This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM80.20 780.28 879.99 282.19 8260.01 4986.19 1783.93 5473.19 177.08 3491.21 1757.23 3390.73 1083.35 188.12 3489.22 6
MVS_030478.45 1878.28 1978.98 2680.73 10757.91 8384.68 3581.64 10768.35 275.77 3990.38 2953.98 5990.26 1381.30 387.68 4288.77 11
CANet76.46 4075.93 4478.06 3981.29 9757.53 8882.35 7283.31 8067.78 370.09 12086.34 11254.92 5088.90 2572.68 6084.55 6787.76 38
UA-Net73.13 7572.93 7573.76 12183.58 6651.66 19278.75 12177.66 19367.75 472.61 9589.42 5049.82 11483.29 14853.61 21183.14 8086.32 87
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3985.03 3666.96 577.58 2990.06 3959.47 2189.13 2278.67 1489.73 1687.03 59
TranMVSNet+NR-MVSNet70.36 12570.10 12271.17 19678.64 15542.97 30176.53 17781.16 12766.95 668.53 14985.42 13851.61 9683.07 15252.32 21969.70 26987.46 47
3Dnovator+66.72 475.84 4974.57 5979.66 982.40 7959.92 5185.83 2286.32 1666.92 767.80 16789.24 5442.03 20889.38 1964.07 12486.50 5789.69 3
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3084.42 4566.73 874.67 6089.38 5255.30 4689.18 2174.19 4887.34 4486.38 79
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7562.18 1687.60 985.83 1966.69 978.03 2690.98 1854.26 5690.06 1478.42 1989.02 2387.69 39
Skip Steuart: Steuart Systems R&D Blog.
EPNet73.09 7672.16 8375.90 7175.95 23256.28 10783.05 5972.39 26566.53 1065.27 21487.00 8950.40 11085.47 10562.48 14186.32 5885.94 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet_NR-MVSNet71.11 10971.00 10471.44 18579.20 13944.13 28776.02 19082.60 9466.48 1168.20 15384.60 15056.82 3682.82 16354.62 20170.43 24987.36 54
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2563.71 1289.23 2081.51 288.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 2158.63 2587.24 5479.00 1290.37 1485.26 134
NR-MVSNet69.54 14868.85 14171.59 18078.05 17743.81 29274.20 22780.86 13465.18 1462.76 25684.52 15152.35 8483.59 14450.96 23470.78 24487.37 52
MTAPA76.90 3476.42 3878.35 3586.08 3763.57 274.92 21480.97 13265.13 1575.77 3990.88 1948.63 12986.66 7377.23 2488.17 3384.81 149
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6388.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 16
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
EI-MVSNet-Vis-set72.42 8971.59 8874.91 8878.47 15954.02 14677.05 16579.33 15765.03 1871.68 10679.35 26052.75 7684.89 11866.46 10474.23 19385.83 104
casdiffmvs_mvgpermissive76.14 4576.30 3975.66 7776.46 22651.83 19179.67 11185.08 3365.02 1975.84 3888.58 6359.42 2285.08 11172.75 5983.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_one_060187.58 959.30 6086.84 765.01 2083.80 1191.86 664.03 11
ETV-MVS74.46 6473.84 6776.33 6779.27 13755.24 13279.22 11785.00 3864.97 2172.65 9479.46 25653.65 7087.87 4467.45 9782.91 8685.89 102
WR-MVS68.47 17268.47 15268.44 24280.20 11839.84 32673.75 23976.07 21664.68 2268.11 15883.63 17050.39 11179.14 23849.78 23969.66 27086.34 83
XVS77.17 3176.56 3679.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 10090.01 4347.95 13688.01 4071.55 7286.74 5386.37 81
X-MVStestdata70.21 12867.28 17979.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 1006.49 42247.95 13688.01 4071.55 7286.74 5386.37 81
HQP_MVS74.31 6573.73 6876.06 6981.41 9456.31 10584.22 4384.01 5264.52 2569.27 13886.10 11945.26 17887.21 5868.16 8980.58 11184.65 153
plane_prior284.22 4364.52 25
EI-MVSNet-UG-set71.92 9771.06 10374.52 10277.98 18053.56 15576.62 17479.16 15864.40 2771.18 11178.95 26552.19 8684.66 12565.47 11573.57 20485.32 130
DU-MVS70.01 13169.53 12871.44 18578.05 17744.13 28775.01 21081.51 11064.37 2868.20 15384.52 15149.12 12682.82 16354.62 20170.43 24987.37 52
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6787.85 585.03 3664.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 123
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072687.75 759.07 6787.86 486.83 864.26 2984.19 791.92 564.82 8
test_241102_ONE87.77 458.90 7286.78 1064.20 3185.97 191.34 1566.87 390.78 7
SED-MVS81.56 282.30 279.32 1387.77 458.90 7287.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 22
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 41
LFMVS71.78 9971.59 8872.32 16483.40 7046.38 26379.75 10971.08 27464.18 3272.80 9188.64 6242.58 20383.72 14057.41 17984.49 7086.86 64
IS-MVSNet71.57 10371.00 10473.27 14578.86 14845.63 27480.22 10078.69 16964.14 3566.46 19187.36 8349.30 12085.60 9850.26 23883.71 7988.59 13
plane_prior356.09 11163.92 3669.27 138
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 7390.60 2254.85 5186.72 7177.20 2588.06 3685.74 111
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DELS-MVS74.76 5774.46 6075.65 7877.84 18452.25 18375.59 19784.17 4963.76 3873.15 8182.79 18259.58 2086.80 6967.24 9886.04 5987.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPM-MVS74.73 5874.25 6276.19 6880.81 10659.01 7082.60 6983.64 6663.74 3972.52 9687.49 7947.18 15285.88 9369.47 8280.78 10783.66 188
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet (Re)70.63 11970.20 11871.89 16978.55 15645.29 27775.94 19182.92 8863.68 4068.16 15683.59 17153.89 6283.49 14653.97 20771.12 24286.89 63
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 3063.56 4174.29 6690.03 4152.56 7888.53 2974.79 4488.34 2986.63 74
EC-MVSNet75.84 4975.87 4675.74 7578.86 14852.65 17483.73 5386.08 1763.47 4272.77 9287.25 8753.13 7387.93 4271.97 6885.57 6286.66 72
ZNCC-MVS78.82 1378.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4890.47 2853.96 6188.68 2776.48 2889.63 2087.16 57
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS76.25 4475.98 4377.06 5380.15 12155.63 12384.51 3883.90 5763.24 4573.30 7687.27 8655.06 4886.30 8671.78 6984.58 6689.25 5
DeepC-MVS69.38 278.56 1778.14 2279.83 783.60 6561.62 2384.17 4586.85 663.23 4673.84 7190.25 3557.68 2989.96 1574.62 4589.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS72.50 8572.09 8473.75 12381.58 9049.69 22477.76 14677.63 19463.21 4773.21 7989.02 5642.14 20783.32 14761.72 14882.50 9288.25 21
plane_prior56.31 10583.58 5663.19 4880.48 114
ACMMPcopyleft76.02 4775.33 5178.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 13089.74 4945.43 17487.16 6072.01 6682.87 8885.14 136
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS66.60 21366.45 19367.04 25677.11 21136.56 35977.03 16680.42 14162.95 5062.51 26484.03 16146.69 16079.07 23944.22 28963.08 33085.51 118
APDe-MVScopyleft80.16 880.59 678.86 2986.64 2160.02 4888.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1678.70 1388.32 3186.79 67
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mPP-MVS76.54 3975.93 4478.34 3686.47 2663.50 385.74 2582.28 9762.90 5271.77 10490.26 3446.61 16186.55 7771.71 7085.66 6184.97 145
ACMMP_NAP78.77 1578.78 1478.74 3085.44 4561.04 3183.84 5285.16 3162.88 5378.10 2491.26 1652.51 7988.39 3079.34 890.52 1386.78 68
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4683.03 6085.33 2862.86 5480.17 1790.03 4161.76 1488.95 2474.21 4788.67 2688.12 26
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 6990.50 2653.20 7288.35 3174.02 5087.05 4586.13 94
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 7490.56 2449.80 11588.24 3374.02 5087.03 4686.32 87
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7690.58 2349.90 11388.21 3473.78 5287.03 4686.29 91
casdiffmvspermissive74.80 5674.89 5774.53 10175.59 23850.37 21178.17 13585.06 3562.80 5874.40 6387.86 7357.88 2783.61 14369.46 8382.79 9089.59 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline74.61 6174.70 5874.34 10575.70 23449.99 21977.54 15184.63 4262.73 5973.98 6887.79 7657.67 3083.82 13969.49 8182.74 9189.20 7
