| MM | | | 80.20 7 | 80.28 8 | 79.99 2 | 82.19 82 | 60.01 49 | 86.19 17 | 83.93 53 | 73.19 1 | 77.08 34 | 91.21 17 | 57.23 33 | 90.73 10 | 83.35 1 | 88.12 34 | 89.22 5 |
|
| MVS_0304 | | | 78.45 18 | 78.28 19 | 78.98 26 | 80.73 107 | 57.91 83 | 84.68 35 | 81.64 106 | 68.35 2 | 75.77 39 | 90.38 29 | 53.98 59 | 90.26 13 | 81.30 3 | 87.68 42 | 88.77 9 |
|
| CANet | | | 76.46 40 | 75.93 44 | 78.06 39 | 81.29 97 | 57.53 88 | 82.35 72 | 83.31 79 | 67.78 3 | 70.09 116 | 86.34 108 | 54.92 50 | 88.90 25 | 72.68 58 | 84.55 67 | 87.76 36 |
|
| UA-Net | | | 73.13 74 | 72.93 75 | 73.76 119 | 83.58 66 | 51.66 190 | 78.75 119 | 77.66 191 | 67.75 4 | 72.61 93 | 89.42 50 | 49.82 114 | 83.29 146 | 53.61 207 | 83.14 80 | 86.32 84 |
|
| CNVR-MVS | | | 79.84 10 | 79.97 10 | 79.45 11 | 87.90 2 | 62.17 17 | 84.37 39 | 85.03 36 | 66.96 5 | 77.58 29 | 90.06 39 | 59.47 21 | 89.13 22 | 78.67 14 | 89.73 16 | 87.03 57 |
|
| TranMVSNet+NR-MVSNet | | | 70.36 123 | 70.10 120 | 71.17 192 | 78.64 155 | 42.97 297 | 76.53 175 | 81.16 126 | 66.95 6 | 68.53 145 | 85.42 134 | 51.61 96 | 83.07 150 | 52.32 215 | 69.70 265 | 87.46 45 |
|
| 3Dnovator+ | | 66.72 4 | 75.84 49 | 74.57 59 | 79.66 9 | 82.40 79 | 59.92 51 | 85.83 22 | 86.32 16 | 66.92 7 | 67.80 163 | 89.24 54 | 42.03 206 | 89.38 19 | 64.07 120 | 86.50 57 | 89.69 2 |
|
| NCCC | | | 78.58 16 | 78.31 18 | 79.39 12 | 87.51 12 | 62.61 13 | 85.20 30 | 84.42 44 | 66.73 8 | 74.67 58 | 89.38 52 | 55.30 46 | 89.18 21 | 74.19 46 | 87.34 44 | 86.38 76 |
|
| SteuartSystems-ACMMP | | | 79.48 11 | 79.31 11 | 79.98 3 | 83.01 75 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 9 | 78.03 26 | 90.98 18 | 54.26 56 | 90.06 14 | 78.42 19 | 89.02 23 | 87.69 37 |
| Skip Steuart: Steuart Systems R&D Blog. |
| EPNet | | | 73.09 75 | 72.16 82 | 75.90 69 | 75.95 230 | 56.28 107 | 83.05 59 | 72.39 263 | 66.53 10 | 65.27 210 | 87.00 86 | 50.40 110 | 85.47 103 | 62.48 137 | 86.32 58 | 85.94 95 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| UniMVSNet_NR-MVSNet | | | 71.11 107 | 71.00 102 | 71.44 181 | 79.20 139 | 44.13 283 | 76.02 188 | 82.60 93 | 66.48 11 | 68.20 149 | 84.60 146 | 56.82 36 | 82.82 161 | 54.62 197 | 70.43 245 | 87.36 52 |
|
| MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 18 | 86.83 8 | 65.51 12 | 83.81 10 | 90.51 25 | 63.71 12 | 89.23 20 | 81.51 2 | 88.44 27 | 88.09 25 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 79.88 9 | 80.14 9 | 79.10 21 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 64 | 65.37 13 | 78.78 22 | 90.64 21 | 58.63 25 | 87.24 54 | 79.00 12 | 90.37 14 | 85.26 130 |
|
| NR-MVSNet | | | 69.54 144 | 68.85 137 | 71.59 178 | 78.05 177 | 43.81 288 | 74.20 225 | 80.86 132 | 65.18 14 | 62.76 252 | 84.52 147 | 52.35 84 | 83.59 142 | 50.96 230 | 70.78 240 | 87.37 50 |
|
| MTAPA | | | 76.90 34 | 76.42 38 | 78.35 35 | 86.08 37 | 63.57 2 | 74.92 212 | 80.97 130 | 65.13 15 | 75.77 39 | 90.88 19 | 48.63 129 | 86.66 71 | 77.23 24 | 88.17 33 | 84.81 145 |
|
| DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 10 | 87.24 14 | 59.15 63 | 88.18 1 | 87.15 3 | 65.04 16 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 6 | 91.38 2 | 88.42 14 |
|
| test_0728_THIRD | | | | | | | | | | 65.04 16 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 6 | 90.63 10 | 88.09 25 |
|
| EI-MVSNet-Vis-set | | | 72.42 87 | 71.59 87 | 74.91 86 | 78.47 159 | 54.02 145 | 77.05 163 | 79.33 155 | 65.03 18 | 71.68 103 | 79.35 256 | 52.75 76 | 84.89 116 | 66.46 100 | 74.23 191 | 85.83 100 |
|
| casdiffmvs_mvg |  | | 76.14 45 | 76.30 39 | 75.66 75 | 76.46 224 | 51.83 189 | 79.67 111 | 85.08 33 | 65.02 19 | 75.84 38 | 88.58 63 | 59.42 22 | 85.08 109 | 72.75 57 | 83.93 76 | 90.08 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_one_0601 | | | | | | 87.58 9 | 59.30 60 | | 86.84 7 | 65.01 20 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
| ETV-MVS | | | 74.46 64 | 73.84 67 | 76.33 65 | 79.27 137 | 55.24 132 | 79.22 116 | 85.00 38 | 64.97 21 | 72.65 92 | 79.46 252 | 53.65 70 | 87.87 44 | 67.45 94 | 82.91 86 | 85.89 98 |
|
| WR-MVS | | | 68.47 168 | 68.47 148 | 68.44 238 | 80.20 118 | 39.84 322 | 73.75 237 | 76.07 214 | 64.68 22 | 68.11 154 | 83.63 166 | 50.39 111 | 79.14 236 | 49.78 235 | 69.66 266 | 86.34 80 |
|
| XVS | | | 77.17 31 | 76.56 36 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 54 | 64.55 23 | 72.17 98 | 90.01 43 | 47.95 136 | 88.01 40 | 71.55 70 | 86.74 53 | 86.37 78 |
|
| X-MVStestdata | | | 70.21 126 | 67.28 175 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 54 | 64.55 23 | 72.17 98 | 6.49 418 | 47.95 136 | 88.01 40 | 71.55 70 | 86.74 53 | 86.37 78 |
|
| HQP_MVS | | | 74.31 65 | 73.73 68 | 76.06 67 | 81.41 94 | 56.31 105 | 84.22 43 | 84.01 51 | 64.52 25 | 69.27 134 | 86.10 115 | 45.26 178 | 87.21 57 | 68.16 86 | 80.58 110 | 84.65 149 |
|
| plane_prior2 | | | | | | | | 84.22 43 | | 64.52 25 | | | | | | | |
|
| EI-MVSNet-UG-set | | | 71.92 95 | 71.06 101 | 74.52 100 | 77.98 180 | 53.56 153 | 76.62 172 | 79.16 156 | 64.40 27 | 71.18 107 | 78.95 261 | 52.19 86 | 84.66 123 | 65.47 111 | 73.57 202 | 85.32 126 |
|
| DU-MVS | | | 70.01 129 | 69.53 126 | 71.44 181 | 78.05 177 | 44.13 283 | 75.01 208 | 81.51 109 | 64.37 28 | 68.20 149 | 84.52 147 | 49.12 126 | 82.82 161 | 54.62 197 | 70.43 245 | 87.37 50 |
|
| DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 34 | 87.75 7 | 59.07 67 | 87.85 5 | 85.03 36 | 64.26 29 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 15 | 90.61 11 | 85.45 119 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 87.75 7 | 59.07 67 | 87.86 4 | 86.83 8 | 64.26 29 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
| test_241102_ONE | | | | | | 87.77 4 | 58.90 72 | | 86.78 10 | 64.20 31 | 85.97 1 | 91.34 15 | 66.87 3 | 90.78 7 | | | |
|
| SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 13 | 87.77 4 | 58.90 72 | 87.82 7 | 86.78 10 | 64.18 32 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 17 | 90.87 5 | 88.23 20 |
|
| test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 32 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 17 | 90.70 7 | 87.65 39 |
|
| LFMVS | | | 71.78 97 | 71.59 87 | 72.32 162 | 83.40 70 | 46.38 259 | 79.75 109 | 71.08 272 | 64.18 32 | 72.80 89 | 88.64 62 | 42.58 201 | 83.72 138 | 57.41 175 | 84.49 70 | 86.86 62 |
|
| IS-MVSNet | | | 71.57 101 | 71.00 102 | 73.27 143 | 78.86 148 | 45.63 270 | 80.22 100 | 78.69 167 | 64.14 35 | 66.46 187 | 87.36 80 | 49.30 120 | 85.60 96 | 50.26 234 | 83.71 79 | 88.59 11 |
|
| plane_prior3 | | | | | | | 56.09 111 | | | 63.92 36 | 69.27 134 | | | | | | |
|
| MP-MVS |  | | 78.35 20 | 78.26 21 | 78.64 31 | 86.54 25 | 63.47 4 | 86.02 20 | 83.55 68 | 63.89 37 | 73.60 71 | 90.60 22 | 54.85 51 | 86.72 69 | 77.20 25 | 88.06 36 | 85.74 107 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| DELS-MVS | | | 74.76 57 | 74.46 60 | 75.65 76 | 77.84 184 | 52.25 181 | 75.59 195 | 84.17 48 | 63.76 38 | 73.15 79 | 82.79 178 | 59.58 20 | 86.80 67 | 67.24 95 | 86.04 59 | 87.89 28 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| OPM-MVS | | | 74.73 58 | 74.25 62 | 76.19 66 | 80.81 106 | 59.01 70 | 82.60 69 | 83.64 65 | 63.74 39 | 72.52 94 | 87.49 77 | 47.18 152 | 85.88 91 | 69.47 79 | 80.78 106 | 83.66 184 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| UniMVSNet (Re) | | | 70.63 117 | 70.20 116 | 71.89 167 | 78.55 156 | 45.29 273 | 75.94 189 | 82.92 87 | 63.68 40 | 68.16 152 | 83.59 167 | 53.89 62 | 83.49 144 | 53.97 203 | 71.12 238 | 86.89 61 |
|
| GST-MVS | | | 78.14 22 | 77.85 24 | 78.99 25 | 86.05 38 | 61.82 22 | 85.84 21 | 85.21 30 | 63.56 41 | 74.29 64 | 90.03 41 | 52.56 78 | 88.53 29 | 74.79 42 | 88.34 29 | 86.63 72 |
|
| EC-MVSNet | | | 75.84 49 | 75.87 46 | 75.74 73 | 78.86 148 | 52.65 172 | 83.73 53 | 86.08 17 | 63.47 42 | 72.77 90 | 87.25 84 | 53.13 73 | 87.93 42 | 71.97 66 | 85.57 62 | 86.66 70 |
|
| ZNCC-MVS | | | 78.82 13 | 78.67 16 | 79.30 14 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 43 | 75.08 46 | 90.47 28 | 53.96 61 | 88.68 27 | 76.48 28 | 89.63 20 | 87.16 55 |
|
| DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 15 | 87.27 13 | 60.56 41 | 85.71 26 | 86.42 14 | 63.28 44 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 11 | 76.41 29 | 89.67 18 | 86.84 63 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| CS-MVS | | | 76.25 44 | 75.98 43 | 77.06 53 | 80.15 121 | 55.63 123 | 84.51 38 | 83.90 56 | 63.24 45 | 73.30 74 | 87.27 83 | 55.06 48 | 86.30 84 | 71.78 67 | 84.58 66 | 89.25 4 |
|
| DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 22 | 79.83 7 | 83.60 65 | 61.62 23 | 84.17 45 | 86.85 6 | 63.23 46 | 73.84 69 | 90.25 35 | 57.68 29 | 89.96 15 | 74.62 43 | 89.03 22 | 87.89 28 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| VDD-MVS | | | 72.50 83 | 72.09 83 | 73.75 121 | 81.58 90 | 49.69 220 | 77.76 144 | 77.63 192 | 63.21 47 | 73.21 77 | 89.02 56 | 42.14 205 | 83.32 145 | 61.72 144 | 82.50 92 | 88.25 19 |
|
| plane_prior | | | | | | | 56.31 105 | 83.58 56 | | 63.19 48 | | | | | | 80.48 113 | |
|
| ACMMP |  | | 76.02 47 | 75.33 51 | 78.07 38 | 85.20 49 | 61.91 20 | 85.49 29 | 84.44 43 | 63.04 49 | 69.80 126 | 89.74 49 | 45.43 174 | 87.16 59 | 72.01 64 | 82.87 88 | 85.14 132 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| PEN-MVS | | | 66.60 209 | 66.45 189 | 67.04 252 | 77.11 210 | 36.56 355 | 77.03 164 | 80.42 139 | 62.95 50 | 62.51 260 | 84.03 157 | 46.69 160 | 79.07 237 | 44.22 285 | 63.08 326 | 85.51 114 |
|
| APDe-MVS |  | | 80.16 8 | 80.59 6 | 78.86 29 | 86.64 21 | 60.02 48 | 88.12 3 | 86.42 14 | 62.94 51 | 82.40 14 | 92.12 2 | 59.64 19 | 89.76 16 | 78.70 13 | 88.32 31 | 86.79 65 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| mPP-MVS | | | 76.54 39 | 75.93 44 | 78.34 36 | 86.47 26 | 63.50 3 | 85.74 25 | 82.28 96 | 62.90 52 | 71.77 101 | 90.26 34 | 46.61 161 | 86.55 75 | 71.71 68 | 85.66 61 | 84.97 141 |
|
| ACMMP_NAP | | | 78.77 15 | 78.78 14 | 78.74 30 | 85.44 45 | 61.04 31 | 83.84 52 | 85.16 31 | 62.88 53 | 78.10 24 | 91.26 16 | 52.51 79 | 88.39 30 | 79.34 8 | 90.52 13 | 86.78 66 |
|
| DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 19 | 84.92 56 | 60.32 46 | 83.03 60 | 85.33 28 | 62.86 54 | 80.17 17 | 90.03 41 | 61.76 14 | 88.95 24 | 74.21 45 | 88.67 26 | 88.12 24 |
|
| HFP-MVS | | | 78.01 24 | 77.65 25 | 79.10 21 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 46 | 62.82 55 | 73.96 67 | 90.50 26 | 53.20 72 | 88.35 31 | 74.02 48 | 87.05 45 | 86.13 90 |
|
| ACMMPR | | | 77.71 25 | 77.23 28 | 79.16 17 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 47 | 62.82 55 | 73.55 72 | 90.56 24 | 49.80 115 | 88.24 33 | 74.02 48 | 87.03 46 | 86.32 84 |
|
| region2R | | | 77.67 27 | 77.18 29 | 79.15 18 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 49 | 62.81 57 | 73.30 74 | 90.58 23 | 49.90 113 | 88.21 34 | 73.78 50 | 87.03 46 | 86.29 87 |
|
| casdiffmvs |  | | 74.80 56 | 74.89 57 | 74.53 99 | 75.59 236 | 50.37 207 | 78.17 133 | 85.06 35 | 62.80 58 | 74.40 61 | 87.86 73 | 57.88 27 | 83.61 141 | 69.46 80 | 82.79 90 | 89.59 3 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline | | | 74.61 61 | 74.70 58 | 74.34 103 | 75.70 232 | 49.99 215 | 77.54 149 | 84.63 42 | 62.73 59 | 73.98 66 | 87.79 76 | 57.67 30 | 83.82 137 | 69.49 78 | 82.74 91 | 89.20 6 |
