 255 | 75.39 325 | 38.32 251 | 80.80 207 | 41.69 315 | 68.88 281 | 79.32 272 |
|
| JIA-IIPM | | | 51.56 343 | 47.68 357 | 63.21 302 | 64.61 371 | 50.73 204 | 47.71 400 | 58.77 362 | 42.90 358 | 48.46 378 | 51.72 404 | 24.97 373 | 70.24 321 | 36.06 351 | 53.89 374 | 68.64 382 |
|
| 1314 | | | 64.61 238 | 63.21 242 | 68.80 237 | 71.87 299 | 47.46 255 | 73.95 232 | 78.39 184 | 42.88 359 | 59.97 290 | 76.60 306 | 38.11 254 | 79.39 230 | 54.84 199 | 72.32 228 | 79.55 269 |
|
| HyFIR lowres test | | | 65.67 224 | 63.01 244 | 73.67 128 | 79.97 124 | 55.65 122 | 69.07 301 | 75.52 224 | 42.68 360 | 63.53 243 | 77.95 278 | 40.43 228 | 81.64 185 | 46.01 274 | 71.91 233 | 83.73 184 |
|
| CR-MVSNet | | | 59.91 286 | 57.90 298 | 65.96 276 | 69.96 331 | 52.07 186 | 65.31 331 | 63.15 340 | 42.48 361 | 59.36 299 | 74.84 328 | 35.83 277 | 70.75 315 | 45.50 282 | 64.65 315 | 75.06 321 |
|
| test222 | | | | | | 83.14 71 | 58.68 76 | 72.57 256 | 63.45 337 | 41.78 362 | 67.56 172 | 86.12 118 | 37.13 266 | | | 78.73 142 | 74.98 324 |
|
| TDRefinement | | | 53.44 336 | 50.72 345 | 61.60 312 | 64.31 373 | 46.96 259 | 70.89 281 | 65.27 324 | 41.78 362 | 44.61 390 | 77.98 277 | 11.52 406 | 66.36 344 | 28.57 390 | 51.59 380 | 71.49 362 |
|
| sss | | | 56.17 317 | 56.57 307 | 54.96 352 | 66.93 357 | 36.32 363 | 57.94 370 | 61.69 351 | 41.67 364 | 58.64 308 | 75.32 326 | 38.72 246 | 56.25 386 | 42.04 313 | 66.19 304 | 72.31 353 |
|
| PVSNet_0 | | 43.31 20 | 47.46 357 | 45.64 360 | 52.92 367 | 67.60 354 | 44.65 282 | 54.06 386 | 54.64 379 | 41.59 365 | 46.15 386 | 58.75 397 | 30.99 328 | 58.66 374 | 32.18 366 | 24.81 412 | 55.46 400 |
|
| MVS | | | 67.37 194 | 66.33 200 | 70.51 209 | 75.46 240 | 50.94 198 | 73.95 232 | 81.85 103 | 41.57 366 | 62.54 262 | 78.57 272 | 47.98 135 | 85.47 105 | 52.97 216 | 82.05 96 | 75.14 320 |
|
| Anonymous20240521 | | | 55.30 323 | 54.41 325 | 57.96 338 | 60.92 392 | 41.73 311 | 71.09 279 | 71.06 276 | 41.18 367 | 48.65 377 | 73.31 339 | 16.93 391 | 59.25 370 | 42.54 308 | 64.01 320 | 72.90 342 |
|
| Anonymous20231206 | | | 55.10 327 | 55.30 318 | 54.48 355 | 69.81 335 | 33.94 382 | 62.91 345 | 62.13 350 | 41.08 368 | 55.18 338 | 75.65 319 | 32.75 314 | 56.59 385 | 30.32 383 | 67.86 290 | 72.91 341 |
|
| MDA-MVSNet_test_wron | | | 50.71 348 | 48.95 350 | 56.00 348 | 61.17 387 | 41.84 309 | 51.90 392 | 56.45 371 | 40.96 369 | 44.79 389 | 67.84 375 | 30.04 335 | 55.07 393 | 36.71 344 | 50.69 383 | 71.11 368 |
|
| YYNet1 | | | 50.73 347 | 48.96 349 | 56.03 347 | 61.10 388 | 41.78 310 | 51.94 391 | 56.44 372 | 40.94 370 | 44.84 388 | 67.80 376 | 30.08 334 | 55.08 392 | 36.77 342 | 50.71 382 | 71.22 365 |
|
| dongtai | | | 34.52 377 | 34.94 377 | 33.26 398 | 61.06 389 | 16.00 423 | 52.79 390 | 23.78 424 | 40.71 371 | 39.33 403 | 48.65 412 | 16.91 392 | 48.34 404 | 12.18 416 | 19.05 416 | 35.44 415 |
|