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6385.08 3362.57 6073.09 8589.97 4450.90 10687.48 5275.30 3886.85 5187.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DTE-MVSNet65.58 22565.34 21666.31 26776.06 23134.79 37276.43 17979.38 15662.55 6161.66 27483.83 16645.60 16879.15 23741.64 31860.88 34585.00 142
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1779.85 591.48 188.19 24
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVSNet66.49 21666.41 19766.72 25877.67 19136.33 36276.83 17379.52 15362.45 6362.54 26283.47 17546.32 16278.37 24745.47 28463.43 32785.45 123
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7262.44 6472.68 9390.50 2648.18 13487.34 5373.59 5485.71 6084.76 152
PS-CasMVS66.42 21766.32 20166.70 26077.60 19936.30 36476.94 16879.61 15162.36 6562.43 26683.66 16945.69 16678.37 24745.35 28663.26 32885.42 126
3Dnovator64.47 572.49 8671.39 9475.79 7277.70 18958.99 7180.66 9683.15 8562.24 6665.46 21086.59 10342.38 20685.52 10159.59 16684.72 6582.85 209
MP-MVS-pluss78.35 2078.46 1778.03 4084.96 5259.52 5682.93 6285.39 2762.15 6776.41 3791.51 1152.47 8186.78 7080.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HQP-NCC80.66 10882.31 7462.10 6867.85 162
ACMP_Plane80.66 10882.31 7462.10 6867.85 162
HQP-MVS73.45 7172.80 7675.40 8280.66 10854.94 13482.31 7483.90 5762.10 6867.85 16285.54 13645.46 17286.93 6667.04 10080.35 11584.32 160
SPE-MVS-test75.62 5275.31 5276.56 6480.63 11155.13 13383.88 5185.22 2962.05 7171.49 10986.03 12253.83 6386.36 8467.74 9286.91 5088.19 24
VPNet67.52 19268.11 15965.74 28079.18 14036.80 35772.17 26272.83 26262.04 7267.79 16885.83 12948.88 12876.60 28351.30 23072.97 21783.81 178
WR-MVS_H67.02 20466.92 18867.33 25577.95 18137.75 34677.57 14982.11 10062.03 7362.65 25982.48 19350.57 10979.46 22842.91 30664.01 32084.79 150
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3484.85 4061.98 7473.06 8688.88 5853.72 6689.06 2368.27 8688.04 3787.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS78.82 1379.22 1277.60 4682.88 7757.83 8484.99 3188.13 261.86 7579.16 2090.75 2057.96 2687.09 6377.08 2690.18 1587.87 32
PGM-MVS76.77 3776.06 4278.88 2886.14 3562.73 982.55 7083.74 6461.71 7672.45 9990.34 3248.48 13288.13 3772.32 6386.85 5185.78 105
Effi-MVS+73.31 7472.54 7975.62 7977.87 18253.64 15379.62 11379.61 15161.63 7772.02 10282.61 18756.44 3985.97 9163.99 12779.07 13687.25 56
MG-MVS73.96 6873.89 6674.16 11185.65 4249.69 22481.59 8581.29 12161.45 7871.05 11288.11 6651.77 9387.73 4761.05 15383.09 8185.05 141
LPG-MVS_test72.74 8171.74 8775.76 7380.22 11657.51 8982.55 7083.40 7461.32 7966.67 18887.33 8439.15 24286.59 7467.70 9377.30 16383.19 200
LGP-MVS_train75.76 7380.22 11657.51 8983.40 7461.32 7966.67 18887.33 8439.15 24286.59 7467.70 9377.30 16383.19 200
CLD-MVS73.33 7372.68 7775.29 8678.82 15053.33 16178.23 13284.79 4161.30 8170.41 11781.04 22452.41 8287.12 6164.61 12382.49 9385.41 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
RRT-MVS71.46 10670.70 10973.74 12477.76 18749.30 23076.60 17580.45 14061.25 8268.17 15584.78 14444.64 18384.90 11764.79 11977.88 15387.03 59
MVS_111021_HR74.02 6773.46 7175.69 7683.01 7560.63 4077.29 15978.40 18361.18 8370.58 11585.97 12454.18 5884.00 13667.52 9682.98 8582.45 216
balanced_conf0376.58 3876.55 3776.68 5981.73 8852.90 16980.94 9185.70 2361.12 8474.90 5487.17 8856.46 3888.14 3672.87 5888.03 3889.00 8
FIs70.82 11671.43 9268.98 23578.33 16638.14 34276.96 16783.59 6861.02 8567.33 17586.73 9655.07 4781.64 18554.61 20379.22 13187.14 58
FOURS186.12 3660.82 3788.18 183.61 6760.87 8681.50 16
FC-MVSNet-test69.80 13870.58 11267.46 25177.61 19834.73 37576.05 18883.19 8460.84 8765.88 20486.46 10954.52 5580.76 20952.52 21878.12 14986.91 62
v870.33 12669.28 13373.49 13773.15 27250.22 21378.62 12580.78 13560.79 8866.45 19282.11 20549.35 11984.98 11463.58 13368.71 28485.28 132
CSCG76.92 3376.75 3177.41 4983.96 6459.60 5482.95 6186.50 1360.78 8975.27 4384.83 14260.76 1586.56 7667.86 9187.87 4186.06 96
Vis-MVSNetpermissive72.18 9271.37 9574.61 9781.29 9755.41 12980.90 9278.28 18560.73 9069.23 14188.09 6744.36 18782.65 16757.68 17681.75 10385.77 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
BP-MVS173.41 7272.25 8276.88 5476.68 21953.70 15179.15 11881.07 12860.66 9171.81 10387.39 8240.93 22587.24 5471.23 7481.29 10689.71 2
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 9279.05 2190.30 3355.54 4588.32 3273.48 5587.03 4684.83 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMP63.53 672.30 9071.20 10075.59 8180.28 11457.54 8782.74 6682.84 9260.58 9365.24 21886.18 11639.25 24086.03 8966.95 10376.79 17083.22 198
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testdata172.65 25260.50 94
UGNet68.81 16267.39 17473.06 14878.33 16654.47 14079.77 10875.40 22760.45 9563.22 24684.40 15432.71 31580.91 20551.71 22880.56 11383.81 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
h-mvs3372.71 8271.49 9176.40 6581.99 8559.58 5576.92 16976.74 20960.40 9674.81 5685.95 12545.54 17085.76 9670.41 7870.61 24783.86 177
hse-mvs271.04 11069.86 12374.60 9879.58 13057.12 9973.96 23175.25 23060.40 9674.81 5681.95 20745.54 17082.90 15670.41 7866.83 29983.77 182
EPP-MVSNet72.16 9571.31 9774.71 9178.68 15449.70 22282.10 7881.65 10660.40 9665.94 20085.84 12851.74 9486.37 8355.93 18779.55 12688.07 29
UniMVSNet_ETH3D67.60 19167.07 18769.18 23477.39 20442.29 30574.18 22875.59 22260.37 9966.77 18586.06 12137.64 25778.93 24552.16 22173.49 20686.32 87
test_prior281.75 8160.37 9975.01 4989.06 5556.22 4172.19 6488.96 24
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3783.87 6060.37 9979.89 1889.38 5254.97 4985.58 10076.12 3184.94 6486.33 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet69.68 14270.19 11968.16 24579.73 12741.63 31470.53 28577.38 19960.37 9970.69 11486.63 10151.08 10277.09 26953.61 21181.69 10585.75 110
sasdasda74.67 5974.98 5573.71 12678.94 14650.56 20880.23 9883.87 6060.30 10377.15 3286.56 10559.65 1782.00 17966.01 10982.12 9488.58 14
canonicalmvs74.67 5974.98 5573.71 12678.94 14650.56 20880.23 9883.87 6060.30 10377.15 3286.56 10559.65 1782.00 17966.01 10982.12 9488.58 14
v7n69.01 16067.36 17673.98 11472.51 28652.65 17478.54 12981.30 12060.26 10562.67 25881.62 21343.61 19384.49 12657.01 18068.70 28584.79 150
reproduce-ours76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 6184.53 6885.46 121
our_new_method76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 6184.53 6885.46 121
HPM-MVS_fast74.30 6673.46 7176.80 5684.45 6059.04 6983.65 5581.05 12960.15 10870.43 11689.84 4641.09 22485.59 9967.61 9582.90 8785.77 108
VPA-MVSNet69.02 15969.47 13067.69 24977.42 20341.00 31974.04 22979.68 14960.06 10969.26 14084.81 14351.06 10377.58 26054.44 20474.43 19184.48 157
v1070.21 12869.02 13873.81 11873.51 26950.92 20078.74 12281.39 11360.05 11066.39 19381.83 21047.58 14385.41 10862.80 13868.86 28385.09 140
SR-MVS76.13 4675.70 4777.40 5185.87 4061.20 2985.52 2782.19 9859.99 11175.10 4790.35 3147.66 14186.52 7871.64 7182.99 8384.47 158
9.1478.75 1583.10 7284.15 4688.26 159.90 11278.57 2390.36 3057.51 3286.86 6877.39 2389.52 21
v2v48270.50 12269.45 13173.66 12972.62 28250.03 21877.58 14880.51 13959.90 11269.52 13282.14 20347.53 14584.88 12065.07 11870.17 25786.09 95
Baseline_NR-MVSNet67.05 20367.56 16665.50 28375.65 23537.70 34875.42 20074.65 24259.90 11268.14 15783.15 18049.12 12677.20 26752.23 22069.78 26681.60 229
API-MVS72.17 9371.41 9374.45 10381.95 8657.22 9284.03 4880.38 14259.89 11568.40 15082.33 19649.64 11687.83 4651.87 22584.16 7578.30 281
Effi-MVS+-dtu69.64 14467.53 16975.95 7076.10 23062.29 1580.20 10176.06 21759.83 11665.26 21777.09 29541.56 21684.02 13560.60 15771.09 24381.53 230
reproduce_model76.43 4176.08 4177.49 4883.47 6960.09 4784.60 3682.90 8959.65 11777.31 3091.43 1249.62 11787.24 5471.99 6783.75 7885.14 136
