This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM80.20 780.28 879.99 282.19 8260.01 4986.19 1783.93 5373.19 177.08 3491.21 1757.23 3390.73 1083.35 188.12 3489.22 5
MVS_030478.45 1878.28 1978.98 2680.73 10757.91 8384.68 3581.64 10668.35 275.77 3990.38 2953.98 5990.26 1381.30 387.68 4288.77 9
CANet76.46 4075.93 4478.06 3981.29 9757.53 8882.35 7283.31 7967.78 370.09 11686.34 10854.92 5088.90 2572.68 5884.55 6787.76 36
UA-Net73.13 7472.93 7573.76 11983.58 6651.66 19078.75 11977.66 19167.75 472.61 9389.42 5049.82 11483.29 14653.61 20783.14 8086.32 84
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3985.03 3666.96 577.58 2990.06 3959.47 2189.13 2278.67 1489.73 1687.03 57
TranMVSNet+NR-MVSNet70.36 12370.10 12071.17 19278.64 15542.97 29776.53 17581.16 12666.95 668.53 14585.42 13451.61 9683.07 15052.32 21569.70 26587.46 45
3Dnovator+66.72 475.84 4974.57 5979.66 982.40 7959.92 5185.83 2286.32 1666.92 767.80 16389.24 5442.03 20689.38 1964.07 12086.50 5789.69 2
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3084.42 4466.73 874.67 5889.38 5255.30 4689.18 2174.19 4687.34 4486.38 76
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7562.18 1687.60 985.83 1966.69 978.03 2690.98 1854.26 5690.06 1478.42 1989.02 2387.69 37
Skip Steuart: Steuart Systems R&D Blog.
EPNet73.09 7572.16 8275.90 6975.95 23056.28 10783.05 5972.39 26366.53 1065.27 21087.00 8650.40 11085.47 10362.48 13786.32 5885.94 95
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet_NR-MVSNet71.11 10771.00 10271.44 18179.20 13944.13 28376.02 18882.60 9366.48 1168.20 14984.60 14656.82 3682.82 16154.62 19770.43 24587.36 52
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2563.71 1289.23 2081.51 288.44 2788.09 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6465.37 1378.78 2290.64 2158.63 2587.24 5479.00 1290.37 1485.26 130
NR-MVSNet69.54 14468.85 13771.59 17878.05 17743.81 28874.20 22580.86 13265.18 1462.76 25284.52 14752.35 8483.59 14250.96 23070.78 24087.37 50
MTAPA76.90 3476.42 3878.35 3586.08 3763.57 274.92 21280.97 13065.13 1575.77 3990.88 1948.63 12986.66 7177.23 2488.17 3384.81 145
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6388.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 14
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 25
EI-MVSNet-Vis-set72.42 8771.59 8774.91 8678.47 15954.02 14577.05 16379.33 15565.03 1871.68 10379.35 25652.75 7684.89 11666.46 10074.23 19185.83 100
casdiffmvs_mvgpermissive76.14 4576.30 3975.66 7576.46 22451.83 18979.67 11185.08 3365.02 1975.84 3888.58 6359.42 2285.08 10972.75 5783.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_one_060187.58 959.30 6086.84 765.01 2083.80 1191.86 664.03 11
ETV-MVS74.46 6473.84 6776.33 6579.27 13755.24 13279.22 11685.00 3864.97 2172.65 9279.46 25253.65 7087.87 4467.45 9482.91 8685.89 98
WR-MVS68.47 16868.47 14868.44 23880.20 11839.84 32273.75 23776.07 21464.68 2268.11 15483.63 16650.39 11179.14 23649.78 23569.66 26686.34 80
XVS77.17 3176.56 3679.00 2386.32 2962.62 1185.83 2283.92 5464.55 2372.17 9890.01 4347.95 13688.01 4071.55 7086.74 5386.37 78
X-MVStestdata70.21 12667.28 17579.00 2386.32 2962.62 1185.83 2283.92 5464.55 2372.17 986.49 41847.95 13688.01 4071.55 7086.74 5386.37 78
HQP_MVS74.31 6573.73 6876.06 6781.41 9456.31 10584.22 4384.01 5164.52 2569.27 13486.10 11545.26 17887.21 5768.16 8680.58 11084.65 149
plane_prior284.22 4364.52 25
EI-MVSNet-UG-set71.92 9571.06 10174.52 10077.98 18053.56 15376.62 17279.16 15664.40 2771.18 10778.95 26152.19 8684.66 12365.47 11173.57 20285.32 126
DU-MVS70.01 12969.53 12671.44 18178.05 17744.13 28375.01 20881.51 10964.37 2868.20 14984.52 14749.12 12682.82 16154.62 19770.43 24587.37 50
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6787.85 585.03 3664.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072687.75 759.07 6787.86 486.83 864.26 2984.19 791.92 564.82 8
test_241102_ONE87.77 458.90 7286.78 1064.20 3185.97 191.34 1566.87 390.78 7
SED-MVS81.56 282.30 279.32 1387.77 458.90 7287.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 20
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 39
LFMVS71.78 9771.59 8772.32 16283.40 7046.38 25979.75 10971.08 27264.18 3272.80 8988.64 6242.58 20183.72 13857.41 17584.49 7086.86 62
IS-MVSNet71.57 10171.00 10273.27 14378.86 14845.63 27080.22 10078.69 16764.14 3566.46 18787.36 8049.30 12085.60 9650.26 23483.71 7988.59 11
plane_prior356.09 11163.92 3669.27 134
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6863.89 3773.60 7190.60 2254.85 5186.72 6977.20 2588.06 3685.74 107
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DELS-MVS74.76 5774.46 6075.65 7677.84 18452.25 18175.59 19584.17 4863.76 3873.15 7982.79 17859.58 2086.80 6767.24 9586.04 5987.89 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPM-MVS74.73 5874.25 6276.19 6680.81 10659.01 7082.60 6983.64 6563.74 3972.52 9487.49 7747.18 15285.88 9169.47 7980.78 10683.66 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet (Re)70.63 11770.20 11671.89 16778.55 15645.29 27375.94 18982.92 8763.68 4068.16 15283.59 16753.89 6283.49 14453.97 20371.12 23886.89 61
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 3063.56 4174.29 6490.03 4152.56 7888.53 2974.79 4288.34 2986.63 72
EC-MVSNet75.84 4975.87 4675.74 7378.86 14852.65 17283.73 5386.08 1763.47 4272.77 9087.25 8453.13 7387.93 4271.97 6685.57 6286.66 70
ZNCC-MVS78.82 1378.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4690.47 2853.96 6188.68 2776.48 2889.63 2087.16 55
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS76.25 4475.98 4377.06 5380.15 12155.63 12384.51 3883.90 5663.24 4573.30 7487.27 8355.06 4886.30 8471.78 6784.58 6689.25 4
DeepC-MVS69.38 278.56 1778.14 2279.83 783.60 6561.62 2384.17 4586.85 663.23 4673.84 6990.25 3557.68 2989.96 1574.62 4389.03 2287.89 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS72.50 8372.09 8373.75 12181.58 9049.69 22077.76 14477.63 19263.21 4773.21 7789.02 5642.14 20583.32 14561.72 14482.50 9288.25 19
plane_prior56.31 10583.58 5663.19 4880.48 113
ACMMPcopyleft76.02 4775.33 5178.07 3885.20 4961.91 2085.49 2984.44 4363.04 4969.80 12689.74 4945.43 17487.16 5972.01 6482.87 8885.14 132
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS66.60 20966.45 18967.04 25277.11 21036.56 35577.03 16480.42 13962.95 5062.51 26084.03 15746.69 16079.07 23744.22 28563.08 32685.51 114
APDe-MVScopyleft80.16 880.59 678.86 2986.64 2160.02 4888.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1678.70 1388.32 3186.79 65
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mPP-MVS76.54 3975.93 4478.34 3686.47 2663.50 385.74 2582.28 9662.90 5271.77 10190.26 3446.61 16186.55 7571.71 6885.66 6184.97 141
ACMMP_NAP78.77 1578.78 1478.74 3085.44 4561.04 3183.84 5285.16 3162.88 5378.10 2491.26 1652.51 7988.39 3079.34 890.52 1386.78 66
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4683.03 6085.33 2862.86 5480.17 1790.03 4161.76 1488.95 2474.21 4588.67 2688.12 24
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4662.82 5573.96 6790.50 2653.20 7288.35 3174.02 4887.05 4586.13 90
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4762.82 5573.55 7290.56 2449.80 11588.24 3374.02 4887.03 4686.32 84
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 4962.81 5773.30 7490.58 2349.90 11388.21 3473.78 5087.03 4686.29 87
casdiffmvspermissive74.80 5674.89 5774.53 9975.59 23650.37 20778.17 13385.06 3562.80 5874.40 6187.86 7357.88 2783.61 14169.46 8082.79 9089.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline74.61 6174.70 5874.34 10375.70 23249.99 21577.54 14984.63 4262.73 5973.98 6687.79 7657.67 3083.82 13769.49 7882.74 9189.20 6
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6385.08 3362.57 6073.09 8389.97 4450.90 10687.48 5275.30 3686.85 5187.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DTE-MVSNet65.58 22165.34 21266.31 26376.06 22934.79 36876.43 17779.38 15462.55 6161.66 27083.83 16245.60 16879.15 23541.64 31460.88 34185.00 138