| CHOSEN 1792x2688 | | | 65.08 234 | 62.84 246 | 71.82 172 | 81.49 93 | 56.26 108 | 66.32 318 | 74.20 250 | 40.53 372 | 63.16 249 | 78.65 269 | 41.30 219 | 77.80 257 | 45.80 276 | 74.09 194 | 81.40 234 |
|
| pmmvs5 | | | 56.47 313 | 55.68 315 | 58.86 330 | 61.41 386 | 36.71 358 | 66.37 317 | 62.75 342 | 40.38 373 | 53.70 353 | 76.62 303 | 34.56 287 | 67.05 339 | 40.02 324 | 65.27 309 | 72.83 343 |
|
| test_vis1_n_1920 | | | 58.86 294 | 59.06 285 | 58.25 334 | 63.76 374 | 43.14 299 | 67.49 312 | 66.36 316 | 40.22 374 | 65.89 203 | 71.95 350 | 31.04 327 | 59.75 368 | 59.94 162 | 64.90 312 | 71.85 357 |
|
| MDTV_nov1_ep13_2view | | | | | | | 25.89 411 | 61.22 355 | | 40.10 375 | 51.10 365 | | 32.97 309 | | 38.49 331 | | 78.61 280 |
|
| tpm cat1 | | | 59.25 293 | 56.95 303 | 66.15 272 | 72.19 293 | 46.96 259 | 68.09 306 | 65.76 319 | 40.03 376 | 57.81 316 | 70.56 359 | 38.32 251 | 74.51 297 | 38.26 333 | 61.50 342 | 77.00 302 |
|
| test-mter | | | 56.42 314 | 55.82 314 | 58.22 335 | 68.57 346 | 44.80 280 | 65.46 327 | 57.92 365 | 39.94 377 | 55.44 334 | 69.82 366 | 21.92 381 | 57.44 379 | 49.66 243 | 73.62 202 | 72.41 350 |
|
| UnsupCasMVSNet_bld | | | 50.07 350 | 48.87 351 | 53.66 360 | 60.97 391 | 33.67 384 | 57.62 374 | 64.56 329 | 39.47 378 | 47.38 380 | 64.02 392 | 27.47 354 | 59.32 369 | 34.69 356 | 43.68 395 | 67.98 384 |
|
| TESTMET0.1,1 | | | 55.28 324 | 54.90 320 | 56.42 345 | 66.56 360 | 43.67 293 | 65.46 327 | 56.27 375 | 39.18 379 | 53.83 352 | 67.44 378 | 24.21 376 | 55.46 390 | 48.04 258 | 73.11 215 | 70.13 374 |
|
| mamv4 | | | 56.85 309 | 58.00 297 | 53.43 363 | 72.46 288 | 54.47 140 | 57.56 375 | 54.74 378 | 38.81 380 | 57.42 320 | 79.45 257 | 47.57 144 | 38.70 415 | 60.88 154 | 53.07 376 | 67.11 385 |
|
| ADS-MVSNet2 | | | 51.33 345 | 48.76 352 | 59.07 329 | 66.02 366 | 44.60 283 | 50.90 394 | 59.76 358 | 36.90 381 | 50.74 368 | 66.18 386 | 26.38 363 | 63.11 355 | 27.17 394 | 54.76 371 | 69.50 378 |
|
| ADS-MVSNet | | | 48.48 354 | 47.77 355 | 50.63 375 | 66.02 366 | 29.92 396 | 50.90 394 | 50.87 392 | 36.90 381 | 50.74 368 | 66.18 386 | 26.38 363 | 52.47 398 | 27.17 394 | 54.76 371 | 69.50 378 |
|
| RPSCF | | | 55.80 320 | 54.22 329 | 60.53 320 | 65.13 369 | 42.91 302 | 64.30 338 | 57.62 367 | 36.84 383 | 58.05 315 | 82.28 198 | 28.01 350 | 56.24 387 | 37.14 339 | 58.61 357 | 82.44 217 |
|
| test_cas_vis1_n_1920 | | | 56.91 308 | 56.71 306 | 57.51 342 | 59.13 396 | 45.40 276 | 63.58 342 | 61.29 353 | 36.24 384 | 67.14 179 | 71.85 351 | 29.89 336 | 56.69 383 | 57.65 177 | 63.58 325 | 70.46 371 |
|
| Patchmatch-test | | | 49.08 352 | 48.28 354 | 51.50 374 | 64.40 372 | 30.85 395 | 45.68 404 | 48.46 397 | 35.60 385 | 46.10 387 | 72.10 347 | 34.47 290 | 46.37 407 | 27.08 396 | 60.65 348 | 77.27 297 |
|
| CHOSEN 280x420 | | | 47.83 355 | 46.36 359 | 52.24 373 | 67.37 355 | 49.78 221 | 38.91 412 | 43.11 409 | 35.00 386 | 43.27 394 | 63.30 393 | 28.95 343 | 49.19 403 | 36.53 347 | 60.80 346 | 57.76 397 |
|