|
| HPM-MVS |  | | 77.28 29 | 76.85 30 | 78.54 32 | 85.00 51 | 60.81 38 | 82.91 63 | 85.08 33 | 62.57 60 | 73.09 83 | 89.97 44 | 50.90 106 | 87.48 52 | 75.30 36 | 86.85 51 | 87.33 53 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| DTE-MVSNet | | | 65.58 221 | 65.34 212 | 66.31 263 | 76.06 229 | 34.79 368 | 76.43 177 | 79.38 154 | 62.55 61 | 61.66 270 | 83.83 162 | 45.60 168 | 79.15 235 | 41.64 314 | 60.88 341 | 85.00 138 |
|
| SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 4 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 62 | 82.20 15 | 92.28 1 | 56.53 37 | 89.70 17 | 79.85 5 | 91.48 1 | 88.19 22 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| CP-MVSNet | | | 66.49 212 | 66.41 193 | 66.72 254 | 77.67 190 | 36.33 358 | 76.83 171 | 79.52 151 | 62.45 63 | 62.54 258 | 83.47 171 | 46.32 162 | 78.37 245 | 45.47 280 | 63.43 323 | 85.45 119 |
|
| CP-MVS | | | 77.12 32 | 76.68 32 | 78.43 33 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 71 | 62.44 64 | 72.68 91 | 90.50 26 | 48.18 134 | 87.34 53 | 73.59 52 | 85.71 60 | 84.76 148 |
|
| PS-CasMVS | | | 66.42 213 | 66.32 197 | 66.70 256 | 77.60 198 | 36.30 360 | 76.94 166 | 79.61 149 | 62.36 65 | 62.43 262 | 83.66 165 | 45.69 166 | 78.37 245 | 45.35 282 | 63.26 324 | 85.42 122 |
|
| 3Dnovator | | 64.47 5 | 72.49 84 | 71.39 93 | 75.79 70 | 77.70 188 | 58.99 71 | 80.66 96 | 83.15 84 | 62.24 66 | 65.46 206 | 86.59 99 | 42.38 204 | 85.52 99 | 59.59 162 | 84.72 65 | 82.85 205 |
|
| MP-MVS-pluss | | | 78.35 20 | 78.46 17 | 78.03 40 | 84.96 52 | 59.52 56 | 82.93 62 | 85.39 27 | 62.15 67 | 76.41 37 | 91.51 11 | 52.47 81 | 86.78 68 | 80.66 4 | 89.64 19 | 87.80 34 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HQP-NCC | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 158 | | | | | | |
|
| ACMP_Plane | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 158 | | | | | | |
|
| HQP-MVS | | | 73.45 71 | 72.80 76 | 75.40 80 | 80.66 108 | 54.94 134 | 82.31 74 | 83.90 56 | 62.10 68 | 67.85 158 | 85.54 132 | 45.46 172 | 86.93 64 | 67.04 97 | 80.35 114 | 84.32 156 |
|
| SPE-MVS-test | | | 75.62 52 | 75.31 52 | 76.56 62 | 80.63 111 | 55.13 133 | 83.88 51 | 85.22 29 | 62.05 71 | 71.49 106 | 86.03 118 | 53.83 63 | 86.36 82 | 67.74 89 | 86.91 50 | 88.19 22 |
|
| VPNet | | | 67.52 188 | 68.11 155 | 65.74 276 | 79.18 140 | 36.80 353 | 72.17 258 | 72.83 260 | 62.04 72 | 67.79 164 | 85.83 125 | 48.88 128 | 76.60 279 | 51.30 226 | 72.97 215 | 83.81 174 |
|
| WR-MVS_H | | | 67.02 200 | 66.92 184 | 67.33 251 | 77.95 181 | 37.75 342 | 77.57 147 | 82.11 99 | 62.03 73 | 62.65 255 | 82.48 189 | 50.57 109 | 79.46 226 | 42.91 302 | 64.01 316 | 84.79 146 |
|
| DeepC-MVS_fast | | 68.24 3 | 77.25 30 | 76.63 33 | 79.12 20 | 86.15 34 | 60.86 36 | 84.71 34 | 84.85 40 | 61.98 74 | 73.06 84 | 88.88 58 | 53.72 66 | 89.06 23 | 68.27 83 | 88.04 37 | 87.42 47 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 46 | 82.88 77 | 57.83 84 | 84.99 31 | 88.13 2 | 61.86 75 | 79.16 20 | 90.75 20 | 57.96 26 | 87.09 62 | 77.08 26 | 90.18 15 | 87.87 30 |
|
| PGM-MVS | | | 76.77 37 | 76.06 42 | 78.88 28 | 86.14 35 | 62.73 9 | 82.55 70 | 83.74 63 | 61.71 76 | 72.45 97 | 90.34 32 | 48.48 132 | 88.13 37 | 72.32 61 | 86.85 51 | 85.78 101 |
|
| Effi-MVS+ | | | 73.31 73 | 72.54 79 | 75.62 77 | 77.87 182 | 53.64 151 | 79.62 113 | 79.61 149 | 61.63 77 | 72.02 100 | 82.61 183 | 56.44 39 | 85.97 89 | 63.99 123 | 79.07 134 | 87.25 54 |
|
| MG-MVS | | | 73.96 68 | 73.89 66 | 74.16 109 | 85.65 42 | 49.69 220 | 81.59 85 | 81.29 120 | 61.45 78 | 71.05 108 | 88.11 66 | 51.77 93 | 87.73 47 | 61.05 149 | 83.09 81 | 85.05 137 |
|
| LPG-MVS_test | | | 72.74 80 | 71.74 86 | 75.76 71 | 80.22 116 | 57.51 89 | 82.55 70 | 83.40 73 | 61.32 79 | 66.67 184 | 87.33 81 | 39.15 238 | 86.59 72 | 67.70 90 | 77.30 161 | 83.19 196 |
|
| LGP-MVS_train | | | | | 75.76 71 | 80.22 116 | 57.51 89 | | 83.40 73 | 61.32 79 | 66.67 184 | 87.33 81 | 39.15 238 | 86.59 72 | 67.70 90 | 77.30 161 | 83.19 196 |
|
| CLD-MVS | | | 73.33 72 | 72.68 77 | 75.29 84 | 78.82 150 | 53.33 159 | 78.23 130 | 84.79 41 | 61.30 81 | 70.41 113 | 81.04 220 | 52.41 82 | 87.12 60 | 64.61 119 | 82.49 93 | 85.41 123 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| RRT-MVS | | | 71.46 104 | 70.70 107 | 73.74 122 | 77.76 187 | 49.30 226 | 76.60 173 | 80.45 138 | 61.25 82 | 68.17 151 | 84.78 140 | 44.64 183 | 84.90 115 | 64.79 115 | 77.88 151 | 87.03 57 |
|
| MVS_111021_HR | | | 74.02 67 | 73.46 71 | 75.69 74 | 83.01 75 | 60.63 40 | 77.29 157 | 78.40 181 | 61.18 83 | 70.58 111 | 85.97 120 | 54.18 58 | 84.00 134 | 67.52 93 | 82.98 85 | 82.45 212 |
|
| balanced_conf03 | | | 76.58 38 | 76.55 37 | 76.68 57 | 81.73 88 | 52.90 167 | 80.94 91 | 85.70 23 | 61.12 84 | 74.90 52 | 87.17 85 | 56.46 38 | 88.14 36 | 72.87 56 | 88.03 38 | 89.00 7 |
|
| FIs | | | 70.82 114 | 71.43 91 | 68.98 231 | 78.33 166 | 38.14 338 | 76.96 165 | 83.59 67 | 61.02 85 | 67.33 171 | 86.73 92 | 55.07 47 | 81.64 183 | 54.61 199 | 79.22 130 | 87.14 56 |
|
| FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 66 | 60.87 86 | 81.50 16 | | | | | | |
|
| FC-MVSNet-test | | | 69.80 135 | 70.58 110 | 67.46 247 | 77.61 197 | 34.73 371 | 76.05 186 | 83.19 83 | 60.84 87 | 65.88 200 | 86.46 105 | 54.52 55 | 80.76 207 | 52.52 214 | 78.12 147 | 86.91 60 |
|
| v8 | | | 70.33 124 | 69.28 131 | 73.49 135 | 73.15 270 | 50.22 209 | 78.62 123 | 80.78 133 | 60.79 88 | 66.45 188 | 82.11 201 | 49.35 119 | 84.98 112 | 63.58 129 | 68.71 280 | 85.28 128 |
|
| CSCG | | | 76.92 33 | 76.75 31 | 77.41 49 | 83.96 64 | 59.60 54 | 82.95 61 | 86.50 13 | 60.78 89 | 75.27 43 | 84.83 138 | 60.76 15 | 86.56 74 | 67.86 88 | 87.87 41 | 86.06 92 |
|
| Vis-MVSNet |  | | 72.18 90 | 71.37 94 | 74.61 95 | 81.29 97 | 55.41 129 | 80.90 92 | 78.28 183 | 60.73 90 | 69.23 137 | 88.09 67 | 44.36 187 | 82.65 165 | 57.68 172 | 81.75 103 | 85.77 104 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| APD-MVS |  | | 78.02 23 | 78.04 23 | 77.98 41 | 86.44 27 | 60.81 38 | 85.52 27 | 84.36 45 | 60.61 91 | 79.05 21 | 90.30 33 | 55.54 45 | 88.32 32 | 73.48 53 | 87.03 46 | 84.83 144 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ACMP | | 63.53 6 | 72.30 88 | 71.20 98 | 75.59 79 | 80.28 114 | 57.54 87 | 82.74 66 | 82.84 91 | 60.58 92 | 65.24 214 | 86.18 112 | 39.25 236 | 86.03 87 | 66.95 99 | 76.79 168 | 83.22 194 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| testdata1 | | | | | | | | 72.65 248 | | 60.50 93 | | | | | | | |
|
| UGNet | | | 68.81 158 | 67.39 170 | 73.06 146 | 78.33 166 | 54.47 140 | 79.77 108 | 75.40 225 | 60.45 94 | 63.22 242 | 84.40 150 | 32.71 311 | 80.91 203 | 51.71 224 | 80.56 112 | 83.81 174 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| h-mvs33 | | | 72.71 81 | 71.49 90 | 76.40 63 | 81.99 85 | 59.58 55 | 76.92 167 | 76.74 207 | 60.40 95 | 74.81 54 | 85.95 121 | 45.54 170 | 85.76 94 | 70.41 75 | 70.61 243 | 83.86 173 |
|
| hse-mvs2 | | | 71.04 108 | 69.86 121 | 74.60 96 | 79.58 130 | 57.12 99 | 73.96 229 | 75.25 228 | 60.40 95 | 74.81 54 | 81.95 203 | 45.54 170 | 82.90 154 | 70.41 75 | 66.83 295 | 83.77 178 |
|
| EPP-MVSNet | | | 72.16 93 | 71.31 96 | 74.71 89 | 78.68 154 | 49.70 218 | 82.10 78 | 81.65 105 | 60.40 95 | 65.94 196 | 85.84 124 | 51.74 94 | 86.37 81 | 55.93 183 | 79.55 125 | 88.07 27 |
|
| UniMVSNet_ETH3D | | | 67.60 187 | 67.07 183 | 69.18 230 | 77.39 203 | 42.29 301 | 74.18 226 | 75.59 220 | 60.37 98 | 66.77 181 | 86.06 117 | 37.64 253 | 78.93 243 | 52.16 217 | 73.49 204 | 86.32 84 |
|
| test_prior2 | | | | | | | | 81.75 81 | | 60.37 98 | 75.01 47 | 89.06 55 | 56.22 41 | | 72.19 62 | 88.96 24 | |
|
| SD-MVS | | | 77.70 26 | 77.62 26 | 77.93 42 | 84.47 59 | 61.88 21 | 84.55 37 | 83.87 59 | 60.37 98 | 79.89 18 | 89.38 52 | 54.97 49 | 85.58 98 | 76.12 31 | 84.94 64 | 86.33 82 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| VNet | | | 69.68 139 | 70.19 117 | 68.16 241 | 79.73 127 | 41.63 310 | 70.53 281 | 77.38 197 | 60.37 98 | 70.69 110 | 86.63 97 | 51.08 102 | 77.09 267 | 53.61 207 | 81.69 105 | 85.75 106 |
|
| sasdasda | | | 74.67 59 | 74.98 55 | 73.71 124 | 78.94 146 | 50.56 204 | 80.23 98 | 83.87 59 | 60.30 102 | 77.15 32 | 86.56 101 | 59.65 17 | 82.00 177 | 66.01 105 | 82.12 94 | 88.58 12 |
|
| canonicalmvs | | | 74.67 59 | 74.98 55 | 73.71 124 | 78.94 146 | 50.56 204 | 80.23 98 | 83.87 59 | 60.30 102 | 77.15 32 | 86.56 101 | 59.65 17 | 82.00 177 | 66.01 105 | 82.12 94 | 88.58 12 |
|
| v7n | | | 69.01 156 | 67.36 172 | 73.98 112 | 72.51 284 | 52.65 172 | 78.54 127 | 81.30 119 | 60.26 104 | 62.67 254 | 81.62 209 | 43.61 192 | 84.49 124 | 57.01 176 | 68.70 281 | 84.79 146 |
|
| reproduce-ours | | | 76.90 34 | 76.58 34 | 77.87 43 | 83.99 62 | 60.46 43 | 84.75 32 | 83.34 76 | 60.22 105 | 77.85 27 | 91.42 13 | 50.67 107 | 87.69 48 | 72.46 59 | 84.53 68 | 85.46 117 |
|
| our_new_method | | | 76.90 34 | 76.58 34 | 77.87 43 | 83.99 62 | 60.46 43 | 84.75 32 | 83.34 76 | 60.22 105 | 77.85 27 | 91.42 13 | 50.67 107 | 87.69 48 | 72.46 59 | 84.53 68 | 85.46 117 |
|
| HPM-MVS_fast | | | 74.30 66 | 73.46 71 | 76.80 55 | 84.45 60 | 59.04 69 | 83.65 55 | 81.05 127 | 60.15 107 | 70.43 112 | 89.84 46 | 41.09 222 | 85.59 97 | 67.61 92 | 82.90 87 | 85.77 104 |
|
| VPA-MVSNet | | | 69.02 155 | 69.47 128 | 67.69 245 | 77.42 202 | 41.00 315 | 74.04 227 | 79.68 147 | 60.06 108 | 69.26 136 | 84.81 139 | 51.06 103 | 77.58 258 | 54.44 200 | 74.43 189 | 84.48 153 |
|
| v10 | | | 70.21 126 | 69.02 135 | 73.81 116 | 73.51 267 | 50.92 196 | 78.74 120 | 81.39 112 | 60.05 109 | 66.39 189 | 81.83 206 | 47.58 143 | 85.41 106 | 62.80 134 | 68.86 279 | 85.09 136 |
|
| SR-MVS | | | 76.13 46 | 75.70 47 | 77.40 51 | 85.87 40 | 61.20 29 | 85.52 27 | 82.19 97 | 59.99 110 | 75.10 45 | 90.35 31 | 47.66 141 | 86.52 76 | 71.64 69 | 82.99 83 | 84.47 154 |
|
| 9.14 | | | | 78.75 15 | | 83.10 72 | | 84.15 46 | 88.26 1 | 59.90 111 | 78.57 23 | 90.36 30 | 57.51 32 | 86.86 66 | 77.39 23 | 89.52 21 | |
|
| v2v482 | | | 70.50 120 | 69.45 129 | 73.66 127 | 72.62 280 | 50.03 214 | 77.58 146 | 80.51 137 | 59.90 111 | 69.52 128 | 82.14 199 | 47.53 145 | 84.88 118 | 65.07 114 | 70.17 253 | 86.09 91 |
|
| Baseline_NR-MVSNet | | | 67.05 199 | 67.56 162 | 65.50 279 | 75.65 233 | 37.70 344 | 75.42 198 | 74.65 240 | 59.90 111 | 68.14 153 | 83.15 176 | 49.12 126 | 77.20 265 | 52.23 216 | 69.78 262 | 81.60 225 |
|
| API-MVS | | | 72.17 91 | 71.41 92 | 74.45 101 | 81.95 86 | 57.22 92 | 84.03 48 | 80.38 140 | 59.89 114 | 68.40 146 | 82.33 192 | 49.64 116 | 87.83 46 | 51.87 221 | 84.16 75 | 78.30 277 |
|
| Effi-MVS+-dtu | | | 69.64 141 | 67.53 165 | 75.95 68 | 76.10 228 | 62.29 15 | 80.20 101 | 76.06 215 | 59.83 115 | 65.26 213 | 77.09 291 | 41.56 214 | 84.02 133 | 60.60 153 | 71.09 239 | 81.53 226 |
|
| reproduce_model | | | 76.43 41 | 76.08 41 | 77.49 48 | 83.47 69 | 60.09 47 | 84.60 36 | 82.90 88 | 59.65 116 | 77.31 30 | 91.43 12 | 49.62 117 | 87.24 54 | 71.99 65 | 83.75 78 | 85.14 132 |
|
| MVSMamba_PlusPlus | | | 75.75 51 | 75.44 49 | 76.67 58 | 80.84 105 | 53.06 164 | 78.62 123 | 85.13 32 | 59.65 116 | 71.53 105 | 87.47 78 | 56.92 34 | 88.17 35 | 72.18 63 | 86.63 56 | 88.80 8 |
|