MVSMamba_PlusPlus75.75 5175.44 4976.67 6080.84 10553.06 16678.62 12585.13 3259.65 11771.53 10887.47 8056.92 3488.17 3572.18 6586.63 5688.80 10
CANet_DTU68.18 17967.71 16569.59 22574.83 24946.24 26578.66 12476.85 20659.60 11963.45 24482.09 20635.25 28177.41 26359.88 16378.76 14185.14 136
EI-MVSNet69.27 15668.44 15471.73 17574.47 25849.39 22975.20 20578.45 17959.60 11969.16 14276.51 30751.29 9882.50 17159.86 16571.45 23983.30 195
IterMVS-LS69.22 15868.48 15071.43 18774.44 26049.40 22876.23 18377.55 19559.60 11965.85 20581.59 21651.28 9981.58 18859.87 16469.90 26483.30 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MGCFI-Net72.45 8773.34 7369.81 22277.77 18643.21 29875.84 19481.18 12559.59 12275.45 4286.64 9957.74 2877.94 25363.92 12881.90 9988.30 19
VDDNet71.81 9871.33 9673.26 14682.80 7847.60 25478.74 12275.27 22959.59 12272.94 8889.40 5141.51 21883.91 13758.75 17182.99 8388.26 20
alignmvs73.86 6973.99 6473.45 13978.20 16950.50 21078.57 12782.43 9559.40 12476.57 3586.71 9856.42 4081.23 19665.84 11281.79 10088.62 12
MVS_Test72.45 8772.46 8072.42 16374.88 24748.50 24276.28 18283.14 8659.40 12472.46 9784.68 14555.66 4481.12 19765.98 11179.66 12387.63 42
TSAR-MVS + MP.78.44 1978.28 1978.90 2784.96 5261.41 2684.03 4883.82 6359.34 12679.37 1989.76 4859.84 1687.62 5176.69 2786.74 5387.68 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++73.77 7073.47 7074.66 9483.02 7459.29 6182.30 7781.88 10259.34 12671.59 10786.83 9245.94 16583.65 14265.09 11785.22 6381.06 244
PAPM_NR72.63 8471.80 8675.13 8781.72 8953.42 15979.91 10683.28 8259.14 12866.31 19585.90 12651.86 9186.06 8757.45 17880.62 10985.91 101
testing9164.46 24063.80 23166.47 26478.43 16140.06 32467.63 30969.59 28859.06 12963.18 24878.05 27634.05 29376.99 27348.30 25575.87 17982.37 218
save fliter86.17 3361.30 2883.98 5079.66 15059.00 130
v14868.24 17867.19 18571.40 18870.43 32347.77 25175.76 19577.03 20458.91 13167.36 17480.10 24348.60 13181.89 18160.01 16166.52 30284.53 155
TransMVSNet (Re)64.72 23564.33 22565.87 27975.22 24338.56 33874.66 22075.08 23858.90 13261.79 27282.63 18651.18 10078.07 25243.63 29955.87 36880.99 246
Anonymous20240521166.84 20865.99 20769.40 22980.19 11942.21 30771.11 27871.31 27358.80 13367.90 16086.39 11129.83 33779.65 22549.60 24578.78 14086.33 85
test250665.33 23064.61 22367.50 25079.46 13334.19 38074.43 22551.92 38658.72 13466.75 18688.05 6925.99 36780.92 20451.94 22484.25 7287.39 50
ECVR-MVScopyleft67.72 18967.51 17068.35 24379.46 13336.29 36574.79 21766.93 31158.72 13467.19 17788.05 6936.10 27481.38 19152.07 22284.25 7287.39 50
test111167.21 19667.14 18667.42 25279.24 13834.76 37473.89 23665.65 32058.71 13666.96 18287.95 7236.09 27580.53 21152.03 22383.79 7786.97 61
LCM-MVSNet-Re61.88 27161.35 26363.46 29974.58 25631.48 39361.42 35358.14 36458.71 13653.02 36079.55 25443.07 19776.80 27745.69 27777.96 15182.11 224
testing9964.05 24463.29 24166.34 26678.17 17339.76 32867.33 31468.00 30258.60 13863.03 25178.10 27532.57 32076.94 27548.22 25675.58 18382.34 219
v114470.42 12469.31 13273.76 12173.22 27050.64 20577.83 14481.43 11258.58 13969.40 13681.16 22147.53 14585.29 11064.01 12670.64 24585.34 129
TSAR-MVS + GP.74.90 5574.15 6377.17 5282.00 8458.77 7581.80 8078.57 17258.58 13974.32 6584.51 15355.94 4387.22 5767.11 9984.48 7185.52 117
BH-RMVSNet68.81 16267.42 17372.97 14980.11 12252.53 17874.26 22676.29 21258.48 14168.38 15184.20 15642.59 20283.83 13846.53 26975.91 17882.56 211
APD-MVS_3200maxsize74.96 5474.39 6176.67 6082.20 8158.24 8083.67 5483.29 8158.41 14273.71 7290.14 3645.62 16785.99 9069.64 8082.85 8985.78 105
OMC-MVS71.40 10870.60 11073.78 11976.60 22253.15 16379.74 11079.78 14758.37 14368.75 14586.45 11045.43 17480.60 21062.58 13977.73 15487.58 45
nrg03072.96 7873.01 7472.84 15275.41 24150.24 21280.02 10282.89 9158.36 14474.44 6286.73 9658.90 2480.83 20665.84 11274.46 18987.44 48
K. test v360.47 28257.11 30070.56 20773.74 26848.22 24575.10 20962.55 34358.27 14553.62 35676.31 31127.81 35281.59 18747.42 26039.18 40181.88 227
FA-MVS(test-final)69.82 13668.48 15073.84 11778.44 16050.04 21775.58 19978.99 16258.16 14667.59 17182.14 20342.66 20185.63 9756.60 18276.19 17685.84 103
MVS_111021_LR69.50 15068.78 14471.65 17878.38 16259.33 5974.82 21670.11 28258.08 14767.83 16684.68 14541.96 20976.34 28865.62 11477.54 15679.30 273
SR-MVS-dyc-post74.57 6273.90 6576.58 6383.49 6759.87 5284.29 4081.36 11558.07 14873.14 8290.07 3744.74 18185.84 9468.20 8781.76 10184.03 168
RE-MVS-def73.71 6983.49 6759.87 5284.29 4081.36 11558.07 14873.14 8290.07 3743.06 19868.20 8781.76 10184.03 168
SDMVSNet68.03 18168.10 16067.84 24777.13 20948.72 24065.32 33079.10 15958.02 15065.08 22182.55 18947.83 13873.40 30163.92 12873.92 19781.41 232
sd_testset64.46 24064.45 22464.51 29377.13 20942.25 30662.67 34672.11 26858.02 15065.08 22182.55 18941.22 22369.88 32247.32 26273.92 19781.41 232
GeoE71.01 11170.15 12073.60 13479.57 13152.17 18478.93 12078.12 18658.02 15067.76 17083.87 16552.36 8382.72 16556.90 18175.79 18085.92 100
ZD-MVS86.64 2160.38 4582.70 9357.95 15378.10 2490.06 3956.12 4288.84 2674.05 4987.00 49
EIA-MVS71.78 9970.60 11075.30 8579.85 12553.54 15677.27 16083.26 8357.92 15466.49 19079.39 25852.07 8886.69 7260.05 16079.14 13585.66 113
test_yl69.69 14069.13 13571.36 18978.37 16445.74 27074.71 21880.20 14457.91 15570.01 12583.83 16642.44 20482.87 15954.97 19779.72 12185.48 119
DCV-MVSNet69.69 14069.13 13571.36 18978.37 16445.74 27074.71 21880.20 14457.91 15570.01 12583.83 16642.44 20482.87 15954.97 19779.72 12185.48 119
MonoMVSNet64.15 24363.31 24066.69 26170.51 32144.12 28974.47 22374.21 24957.81 15763.03 25176.62 30338.33 25077.31 26554.22 20560.59 35078.64 279
dcpmvs_274.55 6375.23 5372.48 15982.34 8053.34 16077.87 14181.46 11157.80 15875.49 4186.81 9362.22 1377.75 25871.09 7582.02 9786.34 83
Fast-Effi-MVS+-dtu67.37 19465.33 21773.48 13872.94 27757.78 8677.47 15376.88 20557.60 15961.97 26976.85 29939.31 23880.49 21454.72 20070.28 25582.17 223
v119269.97 13368.68 14673.85 11673.19 27150.94 19877.68 14781.36 11557.51 16068.95 14480.85 23145.28 17785.33 10962.97 13770.37 25185.27 133
ACMH+57.40 1166.12 21964.06 22672.30 16577.79 18552.83 17280.39 9778.03 18757.30 16157.47 31882.55 18927.68 35384.17 13045.54 28069.78 26679.90 263
diffmvspermissive70.69 11870.43 11371.46 18369.45 33948.95 23672.93 24978.46 17857.27 16271.69 10583.97 16451.48 9777.92 25570.70 7777.95 15287.53 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned68.27 17667.29 17871.21 19379.74 12653.22 16276.06 18777.46 19857.19 16366.10 19781.61 21445.37 17683.50 14545.42 28576.68 17276.91 305
thres100view90063.28 25362.41 25165.89 27877.31 20638.66 33772.65 25269.11 29557.07 16462.45 26581.03 22537.01 26979.17 23431.84 37173.25 21279.83 265
DP-MVS Recon72.15 9670.73 10876.40 6586.57 2457.99 8281.15 9082.96 8757.03 16566.78 18485.56 13344.50 18588.11 3851.77 22780.23 11883.10 204
thres600view763.30 25262.27 25266.41 26577.18 20838.87 33572.35 25969.11 29556.98 16662.37 26780.96 22737.01 26979.00 24331.43 37873.05 21681.36 235
V4268.65 16667.35 17772.56 15768.93 34550.18 21472.90 25079.47 15456.92 16769.45 13580.26 24046.29 16382.99 15364.07 12467.82 29184.53 155
MCST-MVS77.48 2877.45 2777.54 4786.67 2058.36 7983.22 5886.93 556.91 16874.91 5388.19 6559.15 2387.68 5073.67 5387.45 4386.57 75
GA-MVS65.53 22663.70 23371.02 20070.87 31648.10 24670.48 28674.40 24456.69 16964.70 22976.77 30033.66 30181.10 19855.42 19670.32 25483.87 176
v14419269.71 13968.51 14973.33 14473.10 27350.13 21577.54 15180.64 13656.65 17068.57 14880.55 23446.87 15984.96 11662.98 13669.66 27084.89 147
