This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5573.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 5
MVS_030478.73 1678.75 1578.66 3080.82 10257.62 8385.31 3081.31 11870.51 274.17 6091.24 1454.99 4789.56 1782.29 288.13 3488.80 7
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 8067.78 370.09 11686.34 10354.92 4988.90 2572.68 5784.55 6987.76 38
UA-Net73.13 7472.93 7473.76 11983.58 6451.66 18778.75 11977.66 19067.75 472.61 9189.42 4749.82 11583.29 14553.61 20283.14 7986.32 87
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3766.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 60
TranMVSNet+NR-MVSNet70.36 12370.10 11971.17 19178.64 15342.97 29276.53 17581.16 12666.95 668.53 14585.42 13151.61 9983.07 14952.32 21069.70 26287.46 48
3Dnovator+66.72 475.84 4574.57 5479.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16289.24 5142.03 20489.38 1964.07 11986.50 5689.69 2
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4666.73 874.67 5389.38 4955.30 4489.18 2174.19 4687.34 4386.38 79
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5590.06 1378.42 1989.02 2387.69 40
Skip Steuart: Steuart Systems R&D Blog.
EPNet73.09 7572.16 8275.90 6875.95 22756.28 10483.05 5672.39 26066.53 1065.27 21087.00 8150.40 11185.47 10462.48 13686.32 5885.94 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet_NR-MVSNet71.11 10771.00 10271.44 18079.20 13744.13 27976.02 18882.60 9366.48 1168.20 14984.60 14556.82 3582.82 16054.62 19370.43 24387.36 55
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6665.37 1378.78 2290.64 1958.63 2587.24 5479.00 1290.37 1485.26 131
NR-MVSNet69.54 14468.85 13771.59 17778.05 17443.81 28374.20 22380.86 13265.18 1462.76 24984.52 14652.35 8783.59 14150.96 22570.78 23887.37 53
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 21180.97 13065.13 1575.77 3690.88 1748.63 12986.66 7177.23 2488.17 3384.81 144
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 14
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
EI-MVSNet-Vis-set72.42 8771.59 8774.91 8778.47 15754.02 14177.05 16479.33 15465.03 1871.68 10379.35 25452.75 7984.89 11666.46 10074.23 18985.83 103
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7476.46 22151.83 18679.67 11185.08 3465.02 1975.84 3588.58 6059.42 2285.08 11072.75 5683.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
ETV-MVS74.46 6173.84 6476.33 6279.27 13555.24 12979.22 11685.00 3964.97 2172.65 9079.46 25153.65 7387.87 4467.45 9482.91 8585.89 101
WR-MVS68.47 16868.47 14868.44 23780.20 11539.84 31673.75 23576.07 21364.68 2268.11 15383.63 16650.39 11279.14 23549.78 23069.66 26386.34 83
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5664.55 2372.17 9890.01 4047.95 13688.01 4071.55 6586.74 5286.37 81
X-MVStestdata70.21 12667.28 17579.00 2386.32 2962.62 1185.83 2283.92 5664.55 2372.17 986.49 40847.95 13688.01 4071.55 6586.74 5286.37 81
HQP_MVS74.31 6273.73 6576.06 6581.41 9056.31 10284.22 4084.01 5364.52 2569.27 13486.10 11045.26 17787.21 5668.16 8280.58 10984.65 148
plane_prior284.22 4064.52 25
EI-MVSNet-UG-set71.92 9571.06 10174.52 10177.98 17753.56 14976.62 17379.16 15564.40 2771.18 10778.95 25952.19 8984.66 12265.47 11173.57 20085.32 127
DU-MVS70.01 12969.53 12671.44 18078.05 17444.13 27975.01 20881.51 10864.37 2868.20 14984.52 14649.12 12682.82 16054.62 19370.43 24387.37 53