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1779.85 591.48 188.19 22
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVSNet66.49 21266.41 19366.72 25477.67 19036.33 35876.83 17179.52 15162.45 6362.54 25883.47 17146.32 16278.37 24545.47 28063.43 32385.45 119
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7162.44 6472.68 9190.50 2648.18 13487.34 5373.59 5285.71 6084.76 148
PS-CasMVS66.42 21366.32 19766.70 25677.60 19836.30 36076.94 16679.61 14962.36 6562.43 26283.66 16545.69 16678.37 24545.35 28263.26 32485.42 122
3Dnovator64.47 572.49 8471.39 9375.79 7077.70 18858.99 7180.66 9683.15 8462.24 6665.46 20686.59 9942.38 20485.52 9959.59 16284.72 6582.85 205
MP-MVS-pluss78.35 2078.46 1778.03 4084.96 5259.52 5682.93 6285.39 2762.15 6776.41 3791.51 1152.47 8186.78 6880.66 489.64 1987.80 34
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HQP-NCC80.66 10882.31 7462.10 6867.85 158
ACMP_Plane80.66 10882.31 7462.10 6867.85 158
HQP-MVS73.45 7172.80 7675.40 8080.66 10854.94 13482.31 7483.90 5662.10 6867.85 15885.54 13245.46 17286.93 6467.04 9780.35 11484.32 156
SPE-MVS-test75.62 5275.31 5276.56 6280.63 11155.13 13383.88 5185.22 2962.05 7171.49 10686.03 11853.83 6386.36 8267.74 8986.91 5088.19 22
VPNet67.52 18868.11 15565.74 27679.18 14036.80 35372.17 25872.83 26062.04 7267.79 16485.83 12548.88 12876.60 27951.30 22672.97 21583.81 174
WR-MVS_H67.02 20066.92 18467.33 25177.95 18137.75 34277.57 14782.11 9962.03 7362.65 25582.48 18950.57 10979.46 22642.91 30264.01 31684.79 146
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3484.85 4061.98 7473.06 8488.88 5853.72 6689.06 2368.27 8388.04 3787.42 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS78.82 1379.22 1277.60 4682.88 7757.83 8484.99 3188.13 261.86 7579.16 2090.75 2057.96 2687.09 6277.08 2690.18 1587.87 30
PGM-MVS76.77 3776.06 4278.88 2886.14 3562.73 982.55 7083.74 6361.71 7672.45 9790.34 3248.48 13288.13 3772.32 6186.85 5185.78 101
Effi-MVS+73.31 7372.54 7975.62 7777.87 18253.64 15179.62 11379.61 14961.63 7772.02 10082.61 18356.44 3985.97 8963.99 12379.07 13487.25 54
MG-MVS73.96 6873.89 6674.16 10985.65 4249.69 22081.59 8581.29 12061.45 7871.05 10888.11 6651.77 9387.73 4761.05 14983.09 8185.05 137
LPG-MVS_test72.74 8071.74 8675.76 7180.22 11657.51 8982.55 7083.40 7361.32 7966.67 18487.33 8139.15 23886.59 7267.70 9077.30 16183.19 196
LGP-MVS_train75.76 7180.22 11657.51 8983.40 7361.32 7966.67 18487.33 8139.15 23886.59 7267.70 9077.30 16183.19 196
CLD-MVS73.33 7272.68 7775.29 8478.82 15053.33 15978.23 13084.79 4161.30 8170.41 11381.04 22052.41 8287.12 6064.61 11982.49 9385.41 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
RRT-MVS71.46 10470.70 10773.74 12277.76 18749.30 22676.60 17380.45 13861.25 8268.17 15184.78 14044.64 18384.90 11564.79 11577.88 15187.03 57
MVS_111021_HR74.02 6773.46 7175.69 7483.01 7560.63 4077.29 15778.40 18161.18 8370.58 11185.97 12054.18 5884.00 13467.52 9382.98 8582.45 212
balanced_conf0376.58 3876.55 3776.68 5781.73 8852.90 16780.94 9185.70 2361.12 8474.90 5287.17 8556.46 3888.14 3672.87 5688.03 3889.00 7
FIs70.82 11471.43 9168.98 23178.33 16638.14 33876.96 16583.59 6761.02 8567.33 17186.73 9255.07 4781.64 18354.61 19979.22 13087.14 56
FOURS186.12 3660.82 3788.18 183.61 6660.87 8681.50 16
FC-MVSNet-test69.80 13570.58 11067.46 24777.61 19734.73 37176.05 18683.19 8360.84 8765.88 20086.46 10554.52 5580.76 20752.52 21478.12 14786.91 60
v870.33 12469.28 13173.49 13573.15 27050.22 20978.62 12380.78 13360.79 8866.45 18882.11 20149.35 11984.98 11263.58 12968.71 28085.28 128
CSCG76.92 3376.75 3177.41 4983.96 6459.60 5482.95 6186.50 1360.78 8975.27 4384.83 13860.76 1586.56 7467.86 8887.87 4186.06 92
Vis-MVSNetpermissive72.18 9071.37 9474.61 9581.29 9755.41 12980.90 9278.28 18360.73 9069.23 13788.09 6744.36 18782.65 16557.68 17281.75 10385.77 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4560.61 9179.05 2190.30 3355.54 4588.32 3273.48 5387.03 4684.83 144
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMP63.53 672.30 8871.20 9875.59 7980.28 11457.54 8782.74 6682.84 9160.58 9265.24 21486.18 11239.25 23686.03 8766.95 9976.79 16883.22 194
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testdata172.65 24860.50 93
UGNet68.81 15867.39 17073.06 14678.33 16654.47 14079.77 10875.40 22560.45 9463.22 24284.40 15032.71 31180.91 20351.71 22480.56 11283.81 174
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
h-mvs3372.71 8171.49 9076.40 6381.99 8559.58 5576.92 16776.74 20760.40 9574.81 5485.95 12145.54 17085.76 9470.41 7570.61 24383.86 173
hse-mvs271.04 10869.86 12174.60 9679.58 13057.12 9973.96 22975.25 22860.40 9574.81 5481.95 20345.54 17082.90 15470.41 7566.83 29583.77 178
EPP-MVSNet72.16 9371.31 9674.71 8978.68 15449.70 21882.10 7881.65 10560.40 9565.94 19685.84 12451.74 9486.37 8155.93 18379.55 12588.07 27
UniMVSNet_ETH3D67.60 18767.07 18369.18 23077.39 20342.29 30174.18 22675.59 22060.37 9866.77 18186.06 11737.64 25378.93 24352.16 21773.49 20486.32 84
test_prior281.75 8160.37 9875.01 4789.06 5556.22 4172.19 6288.96 24
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3783.87 5960.37 9879.89 1889.38 5254.97 4985.58 9876.12 3184.94 6486.33 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet69.68 13970.19 11768.16 24179.73 12741.63 31070.53 28177.38 19760.37 9870.69 11086.63 9751.08 10277.09 26753.61 20781.69 10585.75 106
sasdasda74.67 5974.98 5573.71 12478.94 14650.56 20480.23 9883.87 5960.30 10277.15 3286.56 10159.65 1782.00 17766.01 10582.12 9488.58 12
canonicalmvs74.67 5974.98 5573.71 12478.94 14650.56 20480.23 9883.87 5960.30 10277.15 3286.56 10159.65 1782.00 17766.01 10582.12 9488.58 12
v7n69.01 15667.36 17273.98 11272.51 28452.65 17278.54 12781.30 11960.26 10462.67 25481.62 20943.61 19284.49 12457.01 17668.70 28184.79 146
reproduce-ours76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7660.22 10577.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 117
our_new_method76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7660.22 10577.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 117
HPM-MVS_fast74.30 6673.46 7176.80 5584.45 6059.04 6983.65 5581.05 12760.15 10770.43 11289.84 4641.09 22285.59 9767.61 9282.90 8785.77 104
VPA-MVSNet69.02 15569.47 12867.69 24577.42 20241.00 31574.04 22779.68 14760.06 10869.26 13684.81 13951.06 10377.58 25854.44 20074.43 18984.48 153
v1070.21 12669.02 13573.81 11673.51 26750.92 19678.74 12081.39 11260.05 10966.39 18981.83 20647.58 14385.41 10662.80 13468.86 27985.09 136
SR-MVS76.13 4675.70 4777.40 5185.87 4061.20 2985.52 2782.19 9759.99 11075.10 4590.35 3147.66 14186.52 7671.64 6982.99 8384.47 154
9.1478.75 1583.10 7284.15 4688.26 159.90 11178.57 2390.36 3057.51 3286.86 6677.39 2389.52 21
v2v48270.50 12069.45 12973.66 12772.62 28050.03 21477.58 14680.51 13759.90 11169.52 12882.14 19947.53 14584.88 11865.07 11470.17 25386.09 91
Baseline_NR-MVSNet67.05 19967.56 16265.50 27975.65 23337.70 34475.42 19874.65 24059.90 11168.14 15383.15 17649.12 12677.20 26552.23 21669.78 26281.60 225
API-MVS72.17 9171.41 9274.45 10181.95 8657.22 9284.03 4880.38 14059.89 11468.40 14682.33 19249.64 11687.83 4651.87 22184.16 7578.30 277
Effi-MVS+-dtu69.64 14167.53 16575.95 6876.10 22862.29 1580.20 10176.06 21559.83 11565.26 21377.09 29141.56 21484.02 13360.60 15371.09 23981.53 226
reproduce_model76.43 4176.08 4177.49 4883.47 6960.09 4784.60 3682.90 8859.65 11677.31 3091.43 1249.62 11787.24 5471.99 6583.75 7885.14 132
MVSMamba_PlusPlus75.75 5175.44 4976.67 5880.84 10553.06 16478.62 12385.13 3259.65 11671.53 10587.47 7856.92 3488.17 3572.18 6386.63 5688.80 8
CANet_DTU68.18 17567.71 16169.59 22174.83 24746.24 26178.66 12276.85 20459.60 11863.45 24082.09 20235.25 27777.41 26159.88 15978.76 13985.14 132
EI-MVSNet69.27 15268.44 15071.73 17374.47 25649.39 22575.20 20378.45 17759.60 11869.16 13876.51 30351.29 9882.50 16959.86 16171.45 23583.30 191
IterMVS-LS69.22 15468.48 14671.43 18374.44 25849.40 22476.23 18177.55 19359.60 11865.85 20181.59 21251.28 9981.58 18659.87 16069.90 26083.30 191