tfpn200view963.18 25562.18 25466.21 27076.85 21639.62 32971.96 26669.44 29156.63 17162.61 26079.83 24637.18 26379.17 23431.84 37173.25 21279.83 265
thres40063.31 25162.18 25466.72 25876.85 21639.62 32971.96 26669.44 29156.63 17162.61 26079.83 24637.18 26379.17 23431.84 37173.25 21281.36 235
GBi-Net67.21 19666.55 19169.19 23177.63 19343.33 29577.31 15677.83 19056.62 17365.04 22382.70 18341.85 21180.33 21647.18 26472.76 22083.92 173
test167.21 19666.55 19169.19 23177.63 19343.33 29577.31 15677.83 19056.62 17365.04 22382.70 18341.85 21180.33 21647.18 26472.76 22083.92 173
FMVSNet266.93 20666.31 20268.79 23877.63 19342.98 30076.11 18577.47 19656.62 17365.22 22082.17 20141.85 21180.18 22247.05 26772.72 22383.20 199
DPM-MVS75.47 5375.00 5476.88 5481.38 9659.16 6279.94 10485.71 2256.59 17672.46 9786.76 9456.89 3587.86 4566.36 10588.91 2583.64 190
v192192069.47 15168.17 15873.36 14373.06 27450.10 21677.39 15480.56 13756.58 17768.59 14680.37 23644.72 18284.98 11462.47 14269.82 26585.00 142
FMVSNet166.70 21165.87 20869.19 23177.49 20143.33 29577.31 15677.83 19056.45 17864.60 23182.70 18338.08 25580.33 21646.08 27372.31 22983.92 173
v124069.24 15767.91 16173.25 14773.02 27649.82 22077.21 16180.54 13856.43 17968.34 15280.51 23543.33 19684.99 11262.03 14669.77 26884.95 146
testing22262.29 26661.31 26465.25 28877.87 18238.53 33968.34 30466.31 31756.37 18063.15 25077.58 29028.47 34776.18 29137.04 34076.65 17381.05 245
CDPH-MVS76.31 4275.67 4878.22 3785.35 4859.14 6581.31 8884.02 5156.32 18174.05 6788.98 5753.34 7187.92 4369.23 8488.42 2887.59 44
Vis-MVSNet (Re-imp)63.69 24863.88 22963.14 30374.75 25131.04 39471.16 27663.64 33656.32 18159.80 29484.99 14044.51 18475.46 29339.12 32880.62 10982.92 206
AdaColmapbinary69.99 13268.66 14773.97 11584.94 5457.83 8482.63 6878.71 16856.28 18364.34 23284.14 15841.57 21587.06 6446.45 27078.88 13777.02 301
PS-MVSNAJss72.24 9171.21 9975.31 8478.50 15755.93 11581.63 8282.12 9956.24 18470.02 12485.68 13247.05 15484.34 12965.27 11674.41 19285.67 112
c3_l68.33 17567.56 16670.62 20670.87 31646.21 26674.47 22378.80 16656.22 18566.19 19678.53 27351.88 9081.40 19062.08 14369.04 27984.25 162
Fast-Effi-MVS+70.28 12769.12 13773.73 12578.50 15751.50 19375.01 21079.46 15556.16 18668.59 14679.55 25453.97 6084.05 13253.34 21377.53 15785.65 114
PHI-MVS75.87 4875.36 5077.41 4980.62 11255.91 11684.28 4285.78 2056.08 18773.41 7586.58 10450.94 10588.54 2870.79 7689.71 1787.79 37
baseline163.81 24763.87 23063.62 29876.29 22736.36 36071.78 26867.29 30756.05 18864.23 23782.95 18147.11 15374.41 29847.30 26361.85 33980.10 260
train_agg76.27 4376.15 4076.64 6285.58 4361.59 2481.62 8381.26 12255.86 18974.93 5188.81 5953.70 6784.68 12375.24 4088.33 3083.65 189
test_885.40 4660.96 3481.54 8681.18 12555.86 18974.81 5688.80 6153.70 6784.45 127
FMVSNet366.32 21865.61 21368.46 24176.48 22542.34 30474.98 21277.15 20355.83 19165.04 22381.16 22139.91 23180.14 22347.18 26472.76 22082.90 208
PAPR71.72 10270.82 10674.41 10481.20 10151.17 19479.55 11583.33 7955.81 19266.93 18384.61 14950.95 10486.06 8755.79 19079.20 13286.00 97
eth_miper_zixun_eth67.63 19066.28 20371.67 17771.60 30248.33 24473.68 24077.88 18855.80 19365.91 20178.62 27147.35 15182.88 15859.45 16766.25 30383.81 178
ACMH55.70 1565.20 23263.57 23570.07 21578.07 17652.01 18979.48 11679.69 14855.75 19456.59 32580.98 22627.12 35880.94 20242.90 30771.58 23777.25 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS56.42 1265.40 22962.73 24873.40 14274.89 24652.78 17373.09 24875.13 23455.69 19558.48 31173.73 33732.86 31086.32 8550.63 23570.11 25881.10 243
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CL-MVSNet_self_test61.53 27460.94 27163.30 30168.95 34436.93 35667.60 31072.80 26355.67 19659.95 29176.63 30245.01 18072.22 30839.74 32662.09 33880.74 250
TEST985.58 4361.59 2481.62 8381.26 12255.65 19774.93 5188.81 5953.70 6784.68 123
thres20062.20 26761.16 26965.34 28675.38 24239.99 32569.60 29669.29 29355.64 19861.87 27176.99 29637.07 26878.96 24431.28 37973.28 21177.06 300
pm-mvs165.24 23164.97 22166.04 27572.38 28939.40 33272.62 25475.63 22155.53 19962.35 26883.18 17947.45 14776.47 28649.06 24966.54 30182.24 220
testing1162.81 25861.90 25765.54 28278.38 16240.76 32167.59 31166.78 31355.48 20060.13 28677.11 29431.67 32676.79 27845.53 28174.45 19079.06 274
ACMM61.98 770.80 11769.73 12574.02 11380.59 11358.59 7782.68 6782.02 10155.46 20167.18 17884.39 15538.51 24783.17 15160.65 15676.10 17780.30 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052969.91 13469.02 13872.56 15780.19 11947.65 25277.56 15080.99 13155.45 20269.88 12886.76 9439.24 24182.18 17754.04 20677.10 16787.85 33
tt080567.77 18867.24 18369.34 23074.87 24840.08 32377.36 15581.37 11455.31 20366.33 19484.65 14737.35 26182.55 17055.65 19372.28 23085.39 128
GDP-MVS72.64 8371.28 9876.70 5777.72 18854.22 14479.57 11484.45 4355.30 20471.38 11086.97 9039.94 23087.00 6567.02 10279.20 13288.89 9
CPTT-MVS72.78 8072.08 8574.87 9084.88 5761.41 2684.15 4677.86 18955.27 20567.51 17388.08 6841.93 21081.85 18269.04 8580.01 11981.35 237
XVG-OURS68.76 16567.37 17572.90 15174.32 26357.22 9270.09 29278.81 16555.24 20667.79 16885.81 13136.54 27278.28 24962.04 14575.74 18183.19 200
tfpnnormal62.47 26261.63 26064.99 29074.81 25039.01 33471.22 27473.72 25455.22 20760.21 28580.09 24441.26 22276.98 27430.02 38468.09 28978.97 277
cl____67.18 19966.26 20469.94 21770.20 32645.74 27073.30 24376.83 20755.10 20865.27 21479.57 25347.39 14980.53 21159.41 16969.22 27783.53 192
DIV-MVS_self_test67.18 19966.26 20469.94 21770.20 32645.74 27073.29 24576.83 20755.10 20865.27 21479.58 25247.38 15080.53 21159.43 16869.22 27783.54 191
PC_three_145255.09 21084.46 489.84 4666.68 589.41 1874.24 4691.38 288.42 16
EPNet_dtu61.90 27061.97 25661.68 31172.89 27839.78 32775.85 19365.62 32155.09 21054.56 34679.36 25937.59 25867.02 34039.80 32576.95 16878.25 282
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu71.45 10770.39 11474.65 9582.01 8358.82 7479.93 10580.35 14355.09 21065.82 20682.16 20249.17 12382.64 16860.34 15878.62 14482.50 215
cl2267.47 19366.45 19370.54 20869.85 33446.49 26273.85 23777.35 20055.07 21365.51 20977.92 28047.64 14281.10 19861.58 15169.32 27384.01 170
miper_ehance_all_eth68.03 18167.24 18370.40 21070.54 32046.21 26673.98 23078.68 17055.07 21366.05 19877.80 28452.16 8781.31 19361.53 15269.32 27383.67 186
fmvsm_s_conf0.5_n_269.82 13669.27 13471.46 18372.00 29651.08 19573.30 24367.79 30355.06 21575.24 4487.51 7844.02 19077.00 27275.67 3472.86 21886.31 90
PS-MVSNAJ70.51 12169.70 12672.93 15081.52 9155.79 11974.92 21479.00 16155.04 21669.88 12878.66 26847.05 15482.19 17661.61 14979.58 12480.83 248
fmvsm_s_conf0.1_n_269.64 14469.01 14071.52 18171.66 30151.04 19673.39 24267.14 30955.02 21775.11 4687.64 7742.94 20077.01 27175.55 3572.63 22486.52 77
mmtdpeth60.40 28359.12 28464.27 29669.59 33648.99 23470.67 28370.06 28354.96 21862.78 25473.26 34127.00 36067.66 33358.44 17445.29 39376.16 310
xiu_mvs_v2_base70.52 12069.75 12472.84 15281.21 10055.63 12375.11 20778.92 16354.92 21969.96 12779.68 25147.00 15882.09 17861.60 15079.37 12780.81 249
MAR-MVS71.51 10470.15 12075.60 8081.84 8759.39 5881.38 8782.90 8954.90 22068.08 15978.70 26647.73 13985.51 10251.68 22984.17 7481.88 227
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
reproduce_monomvs62.56 26061.20 26866.62 26270.62 31944.30 28670.13 29173.13 26054.78 22161.13 28076.37 31025.63 37075.63 29258.75 17160.29 35179.93 262
XVG-OURS-SEG-HR68.81 16267.47 17272.82 15474.40 26156.87 10270.59 28479.04 16054.77 22266.99 18186.01 12339.57 23678.21 25062.54 14073.33 21083.37 194
testing356.54 31155.92 31358.41 33377.52 20027.93 40369.72 29556.36 37354.75 22358.63 30977.80 28420.88 38671.75 31125.31 40062.25 33675.53 317