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3764.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 21
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 42
LFMVS71.78 9771.59 8772.32 16183.40 6746.38 25679.75 10971.08 26964.18 3272.80 8788.64 5942.58 19983.72 13757.41 17184.49 7086.86 65
IS-MVSNet71.57 10171.00 10273.27 14278.86 14645.63 26780.22 9778.69 16664.14 3566.46 18787.36 7649.30 12085.60 9750.26 22983.71 7888.59 11
plane_prior356.09 10863.92 3669.27 134
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 7063.89 3773.60 6790.60 2054.85 5086.72 6977.20 2588.06 3785.74 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DELS-MVS74.76 5274.46 5575.65 7577.84 18152.25 17775.59 19584.17 5063.76 3873.15 7582.79 17759.58 2086.80 6767.24 9586.04 6087.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPM-MVS74.73 5374.25 5776.19 6480.81 10359.01 6782.60 6683.64 6763.74 3972.52 9287.49 7447.18 15185.88 9269.47 7480.78 10583.66 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet (Re)70.63 11770.20 11571.89 16678.55 15445.29 27075.94 18982.92 8863.68 4068.16 15183.59 16753.89 6483.49 14353.97 19871.12 23686.89 64
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 8188.53 3074.79 4288.34 2986.63 75
EC-MVSNet75.84 4575.87 4275.74 7278.86 14652.65 16883.73 5086.08 1763.47 4272.77 8887.25 8053.13 7687.93 4271.97 6185.57 6386.66 73
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 6188.68 2776.48 2889.63 2087.16 58
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS76.25 4075.98 3977.06 5080.15 11855.63 12084.51 3583.90 5863.24 4573.30 7087.27 7955.06 4686.30 8571.78 6284.58 6889.25 4
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS72.50 8372.09 8373.75 12181.58 8649.69 21977.76 14477.63 19163.21 4773.21 7389.02 5342.14 20383.32 14461.72 14382.50 9188.25 20
plane_prior56.31 10283.58 5363.19 4880.48 112
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4563.04 4969.80 12689.74 4645.43 17387.16 5972.01 6082.87 8785.14 133
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS66.60 20866.45 18867.04 25177.11 20736.56 34977.03 16580.42 13862.95 5062.51 25784.03 15746.69 15979.07 23644.22 28063.08 32385.51 117
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 68
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9662.90 5271.77 10190.26 3146.61 16086.55 7671.71 6385.66 6284.97 140
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3262.88 5378.10 2491.26 1352.51 8288.39 3179.34 890.52 1386.78 69
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 26
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4862.82 5573.96 6390.50 2453.20 7588.35 3274.02 4887.05 4486.13 93
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4962.82 5573.55 6890.56 2249.80 11688.24 3474.02 4887.03 4586.32 87
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5162.81 5773.30 7090.58 2149.90 11488.21 3573.78 5087.03 4586.29 90
casdiffmvspermissive74.80 5174.89 5274.53 10075.59 23350.37 20578.17 13385.06 3662.80 5874.40 5687.86 7057.88 2783.61 14069.46 7582.79 8989.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline74.61 5874.70 5374.34 10475.70 22949.99 21477.54 15084.63 4462.73 5973.98 6287.79 7357.67 3083.82 13669.49 7382.74 9089.20 6
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3462.57 6073.09 7989.97 4150.90 10987.48 5275.30 3686.85 5087.33 56