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MGCFI-Net72.45 8573.34 7369.81 21877.77 18643.21 29475.84 19281.18 12459.59 12175.45 4286.64 9557.74 2877.94 25163.92 12481.90 9988.30 17
VDDNet71.81 9671.33 9573.26 14482.80 7847.60 25078.74 12075.27 22759.59 12172.94 8689.40 5141.51 21683.91 13558.75 16782.99 8388.26 18
alignmvs73.86 6973.99 6473.45 13778.20 16950.50 20678.57 12582.43 9459.40 12376.57 3586.71 9456.42 4081.23 19465.84 10881.79 10088.62 10
MVS_Test72.45 8572.46 8072.42 16174.88 24548.50 23876.28 18083.14 8559.40 12372.46 9584.68 14155.66 4481.12 19565.98 10779.66 12287.63 40
TSAR-MVS + MP.78.44 1978.28 1978.90 2784.96 5261.41 2684.03 4883.82 6259.34 12579.37 1989.76 4859.84 1687.62 5176.69 2786.74 5387.68 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++73.77 7073.47 7074.66 9283.02 7459.29 6182.30 7781.88 10159.34 12571.59 10486.83 8845.94 16583.65 14065.09 11385.22 6381.06 240
PAPM_NR72.63 8271.80 8575.13 8581.72 8953.42 15779.91 10683.28 8159.14 12766.31 19185.90 12251.86 9186.06 8557.45 17480.62 10885.91 97
testing9164.46 23663.80 22766.47 26078.43 16140.06 32067.63 30569.59 28659.06 12863.18 24478.05 27234.05 28976.99 26948.30 25175.87 17782.37 214
save fliter86.17 3361.30 2883.98 5079.66 14859.00 129
v14868.24 17467.19 18171.40 18470.43 31947.77 24775.76 19377.03 20258.91 13067.36 17080.10 23948.60 13181.89 17960.01 15766.52 29884.53 151
TransMVSNet (Re)64.72 23164.33 22165.87 27575.22 24138.56 33474.66 21875.08 23658.90 13161.79 26882.63 18251.18 10078.07 25043.63 29555.87 36480.99 242
Anonymous20240521166.84 20465.99 20369.40 22580.19 11942.21 30371.11 27471.31 27158.80 13267.90 15686.39 10729.83 33379.65 22349.60 24178.78 13886.33 82
test250665.33 22664.61 21967.50 24679.46 13334.19 37674.43 22351.92 38258.72 13366.75 18288.05 6925.99 36380.92 20251.94 22084.25 7287.39 48
ECVR-MVScopyleft67.72 18567.51 16668.35 23979.46 13336.29 36174.79 21566.93 30758.72 13367.19 17388.05 6936.10 27081.38 18952.07 21884.25 7287.39 48
test111167.21 19267.14 18267.42 24879.24 13834.76 37073.89 23465.65 31658.71 13566.96 17887.95 7236.09 27180.53 20952.03 21983.79 7786.97 59
LCM-MVSNet-Re61.88 26761.35 25963.46 29574.58 25431.48 38961.42 34958.14 36058.71 13553.02 35679.55 25043.07 19676.80 27345.69 27377.96 14982.11 220
testing9964.05 24063.29 23766.34 26278.17 17339.76 32467.33 31068.00 30058.60 13763.03 24778.10 27132.57 31676.94 27148.22 25275.58 18182.34 215
v114470.42 12269.31 13073.76 11973.22 26850.64 20177.83 14281.43 11158.58 13869.40 13281.16 21747.53 14585.29 10864.01 12270.64 24185.34 125
TSAR-MVS + GP.74.90 5574.15 6377.17 5282.00 8458.77 7581.80 8078.57 17058.58 13874.32 6384.51 14955.94 4387.22 5667.11 9684.48 7185.52 113
BH-RMVSNet68.81 15867.42 16972.97 14780.11 12252.53 17674.26 22476.29 21058.48 14068.38 14784.20 15242.59 20083.83 13646.53 26575.91 17682.56 207
APD-MVS_3200maxsize74.96 5474.39 6176.67 5882.20 8158.24 8083.67 5483.29 8058.41 14173.71 7090.14 3645.62 16785.99 8869.64 7782.85 8985.78 101
OMC-MVS71.40 10670.60 10873.78 11776.60 22053.15 16179.74 11079.78 14558.37 14268.75 14186.45 10645.43 17480.60 20862.58 13577.73 15287.58 43
nrg03072.96 7773.01 7472.84 15075.41 23950.24 20880.02 10282.89 9058.36 14374.44 6086.73 9258.90 2480.83 20465.84 10874.46 18787.44 46
K. test v360.47 27857.11 29670.56 20373.74 26648.22 24175.10 20762.55 33958.27 14453.62 35276.31 30727.81 34881.59 18547.42 25639.18 39781.88 223
FA-MVS(test-final)69.82 13468.48 14673.84 11578.44 16050.04 21375.58 19778.99 16058.16 14567.59 16782.14 19942.66 19985.63 9556.60 17876.19 17485.84 99
MVS_111021_LR69.50 14668.78 14071.65 17678.38 16259.33 5974.82 21470.11 28058.08 14667.83 16284.68 14141.96 20776.34 28465.62 11077.54 15479.30 269
SR-MVS-dyc-post74.57 6273.90 6576.58 6183.49 6759.87 5284.29 4081.36 11458.07 14773.14 8090.07 3744.74 18185.84 9268.20 8481.76 10184.03 164
RE-MVS-def73.71 6983.49 6759.87 5284.29 4081.36 11458.07 14773.14 8090.07 3743.06 19768.20 8481.76 10184.03 164
SDMVSNet68.03 17768.10 15667.84 24377.13 20848.72 23665.32 32679.10 15758.02 14965.08 21782.55 18547.83 13873.40 29763.92 12473.92 19581.41 228
sd_testset64.46 23664.45 22064.51 28977.13 20842.25 30262.67 34272.11 26658.02 14965.08 21782.55 18541.22 22169.88 31847.32 25873.92 19581.41 228
GeoE71.01 10970.15 11873.60 13279.57 13152.17 18278.93 11878.12 18458.02 14967.76 16683.87 16152.36 8382.72 16356.90 17775.79 17885.92 96
ZD-MVS86.64 2160.38 4582.70 9257.95 15278.10 2490.06 3956.12 4288.84 2674.05 4787.00 49
EIA-MVS71.78 9770.60 10875.30 8379.85 12553.54 15477.27 15883.26 8257.92 15366.49 18679.39 25452.07 8886.69 7060.05 15679.14 13385.66 109
test_yl69.69 13769.13 13271.36 18578.37 16445.74 26674.71 21680.20 14257.91 15470.01 12183.83 16242.44 20282.87 15754.97 19379.72 12085.48 115
DCV-MVSNet69.69 13769.13 13271.36 18578.37 16445.74 26674.71 21680.20 14257.91 15470.01 12183.83 16242.44 20282.87 15754.97 19379.72 12085.48 115
MonoMVSNet64.15 23963.31 23666.69 25770.51 31744.12 28574.47 22174.21 24757.81 15663.03 24776.62 29938.33 24677.31 26354.22 20160.59 34678.64 275
dcpmvs_274.55 6375.23 5372.48 15782.34 8053.34 15877.87 13981.46 11057.80 15775.49 4186.81 8962.22 1377.75 25671.09 7282.02 9786.34 80
Fast-Effi-MVS+-dtu67.37 19065.33 21373.48 13672.94 27557.78 8677.47 15176.88 20357.60 15861.97 26576.85 29539.31 23480.49 21254.72 19670.28 25182.17 219
v119269.97 13168.68 14273.85 11473.19 26950.94 19477.68 14581.36 11457.51 15968.95 14080.85 22745.28 17785.33 10762.97 13370.37 24785.27 129
ACMH+57.40 1166.12 21564.06 22272.30 16377.79 18552.83 17080.39 9778.03 18557.30 16057.47 31482.55 18527.68 34984.17 12845.54 27669.78 26279.90 259
diffmvspermissive70.69 11670.43 11171.46 18069.45 33548.95 23272.93 24578.46 17657.27 16171.69 10283.97 16051.48 9777.92 25370.70 7477.95 15087.53 44
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned68.27 17267.29 17471.21 18979.74 12653.22 16076.06 18577.46 19657.19 16266.10 19381.61 21045.37 17683.50 14345.42 28176.68 17076.91 301
thres100view90063.28 24962.41 24765.89 27477.31 20538.66 33372.65 24869.11 29357.07 16362.45 26181.03 22137.01 26579.17 23231.84 36773.25 21079.83 261
DP-MVS Recon72.15 9470.73 10676.40 6386.57 2457.99 8281.15 9082.96 8657.03 16466.78 18085.56 12944.50 18588.11 3851.77 22380.23 11783.10 200
thres600view763.30 24862.27 24866.41 26177.18 20738.87 33172.35 25569.11 29356.98 16562.37 26380.96 22337.01 26579.00 24131.43 37473.05 21481.36 231
V4268.65 16267.35 17372.56 15568.93 34150.18 21072.90 24679.47 15256.92 16669.45 13180.26 23646.29 16382.99 15164.07 12067.82 28784.53 151
MCST-MVS77.48 2877.45 2777.54 4786.67 2058.36 7983.22 5886.93 556.91 16774.91 5188.19 6559.15 2387.68 5073.67 5187.45 4386.57 73
GA-MVS65.53 22263.70 22971.02 19670.87 31248.10 24270.48 28274.40 24256.69 16864.70 22576.77 29633.66 29781.10 19655.42 19270.32 25083.87 172
v14419269.71 13668.51 14573.33 14273.10 27150.13 21177.54 14980.64 13456.65 16968.57 14480.55 23046.87 15984.96 11462.98 13269.66 26684.89 143
tfpn200view963.18 25162.18 25066.21 26676.85 21539.62 32571.96 26269.44 28956.63 17062.61 25679.83 24237.18 25979.17 23231.84 36773.25 21079.83 261
thres40063.31 24762.18 25066.72 25476.85 21539.62 32571.96 26269.44 28956.63 17062.61 25679.83 24237.18 25979.17 23231.84 36773.25 21081.36 231
GBi-Net67.21 19266.55 18769.19 22777.63 19243.33 29177.31 15477.83 18856.62 17265.04 21982.70 17941.85 20980.33 21447.18 26072.76 21783.92 169
test167.21 19266.55 18769.19 22777.63 19243.33 29177.31 15477.83 18856.62 17265.04 21982.70 17941.85 20980.33 21447.18 26072.76 21783.92 169
FMVSNet266.93 20266.31 19868.79 23477.63 19242.98 29676.11 18377.47 19456.62 17265.22 21682.17 19741.85 20980.18 22047.05 26372.72 22083.20 195
DPM-MVS75.47 5375.00 5476.88 5481.38 9659.16 6279.94 10485.71 2256.59 17572.46 9586.76 9056.89 3587.86 4566.36 10188.91 2583.64 186
v192192069.47 14768.17 15473.36 14173.06 27250.10 21277.39 15280.56 13556.58 17668.59 14280.37 23244.72 18284.98 11262.47 13869.82 26185.00 138