Anonymous2023121169.28 15568.47 15271.73 17580.28 11447.18 25879.98 10382.37 9654.61 22467.24 17684.01 16239.43 23782.41 17455.45 19572.83 21985.62 115
SixPastTwentyTwo61.65 27358.80 28870.20 21375.80 23347.22 25775.59 19769.68 28654.61 22454.11 35079.26 26127.07 35982.96 15443.27 30149.79 38680.41 254
test_040263.25 25461.01 27069.96 21680.00 12354.37 14376.86 17272.02 26954.58 22658.71 30680.79 23335.00 28484.36 12826.41 39864.71 31471.15 367
tttt051767.83 18765.66 21274.33 10676.69 21850.82 20277.86 14273.99 25254.54 22764.64 23082.53 19235.06 28385.50 10355.71 19169.91 26386.67 71
BH-w/o66.85 20765.83 20969.90 22079.29 13552.46 18074.66 22076.65 21054.51 22864.85 22778.12 27445.59 16982.95 15543.26 30275.54 18474.27 334
AUN-MVS68.45 17466.41 19774.57 10079.53 13257.08 10073.93 23475.23 23154.44 22966.69 18781.85 20937.10 26782.89 15762.07 14466.84 29883.75 183
LTVRE_ROB55.42 1663.15 25661.23 26768.92 23676.57 22347.80 24959.92 36276.39 21154.35 23058.67 30782.46 19429.44 34181.49 18942.12 31171.14 24177.46 293
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf_n73.01 7772.59 7874.27 10871.28 31155.88 11778.21 13475.56 22354.31 23174.86 5587.80 7554.72 5280.23 22078.07 2178.48 14586.70 69
test_fmvsmconf0.01_n72.17 9371.50 9074.16 11167.96 35155.58 12678.06 13874.67 24154.19 23274.54 6188.23 6450.35 11280.24 21978.07 2177.46 15986.65 73
test_fmvsmconf0.1_n72.81 7972.33 8174.24 10969.89 33355.81 11878.22 13375.40 22754.17 23375.00 5088.03 7153.82 6480.23 22078.08 2078.34 14886.69 70
ETVMVS59.51 29258.81 28661.58 31377.46 20234.87 37164.94 33559.35 35954.06 23461.08 28176.67 30129.54 33871.87 31032.16 36774.07 19578.01 289
ab-mvs66.65 21266.42 19667.37 25376.17 22941.73 31170.41 28876.14 21553.99 23565.98 19983.51 17349.48 11876.24 28948.60 25273.46 20884.14 166
IU-MVS87.77 459.15 6385.53 2653.93 23684.64 379.07 1190.87 588.37 18
XVG-ACMP-BASELINE64.36 24262.23 25370.74 20472.35 29052.45 18170.80 28278.45 17953.84 23759.87 29281.10 22316.24 39479.32 23155.64 19471.76 23480.47 252
FE-MVS65.91 22163.33 23973.63 13277.36 20551.95 19072.62 25475.81 21853.70 23865.31 21278.96 26428.81 34686.39 8243.93 29473.48 20782.55 212
thisisatest053067.92 18565.78 21074.33 10676.29 22751.03 19776.89 17074.25 24853.67 23965.59 20881.76 21135.15 28285.50 10355.94 18672.47 22586.47 78
PVSNet_BlendedMVS68.56 17167.72 16371.07 19977.03 21350.57 20674.50 22281.52 10853.66 24064.22 23879.72 25049.13 12482.87 15955.82 18873.92 19779.77 268
patch_mono-269.85 13571.09 10266.16 27179.11 14354.80 13871.97 26574.31 24653.50 24170.90 11384.17 15757.63 3163.31 35466.17 10682.02 9780.38 255
EG-PatchMatch MVS64.71 23662.87 24570.22 21177.68 19053.48 15777.99 13978.82 16453.37 24256.03 33077.41 29224.75 37584.04 13346.37 27173.42 20973.14 340
DP-MVS65.68 22363.66 23471.75 17484.93 5556.87 10280.74 9573.16 25953.06 24359.09 30382.35 19536.79 27185.94 9232.82 36569.96 26272.45 348
TR-MVS66.59 21565.07 22071.17 19679.18 14049.63 22673.48 24175.20 23352.95 24467.90 16080.33 23939.81 23483.68 14143.20 30373.56 20580.20 257
ET-MVSNet_ETH3D67.96 18465.72 21174.68 9376.67 22055.62 12575.11 20774.74 23952.91 24560.03 28980.12 24233.68 30082.64 16861.86 14776.34 17485.78 105
QAPM70.05 13068.81 14373.78 11976.54 22453.43 15883.23 5783.48 7052.89 24665.90 20286.29 11341.55 21786.49 8051.01 23278.40 14781.42 231
OpenMVScopyleft61.03 968.85 16167.56 16672.70 15674.26 26453.99 14781.21 8981.34 11952.70 24762.75 25785.55 13538.86 24584.14 13148.41 25483.01 8279.97 261
pmmvs663.69 24862.82 24766.27 26970.63 31839.27 33373.13 24775.47 22652.69 24859.75 29682.30 19739.71 23577.03 27047.40 26164.35 31982.53 213
IterMVS62.79 25961.27 26567.35 25469.37 34052.04 18871.17 27568.24 30152.63 24959.82 29376.91 29837.32 26272.36 30552.80 21763.19 32977.66 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_tets68.18 17966.36 19973.63 13275.61 23755.35 13180.77 9478.56 17352.48 25064.27 23584.10 16027.45 35581.84 18363.45 13570.56 24883.69 185
jajsoiax68.25 17766.45 19373.66 12975.62 23655.49 12880.82 9378.51 17552.33 25164.33 23384.11 15928.28 34981.81 18463.48 13470.62 24683.67 186
TAMVS66.78 21065.27 21871.33 19279.16 14253.67 15273.84 23869.59 28852.32 25265.28 21381.72 21244.49 18677.40 26442.32 31078.66 14382.92 206
CDS-MVSNet66.80 20965.37 21571.10 19878.98 14553.13 16573.27 24671.07 27552.15 25364.72 22880.23 24143.56 19477.10 26845.48 28378.88 13783.05 205
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsmamba68.47 17266.56 19074.21 11079.60 12952.95 16774.94 21375.48 22552.09 25460.10 28783.27 17636.54 27284.70 12259.32 17077.69 15584.99 144
PVSNet_Blended68.59 16767.72 16371.19 19477.03 21350.57 20672.51 25781.52 10851.91 25564.22 23877.77 28749.13 12482.87 15955.82 18879.58 12480.14 259
mvs_anonymous68.03 18167.51 17069.59 22572.08 29444.57 28471.99 26475.23 23151.67 25667.06 18082.57 18854.68 5377.94 25356.56 18375.71 18286.26 92
xiu_mvs_v1_base_debu68.58 16867.28 17972.48 15978.19 17057.19 9475.28 20275.09 23551.61 25770.04 12181.41 21832.79 31179.02 24063.81 13077.31 16081.22 239
xiu_mvs_v1_base68.58 16867.28 17972.48 15978.19 17057.19 9475.28 20275.09 23551.61 25770.04 12181.41 21832.79 31179.02 24063.81 13077.31 16081.22 239
xiu_mvs_v1_base_debi68.58 16867.28 17972.48 15978.19 17057.19 9475.28 20275.09 23551.61 25770.04 12181.41 21832.79 31179.02 24063.81 13077.31 16081.22 239
MVSTER67.16 20165.58 21471.88 17070.37 32549.70 22270.25 29078.45 17951.52 26069.16 14280.37 23638.45 24882.50 17160.19 15971.46 23883.44 193
CNLPA65.43 22764.02 22769.68 22378.73 15358.07 8177.82 14570.71 27851.49 26161.57 27683.58 17238.23 25370.82 31443.90 29570.10 25980.16 258
原ACMM174.69 9285.39 4759.40 5783.42 7351.47 26270.27 11986.61 10248.61 13086.51 7953.85 20987.96 3978.16 283
miper_enhance_ethall67.11 20266.09 20670.17 21469.21 34245.98 26872.85 25178.41 18251.38 26365.65 20775.98 31651.17 10181.25 19460.82 15569.32 27383.29 197
MSDG61.81 27259.23 28269.55 22872.64 28152.63 17670.45 28775.81 21851.38 26353.70 35376.11 31229.52 33981.08 20037.70 33565.79 30774.93 325
test20.0353.87 33254.02 33053.41 36461.47 38528.11 40261.30 35459.21 36051.34 26552.09 36277.43 29133.29 30558.55 37529.76 38560.27 35273.58 339
MVSFormer71.50 10570.38 11574.88 8978.76 15157.15 9782.79 6478.48 17651.26 26669.49 13383.22 17743.99 19183.24 14966.06 10779.37 12784.23 163
test_djsdf69.45 15267.74 16274.58 9974.57 25754.92 13682.79 6478.48 17651.26 26665.41 21183.49 17438.37 24983.24 14966.06 10769.25 27685.56 116
dmvs_testset50.16 34951.90 33944.94 38466.49 36111.78 42461.01 35951.50 38751.17 26850.30 37467.44 37839.28 23960.29 36522.38 40457.49 36162.76 389
PAPM67.92 18566.69 18971.63 17978.09 17549.02 23377.09 16481.24 12451.04 26960.91 28283.98 16347.71 14084.99 11240.81 31979.32 13080.90 247
Syy-MVS56.00 31856.23 31155.32 35074.69 25326.44 40965.52 32557.49 36850.97 27056.52 32672.18 34539.89 23268.09 32924.20 40164.59 31771.44 363
myMVS_eth3d54.86 32854.61 32255.61 34974.69 25327.31 40665.52 32557.49 36850.97 27056.52 32672.18 34521.87 38468.09 32927.70 39264.59 31771.44 363
miper_lstm_enhance62.03 26960.88 27265.49 28466.71 35946.25 26456.29 38075.70 22050.68 27261.27 27875.48 32340.21 22968.03 33156.31 18565.25 31082.18 221
gg-mvs-nofinetune57.86 30256.43 30962.18 30972.62 28235.35 37066.57 31556.33 37450.65 27357.64 31757.10 40030.65 32976.36 28737.38 33778.88 13774.82 327
TAPA-MVS59.36 1066.60 21365.20 21970.81 20276.63 22148.75 23876.52 17880.04 14650.64 27465.24 21884.93 14139.15 24278.54 24636.77 34276.88 16985.14 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_re56.77 31056.83 30556.61 34469.23 34141.02 31658.37 36764.18 33250.59 27557.45 31971.42 35335.54 27958.94 37337.23 33867.45 29469.87 376