| CANet_DTU | | | 68.18 175 | 67.71 161 | 69.59 221 | 74.83 247 | 46.24 261 | 78.66 122 | 76.85 204 | 59.60 118 | 63.45 240 | 82.09 202 | 35.25 277 | 77.41 261 | 59.88 159 | 78.76 139 | 85.14 132 |
|
| EI-MVSNet | | | 69.27 152 | 68.44 150 | 71.73 173 | 74.47 256 | 49.39 225 | 75.20 203 | 78.45 177 | 59.60 118 | 69.16 138 | 76.51 303 | 51.29 98 | 82.50 169 | 59.86 161 | 71.45 235 | 83.30 191 |
|
| IterMVS-LS | | | 69.22 154 | 68.48 146 | 71.43 183 | 74.44 258 | 49.40 224 | 76.23 181 | 77.55 193 | 59.60 118 | 65.85 201 | 81.59 212 | 51.28 99 | 81.58 186 | 59.87 160 | 69.90 260 | 83.30 191 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MGCFI-Net | | | 72.45 85 | 73.34 73 | 69.81 218 | 77.77 186 | 43.21 294 | 75.84 192 | 81.18 124 | 59.59 121 | 75.45 42 | 86.64 95 | 57.74 28 | 77.94 251 | 63.92 124 | 81.90 99 | 88.30 17 |
|
| VDDNet | | | 71.81 96 | 71.33 95 | 73.26 144 | 82.80 78 | 47.60 250 | 78.74 120 | 75.27 227 | 59.59 121 | 72.94 86 | 89.40 51 | 41.51 216 | 83.91 135 | 58.75 167 | 82.99 83 | 88.26 18 |
|
| alignmvs | | | 73.86 69 | 73.99 64 | 73.45 137 | 78.20 169 | 50.50 206 | 78.57 125 | 82.43 94 | 59.40 123 | 76.57 35 | 86.71 94 | 56.42 40 | 81.23 194 | 65.84 108 | 81.79 100 | 88.62 10 |
|
| MVS_Test | | | 72.45 85 | 72.46 80 | 72.42 161 | 74.88 245 | 48.50 238 | 76.28 180 | 83.14 85 | 59.40 123 | 72.46 95 | 84.68 141 | 55.66 44 | 81.12 195 | 65.98 107 | 79.66 122 | 87.63 40 |
|
| TSAR-MVS + MP. | | | 78.44 19 | 78.28 19 | 78.90 27 | 84.96 52 | 61.41 26 | 84.03 48 | 83.82 62 | 59.34 125 | 79.37 19 | 89.76 48 | 59.84 16 | 87.62 51 | 76.69 27 | 86.74 53 | 87.68 38 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| MSLP-MVS++ | | | 73.77 70 | 73.47 70 | 74.66 92 | 83.02 74 | 59.29 61 | 82.30 77 | 81.88 101 | 59.34 125 | 71.59 104 | 86.83 88 | 45.94 165 | 83.65 140 | 65.09 113 | 85.22 63 | 81.06 240 |
|
| PAPM_NR | | | 72.63 82 | 71.80 85 | 75.13 85 | 81.72 89 | 53.42 157 | 79.91 106 | 83.28 81 | 59.14 127 | 66.31 191 | 85.90 122 | 51.86 91 | 86.06 85 | 57.45 174 | 80.62 108 | 85.91 97 |
|
| testing91 | | | 64.46 236 | 63.80 227 | 66.47 260 | 78.43 161 | 40.06 320 | 67.63 305 | 69.59 286 | 59.06 128 | 63.18 244 | 78.05 272 | 34.05 289 | 76.99 269 | 48.30 251 | 75.87 177 | 82.37 214 |
|
| save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 50 | 79.66 148 | 59.00 129 | | | | | | | |
|
| v148 | | | 68.24 174 | 67.19 181 | 71.40 184 | 70.43 319 | 47.77 247 | 75.76 193 | 77.03 202 | 58.91 130 | 67.36 170 | 80.10 239 | 48.60 131 | 81.89 179 | 60.01 157 | 66.52 298 | 84.53 151 |
|
| TransMVSNet (Re) | | | 64.72 231 | 64.33 221 | 65.87 275 | 75.22 241 | 38.56 334 | 74.66 218 | 75.08 236 | 58.90 131 | 61.79 268 | 82.63 182 | 51.18 100 | 78.07 250 | 43.63 295 | 55.87 364 | 80.99 242 |
|
| Anonymous202405211 | | | 66.84 204 | 65.99 203 | 69.40 225 | 80.19 119 | 42.21 303 | 71.11 274 | 71.31 271 | 58.80 132 | 67.90 156 | 86.39 107 | 29.83 333 | 79.65 223 | 49.60 241 | 78.78 138 | 86.33 82 |
|
| test2506 | | | 65.33 226 | 64.61 219 | 67.50 246 | 79.46 133 | 34.19 376 | 74.43 223 | 51.92 382 | 58.72 133 | 66.75 182 | 88.05 69 | 25.99 363 | 80.92 202 | 51.94 220 | 84.25 72 | 87.39 48 |
|
| ECVR-MVS |  | | 67.72 185 | 67.51 166 | 68.35 239 | 79.46 133 | 36.29 361 | 74.79 215 | 66.93 307 | 58.72 133 | 67.19 173 | 88.05 69 | 36.10 270 | 81.38 189 | 52.07 218 | 84.25 72 | 87.39 48 |
|
| test1111 | | | 67.21 192 | 67.14 182 | 67.42 248 | 79.24 138 | 34.76 370 | 73.89 234 | 65.65 316 | 58.71 135 | 66.96 178 | 87.95 72 | 36.09 271 | 80.53 209 | 52.03 219 | 83.79 77 | 86.97 59 |
|
| LCM-MVSNet-Re | | | 61.88 267 | 61.35 259 | 63.46 295 | 74.58 254 | 31.48 389 | 61.42 349 | 58.14 360 | 58.71 135 | 53.02 356 | 79.55 250 | 43.07 196 | 76.80 273 | 45.69 273 | 77.96 149 | 82.11 220 |
|
| testing99 | | | 64.05 240 | 63.29 237 | 66.34 262 | 78.17 173 | 39.76 324 | 67.33 310 | 68.00 300 | 58.60 137 | 63.03 247 | 78.10 271 | 32.57 316 | 76.94 271 | 48.22 252 | 75.58 181 | 82.34 215 |
|
| v1144 | | | 70.42 122 | 69.31 130 | 73.76 119 | 73.22 268 | 50.64 201 | 77.83 142 | 81.43 111 | 58.58 138 | 69.40 132 | 81.16 217 | 47.53 145 | 85.29 108 | 64.01 122 | 70.64 241 | 85.34 125 |
|
| TSAR-MVS + GP. | | | 74.90 55 | 74.15 63 | 77.17 52 | 82.00 84 | 58.77 75 | 81.80 80 | 78.57 170 | 58.58 138 | 74.32 63 | 84.51 149 | 55.94 43 | 87.22 56 | 67.11 96 | 84.48 71 | 85.52 113 |
|
| BH-RMVSNet | | | 68.81 158 | 67.42 169 | 72.97 147 | 80.11 122 | 52.53 176 | 74.26 224 | 76.29 210 | 58.48 140 | 68.38 147 | 84.20 152 | 42.59 200 | 83.83 136 | 46.53 265 | 75.91 176 | 82.56 207 |
|
| APD-MVS_3200maxsize | | | 74.96 54 | 74.39 61 | 76.67 58 | 82.20 81 | 58.24 80 | 83.67 54 | 83.29 80 | 58.41 141 | 73.71 70 | 90.14 36 | 45.62 167 | 85.99 88 | 69.64 77 | 82.85 89 | 85.78 101 |
|
| OMC-MVS | | | 71.40 106 | 70.60 108 | 73.78 117 | 76.60 220 | 53.15 161 | 79.74 110 | 79.78 145 | 58.37 142 | 68.75 141 | 86.45 106 | 45.43 174 | 80.60 208 | 62.58 135 | 77.73 152 | 87.58 43 |
|
| nrg030 | | | 72.96 77 | 73.01 74 | 72.84 150 | 75.41 239 | 50.24 208 | 80.02 102 | 82.89 90 | 58.36 143 | 74.44 60 | 86.73 92 | 58.90 24 | 80.83 204 | 65.84 108 | 74.46 187 | 87.44 46 |
|
| K. test v3 | | | 60.47 278 | 57.11 296 | 70.56 203 | 73.74 266 | 48.22 241 | 75.10 207 | 62.55 339 | 58.27 144 | 53.62 352 | 76.31 307 | 27.81 348 | 81.59 185 | 47.42 256 | 39.18 397 | 81.88 223 |
|
| FA-MVS(test-final) | | | 69.82 134 | 68.48 146 | 73.84 115 | 78.44 160 | 50.04 213 | 75.58 197 | 78.99 160 | 58.16 145 | 67.59 167 | 82.14 199 | 42.66 199 | 85.63 95 | 56.60 178 | 76.19 174 | 85.84 99 |
|
| MVS_111021_LR | | | 69.50 146 | 68.78 140 | 71.65 176 | 78.38 162 | 59.33 59 | 74.82 214 | 70.11 280 | 58.08 146 | 67.83 162 | 84.68 141 | 41.96 207 | 76.34 284 | 65.62 110 | 77.54 154 | 79.30 269 |
|
| SR-MVS-dyc-post | | | 74.57 62 | 73.90 65 | 76.58 61 | 83.49 67 | 59.87 52 | 84.29 40 | 81.36 114 | 58.07 147 | 73.14 80 | 90.07 37 | 44.74 181 | 85.84 92 | 68.20 84 | 81.76 101 | 84.03 164 |
|
| RE-MVS-def | | | | 73.71 69 | | 83.49 67 | 59.87 52 | 84.29 40 | 81.36 114 | 58.07 147 | 73.14 80 | 90.07 37 | 43.06 197 | | 68.20 84 | 81.76 101 | 84.03 164 |
|
| SDMVSNet | | | 68.03 177 | 68.10 156 | 67.84 243 | 77.13 208 | 48.72 236 | 65.32 326 | 79.10 157 | 58.02 149 | 65.08 217 | 82.55 185 | 47.83 138 | 73.40 297 | 63.92 124 | 73.92 195 | 81.41 228 |
|
| sd_testset | | | 64.46 236 | 64.45 220 | 64.51 289 | 77.13 208 | 42.25 302 | 62.67 342 | 72.11 266 | 58.02 149 | 65.08 217 | 82.55 185 | 41.22 221 | 69.88 318 | 47.32 258 | 73.92 195 | 81.41 228 |
|
| GeoE | | | 71.01 109 | 70.15 118 | 73.60 132 | 79.57 131 | 52.17 182 | 78.93 118 | 78.12 184 | 58.02 149 | 67.76 166 | 83.87 161 | 52.36 83 | 82.72 163 | 56.90 177 | 75.79 178 | 85.92 96 |
|
| ZD-MVS | | | | | | 86.64 21 | 60.38 45 | | 82.70 92 | 57.95 152 | 78.10 24 | 90.06 39 | 56.12 42 | 88.84 26 | 74.05 47 | 87.00 49 | |
|
| EIA-MVS | | | 71.78 97 | 70.60 108 | 75.30 83 | 79.85 125 | 53.54 154 | 77.27 158 | 83.26 82 | 57.92 153 | 66.49 186 | 79.39 254 | 52.07 88 | 86.69 70 | 60.05 156 | 79.14 133 | 85.66 109 |
|
| test_yl | | | 69.69 137 | 69.13 132 | 71.36 185 | 78.37 164 | 45.74 266 | 74.71 216 | 80.20 142 | 57.91 154 | 70.01 121 | 83.83 162 | 42.44 202 | 82.87 157 | 54.97 193 | 79.72 120 | 85.48 115 |
|
| DCV-MVSNet | | | 69.69 137 | 69.13 132 | 71.36 185 | 78.37 164 | 45.74 266 | 74.71 216 | 80.20 142 | 57.91 154 | 70.01 121 | 83.83 162 | 42.44 202 | 82.87 157 | 54.97 193 | 79.72 120 | 85.48 115 |
|
| MonoMVSNet | | | 64.15 239 | 63.31 236 | 66.69 257 | 70.51 317 | 44.12 285 | 74.47 221 | 74.21 247 | 57.81 156 | 63.03 247 | 76.62 299 | 38.33 246 | 77.31 263 | 54.22 201 | 60.59 346 | 78.64 275 |
|
| dcpmvs_2 | | | 74.55 63 | 75.23 53 | 72.48 157 | 82.34 80 | 53.34 158 | 77.87 139 | 81.46 110 | 57.80 157 | 75.49 41 | 86.81 89 | 62.22 13 | 77.75 256 | 71.09 72 | 82.02 97 | 86.34 80 |
|
| Fast-Effi-MVS+-dtu | | | 67.37 190 | 65.33 213 | 73.48 136 | 72.94 275 | 57.78 86 | 77.47 151 | 76.88 203 | 57.60 158 | 61.97 265 | 76.85 295 | 39.31 234 | 80.49 212 | 54.72 196 | 70.28 251 | 82.17 219 |
|
| v1192 | | | 69.97 131 | 68.68 142 | 73.85 114 | 73.19 269 | 50.94 194 | 77.68 145 | 81.36 114 | 57.51 159 | 68.95 140 | 80.85 227 | 45.28 177 | 85.33 107 | 62.97 133 | 70.37 247 | 85.27 129 |
|
| ACMH+ | | 57.40 11 | 66.12 215 | 64.06 222 | 72.30 163 | 77.79 185 | 52.83 170 | 80.39 97 | 78.03 185 | 57.30 160 | 57.47 314 | 82.55 185 | 27.68 349 | 84.17 128 | 45.54 276 | 69.78 262 | 79.90 259 |
|
| diffmvs |  | | 70.69 116 | 70.43 111 | 71.46 180 | 69.45 335 | 48.95 232 | 72.93 245 | 78.46 176 | 57.27 161 | 71.69 102 | 83.97 160 | 51.48 97 | 77.92 253 | 70.70 74 | 77.95 150 | 87.53 44 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| BH-untuned | | | 68.27 172 | 67.29 174 | 71.21 189 | 79.74 126 | 53.22 160 | 76.06 185 | 77.46 196 | 57.19 162 | 66.10 193 | 81.61 210 | 45.37 176 | 83.50 143 | 45.42 281 | 76.68 170 | 76.91 301 |
|
| thres100view900 | | | 63.28 249 | 62.41 247 | 65.89 274 | 77.31 205 | 38.66 333 | 72.65 248 | 69.11 293 | 57.07 163 | 62.45 261 | 81.03 221 | 37.01 265 | 79.17 232 | 31.84 367 | 73.25 210 | 79.83 261 |
|
| DP-MVS Recon | | | 72.15 94 | 70.73 106 | 76.40 63 | 86.57 24 | 57.99 82 | 81.15 90 | 82.96 86 | 57.03 164 | 66.78 180 | 85.56 129 | 44.50 185 | 88.11 38 | 51.77 223 | 80.23 117 | 83.10 200 |
|
| thres600view7 | | | 63.30 248 | 62.27 248 | 66.41 261 | 77.18 207 | 38.87 331 | 72.35 255 | 69.11 293 | 56.98 165 | 62.37 263 | 80.96 223 | 37.01 265 | 79.00 241 | 31.43 374 | 73.05 214 | 81.36 231 |
|
| V42 | | | 68.65 162 | 67.35 173 | 72.56 155 | 68.93 341 | 50.18 210 | 72.90 246 | 79.47 152 | 56.92 166 | 69.45 131 | 80.26 236 | 46.29 163 | 82.99 151 | 64.07 120 | 67.82 287 | 84.53 151 |
|
| MCST-MVS | | | 77.48 28 | 77.45 27 | 77.54 47 | 86.67 20 | 58.36 79 | 83.22 58 | 86.93 5 | 56.91 167 | 74.91 51 | 88.19 65 | 59.15 23 | 87.68 50 | 73.67 51 | 87.45 43 | 86.57 73 |
|
| GA-MVS | | | 65.53 222 | 63.70 229 | 71.02 196 | 70.87 312 | 48.10 242 | 70.48 282 | 74.40 242 | 56.69 168 | 64.70 225 | 76.77 296 | 33.66 297 | 81.10 196 | 55.42 192 | 70.32 250 | 83.87 172 |
|
| v144192 | | | 69.71 136 | 68.51 145 | 73.33 142 | 73.10 271 | 50.13 211 | 77.54 149 | 80.64 134 | 56.65 169 | 68.57 144 | 80.55 230 | 46.87 159 | 84.96 114 | 62.98 132 | 69.66 266 | 84.89 143 |
|
| tfpn200view9 | | | 63.18 251 | 62.18 250 | 66.21 266 | 76.85 215 | 39.62 325 | 71.96 262 | 69.44 289 | 56.63 170 | 62.61 256 | 79.83 242 | 37.18 259 | 79.17 232 | 31.84 367 | 73.25 210 | 79.83 261 |
|
| thres400 | | | 63.31 247 | 62.18 250 | 66.72 254 | 76.85 215 | 39.62 325 | 71.96 262 | 69.44 289 | 56.63 170 | 62.61 256 | 79.83 242 | 37.18 259 | 79.17 232 | 31.84 367 | 73.25 210 | 81.36 231 |
|
| GBi-Net | | | 67.21 192 | 66.55 187 | 69.19 227 | 77.63 192 | 43.33 291 | 77.31 154 | 77.83 188 | 56.62 172 | 65.04 219 | 82.70 179 | 41.85 209 | 80.33 214 | 47.18 260 | 72.76 217 | 83.92 169 |
|
| test1 | | | 67.21 192 | 66.55 187 | 69.19 227 | 77.63 192 | 43.33 291 | 77.31 154 | 77.83 188 | 56.62 172 | 65.04 219 | 82.70 179 | 41.85 209 | 80.33 214 | 47.18 260 | 72.76 217 | 83.92 169 |
|
| FMVSNet2 | | | 66.93 202 | 66.31 198 | 68.79 234 | 77.63 192 | 42.98 296 | 76.11 183 | 77.47 194 | 56.62 172 | 65.22 216 | 82.17 197 | 41.85 209 | 80.18 220 | 47.05 263 | 72.72 220 | 83.20 195 |