FMVSNet166.70 20765.87 20469.19 22777.49 20043.33 29177.31 15477.83 18856.45 17764.60 22782.70 17938.08 25180.33 21446.08 26972.31 22583.92 169
v124069.24 15367.91 15773.25 14573.02 27449.82 21677.21 15980.54 13656.43 17868.34 14880.51 23143.33 19584.99 11062.03 14269.77 26484.95 142
testing22262.29 26261.31 26065.25 28477.87 18238.53 33568.34 30066.31 31356.37 17963.15 24677.58 28628.47 34376.18 28737.04 33676.65 17181.05 241
CDPH-MVS76.31 4275.67 4878.22 3785.35 4859.14 6581.31 8884.02 5056.32 18074.05 6588.98 5753.34 7187.92 4369.23 8188.42 2887.59 42
Vis-MVSNet (Re-imp)63.69 24463.88 22563.14 29974.75 24931.04 39071.16 27263.64 33256.32 18059.80 29084.99 13644.51 18475.46 28939.12 32480.62 10882.92 202
AdaColmapbinary69.99 13068.66 14373.97 11384.94 5457.83 8482.63 6878.71 16656.28 18264.34 22884.14 15441.57 21387.06 6346.45 26678.88 13577.02 297
PS-MVSNAJss72.24 8971.21 9775.31 8278.50 15755.93 11581.63 8282.12 9856.24 18370.02 12085.68 12847.05 15484.34 12765.27 11274.41 19085.67 108
c3_l68.33 17167.56 16270.62 20270.87 31246.21 26274.47 22178.80 16456.22 18466.19 19278.53 26951.88 9081.40 18862.08 13969.04 27584.25 158
Fast-Effi-MVS+70.28 12569.12 13473.73 12378.50 15751.50 19175.01 20879.46 15356.16 18568.59 14279.55 25053.97 6084.05 13053.34 20977.53 15585.65 110
PHI-MVS75.87 4875.36 5077.41 4980.62 11255.91 11684.28 4285.78 2056.08 18673.41 7386.58 10050.94 10588.54 2870.79 7389.71 1787.79 35
baseline163.81 24363.87 22663.62 29476.29 22536.36 35671.78 26467.29 30456.05 18764.23 23382.95 17747.11 15374.41 29447.30 25961.85 33580.10 256
train_agg76.27 4376.15 4076.64 6085.58 4361.59 2481.62 8381.26 12155.86 18874.93 4988.81 5953.70 6784.68 12175.24 3888.33 3083.65 185
test_885.40 4660.96 3481.54 8681.18 12455.86 18874.81 5488.80 6153.70 6784.45 125
FMVSNet366.32 21465.61 20968.46 23776.48 22342.34 30074.98 21077.15 20155.83 19065.04 21981.16 21739.91 22780.14 22147.18 26072.76 21782.90 204
PAPR71.72 10070.82 10474.41 10281.20 10151.17 19279.55 11483.33 7855.81 19166.93 17984.61 14550.95 10486.06 8555.79 18679.20 13186.00 93
eth_miper_zixun_eth67.63 18666.28 19971.67 17571.60 29848.33 24073.68 23877.88 18655.80 19265.91 19778.62 26747.35 15182.88 15659.45 16366.25 29983.81 174
ACMH55.70 1565.20 22863.57 23170.07 21178.07 17652.01 18779.48 11579.69 14655.75 19356.59 32180.98 22227.12 35480.94 20042.90 30371.58 23377.25 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS56.42 1265.40 22562.73 24473.40 14074.89 24452.78 17173.09 24475.13 23255.69 19458.48 30773.73 33332.86 30686.32 8350.63 23170.11 25481.10 239
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CL-MVSNet_self_test61.53 27060.94 26763.30 29768.95 34036.93 35267.60 30672.80 26155.67 19559.95 28776.63 29845.01 18072.22 30439.74 32262.09 33480.74 246
TEST985.58 4361.59 2481.62 8381.26 12155.65 19674.93 4988.81 5953.70 6784.68 121
thres20062.20 26361.16 26565.34 28275.38 24039.99 32169.60 29269.29 29155.64 19761.87 26776.99 29237.07 26478.96 24231.28 37573.28 20977.06 296
pm-mvs165.24 22764.97 21766.04 27172.38 28739.40 32872.62 25075.63 21955.53 19862.35 26483.18 17547.45 14776.47 28249.06 24566.54 29782.24 216
testing1162.81 25461.90 25365.54 27878.38 16240.76 31767.59 30766.78 30955.48 19960.13 28277.11 29031.67 32276.79 27445.53 27774.45 18879.06 270
ACMM61.98 770.80 11569.73 12374.02 11180.59 11358.59 7782.68 6782.02 10055.46 20067.18 17484.39 15138.51 24383.17 14960.65 15276.10 17580.30 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052969.91 13269.02 13572.56 15580.19 11947.65 24877.56 14880.99 12955.45 20169.88 12486.76 9039.24 23782.18 17554.04 20277.10 16587.85 31
tt080567.77 18467.24 17969.34 22674.87 24640.08 31977.36 15381.37 11355.31 20266.33 19084.65 14337.35 25782.55 16855.65 18972.28 22685.39 124
CPTT-MVS72.78 7972.08 8474.87 8884.88 5761.41 2684.15 4677.86 18755.27 20367.51 16988.08 6841.93 20881.85 18069.04 8280.01 11881.35 233
XVG-OURS68.76 16167.37 17172.90 14974.32 26157.22 9270.09 28878.81 16355.24 20467.79 16485.81 12736.54 26878.28 24762.04 14175.74 17983.19 196
tfpnnormal62.47 25861.63 25664.99 28674.81 24839.01 33071.22 27073.72 25255.22 20560.21 28180.09 24041.26 22076.98 27030.02 38068.09 28578.97 273
cl____67.18 19566.26 20069.94 21370.20 32245.74 26673.30 24076.83 20555.10 20665.27 21079.57 24947.39 14980.53 20959.41 16569.22 27383.53 188
DIV-MVS_self_test67.18 19566.26 20069.94 21370.20 32245.74 26673.29 24176.83 20555.10 20665.27 21079.58 24847.38 15080.53 20959.43 16469.22 27383.54 187
PC_three_145255.09 20884.46 489.84 4666.68 589.41 1874.24 4491.38 288.42 14
EPNet_dtu61.90 26661.97 25261.68 30772.89 27639.78 32375.85 19165.62 31755.09 20854.56 34279.36 25537.59 25467.02 33639.80 32176.95 16678.25 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu71.45 10570.39 11274.65 9382.01 8358.82 7479.93 10580.35 14155.09 20865.82 20282.16 19849.17 12382.64 16660.34 15478.62 14282.50 211
cl2267.47 18966.45 18970.54 20469.85 33046.49 25873.85 23577.35 19855.07 21165.51 20577.92 27647.64 14281.10 19661.58 14769.32 26984.01 166
miper_ehance_all_eth68.03 17767.24 17970.40 20670.54 31646.21 26273.98 22878.68 16855.07 21166.05 19477.80 28052.16 8781.31 19161.53 14869.32 26983.67 182
PS-MVSNAJ70.51 11969.70 12472.93 14881.52 9155.79 11974.92 21279.00 15955.04 21369.88 12478.66 26447.05 15482.19 17461.61 14579.58 12380.83 244
mmtdpeth60.40 27959.12 28064.27 29269.59 33248.99 23070.67 27970.06 28154.96 21462.78 25073.26 33727.00 35667.66 32958.44 17045.29 38976.16 306
xiu_mvs_v2_base70.52 11869.75 12272.84 15081.21 10055.63 12375.11 20578.92 16154.92 21569.96 12379.68 24747.00 15882.09 17661.60 14679.37 12680.81 245
MAR-MVS71.51 10270.15 11875.60 7881.84 8759.39 5881.38 8782.90 8854.90 21668.08 15578.70 26247.73 13985.51 10051.68 22584.17 7481.88 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
reproduce_monomvs62.56 25661.20 26466.62 25870.62 31544.30 28270.13 28773.13 25854.78 21761.13 27676.37 30625.63 36675.63 28858.75 16760.29 34779.93 258
XVG-OURS-SEG-HR68.81 15867.47 16872.82 15274.40 25956.87 10270.59 28079.04 15854.77 21866.99 17786.01 11939.57 23278.21 24862.54 13673.33 20883.37 190
testing356.54 30755.92 30958.41 32977.52 19927.93 39969.72 29156.36 36954.75 21958.63 30577.80 28020.88 38271.75 30725.31 39662.25 33275.53 313
Anonymous2023121169.28 15168.47 14871.73 17380.28 11447.18 25479.98 10382.37 9554.61 22067.24 17284.01 15839.43 23382.41 17255.45 19172.83 21685.62 111
SixPastTwentyTwo61.65 26958.80 28470.20 20975.80 23147.22 25375.59 19569.68 28454.61 22054.11 34679.26 25727.07 35582.96 15243.27 29749.79 38280.41 250
test_040263.25 25061.01 26669.96 21280.00 12354.37 14376.86 17072.02 26754.58 22258.71 30280.79 22935.00 28084.36 12626.41 39464.71 31071.15 363
tttt051767.83 18365.66 20874.33 10476.69 21750.82 19877.86 14073.99 25054.54 22364.64 22682.53 18835.06 27985.50 10155.71 18769.91 25986.67 69
BH-w/o66.85 20365.83 20569.90 21679.29 13552.46 17874.66 21876.65 20854.51 22464.85 22378.12 27045.59 16982.95 15343.26 29875.54 18274.27 330
AUN-MVS68.45 17066.41 19374.57 9879.53 13257.08 10073.93 23275.23 22954.44 22566.69 18381.85 20537.10 26382.89 15562.07 14066.84 29483.75 179
LTVRE_ROB55.42 1663.15 25261.23 26368.92 23276.57 22147.80 24559.92 35876.39 20954.35 22658.67 30382.46 19029.44 33781.49 18742.12 30771.14 23777.46 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf_n73.01 7672.59 7874.27 10671.28 30755.88 11778.21 13275.56 22154.31 22774.86 5387.80 7554.72 5280.23 21878.07 2178.48 14386.70 67
test_fmvsmconf0.01_n72.17 9171.50 8974.16 10967.96 34755.58 12678.06 13674.67 23954.19 22874.54 5988.23 6450.35 11280.24 21778.07 2177.46 15786.65 71
test_fmvsmconf0.1_n72.81 7872.33 8174.24 10769.89 32955.81 11878.22 13175.40 22554.17 22975.00 4888.03 7153.82 6480.23 21878.08 2078.34 14686.69 68
ETVMVS59.51 28858.81 28261.58 30977.46 20134.87 36764.94 33159.35 35554.06 23061.08 27776.67 29729.54 33471.87 30632.16 36374.07 19378.01 285