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DTE-MVSNet65.58 22065.34 21166.31 26076.06 22634.79 36076.43 17779.38 15362.55 6161.66 26783.83 16245.60 16779.15 23441.64 30760.88 33885.00 138
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3689.70 1679.85 591.48 188.19 23
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVSNet66.49 21166.41 19266.72 25377.67 18636.33 35276.83 17279.52 15062.45 6362.54 25583.47 17146.32 16178.37 24445.47 27563.43 32085.45 120
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7462.44 6472.68 8990.50 2448.18 13487.34 5373.59 5285.71 6184.76 147
PS-CasMVS66.42 21266.32 19666.70 25577.60 19536.30 35476.94 16779.61 14862.36 6562.43 25983.66 16545.69 16578.37 24445.35 27763.26 32185.42 123
3Dnovator64.47 572.49 8471.39 9375.79 6977.70 18458.99 6880.66 9383.15 8562.24 6665.46 20686.59 9442.38 20285.52 10059.59 16184.72 6782.85 204
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 8486.78 6880.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HQP-NCC80.66 10482.31 7162.10 6867.85 157
ACMP_Plane80.66 10482.31 7162.10 6867.85 157
HQP-MVS73.45 7172.80 7575.40 7980.66 10454.94 13182.31 7183.90 5862.10 6867.85 15785.54 12945.46 17186.93 6467.04 9780.35 11384.32 155
CS-MVS-test75.62 4775.31 4776.56 5880.63 10755.13 13083.88 4885.22 2862.05 7171.49 10686.03 11353.83 6586.36 8367.74 8886.91 4988.19 23
VPNet67.52 18768.11 15565.74 27379.18 13836.80 34772.17 25672.83 25762.04 7267.79 16385.83 12248.88 12876.60 27751.30 22172.97 21383.81 173
WR-MVS_H67.02 19966.92 18467.33 25077.95 17837.75 33677.57 14782.11 9962.03 7362.65 25282.48 18850.57 11079.46 22542.91 29664.01 31384.79 145
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 4161.98 7473.06 8088.88 5553.72 6989.06 2368.27 7988.04 3887.42 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6277.08 2690.18 1587.87 32
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6561.71 7672.45 9690.34 2948.48 13288.13 3672.32 5886.85 5085.78 104
Effi-MVS+73.31 7372.54 7975.62 7677.87 17953.64 14779.62 11379.61 14861.63 7772.02 10082.61 18256.44 3785.97 9063.99 12279.07 13487.25 57
MG-MVS73.96 6673.89 6374.16 10985.65 4249.69 21981.59 8381.29 12061.45 7871.05 10888.11 6351.77 9687.73 4761.05 14983.09 8085.05 137
LPG-MVS_test72.74 8071.74 8675.76 7080.22 11357.51 8682.55 6783.40 7661.32 7966.67 18487.33 7739.15 23686.59 7367.70 8977.30 15983.19 195
LGP-MVS_train75.76 7080.22 11357.51 8683.40 7661.32 7966.67 18487.33 7739.15 23686.59 7367.70 8977.30 15983.19 195
CLD-MVS73.33 7272.68 7675.29 8478.82 14853.33 15678.23 13084.79 4261.30 8170.41 11381.04 21952.41 8587.12 6064.61 11882.49 9285.41 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_111021_HR74.02 6473.46 6975.69 7383.01 7260.63 4077.29 15878.40 18061.18 8270.58 11185.97 11554.18 5784.00 13367.52 9382.98 8482.45 211
FIs70.82 11471.43 9168.98 23078.33 16438.14 33276.96 16683.59 6961.02 8367.33 17086.73 8755.07 4581.64 18254.61 19579.22 13087.14 59
FOURS186.12 3660.82 3788.18 183.61 6860.87 8481.50 16
FC-MVSNet-test69.80 13570.58 10967.46 24677.61 19334.73 36376.05 18683.19 8460.84 8565.88 20086.46 10054.52 5480.76 20652.52 20978.12 14786.91 63
v870.33 12469.28 13173.49 13473.15 26750.22 20778.62 12380.78 13360.79 8666.45 18882.11 20049.35 11984.98 11363.58 12868.71 27785.28 129
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13860.76 1586.56 7567.86 8687.87 4186.06 95