|
| DPM-MVS | | | 75.47 53 | 75.00 54 | 76.88 54 | 81.38 96 | 59.16 62 | 79.94 104 | 85.71 22 | 56.59 175 | 72.46 95 | 86.76 90 | 56.89 35 | 87.86 45 | 66.36 101 | 88.91 25 | 83.64 186 |
|
| v1921920 | | | 69.47 147 | 68.17 154 | 73.36 141 | 73.06 272 | 50.10 212 | 77.39 152 | 80.56 135 | 56.58 176 | 68.59 142 | 80.37 232 | 44.72 182 | 84.98 112 | 62.47 138 | 69.82 261 | 85.00 138 |
|
| FMVSNet1 | | | 66.70 207 | 65.87 204 | 69.19 227 | 77.49 200 | 43.33 291 | 77.31 154 | 77.83 188 | 56.45 177 | 64.60 227 | 82.70 179 | 38.08 251 | 80.33 214 | 46.08 269 | 72.31 225 | 83.92 169 |
|
| v1240 | | | 69.24 153 | 67.91 157 | 73.25 145 | 73.02 274 | 49.82 216 | 77.21 159 | 80.54 136 | 56.43 178 | 68.34 148 | 80.51 231 | 43.33 195 | 84.99 110 | 62.03 142 | 69.77 264 | 84.95 142 |
|
| testing222 | | | 62.29 262 | 61.31 260 | 65.25 284 | 77.87 182 | 38.53 335 | 68.34 300 | 66.31 313 | 56.37 179 | 63.15 246 | 77.58 286 | 28.47 343 | 76.18 287 | 37.04 336 | 76.65 171 | 81.05 241 |
|
| CDPH-MVS | | | 76.31 42 | 75.67 48 | 78.22 37 | 85.35 48 | 59.14 65 | 81.31 88 | 84.02 50 | 56.32 180 | 74.05 65 | 88.98 57 | 53.34 71 | 87.92 43 | 69.23 81 | 88.42 28 | 87.59 42 |
|
| Vis-MVSNet (Re-imp) | | | 63.69 244 | 63.88 225 | 63.14 299 | 74.75 249 | 31.04 390 | 71.16 272 | 63.64 332 | 56.32 180 | 59.80 290 | 84.99 136 | 44.51 184 | 75.46 289 | 39.12 324 | 80.62 108 | 82.92 202 |
|
| AdaColmap |  | | 69.99 130 | 68.66 143 | 73.97 113 | 84.94 54 | 57.83 84 | 82.63 68 | 78.71 166 | 56.28 182 | 64.34 228 | 84.14 154 | 41.57 213 | 87.06 63 | 46.45 266 | 78.88 135 | 77.02 297 |
|
| PS-MVSNAJss | | | 72.24 89 | 71.21 97 | 75.31 82 | 78.50 157 | 55.93 115 | 81.63 82 | 82.12 98 | 56.24 183 | 70.02 120 | 85.68 128 | 47.05 154 | 84.34 127 | 65.27 112 | 74.41 190 | 85.67 108 |
|
| c3_l | | | 68.33 171 | 67.56 162 | 70.62 202 | 70.87 312 | 46.21 262 | 74.47 221 | 78.80 164 | 56.22 184 | 66.19 192 | 78.53 269 | 51.88 90 | 81.40 188 | 62.08 139 | 69.04 275 | 84.25 158 |
|
| Fast-Effi-MVS+ | | | 70.28 125 | 69.12 134 | 73.73 123 | 78.50 157 | 51.50 191 | 75.01 208 | 79.46 153 | 56.16 185 | 68.59 142 | 79.55 250 | 53.97 60 | 84.05 130 | 53.34 209 | 77.53 155 | 85.65 110 |
|
| PHI-MVS | | | 75.87 48 | 75.36 50 | 77.41 49 | 80.62 112 | 55.91 116 | 84.28 42 | 85.78 20 | 56.08 186 | 73.41 73 | 86.58 100 | 50.94 105 | 88.54 28 | 70.79 73 | 89.71 17 | 87.79 35 |
|
| baseline1 | | | 63.81 243 | 63.87 226 | 63.62 294 | 76.29 225 | 36.36 356 | 71.78 264 | 67.29 304 | 56.05 187 | 64.23 233 | 82.95 177 | 47.11 153 | 74.41 294 | 47.30 259 | 61.85 335 | 80.10 256 |
|
| train_agg | | | 76.27 43 | 76.15 40 | 76.64 60 | 85.58 43 | 61.59 24 | 81.62 83 | 81.26 121 | 55.86 188 | 74.93 49 | 88.81 59 | 53.70 67 | 84.68 121 | 75.24 38 | 88.33 30 | 83.65 185 |
|
| test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 86 | 81.18 124 | 55.86 188 | 74.81 54 | 88.80 61 | 53.70 67 | 84.45 125 | | | |
|
| FMVSNet3 | | | 66.32 214 | 65.61 209 | 68.46 237 | 76.48 223 | 42.34 300 | 74.98 210 | 77.15 201 | 55.83 190 | 65.04 219 | 81.16 217 | 39.91 227 | 80.14 221 | 47.18 260 | 72.76 217 | 82.90 204 |
|
| PAPR | | | 71.72 100 | 70.82 104 | 74.41 102 | 81.20 101 | 51.17 192 | 79.55 114 | 83.33 78 | 55.81 191 | 66.93 179 | 84.61 145 | 50.95 104 | 86.06 85 | 55.79 186 | 79.20 131 | 86.00 93 |
|
| eth_miper_zixun_eth | | | 67.63 186 | 66.28 199 | 71.67 175 | 71.60 298 | 48.33 240 | 73.68 238 | 77.88 186 | 55.80 192 | 65.91 197 | 78.62 267 | 47.35 151 | 82.88 156 | 59.45 163 | 66.25 299 | 83.81 174 |
|
| ACMH | | 55.70 15 | 65.20 228 | 63.57 231 | 70.07 211 | 78.07 176 | 52.01 187 | 79.48 115 | 79.69 146 | 55.75 193 | 56.59 321 | 80.98 222 | 27.12 354 | 80.94 200 | 42.90 303 | 71.58 233 | 77.25 295 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| IB-MVS | | 56.42 12 | 65.40 225 | 62.73 244 | 73.40 140 | 74.89 244 | 52.78 171 | 73.09 244 | 75.13 232 | 55.69 194 | 58.48 307 | 73.73 333 | 32.86 306 | 86.32 83 | 50.63 231 | 70.11 254 | 81.10 239 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CL-MVSNet_self_test | | | 61.53 270 | 60.94 267 | 63.30 297 | 68.95 340 | 36.93 352 | 67.60 306 | 72.80 261 | 55.67 195 | 59.95 287 | 76.63 298 | 45.01 180 | 72.22 304 | 39.74 322 | 62.09 334 | 80.74 246 |
|
| TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 83 | 81.26 121 | 55.65 196 | 74.93 49 | 88.81 59 | 53.70 67 | 84.68 121 | | | |
|
| thres200 | | | 62.20 263 | 61.16 265 | 65.34 282 | 75.38 240 | 39.99 321 | 69.60 292 | 69.29 291 | 55.64 197 | 61.87 267 | 76.99 292 | 37.07 264 | 78.96 242 | 31.28 375 | 73.28 209 | 77.06 296 |
|
| pm-mvs1 | | | 65.24 227 | 64.97 217 | 66.04 271 | 72.38 287 | 39.40 328 | 72.62 250 | 75.63 219 | 55.53 198 | 62.35 264 | 83.18 175 | 47.45 147 | 76.47 282 | 49.06 245 | 66.54 297 | 82.24 216 |
|
| testing11 | | | 62.81 254 | 61.90 253 | 65.54 278 | 78.38 162 | 40.76 317 | 67.59 307 | 66.78 309 | 55.48 199 | 60.13 282 | 77.11 290 | 31.67 322 | 76.79 274 | 45.53 277 | 74.45 188 | 79.06 270 |
|
| ACMM | | 61.98 7 | 70.80 115 | 69.73 123 | 74.02 111 | 80.59 113 | 58.59 77 | 82.68 67 | 82.02 100 | 55.46 200 | 67.18 174 | 84.39 151 | 38.51 243 | 83.17 149 | 60.65 152 | 76.10 175 | 80.30 252 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Anonymous20240529 | | | 69.91 132 | 69.02 135 | 72.56 155 | 80.19 119 | 47.65 248 | 77.56 148 | 80.99 129 | 55.45 201 | 69.88 124 | 86.76 90 | 39.24 237 | 82.18 175 | 54.04 202 | 77.10 165 | 87.85 31 |
|
| tt0805 | | | 67.77 184 | 67.24 179 | 69.34 226 | 74.87 246 | 40.08 319 | 77.36 153 | 81.37 113 | 55.31 202 | 66.33 190 | 84.65 143 | 37.35 257 | 82.55 168 | 55.65 189 | 72.28 226 | 85.39 124 |
|
| CPTT-MVS | | | 72.78 79 | 72.08 84 | 74.87 88 | 84.88 57 | 61.41 26 | 84.15 46 | 77.86 187 | 55.27 203 | 67.51 169 | 88.08 68 | 41.93 208 | 81.85 180 | 69.04 82 | 80.01 118 | 81.35 233 |
|
| XVG-OURS | | | 68.76 161 | 67.37 171 | 72.90 149 | 74.32 261 | 57.22 92 | 70.09 288 | 78.81 163 | 55.24 204 | 67.79 164 | 85.81 127 | 36.54 268 | 78.28 247 | 62.04 141 | 75.74 179 | 83.19 196 |
|
| tfpnnormal | | | 62.47 258 | 61.63 256 | 64.99 286 | 74.81 248 | 39.01 330 | 71.22 270 | 73.72 252 | 55.22 205 | 60.21 281 | 80.09 240 | 41.26 220 | 76.98 270 | 30.02 380 | 68.09 285 | 78.97 273 |
|
| cl____ | | | 67.18 195 | 66.26 200 | 69.94 213 | 70.20 322 | 45.74 266 | 73.30 240 | 76.83 205 | 55.10 206 | 65.27 210 | 79.57 249 | 47.39 149 | 80.53 209 | 59.41 165 | 69.22 273 | 83.53 188 |
|
| DIV-MVS_self_test | | | 67.18 195 | 66.26 200 | 69.94 213 | 70.20 322 | 45.74 266 | 73.29 241 | 76.83 205 | 55.10 206 | 65.27 210 | 79.58 248 | 47.38 150 | 80.53 209 | 59.43 164 | 69.22 273 | 83.54 187 |
|
| PC_three_1452 | | | | | | | | | | 55.09 208 | 84.46 4 | 89.84 46 | 66.68 5 | 89.41 18 | 74.24 44 | 91.38 2 | 88.42 14 |
|
| EPNet_dtu | | | 61.90 266 | 61.97 252 | 61.68 307 | 72.89 276 | 39.78 323 | 75.85 191 | 65.62 317 | 55.09 208 | 54.56 342 | 79.36 255 | 37.59 254 | 67.02 336 | 39.80 321 | 76.95 166 | 78.25 278 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PVSNet_Blended_VisFu | | | 71.45 105 | 70.39 112 | 74.65 93 | 82.01 83 | 58.82 74 | 79.93 105 | 80.35 141 | 55.09 208 | 65.82 202 | 82.16 198 | 49.17 123 | 82.64 166 | 60.34 154 | 78.62 142 | 82.50 211 |
|
| cl22 | | | 67.47 189 | 66.45 189 | 70.54 204 | 69.85 330 | 46.49 258 | 73.85 235 | 77.35 198 | 55.07 211 | 65.51 205 | 77.92 276 | 47.64 142 | 81.10 196 | 61.58 147 | 69.32 269 | 84.01 166 |
|
| miper_ehance_all_eth | | | 68.03 177 | 67.24 179 | 70.40 206 | 70.54 316 | 46.21 262 | 73.98 228 | 78.68 168 | 55.07 211 | 66.05 194 | 77.80 280 | 52.16 87 | 81.31 191 | 61.53 148 | 69.32 269 | 83.67 182 |
|
| PS-MVSNAJ | | | 70.51 119 | 69.70 124 | 72.93 148 | 81.52 91 | 55.79 119 | 74.92 212 | 79.00 159 | 55.04 213 | 69.88 124 | 78.66 264 | 47.05 154 | 82.19 174 | 61.61 145 | 79.58 123 | 80.83 244 |
|
| mmtdpeth | | | 60.40 279 | 59.12 280 | 64.27 292 | 69.59 332 | 48.99 230 | 70.67 279 | 70.06 281 | 54.96 214 | 62.78 250 | 73.26 337 | 27.00 356 | 67.66 329 | 58.44 170 | 45.29 389 | 76.16 306 |
|
| xiu_mvs_v2_base | | | 70.52 118 | 69.75 122 | 72.84 150 | 81.21 100 | 55.63 123 | 75.11 205 | 78.92 161 | 54.92 215 | 69.96 123 | 79.68 247 | 47.00 158 | 82.09 176 | 61.60 146 | 79.37 126 | 80.81 245 |
|
| MAR-MVS | | | 71.51 102 | 70.15 118 | 75.60 78 | 81.84 87 | 59.39 58 | 81.38 87 | 82.90 88 | 54.90 216 | 68.08 155 | 78.70 262 | 47.73 139 | 85.51 100 | 51.68 225 | 84.17 74 | 81.88 223 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| reproduce_monomvs | | | 62.56 256 | 61.20 264 | 66.62 258 | 70.62 315 | 44.30 282 | 70.13 287 | 73.13 258 | 54.78 217 | 61.13 276 | 76.37 306 | 25.63 366 | 75.63 288 | 58.75 167 | 60.29 347 | 79.93 258 |
|
| XVG-OURS-SEG-HR | | | 68.81 158 | 67.47 168 | 72.82 152 | 74.40 259 | 56.87 102 | 70.59 280 | 79.04 158 | 54.77 218 | 66.99 177 | 86.01 119 | 39.57 232 | 78.21 248 | 62.54 136 | 73.33 208 | 83.37 190 |
|
| testing3 | | | 56.54 307 | 55.92 309 | 58.41 329 | 77.52 199 | 27.93 399 | 69.72 291 | 56.36 369 | 54.75 219 | 58.63 305 | 77.80 280 | 20.88 382 | 71.75 307 | 25.31 396 | 62.25 332 | 75.53 313 |
|
| Anonymous20231211 | | | 69.28 151 | 68.47 148 | 71.73 173 | 80.28 114 | 47.18 254 | 79.98 103 | 82.37 95 | 54.61 220 | 67.24 172 | 84.01 158 | 39.43 233 | 82.41 172 | 55.45 191 | 72.83 216 | 85.62 111 |
|
| SixPastTwentyTwo | | | 61.65 269 | 58.80 284 | 70.20 209 | 75.80 231 | 47.22 253 | 75.59 195 | 69.68 284 | 54.61 220 | 54.11 346 | 79.26 257 | 27.07 355 | 82.96 152 | 43.27 297 | 49.79 382 | 80.41 250 |
|
| test_0402 | | | 63.25 250 | 61.01 266 | 69.96 212 | 80.00 123 | 54.37 143 | 76.86 170 | 72.02 267 | 54.58 222 | 58.71 302 | 80.79 229 | 35.00 280 | 84.36 126 | 26.41 394 | 64.71 310 | 71.15 363 |
|
| tttt0517 | | | 67.83 183 | 65.66 208 | 74.33 104 | 76.69 217 | 50.82 198 | 77.86 140 | 73.99 250 | 54.54 223 | 64.64 226 | 82.53 188 | 35.06 279 | 85.50 101 | 55.71 187 | 69.91 259 | 86.67 69 |
|
| BH-w/o | | | 66.85 203 | 65.83 205 | 69.90 216 | 79.29 135 | 52.46 178 | 74.66 218 | 76.65 208 | 54.51 224 | 64.85 223 | 78.12 270 | 45.59 169 | 82.95 153 | 43.26 298 | 75.54 182 | 74.27 330 |
|
| AUN-MVS | | | 68.45 170 | 66.41 193 | 74.57 98 | 79.53 132 | 57.08 100 | 73.93 232 | 75.23 229 | 54.44 225 | 66.69 183 | 81.85 205 | 37.10 263 | 82.89 155 | 62.07 140 | 66.84 294 | 83.75 179 |
|
| LTVRE_ROB | | 55.42 16 | 63.15 252 | 61.23 263 | 68.92 232 | 76.57 221 | 47.80 245 | 59.92 358 | 76.39 209 | 54.35 226 | 58.67 303 | 82.46 190 | 29.44 337 | 81.49 187 | 42.12 307 | 71.14 237 | 77.46 289 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test_fmvsmconf_n | | | 73.01 76 | 72.59 78 | 74.27 106 | 71.28 307 | 55.88 117 | 78.21 132 | 75.56 221 | 54.31 227 | 74.86 53 | 87.80 75 | 54.72 52 | 80.23 218 | 78.07 21 | 78.48 143 | 86.70 67 |
|
| test_fmvsmconf0.01_n | | | 72.17 91 | 71.50 89 | 74.16 109 | 67.96 347 | 55.58 126 | 78.06 136 | 74.67 239 | 54.19 228 | 74.54 59 | 88.23 64 | 50.35 112 | 80.24 217 | 78.07 21 | 77.46 157 | 86.65 71 |
|
| test_fmvsmconf0.1_n | | | 72.81 78 | 72.33 81 | 74.24 107 | 69.89 329 | 55.81 118 | 78.22 131 | 75.40 225 | 54.17 229 | 75.00 48 | 88.03 71 | 53.82 64 | 80.23 218 | 78.08 20 | 78.34 146 | 86.69 68 |