ab-mvs66.65 20866.42 19267.37 24976.17 22741.73 30770.41 28476.14 21353.99 23165.98 19583.51 16949.48 11876.24 28548.60 24873.46 20684.14 162
IU-MVS87.77 459.15 6385.53 2653.93 23284.64 379.07 1190.87 588.37 16
XVG-ACMP-BASELINE64.36 23862.23 24970.74 20072.35 28852.45 17970.80 27878.45 17753.84 23359.87 28881.10 21916.24 39079.32 22955.64 19071.76 23080.47 248
FE-MVS65.91 21763.33 23573.63 13077.36 20451.95 18872.62 25075.81 21653.70 23465.31 20878.96 26028.81 34286.39 8043.93 29073.48 20582.55 208
thisisatest053067.92 18165.78 20674.33 10476.29 22551.03 19376.89 16874.25 24653.67 23565.59 20481.76 20735.15 27885.50 10155.94 18272.47 22186.47 75
PVSNet_BlendedMVS68.56 16767.72 15971.07 19577.03 21250.57 20274.50 22081.52 10753.66 23664.22 23479.72 24649.13 12482.87 15755.82 18473.92 19579.77 264
patch_mono-269.85 13371.09 10066.16 26779.11 14354.80 13871.97 26174.31 24453.50 23770.90 10984.17 15357.63 3163.31 35066.17 10282.02 9780.38 251
EG-PatchMatch MVS64.71 23262.87 24170.22 20777.68 18953.48 15577.99 13778.82 16253.37 23856.03 32677.41 28824.75 37184.04 13146.37 26773.42 20773.14 336
DP-MVS65.68 21963.66 23071.75 17284.93 5556.87 10280.74 9573.16 25753.06 23959.09 29982.35 19136.79 26785.94 9032.82 36169.96 25872.45 344
TR-MVS66.59 21165.07 21671.17 19279.18 14049.63 22273.48 23975.20 23152.95 24067.90 15680.33 23539.81 23083.68 13943.20 29973.56 20380.20 253
ET-MVSNet_ETH3D67.96 18065.72 20774.68 9176.67 21855.62 12575.11 20574.74 23752.91 24160.03 28580.12 23833.68 29682.64 16661.86 14376.34 17285.78 101
QAPM70.05 12868.81 13973.78 11776.54 22253.43 15683.23 5783.48 6952.89 24265.90 19886.29 10941.55 21586.49 7851.01 22878.40 14581.42 227
OpenMVScopyleft61.03 968.85 15767.56 16272.70 15474.26 26253.99 14681.21 8981.34 11852.70 24362.75 25385.55 13138.86 24184.14 12948.41 25083.01 8279.97 257
pmmvs663.69 24462.82 24366.27 26570.63 31439.27 32973.13 24375.47 22452.69 24459.75 29282.30 19339.71 23177.03 26847.40 25764.35 31582.53 209
IterMVS62.79 25561.27 26167.35 25069.37 33652.04 18671.17 27168.24 29952.63 24559.82 28976.91 29437.32 25872.36 30152.80 21363.19 32577.66 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_tets68.18 17566.36 19573.63 13075.61 23555.35 13180.77 9478.56 17152.48 24664.27 23184.10 15627.45 35181.84 18163.45 13170.56 24483.69 181
jajsoiax68.25 17366.45 18973.66 12775.62 23455.49 12880.82 9378.51 17352.33 24764.33 22984.11 15528.28 34581.81 18263.48 13070.62 24283.67 182
TAMVS66.78 20665.27 21471.33 18879.16 14253.67 15073.84 23669.59 28652.32 24865.28 20981.72 20844.49 18677.40 26242.32 30678.66 14182.92 202
CDS-MVSNet66.80 20565.37 21171.10 19478.98 14553.13 16373.27 24271.07 27352.15 24964.72 22480.23 23743.56 19377.10 26645.48 27978.88 13583.05 201
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsmamba68.47 16866.56 18674.21 10879.60 12952.95 16574.94 21175.48 22352.09 25060.10 28383.27 17236.54 26884.70 12059.32 16677.69 15384.99 140
PVSNet_Blended68.59 16367.72 15971.19 19077.03 21250.57 20272.51 25381.52 10751.91 25164.22 23477.77 28349.13 12482.87 15755.82 18479.58 12380.14 255
mvs_anonymous68.03 17767.51 16669.59 22172.08 29244.57 28071.99 26075.23 22951.67 25267.06 17682.57 18454.68 5377.94 25156.56 17975.71 18086.26 88
xiu_mvs_v1_base_debu68.58 16467.28 17572.48 15778.19 17057.19 9475.28 20075.09 23351.61 25370.04 11781.41 21432.79 30779.02 23863.81 12677.31 15881.22 235
xiu_mvs_v1_base68.58 16467.28 17572.48 15778.19 17057.19 9475.28 20075.09 23351.61 25370.04 11781.41 21432.79 30779.02 23863.81 12677.31 15881.22 235
xiu_mvs_v1_base_debi68.58 16467.28 17572.48 15778.19 17057.19 9475.28 20075.09 23351.61 25370.04 11781.41 21432.79 30779.02 23863.81 12677.31 15881.22 235
MVSTER67.16 19765.58 21071.88 16870.37 32149.70 21870.25 28678.45 17751.52 25669.16 13880.37 23238.45 24482.50 16960.19 15571.46 23483.44 189
CNLPA65.43 22364.02 22369.68 21978.73 15358.07 8177.82 14370.71 27651.49 25761.57 27283.58 16838.23 24970.82 31043.90 29170.10 25580.16 254
原ACMM174.69 9085.39 4759.40 5783.42 7251.47 25870.27 11586.61 9848.61 13086.51 7753.85 20587.96 3978.16 279
miper_enhance_ethall67.11 19866.09 20270.17 21069.21 33845.98 26472.85 24778.41 18051.38 25965.65 20375.98 31251.17 10181.25 19260.82 15169.32 26983.29 193
MSDG61.81 26859.23 27869.55 22472.64 27952.63 17470.45 28375.81 21651.38 25953.70 34976.11 30829.52 33581.08 19837.70 33165.79 30374.93 321
test20.0353.87 32854.02 32653.41 36061.47 38128.11 39861.30 35059.21 35651.34 26152.09 35877.43 28733.29 30158.55 37129.76 38160.27 34873.58 335
MVSFormer71.50 10370.38 11374.88 8778.76 15157.15 9782.79 6478.48 17451.26 26269.49 12983.22 17343.99 19083.24 14766.06 10379.37 12684.23 159
test_djsdf69.45 14867.74 15874.58 9774.57 25554.92 13682.79 6478.48 17451.26 26265.41 20783.49 17038.37 24583.24 14766.06 10369.25 27285.56 112
dmvs_testset50.16 34551.90 33544.94 38066.49 35711.78 42061.01 35551.50 38351.17 26450.30 37067.44 37439.28 23560.29 36122.38 40057.49 35762.76 385
PAPM67.92 18166.69 18571.63 17778.09 17549.02 22977.09 16281.24 12351.04 26560.91 27883.98 15947.71 14084.99 11040.81 31579.32 12980.90 243
Syy-MVS56.00 31456.23 30755.32 34674.69 25126.44 40565.52 32157.49 36450.97 26656.52 32272.18 34139.89 22868.09 32524.20 39764.59 31371.44 359
myMVS_eth3d54.86 32454.61 31855.61 34574.69 25127.31 40265.52 32157.49 36450.97 26656.52 32272.18 34121.87 38068.09 32527.70 38864.59 31371.44 359
miper_lstm_enhance62.03 26560.88 26865.49 28066.71 35546.25 26056.29 37675.70 21850.68 26861.27 27475.48 31940.21 22668.03 32756.31 18165.25 30682.18 217
gg-mvs-nofinetune57.86 29856.43 30562.18 30572.62 28035.35 36666.57 31156.33 37050.65 26957.64 31357.10 39630.65 32576.36 28337.38 33378.88 13574.82 323
TAPA-MVS59.36 1066.60 20965.20 21570.81 19876.63 21948.75 23476.52 17680.04 14450.64 27065.24 21484.93 13739.15 23878.54 24436.77 33876.88 16785.14 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_re56.77 30656.83 30156.61 34069.23 33741.02 31258.37 36364.18 32850.59 27157.45 31571.42 34935.54 27558.94 36937.23 33467.45 29069.87 372
MVP-Stereo65.41 22463.80 22770.22 20777.62 19655.53 12776.30 17978.53 17250.59 27156.47 32478.65 26539.84 22982.68 16444.10 28972.12 22872.44 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PCF-MVS61.88 870.95 11169.49 12775.35 8177.63 19255.71 12076.04 18781.81 10350.30 27369.66 12785.40 13552.51 7984.89 11651.82 22280.24 11685.45 119
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvs5depth55.64 31753.81 32861.11 31459.39 39140.98 31665.89 31668.28 29850.21 27458.11 31075.42 32017.03 38667.63 33143.79 29346.21 38674.73 325
baseline263.42 24661.26 26269.89 21772.55 28247.62 24971.54 26568.38 29750.11 27554.82 33875.55 31743.06 19780.96 19948.13 25367.16 29381.11 238
test-LLR58.15 29658.13 29258.22 33168.57 34244.80 27665.46 32357.92 36150.08 27655.44 33069.82 36232.62 31357.44 37549.66 23973.62 20072.41 346
test0.0.03 153.32 33353.59 33052.50 36662.81 37629.45 39359.51 35954.11 37850.08 27654.40 34474.31 32932.62 31355.92 38430.50 37863.95 31872.15 351
fmvsm_s_conf0.5_n69.58 14268.84 13871.79 17172.31 29052.90 16777.90 13862.43 34249.97 27872.85 8885.90 12252.21 8576.49 28075.75 3370.26 25285.97 94
COLMAP_ROBcopyleft52.97 1761.27 27458.81 28268.64 23574.63 25352.51 17778.42 12873.30 25549.92 27950.96 36281.51 21323.06 37479.40 22731.63 37165.85 30174.01 333
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_a69.54 14468.74 14171.93 16672.47 28553.82 14878.25 12962.26 34449.78 28073.12 8286.21 11152.66 7776.79 27475.02 3968.88 27785.18 131
WBMVS60.54 27660.61 27060.34 31778.00 17935.95 36364.55 33364.89 32149.63 28163.39 24178.70 26233.85 29467.65 33042.10 30870.35 24977.43 290
tpmvs58.47 29256.95 29963.03 30170.20 32241.21 31167.90 30467.23 30549.62 28254.73 34070.84 35334.14 28876.24 28536.64 34261.29 33971.64 355
fmvsm_s_conf0.1_n69.41 14968.60 14471.83 16971.07 30952.88 16977.85 14162.44 34149.58 28372.97 8586.22 11051.68 9576.48 28175.53 3470.10 25586.14 89