| N_pmnet | | | 39.35 372 | 40.28 369 | 36.54 395 | 63.76 374 | 1.62 432 | 49.37 397 | 0.76 431 | 34.62 387 | 43.61 393 | 66.38 385 | 26.25 365 | 42.57 411 | 26.02 399 | 51.77 379 | 65.44 387 |
|
| kuosan | | | 29.62 384 | 30.82 383 | 26.02 403 | 52.99 402 | 16.22 422 | 51.09 393 | 22.71 425 | 33.91 388 | 33.99 407 | 40.85 413 | 15.89 395 | 33.11 420 | 7.59 424 | 18.37 417 | 28.72 417 |
|
| PMMVS | | | 53.96 330 | 53.26 336 | 56.04 346 | 62.60 381 | 50.92 200 | 61.17 356 | 56.09 376 | 32.81 389 | 53.51 358 | 66.84 383 | 34.04 294 | 59.93 367 | 44.14 292 | 68.18 288 | 57.27 398 |
|
| CMPMVS |  | 42.80 21 | 57.81 303 | 55.97 312 | 63.32 300 | 60.98 390 | 47.38 256 | 64.66 336 | 69.50 290 | 32.06 390 | 46.83 383 | 77.80 284 | 29.50 340 | 71.36 312 | 48.68 251 | 73.75 200 | 71.21 366 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ttmdpeth | | | 45.56 358 | 42.95 363 | 53.39 365 | 52.33 406 | 29.15 398 | 57.77 371 | 48.20 398 | 31.81 391 | 49.86 375 | 77.21 293 | 8.69 413 | 59.16 371 | 27.31 393 | 33.40 408 | 71.84 358 |
|
| CVMVSNet | | | 59.63 290 | 59.14 283 | 61.08 319 | 74.47 258 | 38.84 336 | 75.20 205 | 68.74 297 | 31.15 392 | 58.24 312 | 76.51 307 | 32.39 322 | 68.58 327 | 49.77 240 | 65.84 306 | 75.81 313 |
|
| FPMVS | | | 42.18 366 | 41.11 368 | 45.39 381 | 58.03 398 | 41.01 318 | 49.50 396 | 53.81 384 | 30.07 393 | 33.71 408 | 64.03 390 | 11.69 403 | 52.08 401 | 14.01 412 | 55.11 369 | 43.09 409 |
|
| EU-MVSNet | | | 55.61 322 | 54.41 325 | 59.19 328 | 65.41 368 | 33.42 385 | 72.44 258 | 71.91 270 | 28.81 394 | 51.27 364 | 73.87 336 | 24.76 374 | 69.08 325 | 43.04 304 | 58.20 358 | 75.06 321 |
|
| test_vis1_n | | | 49.89 351 | 48.69 353 | 53.50 362 | 53.97 400 | 37.38 350 | 61.53 351 | 47.33 401 | 28.54 395 | 59.62 297 | 67.10 382 | 13.52 399 | 52.27 399 | 49.07 248 | 57.52 360 | 70.84 369 |
|
| test_fmvs1_n | | | 51.37 344 | 50.35 347 | 54.42 357 | 52.85 403 | 37.71 347 | 61.16 357 | 51.93 385 | 28.15 396 | 63.81 241 | 69.73 368 | 13.72 398 | 53.95 394 | 51.16 231 | 60.65 348 | 71.59 360 |
|
| LF4IMVS | | | 42.95 363 | 42.26 365 | 45.04 382 | 48.30 411 | 32.50 389 | 54.80 383 | 48.49 396 | 28.03 397 | 40.51 398 | 70.16 363 | 9.24 411 | 43.89 410 | 31.63 375 | 49.18 388 | 58.72 394 |
|
| test_fmvs1 | | | 51.32 346 | 50.48 346 | 53.81 359 | 53.57 401 | 37.51 349 | 60.63 361 | 51.16 388 | 28.02 398 | 63.62 242 | 69.23 371 | 16.41 393 | 53.93 395 | 51.01 232 | 60.70 347 | 69.99 375 |
|
| MVS-HIRNet | | | 45.52 359 | 44.48 361 | 48.65 378 | 68.49 348 | 34.05 381 | 59.41 365 | 44.50 406 | 27.03 399 | 37.96 406 | 50.47 408 | 26.16 366 | 64.10 351 | 26.74 397 | 59.52 353 | 47.82 407 |
|
| PMVS |  | 28.69 22 | 36.22 375 | 33.29 380 | 45.02 383 | 36.82 423 | 35.98 366 | 54.68 384 | 48.74 395 | 26.31 400 | 21.02 416 | 51.61 405 | 2.88 425 | 60.10 366 | 9.99 421 | 47.58 389 | 38.99 414 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| pmmvs3 | | | 44.92 360 | 41.95 367 | 53.86 358 | 52.58 405 | 43.55 294 | 62.11 350 | 46.90 403 | 26.05 401 | 40.63 397 | 60.19 396 | 11.08 409 | 57.91 378 | 31.83 374 | 46.15 391 | 60.11 391 |
