This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5573.19 177.08 3191.21 1457.23 3390.73 1083.35 188.12 3489.22 6
MVS_030478.45 1878.28 1978.98 2680.73 10657.91 8084.68 3381.64 10568.35 275.77 3690.38 2653.98 6090.26 1381.30 387.68 4388.77 11
CANet76.46 3875.93 4178.06 3981.29 9457.53 8582.35 6983.31 7967.78 370.09 11586.34 10654.92 5188.90 2572.68 5884.55 6987.76 38
UA-Net73.13 7372.93 7473.76 11883.58 6451.66 18978.75 11677.66 18967.75 472.61 9189.42 4749.82 11483.29 14453.61 20283.14 7986.32 85
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3766.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 59
TranMVSNet+NR-MVSNet70.36 12170.10 11871.17 19078.64 15442.97 29276.53 17381.16 12566.95 668.53 14485.42 13351.61 9883.07 14852.32 21069.70 26387.46 47
3Dnovator+66.72 475.84 4674.57 5779.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16189.24 5142.03 20489.38 1964.07 11886.50 5989.69 2
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3084.42 4666.73 874.67 5589.38 4955.30 4789.18 2174.19 4687.34 4586.38 77
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1554.26 5790.06 1478.42 1989.02 2387.69 39
Skip Steuart: Steuart Systems R&D Blog.
EPNet73.09 7472.16 8175.90 6875.95 22856.28 10483.05 5672.39 25966.53 1065.27 20887.00 8450.40 11085.47 10262.48 13586.32 6085.94 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet_NR-MVSNet71.11 10571.00 10171.44 17979.20 13844.13 27976.02 18682.60 9266.48 1168.20 14884.60 14456.82 3782.82 15954.62 19370.43 24387.36 54
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2263.71 1289.23 2081.51 288.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6665.37 1378.78 2290.64 1858.63 2587.24 5479.00 1290.37 1485.26 129
NR-MVSNet69.54 14268.85 13571.59 17678.05 17643.81 28374.20 22280.86 13165.18 1462.76 24884.52 14552.35 8683.59 14050.96 22570.78 23887.37 52
MTAPA76.90 3476.42 3678.35 3586.08 3763.57 274.92 21080.97 12965.13 1575.77 3690.88 1648.63 12886.66 7077.23 2488.17 3384.81 143
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 16
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
EI-MVSNet-Vis-set72.42 8671.59 8674.91 8578.47 15854.02 14277.05 16279.33 15365.03 1871.68 10179.35 25452.75 7884.89 11466.46 9974.23 18985.83 101
casdiffmvs_mvgpermissive76.14 4276.30 3775.66 7476.46 22251.83 18879.67 10885.08 3465.02 1975.84 3588.58 6059.42 2285.08 10872.75 5783.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
ETV-MVS74.46 6373.84 6676.33 6479.27 13655.24 12979.22 11385.00 3964.97 2172.65 9079.46 25053.65 7287.87 4667.45 9382.91 8585.89 99
WR-MVS68.47 16668.47 14668.44 23680.20 11739.84 31673.75 23476.07 21264.68 2268.11 15283.63 16450.39 11179.14 23449.78 23069.66 26486.34 81
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5664.55 2372.17 9690.01 4047.95 13588.01 4271.55 6886.74 5486.37 79
X-MVStestdata70.21 12467.28 17379.00 2386.32 2962.62 1185.83 2283.92 5664.55 2372.17 966.49 41247.95 13588.01 4271.55 6886.74 5486.37 79
HQP_MVS74.31 6473.73 6776.06 6681.41 9156.31 10284.22 4084.01 5364.52 2569.27 13386.10 11345.26 17787.21 5668.16 8480.58 10984.65 147
plane_prior284.22 4064.52 25
EI-MVSNet-UG-set71.92 9471.06 10074.52 9977.98 17953.56 15076.62 17179.16 15464.40 2771.18 10678.95 25952.19 8884.66 12165.47 11073.57 20085.32 125
DU-MVS70.01 12769.53 12471.44 17978.05 17644.13 27975.01 20681.51 10864.37 2868.20 14884.52 14549.12 12582.82 15954.62 19370.43 24387.37 52
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3764.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 118
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 22
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 41
LFMVS71.78 9671.59 8672.32 16083.40 6746.38 25679.75 10671.08 26864.18 3272.80 8788.64 5942.58 19983.72 13657.41 17184.49 7086.86 63
IS-MVSNet71.57 10071.00 10173.27 14178.86 14745.63 26780.22 9778.69 16564.14 3566.46 18587.36 7849.30 11985.60 9550.26 22983.71 7888.59 13
plane_prior356.09 10863.92 3669.27 133
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 7063.89 3773.60 6890.60 1954.85 5286.72 6877.20 2588.06 3685.74 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DELS-MVS74.76 5574.46 5875.65 7577.84 18352.25 17975.59 19384.17 5063.76 3873.15 7682.79 17659.58 2086.80 6667.24 9486.04 6187.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPM-MVS74.73 5774.25 6076.19 6580.81 10559.01 6782.60 6683.64 6763.74 3972.52 9287.49 7447.18 15185.88 9069.47 7780.78 10583.66 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet (Re)70.63 11570.20 11471.89 16578.55 15545.29 27075.94 18782.92 8763.68 4068.16 15083.59 16553.89 6483.49 14253.97 19871.12 23686.89 62
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 3063.56 4174.29 6190.03 3852.56 8088.53 3074.79 4288.34 2986.63 73
EC-MVSNet75.84 4675.87 4375.74 7278.86 14752.65 17083.73 5086.08 1763.47 4272.77 8887.25 8253.13 7587.93 4471.97 6485.57 6486.66 71
ZNCC-MVS78.82 1378.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4390.47 2553.96 6388.68 2876.48 2889.63 2087.16 57
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 64
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS76.25 4175.98 4077.06 5080.15 12055.63 12084.51 3583.90 5863.24 4573.30 7187.27 8155.06 4986.30 8371.78 6584.58 6889.25 4
DeepC-MVS69.38 278.56 1778.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6690.25 3257.68 2989.96 1574.62 4389.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS72.50 8272.09 8273.75 12081.58 8749.69 21977.76 14377.63 19063.21 4773.21 7489.02 5342.14 20383.32 14361.72 14282.50 9188.25 21
plane_prior56.31 10283.58 5363.19 4880.48 112
ACMMPcopyleft76.02 4475.33 4978.07 3885.20 4961.91 2085.49 2984.44 4563.04 4969.80 12589.74 4645.43 17387.16 5872.01 6382.87 8785.14 131
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS66.60 20766.45 18767.04 25077.11 20836.56 34977.03 16380.42 13762.95 5062.51 25684.03 15546.69 15979.07 23544.22 28063.08 32485.51 115
APDe-MVScopyleft80.16 880.59 678.86 2986.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1678.70 1388.32 3186.79 66
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mPP-MVS76.54 3775.93 4178.34 3686.47 2663.50 385.74 2582.28 9562.90 5271.77 9990.26 3146.61 16086.55 7471.71 6685.66 6384.97 139
ACMMP_NAP78.77 1578.78 1478.74 3085.44 4561.04 3183.84 4985.16 3162.88 5378.10 2491.26 1352.51 8188.39 3179.34 890.52 1386.78 67
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2862.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 26
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4862.82 5573.96 6490.50 2353.20 7488.35 3274.02 4887.05 4686.13 91
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4962.82 5573.55 6990.56 2149.80 11588.24 3474.02 4887.03 4786.32 85
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5162.81 5773.30 7190.58 2049.90 11388.21 3573.78 5087.03 4786.29 88
casdiffmvspermissive74.80 5474.89 5574.53 9875.59 23450.37 20678.17 13185.06 3662.80 5874.40 5887.86 7057.88 2783.61 13969.46 7882.79 8989.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline74.61 6074.70 5674.34 10275.70 23049.99 21477.54 14884.63 4462.73 5973.98 6387.79 7357.67 3083.82 13569.49 7682.74 9089.20 7
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3462.57 6073.09 8089.97 4150.90 10887.48 5275.30 3686.85 5287.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DTE-MVSNet65.58 21965.34 21066.31 25976.06 22734.79 36276.43 17579.38 15262.55 6161.66 26683.83 16045.60 16779.15 23341.64 30860.88 33985.00 136
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3889.70 1779.85 591.48 188.19 24
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVSNet66.49 21066.41 19166.72 25277.67 18836.33 35276.83 17079.52 14962.45 6362.54 25483.47 16946.32 16178.37 24345.47 27563.43 32185.45 118