MVP-Stereo65.41 22863.80 23170.22 21177.62 19755.53 12776.30 18178.53 17450.59 27556.47 32878.65 26939.84 23382.68 16644.10 29372.12 23272.44 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PCF-MVS61.88 870.95 11369.49 12975.35 8377.63 19355.71 12076.04 18981.81 10450.30 27769.66 13185.40 13952.51 7984.89 11851.82 22680.24 11785.45 123
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvs5depth55.64 32153.81 33261.11 31859.39 39540.98 32065.89 32068.28 30050.21 27858.11 31475.42 32417.03 39067.63 33543.79 29746.21 39074.73 329
baseline263.42 25061.26 26669.89 22172.55 28447.62 25371.54 26968.38 29950.11 27954.82 34275.55 32143.06 19880.96 20148.13 25767.16 29781.11 242
test-LLR58.15 30058.13 29658.22 33568.57 34644.80 28065.46 32757.92 36550.08 28055.44 33469.82 36632.62 31757.44 37949.66 24373.62 20272.41 350
test0.0.03 153.32 33753.59 33452.50 37062.81 38029.45 39759.51 36354.11 38250.08 28054.40 34874.31 33332.62 31755.92 38830.50 38263.95 32272.15 355
fmvsm_s_conf0.5_n69.58 14668.84 14271.79 17372.31 29252.90 16977.90 14062.43 34649.97 28272.85 9085.90 12652.21 8576.49 28475.75 3370.26 25685.97 98
COLMAP_ROBcopyleft52.97 1761.27 27858.81 28668.64 23974.63 25552.51 17978.42 13073.30 25749.92 28350.96 36681.51 21723.06 37879.40 22931.63 37565.85 30574.01 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_a69.54 14868.74 14571.93 16872.47 28753.82 14978.25 13162.26 34849.78 28473.12 8486.21 11552.66 7776.79 27875.02 4168.88 28185.18 135
WBMVS60.54 28060.61 27460.34 32178.00 17935.95 36764.55 33764.89 32549.63 28563.39 24578.70 26633.85 29867.65 33442.10 31270.35 25377.43 294
tpmvs58.47 29656.95 30363.03 30570.20 32641.21 31567.90 30867.23 30849.62 28654.73 34470.84 35734.14 29276.24 28936.64 34661.29 34371.64 359
fmvsm_s_conf0.1_n69.41 15368.60 14871.83 17171.07 31352.88 17177.85 14362.44 34549.58 28772.97 8786.22 11451.68 9576.48 28575.53 3670.10 25986.14 93
UBG59.62 29159.53 28059.89 32278.12 17435.92 36864.11 34160.81 35649.45 28861.34 27775.55 32133.05 30667.39 33838.68 33074.62 18876.35 309
thisisatest051565.83 22263.50 23672.82 15473.75 26749.50 22771.32 27273.12 26149.39 28963.82 24076.50 30934.95 28584.84 12153.20 21575.49 18584.13 167
fmvsm_s_conf0.1_n_a69.32 15468.44 15471.96 16770.91 31553.78 15078.12 13662.30 34749.35 29073.20 8086.55 10751.99 8976.79 27874.83 4368.68 28685.32 130
HY-MVS56.14 1364.55 23963.89 22866.55 26374.73 25241.02 31669.96 29374.43 24349.29 29161.66 27480.92 22847.43 14876.68 28244.91 28871.69 23581.94 225
MIMVSNet155.17 32654.31 32757.77 34070.03 33032.01 39165.68 32364.81 32649.19 29246.75 38476.00 31325.53 37164.04 35228.65 38962.13 33777.26 298
SCA60.49 28158.38 29266.80 25774.14 26648.06 24763.35 34363.23 33949.13 29359.33 30272.10 34737.45 25974.27 29944.17 29062.57 33378.05 285
test_fmvsmvis_n_192070.84 11470.38 11572.22 16671.16 31255.39 13075.86 19272.21 26749.03 29473.28 7886.17 11751.83 9277.29 26675.80 3278.05 15083.98 171
testgi51.90 34152.37 33850.51 37660.39 39323.55 41658.42 36658.15 36349.03 29451.83 36379.21 26222.39 37955.59 38929.24 38862.64 33272.40 352
MIMVSNet57.35 30457.07 30158.22 33574.21 26537.18 35162.46 34760.88 35548.88 29655.29 33775.99 31531.68 32562.04 35931.87 37072.35 22775.43 319
gm-plane-assit71.40 30841.72 31348.85 29773.31 33982.48 17348.90 250
fmvsm_l_conf0.5_n70.99 11270.82 10671.48 18271.45 30454.40 14277.18 16270.46 28048.67 29875.17 4586.86 9153.77 6576.86 27676.33 3077.51 15883.17 203
UWE-MVS60.18 28459.78 27861.39 31677.67 19133.92 38369.04 30263.82 33448.56 29964.27 23577.64 28927.20 35770.40 31933.56 36276.24 17579.83 265
cascas65.98 22063.42 23773.64 13177.26 20752.58 17772.26 26177.21 20248.56 29961.21 27974.60 33132.57 32085.82 9550.38 23776.75 17182.52 214
PLCcopyleft56.13 1465.09 23363.21 24270.72 20581.04 10354.87 13778.57 12777.47 19648.51 30155.71 33181.89 20833.71 29979.71 22441.66 31670.37 25177.58 292
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D64.71 23662.50 25071.34 19179.72 12855.71 12079.82 10774.72 24048.50 30256.62 32484.62 14833.59 30282.34 17529.65 38675.23 18675.97 311
anonymousdsp67.00 20564.82 22273.57 13570.09 32956.13 11076.35 18077.35 20048.43 30364.99 22680.84 23233.01 30880.34 21564.66 12167.64 29384.23 163
无先验79.66 11274.30 24748.40 30480.78 20853.62 21079.03 276
114514_t70.83 11569.56 12774.64 9686.21 3154.63 13982.34 7381.81 10448.22 30563.01 25385.83 12940.92 22687.10 6257.91 17579.79 12082.18 221
tpm57.34 30558.16 29454.86 35371.80 30034.77 37367.47 31356.04 37748.20 30660.10 28776.92 29737.17 26553.41 39640.76 32065.01 31176.40 308
test_fmvsm_n_192071.73 10171.14 10173.50 13672.52 28556.53 10475.60 19676.16 21348.11 30777.22 3185.56 13353.10 7477.43 26274.86 4277.14 16586.55 76
MDA-MVSNet-bldmvs53.87 33250.81 34463.05 30466.25 36348.58 24156.93 37863.82 33448.09 30841.22 39670.48 36230.34 33268.00 33234.24 35745.92 39272.57 346
XXY-MVS60.68 27961.67 25957.70 34170.43 32338.45 34064.19 33966.47 31448.05 30963.22 24680.86 23049.28 12160.47 36345.25 28767.28 29674.19 335
F-COLMAP63.05 25760.87 27369.58 22776.99 21553.63 15478.12 13676.16 21347.97 31052.41 36181.61 21427.87 35178.11 25140.07 32266.66 30077.00 302
fmvsm_l_conf0.5_n_a70.50 12270.27 11771.18 19571.30 31054.09 14576.89 17069.87 28447.90 31174.37 6486.49 10853.07 7576.69 28175.41 3777.11 16682.76 210
Patchmatch-RL test58.16 29955.49 31666.15 27267.92 35248.89 23760.66 36051.07 39047.86 31259.36 29962.71 39434.02 29572.27 30756.41 18459.40 35477.30 296
D2MVS62.30 26560.29 27668.34 24466.46 36248.42 24365.70 32273.42 25647.71 31358.16 31375.02 32730.51 33077.71 25953.96 20871.68 23678.90 278
ANet_high41.38 36837.47 37553.11 36639.73 42124.45 41456.94 37769.69 28547.65 31426.04 41352.32 40312.44 40262.38 35821.80 40510.61 42272.49 347
CostFormer64.04 24562.51 24968.61 24071.88 29845.77 26971.30 27370.60 27947.55 31564.31 23476.61 30541.63 21479.62 22749.74 24169.00 28080.42 253
PatchmatchNetpermissive59.84 28758.24 29364.65 29273.05 27546.70 26169.42 29862.18 34947.55 31558.88 30571.96 34934.49 28969.16 32442.99 30563.60 32478.07 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_self_test55.22 32553.89 33159.21 32757.80 39927.47 40557.75 37374.32 24547.38 31750.90 36770.00 36528.45 34870.30 32040.44 32157.92 35979.87 264
ITE_SJBPF62.09 31066.16 36444.55 28564.32 33047.36 31855.31 33680.34 23819.27 38762.68 35736.29 35062.39 33579.04 275
KD-MVS_2432*160053.45 33451.50 34259.30 32462.82 37837.14 35255.33 38171.79 27147.34 31955.09 33970.52 36021.91 38270.45 31735.72 35242.97 39670.31 372
miper_refine_blended53.45 33451.50 34259.30 32462.82 37837.14 35255.33 38171.79 27147.34 31955.09 33970.52 36021.91 38270.45 31735.72 35242.97 39670.31 372
OurMVSNet-221017-061.37 27758.63 29069.61 22472.05 29548.06 24773.93 23472.51 26447.23 32154.74 34380.92 22821.49 38581.24 19548.57 25356.22 36779.53 270
tpmrst58.24 29858.70 28956.84 34366.97 35634.32 37869.57 29761.14 35447.17 32258.58 31071.60 35241.28 22160.41 36449.20 24762.84 33175.78 314
PVSNet50.76 1958.40 29757.39 29961.42 31475.53 23944.04 29061.43 35263.45 33747.04 32356.91 32273.61 33827.00 36064.76 35039.12 32872.40 22675.47 318
WB-MVSnew59.66 28959.69 27959.56 32375.19 24535.78 36969.34 29964.28 33146.88 32461.76 27375.79 31740.61 22765.20 34932.16 36771.21 24077.70 290
FMVSNet555.86 31954.93 31958.66 33271.05 31436.35 36164.18 34062.48 34446.76 32550.66 37174.73 33025.80 36864.04 35233.11 36365.57 30875.59 316
jason69.65 14368.39 15673.43 14178.27 16856.88 10177.12 16373.71 25546.53 32669.34 13783.22 17743.37 19579.18 23364.77 12079.20 13284.23 163
jason: jason.