UBG59.62 28759.53 27659.89 31878.12 17435.92 36464.11 33760.81 35249.45 28461.34 27375.55 31733.05 30267.39 33438.68 32674.62 18676.35 305
thisisatest051565.83 21863.50 23272.82 15273.75 26549.50 22371.32 26873.12 25949.39 28563.82 23676.50 30534.95 28184.84 11953.20 21175.49 18384.13 163
fmvsm_s_conf0.1_n_a69.32 15068.44 15071.96 16570.91 31153.78 14978.12 13462.30 34349.35 28673.20 7886.55 10351.99 8976.79 27474.83 4168.68 28285.32 126
HY-MVS56.14 1364.55 23563.89 22466.55 25974.73 25041.02 31269.96 28974.43 24149.29 28761.66 27080.92 22447.43 14876.68 27844.91 28471.69 23181.94 221
MIMVSNet155.17 32254.31 32357.77 33670.03 32632.01 38765.68 31964.81 32249.19 28846.75 38076.00 30925.53 36764.04 34828.65 38562.13 33377.26 294
SCA60.49 27758.38 28866.80 25374.14 26448.06 24363.35 33963.23 33549.13 28959.33 29872.10 34337.45 25574.27 29544.17 28662.57 32978.05 281
test_fmvsmvis_n_192070.84 11270.38 11372.22 16471.16 30855.39 13075.86 19072.21 26549.03 29073.28 7686.17 11351.83 9277.29 26475.80 3278.05 14883.98 167
testgi51.90 33752.37 33450.51 37260.39 38923.55 41258.42 36258.15 35949.03 29051.83 35979.21 25822.39 37555.59 38529.24 38462.64 32872.40 348
MIMVSNet57.35 30057.07 29758.22 33174.21 26337.18 34762.46 34360.88 35148.88 29255.29 33375.99 31131.68 32162.04 35531.87 36672.35 22375.43 315
gm-plane-assit71.40 30441.72 30948.85 29373.31 33582.48 17148.90 246
fmvsm_l_conf0.5_n70.99 11070.82 10471.48 17971.45 30054.40 14277.18 16070.46 27848.67 29475.17 4486.86 8753.77 6576.86 27276.33 3077.51 15683.17 199
UWE-MVS60.18 28059.78 27461.39 31277.67 19033.92 37969.04 29863.82 33048.56 29564.27 23177.64 28527.20 35370.40 31533.56 35876.24 17379.83 261
cascas65.98 21663.42 23373.64 12977.26 20652.58 17572.26 25777.21 20048.56 29561.21 27574.60 32732.57 31685.82 9350.38 23376.75 16982.52 210
PLCcopyleft56.13 1465.09 22963.21 23870.72 20181.04 10354.87 13778.57 12577.47 19448.51 29755.71 32781.89 20433.71 29579.71 22241.66 31270.37 24777.58 288
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D64.71 23262.50 24671.34 18779.72 12855.71 12079.82 10774.72 23848.50 29856.62 32084.62 14433.59 29882.34 17329.65 38275.23 18475.97 307
anonymousdsp67.00 20164.82 21873.57 13370.09 32556.13 11076.35 17877.35 19848.43 29964.99 22280.84 22833.01 30480.34 21364.66 11767.64 28984.23 159
无先验79.66 11274.30 24548.40 30080.78 20653.62 20679.03 272
114514_t70.83 11369.56 12574.64 9486.21 3154.63 13982.34 7381.81 10348.22 30163.01 24985.83 12540.92 22387.10 6157.91 17179.79 11982.18 217
tpm57.34 30158.16 29054.86 34971.80 29734.77 36967.47 30956.04 37348.20 30260.10 28376.92 29337.17 26153.41 39240.76 31665.01 30776.40 304
test_fmvsm_n_192071.73 9971.14 9973.50 13472.52 28356.53 10475.60 19476.16 21148.11 30377.22 3185.56 12953.10 7477.43 26074.86 4077.14 16386.55 74
MDA-MVSNet-bldmvs53.87 32850.81 34063.05 30066.25 35948.58 23756.93 37463.82 33048.09 30441.22 39270.48 35830.34 32868.00 32834.24 35345.92 38872.57 342
XXY-MVS60.68 27561.67 25557.70 33770.43 31938.45 33664.19 33566.47 31048.05 30563.22 24280.86 22649.28 12160.47 35945.25 28367.28 29274.19 331
F-COLMAP63.05 25360.87 26969.58 22376.99 21453.63 15278.12 13476.16 21147.97 30652.41 35781.61 21027.87 34778.11 24940.07 31866.66 29677.00 298
fmvsm_l_conf0.5_n_a70.50 12070.27 11571.18 19171.30 30654.09 14476.89 16869.87 28247.90 30774.37 6286.49 10453.07 7576.69 27775.41 3577.11 16482.76 206
Patchmatch-RL test58.16 29555.49 31266.15 26867.92 34848.89 23360.66 35651.07 38647.86 30859.36 29562.71 39034.02 29172.27 30356.41 18059.40 35077.30 292
D2MVS62.30 26160.29 27268.34 24066.46 35848.42 23965.70 31873.42 25447.71 30958.16 30975.02 32330.51 32677.71 25753.96 20471.68 23278.90 274
ANet_high41.38 36437.47 37153.11 36239.73 41724.45 41056.94 37369.69 28347.65 31026.04 40952.32 39912.44 39862.38 35421.80 40110.61 41872.49 343
CostFormer64.04 24162.51 24568.61 23671.88 29545.77 26571.30 26970.60 27747.55 31164.31 23076.61 30141.63 21279.62 22549.74 23769.00 27680.42 249
PatchmatchNetpermissive59.84 28358.24 28964.65 28873.05 27346.70 25769.42 29462.18 34547.55 31158.88 30171.96 34534.49 28569.16 32042.99 30163.60 32078.07 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_self_test55.22 32153.89 32759.21 32357.80 39527.47 40157.75 36974.32 24347.38 31350.90 36370.00 36128.45 34470.30 31640.44 31757.92 35579.87 260
ITE_SJBPF62.09 30666.16 36044.55 28164.32 32647.36 31455.31 33280.34 23419.27 38362.68 35336.29 34662.39 33179.04 271
KD-MVS_2432*160053.45 33051.50 33859.30 32062.82 37437.14 34855.33 37771.79 26947.34 31555.09 33570.52 35621.91 37870.45 31335.72 34842.97 39270.31 368
miper_refine_blended53.45 33051.50 33859.30 32062.82 37437.14 34855.33 37771.79 26947.34 31555.09 33570.52 35621.91 37870.45 31335.72 34842.97 39270.31 368
OurMVSNet-221017-061.37 27358.63 28669.61 22072.05 29348.06 24373.93 23272.51 26247.23 31754.74 33980.92 22421.49 38181.24 19348.57 24956.22 36379.53 266
tpmrst58.24 29458.70 28556.84 33966.97 35234.32 37469.57 29361.14 35047.17 31858.58 30671.60 34841.28 21960.41 36049.20 24362.84 32775.78 310
PVSNet50.76 1958.40 29357.39 29561.42 31075.53 23744.04 28661.43 34863.45 33347.04 31956.91 31873.61 33427.00 35664.76 34639.12 32472.40 22275.47 314
WB-MVSnew59.66 28559.69 27559.56 31975.19 24335.78 36569.34 29564.28 32746.88 32061.76 26975.79 31340.61 22465.20 34532.16 36371.21 23677.70 286
FMVSNet555.86 31554.93 31558.66 32871.05 31036.35 35764.18 33662.48 34046.76 32150.66 36774.73 32625.80 36464.04 34833.11 35965.57 30475.59 312
jason69.65 14068.39 15273.43 13978.27 16856.88 10177.12 16173.71 25346.53 32269.34 13383.22 17343.37 19479.18 23164.77 11679.20 13184.23 159
jason: jason.
MS-PatchMatch62.42 25961.46 25865.31 28375.21 24252.10 18372.05 25974.05 24946.41 32357.42 31674.36 32834.35 28777.57 25945.62 27573.67 19966.26 382
1112_ss64.00 24263.36 23465.93 27379.28 13642.58 29971.35 26772.36 26446.41 32360.55 28077.89 27846.27 16473.28 29846.18 26869.97 25781.92 222
lupinMVS69.57 14368.28 15373.44 13878.76 15157.15 9776.57 17473.29 25646.19 32569.49 12982.18 19543.99 19079.23 23064.66 11779.37 12683.93 168
testdata64.66 28781.52 9152.93 16665.29 31946.09 32673.88 6887.46 7938.08 25166.26 34153.31 21078.48 14374.78 324
UnsupCasMVSNet_eth53.16 33552.47 33355.23 34759.45 39033.39 38259.43 36069.13 29245.98 32750.35 36972.32 34029.30 33858.26 37342.02 31044.30 39074.05 332
AllTest57.08 30354.65 31764.39 29071.44 30149.03 22769.92 29067.30 30245.97 32847.16 37779.77 24417.47 38467.56 33233.65 35559.16 35176.57 302
TestCases64.39 29071.44 30149.03 22767.30 30245.97 32847.16 37779.77 24417.47 38467.56 33233.65 35559.16 35176.57 302
WTY-MVS59.75 28460.39 27157.85 33572.32 28937.83 34161.05 35464.18 32845.95 33061.91 26679.11 25947.01 15760.88 35842.50 30569.49 26874.83 322
IterMVS-SCA-FT62.49 25761.52 25765.40 28171.99 29450.80 19971.15 27369.63 28545.71 33160.61 27977.93 27537.45 25565.99 34255.67 18863.50 32279.42 267
WB-MVS43.26 35843.41 35842.83 38463.32 37310.32 42258.17 36545.20 40045.42 33240.44 39567.26 37734.01 29258.98 36811.96 41324.88 40759.20 388
旧先验276.08 18445.32 33376.55 3665.56 34458.75 167
OpenMVS_ROBcopyleft52.78 1860.03 28158.14 29165.69 27770.47 31844.82 27575.33 19970.86 27545.04 33456.06 32576.00 30926.89 35879.65 22335.36 35067.29 29172.60 341
TinyColmap54.14 32551.72 33661.40 31166.84 35441.97 30466.52 31268.51 29644.81 33542.69 39175.77 31411.66 40072.94 29931.96 36556.77 36169.27 376
MDTV_nov1_ep1357.00 29872.73 27838.26 33765.02 33064.73 32444.74 33655.46 32972.48 33932.61 31570.47 31237.47 33267.75 288
新几何170.76 19985.66 4161.13 3066.43 31144.68 33770.29 11486.64 9541.29 21875.23 29049.72 23881.75 10375.93 308
Patchmtry57.16 30256.47 30459.23 32269.17 33934.58 37262.98 34063.15 33644.53 33856.83 31974.84 32435.83 27368.71 32240.03 31960.91 34074.39 329
ppachtmachnet_test58.06 29755.38 31366.10 27069.51 33348.99 23068.01 30366.13 31444.50 33954.05 34770.74 35432.09 32072.34 30236.68 34156.71 36276.99 300