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7362.44 6472.68 8990.50 2348.18 13387.34 5373.59 5285.71 6284.76 146
PS-CasMVS66.42 21166.32 19566.70 25477.60 19636.30 35476.94 16579.61 14762.36 6562.43 25883.66 16345.69 16578.37 24345.35 27763.26 32285.42 121
3Dnovator64.47 572.49 8371.39 9275.79 6977.70 18658.99 6880.66 9383.15 8462.24 6665.46 20486.59 9742.38 20285.52 9859.59 16084.72 6782.85 203
MP-MVS-pluss78.35 2078.46 1778.03 4084.96 5259.52 5382.93 5985.39 2762.15 6776.41 3491.51 1152.47 8386.78 6780.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HQP-NCC80.66 10782.31 7162.10 6867.85 156
ACMP_Plane80.66 10782.31 7162.10 6867.85 156
HQP-MVS73.45 7072.80 7575.40 7980.66 10754.94 13182.31 7183.90 5862.10 6867.85 15685.54 13145.46 17186.93 6367.04 9680.35 11384.32 154
CS-MVS-test75.62 5075.31 5076.56 6080.63 11055.13 13083.88 4885.22 2962.05 7171.49 10586.03 11653.83 6586.36 8167.74 8886.91 5188.19 24
VPNet67.52 18668.11 15365.74 27279.18 13936.80 34772.17 25572.83 25662.04 7267.79 16285.83 12448.88 12776.60 27651.30 22172.97 21383.81 172
WR-MVS_H67.02 19866.92 18267.33 24977.95 18037.75 33677.57 14682.11 9862.03 7362.65 25182.48 18750.57 10979.46 22442.91 29664.01 31484.79 144
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3284.85 4161.98 7473.06 8188.88 5553.72 6889.06 2368.27 8188.04 3787.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8184.99 3188.13 261.86 7579.16 2090.75 1757.96 2687.09 6177.08 2690.18 1587.87 32
PGM-MVS76.77 3576.06 3978.88 2886.14 3562.73 982.55 6783.74 6561.71 7672.45 9590.34 2948.48 13188.13 3972.32 5986.85 5285.78 102
Effi-MVS+73.31 7272.54 7875.62 7677.87 18153.64 14879.62 11079.61 14761.63 7772.02 9882.61 18156.44 4085.97 8863.99 12179.07 13387.25 56
MG-MVS73.96 6773.89 6574.16 10885.65 4249.69 21981.59 8281.29 11961.45 7871.05 10788.11 6351.77 9587.73 4961.05 14783.09 8085.05 135
LPG-MVS_test72.74 7971.74 8575.76 7080.22 11557.51 8682.55 6783.40 7561.32 7966.67 18287.33 7939.15 23686.59 7167.70 8977.30 15983.19 194
LGP-MVS_train75.76 7080.22 11557.51 8683.40 7561.32 7966.67 18287.33 7939.15 23686.59 7167.70 8977.30 15983.19 194
CLD-MVS73.33 7172.68 7675.29 8378.82 14953.33 15678.23 12884.79 4361.30 8170.41 11281.04 21852.41 8487.12 5964.61 11782.49 9285.41 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_111021_HR74.02 6673.46 7075.69 7383.01 7260.63 4077.29 15678.40 17961.18 8270.58 11085.97 11854.18 5984.00 13267.52 9282.98 8482.45 210
balanced_conf0376.58 3676.55 3576.68 5581.73 8552.90 16580.94 8885.70 2361.12 8374.90 4987.17 8356.46 3988.14 3872.87 5688.03 3889.00 8
FIs70.82 11271.43 9068.98 22978.33 16538.14 33276.96 16483.59 6961.02 8467.33 16986.73 9055.07 4881.64 18154.61 19579.22 12987.14 58
FOURS186.12 3660.82 3788.18 183.61 6860.87 8581.50 16
FC-MVSNet-test69.80 13370.58 10867.46 24577.61 19534.73 36576.05 18483.19 8360.84 8665.88 19886.46 10354.52 5680.76 20552.52 20978.12 14686.91 61
v870.33 12269.28 12973.49 13373.15 26850.22 20878.62 12080.78 13260.79 8766.45 18682.11 19949.35 11884.98 11163.58 12768.71 27885.28 127
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8875.27 4084.83 13760.76 1586.56 7367.86 8787.87 4186.06 93
Vis-MVSNetpermissive72.18 8971.37 9374.61 9481.29 9455.41 12680.90 8978.28 18160.73 8969.23 13688.09 6444.36 18582.65 16357.68 16881.75 10285.77 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4760.61 9079.05 2190.30 3055.54 4688.32 3373.48 5387.03 4784.83 142
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMP63.53 672.30 8771.20 9775.59 7880.28 11357.54 8482.74 6382.84 9060.58 9165.24 21286.18 11039.25 23486.03 8666.95 9876.79 16683.22 192
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testdata172.65 24560.50 92
UGNet68.81 15667.39 16873.06 14478.33 16554.47 13779.77 10575.40 22360.45 9363.22 24084.40 14832.71 30880.91 20151.71 21980.56 11183.81 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
h-mvs3372.71 8071.49 8976.40 6281.99 8259.58 5276.92 16676.74 20560.40 9474.81 5185.95 11945.54 16985.76 9370.41 7370.61 24183.86 171
hse-mvs271.04 10669.86 11974.60 9579.58 12957.12 9673.96 22675.25 22660.40 9474.81 5181.95 20145.54 16982.90 15270.41 7366.83 29383.77 176
EPP-MVSNet72.16 9271.31 9574.71 8878.68 15349.70 21782.10 7581.65 10460.40 9465.94 19485.84 12351.74 9686.37 8055.93 17979.55 12488.07 29
UniMVSNet_ETH3D67.60 18567.07 18169.18 22877.39 20142.29 29674.18 22375.59 21860.37 9766.77 17986.06 11537.64 25078.93 24152.16 21273.49 20286.32 85
test_prior281.75 7860.37 9775.01 4489.06 5256.22 4272.19 6088.96 24
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 6160.37 9779.89 1889.38 4954.97 5085.58 9776.12 3184.94 6686.33 83
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet69.68 13770.19 11568.16 23979.73 12641.63 30570.53 27777.38 19560.37 9770.69 10986.63 9551.08 10477.09 26453.61 20281.69 10485.75 107
sasdasda74.67 5874.98 5373.71 12278.94 14550.56 20380.23 9583.87 6160.30 10177.15 2986.56 9959.65 1782.00 17566.01 10482.12 9388.58 14
canonicalmvs74.67 5874.98 5373.71 12278.94 14550.56 20380.23 9583.87 6160.30 10177.15 2986.56 9959.65 1782.00 17566.01 10482.12 9388.58 14
v7n69.01 15467.36 17073.98 11172.51 28252.65 17078.54 12581.30 11860.26 10362.67 25081.62 20743.61 19084.49 12257.01 17268.70 27984.79 144
HPM-MVS_fast74.30 6573.46 7076.80 5384.45 6059.04 6683.65 5281.05 12660.15 10470.43 11189.84 4341.09 22085.59 9667.61 9182.90 8685.77 105
VPA-MVSNet69.02 15369.47 12667.69 24377.42 20041.00 31074.04 22479.68 14560.06 10569.26 13584.81 13851.06 10577.58 25654.44 19674.43 18784.48 151
v1070.21 12469.02 13373.81 11573.51 26550.92 19578.74 11781.39 11160.05 10666.39 18781.83 20447.58 14285.41 10562.80 13268.86 27785.09 134
SR-MVS76.13 4375.70 4477.40 4885.87 4061.20 2985.52 2782.19 9659.99 10775.10 4290.35 2847.66 14086.52 7571.64 6782.99 8284.47 152
9.1478.75 1583.10 6984.15 4388.26 159.90 10878.57 2390.36 2757.51 3286.86 6577.39 2389.52 21
v2v48270.50 11869.45 12773.66 12572.62 27850.03 21377.58 14580.51 13659.90 10869.52 12782.14 19747.53 14484.88 11665.07 11370.17 25186.09 92
Baseline_NR-MVSNet67.05 19767.56 16065.50 27575.65 23137.70 33875.42 19674.65 23859.90 10868.14 15183.15 17449.12 12577.20 26252.23 21169.78 26081.60 223
API-MVS72.17 9071.41 9174.45 10081.95 8357.22 8984.03 4580.38 13859.89 11168.40 14582.33 19049.64 11687.83 4851.87 21684.16 7578.30 273
Effi-MVS+-dtu69.64 13967.53 16375.95 6776.10 22662.29 1580.20 9876.06 21359.83 11265.26 21177.09 28941.56 21284.02 13160.60 15171.09 23781.53 224
MVSMamba_PlusPlus75.75 4975.44 4776.67 5680.84 10353.06 16178.62 12085.13 3259.65 11371.53 10387.47 7556.92 3488.17 3672.18 6186.63 5788.80 9
iter_conf0575.83 4875.63 4676.43 6180.84 10351.87 18778.13 13284.81 4259.65 11372.86 8587.47 7556.92 3488.17 3672.18 6187.79 4289.24 5
CANet_DTU68.18 17367.71 15969.59 21974.83 24546.24 25878.66 11976.85 20259.60 11563.45 23882.09 20035.25 27477.41 25959.88 15778.76 13885.14 131
EI-MVSNet69.27 15068.44 14871.73 17174.47 25449.39 22475.20 20178.45 17559.60 11569.16 13776.51 30051.29 10082.50 16759.86 15971.45 23383.30 189
IterMVS-LS69.22 15268.48 14471.43 18174.44 25649.40 22376.23 17977.55 19159.60 11565.85 19981.59 21051.28 10181.58 18459.87 15869.90 25883.30 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MGCFI-Net72.45 8473.34 7269.81 21677.77 18543.21 28975.84 19081.18 12359.59 11875.45 3986.64 9357.74 2877.94 24963.92 12281.90 9888.30 19
VDDNet71.81 9571.33 9473.26 14282.80 7547.60 24778.74 11775.27 22559.59 11872.94 8389.40 4841.51 21483.91 13358.75 16582.99 8288.26 20
alignmvs73.86 6873.99 6373.45 13578.20 16850.50 20578.57 12382.43 9359.40 12076.57 3286.71 9256.42 4181.23 19265.84 10781.79 9988.62 12