|
| ETVMVS | | | 59.51 288 | 58.81 282 | 61.58 309 | 77.46 201 | 34.87 367 | 64.94 331 | 59.35 355 | 54.06 230 | 61.08 277 | 76.67 297 | 29.54 334 | 71.87 306 | 32.16 363 | 74.07 193 | 78.01 285 |
|
| ab-mvs | | | 66.65 208 | 66.42 192 | 67.37 249 | 76.17 227 | 41.73 307 | 70.41 284 | 76.14 213 | 53.99 231 | 65.98 195 | 83.51 169 | 49.48 118 | 76.24 285 | 48.60 248 | 73.46 206 | 84.14 162 |
|
| IU-MVS | | | | | | 87.77 4 | 59.15 63 | | 85.53 26 | 53.93 232 | 84.64 3 | | | | 79.07 11 | 90.87 5 | 88.37 16 |
|
| XVG-ACMP-BASELINE | | | 64.36 238 | 62.23 249 | 70.74 200 | 72.35 288 | 52.45 179 | 70.80 278 | 78.45 177 | 53.84 233 | 59.87 288 | 81.10 219 | 16.24 390 | 79.32 229 | 55.64 190 | 71.76 230 | 80.47 248 |
|
| FE-MVS | | | 65.91 217 | 63.33 235 | 73.63 130 | 77.36 204 | 51.95 188 | 72.62 250 | 75.81 216 | 53.70 234 | 65.31 208 | 78.96 260 | 28.81 342 | 86.39 80 | 43.93 290 | 73.48 205 | 82.55 208 |
|
| thisisatest0530 | | | 67.92 181 | 65.78 206 | 74.33 104 | 76.29 225 | 51.03 193 | 76.89 168 | 74.25 246 | 53.67 235 | 65.59 204 | 81.76 207 | 35.15 278 | 85.50 101 | 55.94 182 | 72.47 221 | 86.47 75 |
|
| PVSNet_BlendedMVS | | | 68.56 167 | 67.72 159 | 71.07 195 | 77.03 212 | 50.57 202 | 74.50 220 | 81.52 107 | 53.66 236 | 64.22 234 | 79.72 246 | 49.13 124 | 82.87 157 | 55.82 184 | 73.92 195 | 79.77 264 |
|
| patch_mono-2 | | | 69.85 133 | 71.09 100 | 66.16 267 | 79.11 143 | 54.80 138 | 71.97 261 | 74.31 244 | 53.50 237 | 70.90 109 | 84.17 153 | 57.63 31 | 63.31 350 | 66.17 102 | 82.02 97 | 80.38 251 |
|
| EG-PatchMatch MVS | | | 64.71 232 | 62.87 241 | 70.22 207 | 77.68 189 | 53.48 155 | 77.99 137 | 78.82 162 | 53.37 238 | 56.03 326 | 77.41 288 | 24.75 371 | 84.04 131 | 46.37 267 | 73.42 207 | 73.14 336 |
|
| DP-MVS | | | 65.68 219 | 63.66 230 | 71.75 172 | 84.93 55 | 56.87 102 | 80.74 95 | 73.16 257 | 53.06 239 | 59.09 299 | 82.35 191 | 36.79 267 | 85.94 90 | 32.82 361 | 69.96 258 | 72.45 344 |
|
| TR-MVS | | | 66.59 211 | 65.07 216 | 71.17 192 | 79.18 140 | 49.63 222 | 73.48 239 | 75.20 231 | 52.95 240 | 67.90 156 | 80.33 235 | 39.81 230 | 83.68 139 | 43.20 299 | 73.56 203 | 80.20 253 |
|
| ET-MVSNet_ETH3D | | | 67.96 180 | 65.72 207 | 74.68 91 | 76.67 218 | 55.62 125 | 75.11 205 | 74.74 237 | 52.91 241 | 60.03 285 | 80.12 238 | 33.68 296 | 82.64 166 | 61.86 143 | 76.34 172 | 85.78 101 |
|
| QAPM | | | 70.05 128 | 68.81 139 | 73.78 117 | 76.54 222 | 53.43 156 | 83.23 57 | 83.48 69 | 52.89 242 | 65.90 198 | 86.29 109 | 41.55 215 | 86.49 78 | 51.01 228 | 78.40 145 | 81.42 227 |
|
| OpenMVS |  | 61.03 9 | 68.85 157 | 67.56 162 | 72.70 154 | 74.26 262 | 53.99 146 | 81.21 89 | 81.34 118 | 52.70 243 | 62.75 253 | 85.55 131 | 38.86 241 | 84.14 129 | 48.41 250 | 83.01 82 | 79.97 257 |
|
| pmmvs6 | | | 63.69 244 | 62.82 243 | 66.27 265 | 70.63 314 | 39.27 329 | 73.13 243 | 75.47 224 | 52.69 244 | 59.75 292 | 82.30 193 | 39.71 231 | 77.03 268 | 47.40 257 | 64.35 315 | 82.53 209 |
|
| IterMVS | | | 62.79 255 | 61.27 261 | 67.35 250 | 69.37 336 | 52.04 186 | 71.17 271 | 68.24 299 | 52.63 245 | 59.82 289 | 76.91 294 | 37.32 258 | 72.36 301 | 52.80 213 | 63.19 325 | 77.66 287 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| mvs_tets | | | 68.18 175 | 66.36 195 | 73.63 130 | 75.61 235 | 55.35 131 | 80.77 94 | 78.56 171 | 52.48 246 | 64.27 231 | 84.10 156 | 27.45 351 | 81.84 181 | 63.45 131 | 70.56 244 | 83.69 181 |
|
| jajsoiax | | | 68.25 173 | 66.45 189 | 73.66 127 | 75.62 234 | 55.49 128 | 80.82 93 | 78.51 173 | 52.33 247 | 64.33 229 | 84.11 155 | 28.28 345 | 81.81 182 | 63.48 130 | 70.62 242 | 83.67 182 |
|
| TAMVS | | | 66.78 206 | 65.27 214 | 71.33 188 | 79.16 142 | 53.67 150 | 73.84 236 | 69.59 286 | 52.32 248 | 65.28 209 | 81.72 208 | 44.49 186 | 77.40 262 | 42.32 306 | 78.66 141 | 82.92 202 |
|
| CDS-MVSNet | | | 66.80 205 | 65.37 211 | 71.10 194 | 78.98 145 | 53.13 163 | 73.27 242 | 71.07 273 | 52.15 249 | 64.72 224 | 80.23 237 | 43.56 193 | 77.10 266 | 45.48 279 | 78.88 135 | 83.05 201 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvsmamba | | | 68.47 168 | 66.56 186 | 74.21 108 | 79.60 129 | 52.95 165 | 74.94 211 | 75.48 223 | 52.09 250 | 60.10 283 | 83.27 172 | 36.54 268 | 84.70 120 | 59.32 166 | 77.69 153 | 84.99 140 |
|
| PVSNet_Blended | | | 68.59 163 | 67.72 159 | 71.19 190 | 77.03 212 | 50.57 202 | 72.51 253 | 81.52 107 | 51.91 251 | 64.22 234 | 77.77 283 | 49.13 124 | 82.87 157 | 55.82 184 | 79.58 123 | 80.14 255 |
|
| mvs_anonymous | | | 68.03 177 | 67.51 166 | 69.59 221 | 72.08 292 | 44.57 280 | 71.99 260 | 75.23 229 | 51.67 252 | 67.06 176 | 82.57 184 | 54.68 53 | 77.94 251 | 56.56 179 | 75.71 180 | 86.26 88 |
|
| xiu_mvs_v1_base_debu | | | 68.58 164 | 67.28 175 | 72.48 157 | 78.19 170 | 57.19 94 | 75.28 200 | 75.09 233 | 51.61 253 | 70.04 117 | 81.41 214 | 32.79 307 | 79.02 238 | 63.81 126 | 77.31 158 | 81.22 235 |
|
| xiu_mvs_v1_base | | | 68.58 164 | 67.28 175 | 72.48 157 | 78.19 170 | 57.19 94 | 75.28 200 | 75.09 233 | 51.61 253 | 70.04 117 | 81.41 214 | 32.79 307 | 79.02 238 | 63.81 126 | 77.31 158 | 81.22 235 |
|
| xiu_mvs_v1_base_debi | | | 68.58 164 | 67.28 175 | 72.48 157 | 78.19 170 | 57.19 94 | 75.28 200 | 75.09 233 | 51.61 253 | 70.04 117 | 81.41 214 | 32.79 307 | 79.02 238 | 63.81 126 | 77.31 158 | 81.22 235 |
|
| MVSTER | | | 67.16 197 | 65.58 210 | 71.88 168 | 70.37 321 | 49.70 218 | 70.25 286 | 78.45 177 | 51.52 256 | 69.16 138 | 80.37 232 | 38.45 244 | 82.50 169 | 60.19 155 | 71.46 234 | 83.44 189 |
|
| CNLPA | | | 65.43 223 | 64.02 223 | 69.68 219 | 78.73 153 | 58.07 81 | 77.82 143 | 70.71 276 | 51.49 257 | 61.57 272 | 83.58 168 | 38.23 249 | 70.82 310 | 43.90 291 | 70.10 255 | 80.16 254 |
|
| 原ACMM1 | | | | | 74.69 90 | 85.39 47 | 59.40 57 | | 83.42 72 | 51.47 258 | 70.27 115 | 86.61 98 | 48.61 130 | 86.51 77 | 53.85 205 | 87.96 39 | 78.16 279 |
|
| miper_enhance_ethall | | | 67.11 198 | 66.09 202 | 70.17 210 | 69.21 338 | 45.98 264 | 72.85 247 | 78.41 180 | 51.38 259 | 65.65 203 | 75.98 312 | 51.17 101 | 81.25 192 | 60.82 151 | 69.32 269 | 83.29 193 |
|
| MSDG | | | 61.81 268 | 59.23 278 | 69.55 224 | 72.64 279 | 52.63 174 | 70.45 283 | 75.81 216 | 51.38 259 | 53.70 349 | 76.11 308 | 29.52 335 | 81.08 198 | 37.70 331 | 65.79 303 | 74.93 321 |
|
| test20.03 | | | 53.87 328 | 54.02 326 | 53.41 360 | 61.47 381 | 28.11 398 | 61.30 350 | 59.21 356 | 51.34 261 | 52.09 358 | 77.43 287 | 33.29 301 | 58.55 371 | 29.76 381 | 60.27 348 | 73.58 335 |
|
| MVSFormer | | | 71.50 103 | 70.38 113 | 74.88 87 | 78.76 151 | 57.15 97 | 82.79 64 | 78.48 174 | 51.26 262 | 69.49 129 | 83.22 173 | 43.99 190 | 83.24 147 | 66.06 103 | 79.37 126 | 84.23 159 |
|
| test_djsdf | | | 69.45 148 | 67.74 158 | 74.58 97 | 74.57 255 | 54.92 136 | 82.79 64 | 78.48 174 | 51.26 262 | 65.41 207 | 83.49 170 | 38.37 245 | 83.24 147 | 66.06 103 | 69.25 272 | 85.56 112 |
|
| dmvs_testset | | | 50.16 345 | 51.90 335 | 44.94 380 | 66.49 357 | 11.78 420 | 61.01 355 | 51.50 383 | 51.17 264 | 50.30 370 | 67.44 374 | 39.28 235 | 60.29 361 | 22.38 400 | 57.49 357 | 62.76 385 |
|
| PAPM | | | 67.92 181 | 66.69 185 | 71.63 177 | 78.09 175 | 49.02 229 | 77.09 162 | 81.24 123 | 51.04 265 | 60.91 278 | 83.98 159 | 47.71 140 | 84.99 110 | 40.81 315 | 79.32 129 | 80.90 243 |
|
| Syy-MVS | | | 56.00 314 | 56.23 307 | 55.32 346 | 74.69 251 | 26.44 405 | 65.52 321 | 57.49 364 | 50.97 266 | 56.52 322 | 72.18 341 | 39.89 228 | 68.09 325 | 24.20 397 | 64.59 313 | 71.44 359 |
|
| myMVS_eth3d | | | 54.86 324 | 54.61 318 | 55.61 345 | 74.69 251 | 27.31 402 | 65.52 321 | 57.49 364 | 50.97 266 | 56.52 322 | 72.18 341 | 21.87 380 | 68.09 325 | 27.70 388 | 64.59 313 | 71.44 359 |
|
| miper_lstm_enhance | | | 62.03 265 | 60.88 268 | 65.49 280 | 66.71 355 | 46.25 260 | 56.29 376 | 75.70 218 | 50.68 268 | 61.27 274 | 75.48 319 | 40.21 226 | 68.03 327 | 56.31 181 | 65.25 306 | 82.18 217 |
|
| gg-mvs-nofinetune | | | 57.86 298 | 56.43 305 | 62.18 305 | 72.62 280 | 35.35 366 | 66.57 311 | 56.33 370 | 50.65 269 | 57.64 313 | 57.10 396 | 30.65 325 | 76.36 283 | 37.38 333 | 78.88 135 | 74.82 323 |
|
| TAPA-MVS | | 59.36 10 | 66.60 209 | 65.20 215 | 70.81 198 | 76.63 219 | 48.75 234 | 76.52 176 | 80.04 144 | 50.64 270 | 65.24 214 | 84.93 137 | 39.15 238 | 78.54 244 | 36.77 338 | 76.88 167 | 85.14 132 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| dmvs_re | | | 56.77 306 | 56.83 301 | 56.61 340 | 69.23 337 | 41.02 312 | 58.37 363 | 64.18 328 | 50.59 271 | 57.45 315 | 71.42 349 | 35.54 275 | 58.94 369 | 37.23 334 | 67.45 290 | 69.87 372 |
|
| MVP-Stereo | | | 65.41 224 | 63.80 227 | 70.22 207 | 77.62 196 | 55.53 127 | 76.30 179 | 78.53 172 | 50.59 271 | 56.47 324 | 78.65 265 | 39.84 229 | 82.68 164 | 44.10 289 | 72.12 228 | 72.44 345 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| PCF-MVS | | 61.88 8 | 70.95 111 | 69.49 127 | 75.35 81 | 77.63 192 | 55.71 120 | 76.04 187 | 81.81 103 | 50.30 273 | 69.66 127 | 85.40 135 | 52.51 79 | 84.89 116 | 51.82 222 | 80.24 116 | 85.45 119 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| mvs5depth | | | 55.64 317 | 53.81 328 | 61.11 314 | 59.39 391 | 40.98 316 | 65.89 316 | 68.28 298 | 50.21 274 | 58.11 310 | 75.42 320 | 17.03 386 | 67.63 331 | 43.79 293 | 46.21 386 | 74.73 325 |
|
| baseline2 | | | 63.42 246 | 61.26 262 | 69.89 217 | 72.55 282 | 47.62 249 | 71.54 265 | 68.38 297 | 50.11 275 | 54.82 338 | 75.55 317 | 43.06 197 | 80.96 199 | 48.13 253 | 67.16 293 | 81.11 238 |
|
| test-LLR | | | 58.15 296 | 58.13 292 | 58.22 331 | 68.57 342 | 44.80 276 | 65.46 323 | 57.92 361 | 50.08 276 | 55.44 330 | 69.82 362 | 32.62 313 | 57.44 375 | 49.66 239 | 73.62 200 | 72.41 346 |
|
| test0.0.03 1 | | | 53.32 333 | 53.59 330 | 52.50 366 | 62.81 376 | 29.45 393 | 59.51 359 | 54.11 378 | 50.08 276 | 54.40 344 | 74.31 329 | 32.62 313 | 55.92 384 | 30.50 378 | 63.95 318 | 72.15 351 |
|
| fmvsm_s_conf0.5_n | | | 69.58 142 | 68.84 138 | 71.79 171 | 72.31 290 | 52.90 167 | 77.90 138 | 62.43 342 | 49.97 278 | 72.85 88 | 85.90 122 | 52.21 85 | 76.49 280 | 75.75 33 | 70.26 252 | 85.97 94 |
|
| COLMAP_ROB |  | 52.97 17 | 61.27 274 | 58.81 282 | 68.64 235 | 74.63 253 | 52.51 177 | 78.42 128 | 73.30 255 | 49.92 279 | 50.96 362 | 81.51 213 | 23.06 374 | 79.40 227 | 31.63 371 | 65.85 301 | 74.01 333 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| fmvsm_s_conf0.5_n_a | | | 69.54 144 | 68.74 141 | 71.93 166 | 72.47 285 | 53.82 148 | 78.25 129 | 62.26 344 | 49.78 280 | 73.12 82 | 86.21 111 | 52.66 77 | 76.79 274 | 75.02 39 | 68.88 277 | 85.18 131 |
|
| WBMVS | | | 60.54 276 | 60.61 270 | 60.34 317 | 78.00 179 | 35.95 363 | 64.55 333 | 64.89 321 | 49.63 281 | 63.39 241 | 78.70 262 | 33.85 294 | 67.65 330 | 42.10 308 | 70.35 249 | 77.43 290 |
|
| tpmvs | | | 58.47 292 | 56.95 299 | 63.03 301 | 70.20 322 | 41.21 311 | 67.90 304 | 67.23 305 | 49.62 282 | 54.73 340 | 70.84 353 | 34.14 288 | 76.24 285 | 36.64 342 | 61.29 339 | 71.64 355 |
|
| fmvsm_s_conf0.1_n | | | 69.41 149 | 68.60 144 | 71.83 169 | 71.07 309 | 52.88 169 | 77.85 141 | 62.44 341 | 49.58 283 | 72.97 85 | 86.22 110 | 51.68 95 | 76.48 281 | 75.53 34 | 70.10 255 | 86.14 89 |
|