|
| test_fmvs2 | | | 48.69 353 | 47.49 358 | 52.29 372 | 48.63 410 | 33.06 388 | 57.76 372 | 48.05 399 | 25.71 402 | 59.76 295 | 69.60 369 | 11.57 405 | 52.23 400 | 49.45 246 | 56.86 363 | 71.58 361 |
|
| PMMVS2 | | | 27.40 385 | 25.91 388 | 31.87 400 | 39.46 422 | 6.57 429 | 31.17 415 | 28.52 420 | 23.96 403 | 20.45 417 | 48.94 411 | 4.20 421 | 37.94 416 | 16.51 409 | 19.97 415 | 51.09 402 |
|
| MVStest1 | | | 42.65 364 | 39.29 371 | 52.71 369 | 47.26 413 | 34.58 376 | 54.41 385 | 50.84 393 | 23.35 404 | 39.31 404 | 74.08 335 | 12.57 401 | 55.09 391 | 23.32 402 | 28.47 410 | 68.47 383 |
|
| Gipuma |  | | 34.77 376 | 31.91 381 | 43.33 386 | 62.05 384 | 37.87 343 | 20.39 417 | 67.03 310 | 23.23 405 | 18.41 418 | 25.84 418 | 4.24 419 | 62.73 356 | 14.71 411 | 51.32 381 | 29.38 416 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_vis1_rt | | | 41.35 369 | 39.45 370 | 47.03 380 | 46.65 414 | 37.86 344 | 47.76 399 | 38.65 412 | 23.10 406 | 44.21 392 | 51.22 406 | 11.20 408 | 44.08 409 | 39.27 327 | 53.02 377 | 59.14 393 |
|
| new_pmnet | | | 34.13 378 | 34.29 379 | 33.64 397 | 52.63 404 | 18.23 421 | 44.43 407 | 33.90 417 | 22.81 407 | 30.89 410 | 53.18 402 | 10.48 410 | 35.72 419 | 20.77 406 | 39.51 400 | 46.98 408 |
|
| mvsany_test1 | | | 39.38 371 | 38.16 374 | 43.02 387 | 49.05 408 | 34.28 379 | 44.16 408 | 25.94 422 | 22.74 408 | 46.57 385 | 62.21 395 | 23.85 377 | 41.16 414 | 33.01 364 | 35.91 404 | 53.63 401 |
|
| LCM-MVSNet | | | 40.30 370 | 35.88 376 | 53.57 361 | 42.24 416 | 29.15 398 | 45.21 406 | 60.53 357 | 22.23 409 | 28.02 411 | 50.98 407 | 3.72 422 | 61.78 360 | 31.22 380 | 38.76 402 | 69.78 377 |
|
| test_fmvs3 | | | 44.30 361 | 42.55 364 | 49.55 377 | 42.83 415 | 27.15 408 | 53.03 388 | 44.93 405 | 22.03 410 | 53.69 355 | 64.94 389 | 4.21 420 | 49.63 402 | 47.47 259 | 49.82 385 | 71.88 356 |
|
| APD_test1 | | | 37.39 374 | 34.94 377 | 44.72 385 | 48.88 409 | 33.19 387 | 52.95 389 | 44.00 408 | 19.49 411 | 27.28 412 | 58.59 398 | 3.18 424 | 52.84 397 | 18.92 407 | 41.17 399 | 48.14 406 |
|
| mvsany_test3 | | | 32.62 379 | 30.57 384 | 38.77 393 | 36.16 424 | 24.20 415 | 38.10 413 | 20.63 426 | 19.14 412 | 40.36 400 | 57.43 399 | 5.06 417 | 36.63 418 | 29.59 387 | 28.66 409 | 55.49 399 |
|
| E-PMN | | | 23.77 386 | 22.73 390 | 26.90 401 | 42.02 417 | 20.67 418 | 42.66 409 | 35.70 415 | 17.43 413 | 10.28 423 | 25.05 419 | 6.42 415 | 42.39 412 | 10.28 420 | 14.71 419 | 17.63 418 |
|
| EMVS | | | 22.97 387 | 21.84 391 | 26.36 402 | 40.20 420 | 19.53 420 | 41.95 410 | 34.64 416 | 17.09 414 | 9.73 424 | 22.83 420 | 7.29 414 | 42.22 413 | 9.18 422 | 13.66 420 | 17.32 419 |
|
| test_vis3_rt | | | 32.09 380 | 30.20 385 | 37.76 394 | 35.36 425 | 27.48 404 | 40.60 411 | 28.29 421 | 16.69 415 | 32.52 409 | 40.53 414 | 1.96 426 | 37.40 417 | 33.64 361 | 42.21 398 | 48.39 404 |
|