MVS_Test72.45 8472.46 7972.42 15974.88 24348.50 23576.28 17883.14 8559.40 12072.46 9384.68 13955.66 4581.12 19365.98 10679.66 12187.63 42
TSAR-MVS + MP.78.44 1978.28 1978.90 2784.96 5261.41 2684.03 4583.82 6459.34 12279.37 1989.76 4559.84 1687.62 5176.69 2786.74 5487.68 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++73.77 6973.47 6974.66 9183.02 7159.29 5882.30 7481.88 10059.34 12271.59 10286.83 8645.94 16483.65 13865.09 11285.22 6581.06 238
PAPM_NR72.63 8171.80 8475.13 8481.72 8653.42 15479.91 10383.28 8159.14 12466.31 18985.90 12151.86 9386.06 8457.45 17080.62 10785.91 98
testing9164.46 23463.80 22566.47 25678.43 16040.06 31467.63 30069.59 28159.06 12563.18 24278.05 27034.05 28676.99 26648.30 24675.87 17582.37 212
save fliter86.17 3361.30 2883.98 4779.66 14659.00 126
v14868.24 17267.19 17971.40 18270.43 31547.77 24475.76 19177.03 20058.91 12767.36 16880.10 23748.60 13081.89 17760.01 15566.52 29684.53 149
TransMVSNet (Re)64.72 22964.33 21965.87 27175.22 23938.56 32874.66 21675.08 23458.90 12861.79 26482.63 18051.18 10278.07 24843.63 28955.87 36080.99 240
Anonymous20240521166.84 20265.99 20169.40 22380.19 11842.21 29871.11 27171.31 26758.80 12967.90 15486.39 10529.83 33079.65 22149.60 23678.78 13786.33 83
test250665.33 22464.61 21767.50 24479.46 13234.19 37074.43 22051.92 37658.72 13066.75 18088.05 6625.99 35980.92 20051.94 21584.25 7287.39 50
ECVR-MVScopyleft67.72 18367.51 16468.35 23779.46 13236.29 35574.79 21366.93 30158.72 13067.19 17188.05 6636.10 26781.38 18752.07 21384.25 7287.39 50
test111167.21 19067.14 18067.42 24679.24 13734.76 36473.89 23165.65 31058.71 13266.96 17687.95 6936.09 26880.53 20752.03 21483.79 7786.97 60
LCM-MVSNet-Re61.88 26361.35 25663.46 29074.58 25231.48 38361.42 34358.14 35458.71 13253.02 35079.55 24843.07 19476.80 27045.69 26877.96 14882.11 218
testing9964.05 23763.29 23466.34 25878.17 17239.76 31867.33 30568.00 29458.60 13463.03 24578.10 26932.57 31376.94 26848.22 24775.58 17982.34 213
v114470.42 12069.31 12873.76 11873.22 26650.64 20077.83 14181.43 11058.58 13569.40 13181.16 21547.53 14485.29 10764.01 12070.64 23985.34 124
TSAR-MVS + GP.74.90 5374.15 6177.17 4982.00 8158.77 7281.80 7778.57 16858.58 13574.32 6084.51 14755.94 4487.22 5567.11 9584.48 7185.52 114
BH-RMVSNet68.81 15667.42 16772.97 14580.11 12152.53 17474.26 22176.29 20858.48 13768.38 14684.20 15042.59 19883.83 13446.53 26075.91 17482.56 205
APD-MVS_3200maxsize74.96 5274.39 5976.67 5682.20 7858.24 7783.67 5183.29 8058.41 13873.71 6790.14 3345.62 16685.99 8769.64 7582.85 8885.78 102
OMC-MVS71.40 10470.60 10673.78 11676.60 21853.15 15879.74 10779.78 14358.37 13968.75 14086.45 10445.43 17380.60 20662.58 13377.73 15087.58 45
nrg03072.96 7673.01 7372.84 14875.41 23750.24 20780.02 9982.89 8958.36 14074.44 5786.73 9058.90 2480.83 20265.84 10774.46 18587.44 48
K. test v360.47 27457.11 29170.56 20173.74 26448.22 23875.10 20562.55 33358.27 14153.62 34676.31 30327.81 34581.59 18347.42 25139.18 39181.88 221
FA-MVS(test-final)69.82 13268.48 14473.84 11478.44 15950.04 21275.58 19578.99 15858.16 14267.59 16582.14 19742.66 19785.63 9456.60 17476.19 17285.84 100
MVS_111021_LR69.50 14468.78 13871.65 17478.38 16159.33 5674.82 21270.11 27658.08 14367.83 16084.68 13941.96 20576.34 28165.62 10977.54 15279.30 266
SR-MVS-dyc-post74.57 6173.90 6476.58 5983.49 6559.87 4984.29 3781.36 11358.07 14473.14 7790.07 3444.74 18085.84 9168.20 8281.76 10084.03 162
RE-MVS-def73.71 6883.49 6559.87 4984.29 3781.36 11358.07 14473.14 7790.07 3443.06 19568.20 8281.76 10084.03 162
SDMVSNet68.03 17568.10 15467.84 24177.13 20648.72 23365.32 32079.10 15558.02 14665.08 21582.55 18347.83 13773.40 29363.92 12273.92 19381.41 226
sd_testset64.46 23464.45 21864.51 28577.13 20642.25 29762.67 33672.11 26258.02 14665.08 21582.55 18341.22 21969.88 31447.32 25373.92 19381.41 226
GeoE71.01 10770.15 11673.60 13079.57 13052.17 18078.93 11578.12 18258.02 14667.76 16483.87 15952.36 8582.72 16156.90 17375.79 17685.92 97
ZD-MVS86.64 2160.38 4382.70 9157.95 14978.10 2490.06 3656.12 4388.84 2674.05 4787.00 50
EIA-MVS71.78 9670.60 10675.30 8279.85 12453.54 15177.27 15783.26 8257.92 15066.49 18479.39 25252.07 9086.69 6960.05 15479.14 13285.66 110
test_yl69.69 13569.13 13071.36 18378.37 16345.74 26374.71 21480.20 14057.91 15170.01 12083.83 16042.44 20082.87 15554.97 18979.72 11985.48 116
DCV-MVSNet69.69 13569.13 13071.36 18378.37 16345.74 26374.71 21480.20 14057.91 15170.01 12083.83 16042.44 20082.87 15554.97 18979.72 11985.48 116
dcpmvs_274.55 6275.23 5172.48 15582.34 7753.34 15577.87 13881.46 10957.80 15375.49 3886.81 8762.22 1377.75 25471.09 7082.02 9686.34 81
Fast-Effi-MVS+-dtu67.37 18865.33 21173.48 13472.94 27357.78 8377.47 15076.88 20157.60 15461.97 26176.85 29339.31 23280.49 21054.72 19270.28 24982.17 217
v119269.97 12968.68 14073.85 11373.19 26750.94 19377.68 14481.36 11357.51 15568.95 13980.85 22545.28 17685.33 10662.97 13170.37 24585.27 128
ACMH+57.40 1166.12 21364.06 22072.30 16177.79 18452.83 16880.39 9478.03 18357.30 15657.47 30882.55 18327.68 34684.17 12645.54 27169.78 26079.90 256
diffmvspermissive70.69 11470.43 10971.46 17869.45 33048.95 22972.93 24278.46 17457.27 15771.69 10083.97 15851.48 9977.92 25170.70 7277.95 14987.53 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned68.27 17067.29 17271.21 18779.74 12553.22 15776.06 18377.46 19457.19 15866.10 19181.61 20845.37 17583.50 14145.42 27676.68 16876.91 297
thres100view90063.28 24662.41 24465.89 27077.31 20338.66 32772.65 24569.11 28857.07 15962.45 25781.03 21937.01 26279.17 23031.84 36173.25 20879.83 258
DP-MVS Recon72.15 9370.73 10576.40 6286.57 2457.99 7981.15 8782.96 8657.03 16066.78 17885.56 12844.50 18388.11 4051.77 21880.23 11683.10 198
thres600view763.30 24562.27 24566.41 25777.18 20538.87 32572.35 25269.11 28856.98 16162.37 25980.96 22137.01 26279.00 23931.43 36873.05 21281.36 229
V4268.65 16067.35 17172.56 15368.93 33650.18 20972.90 24379.47 15056.92 16269.45 13080.26 23446.29 16282.99 14964.07 11867.82 28584.53 149
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16374.91 4888.19 6259.15 2387.68 5073.67 5187.45 4486.57 74
GA-MVS65.53 22063.70 22771.02 19470.87 31048.10 23970.48 27874.40 24056.69 16464.70 22376.77 29433.66 29481.10 19455.42 18870.32 24883.87 170
v14419269.71 13468.51 14373.33 14073.10 26950.13 21077.54 14880.64 13356.65 16568.57 14380.55 22846.87 15884.96 11362.98 13069.66 26484.89 141
tfpn200view963.18 24862.18 24766.21 26276.85 21339.62 31971.96 25969.44 28456.63 16662.61 25279.83 24037.18 25679.17 23031.84 36173.25 20879.83 258
thres40063.31 24462.18 24766.72 25276.85 21339.62 31971.96 25969.44 28456.63 16662.61 25279.83 24037.18 25679.17 23031.84 36173.25 20881.36 229
GBi-Net67.21 19066.55 18569.19 22577.63 19043.33 28677.31 15377.83 18656.62 16865.04 21782.70 17741.85 20780.33 21247.18 25572.76 21583.92 167
test167.21 19066.55 18569.19 22577.63 19043.33 28677.31 15377.83 18656.62 16865.04 21782.70 17741.85 20780.33 21247.18 25572.76 21583.92 167
FMVSNet266.93 20066.31 19668.79 23277.63 19042.98 29176.11 18177.47 19256.62 16865.22 21482.17 19541.85 20780.18 21847.05 25872.72 21883.20 193
DPM-MVS75.47 5175.00 5276.88 5181.38 9359.16 5979.94 10185.71 2256.59 17172.46 9386.76 8856.89 3687.86 4766.36 10088.91 2583.64 184
v192192069.47 14568.17 15273.36 13973.06 27050.10 21177.39 15180.56 13456.58 17268.59 14180.37 23044.72 18184.98 11162.47 13669.82 25985.00 136
FMVSNet166.70 20565.87 20269.19 22577.49 19843.33 28677.31 15377.83 18656.45 17364.60 22582.70 17738.08 24880.33 21246.08 26472.31 22383.92 167
v124069.24 15167.91 15573.25 14373.02 27249.82 21577.21 15880.54 13556.43 17468.34 14780.51 22943.33 19384.99 10962.03 14069.77 26284.95 140
testing22262.29 25861.31 25765.25 28077.87 18138.53 32968.34 29566.31 30756.37 17563.15 24477.58 28428.47 34076.18 28437.04 33076.65 16981.05 239