MS-PatchMatch62.42 26361.46 26265.31 28775.21 24452.10 18572.05 26374.05 25146.41 32757.42 32074.36 33234.35 29177.57 26145.62 27973.67 20166.26 386
1112_ss64.00 24663.36 23865.93 27779.28 13642.58 30371.35 27172.36 26646.41 32760.55 28477.89 28246.27 16473.28 30246.18 27269.97 26181.92 226
lupinMVS69.57 14768.28 15773.44 14078.76 15157.15 9776.57 17673.29 25846.19 32969.49 13382.18 19943.99 19179.23 23264.66 12179.37 12783.93 172
testdata64.66 29181.52 9152.93 16865.29 32346.09 33073.88 7087.46 8138.08 25566.26 34553.31 21478.48 14574.78 328
UnsupCasMVSNet_eth53.16 33952.47 33755.23 35159.45 39433.39 38659.43 36469.13 29445.98 33150.35 37372.32 34429.30 34258.26 37742.02 31444.30 39474.05 336
AllTest57.08 30754.65 32164.39 29471.44 30549.03 23169.92 29467.30 30545.97 33247.16 38179.77 24817.47 38867.56 33633.65 35959.16 35576.57 306
TestCases64.39 29471.44 30549.03 23167.30 30545.97 33247.16 38179.77 24817.47 38867.56 33633.65 35959.16 35576.57 306
WTY-MVS59.75 28860.39 27557.85 33972.32 29137.83 34561.05 35864.18 33245.95 33461.91 27079.11 26347.01 15760.88 36242.50 30969.49 27274.83 326
IterMVS-SCA-FT62.49 26161.52 26165.40 28571.99 29750.80 20371.15 27769.63 28745.71 33560.61 28377.93 27937.45 25965.99 34655.67 19263.50 32679.42 271
WB-MVS43.26 36243.41 36242.83 38863.32 37710.32 42658.17 36945.20 40445.42 33640.44 39967.26 38134.01 29658.98 37211.96 41724.88 41159.20 392
旧先验276.08 18645.32 33776.55 3665.56 34858.75 171
OpenMVS_ROBcopyleft52.78 1860.03 28558.14 29565.69 28170.47 32244.82 27975.33 20170.86 27745.04 33856.06 32976.00 31326.89 36279.65 22535.36 35467.29 29572.60 345
TinyColmap54.14 32951.72 34061.40 31566.84 35841.97 30866.52 31668.51 29844.81 33942.69 39575.77 31811.66 40472.94 30331.96 36956.77 36569.27 380
MDTV_nov1_ep1357.00 30272.73 28038.26 34165.02 33464.73 32844.74 34055.46 33372.48 34332.61 31970.47 31637.47 33667.75 292
新几何170.76 20385.66 4161.13 3066.43 31544.68 34170.29 11886.64 9941.29 22075.23 29449.72 24281.75 10375.93 312
Patchmtry57.16 30656.47 30859.23 32669.17 34334.58 37662.98 34463.15 34044.53 34256.83 32374.84 32835.83 27768.71 32640.03 32360.91 34474.39 333
ppachtmachnet_test58.06 30155.38 31766.10 27469.51 33748.99 23468.01 30766.13 31844.50 34354.05 35170.74 35832.09 32472.34 30636.68 34556.71 36676.99 304
PatchT53.17 33853.44 33552.33 37168.29 35025.34 41358.21 36854.41 38144.46 34454.56 34669.05 37233.32 30460.94 36136.93 34161.76 34170.73 370
EPMVS53.96 33053.69 33354.79 35466.12 36531.96 39262.34 34949.05 39444.42 34555.54 33271.33 35530.22 33356.70 38241.65 31762.54 33475.71 315
pmmvs461.48 27659.39 28167.76 24871.57 30353.86 14871.42 27065.34 32244.20 34659.46 29877.92 28035.90 27674.71 29643.87 29664.87 31374.71 330
dp51.89 34251.60 34152.77 36868.44 34932.45 39062.36 34854.57 38044.16 34749.31 37667.91 37428.87 34556.61 38433.89 35854.89 37069.24 381
PatchMatch-RL56.25 31654.55 32361.32 31777.06 21256.07 11265.57 32454.10 38344.13 34853.49 35971.27 35625.20 37266.78 34136.52 34863.66 32361.12 390
our_test_356.49 31254.42 32462.68 30769.51 33745.48 27566.08 31961.49 35244.11 34950.73 37069.60 36933.05 30668.15 32838.38 33256.86 36374.40 332
USDC56.35 31554.24 32862.69 30664.74 37040.31 32265.05 33373.83 25343.93 35047.58 37977.71 28815.36 39775.05 29538.19 33461.81 34072.70 344
PM-MVS52.33 34050.19 34858.75 33162.10 38345.14 27865.75 32140.38 41143.60 35153.52 35772.65 3429.16 41265.87 34750.41 23654.18 37365.24 388
pmmvs-eth3d58.81 29556.31 31066.30 26867.61 35352.42 18272.30 26064.76 32743.55 35254.94 34174.19 33428.95 34372.60 30443.31 30057.21 36273.88 338
SSC-MVS41.96 36741.99 36641.90 38962.46 3829.28 42857.41 37644.32 40743.38 35338.30 40566.45 38432.67 31658.42 37610.98 41821.91 41457.99 396
new-patchmatchnet47.56 35647.73 35647.06 37958.81 3979.37 42748.78 39859.21 36043.28 35444.22 39168.66 37325.67 36957.20 38131.57 37749.35 38774.62 331
Test_1112_low_res62.32 26461.77 25864.00 29779.08 14439.53 33168.17 30570.17 28143.25 35559.03 30479.90 24544.08 18871.24 31343.79 29768.42 28781.25 238
RPMNet61.53 27458.42 29170.86 20169.96 33152.07 18665.31 33181.36 11543.20 35659.36 29970.15 36435.37 28085.47 10536.42 34964.65 31575.06 321
tpm262.07 26860.10 27767.99 24672.79 27943.86 29171.05 28066.85 31243.14 35762.77 25575.39 32538.32 25180.80 20741.69 31568.88 28179.32 272
JIA-IIPM51.56 34347.68 35763.21 30264.61 37150.73 20447.71 40058.77 36242.90 35848.46 37851.72 40424.97 37370.24 32136.06 35153.89 37468.64 382
131464.61 23863.21 24268.80 23771.87 29947.46 25573.95 23278.39 18442.88 35959.97 29076.60 30638.11 25479.39 23054.84 19972.32 22879.55 269
HyFIR lowres test65.67 22463.01 24473.67 12879.97 12455.65 12269.07 30175.52 22442.68 36063.53 24377.95 27840.43 22881.64 18546.01 27471.91 23383.73 184
CR-MVSNet59.91 28657.90 29865.96 27669.96 33152.07 18665.31 33163.15 34042.48 36159.36 29974.84 32835.83 27770.75 31545.50 28264.65 31575.06 321
test22283.14 7158.68 7672.57 25663.45 33741.78 36267.56 17286.12 11837.13 26678.73 14274.98 324
TDRefinement53.44 33650.72 34561.60 31264.31 37346.96 25970.89 28165.27 32441.78 36244.61 39077.98 27711.52 40666.36 34428.57 39051.59 38071.49 362
sss56.17 31756.57 30754.96 35266.93 35736.32 36357.94 37061.69 35141.67 36458.64 30875.32 32638.72 24656.25 38642.04 31366.19 30472.31 353
PVSNet_043.31 2047.46 35745.64 36052.92 36767.60 35444.65 28254.06 38654.64 37941.59 36546.15 38658.75 39730.99 32858.66 37432.18 36624.81 41255.46 400
MVS67.37 19466.33 20070.51 20975.46 24050.94 19873.95 23281.85 10341.57 36662.54 26278.57 27247.98 13585.47 10552.97 21682.05 9675.14 320
Anonymous2024052155.30 32354.41 32557.96 33860.92 39241.73 31171.09 27971.06 27641.18 36748.65 37773.31 33916.93 39159.25 37042.54 30864.01 32072.90 342
Anonymous2023120655.10 32755.30 31854.48 35569.81 33533.94 38262.91 34562.13 35041.08 36855.18 33875.65 31932.75 31456.59 38530.32 38367.86 29072.91 341
MDA-MVSNet_test_wron50.71 34848.95 35056.00 34861.17 38741.84 30951.90 39256.45 37140.96 36944.79 38967.84 37530.04 33555.07 39336.71 34450.69 38371.11 368
YYNet150.73 34748.96 34956.03 34761.10 38841.78 31051.94 39156.44 37240.94 37044.84 38867.80 37630.08 33455.08 39236.77 34250.71 38271.22 365
dongtai34.52 37734.94 37733.26 39861.06 38916.00 42352.79 39023.78 42440.71 37139.33 40348.65 41216.91 39248.34 40412.18 41619.05 41635.44 415
CHOSEN 1792x268865.08 23462.84 24671.82 17281.49 9356.26 10866.32 31874.20 25040.53 37263.16 24978.65 26941.30 21977.80 25745.80 27674.09 19481.40 234
pmmvs556.47 31355.68 31558.86 33061.41 38636.71 35866.37 31762.75 34240.38 37353.70 35376.62 30334.56 28767.05 33940.02 32465.27 30972.83 343
test_vis1_n_192058.86 29459.06 28558.25 33463.76 37443.14 29967.49 31266.36 31640.22 37465.89 20371.95 35031.04 32759.75 36859.94 16264.90 31271.85 357
MDTV_nov1_ep13_2view25.89 41161.22 35540.10 37551.10 36532.97 30938.49 33178.61 280
tpm cat159.25 29356.95 30366.15 27272.19 29346.96 25968.09 30665.76 31940.03 37657.81 31670.56 35938.32 25174.51 29738.26 33361.50 34277.00 302
test-mter56.42 31455.82 31458.22 33568.57 34644.80 28065.46 32757.92 36539.94 37755.44 33469.82 36621.92 38157.44 37949.66 24373.62 20272.41 350
UnsupCasMVSNet_bld50.07 35048.87 35153.66 36060.97 39133.67 38457.62 37464.56 32939.47 37847.38 38064.02 39227.47 35459.32 36934.69 35643.68 39567.98 384
TESTMET0.1,155.28 32454.90 32056.42 34566.56 36043.67 29365.46 32756.27 37539.18 37953.83 35267.44 37824.21 37655.46 39048.04 25873.11 21570.13 374
mamv456.85 30958.00 29753.43 36372.46 28854.47 14057.56 37554.74 37838.81 38057.42 32079.45 25747.57 14438.70 41560.88 15453.07 37667.11 385
ADS-MVSNet251.33 34548.76 35259.07 32966.02 36644.60 28350.90 39459.76 35836.90 38150.74 36866.18 38626.38 36363.11 35527.17 39454.76 37169.50 378
ADS-MVSNet48.48 35447.77 35550.63 37566.02 36629.92 39650.90 39450.87 39236.90 38150.74 36866.18 38626.38 36352.47 39827.17 39454.76 37169.50 378
RPSCF55.80 32054.22 32960.53 32065.13 36942.91 30264.30 33857.62 36736.84 38358.05 31582.28 19828.01 35056.24 38737.14 33958.61 35782.44 217
test_cas_vis1_n_192056.91 30856.71 30657.51 34259.13 39645.40 27663.58 34261.29 35336.24 38467.14 17971.85 35129.89 33656.69 38357.65 17763.58 32570.46 371
Patchmatch-test49.08 35248.28 35451.50 37464.40 37230.85 39545.68 40448.46 39735.60 38546.10 38772.10 34734.47 29046.37 40727.08 39660.65 34877.27 297
CHOSEN 280x42047.83 35546.36 35952.24 37367.37 35549.78 22138.91 41243.11 40935.00 38643.27 39463.30 39328.95 34349.19 40336.53 34760.80 34657.76 397