PatchT53.17 33453.44 33152.33 36768.29 34625.34 40958.21 36454.41 37744.46 34054.56 34269.05 36833.32 30060.94 35736.93 33761.76 33770.73 366
EPMVS53.96 32653.69 32954.79 35066.12 36131.96 38862.34 34549.05 39044.42 34155.54 32871.33 35130.22 32956.70 37841.65 31362.54 33075.71 311
pmmvs461.48 27259.39 27767.76 24471.57 29953.86 14771.42 26665.34 31844.20 34259.46 29477.92 27635.90 27274.71 29243.87 29264.87 30974.71 326
dp51.89 33851.60 33752.77 36468.44 34532.45 38662.36 34454.57 37644.16 34349.31 37267.91 37028.87 34156.61 38033.89 35454.89 36669.24 377
PatchMatch-RL56.25 31254.55 31961.32 31377.06 21156.07 11265.57 32054.10 37944.13 34453.49 35571.27 35225.20 36866.78 33736.52 34463.66 31961.12 386
our_test_356.49 30854.42 32062.68 30369.51 33345.48 27166.08 31561.49 34844.11 34550.73 36669.60 36533.05 30268.15 32438.38 32856.86 35974.40 328
USDC56.35 31154.24 32462.69 30264.74 36640.31 31865.05 32973.83 25143.93 34647.58 37577.71 28415.36 39375.05 29138.19 33061.81 33672.70 340
PM-MVS52.33 33650.19 34458.75 32762.10 37945.14 27465.75 31740.38 40743.60 34753.52 35372.65 3389.16 40865.87 34350.41 23254.18 36965.24 384
pmmvs-eth3d58.81 29156.31 30666.30 26467.61 34952.42 18072.30 25664.76 32343.55 34854.94 33774.19 33028.95 33972.60 30043.31 29657.21 35873.88 334
SSC-MVS41.96 36341.99 36241.90 38562.46 3789.28 42457.41 37244.32 40343.38 34938.30 40166.45 38032.67 31258.42 37210.98 41421.91 41057.99 392
new-patchmatchnet47.56 35247.73 35247.06 37558.81 3939.37 42348.78 39459.21 35643.28 35044.22 38768.66 36925.67 36557.20 37731.57 37349.35 38374.62 327
Test_1112_low_res62.32 26061.77 25464.00 29379.08 14439.53 32768.17 30170.17 27943.25 35159.03 30079.90 24144.08 18871.24 30943.79 29368.42 28381.25 234
RPMNet61.53 27058.42 28770.86 19769.96 32752.07 18465.31 32781.36 11443.20 35259.36 29570.15 36035.37 27685.47 10336.42 34564.65 31175.06 317
tpm262.07 26460.10 27367.99 24272.79 27743.86 28771.05 27666.85 30843.14 35362.77 25175.39 32138.32 24780.80 20541.69 31168.88 27779.32 268
JIA-IIPM51.56 33947.68 35363.21 29864.61 36750.73 20047.71 39658.77 35842.90 35448.46 37451.72 40024.97 36970.24 31736.06 34753.89 37068.64 378
131464.61 23463.21 23868.80 23371.87 29647.46 25173.95 23078.39 18242.88 35559.97 28676.60 30238.11 25079.39 22854.84 19572.32 22479.55 265
HyFIR lowres test65.67 22063.01 24073.67 12679.97 12455.65 12269.07 29775.52 22242.68 35663.53 23977.95 27440.43 22581.64 18346.01 27071.91 22983.73 180
CR-MVSNet59.91 28257.90 29465.96 27269.96 32752.07 18465.31 32763.15 33642.48 35759.36 29574.84 32435.83 27370.75 31145.50 27864.65 31175.06 317
test22283.14 7158.68 7672.57 25263.45 33341.78 35867.56 16886.12 11437.13 26278.73 14074.98 320
TDRefinement53.44 33250.72 34161.60 30864.31 36946.96 25570.89 27765.27 32041.78 35844.61 38677.98 27311.52 40266.36 34028.57 38651.59 37671.49 358
sss56.17 31356.57 30354.96 34866.93 35336.32 35957.94 36661.69 34741.67 36058.64 30475.32 32238.72 24256.25 38242.04 30966.19 30072.31 349
PVSNet_043.31 2047.46 35345.64 35652.92 36367.60 35044.65 27854.06 38254.64 37541.59 36146.15 38258.75 39330.99 32458.66 37032.18 36224.81 40855.46 396
MVS67.37 19066.33 19670.51 20575.46 23850.94 19473.95 23081.85 10241.57 36262.54 25878.57 26847.98 13585.47 10352.97 21282.05 9675.14 316
Anonymous2024052155.30 31954.41 32157.96 33460.92 38841.73 30771.09 27571.06 27441.18 36348.65 37373.31 33516.93 38759.25 36642.54 30464.01 31672.90 338
Anonymous2023120655.10 32355.30 31454.48 35169.81 33133.94 37862.91 34162.13 34641.08 36455.18 33475.65 31532.75 31056.59 38130.32 37967.86 28672.91 337
MDA-MVSNet_test_wron50.71 34448.95 34656.00 34461.17 38341.84 30551.90 38856.45 36740.96 36544.79 38567.84 37130.04 33155.07 38936.71 34050.69 37971.11 364
YYNet150.73 34348.96 34556.03 34361.10 38441.78 30651.94 38756.44 36840.94 36644.84 38467.80 37230.08 33055.08 38836.77 33850.71 37871.22 361
dongtai34.52 37334.94 37333.26 39461.06 38516.00 41952.79 38623.78 42040.71 36739.33 39948.65 40816.91 38848.34 40012.18 41219.05 41235.44 411
CHOSEN 1792x268865.08 23062.84 24271.82 17081.49 9356.26 10866.32 31474.20 24840.53 36863.16 24578.65 26541.30 21777.80 25545.80 27274.09 19281.40 230
pmmvs556.47 30955.68 31158.86 32661.41 38236.71 35466.37 31362.75 33840.38 36953.70 34976.62 29934.56 28367.05 33540.02 32065.27 30572.83 339
test_vis1_n_192058.86 29059.06 28158.25 33063.76 37043.14 29567.49 30866.36 31240.22 37065.89 19971.95 34631.04 32359.75 36459.94 15864.90 30871.85 353
MDTV_nov1_ep13_2view25.89 40761.22 35140.10 37151.10 36132.97 30538.49 32778.61 276
tpm cat159.25 28956.95 29966.15 26872.19 29146.96 25568.09 30265.76 31540.03 37257.81 31270.56 35538.32 24774.51 29338.26 32961.50 33877.00 298
test-mter56.42 31055.82 31058.22 33168.57 34244.80 27665.46 32357.92 36139.94 37355.44 33069.82 36221.92 37757.44 37549.66 23973.62 20072.41 346
UnsupCasMVSNet_bld50.07 34648.87 34753.66 35660.97 38733.67 38057.62 37064.56 32539.47 37447.38 37664.02 38827.47 35059.32 36534.69 35243.68 39167.98 380
TESTMET0.1,155.28 32054.90 31656.42 34166.56 35643.67 28965.46 32356.27 37139.18 37553.83 34867.44 37424.21 37255.46 38648.04 25473.11 21370.13 370
mamv456.85 30558.00 29353.43 35972.46 28654.47 14057.56 37154.74 37438.81 37657.42 31679.45 25347.57 14438.70 41160.88 15053.07 37267.11 381
ADS-MVSNet251.33 34148.76 34859.07 32566.02 36244.60 27950.90 39059.76 35436.90 37750.74 36466.18 38226.38 35963.11 35127.17 39054.76 36769.50 374
ADS-MVSNet48.48 35047.77 35150.63 37166.02 36229.92 39250.90 39050.87 38836.90 37750.74 36466.18 38226.38 35952.47 39427.17 39054.76 36769.50 374
RPSCF55.80 31654.22 32560.53 31665.13 36542.91 29864.30 33457.62 36336.84 37958.05 31182.28 19428.01 34656.24 38337.14 33558.61 35382.44 213
test_cas_vis1_n_192056.91 30456.71 30257.51 33859.13 39245.40 27263.58 33861.29 34936.24 38067.14 17571.85 34729.89 33256.69 37957.65 17363.58 32170.46 367
Patchmatch-test49.08 34848.28 35051.50 37064.40 36830.85 39145.68 40048.46 39335.60 38146.10 38372.10 34334.47 28646.37 40327.08 39260.65 34477.27 293
CHOSEN 280x42047.83 35146.36 35552.24 36967.37 35149.78 21738.91 40843.11 40535.00 38243.27 39063.30 38928.95 33949.19 39936.53 34360.80 34257.76 393
N_pmnet39.35 36840.28 36536.54 39163.76 3701.62 42849.37 3930.76 42734.62 38343.61 38966.38 38126.25 36142.57 40726.02 39551.77 37565.44 383
kuosan29.62 38030.82 37926.02 39952.99 39816.22 41851.09 38922.71 42133.91 38433.99 40340.85 40915.89 39133.11 4167.59 42018.37 41328.72 413
PMMVS53.96 32653.26 33256.04 34262.60 37750.92 19661.17 35256.09 37232.81 38553.51 35466.84 37934.04 29059.93 36344.14 28868.18 28457.27 394
CMPMVSbinary42.80 2157.81 29955.97 30863.32 29660.98 38647.38 25264.66 33269.50 28832.06 38646.83 37977.80 28029.50 33671.36 30848.68 24773.75 19871.21 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ttmdpeth45.56 35442.95 35953.39 36152.33 40229.15 39457.77 36748.20 39431.81 38749.86 37177.21 2898.69 40959.16 36727.31 38933.40 40471.84 354
CVMVSNet59.63 28659.14 27961.08 31574.47 25638.84 33275.20 20368.74 29531.15 38858.24 30876.51 30332.39 31868.58 32349.77 23665.84 30275.81 309
FPMVS42.18 36241.11 36445.39 37758.03 39441.01 31449.50 39253.81 38030.07 38933.71 40464.03 38611.69 39952.08 39714.01 40855.11 36543.09 405
EU-MVSNet55.61 31854.41 32159.19 32465.41 36433.42 38172.44 25471.91 26828.81 39051.27 36073.87 33224.76 37069.08 32143.04 30058.20 35475.06 317
test_vis1_n49.89 34748.69 34953.50 35853.97 39637.38 34661.53 34747.33 39728.54 39159.62 29367.10 37813.52 39552.27 39549.07 24457.52 35670.84 365
test_fmvs1_n51.37 34050.35 34354.42 35352.85 39937.71 34361.16 35351.93 38128.15 39263.81 23769.73 36413.72 39453.95 39051.16 22760.65 34471.59 356
LF4IMVS42.95 35942.26 36145.04 37848.30 40732.50 38554.80 37948.49 39228.03 39340.51 39470.16 3599.24 40743.89 40631.63 37149.18 38458.72 390