CDPH-MVS76.31 3975.67 4578.22 3785.35 4859.14 6281.31 8584.02 5256.32 17674.05 6288.98 5453.34 7387.92 4569.23 7988.42 2887.59 44
Vis-MVSNet (Re-imp)63.69 24163.88 22363.14 29474.75 24731.04 38471.16 26963.64 32656.32 17659.80 28584.99 13544.51 18275.46 28539.12 31880.62 10782.92 200
AdaColmapbinary69.99 12868.66 14173.97 11284.94 5457.83 8182.63 6578.71 16456.28 17864.34 22684.14 15241.57 21187.06 6246.45 26178.88 13477.02 293
PS-MVSNAJss72.24 8871.21 9675.31 8178.50 15655.93 11281.63 7982.12 9756.24 17970.02 11985.68 12747.05 15384.34 12565.27 11174.41 18885.67 109
c3_l68.33 16967.56 16070.62 20070.87 31046.21 25974.47 21978.80 16256.22 18066.19 19078.53 26751.88 9281.40 18662.08 13769.04 27384.25 156
Fast-Effi-MVS+70.28 12369.12 13273.73 12178.50 15651.50 19075.01 20679.46 15156.16 18168.59 14179.55 24853.97 6284.05 12853.34 20477.53 15385.65 111
PHI-MVS75.87 4575.36 4877.41 4680.62 11155.91 11384.28 3985.78 2056.08 18273.41 7086.58 9850.94 10788.54 2970.79 7189.71 1787.79 37
baseline163.81 24063.87 22463.62 28976.29 22336.36 35071.78 26167.29 29856.05 18364.23 23182.95 17547.11 15274.41 29047.30 25461.85 33380.10 254
train_agg76.27 4076.15 3876.64 5885.58 4361.59 2481.62 8081.26 12055.86 18474.93 4688.81 5653.70 6984.68 11975.24 3888.33 3083.65 183
test_885.40 4660.96 3481.54 8381.18 12355.86 18474.81 5188.80 5853.70 6984.45 123
FMVSNet366.32 21265.61 20768.46 23576.48 22142.34 29574.98 20877.15 19955.83 18665.04 21781.16 21539.91 22580.14 21947.18 25572.76 21582.90 202
PAPR71.72 9970.82 10374.41 10181.20 9851.17 19179.55 11183.33 7855.81 18766.93 17784.61 14350.95 10686.06 8455.79 18279.20 13086.00 94
eth_miper_zixun_eth67.63 18466.28 19771.67 17371.60 29648.33 23773.68 23577.88 18455.80 18865.91 19578.62 26547.35 15082.88 15459.45 16166.25 29783.81 172
ACMH55.70 1565.20 22663.57 22970.07 20978.07 17552.01 18579.48 11279.69 14455.75 18956.59 31580.98 22027.12 35180.94 19842.90 29771.58 23177.25 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS56.42 1265.40 22362.73 24173.40 13874.89 24252.78 16973.09 24175.13 23055.69 19058.48 30273.73 32832.86 30386.32 8250.63 22670.11 25281.10 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CL-MVSNet_self_test61.53 26660.94 26363.30 29268.95 33536.93 34667.60 30172.80 25755.67 19159.95 28276.63 29645.01 17972.22 30039.74 31662.09 33280.74 244
bld_raw_conf0374.74 5674.04 6276.85 5280.93 10253.06 16178.62 12085.13 3255.66 19271.53 10385.93 12053.98 6088.69 2767.93 8686.63 5788.80 9
TEST985.58 4361.59 2481.62 8081.26 12055.65 19374.93 4688.81 5653.70 6984.68 119
thres20062.20 25961.16 26165.34 27875.38 23839.99 31569.60 28769.29 28655.64 19461.87 26376.99 29037.07 26178.96 24031.28 36973.28 20777.06 292
pm-mvs165.24 22564.97 21566.04 26772.38 28539.40 32272.62 24775.63 21755.53 19562.35 26083.18 17347.45 14676.47 27949.06 24066.54 29582.24 214
testing1162.81 25161.90 25065.54 27478.38 16140.76 31167.59 30266.78 30355.48 19660.13 27777.11 28831.67 31976.79 27145.53 27274.45 18679.06 267
ACMM61.98 770.80 11369.73 12174.02 11080.59 11258.59 7482.68 6482.02 9955.46 19767.18 17284.39 14938.51 24183.17 14760.65 15076.10 17380.30 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052969.91 13069.02 13372.56 15380.19 11847.65 24577.56 14780.99 12855.45 19869.88 12386.76 8839.24 23582.18 17354.04 19777.10 16387.85 33
tt080567.77 18267.24 17769.34 22474.87 24440.08 31377.36 15281.37 11255.31 19966.33 18884.65 14137.35 25482.55 16655.65 18572.28 22485.39 123
CPTT-MVS72.78 7872.08 8374.87 8784.88 5761.41 2684.15 4377.86 18555.27 20067.51 16788.08 6541.93 20681.85 17869.04 8080.01 11781.35 231
XVG-OURS68.76 15967.37 16972.90 14774.32 25957.22 8970.09 28378.81 16155.24 20167.79 16285.81 12636.54 26578.28 24562.04 13975.74 17783.19 194
tfpnnormal62.47 25461.63 25364.99 28274.81 24639.01 32471.22 26773.72 24955.22 20260.21 27680.09 23841.26 21876.98 26730.02 37468.09 28378.97 270
cl____67.18 19366.26 19869.94 21170.20 31845.74 26373.30 23776.83 20355.10 20365.27 20879.57 24747.39 14880.53 20759.41 16369.22 27183.53 186
DIV-MVS_self_test67.18 19366.26 19869.94 21170.20 31845.74 26373.29 23876.83 20355.10 20365.27 20879.58 24647.38 14980.53 20759.43 16269.22 27183.54 185
PC_three_145255.09 20584.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 16
EPNet_dtu61.90 26261.97 24961.68 30272.89 27439.78 31775.85 18965.62 31155.09 20554.56 33679.36 25337.59 25167.02 33039.80 31576.95 16478.25 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu71.45 10370.39 11074.65 9282.01 8058.82 7179.93 10280.35 13955.09 20565.82 20082.16 19649.17 12282.64 16460.34 15278.62 14182.50 209
cl2267.47 18766.45 18770.54 20269.85 32646.49 25573.85 23277.35 19655.07 20865.51 20377.92 27447.64 14181.10 19461.58 14569.32 26784.01 164
miper_ehance_all_eth68.03 17567.24 17770.40 20470.54 31346.21 25973.98 22578.68 16655.07 20866.05 19277.80 27852.16 8981.31 18961.53 14669.32 26783.67 180
PS-MVSNAJ70.51 11769.70 12272.93 14681.52 8855.79 11674.92 21079.00 15755.04 21069.88 12378.66 26247.05 15382.19 17261.61 14379.58 12280.83 242
xiu_mvs_v2_base70.52 11669.75 12072.84 14881.21 9755.63 12075.11 20378.92 15954.92 21169.96 12279.68 24547.00 15782.09 17461.60 14479.37 12580.81 243
MAR-MVS71.51 10170.15 11675.60 7781.84 8459.39 5581.38 8482.90 8854.90 21268.08 15378.70 26047.73 13885.51 9951.68 22084.17 7481.88 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-OURS-SEG-HR68.81 15667.47 16672.82 15074.40 25756.87 9970.59 27679.04 15654.77 21366.99 17586.01 11739.57 23078.21 24662.54 13473.33 20683.37 188
testing356.54 30255.92 30458.41 32377.52 19727.93 39369.72 28656.36 36354.75 21458.63 30077.80 27820.88 37771.75 30325.31 39062.25 33075.53 308
Anonymous2023121169.28 14968.47 14671.73 17180.28 11347.18 25179.98 10082.37 9454.61 21567.24 17084.01 15639.43 23182.41 17055.45 18772.83 21485.62 112
SixPastTwentyTwo61.65 26558.80 27970.20 20775.80 22947.22 25075.59 19369.68 27954.61 21554.11 34079.26 25527.07 35282.96 15043.27 29149.79 37880.41 248
test_040263.25 24761.01 26269.96 21080.00 12254.37 14076.86 16972.02 26354.58 21758.71 29780.79 22735.00 27784.36 12426.41 38864.71 30871.15 357
tttt051767.83 18165.66 20674.33 10376.69 21550.82 19777.86 13973.99 24754.54 21864.64 22482.53 18635.06 27685.50 10055.71 18369.91 25786.67 70
BH-w/o66.85 20165.83 20369.90 21479.29 13452.46 17674.66 21676.65 20654.51 21964.85 22178.12 26845.59 16882.95 15143.26 29275.54 18074.27 324
AUN-MVS68.45 16866.41 19174.57 9779.53 13157.08 9773.93 22975.23 22754.44 22066.69 18181.85 20337.10 26082.89 15362.07 13866.84 29283.75 177
LTVRE_ROB55.42 1663.15 24961.23 26068.92 23076.57 21947.80 24259.92 35276.39 20754.35 22158.67 29882.46 18829.44 33481.49 18542.12 30171.14 23577.46 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf_n73.01 7572.59 7774.27 10571.28 30555.88 11478.21 13075.56 21954.31 22274.86 5087.80 7254.72 5380.23 21678.07 2178.48 14286.70 68
test_fmvsmconf0.01_n72.17 9071.50 8874.16 10867.96 34255.58 12378.06 13574.67 23754.19 22374.54 5688.23 6150.35 11280.24 21578.07 2177.46 15586.65 72
test_fmvsmconf0.1_n72.81 7772.33 8074.24 10669.89 32555.81 11578.22 12975.40 22354.17 22475.00 4588.03 6853.82 6680.23 21678.08 2078.34 14586.69 69
ETVMVS59.51 28358.81 27761.58 30477.46 19934.87 36164.94 32559.35 34954.06 22561.08 27276.67 29529.54 33171.87 30232.16 35774.07 19178.01 281
ab-mvs66.65 20666.42 19067.37 24776.17 22541.73 30270.41 28076.14 21153.99 22665.98 19383.51 16749.48 11776.24 28248.60 24373.46 20484.14 160
IU-MVS87.77 459.15 6085.53 2653.93 22784.64 379.07 1190.87 588.37 18
XVG-ACMP-BASELINE64.36 23662.23 24670.74 19872.35 28652.45 17770.80 27578.45 17553.84 22859.87 28381.10 21716.24 38479.32 22755.64 18671.76 22880.47 246