| UBG | | | 59.62 287 | 59.53 276 | 59.89 318 | 78.12 174 | 35.92 364 | 64.11 337 | 60.81 352 | 49.45 284 | 61.34 273 | 75.55 317 | 33.05 302 | 67.39 334 | 38.68 326 | 74.62 186 | 76.35 305 |
|
| thisisatest0515 | | | 65.83 218 | 63.50 232 | 72.82 152 | 73.75 265 | 49.50 223 | 71.32 268 | 73.12 259 | 49.39 285 | 63.82 236 | 76.50 305 | 34.95 281 | 84.84 119 | 53.20 211 | 75.49 183 | 84.13 163 |
|
| fmvsm_s_conf0.1_n_a | | | 69.32 150 | 68.44 150 | 71.96 165 | 70.91 311 | 53.78 149 | 78.12 134 | 62.30 343 | 49.35 286 | 73.20 78 | 86.55 103 | 51.99 89 | 76.79 274 | 74.83 41 | 68.68 282 | 85.32 126 |
|
| HY-MVS | | 56.14 13 | 64.55 235 | 63.89 224 | 66.55 259 | 74.73 250 | 41.02 312 | 69.96 289 | 74.43 241 | 49.29 287 | 61.66 270 | 80.92 224 | 47.43 148 | 76.68 278 | 44.91 284 | 71.69 231 | 81.94 221 |
|
| MIMVSNet1 | | | 55.17 322 | 54.31 323 | 57.77 336 | 70.03 326 | 32.01 387 | 65.68 319 | 64.81 322 | 49.19 288 | 46.75 380 | 76.00 309 | 25.53 367 | 64.04 348 | 28.65 385 | 62.13 333 | 77.26 294 |
|
| SCA | | | 60.49 277 | 58.38 288 | 66.80 253 | 74.14 264 | 48.06 243 | 63.35 339 | 63.23 335 | 49.13 289 | 59.33 298 | 72.10 343 | 37.45 255 | 74.27 295 | 44.17 286 | 62.57 329 | 78.05 281 |
|
| test_fmvsmvis_n_1920 | | | 70.84 112 | 70.38 113 | 72.22 164 | 71.16 308 | 55.39 130 | 75.86 190 | 72.21 265 | 49.03 290 | 73.28 76 | 86.17 113 | 51.83 92 | 77.29 264 | 75.80 32 | 78.05 148 | 83.98 167 |
|
| testgi | | | 51.90 337 | 52.37 334 | 50.51 372 | 60.39 389 | 23.55 412 | 58.42 362 | 58.15 359 | 49.03 290 | 51.83 359 | 79.21 258 | 22.39 375 | 55.59 385 | 29.24 384 | 62.64 328 | 72.40 348 |
|
| MIMVSNet | | | 57.35 300 | 57.07 297 | 58.22 331 | 74.21 263 | 37.18 347 | 62.46 343 | 60.88 351 | 48.88 292 | 55.29 333 | 75.99 311 | 31.68 321 | 62.04 355 | 31.87 366 | 72.35 223 | 75.43 315 |
|
| gm-plane-assit | | | | | | 71.40 304 | 41.72 309 | | | 48.85 293 | | 73.31 335 | | 82.48 171 | 48.90 246 | | |
|
| fmvsm_l_conf0.5_n | | | 70.99 110 | 70.82 104 | 71.48 179 | 71.45 300 | 54.40 142 | 77.18 160 | 70.46 278 | 48.67 294 | 75.17 44 | 86.86 87 | 53.77 65 | 76.86 272 | 76.33 30 | 77.51 156 | 83.17 199 |
|
| UWE-MVS | | | 60.18 280 | 59.78 274 | 61.39 312 | 77.67 190 | 33.92 379 | 69.04 298 | 63.82 330 | 48.56 295 | 64.27 231 | 77.64 285 | 27.20 353 | 70.40 315 | 33.56 358 | 76.24 173 | 79.83 261 |
|
| cascas | | | 65.98 216 | 63.42 233 | 73.64 129 | 77.26 206 | 52.58 175 | 72.26 257 | 77.21 200 | 48.56 295 | 61.21 275 | 74.60 327 | 32.57 316 | 85.82 93 | 50.38 233 | 76.75 169 | 82.52 210 |
|
| PLC |  | 56.13 14 | 65.09 229 | 63.21 238 | 70.72 201 | 81.04 103 | 54.87 137 | 78.57 125 | 77.47 194 | 48.51 297 | 55.71 327 | 81.89 204 | 33.71 295 | 79.71 222 | 41.66 312 | 70.37 247 | 77.58 288 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| LS3D | | | 64.71 232 | 62.50 246 | 71.34 187 | 79.72 128 | 55.71 120 | 79.82 107 | 74.72 238 | 48.50 298 | 56.62 320 | 84.62 144 | 33.59 298 | 82.34 173 | 29.65 382 | 75.23 184 | 75.97 307 |
|
| anonymousdsp | | | 67.00 201 | 64.82 218 | 73.57 133 | 70.09 325 | 56.13 110 | 76.35 178 | 77.35 198 | 48.43 299 | 64.99 222 | 80.84 228 | 33.01 304 | 80.34 213 | 64.66 117 | 67.64 289 | 84.23 159 |
|
| 无先验 | | | | | | | | 79.66 112 | 74.30 245 | 48.40 300 | | | | 80.78 206 | 53.62 206 | | 79.03 272 |
|
| 114514_t | | | 70.83 113 | 69.56 125 | 74.64 94 | 86.21 31 | 54.63 139 | 82.34 73 | 81.81 103 | 48.22 301 | 63.01 249 | 85.83 125 | 40.92 223 | 87.10 61 | 57.91 171 | 79.79 119 | 82.18 217 |
|
| tpm | | | 57.34 301 | 58.16 290 | 54.86 349 | 71.80 297 | 34.77 369 | 67.47 309 | 56.04 373 | 48.20 302 | 60.10 283 | 76.92 293 | 37.17 261 | 53.41 392 | 40.76 316 | 65.01 307 | 76.40 304 |
|
| test_fmvsm_n_1920 | | | 71.73 99 | 71.14 99 | 73.50 134 | 72.52 283 | 56.53 104 | 75.60 194 | 76.16 211 | 48.11 303 | 77.22 31 | 85.56 129 | 53.10 74 | 77.43 260 | 74.86 40 | 77.14 163 | 86.55 74 |
|
| MDA-MVSNet-bldmvs | | | 53.87 328 | 50.81 340 | 63.05 300 | 66.25 359 | 48.58 237 | 56.93 374 | 63.82 330 | 48.09 304 | 41.22 392 | 70.48 358 | 30.34 328 | 68.00 328 | 34.24 353 | 45.92 388 | 72.57 342 |
|
| XXY-MVS | | | 60.68 275 | 61.67 255 | 57.70 337 | 70.43 319 | 38.45 336 | 64.19 335 | 66.47 310 | 48.05 305 | 63.22 242 | 80.86 226 | 49.28 121 | 60.47 359 | 45.25 283 | 67.28 292 | 74.19 331 |
|
| F-COLMAP | | | 63.05 253 | 60.87 269 | 69.58 223 | 76.99 214 | 53.63 152 | 78.12 134 | 76.16 211 | 47.97 306 | 52.41 357 | 81.61 210 | 27.87 347 | 78.11 249 | 40.07 318 | 66.66 296 | 77.00 298 |
|
| fmvsm_l_conf0.5_n_a | | | 70.50 120 | 70.27 115 | 71.18 191 | 71.30 306 | 54.09 144 | 76.89 168 | 69.87 282 | 47.90 307 | 74.37 62 | 86.49 104 | 53.07 75 | 76.69 277 | 75.41 35 | 77.11 164 | 82.76 206 |
|
| Patchmatch-RL test | | | 58.16 295 | 55.49 312 | 66.15 268 | 67.92 348 | 48.89 233 | 60.66 356 | 51.07 386 | 47.86 308 | 59.36 295 | 62.71 390 | 34.02 291 | 72.27 303 | 56.41 180 | 59.40 350 | 77.30 292 |
|
| D2MVS | | | 62.30 261 | 60.29 272 | 68.34 240 | 66.46 358 | 48.42 239 | 65.70 318 | 73.42 254 | 47.71 309 | 58.16 309 | 75.02 323 | 30.51 326 | 77.71 257 | 53.96 204 | 71.68 232 | 78.90 274 |
|
| ANet_high | | | 41.38 364 | 37.47 371 | 53.11 362 | 39.73 417 | 24.45 410 | 56.94 373 | 69.69 283 | 47.65 310 | 26.04 409 | 52.32 399 | 12.44 398 | 62.38 354 | 21.80 401 | 10.61 418 | 72.49 343 |
|
| CostFormer | | | 64.04 241 | 62.51 245 | 68.61 236 | 71.88 295 | 45.77 265 | 71.30 269 | 70.60 277 | 47.55 311 | 64.31 230 | 76.61 301 | 41.63 212 | 79.62 225 | 49.74 237 | 69.00 276 | 80.42 249 |
|
| PatchmatchNet |  | | 59.84 283 | 58.24 289 | 64.65 288 | 73.05 273 | 46.70 257 | 69.42 294 | 62.18 345 | 47.55 311 | 58.88 301 | 71.96 345 | 34.49 285 | 69.16 320 | 42.99 301 | 63.60 320 | 78.07 280 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| KD-MVS_self_test | | | 55.22 321 | 53.89 327 | 59.21 323 | 57.80 395 | 27.47 401 | 57.75 369 | 74.32 243 | 47.38 313 | 50.90 363 | 70.00 361 | 28.45 344 | 70.30 316 | 40.44 317 | 57.92 355 | 79.87 260 |
|
| ITE_SJBPF | | | | | 62.09 306 | 66.16 360 | 44.55 281 | | 64.32 326 | 47.36 314 | 55.31 332 | 80.34 234 | 19.27 383 | 62.68 353 | 36.29 346 | 62.39 331 | 79.04 271 |
|
| KD-MVS_2432*1600 | | | 53.45 330 | 51.50 338 | 59.30 320 | 62.82 374 | 37.14 348 | 55.33 377 | 71.79 269 | 47.34 315 | 55.09 335 | 70.52 356 | 21.91 378 | 70.45 313 | 35.72 348 | 42.97 392 | 70.31 368 |
|
| miper_refine_blended | | | 53.45 330 | 51.50 338 | 59.30 320 | 62.82 374 | 37.14 348 | 55.33 377 | 71.79 269 | 47.34 315 | 55.09 335 | 70.52 356 | 21.91 378 | 70.45 313 | 35.72 348 | 42.97 392 | 70.31 368 |
|
| OurMVSNet-221017-0 | | | 61.37 273 | 58.63 286 | 69.61 220 | 72.05 293 | 48.06 243 | 73.93 232 | 72.51 262 | 47.23 317 | 54.74 339 | 80.92 224 | 21.49 381 | 81.24 193 | 48.57 249 | 56.22 363 | 79.53 266 |
|
| tpmrst | | | 58.24 294 | 58.70 285 | 56.84 339 | 66.97 352 | 34.32 374 | 69.57 293 | 61.14 350 | 47.17 318 | 58.58 306 | 71.60 348 | 41.28 219 | 60.41 360 | 49.20 243 | 62.84 327 | 75.78 310 |
|
| PVSNet | | 50.76 19 | 58.40 293 | 57.39 295 | 61.42 310 | 75.53 237 | 44.04 286 | 61.43 348 | 63.45 333 | 47.04 319 | 56.91 318 | 73.61 334 | 27.00 356 | 64.76 346 | 39.12 324 | 72.40 222 | 75.47 314 |
|
| WB-MVSnew | | | 59.66 285 | 59.69 275 | 59.56 319 | 75.19 243 | 35.78 365 | 69.34 295 | 64.28 327 | 46.88 320 | 61.76 269 | 75.79 313 | 40.61 224 | 65.20 345 | 32.16 363 | 71.21 236 | 77.70 286 |
|
| FMVSNet5 | | | 55.86 315 | 54.93 315 | 58.66 328 | 71.05 310 | 36.35 357 | 64.18 336 | 62.48 340 | 46.76 321 | 50.66 367 | 74.73 326 | 25.80 364 | 64.04 348 | 33.11 359 | 65.57 304 | 75.59 312 |
|
| jason | | | 69.65 140 | 68.39 152 | 73.43 139 | 78.27 168 | 56.88 101 | 77.12 161 | 73.71 253 | 46.53 322 | 69.34 133 | 83.22 173 | 43.37 194 | 79.18 231 | 64.77 116 | 79.20 131 | 84.23 159 |
| jason: jason. |
| MS-PatchMatch | | | 62.42 259 | 61.46 258 | 65.31 283 | 75.21 242 | 52.10 183 | 72.05 259 | 74.05 249 | 46.41 323 | 57.42 316 | 74.36 328 | 34.35 287 | 77.57 259 | 45.62 275 | 73.67 199 | 66.26 382 |
|
| 1112_ss | | | 64.00 242 | 63.36 234 | 65.93 273 | 79.28 136 | 42.58 299 | 71.35 267 | 72.36 264 | 46.41 323 | 60.55 280 | 77.89 278 | 46.27 164 | 73.28 298 | 46.18 268 | 69.97 257 | 81.92 222 |
|
| lupinMVS | | | 69.57 143 | 68.28 153 | 73.44 138 | 78.76 151 | 57.15 97 | 76.57 174 | 73.29 256 | 46.19 325 | 69.49 129 | 82.18 195 | 43.99 190 | 79.23 230 | 64.66 117 | 79.37 126 | 83.93 168 |
|
| testdata | | | | | 64.66 287 | 81.52 91 | 52.93 166 | | 65.29 319 | 46.09 326 | 73.88 68 | 87.46 79 | 38.08 251 | 66.26 341 | 53.31 210 | 78.48 143 | 74.78 324 |
|
| UnsupCasMVSNet_eth | | | 53.16 335 | 52.47 333 | 55.23 347 | 59.45 390 | 33.39 382 | 59.43 360 | 69.13 292 | 45.98 327 | 50.35 369 | 72.32 340 | 29.30 338 | 58.26 373 | 42.02 310 | 44.30 390 | 74.05 332 |
|
| AllTest | | | 57.08 303 | 54.65 317 | 64.39 290 | 71.44 301 | 49.03 227 | 69.92 290 | 67.30 302 | 45.97 328 | 47.16 377 | 79.77 244 | 17.47 384 | 67.56 332 | 33.65 355 | 59.16 351 | 76.57 302 |
|
| TestCases | | | | | 64.39 290 | 71.44 301 | 49.03 227 | | 67.30 302 | 45.97 328 | 47.16 377 | 79.77 244 | 17.47 384 | 67.56 332 | 33.65 355 | 59.16 351 | 76.57 302 |
|
| WTY-MVS | | | 59.75 284 | 60.39 271 | 57.85 335 | 72.32 289 | 37.83 341 | 61.05 354 | 64.18 328 | 45.95 330 | 61.91 266 | 79.11 259 | 47.01 157 | 60.88 358 | 42.50 305 | 69.49 268 | 74.83 322 |
|
| IterMVS-SCA-FT | | | 62.49 257 | 61.52 257 | 65.40 281 | 71.99 294 | 50.80 199 | 71.15 273 | 69.63 285 | 45.71 331 | 60.61 279 | 77.93 275 | 37.45 255 | 65.99 342 | 55.67 188 | 63.50 322 | 79.42 267 |
|
| WB-MVS | | | 43.26 358 | 43.41 358 | 42.83 384 | 63.32 373 | 10.32 422 | 58.17 365 | 45.20 400 | 45.42 332 | 40.44 395 | 67.26 377 | 34.01 292 | 58.98 368 | 11.96 413 | 24.88 407 | 59.20 388 |
|
| 旧先验2 | | | | | | | | 76.08 184 | | 45.32 333 | 76.55 36 | | | 65.56 344 | 58.75 167 | | |
|
| OpenMVS_ROB |  | 52.78 18 | 60.03 281 | 58.14 291 | 65.69 277 | 70.47 318 | 44.82 275 | 75.33 199 | 70.86 275 | 45.04 334 | 56.06 325 | 76.00 309 | 26.89 358 | 79.65 223 | 35.36 350 | 67.29 291 | 72.60 341 |
|
| TinyColmap | | | 54.14 325 | 51.72 336 | 61.40 311 | 66.84 354 | 41.97 304 | 66.52 312 | 68.51 296 | 44.81 335 | 42.69 391 | 75.77 314 | 11.66 400 | 72.94 299 | 31.96 365 | 56.77 361 | 69.27 376 |
|
| MDTV_nov1_ep13 | | | | 57.00 298 | | 72.73 278 | 38.26 337 | 65.02 330 | 64.73 324 | 44.74 336 | 55.46 329 | 72.48 339 | 32.61 315 | 70.47 312 | 37.47 332 | 67.75 288 | |
|
| 新几何1 | | | | | 70.76 199 | 85.66 41 | 61.13 30 | | 66.43 311 | 44.68 337 | 70.29 114 | 86.64 95 | 41.29 218 | 75.23 290 | 49.72 238 | 81.75 103 | 75.93 308 |
|
| Patchmtry | | | 57.16 302 | 56.47 304 | 59.23 322 | 69.17 339 | 34.58 372 | 62.98 340 | 63.15 336 | 44.53 338 | 56.83 319 | 74.84 324 | 35.83 273 | 68.71 322 | 40.03 319 | 60.91 340 | 74.39 329 |
|
| ppachtmachnet_test | | | 58.06 297 | 55.38 313 | 66.10 270 | 69.51 333 | 48.99 230 | 68.01 303 | 66.13 314 | 44.50 339 | 54.05 347 | 70.74 354 | 32.09 320 | 72.34 302 | 36.68 341 | 56.71 362 | 76.99 300 |
|
| PatchT | | | 53.17 334 | 53.44 331 | 52.33 367 | 68.29 346 | 25.34 409 | 58.21 364 | 54.41 377 | 44.46 340 | 54.56 342 | 69.05 368 | 33.32 300 | 60.94 357 | 36.93 337 | 61.76 337 | 70.73 366 |
|