| test_f | | | 31.86 381 | 31.05 382 | 34.28 396 | 32.33 427 | 21.86 417 | 32.34 414 | 30.46 419 | 16.02 416 | 39.78 402 | 55.45 401 | 4.80 418 | 32.36 421 | 30.61 381 | 37.66 403 | 48.64 403 |
|
| DSMNet-mixed | | | 39.30 373 | 38.72 372 | 41.03 390 | 51.22 407 | 19.66 419 | 45.53 405 | 31.35 418 | 15.83 417 | 39.80 401 | 67.42 380 | 22.19 380 | 45.13 408 | 22.43 403 | 52.69 378 | 58.31 395 |
|
| testf1 | | | 31.46 382 | 28.89 386 | 39.16 391 | 41.99 418 | 28.78 400 | 46.45 402 | 37.56 413 | 14.28 418 | 21.10 414 | 48.96 409 | 1.48 428 | 47.11 405 | 13.63 413 | 34.56 405 | 41.60 410 |
|
| APD_test2 | | | 31.46 382 | 28.89 386 | 39.16 391 | 41.99 418 | 28.78 400 | 46.45 402 | 37.56 413 | 14.28 418 | 21.10 414 | 48.96 409 | 1.48 428 | 47.11 405 | 13.63 413 | 34.56 405 | 41.60 410 |
|
| MVE |  | 17.77 23 | 21.41 388 | 17.77 393 | 32.34 399 | 34.34 426 | 25.44 412 | 16.11 418 | 24.11 423 | 11.19 420 | 13.22 420 | 31.92 416 | 1.58 427 | 30.95 422 | 10.47 419 | 17.03 418 | 40.62 413 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| DeepMVS_CX |  | | | | 12.03 406 | 17.97 428 | 10.91 425 | | 10.60 429 | 7.46 421 | 11.07 422 | 28.36 417 | 3.28 423 | 11.29 425 | 8.01 423 | 9.74 424 | 13.89 420 |
|
| wuyk23d | | | 13.32 391 | 12.52 394 | 15.71 405 | 47.54 412 | 26.27 410 | 31.06 416 | 1.98 430 | 4.93 422 | 5.18 425 | 1.94 425 | 0.45 430 | 18.54 424 | 6.81 425 | 12.83 421 | 2.33 422 |
|
| test_method | | | 19.68 389 | 18.10 392 | 24.41 404 | 13.68 429 | 3.11 431 | 12.06 420 | 42.37 410 | 2.00 423 | 11.97 421 | 36.38 415 | 5.77 416 | 29.35 423 | 15.06 410 | 23.65 413 | 40.76 412 |
|
| tmp_tt | | | 9.43 392 | 11.14 395 | 4.30 407 | 2.38 430 | 4.40 430 | 13.62 419 | 16.08 428 | 0.39 424 | 15.89 419 | 13.06 421 | 15.80 396 | 5.54 426 | 12.63 415 | 10.46 423 | 2.95 421 |
|
| EGC-MVSNET | | | 42.47 365 | 38.48 373 | 54.46 356 | 74.33 262 | 48.73 239 | 70.33 289 | 51.10 389 | 0.03 425 | 0.18 426 | 67.78 377 | 13.28 400 | 66.49 343 | 18.91 408 | 50.36 384 | 48.15 405 |
|
| testmvs | | | 4.52 395 | 6.03 398 | 0.01 409 | 0.01 431 | 0.00 434 | 53.86 387 | 0.00 432 | 0.01 426 | 0.04 427 | 0.27 426 | 0.00 432 | 0.00 427 | 0.04 426 | 0.00 425 | 0.03 424 |
|
| test123 | | | 4.73 394 | 6.30 397 | 0.02 408 | 0.01 431 | 0.01 433 | 56.36 379 | 0.00 432 | 0.01 426 | 0.04 427 | 0.21 427 | 0.01 431 | 0.00 427 | 0.03 427 | 0.00 425 | 0.04 423 |
|
| mmdepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 0.00 432 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 432 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| monomultidepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 0.00 432 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 432 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| test_blank | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 0.00 432 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 432 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| uanet_test | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 0.00 432 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 432 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| DCPMVS | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 0.00 432 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 432 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| cdsmvs_eth3d_5k | | | 17.50 390 | 23.34 389 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 78.63 171 | 0.00 428 | 0.00 429 | 82.18 199 | 49.25 122 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| pcd_1.5k_mvsjas | | | 3.92 396 | 5.23 399 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 0.00 432 | 0.00 428 | 0.00 429 | 0.00 428 | 47.05 154 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| sosnet-low-res | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 0.00 432 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 432 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| sosnet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 0.00 432 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 432 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| uncertanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 0.00 432 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 432 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| Regformer | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 0.00 432 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 432 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| ab-mvs-re | | | 6.49 393 | 8.65 396 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 0.00 432 | 0.00 428 | 0.00 429 | 77.89 282 | 0.00 432 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| uanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 434 | 0.00 421 | 0.00 432 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 432 | 0.00 427 | 0.00 428 | 0.00 425 | 0.00 425 |
|
| WAC-MVS | | | | | | | 27.31 406 | | | | | | | | 27.77 391 | | |
|
| MSC_two_6792asdad | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 24 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 33 |
|
| No_MVS | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 24 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 33 |
|
| eth-test2 | | | | | | 0.00 433 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 433 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 79.83 7 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 45 | 67.01 1 | 90.33 12 | 73.16 56 | 91.15 4 | 88.23 22 |
|
| test_0728_SECOND | | | | | 79.19 16 | 87.82 3 | 59.11 66 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 15 | 90.61 11 | 87.62 43 |
|
| GSMVS | | | | | | | | | | | | | | | | | 78.05 285 |
|
| test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 34.74 286 | | | | 78.05 285 |
|
| sam_mvs | | | | | | | | | | | | | 33.43 303 | | | | |
|
| ambc | | | | | 65.13 289 | 63.72 376 | 37.07 354 | 47.66 401 | 78.78 167 | | 54.37 349 | 71.42 353 | 11.24 407 | 80.94 202 | 45.64 278 | 53.85 375 | 77.38 295 |