FE-MVS65.91 21563.33 23373.63 12877.36 20251.95 18672.62 24775.81 21453.70 22965.31 20678.96 25828.81 33986.39 7943.93 28573.48 20382.55 206
thisisatest053067.92 17965.78 20474.33 10376.29 22351.03 19276.89 16774.25 24453.67 23065.59 20281.76 20535.15 27585.50 10055.94 17872.47 21986.47 76
PVSNet_BlendedMVS68.56 16567.72 15771.07 19377.03 21050.57 20174.50 21881.52 10653.66 23164.22 23279.72 24449.13 12382.87 15555.82 18073.92 19379.77 261
patch_mono-269.85 13171.09 9966.16 26379.11 14254.80 13571.97 25874.31 24253.50 23270.90 10884.17 15157.63 3163.31 34466.17 10182.02 9680.38 249
EG-PatchMatch MVS64.71 23062.87 23870.22 20577.68 18753.48 15277.99 13678.82 16053.37 23356.03 32077.41 28624.75 36684.04 12946.37 26273.42 20573.14 330
DP-MVS65.68 21763.66 22871.75 17084.93 5556.87 9980.74 9273.16 25453.06 23459.09 29482.35 18936.79 26485.94 8932.82 35569.96 25672.45 338
TR-MVS66.59 20965.07 21471.17 19079.18 13949.63 22173.48 23675.20 22952.95 23567.90 15480.33 23339.81 22883.68 13743.20 29373.56 20180.20 251
ET-MVSNet_ETH3D67.96 17865.72 20574.68 9076.67 21655.62 12275.11 20374.74 23552.91 23660.03 28080.12 23633.68 29382.64 16461.86 14176.34 17085.78 102
QAPM70.05 12668.81 13773.78 11676.54 22053.43 15383.23 5483.48 7152.89 23765.90 19686.29 10741.55 21386.49 7751.01 22378.40 14481.42 225
OpenMVScopyleft61.03 968.85 15567.56 16072.70 15274.26 26053.99 14381.21 8681.34 11752.70 23862.75 24985.55 13038.86 23984.14 12748.41 24583.01 8179.97 255
pmmvs663.69 24162.82 24066.27 26170.63 31239.27 32373.13 24075.47 22252.69 23959.75 28782.30 19139.71 22977.03 26547.40 25264.35 31382.53 207
IterMVS62.79 25261.27 25867.35 24869.37 33152.04 18471.17 26868.24 29352.63 24059.82 28476.91 29237.32 25572.36 29752.80 20863.19 32377.66 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_tets68.18 17366.36 19373.63 12875.61 23355.35 12880.77 9178.56 16952.48 24164.27 22984.10 15427.45 34881.84 17963.45 12970.56 24283.69 179
jajsoiax68.25 17166.45 18773.66 12575.62 23255.49 12580.82 9078.51 17152.33 24264.33 22784.11 15328.28 34281.81 18063.48 12870.62 24083.67 180
TAMVS66.78 20465.27 21271.33 18679.16 14153.67 14773.84 23369.59 28152.32 24365.28 20781.72 20644.49 18477.40 26042.32 30078.66 14082.92 200
CDS-MVSNet66.80 20365.37 20971.10 19278.98 14453.13 16073.27 23971.07 26952.15 24464.72 22280.23 23543.56 19177.10 26345.48 27478.88 13483.05 199
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsmamba68.47 16666.56 18474.21 10779.60 12852.95 16374.94 20975.48 22152.09 24560.10 27883.27 17036.54 26584.70 11859.32 16477.69 15184.99 138
PVSNet_Blended68.59 16167.72 15771.19 18877.03 21050.57 20172.51 25081.52 10651.91 24664.22 23277.77 28149.13 12382.87 15555.82 18079.58 12280.14 253
mvs_anonymous68.03 17567.51 16469.59 21972.08 29044.57 27771.99 25775.23 22751.67 24767.06 17482.57 18254.68 5477.94 24956.56 17575.71 17886.26 89
xiu_mvs_v1_base_debu68.58 16267.28 17372.48 15578.19 16957.19 9175.28 19875.09 23151.61 24870.04 11681.41 21232.79 30479.02 23663.81 12477.31 15681.22 233
xiu_mvs_v1_base68.58 16267.28 17372.48 15578.19 16957.19 9175.28 19875.09 23151.61 24870.04 11681.41 21232.79 30479.02 23663.81 12477.31 15681.22 233
xiu_mvs_v1_base_debi68.58 16267.28 17372.48 15578.19 16957.19 9175.28 19875.09 23151.61 24870.04 11681.41 21232.79 30479.02 23663.81 12477.31 15681.22 233
MVSTER67.16 19565.58 20871.88 16670.37 31749.70 21770.25 28278.45 17551.52 25169.16 13780.37 23038.45 24282.50 16760.19 15371.46 23283.44 187
CNLPA65.43 22164.02 22169.68 21778.73 15258.07 7877.82 14270.71 27251.49 25261.57 26883.58 16638.23 24670.82 30643.90 28670.10 25380.16 252
原ACMM174.69 8985.39 4759.40 5483.42 7451.47 25370.27 11486.61 9648.61 12986.51 7653.85 20087.96 3978.16 275
miper_enhance_ethall67.11 19666.09 20070.17 20869.21 33345.98 26172.85 24478.41 17851.38 25465.65 20175.98 30851.17 10381.25 19060.82 14969.32 26783.29 191
MSDG61.81 26459.23 27469.55 22272.64 27752.63 17270.45 27975.81 21451.38 25453.70 34376.11 30429.52 33281.08 19637.70 32565.79 30174.93 316
test20.0353.87 32254.02 32153.41 35461.47 37628.11 39261.30 34459.21 35051.34 25652.09 35277.43 28533.29 29858.55 36529.76 37560.27 34473.58 329
MVSFormer71.50 10270.38 11174.88 8678.76 15057.15 9482.79 6178.48 17251.26 25769.49 12883.22 17143.99 18883.24 14566.06 10279.37 12584.23 157
test_djsdf69.45 14667.74 15674.58 9674.57 25354.92 13382.79 6178.48 17251.26 25765.41 20583.49 16838.37 24383.24 14566.06 10269.25 27085.56 113
dmvs_testset50.16 33951.90 32944.94 37466.49 35211.78 41461.01 34951.50 37751.17 25950.30 36467.44 36839.28 23360.29 35522.38 39457.49 35362.76 379
PAPM67.92 17966.69 18371.63 17578.09 17449.02 22777.09 16181.24 12251.04 26060.91 27383.98 15747.71 13984.99 10940.81 30979.32 12880.90 241
Syy-MVS56.00 30956.23 30255.32 34074.69 24926.44 39965.52 31557.49 35850.97 26156.52 31672.18 33539.89 22668.09 32124.20 39164.59 31171.44 353
myMVS_eth3d54.86 31854.61 31355.61 33974.69 24927.31 39665.52 31557.49 35850.97 26156.52 31672.18 33521.87 37568.09 32127.70 38264.59 31171.44 353
miper_lstm_enhance62.03 26160.88 26465.49 27666.71 35046.25 25756.29 37075.70 21650.68 26361.27 27075.48 31540.21 22468.03 32356.31 17765.25 30482.18 215
gg-mvs-nofinetune57.86 29356.43 30062.18 30072.62 27835.35 36066.57 30656.33 36450.65 26457.64 30757.10 39030.65 32276.36 28037.38 32778.88 13474.82 318
TAPA-MVS59.36 1066.60 20765.20 21370.81 19676.63 21748.75 23176.52 17480.04 14250.64 26565.24 21284.93 13639.15 23678.54 24236.77 33276.88 16585.14 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_re56.77 30156.83 29656.61 33469.23 33241.02 30758.37 35764.18 32250.59 26657.45 30971.42 34335.54 27258.94 36337.23 32867.45 28869.87 366
MVP-Stereo65.41 22263.80 22570.22 20577.62 19455.53 12476.30 17778.53 17050.59 26656.47 31878.65 26339.84 22782.68 16244.10 28472.12 22672.44 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PCF-MVS61.88 870.95 10969.49 12575.35 8077.63 19055.71 11776.04 18581.81 10250.30 26869.66 12685.40 13452.51 8184.89 11451.82 21780.24 11585.45 118
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline263.42 24361.26 25969.89 21572.55 28047.62 24671.54 26268.38 29250.11 26954.82 33275.55 31343.06 19580.96 19748.13 24867.16 29181.11 236
test-LLR58.15 29158.13 28758.22 32568.57 33744.80 27365.46 31757.92 35550.08 27055.44 32469.82 35632.62 31057.44 36949.66 23473.62 19872.41 340
test0.0.03 153.32 32753.59 32452.50 36062.81 37129.45 38759.51 35354.11 37250.08 27054.40 33874.31 32432.62 31055.92 37830.50 37263.95 31672.15 345
fmvsm_s_conf0.5_n69.58 14068.84 13671.79 16972.31 28852.90 16577.90 13762.43 33649.97 27272.85 8685.90 12152.21 8776.49 27775.75 3370.26 25085.97 95
COLMAP_ROBcopyleft52.97 1761.27 27058.81 27768.64 23374.63 25152.51 17578.42 12673.30 25249.92 27350.96 35681.51 21123.06 36979.40 22531.63 36565.85 29974.01 327
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_a69.54 14268.74 13971.93 16472.47 28353.82 14578.25 12762.26 33849.78 27473.12 7986.21 10952.66 7976.79 27175.02 3968.88 27585.18 130
WBMVS60.54 27260.61 26660.34 31178.00 17835.95 35764.55 32764.89 31549.63 27563.39 23978.70 26033.85 29167.65 32542.10 30270.35 24777.43 286
tpmvs58.47 28756.95 29463.03 29670.20 31841.21 30667.90 29967.23 29949.62 27654.73 33470.84 34734.14 28576.24 28236.64 33661.29 33771.64 349
fmvsm_s_conf0.1_n69.41 14768.60 14271.83 16771.07 30752.88 16777.85 14062.44 33549.58 27772.97 8286.22 10851.68 9776.48 27875.53 3470.10 25386.14 90
UBG59.62 28259.53 27259.89 31278.12 17335.92 35864.11 33160.81 34649.45 27861.34 26975.55 31333.05 29967.39 32838.68 32074.62 18476.35 301
thisisatest051565.83 21663.50 23072.82 15073.75 26349.50 22271.32 26573.12 25549.39 27963.82 23476.50 30234.95 27884.84 11753.20 20675.49 18184.13 161