| EPMVS | | | 53.96 326 | 53.69 329 | 54.79 350 | 66.12 361 | 31.96 388 | 62.34 345 | 49.05 390 | 44.42 341 | 55.54 328 | 71.33 351 | 30.22 329 | 56.70 378 | 41.65 313 | 62.54 330 | 75.71 311 |
|
| pmmvs4 | | | 61.48 272 | 59.39 277 | 67.76 244 | 71.57 299 | 53.86 147 | 71.42 266 | 65.34 318 | 44.20 342 | 59.46 294 | 77.92 276 | 35.90 272 | 74.71 292 | 43.87 292 | 64.87 309 | 74.71 326 |
|
| dp | | | 51.89 338 | 51.60 337 | 52.77 364 | 68.44 345 | 32.45 386 | 62.36 344 | 54.57 376 | 44.16 343 | 49.31 372 | 67.91 370 | 28.87 341 | 56.61 380 | 33.89 354 | 54.89 366 | 69.24 377 |
|
| PatchMatch-RL | | | 56.25 312 | 54.55 319 | 61.32 313 | 77.06 211 | 56.07 112 | 65.57 320 | 54.10 379 | 44.13 344 | 53.49 355 | 71.27 352 | 25.20 368 | 66.78 337 | 36.52 344 | 63.66 319 | 61.12 386 |
|
| our_test_3 | | | 56.49 308 | 54.42 320 | 62.68 303 | 69.51 333 | 45.48 271 | 66.08 315 | 61.49 348 | 44.11 345 | 50.73 366 | 69.60 365 | 33.05 302 | 68.15 324 | 38.38 328 | 56.86 359 | 74.40 328 |
|
| USDC | | | 56.35 311 | 54.24 324 | 62.69 302 | 64.74 366 | 40.31 318 | 65.05 329 | 73.83 251 | 43.93 346 | 47.58 375 | 77.71 284 | 15.36 393 | 75.05 291 | 38.19 330 | 61.81 336 | 72.70 340 |
|
| PM-MVS | | | 52.33 336 | 50.19 344 | 58.75 327 | 62.10 379 | 45.14 274 | 65.75 317 | 40.38 407 | 43.60 347 | 53.52 353 | 72.65 338 | 9.16 408 | 65.87 343 | 50.41 232 | 54.18 369 | 65.24 384 |
|
| pmmvs-eth3d | | | 58.81 291 | 56.31 306 | 66.30 264 | 67.61 349 | 52.42 180 | 72.30 256 | 64.76 323 | 43.55 348 | 54.94 337 | 74.19 330 | 28.95 339 | 72.60 300 | 43.31 296 | 57.21 358 | 73.88 334 |
|
| SSC-MVS | | | 41.96 363 | 41.99 362 | 41.90 385 | 62.46 378 | 9.28 424 | 57.41 372 | 44.32 403 | 43.38 349 | 38.30 401 | 66.45 380 | 32.67 312 | 58.42 372 | 10.98 414 | 21.91 410 | 57.99 392 |
|
| new-patchmatchnet | | | 47.56 352 | 47.73 352 | 47.06 375 | 58.81 393 | 9.37 423 | 48.78 394 | 59.21 356 | 43.28 350 | 44.22 387 | 68.66 369 | 25.67 365 | 57.20 377 | 31.57 373 | 49.35 383 | 74.62 327 |
|
| Test_1112_low_res | | | 62.32 260 | 61.77 254 | 64.00 293 | 79.08 144 | 39.53 327 | 68.17 301 | 70.17 279 | 43.25 351 | 59.03 300 | 79.90 241 | 44.08 188 | 71.24 309 | 43.79 293 | 68.42 283 | 81.25 234 |
|
| RPMNet | | | 61.53 270 | 58.42 287 | 70.86 197 | 69.96 327 | 52.07 184 | 65.31 327 | 81.36 114 | 43.20 352 | 59.36 295 | 70.15 360 | 35.37 276 | 85.47 103 | 36.42 345 | 64.65 311 | 75.06 317 |
|
| tpm2 | | | 62.07 264 | 60.10 273 | 67.99 242 | 72.79 277 | 43.86 287 | 71.05 276 | 66.85 308 | 43.14 353 | 62.77 251 | 75.39 321 | 38.32 247 | 80.80 205 | 41.69 311 | 68.88 277 | 79.32 268 |
|
| JIA-IIPM | | | 51.56 339 | 47.68 353 | 63.21 298 | 64.61 367 | 50.73 200 | 47.71 396 | 58.77 358 | 42.90 354 | 48.46 374 | 51.72 400 | 24.97 369 | 70.24 317 | 36.06 347 | 53.89 370 | 68.64 378 |
|
| 1314 | | | 64.61 234 | 63.21 238 | 68.80 233 | 71.87 296 | 47.46 251 | 73.95 230 | 78.39 182 | 42.88 355 | 59.97 286 | 76.60 302 | 38.11 250 | 79.39 228 | 54.84 195 | 72.32 224 | 79.55 265 |
|
| HyFIR lowres test | | | 65.67 220 | 63.01 240 | 73.67 126 | 79.97 124 | 55.65 122 | 69.07 297 | 75.52 222 | 42.68 356 | 63.53 239 | 77.95 274 | 40.43 225 | 81.64 183 | 46.01 270 | 71.91 229 | 83.73 180 |
|
| CR-MVSNet | | | 59.91 282 | 57.90 294 | 65.96 272 | 69.96 327 | 52.07 184 | 65.31 327 | 63.15 336 | 42.48 357 | 59.36 295 | 74.84 324 | 35.83 273 | 70.75 311 | 45.50 278 | 64.65 311 | 75.06 317 |
|
| test222 | | | | | | 83.14 71 | 58.68 76 | 72.57 252 | 63.45 333 | 41.78 358 | 67.56 168 | 86.12 114 | 37.13 262 | | | 78.73 140 | 74.98 320 |
|
| TDRefinement | | | 53.44 332 | 50.72 341 | 61.60 308 | 64.31 369 | 46.96 255 | 70.89 277 | 65.27 320 | 41.78 358 | 44.61 386 | 77.98 273 | 11.52 402 | 66.36 340 | 28.57 386 | 51.59 376 | 71.49 358 |
|
| sss | | | 56.17 313 | 56.57 303 | 54.96 348 | 66.93 353 | 36.32 359 | 57.94 366 | 61.69 347 | 41.67 360 | 58.64 304 | 75.32 322 | 38.72 242 | 56.25 382 | 42.04 309 | 66.19 300 | 72.31 349 |
|
| PVSNet_0 | | 43.31 20 | 47.46 353 | 45.64 356 | 52.92 363 | 67.60 350 | 44.65 278 | 54.06 382 | 54.64 375 | 41.59 361 | 46.15 382 | 58.75 393 | 30.99 324 | 58.66 370 | 32.18 362 | 24.81 408 | 55.46 396 |
|
| MVS | | | 67.37 190 | 66.33 196 | 70.51 205 | 75.46 238 | 50.94 194 | 73.95 230 | 81.85 102 | 41.57 362 | 62.54 258 | 78.57 268 | 47.98 135 | 85.47 103 | 52.97 212 | 82.05 96 | 75.14 316 |
|
| Anonymous20240521 | | | 55.30 319 | 54.41 321 | 57.96 334 | 60.92 388 | 41.73 307 | 71.09 275 | 71.06 274 | 41.18 363 | 48.65 373 | 73.31 335 | 16.93 387 | 59.25 366 | 42.54 304 | 64.01 316 | 72.90 338 |
|
| Anonymous20231206 | | | 55.10 323 | 55.30 314 | 54.48 351 | 69.81 331 | 33.94 378 | 62.91 341 | 62.13 346 | 41.08 364 | 55.18 334 | 75.65 315 | 32.75 310 | 56.59 381 | 30.32 379 | 67.86 286 | 72.91 337 |
|
| MDA-MVSNet_test_wron | | | 50.71 344 | 48.95 346 | 56.00 344 | 61.17 383 | 41.84 305 | 51.90 388 | 56.45 367 | 40.96 365 | 44.79 385 | 67.84 371 | 30.04 331 | 55.07 389 | 36.71 340 | 50.69 379 | 71.11 364 |
|
| YYNet1 | | | 50.73 343 | 48.96 345 | 56.03 343 | 61.10 384 | 41.78 306 | 51.94 387 | 56.44 368 | 40.94 366 | 44.84 384 | 67.80 372 | 30.08 330 | 55.08 388 | 36.77 338 | 50.71 378 | 71.22 361 |
|
| dongtai | | | 34.52 373 | 34.94 373 | 33.26 394 | 61.06 385 | 16.00 419 | 52.79 386 | 23.78 420 | 40.71 367 | 39.33 399 | 48.65 408 | 16.91 388 | 48.34 400 | 12.18 412 | 19.05 412 | 35.44 411 |
|
| CHOSEN 1792x2688 | | | 65.08 230 | 62.84 242 | 71.82 170 | 81.49 93 | 56.26 108 | 66.32 314 | 74.20 248 | 40.53 368 | 63.16 245 | 78.65 265 | 41.30 217 | 77.80 255 | 45.80 272 | 74.09 192 | 81.40 230 |
|
| pmmvs5 | | | 56.47 309 | 55.68 311 | 58.86 326 | 61.41 382 | 36.71 354 | 66.37 313 | 62.75 338 | 40.38 369 | 53.70 349 | 76.62 299 | 34.56 283 | 67.05 335 | 40.02 320 | 65.27 305 | 72.83 339 |
|
| test_vis1_n_1920 | | | 58.86 290 | 59.06 281 | 58.25 330 | 63.76 370 | 43.14 295 | 67.49 308 | 66.36 312 | 40.22 370 | 65.89 199 | 71.95 346 | 31.04 323 | 59.75 364 | 59.94 158 | 64.90 308 | 71.85 353 |
|
| MDTV_nov1_ep13_2view | | | | | | | 25.89 407 | 61.22 351 | | 40.10 371 | 51.10 361 | | 32.97 305 | | 38.49 327 | | 78.61 276 |
|
| tpm cat1 | | | 59.25 289 | 56.95 299 | 66.15 268 | 72.19 291 | 46.96 255 | 68.09 302 | 65.76 315 | 40.03 372 | 57.81 312 | 70.56 355 | 38.32 247 | 74.51 293 | 38.26 329 | 61.50 338 | 77.00 298 |
|
| test-mter | | | 56.42 310 | 55.82 310 | 58.22 331 | 68.57 342 | 44.80 276 | 65.46 323 | 57.92 361 | 39.94 373 | 55.44 330 | 69.82 362 | 21.92 377 | 57.44 375 | 49.66 239 | 73.62 200 | 72.41 346 |
|
| UnsupCasMVSNet_bld | | | 50.07 346 | 48.87 347 | 53.66 356 | 60.97 387 | 33.67 380 | 57.62 370 | 64.56 325 | 39.47 374 | 47.38 376 | 64.02 388 | 27.47 350 | 59.32 365 | 34.69 352 | 43.68 391 | 67.98 380 |
|
| TESTMET0.1,1 | | | 55.28 320 | 54.90 316 | 56.42 341 | 66.56 356 | 43.67 289 | 65.46 323 | 56.27 371 | 39.18 375 | 53.83 348 | 67.44 374 | 24.21 372 | 55.46 386 | 48.04 254 | 73.11 213 | 70.13 370 |
|
| mamv4 | | | 56.85 305 | 58.00 293 | 53.43 359 | 72.46 286 | 54.47 140 | 57.56 371 | 54.74 374 | 38.81 376 | 57.42 316 | 79.45 253 | 47.57 144 | 38.70 411 | 60.88 150 | 53.07 372 | 67.11 381 |
|
| ADS-MVSNet2 | | | 51.33 341 | 48.76 348 | 59.07 325 | 66.02 362 | 44.60 279 | 50.90 390 | 59.76 354 | 36.90 377 | 50.74 364 | 66.18 382 | 26.38 359 | 63.11 351 | 27.17 390 | 54.76 367 | 69.50 374 |
|
| ADS-MVSNet | | | 48.48 350 | 47.77 351 | 50.63 371 | 66.02 362 | 29.92 392 | 50.90 390 | 50.87 388 | 36.90 377 | 50.74 364 | 66.18 382 | 26.38 359 | 52.47 394 | 27.17 390 | 54.76 367 | 69.50 374 |
|
| RPSCF | | | 55.80 316 | 54.22 325 | 60.53 316 | 65.13 365 | 42.91 298 | 64.30 334 | 57.62 363 | 36.84 379 | 58.05 311 | 82.28 194 | 28.01 346 | 56.24 383 | 37.14 335 | 58.61 353 | 82.44 213 |
|
| test_cas_vis1_n_1920 | | | 56.91 304 | 56.71 302 | 57.51 338 | 59.13 392 | 45.40 272 | 63.58 338 | 61.29 349 | 36.24 380 | 67.14 175 | 71.85 347 | 29.89 332 | 56.69 379 | 57.65 173 | 63.58 321 | 70.46 367 |
|
| Patchmatch-test | | | 49.08 348 | 48.28 350 | 51.50 370 | 64.40 368 | 30.85 391 | 45.68 400 | 48.46 393 | 35.60 381 | 46.10 383 | 72.10 343 | 34.47 286 | 46.37 403 | 27.08 392 | 60.65 344 | 77.27 293 |
|
| CHOSEN 280x420 | | | 47.83 351 | 46.36 355 | 52.24 369 | 67.37 351 | 49.78 217 | 38.91 408 | 43.11 405 | 35.00 382 | 43.27 390 | 63.30 389 | 28.95 339 | 49.19 399 | 36.53 343 | 60.80 342 | 57.76 393 |
|
| N_pmnet | | | 39.35 368 | 40.28 365 | 36.54 391 | 63.76 370 | 1.62 428 | 49.37 393 | 0.76 427 | 34.62 383 | 43.61 389 | 66.38 381 | 26.25 361 | 42.57 407 | 26.02 395 | 51.77 375 | 65.44 383 |
|
| kuosan | | | 29.62 380 | 30.82 379 | 26.02 399 | 52.99 398 | 16.22 418 | 51.09 389 | 22.71 421 | 33.91 384 | 33.99 403 | 40.85 409 | 15.89 391 | 33.11 416 | 7.59 420 | 18.37 413 | 28.72 413 |
|
| PMMVS | | | 53.96 326 | 53.26 332 | 56.04 342 | 62.60 377 | 50.92 196 | 61.17 352 | 56.09 372 | 32.81 385 | 53.51 354 | 66.84 379 | 34.04 290 | 59.93 363 | 44.14 288 | 68.18 284 | 57.27 394 |
|
| CMPMVS |  | 42.80 21 | 57.81 299 | 55.97 308 | 63.32 296 | 60.98 386 | 47.38 252 | 64.66 332 | 69.50 288 | 32.06 386 | 46.83 379 | 77.80 280 | 29.50 336 | 71.36 308 | 48.68 247 | 73.75 198 | 71.21 362 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ttmdpeth | | | 45.56 354 | 42.95 359 | 53.39 361 | 52.33 402 | 29.15 394 | 57.77 367 | 48.20 394 | 31.81 387 | 49.86 371 | 77.21 289 | 8.69 409 | 59.16 367 | 27.31 389 | 33.40 404 | 71.84 354 |
|
| CVMVSNet | | | 59.63 286 | 59.14 279 | 61.08 315 | 74.47 256 | 38.84 332 | 75.20 203 | 68.74 295 | 31.15 388 | 58.24 308 | 76.51 303 | 32.39 318 | 68.58 323 | 49.77 236 | 65.84 302 | 75.81 309 |
|
| FPMVS | | | 42.18 362 | 41.11 364 | 45.39 377 | 58.03 394 | 41.01 314 | 49.50 392 | 53.81 380 | 30.07 389 | 33.71 404 | 64.03 386 | 11.69 399 | 52.08 397 | 14.01 408 | 55.11 365 | 43.09 405 |
|
| EU-MVSNet | | | 55.61 318 | 54.41 321 | 59.19 324 | 65.41 364 | 33.42 381 | 72.44 254 | 71.91 268 | 28.81 390 | 51.27 360 | 73.87 332 | 24.76 370 | 69.08 321 | 43.04 300 | 58.20 354 | 75.06 317 |
|
| test_vis1_n | | | 49.89 347 | 48.69 349 | 53.50 358 | 53.97 396 | 37.38 346 | 61.53 347 | 47.33 397 | 28.54 391 | 59.62 293 | 67.10 378 | 13.52 395 | 52.27 395 | 49.07 244 | 57.52 356 | 70.84 365 |
|
| test_fmvs1_n | | | 51.37 340 | 50.35 343 | 54.42 353 | 52.85 399 | 37.71 343 | 61.16 353 | 51.93 381 | 28.15 392 | 63.81 237 | 69.73 364 | 13.72 394 | 53.95 390 | 51.16 227 | 60.65 344 | 71.59 356 |
|
| LF4IMVS | | | 42.95 359 | 42.26 361 | 45.04 378 | 48.30 407 | 32.50 385 | 54.80 379 | 48.49 392 | 28.03 393 | 40.51 394 | 70.16 359 | 9.24 407 | 43.89 406 | 31.63 371 | 49.18 384 | 58.72 390 |
|
| test_fmvs1 | | | 51.32 342 | 50.48 342 | 53.81 355 | 53.57 397 | 37.51 345 | 60.63 357 | 51.16 384 | 28.02 394 | 63.62 238 | 69.23 367 | 16.41 389 | 53.93 391 | 51.01 228 | 60.70 343 | 69.99 371 |
|
| MVS-HIRNet | | | 45.52 355 | 44.48 357 | 48.65 374 | 68.49 344 | 34.05 377 | 59.41 361 | 44.50 402 | 27.03 395 | 37.96 402 | 50.47 404 | 26.16 362 | 64.10 347 | 26.74 393 | 59.52 349 | 47.82 403 |
|
| PMVS |  | 28.69 22 | 36.22 371 | 33.29 376 | 45.02 379 | 36.82 419 | 35.98 362 | 54.68 380 | 48.74 391 | 26.31 396 | 21.02 412 | 51.61 401 | 2.88 421 | 60.10 362 | 9.99 417 | 47.58 385 | 38.99 410 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| pmmvs3 | | | 44.92 356 | 41.95 363 | 53.86 354 | 52.58 401 | 43.55 290 | 62.11 346 | 46.90 399 | 26.05 397 | 40.63 393 | 60.19 392 | 11.08 405 | 57.91 374 | 31.83 370 | 46.15 387 | 60.11 387 |