test_fmvs151.32 34250.48 34253.81 35553.57 39737.51 34560.63 35751.16 38428.02 39463.62 23869.23 36716.41 38953.93 39151.01 22860.70 34369.99 371
MVS-HIRNet45.52 35544.48 35748.65 37468.49 34434.05 37759.41 36144.50 40227.03 39537.96 40250.47 40426.16 36264.10 34726.74 39359.52 34947.82 403
PMVScopyleft28.69 2236.22 37133.29 37645.02 37936.82 41935.98 36254.68 38048.74 39126.31 39621.02 41251.61 4012.88 42160.10 3629.99 41747.58 38538.99 410
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs344.92 35641.95 36353.86 35452.58 40143.55 29062.11 34646.90 39926.05 39740.63 39360.19 39211.08 40557.91 37431.83 37046.15 38760.11 387
test_fmvs248.69 34947.49 35452.29 36848.63 40633.06 38457.76 36848.05 39525.71 39859.76 29169.60 36511.57 40152.23 39649.45 24256.86 35971.58 357
PMMVS227.40 38125.91 38431.87 39639.46 4186.57 42531.17 41128.52 41623.96 39920.45 41348.94 4074.20 41737.94 41216.51 40519.97 41151.09 398
MVStest142.65 36039.29 36752.71 36547.26 40934.58 37254.41 38150.84 38923.35 40039.31 40074.08 33112.57 39755.09 38723.32 39828.47 40668.47 379
Gipumacopyleft34.77 37231.91 37743.33 38262.05 38037.87 33920.39 41367.03 30623.23 40118.41 41425.84 4144.24 41562.73 35214.71 40751.32 37729.38 412
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis1_rt41.35 36539.45 36647.03 37646.65 41037.86 34047.76 39538.65 40823.10 40244.21 38851.22 40211.20 40444.08 40539.27 32353.02 37359.14 389
new_pmnet34.13 37434.29 37533.64 39352.63 40018.23 41744.43 40333.90 41322.81 40330.89 40653.18 39810.48 40635.72 41520.77 40239.51 39646.98 404
mvsany_test139.38 36738.16 37043.02 38349.05 40434.28 37544.16 40425.94 41822.74 40446.57 38162.21 39123.85 37341.16 41033.01 36035.91 40053.63 397
LCM-MVSNet40.30 36635.88 37253.57 35742.24 41229.15 39445.21 40260.53 35322.23 40528.02 40750.98 4033.72 41861.78 35631.22 37638.76 39869.78 373
test_fmvs344.30 35742.55 36049.55 37342.83 41127.15 40453.03 38444.93 40122.03 40653.69 35164.94 3854.21 41649.63 39847.47 25549.82 38171.88 352
APD_test137.39 37034.94 37344.72 38148.88 40533.19 38352.95 38544.00 40419.49 40727.28 40858.59 3943.18 42052.84 39318.92 40341.17 39548.14 402
mvsany_test332.62 37530.57 38038.77 38936.16 42024.20 41138.10 40920.63 42219.14 40840.36 39657.43 3955.06 41336.63 41429.59 38328.66 40555.49 395
E-PMN23.77 38222.73 38626.90 39742.02 41320.67 41442.66 40535.70 41117.43 40910.28 41925.05 4156.42 41142.39 40810.28 41614.71 41517.63 414
EMVS22.97 38321.84 38726.36 39840.20 41619.53 41641.95 40634.64 41217.09 4109.73 42022.83 4167.29 41042.22 4099.18 41813.66 41617.32 415
test_vis3_rt32.09 37630.20 38137.76 39035.36 42127.48 40040.60 40728.29 41716.69 41132.52 40540.53 4101.96 42237.40 41333.64 35742.21 39448.39 400
test_f31.86 37731.05 37834.28 39232.33 42321.86 41332.34 41030.46 41516.02 41239.78 39855.45 3974.80 41432.36 41730.61 37737.66 39948.64 399
DSMNet-mixed39.30 36938.72 36841.03 38651.22 40319.66 41545.53 40131.35 41415.83 41339.80 39767.42 37622.19 37645.13 40422.43 39952.69 37458.31 391
testf131.46 37828.89 38239.16 38741.99 41428.78 39646.45 39837.56 40914.28 41421.10 41048.96 4051.48 42447.11 40113.63 40934.56 40141.60 406
APD_test231.46 37828.89 38239.16 38741.99 41428.78 39646.45 39837.56 40914.28 41421.10 41048.96 4051.48 42447.11 40113.63 40934.56 40141.60 406
MVEpermissive17.77 2321.41 38417.77 38932.34 39534.34 42225.44 40816.11 41424.11 41911.19 41613.22 41631.92 4121.58 42330.95 41810.47 41517.03 41440.62 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft12.03 40217.97 42410.91 42110.60 4257.46 41711.07 41828.36 4133.28 41911.29 4218.01 4199.74 42013.89 416
wuyk23d13.32 38712.52 39015.71 40147.54 40826.27 40631.06 4121.98 4264.93 4185.18 4211.94 4210.45 42618.54 4206.81 42112.83 4172.33 418
test_method19.68 38518.10 38824.41 40013.68 4253.11 42712.06 41642.37 4062.00 41911.97 41736.38 4115.77 41229.35 41915.06 40623.65 40940.76 408
tmp_tt9.43 38811.14 3914.30 4032.38 4264.40 42613.62 41516.08 4240.39 42015.89 41513.06 41715.80 3925.54 42212.63 41110.46 4192.95 417
EGC-MVSNET42.47 36138.48 36954.46 35274.33 26048.73 23570.33 28551.10 3850.03 4210.18 42267.78 37313.28 39666.49 33918.91 40450.36 38048.15 401
testmvs4.52 3916.03 3940.01 4050.01 4270.00 43053.86 3830.00 4280.01 4220.04 4230.27 4220.00 4280.00 4230.04 4220.00 4210.03 420
test1234.73 3906.30 3930.02 4040.01 4270.01 42956.36 3750.00 4280.01 4220.04 4230.21 4230.01 4270.00 4230.03 4230.00 4210.04 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4300.00 4170.00 4280.00 4240.00 4250.00 4240.00 4280.00 4230.00 4240.00 4210.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4300.00 4170.00 4280.00 4240.00 4250.00 4240.00 4280.00 4230.00 4240.00 4210.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4300.00 4170.00 4280.00 4240.00 4250.00 4240.00 4280.00 4230.00 4240.00 4210.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4300.00 4170.00 4280.00 4240.00 4250.00 4240.00 4280.00 4230.00 4240.00 4210.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4300.00 4170.00 4280.00 4240.00 4250.00 4240.00 4280.00 4230.00 4240.00 4210.00 421
cdsmvs_eth3d_5k17.50 38623.34 3850.00 4060.00 4290.00 4300.00 41778.63 1690.00 4240.00 42582.18 19549.25 1220.00 4230.00 4240.00 4210.00 421
pcd_1.5k_mvsjas3.92 3925.23 3950.00 4060.00 4290.00 4300.00 4170.00 4280.00 4240.00 4250.00 42447.05 1540.00 4230.00 4240.00 4210.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4300.00 4170.00 4280.00 4240.00 4250.00 4240.00 4280.00 4230.00 4240.00 4210.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4300.00 4170.00 4280.00 4240.00 4250.00 4240.00 4280.00 4230.00 4240.00 4210.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4300.00 4170.00 4280.00 4240.00 4250.00 4240.00 4280.00 4230.00 4240.00 4210.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4300.00 4170.00 4280.00 4240.00 4250.00 4240.00 4280.00 4230.00 4240.00 4210.00 421
ab-mvs-re6.49 3898.65 3920.00 4060.00 4290.00 4300.00 4170.00 4280.00 4240.00 42577.89 2780.00 4280.00 4230.00 4240.00 4210.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4300.00 4170.00 4280.00 4240.00 4250.00 4240.00 4280.00 4230.00 4240.00 4210.00 421
WAC-MVS27.31 40227.77 387
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 31
No_MVS79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 31
eth-test20.00 429
eth-test0.00 429
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4567.01 190.33 1273.16 5491.15 488.23 20
test_0728_SECOND79.19 1687.82 359.11 6687.85 587.15 390.84 378.66 1590.61 1187.62 41
GSMVS78.05 281
test_part287.58 960.47 4283.42 12
sam_mvs134.74 28278.05 281
sam_mvs33.43 299
ambc65.13 28563.72 37237.07 35047.66 39778.78 16554.37 34571.42 34911.24 40380.94 20045.64 27453.85 37177.38 291
MTGPAbinary80.97 130
test_post168.67 2993.64 41932.39 31869.49 31944.17 286
test_post3.55 42033.90 29366.52 338
patchmatchnet-post64.03 38634.50 28474.27 295
GG-mvs-BLEND62.34 30471.36 30537.04 35169.20 29657.33 36654.73 34065.48 38430.37 32777.82 25434.82 35174.93 18572.17 350
MTMP86.03 1917.08 423
test9_res75.28 3788.31 3283.81 174
agg_prior273.09 5587.93 4084.33 155
agg_prior85.04 5059.96 5081.04 12874.68 5784.04 131
test_prior462.51 1482.08 79
test_prior76.69 5684.20 6157.27 9184.88 3986.43 7986.38 76
新几何276.12 182
旧先验183.04 7353.15 16167.52 30187.85 7444.08 18880.76 10778.03 284
原ACMM279.02 117
testdata272.18 30546.95 264
segment_acmp54.23 57
test1277.76 4584.52 5858.41 7883.36 7572.93 8754.61 5488.05 3988.12 3486.81 64
plane_prior781.41 9455.96 114
plane_prior681.20 10156.24 10945.26 178
plane_prior584.01 5187.21 5768.16 8680.58 11084.65 149
plane_prior486.10 115
plane_prior181.27 99
n20.00 428
nn0.00 428
door-mid47.19 398
lessismore_v069.91 21571.42 30347.80 24550.90 38750.39 36875.56 31627.43 35281.33 19045.91 27134.10 40380.59 247
test1183.47 70
door47.60 396
HQP5-MVS54.94 134
BP-MVS67.04 97
HQP4-MVS67.85 15886.93 6484.32 156
HQP3-MVS83.90 5680.35 114
HQP2-MVS45.46 172
NP-MVS80.98 10456.05 11385.54 132
ACMMP++_ref74.07 193
ACMMP++72.16 227
Test By Simon48.33 133