fmvsm_s_conf0.1_n_a69.32 14868.44 14871.96 16370.91 30953.78 14678.12 13362.30 33749.35 28073.20 7586.55 10151.99 9176.79 27174.83 4168.68 28085.32 125
HY-MVS56.14 1364.55 23363.89 22266.55 25574.73 24841.02 30769.96 28474.43 23949.29 28161.66 26680.92 22247.43 14776.68 27544.91 27971.69 22981.94 219
MIMVSNet155.17 31654.31 31857.77 33070.03 32232.01 38165.68 31364.81 31649.19 28246.75 37476.00 30525.53 36264.04 34228.65 37962.13 33177.26 290
SCA60.49 27358.38 28366.80 25174.14 26248.06 24063.35 33363.23 32949.13 28359.33 29372.10 33737.45 25274.27 29144.17 28162.57 32778.05 277
test_fmvsmvis_n_192070.84 11070.38 11172.22 16271.16 30655.39 12775.86 18872.21 26149.03 28473.28 7386.17 11151.83 9477.29 26175.80 3278.05 14783.98 165
testgi51.90 33152.37 32850.51 36660.39 38423.55 40658.42 35658.15 35349.03 28451.83 35379.21 25622.39 37055.59 37929.24 37862.64 32672.40 342
MIMVSNet57.35 29557.07 29258.22 32574.21 26137.18 34162.46 33760.88 34548.88 28655.29 32775.99 30731.68 31862.04 34931.87 36072.35 22175.43 310
gm-plane-assit71.40 30241.72 30448.85 28773.31 33082.48 16948.90 241
fmvsm_l_conf0.5_n70.99 10870.82 10371.48 17771.45 29854.40 13977.18 15970.46 27448.67 28875.17 4186.86 8553.77 6776.86 26976.33 3077.51 15483.17 197
UWE-MVS60.18 27559.78 27061.39 30777.67 18833.92 37369.04 29363.82 32448.56 28964.27 22977.64 28327.20 35070.40 31133.56 35276.24 17179.83 258
cascas65.98 21463.42 23173.64 12777.26 20452.58 17372.26 25477.21 19848.56 28961.21 27174.60 32232.57 31385.82 9250.38 22876.75 16782.52 208
PLCcopyleft56.13 1465.09 22763.21 23570.72 19981.04 10054.87 13478.57 12377.47 19248.51 29155.71 32181.89 20233.71 29279.71 22041.66 30670.37 24577.58 284
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D64.71 23062.50 24371.34 18579.72 12755.71 11779.82 10474.72 23648.50 29256.62 31484.62 14233.59 29582.34 17129.65 37675.23 18275.97 302
anonymousdsp67.00 19964.82 21673.57 13170.09 32156.13 10776.35 17677.35 19648.43 29364.99 22080.84 22633.01 30180.34 21164.66 11567.64 28784.23 157
无先验79.66 10974.30 24348.40 29480.78 20453.62 20179.03 269
114514_t70.83 11169.56 12374.64 9386.21 3154.63 13682.34 7081.81 10248.22 29563.01 24685.83 12440.92 22187.10 6057.91 16779.79 11882.18 215
tpm57.34 29658.16 28554.86 34371.80 29534.77 36367.47 30456.04 36748.20 29660.10 27876.92 29137.17 25853.41 38640.76 31065.01 30576.40 300
test_fmvsm_n_192071.73 9871.14 9873.50 13272.52 28156.53 10175.60 19276.16 20948.11 29777.22 2885.56 12853.10 7677.43 25874.86 4077.14 16186.55 75
MDA-MVSNet-bldmvs53.87 32250.81 33463.05 29566.25 35448.58 23456.93 36863.82 32448.09 29841.22 38670.48 35230.34 32568.00 32434.24 34745.92 38372.57 336
XXY-MVS60.68 27161.67 25257.70 33170.43 31538.45 33064.19 32966.47 30448.05 29963.22 24080.86 22449.28 12060.47 35345.25 27867.28 29074.19 325
F-COLMAP63.05 25060.87 26569.58 22176.99 21253.63 14978.12 13376.16 20947.97 30052.41 35181.61 20827.87 34478.11 24740.07 31266.66 29477.00 294
fmvsm_l_conf0.5_n_a70.50 11870.27 11371.18 18971.30 30454.09 14176.89 16769.87 27747.90 30174.37 5986.49 10253.07 7776.69 27475.41 3577.11 16282.76 204
Patchmatch-RL test58.16 29055.49 30766.15 26467.92 34348.89 23060.66 35051.07 38047.86 30259.36 29062.71 38434.02 28872.27 29956.41 17659.40 34677.30 288
D2MVS62.30 25760.29 26868.34 23866.46 35348.42 23665.70 31273.42 25147.71 30358.16 30475.02 31830.51 32377.71 25553.96 19971.68 23078.90 271
ANet_high41.38 35837.47 36553.11 35639.73 41124.45 40456.94 36769.69 27847.65 30426.04 40352.32 39312.44 39262.38 34821.80 39510.61 41272.49 337
CostFormer64.04 23862.51 24268.61 23471.88 29345.77 26271.30 26670.60 27347.55 30564.31 22876.61 29841.63 21079.62 22349.74 23269.00 27480.42 247
PatchmatchNetpermissive59.84 27858.24 28464.65 28473.05 27146.70 25469.42 28962.18 33947.55 30558.88 29671.96 33934.49 28269.16 31642.99 29563.60 31878.07 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_self_test55.22 31553.89 32259.21 31757.80 38927.47 39557.75 36374.32 24147.38 30750.90 35770.00 35528.45 34170.30 31240.44 31157.92 35179.87 257
ITE_SJBPF62.09 30166.16 35544.55 27864.32 32047.36 30855.31 32680.34 23219.27 37862.68 34736.29 34062.39 32979.04 268
KD-MVS_2432*160053.45 32451.50 33259.30 31462.82 36937.14 34255.33 37171.79 26547.34 30955.09 32970.52 35021.91 37370.45 30935.72 34242.97 38670.31 362
miper_refine_blended53.45 32451.50 33259.30 31462.82 36937.14 34255.33 37171.79 26547.34 30955.09 32970.52 35021.91 37370.45 30935.72 34242.97 38670.31 362
OurMVSNet-221017-061.37 26958.63 28169.61 21872.05 29148.06 24073.93 22972.51 25847.23 31154.74 33380.92 22221.49 37681.24 19148.57 24456.22 35979.53 263
tpmrst58.24 28958.70 28056.84 33366.97 34734.32 36869.57 28861.14 34447.17 31258.58 30171.60 34241.28 21760.41 35449.20 23862.84 32575.78 305
PVSNet50.76 1958.40 28857.39 29061.42 30575.53 23544.04 28161.43 34263.45 32747.04 31356.91 31273.61 32927.00 35364.76 34039.12 31872.40 22075.47 309
WB-MVSnew59.66 28059.69 27159.56 31375.19 24135.78 35969.34 29064.28 32146.88 31461.76 26575.79 30940.61 22265.20 33932.16 35771.21 23477.70 282
FMVSNet555.86 31054.93 31058.66 32271.05 30836.35 35164.18 33062.48 33446.76 31550.66 36174.73 32125.80 36064.04 34233.11 35365.57 30275.59 307
jason69.65 13868.39 15073.43 13778.27 16756.88 9877.12 16073.71 25046.53 31669.34 13283.22 17143.37 19279.18 22964.77 11479.20 13084.23 157
jason: jason.
MS-PatchMatch62.42 25561.46 25565.31 27975.21 24052.10 18172.05 25674.05 24646.41 31757.42 31074.36 32334.35 28477.57 25745.62 27073.67 19766.26 376
1112_ss64.00 23963.36 23265.93 26979.28 13542.58 29471.35 26472.36 26046.41 31760.55 27577.89 27646.27 16373.28 29446.18 26369.97 25581.92 220
lupinMVS69.57 14168.28 15173.44 13678.76 15057.15 9476.57 17273.29 25346.19 31969.49 12882.18 19343.99 18879.23 22864.66 11579.37 12583.93 166
testdata64.66 28381.52 8852.93 16465.29 31346.09 32073.88 6587.46 7738.08 24866.26 33553.31 20578.48 14274.78 319
UnsupCasMVSNet_eth53.16 32952.47 32755.23 34159.45 38533.39 37659.43 35469.13 28745.98 32150.35 36372.32 33429.30 33558.26 36742.02 30444.30 38474.05 326
AllTest57.08 29854.65 31264.39 28671.44 29949.03 22569.92 28567.30 29645.97 32247.16 37179.77 24217.47 37967.56 32633.65 34959.16 34776.57 298
TestCases64.39 28671.44 29949.03 22567.30 29645.97 32247.16 37179.77 24217.47 37967.56 32633.65 34959.16 34776.57 298
WTY-MVS59.75 27960.39 26757.85 32972.32 28737.83 33561.05 34864.18 32245.95 32461.91 26279.11 25747.01 15660.88 35242.50 29969.49 26674.83 317
IterMVS-SCA-FT62.49 25361.52 25465.40 27771.99 29250.80 19871.15 27069.63 28045.71 32560.61 27477.93 27337.45 25265.99 33655.67 18463.50 32079.42 264
WB-MVS43.26 35243.41 35242.83 37863.32 36810.32 41658.17 35945.20 39445.42 32640.44 38967.26 37134.01 28958.98 36211.96 40724.88 40159.20 382
旧先验276.08 18245.32 32776.55 3365.56 33858.75 165
OpenMVS_ROBcopyleft52.78 1860.03 27658.14 28665.69 27370.47 31444.82 27275.33 19770.86 27145.04 32856.06 31976.00 30526.89 35479.65 22135.36 34467.29 28972.60 335
TinyColmap54.14 31951.72 33061.40 30666.84 34941.97 29966.52 30768.51 29144.81 32942.69 38575.77 31011.66 39472.94 29531.96 35956.77 35769.27 370
MDTV_nov1_ep1357.00 29372.73 27638.26 33165.02 32464.73 31844.74 33055.46 32372.48 33332.61 31270.47 30837.47 32667.75 286
新几何170.76 19785.66 4161.13 3066.43 30544.68 33170.29 11386.64 9341.29 21675.23 28649.72 23381.75 10275.93 303
Patchmtry57.16 29756.47 29959.23 31669.17 33434.58 36662.98 33463.15 33044.53 33256.83 31374.84 31935.83 27068.71 31840.03 31360.91 33874.39 323
ppachtmachnet_test58.06 29255.38 30866.10 26669.51 32848.99 22868.01 29866.13 30844.50 33354.05 34170.74 34832.09 31772.34 29836.68 33556.71 35876.99 296