N_pmnet39.35 37240.28 36936.54 39563.76 3741.62 43249.37 3970.76 43134.62 38743.61 39366.38 38526.25 36542.57 41126.02 39951.77 37965.44 387
kuosan29.62 38430.82 38326.02 40352.99 40216.22 42251.09 39322.71 42533.91 38833.99 40740.85 41315.89 39533.11 4207.59 42418.37 41728.72 417
PMMVS53.96 33053.26 33656.04 34662.60 38150.92 20061.17 35656.09 37632.81 38953.51 35866.84 38334.04 29459.93 36744.14 29268.18 28857.27 398
CMPMVSbinary42.80 2157.81 30355.97 31263.32 30060.98 39047.38 25664.66 33669.50 29032.06 39046.83 38377.80 28429.50 34071.36 31248.68 25173.75 20071.21 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ttmdpeth45.56 35842.95 36353.39 36552.33 40629.15 39857.77 37148.20 39831.81 39149.86 37577.21 2938.69 41359.16 37127.31 39333.40 40871.84 358
CVMVSNet59.63 29059.14 28361.08 31974.47 25838.84 33675.20 20568.74 29731.15 39258.24 31276.51 30732.39 32268.58 32749.77 24065.84 30675.81 313
FPMVS42.18 36641.11 36845.39 38158.03 39841.01 31849.50 39653.81 38430.07 39333.71 40864.03 39011.69 40352.08 40114.01 41255.11 36943.09 409
EU-MVSNet55.61 32254.41 32559.19 32865.41 36833.42 38572.44 25871.91 27028.81 39451.27 36473.87 33624.76 37469.08 32543.04 30458.20 35875.06 321
test_vis1_n49.89 35148.69 35353.50 36253.97 40037.38 35061.53 35147.33 40128.54 39559.62 29767.10 38213.52 39952.27 39949.07 24857.52 36070.84 369
test_fmvs1_n51.37 34450.35 34754.42 35752.85 40337.71 34761.16 35751.93 38528.15 39663.81 24169.73 36813.72 39853.95 39451.16 23160.65 34871.59 360
LF4IMVS42.95 36342.26 36545.04 38248.30 41132.50 38954.80 38348.49 39628.03 39740.51 39870.16 3639.24 41143.89 41031.63 37549.18 38858.72 394
test_fmvs151.32 34650.48 34653.81 35953.57 40137.51 34960.63 36151.16 38828.02 39863.62 24269.23 37116.41 39353.93 39551.01 23260.70 34769.99 375
MVS-HIRNet45.52 35944.48 36148.65 37868.49 34834.05 38159.41 36544.50 40627.03 39937.96 40650.47 40826.16 36664.10 35126.74 39759.52 35347.82 407
PMVScopyleft28.69 2236.22 37533.29 38045.02 38336.82 42335.98 36654.68 38448.74 39526.31 40021.02 41651.61 4052.88 42560.10 3669.99 42147.58 38938.99 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs344.92 36041.95 36753.86 35852.58 40543.55 29462.11 35046.90 40326.05 40140.63 39760.19 39611.08 40957.91 37831.83 37446.15 39160.11 391
test_fmvs248.69 35347.49 35852.29 37248.63 41033.06 38857.76 37248.05 39925.71 40259.76 29569.60 36911.57 40552.23 40049.45 24656.86 36371.58 361
PMMVS227.40 38525.91 38831.87 40039.46 4226.57 42931.17 41528.52 42023.96 40320.45 41748.94 4114.20 42137.94 41616.51 40919.97 41551.09 402
MVStest142.65 36439.29 37152.71 36947.26 41334.58 37654.41 38550.84 39323.35 40439.31 40474.08 33512.57 40155.09 39123.32 40228.47 41068.47 383
Gipumacopyleft34.77 37631.91 38143.33 38662.05 38437.87 34320.39 41767.03 31023.23 40518.41 41825.84 4184.24 41962.73 35614.71 41151.32 38129.38 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis1_rt41.35 36939.45 37047.03 38046.65 41437.86 34447.76 39938.65 41223.10 40644.21 39251.22 40611.20 40844.08 40939.27 32753.02 37759.14 393
new_pmnet34.13 37834.29 37933.64 39752.63 40418.23 42144.43 40733.90 41722.81 40730.89 41053.18 40210.48 41035.72 41920.77 40639.51 40046.98 408
mvsany_test139.38 37138.16 37443.02 38749.05 40834.28 37944.16 40825.94 42222.74 40846.57 38562.21 39523.85 37741.16 41433.01 36435.91 40453.63 401
LCM-MVSNet40.30 37035.88 37653.57 36142.24 41629.15 39845.21 40660.53 35722.23 40928.02 41150.98 4073.72 42261.78 36031.22 38038.76 40269.78 377
test_fmvs344.30 36142.55 36449.55 37742.83 41527.15 40853.03 38844.93 40522.03 41053.69 35564.94 3894.21 42049.63 40247.47 25949.82 38571.88 356
APD_test137.39 37434.94 37744.72 38548.88 40933.19 38752.95 38944.00 40819.49 41127.28 41258.59 3983.18 42452.84 39718.92 40741.17 39948.14 406
mvsany_test332.62 37930.57 38438.77 39336.16 42424.20 41538.10 41320.63 42619.14 41240.36 40057.43 3995.06 41736.63 41829.59 38728.66 40955.49 399
E-PMN23.77 38622.73 39026.90 40142.02 41720.67 41842.66 40935.70 41517.43 41310.28 42325.05 4196.42 41542.39 41210.28 42014.71 41917.63 418
EMVS22.97 38721.84 39126.36 40240.20 42019.53 42041.95 41034.64 41617.09 4149.73 42422.83 4207.29 41442.22 4139.18 42213.66 42017.32 419
test_vis3_rt32.09 38030.20 38537.76 39435.36 42527.48 40440.60 41128.29 42116.69 41532.52 40940.53 4141.96 42637.40 41733.64 36142.21 39848.39 404
test_f31.86 38131.05 38234.28 39632.33 42721.86 41732.34 41430.46 41916.02 41639.78 40255.45 4014.80 41832.36 42130.61 38137.66 40348.64 403
DSMNet-mixed39.30 37338.72 37241.03 39051.22 40719.66 41945.53 40531.35 41815.83 41739.80 40167.42 38022.19 38045.13 40822.43 40352.69 37858.31 395
testf131.46 38228.89 38639.16 39141.99 41828.78 40046.45 40237.56 41314.28 41821.10 41448.96 4091.48 42847.11 40513.63 41334.56 40541.60 410
APD_test231.46 38228.89 38639.16 39141.99 41828.78 40046.45 40237.56 41314.28 41821.10 41448.96 4091.48 42847.11 40513.63 41334.56 40541.60 410
MVEpermissive17.77 2321.41 38817.77 39332.34 39934.34 42625.44 41216.11 41824.11 42311.19 42013.22 42031.92 4161.58 42730.95 42210.47 41917.03 41840.62 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft12.03 40617.97 42810.91 42510.60 4297.46 42111.07 42228.36 4173.28 42311.29 4258.01 4239.74 42413.89 420
wuyk23d13.32 39112.52 39415.71 40547.54 41226.27 41031.06 4161.98 4304.93 4225.18 4251.94 4250.45 43018.54 4246.81 42512.83 4212.33 422
test_method19.68 38918.10 39224.41 40413.68 4293.11 43112.06 42042.37 4102.00 42311.97 42136.38 4155.77 41629.35 42315.06 41023.65 41340.76 412
tmp_tt9.43 39211.14 3954.30 4072.38 4304.40 43013.62 41916.08 4280.39 42415.89 41913.06 42115.80 3965.54 42612.63 41510.46 4232.95 421
EGC-MVSNET42.47 36538.48 37354.46 35674.33 26248.73 23970.33 28951.10 3890.03 4250.18 42667.78 37713.28 40066.49 34318.91 40850.36 38448.15 405
testmvs4.52 3956.03 3980.01 4090.01 4310.00 43453.86 3870.00 4320.01 4260.04 4270.27 4260.00 4320.00 4270.04 4260.00 4250.03 424
test1234.73 3946.30 3970.02 4080.01 4310.01 43356.36 3790.00 4320.01 4260.04 4270.21 4270.01 4310.00 4270.03 4270.00 4250.04 423
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
cdsmvs_eth3d_5k17.50 39023.34 3890.00 4100.00 4330.00 4340.00 42178.63 1710.00 4280.00 42982.18 19949.25 1220.00 4270.00 4280.00 4250.00 425
pcd_1.5k_mvsjas3.92 3965.23 3990.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 42847.05 1540.00 4270.00 4280.00 4250.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
ab-mvs-re6.49 3938.65 3960.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 42977.89 2820.00 4320.00 4270.00 4280.00 4250.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
WAC-MVS27.31 40627.77 391
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
No_MVS79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
eth-test20.00 433
eth-test0.00 433
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4567.01 190.33 1273.16 5691.15 488.23 22
test_0728_SECOND79.19 1687.82 359.11 6687.85 587.15 390.84 378.66 1590.61 1187.62 43
GSMVS78.05 285
test_part287.58 960.47 4283.42 12
sam_mvs134.74 28678.05 285
sam_mvs33.43 303
ambc65.13 28963.72 37637.07 35447.66 40178.78 16754.37 34971.42 35311.24 40780.94 20245.64 27853.85 37577.38 295
MTGPAbinary80.97 132
test_post168.67 3033.64 42332.39 32269.49 32344.17 290
test_post3.55 42433.90 29766.52 342
patchmatchnet-post64.03 39034.50 28874.27 299
GG-mvs-BLEND62.34 30871.36 30937.04 35569.20 30057.33 37054.73 34465.48 38830.37 33177.82 25634.82 35574.93 18772.17 354
MTMP86.03 1917.08 427
test9_res75.28 3988.31 3283.81 178
agg_prior273.09 5787.93 4084.33 159
agg_prior85.04 5059.96 5081.04 13074.68 5984.04 133
test_prior462.51 1482.08 79
test_prior76.69 5884.20 6157.27 9184.88 3986.43 8186.38 79
新几何276.12 184
旧先验183.04 7353.15 16367.52 30487.85 7444.08 18880.76 10878.03 288
原ACMM279.02 119
testdata272.18 30946.95 268
segment_acmp54.23 57
test1277.76 4584.52 5858.41 7883.36 7672.93 8954.61 5488.05 3988.12 3486.81 66
plane_prior781.41 9455.96 114
plane_prior681.20 10156.24 10945.26 178
plane_prior584.01 5287.21 5868.16 8980.58 11184.65 153
plane_prior486.10 119
plane_prior181.27 99
n20.00 432
nn0.00 432
door-mid47.19 402
lessismore_v069.91 21971.42 30747.80 24950.90 39150.39 37275.56 32027.43 35681.33 19245.91 27534.10 40780.59 251
test1183.47 71
door47.60 400
HQP5-MVS54.94 134
BP-MVS67.04 100
HQP4-MVS67.85 16286.93 6684.32 160
HQP3-MVS83.90 5780.35 115
HQP2-MVS45.46 172
NP-MVS80.98 10456.05 11385.54 136
ACMMP++_ref74.07 195
ACMMP++72.16 231
Test By Simon48.33 133