|
| test_fmvs2 | | | 48.69 349 | 47.49 354 | 52.29 368 | 48.63 406 | 33.06 384 | 57.76 368 | 48.05 395 | 25.71 398 | 59.76 291 | 69.60 365 | 11.57 401 | 52.23 396 | 49.45 242 | 56.86 359 | 71.58 357 |
|
| PMMVS2 | | | 27.40 381 | 25.91 384 | 31.87 396 | 39.46 418 | 6.57 425 | 31.17 411 | 28.52 416 | 23.96 399 | 20.45 413 | 48.94 407 | 4.20 417 | 37.94 412 | 16.51 405 | 19.97 411 | 51.09 398 |
|
| MVStest1 | | | 42.65 360 | 39.29 367 | 52.71 365 | 47.26 409 | 34.58 372 | 54.41 381 | 50.84 389 | 23.35 400 | 39.31 400 | 74.08 331 | 12.57 397 | 55.09 387 | 23.32 398 | 28.47 406 | 68.47 379 |
|
| Gipuma |  | | 34.77 372 | 31.91 377 | 43.33 382 | 62.05 380 | 37.87 339 | 20.39 413 | 67.03 306 | 23.23 401 | 18.41 414 | 25.84 414 | 4.24 415 | 62.73 352 | 14.71 407 | 51.32 377 | 29.38 412 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_vis1_rt | | | 41.35 365 | 39.45 366 | 47.03 376 | 46.65 410 | 37.86 340 | 47.76 395 | 38.65 408 | 23.10 402 | 44.21 388 | 51.22 402 | 11.20 404 | 44.08 405 | 39.27 323 | 53.02 373 | 59.14 389 |
|
| new_pmnet | | | 34.13 374 | 34.29 375 | 33.64 393 | 52.63 400 | 18.23 417 | 44.43 403 | 33.90 413 | 22.81 403 | 30.89 406 | 53.18 398 | 10.48 406 | 35.72 415 | 20.77 402 | 39.51 396 | 46.98 404 |
|
| mvsany_test1 | | | 39.38 367 | 38.16 370 | 43.02 383 | 49.05 404 | 34.28 375 | 44.16 404 | 25.94 418 | 22.74 404 | 46.57 381 | 62.21 391 | 23.85 373 | 41.16 410 | 33.01 360 | 35.91 400 | 53.63 397 |
|
| LCM-MVSNet | | | 40.30 366 | 35.88 372 | 53.57 357 | 42.24 412 | 29.15 394 | 45.21 402 | 60.53 353 | 22.23 405 | 28.02 407 | 50.98 403 | 3.72 418 | 61.78 356 | 31.22 376 | 38.76 398 | 69.78 373 |
|
| test_fmvs3 | | | 44.30 357 | 42.55 360 | 49.55 373 | 42.83 411 | 27.15 404 | 53.03 384 | 44.93 401 | 22.03 406 | 53.69 351 | 64.94 385 | 4.21 416 | 49.63 398 | 47.47 255 | 49.82 381 | 71.88 352 |
|
| APD_test1 | | | 37.39 370 | 34.94 373 | 44.72 381 | 48.88 405 | 33.19 383 | 52.95 385 | 44.00 404 | 19.49 407 | 27.28 408 | 58.59 394 | 3.18 420 | 52.84 393 | 18.92 403 | 41.17 395 | 48.14 402 |
|
| mvsany_test3 | | | 32.62 375 | 30.57 380 | 38.77 389 | 36.16 420 | 24.20 411 | 38.10 409 | 20.63 422 | 19.14 408 | 40.36 396 | 57.43 395 | 5.06 413 | 36.63 414 | 29.59 383 | 28.66 405 | 55.49 395 |
|
| E-PMN | | | 23.77 382 | 22.73 386 | 26.90 397 | 42.02 413 | 20.67 414 | 42.66 405 | 35.70 411 | 17.43 409 | 10.28 419 | 25.05 415 | 6.42 411 | 42.39 408 | 10.28 416 | 14.71 415 | 17.63 414 |
|
| EMVS | | | 22.97 383 | 21.84 387 | 26.36 398 | 40.20 416 | 19.53 416 | 41.95 406 | 34.64 412 | 17.09 410 | 9.73 420 | 22.83 416 | 7.29 410 | 42.22 409 | 9.18 418 | 13.66 416 | 17.32 415 |
|
| test_vis3_rt | | | 32.09 376 | 30.20 381 | 37.76 390 | 35.36 421 | 27.48 400 | 40.60 407 | 28.29 417 | 16.69 411 | 32.52 405 | 40.53 410 | 1.96 422 | 37.40 413 | 33.64 357 | 42.21 394 | 48.39 400 |
|
| test_f | | | 31.86 377 | 31.05 378 | 34.28 392 | 32.33 423 | 21.86 413 | 32.34 410 | 30.46 415 | 16.02 412 | 39.78 398 | 55.45 397 | 4.80 414 | 32.36 417 | 30.61 377 | 37.66 399 | 48.64 399 |
|
| DSMNet-mixed | | | 39.30 369 | 38.72 368 | 41.03 386 | 51.22 403 | 19.66 415 | 45.53 401 | 31.35 414 | 15.83 413 | 39.80 397 | 67.42 376 | 22.19 376 | 45.13 404 | 22.43 399 | 52.69 374 | 58.31 391 |
|
| testf1 | | | 31.46 378 | 28.89 382 | 39.16 387 | 41.99 414 | 28.78 396 | 46.45 398 | 37.56 409 | 14.28 414 | 21.10 410 | 48.96 405 | 1.48 424 | 47.11 401 | 13.63 409 | 34.56 401 | 41.60 406 |
|
| APD_test2 | | | 31.46 378 | 28.89 382 | 39.16 387 | 41.99 414 | 28.78 396 | 46.45 398 | 37.56 409 | 14.28 414 | 21.10 410 | 48.96 405 | 1.48 424 | 47.11 401 | 13.63 409 | 34.56 401 | 41.60 406 |
|
| MVE |  | 17.77 23 | 21.41 384 | 17.77 389 | 32.34 395 | 34.34 422 | 25.44 408 | 16.11 414 | 24.11 419 | 11.19 416 | 13.22 416 | 31.92 412 | 1.58 423 | 30.95 418 | 10.47 415 | 17.03 414 | 40.62 409 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| DeepMVS_CX |  | | | | 12.03 402 | 17.97 424 | 10.91 421 | | 10.60 425 | 7.46 417 | 11.07 418 | 28.36 413 | 3.28 419 | 11.29 421 | 8.01 419 | 9.74 420 | 13.89 416 |
|
| wuyk23d | | | 13.32 387 | 12.52 390 | 15.71 401 | 47.54 408 | 26.27 406 | 31.06 412 | 1.98 426 | 4.93 418 | 5.18 421 | 1.94 421 | 0.45 426 | 18.54 420 | 6.81 421 | 12.83 417 | 2.33 418 |
|
| test_method | | | 19.68 385 | 18.10 388 | 24.41 400 | 13.68 425 | 3.11 427 | 12.06 416 | 42.37 406 | 2.00 419 | 11.97 417 | 36.38 411 | 5.77 412 | 29.35 419 | 15.06 406 | 23.65 409 | 40.76 408 |
|
| tmp_tt | | | 9.43 388 | 11.14 391 | 4.30 403 | 2.38 426 | 4.40 426 | 13.62 415 | 16.08 424 | 0.39 420 | 15.89 415 | 13.06 417 | 15.80 392 | 5.54 422 | 12.63 411 | 10.46 419 | 2.95 417 |
|
| EGC-MVSNET | | | 42.47 361 | 38.48 369 | 54.46 352 | 74.33 260 | 48.73 235 | 70.33 285 | 51.10 385 | 0.03 421 | 0.18 422 | 67.78 373 | 13.28 396 | 66.49 339 | 18.91 404 | 50.36 380 | 48.15 401 |
|
| testmvs | | | 4.52 391 | 6.03 394 | 0.01 405 | 0.01 427 | 0.00 430 | 53.86 383 | 0.00 428 | 0.01 422 | 0.04 423 | 0.27 422 | 0.00 428 | 0.00 423 | 0.04 422 | 0.00 421 | 0.03 420 |
|
| test123 | | | 4.73 390 | 6.30 393 | 0.02 404 | 0.01 427 | 0.01 429 | 56.36 375 | 0.00 428 | 0.01 422 | 0.04 423 | 0.21 423 | 0.01 427 | 0.00 423 | 0.03 423 | 0.00 421 | 0.04 419 |
|
| mmdepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 428 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| monomultidepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 428 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| test_blank | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 428 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| uanet_test | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 428 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| DCPMVS | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 428 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| cdsmvs_eth3d_5k | | | 17.50 386 | 23.34 385 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 78.63 169 | 0.00 424 | 0.00 425 | 82.18 195 | 49.25 122 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| pcd_1.5k_mvsjas | | | 3.92 392 | 5.23 395 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 424 | 0.00 425 | 0.00 424 | 47.05 154 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| sosnet-low-res | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 428 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| sosnet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 428 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| uncertanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 428 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| Regformer | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 428 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| ab-mvs-re | | | 6.49 389 | 8.65 392 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 424 | 0.00 425 | 77.89 278 | 0.00 428 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| uanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 428 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| WAC-MVS | | | | | | | 27.31 402 | | | | | | | | 27.77 387 | | |
|
| MSC_two_6792asdad | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 24 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 31 |
|
| No_MVS | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 24 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 31 |
|
| eth-test2 | | | | | | 0.00 429 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 429 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 79.83 7 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 45 | 67.01 1 | 90.33 12 | 73.16 54 | 91.15 4 | 88.23 20 |
|
| test_0728_SECOND | | | | | 79.19 16 | 87.82 3 | 59.11 66 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 15 | 90.61 11 | 87.62 41 |
|
| GSMVS | | | | | | | | | | | | | | | | | 78.05 281 |
|
| test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 34.74 282 | | | | 78.05 281 |
|
| sam_mvs | | | | | | | | | | | | | 33.43 299 | | | | |
|
| ambc | | | | | 65.13 285 | 63.72 372 | 37.07 350 | 47.66 397 | 78.78 165 | | 54.37 345 | 71.42 349 | 11.24 403 | 80.94 200 | 45.64 274 | 53.85 371 | 77.38 291 |
|
| MTGPA |  | | | | | | | | 80.97 130 | | | | | | | | |
|
| test_post1 | | | | | | | | 68.67 299 | | | | 3.64 419 | 32.39 318 | 69.49 319 | 44.17 286 | | |
|
| test_post | | | | | | | | | | | | 3.55 420 | 33.90 293 | 66.52 338 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 64.03 386 | 34.50 284 | 74.27 295 | | | |
|
| GG-mvs-BLEND | | | | | 62.34 304 | 71.36 305 | 37.04 351 | 69.20 296 | 57.33 366 | | 54.73 340 | 65.48 384 | 30.37 327 | 77.82 254 | 34.82 351 | 74.93 185 | 72.17 350 |
|
| MTMP | | | | | | | | 86.03 19 | 17.08 423 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 75.28 37 | 88.31 32 | 83.81 174 |
|
| agg_prior2 | | | | | | | | | | | | | | | 73.09 55 | 87.93 40 | 84.33 155 |
|
| agg_prior | | | | | | 85.04 50 | 59.96 50 | | 81.04 128 | | 74.68 57 | | | 84.04 131 | | | |
|
| test_prior4 | | | | | | | 62.51 14 | 82.08 79 | | | | | | | | | |
|
| test_prior | | | | | 76.69 56 | 84.20 61 | 57.27 91 | | 84.88 39 | | | | | 86.43 79 | | | 86.38 76 |
|
| 新几何2 | | | | | | | | 76.12 182 | | | | | | | | | |
|
| 旧先验1 | | | | | | 83.04 73 | 53.15 161 | | 67.52 301 | | | 87.85 74 | 44.08 188 | | | 80.76 107 | 78.03 284 |
|
| 原ACMM2 | | | | | | | | 79.02 117 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 72.18 305 | 46.95 264 | | |
|
| segment_acmp | | | | | | | | | | | | | 54.23 57 | | | | |
|
| test12 | | | | | 77.76 45 | 84.52 58 | 58.41 78 | | 83.36 75 | | 72.93 87 | | 54.61 54 | 88.05 39 | | 88.12 34 | 86.81 64 |
|
| plane_prior7 | | | | | | 81.41 94 | 55.96 114 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 81.20 101 | 56.24 109 | | | | | | 45.26 178 | | | | |
|
| plane_prior5 | | | | | | | | | 84.01 51 | | | | | 87.21 57 | 68.16 86 | 80.58 110 | 84.65 149 |
|
| plane_prior4 | | | | | | | | | | | | 86.10 115 | | | | | |
|
| plane_prior1 | | | | | | 81.27 99 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 428 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 428 | | | | | | | | |
|
| door-mid | | | | | | | | | 47.19 398 | | | | | | | | |
|
| lessismore_v0 | | | | | 69.91 215 | 71.42 303 | 47.80 245 | | 50.90 387 | | 50.39 368 | 75.56 316 | 27.43 352 | 81.33 190 | 45.91 271 | 34.10 403 | 80.59 247 |
|
| test11 | | | | | | | | | 83.47 70 | | | | | | | | |
|
| door | | | | | | | | | 47.60 396 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 54.94 134 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.04 97 | | |
|
| HQP4-MVS | | | | | | | | | | | 67.85 158 | | | 86.93 64 | | | 84.32 156 |
|
| HQP3-MVS | | | | | | | | | 83.90 56 | | | | | | | 80.35 114 | |
|
| HQP2-MVS | | | | | | | | | | | | | 45.46 172 | | | | |
|
| NP-MVS | | | | | | 80.98 104 | 56.05 113 | | | | | 85.54 132 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 193 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 72.16 227 | |
|
| Test By Simon | | | | | | | | | | | | | 48.33 133 | | | | |
|