PatchT53.17 32853.44 32552.33 36168.29 34125.34 40358.21 35854.41 37144.46 33454.56 33669.05 36233.32 29760.94 35136.93 33161.76 33570.73 360
EPMVS53.96 32053.69 32354.79 34466.12 35631.96 38262.34 33949.05 38444.42 33555.54 32271.33 34530.22 32656.70 37241.65 30762.54 32875.71 306
pmmvs461.48 26859.39 27367.76 24271.57 29753.86 14471.42 26365.34 31244.20 33659.46 28977.92 27435.90 26974.71 28843.87 28764.87 30774.71 320
dp51.89 33251.60 33152.77 35868.44 34032.45 38062.36 33854.57 37044.16 33749.31 36667.91 36428.87 33856.61 37433.89 34854.89 36269.24 371
PatchMatch-RL56.25 30754.55 31461.32 30877.06 20956.07 10965.57 31454.10 37344.13 33853.49 34971.27 34625.20 36366.78 33136.52 33863.66 31761.12 380
our_test_356.49 30354.42 31562.68 29869.51 32845.48 26866.08 31061.49 34244.11 33950.73 36069.60 35933.05 29968.15 32038.38 32256.86 35574.40 322
USDC56.35 30654.24 31962.69 29764.74 36140.31 31265.05 32373.83 24843.93 34047.58 36977.71 28215.36 38775.05 28738.19 32461.81 33472.70 334
PM-MVS52.33 33050.19 33858.75 32162.10 37445.14 27165.75 31140.38 40143.60 34153.52 34772.65 3329.16 40265.87 33750.41 22754.18 36565.24 378
pmmvs-eth3d58.81 28656.31 30166.30 26067.61 34452.42 17872.30 25364.76 31743.55 34254.94 33174.19 32528.95 33672.60 29643.31 29057.21 35473.88 328
SSC-MVS41.96 35741.99 35641.90 37962.46 3739.28 41857.41 36644.32 39743.38 34338.30 39566.45 37432.67 30958.42 36610.98 40821.91 40457.99 386
new-patchmatchnet47.56 34647.73 34647.06 36958.81 3879.37 41748.78 38859.21 35043.28 34444.22 38168.66 36325.67 36157.20 37131.57 36749.35 37974.62 321
Test_1112_low_res62.32 25661.77 25164.00 28879.08 14339.53 32168.17 29670.17 27543.25 34559.03 29579.90 23944.08 18671.24 30543.79 28868.42 28181.25 232
RPMNet61.53 26658.42 28270.86 19569.96 32352.07 18265.31 32181.36 11343.20 34659.36 29070.15 35435.37 27385.47 10236.42 33964.65 30975.06 312
tpm262.07 26060.10 26967.99 24072.79 27543.86 28271.05 27366.85 30243.14 34762.77 24775.39 31638.32 24480.80 20341.69 30568.88 27579.32 265
JIA-IIPM51.56 33347.68 34763.21 29364.61 36250.73 19947.71 39058.77 35242.90 34848.46 36851.72 39424.97 36470.24 31336.06 34153.89 36668.64 372
131464.61 23263.21 23568.80 23171.87 29447.46 24873.95 22778.39 18042.88 34959.97 28176.60 29938.11 24779.39 22654.84 19172.32 22279.55 262
HyFIR lowres test65.67 21863.01 23773.67 12479.97 12355.65 11969.07 29275.52 22042.68 35063.53 23777.95 27240.43 22381.64 18146.01 26571.91 22783.73 178
CR-MVSNet59.91 27757.90 28965.96 26869.96 32352.07 18265.31 32163.15 33042.48 35159.36 29074.84 31935.83 27070.75 30745.50 27364.65 30975.06 312
test22283.14 6858.68 7372.57 24963.45 32741.78 35267.56 16686.12 11237.13 25978.73 13974.98 315
TDRefinement53.44 32650.72 33561.60 30364.31 36446.96 25270.89 27465.27 31441.78 35244.61 38077.98 27111.52 39666.36 33428.57 38051.59 37271.49 352
sss56.17 30856.57 29854.96 34266.93 34836.32 35357.94 36061.69 34141.67 35458.64 29975.32 31738.72 24056.25 37642.04 30366.19 29872.31 343
PVSNet_043.31 2047.46 34745.64 35052.92 35767.60 34544.65 27554.06 37654.64 36941.59 35546.15 37658.75 38730.99 32158.66 36432.18 35624.81 40255.46 390
MVS67.37 18866.33 19470.51 20375.46 23650.94 19373.95 22781.85 10141.57 35662.54 25478.57 26647.98 13485.47 10252.97 20782.05 9575.14 311
Anonymous2024052155.30 31354.41 31657.96 32860.92 38341.73 30271.09 27271.06 27041.18 35748.65 36773.31 33016.93 38159.25 36042.54 29864.01 31472.90 332
Anonymous2023120655.10 31755.30 30954.48 34569.81 32733.94 37262.91 33562.13 34041.08 35855.18 32875.65 31132.75 30756.59 37530.32 37367.86 28472.91 331
MDA-MVSNet_test_wron50.71 33848.95 34056.00 33861.17 37841.84 30051.90 38256.45 36140.96 35944.79 37967.84 36530.04 32855.07 38336.71 33450.69 37571.11 358
YYNet150.73 33748.96 33956.03 33761.10 37941.78 30151.94 38156.44 36240.94 36044.84 37867.80 36630.08 32755.08 38236.77 33250.71 37471.22 355
dongtai34.52 36734.94 36733.26 38861.06 38016.00 41352.79 38023.78 41440.71 36139.33 39348.65 40216.91 38248.34 39412.18 40619.05 40635.44 405
CHOSEN 1792x268865.08 22862.84 23971.82 16881.49 9056.26 10566.32 30974.20 24540.53 36263.16 24378.65 26341.30 21577.80 25345.80 26774.09 19081.40 228
pmmvs556.47 30455.68 30658.86 32061.41 37736.71 34866.37 30862.75 33240.38 36353.70 34376.62 29734.56 28067.05 32940.02 31465.27 30372.83 333
test_vis1_n_192058.86 28559.06 27658.25 32463.76 36543.14 29067.49 30366.36 30640.22 36465.89 19771.95 34031.04 32059.75 35859.94 15664.90 30671.85 347
MDTV_nov1_ep13_2view25.89 40161.22 34540.10 36551.10 35532.97 30238.49 32178.61 272
tpm cat159.25 28456.95 29466.15 26472.19 28946.96 25268.09 29765.76 30940.03 36657.81 30670.56 34938.32 24474.51 28938.26 32361.50 33677.00 294
test-mter56.42 30555.82 30558.22 32568.57 33744.80 27365.46 31757.92 35539.94 36755.44 32469.82 35621.92 37257.44 36949.66 23473.62 19872.41 340
UnsupCasMVSNet_bld50.07 34048.87 34153.66 35060.97 38233.67 37457.62 36464.56 31939.47 36847.38 37064.02 38227.47 34759.32 35934.69 34643.68 38567.98 374
TESTMET0.1,155.28 31454.90 31156.42 33566.56 35143.67 28465.46 31756.27 36539.18 36953.83 34267.44 36824.21 36755.46 38048.04 24973.11 21170.13 364
mamv456.85 30058.00 28853.43 35372.46 28454.47 13757.56 36554.74 36838.81 37057.42 31079.45 25147.57 14338.70 40560.88 14853.07 36867.11 375
ADS-MVSNet251.33 33548.76 34259.07 31966.02 35744.60 27650.90 38459.76 34836.90 37150.74 35866.18 37626.38 35563.11 34527.17 38454.76 36369.50 368
ADS-MVSNet48.48 34447.77 34550.63 36566.02 35729.92 38650.90 38450.87 38236.90 37150.74 35866.18 37626.38 35552.47 38827.17 38454.76 36369.50 368
RPSCF55.80 31154.22 32060.53 31065.13 36042.91 29364.30 32857.62 35736.84 37358.05 30582.28 19228.01 34356.24 37737.14 32958.61 34982.44 211
test_cas_vis1_n_192056.91 29956.71 29757.51 33259.13 38645.40 26963.58 33261.29 34336.24 37467.14 17371.85 34129.89 32956.69 37357.65 16963.58 31970.46 361
Patchmatch-test49.08 34248.28 34451.50 36464.40 36330.85 38545.68 39448.46 38735.60 37546.10 37772.10 33734.47 28346.37 39727.08 38660.65 34277.27 289
CHOSEN 280x42047.83 34546.36 34952.24 36367.37 34649.78 21638.91 40243.11 39935.00 37643.27 38463.30 38328.95 33649.19 39336.53 33760.80 34057.76 387
N_pmnet39.35 36240.28 35936.54 38563.76 3651.62 42249.37 3870.76 42134.62 37743.61 38366.38 37526.25 35742.57 40126.02 38951.77 37165.44 377
kuosan29.62 37430.82 37326.02 39352.99 39216.22 41251.09 38322.71 41533.91 37833.99 39740.85 40315.89 38533.11 4107.59 41418.37 40728.72 407
PMMVS53.96 32053.26 32656.04 33662.60 37250.92 19561.17 34656.09 36632.81 37953.51 34866.84 37334.04 28759.93 35744.14 28368.18 28257.27 388
CMPMVSbinary42.80 2157.81 29455.97 30363.32 29160.98 38147.38 24964.66 32669.50 28332.06 38046.83 37377.80 27829.50 33371.36 30448.68 24273.75 19671.21 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
m2depth45.56 34842.95 35353.39 35552.33 39629.15 38857.77 36148.20 38831.81 38149.86 36577.21 2878.69 40359.16 36127.31 38333.40 39871.84 348
CVMVSNet59.63 28159.14 27561.08 30974.47 25438.84 32675.20 20168.74 29031.15 38258.24 30376.51 30032.39 31568.58 31949.77 23165.84 30075.81 304
FPMVS42.18 35641.11 35845.39 37158.03 38841.01 30949.50 38653.81 37430.07 38333.71 39864.03 38011.69 39352.08 39114.01 40255.11 36143.09 399
EU-MVSNet55.61 31254.41 31659.19 31865.41 35933.42 37572.44 25171.91 26428.81 38451.27 35473.87 32724.76 36569.08 31743.04 29458.20 35075.06 312
test_vis1_n49.89 34148.69 34353.50 35253.97 39037.38 34061.53 34147.33 39128.54 38559.62 28867.10 37213.52 38952.27 38949.07 23957.52 35270.84 359
test_fmvs1_n51.37 33450.35 33754.42 34752.85 39337.71 33761.16 34751.93 37528.15 38663.81 23569.73 35813.72 38853.95 38451.16 22260.65 34271.59 350
LF4IMVS42.95 35342.26 35545.04 37248.30 40132.50 37954.80 37348.49 38628.03 38740.51 38870.16 3539.24 40143.89 40031.63 36549.18 38058.72 384