|
| MTGPA |  | | | | | | | | 80.97 132 | | | | | | | | |
|
| test_post1 | | | | | | | | 68.67 303 | | | | 3.64 423 | 32.39 322 | 69.49 323 | 44.17 290 | | |
|
| test_post | | | | | | | | | | | | 3.55 424 | 33.90 297 | 66.52 342 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 64.03 390 | 34.50 288 | 74.27 299 | | | |
|
| GG-mvs-BLEND | | | | | 62.34 308 | 71.36 309 | 37.04 355 | 69.20 300 | 57.33 370 | | 54.73 344 | 65.48 388 | 30.37 331 | 77.82 256 | 34.82 355 | 74.93 187 | 72.17 354 |
|
| MTMP | | | | | | | | 86.03 19 | 17.08 427 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 75.28 39 | 88.31 32 | 83.81 178 |
|
| agg_prior2 | | | | | | | | | | | | | | | 73.09 57 | 87.93 40 | 84.33 159 |
|
| agg_prior | | | | | | 85.04 50 | 59.96 50 | | 81.04 130 | | 74.68 59 | | | 84.04 133 | | | |
|
| test_prior4 | | | | | | | 62.51 14 | 82.08 79 | | | | | | | | | |
|
| test_prior | | | | | 76.69 58 | 84.20 61 | 57.27 91 | | 84.88 39 | | | | | 86.43 81 | | | 86.38 79 |
|
| 新几何2 | | | | | | | | 76.12 184 | | | | | | | | | |
|
| 旧先验1 | | | | | | 83.04 73 | 53.15 163 | | 67.52 304 | | | 87.85 74 | 44.08 188 | | | 80.76 108 | 78.03 288 |
|
| 原ACMM2 | | | | | | | | 79.02 119 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 72.18 309 | 46.95 268 | | |
|
| segment_acmp | | | | | | | | | | | | | 54.23 57 | | | | |
|
| test12 | | | | | 77.76 45 | 84.52 58 | 58.41 78 | | 83.36 76 | | 72.93 89 | | 54.61 54 | 88.05 39 | | 88.12 34 | 86.81 66 |
|
| plane_prior7 | | | | | | 81.41 94 | 55.96 114 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 81.20 101 | 56.24 109 | | | | | | 45.26 178 | | | | |
|
| plane_prior5 | | | | | | | | | 84.01 52 | | | | | 87.21 58 | 68.16 89 | 80.58 111 | 84.65 153 |
|
| plane_prior4 | | | | | | | | | | | | 86.10 119 | | | | | |
|
| plane_prior1 | | | | | | 81.27 99 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 432 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 432 | | | | | | | | |
|
| door-mid | | | | | | | | | 47.19 402 | | | | | | | | |
|
| lessismore_v0 | | | | | 69.91 219 | 71.42 307 | 47.80 249 | | 50.90 391 | | 50.39 372 | 75.56 320 | 27.43 356 | 81.33 192 | 45.91 275 | 34.10 407 | 80.59 251 |
|
| test11 | | | | | | | | | 83.47 71 | | | | | | | | |
|
| door | | | | | | | | | 47.60 400 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 54.94 134 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.04 100 | | |
|
| HQP4-MVS | | | | | | | | | | | 67.85 162 | | | 86.93 66 | | | 84.32 160 |
|
| HQP3-MVS | | | | | | | | | 83.90 57 | | | | | | | 80.35 115 | |
|
| HQP2-MVS | | | | | | | | | | | | | 45.46 172 | | | | |
|
| NP-MVS | | | | | | 80.98 104 | 56.05 113 | | | | | 85.54 136 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 195 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 72.16 231 | |
|
| Test By Simon | | | | | | | | | | | | | 48.33 133 | | | | |
|