test_fmvs151.32 33650.48 33653.81 34953.57 39137.51 33960.63 35151.16 37828.02 38863.62 23669.23 36116.41 38353.93 38551.01 22360.70 34169.99 365
MVS-HIRNet45.52 34944.48 35148.65 36868.49 33934.05 37159.41 35544.50 39627.03 38937.96 39650.47 39826.16 35864.10 34126.74 38759.52 34547.82 397
PMVScopyleft28.69 2236.22 36533.29 37045.02 37336.82 41335.98 35654.68 37448.74 38526.31 39021.02 40651.61 3952.88 41560.10 3569.99 41147.58 38138.99 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs344.92 35041.95 35753.86 34852.58 39543.55 28562.11 34046.90 39326.05 39140.63 38760.19 38611.08 39957.91 36831.83 36446.15 38260.11 381
test_fmvs248.69 34347.49 34852.29 36248.63 40033.06 37857.76 36248.05 38925.71 39259.76 28669.60 35911.57 39552.23 39049.45 23756.86 35571.58 351
PMMVS227.40 37525.91 37831.87 39039.46 4126.57 41931.17 40528.52 41023.96 39320.45 40748.94 4014.20 41137.94 40616.51 39919.97 40551.09 392
MVStest142.65 35439.29 36152.71 35947.26 40334.58 36654.41 37550.84 38323.35 39439.31 39474.08 32612.57 39155.09 38123.32 39228.47 40068.47 373
Gipumacopyleft34.77 36631.91 37143.33 37662.05 37537.87 33320.39 40767.03 30023.23 39518.41 40825.84 4084.24 40962.73 34614.71 40151.32 37329.38 406
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis1_rt41.35 35939.45 36047.03 37046.65 40437.86 33447.76 38938.65 40223.10 39644.21 38251.22 39611.20 39844.08 39939.27 31753.02 36959.14 383
new_pmnet34.13 36834.29 36933.64 38752.63 39418.23 41144.43 39733.90 40722.81 39730.89 40053.18 39210.48 40035.72 40920.77 39639.51 39046.98 398
mvsany_test139.38 36138.16 36443.02 37749.05 39834.28 36944.16 39825.94 41222.74 39846.57 37562.21 38523.85 36841.16 40433.01 35435.91 39453.63 391
LCM-MVSNet40.30 36035.88 36653.57 35142.24 40629.15 38845.21 39660.53 34722.23 39928.02 40150.98 3973.72 41261.78 35031.22 37038.76 39269.78 367
test_fmvs344.30 35142.55 35449.55 36742.83 40527.15 39853.03 37844.93 39522.03 40053.69 34564.94 3794.21 41049.63 39247.47 25049.82 37771.88 346
APD_test137.39 36434.94 36744.72 37548.88 39933.19 37752.95 37944.00 39819.49 40127.28 40258.59 3883.18 41452.84 38718.92 39741.17 38948.14 396
mvsany_test332.62 36930.57 37438.77 38336.16 41424.20 40538.10 40320.63 41619.14 40240.36 39057.43 3895.06 40736.63 40829.59 37728.66 39955.49 389
E-PMN23.77 37622.73 38026.90 39142.02 40720.67 40842.66 39935.70 40517.43 40310.28 41325.05 4096.42 40542.39 40210.28 41014.71 40917.63 408
EMVS22.97 37721.84 38126.36 39240.20 41019.53 41041.95 40034.64 40617.09 4049.73 41422.83 4107.29 40442.22 4039.18 41213.66 41017.32 409
test_vis3_rt32.09 37030.20 37537.76 38435.36 41527.48 39440.60 40128.29 41116.69 40532.52 39940.53 4041.96 41637.40 40733.64 35142.21 38848.39 394
test_f31.86 37131.05 37234.28 38632.33 41721.86 40732.34 40430.46 40916.02 40639.78 39255.45 3914.80 40832.36 41130.61 37137.66 39348.64 393
DSMNet-mixed39.30 36338.72 36241.03 38051.22 39719.66 40945.53 39531.35 40815.83 40739.80 39167.42 37022.19 37145.13 39822.43 39352.69 37058.31 385
testf131.46 37228.89 37639.16 38141.99 40828.78 39046.45 39237.56 40314.28 40821.10 40448.96 3991.48 41847.11 39513.63 40334.56 39541.60 400
APD_test231.46 37228.89 37639.16 38141.99 40828.78 39046.45 39237.56 40314.28 40821.10 40448.96 3991.48 41847.11 39513.63 40334.56 39541.60 400
MVEpermissive17.77 2321.41 37817.77 38332.34 38934.34 41625.44 40216.11 40824.11 41311.19 41013.22 41031.92 4061.58 41730.95 41210.47 40917.03 40840.62 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft12.03 39617.97 41810.91 41510.60 4197.46 41111.07 41228.36 4073.28 41311.29 4158.01 4139.74 41413.89 410
wuyk23d13.32 38112.52 38415.71 39547.54 40226.27 40031.06 4061.98 4204.93 4125.18 4151.94 4150.45 42018.54 4146.81 41512.83 4112.33 412
test_method19.68 37918.10 38224.41 39413.68 4193.11 42112.06 41042.37 4002.00 41311.97 41136.38 4055.77 40629.35 41315.06 40023.65 40340.76 402
tmp_tt9.43 38211.14 3854.30 3972.38 4204.40 42013.62 40916.08 4180.39 41415.89 40913.06 41115.80 3865.54 41612.63 40510.46 4132.95 411
EGC-MVSNET42.47 35538.48 36354.46 34674.33 25848.73 23270.33 28151.10 3790.03 4150.18 41667.78 36713.28 39066.49 33318.91 39850.36 37648.15 395
testmvs4.52 3856.03 3880.01 3990.01 4210.00 42453.86 3770.00 4220.01 4160.04 4170.27 4160.00 4220.00 4170.04 4160.00 4150.03 414
test1234.73 3846.30 3870.02 3980.01 4210.01 42356.36 3690.00 4220.01 4160.04 4170.21 4170.01 4210.00 4170.03 4170.00 4150.04 413
test_blank0.00 3870.00 3900.00 4000.00 4230.00 4240.00 4110.00 4220.00 4180.00 4190.00 4180.00 4220.00 4170.00 4180.00 4150.00 415
uanet_test0.00 3870.00 3900.00 4000.00 4230.00 4240.00 4110.00 4220.00 4180.00 4190.00 4180.00 4220.00 4170.00 4180.00 4150.00 415
DCPMVS0.00 3870.00 3900.00 4000.00 4230.00 4240.00 4110.00 4220.00 4180.00 4190.00 4180.00 4220.00 4170.00 4180.00 4150.00 415
cdsmvs_eth3d_5k17.50 38023.34 3790.00 4000.00 4230.00 4240.00 41178.63 1670.00 4180.00 41982.18 19349.25 1210.00 4170.00 4180.00 4150.00 415
pcd_1.5k_mvsjas3.92 3865.23 3890.00 4000.00 4230.00 4240.00 4110.00 4220.00 4180.00 4190.00 41847.05 1530.00 4170.00 4180.00 4150.00 415
sosnet-low-res0.00 3870.00 3900.00 4000.00 4230.00 4240.00 4110.00 4220.00 4180.00 4190.00 4180.00 4220.00 4170.00 4180.00 4150.00 415
sosnet0.00 3870.00 3900.00 4000.00 4230.00 4240.00 4110.00 4220.00 4180.00 4190.00 4180.00 4220.00 4170.00 4180.00 4150.00 415
uncertanet0.00 3870.00 3900.00 4000.00 4230.00 4240.00 4110.00 4220.00 4180.00 4190.00 4180.00 4220.00 4170.00 4180.00 4150.00 415
Regformer0.00 3870.00 3900.00 4000.00 4230.00 4240.00 4110.00 4220.00 4180.00 4190.00 4180.00 4220.00 4170.00 4180.00 4150.00 415
ab-mvs-re6.49 3838.65 3860.00 4000.00 4230.00 4240.00 4110.00 4220.00 4180.00 41977.89 2760.00 4220.00 4170.00 4180.00 4150.00 415
uanet0.00 3870.00 3900.00 4000.00 4230.00 4240.00 4110.00 4220.00 4180.00 4190.00 4180.00 4220.00 4170.00 4180.00 4150.00 415
WAC-MVS27.31 39627.77 381
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
No_MVS79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
eth-test20.00 423
eth-test0.00 423
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 22
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 43
GSMVS78.05 277
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27978.05 277
sam_mvs33.43 296
ambc65.13 28163.72 36737.07 34447.66 39178.78 16354.37 33971.42 34311.24 39780.94 19845.64 26953.85 36777.38 287
MTGPAbinary80.97 129
test_post168.67 2943.64 41332.39 31569.49 31544.17 281
test_post3.55 41433.90 29066.52 332
patchmatchnet-post64.03 38034.50 28174.27 291
GG-mvs-BLEND62.34 29971.36 30337.04 34569.20 29157.33 36054.73 33465.48 37830.37 32477.82 25234.82 34574.93 18372.17 344
MTMP86.03 1917.08 417
test9_res75.28 3788.31 3283.81 172
agg_prior273.09 5587.93 4084.33 153
agg_prior85.04 5059.96 4781.04 12774.68 5484.04 129
test_prior462.51 1482.08 76
test_prior76.69 5484.20 6157.27 8884.88 4086.43 7886.38 77
新几何276.12 180
旧先验183.04 7053.15 15867.52 29587.85 7144.08 18680.76 10678.03 280
原ACMM279.02 114
testdata272.18 30146.95 259
segment_acmp54.23 58
test1277.76 4384.52 5858.41 7583.36 7772.93 8454.61 5588.05 4188.12 3486.81 65
plane_prior781.41 9155.96 111
plane_prior681.20 9856.24 10645.26 177
plane_prior584.01 5387.21 5668.16 8480.58 10984.65 147
plane_prior486.10 113
plane_prior181.27 96
n20.00 422
nn0.00 422
door-mid47.19 392
lessismore_v069.91 21371.42 30147.80 24250.90 38150.39 36275.56 31227.43 34981.33 18845.91 26634.10 39780.59 245
test1183.47 72
door47.60 390
HQP5-MVS54.94 131
BP-MVS67.04 96
HQP4-MVS67.85 15686.93 6384.32 154
HQP3-MVS83.90 5880.35 113
HQP2-MVS45.46 171
NP-MVS80.98 10156.05 11085.54 131
ACMMP++_ref74.07 191
ACMMP++72.16 225
Test By Simon48.33 132