Vis-MVSNetpermissive72.18 9071.37 9474.61 9681.29 9355.41 12680.90 8978.28 18260.73 8869.23 13788.09 6444.36 18582.65 16457.68 16881.75 10285.77 107
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4760.61 8979.05 2190.30 3055.54 4388.32 3373.48 5387.03 4584.83 143
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMP63.53 672.30 8871.20 9875.59 7880.28 11057.54 8482.74 6382.84 9160.58 9065.24 21486.18 10739.25 23486.03 8866.95 9976.79 16683.22 193
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testdata172.65 24660.50 91
UGNet68.81 15867.39 17073.06 14578.33 16454.47 13779.77 10775.40 22360.45 9263.22 24184.40 14932.71 30680.91 20251.71 21980.56 11183.81 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
h-mvs3372.71 8171.49 9076.40 5981.99 8259.58 5276.92 16876.74 20660.40 9374.81 4985.95 11745.54 16985.76 9570.41 7070.61 24183.86 172
hse-mvs271.04 10869.86 12074.60 9779.58 12857.12 9673.96 22775.25 22660.40 9374.81 4981.95 20245.54 16982.90 15370.41 7066.83 29283.77 177
EPP-MVSNet72.16 9371.31 9674.71 9078.68 15249.70 21782.10 7581.65 10560.40 9365.94 19685.84 12151.74 9786.37 8255.93 17979.55 12588.07 29
UniMVSNet_ETH3D67.60 18667.07 18369.18 22977.39 20042.29 29674.18 22475.59 21960.37 9666.77 18186.06 11237.64 25078.93 24252.16 21273.49 20286.32 87
test_prior281.75 7960.37 9675.01 4389.06 5256.22 3972.19 5988.96 24
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 6160.37 9679.89 1889.38 4954.97 4885.58 9976.12 3184.94 6686.33 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet69.68 13970.19 11668.16 24079.73 12641.63 30570.53 27877.38 19660.37 9670.69 11086.63 9251.08 10577.09 26553.61 20281.69 10485.75 109
sasdasda74.67 5574.98 5073.71 12378.94 14450.56 20280.23 9583.87 6160.30 10077.15 2986.56 9659.65 1782.00 17666.01 10582.12 9388.58 12
canonicalmvs74.67 5574.98 5073.71 12378.94 14450.56 20280.23 9583.87 6160.30 10077.15 2986.56 9659.65 1782.00 17666.01 10582.12 9388.58 12
v7n69.01 15667.36 17273.98 11272.51 28152.65 16878.54 12781.30 11960.26 10262.67 25181.62 20843.61 19084.49 12357.01 17268.70 27884.79 145
HPM-MVS_fast74.30 6373.46 6976.80 5284.45 6059.04 6683.65 5281.05 12760.15 10370.43 11289.84 4341.09 22085.59 9867.61 9182.90 8685.77 107
VPA-MVSNet69.02 15569.47 12867.69 24477.42 19941.00 31074.04 22579.68 14660.06 10469.26 13684.81 13951.06 10677.58 25754.44 19674.43 18784.48 152
v1070.21 12669.02 13573.81 11673.51 26450.92 19378.74 12081.39 11160.05 10566.39 18981.83 20547.58 14385.41 10762.80 13368.86 27685.09 136
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9759.99 10675.10 4190.35 2847.66 14186.52 7771.64 6482.99 8284.47 153
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6677.39 2389.52 21
v2v48270.50 12069.45 12973.66 12672.62 27750.03 21277.58 14680.51 13759.90 10769.52 12882.14 19847.53 14484.88 11865.07 11470.17 25086.09 94
Baseline_NR-MVSNet67.05 19867.56 16265.50 27675.65 23037.70 33875.42 19874.65 23959.90 10768.14 15283.15 17549.12 12677.20 26352.23 21169.78 25981.60 224
API-MVS72.17 9171.41 9274.45 10281.95 8357.22 8984.03 4580.38 13959.89 11068.40 14682.33 19149.64 11787.83 4651.87 21684.16 7578.30 274
Effi-MVS+-dtu69.64 14167.53 16575.95 6776.10 22562.29 1580.20 9876.06 21459.83 11165.26 21377.09 28741.56 21284.02 13260.60 15271.09 23781.53 225
CANet_DTU68.18 17467.71 16169.59 22074.83 24446.24 25878.66 12276.85 20359.60 11263.45 24082.09 20135.25 27477.41 26059.88 15878.76 13985.14 133
EI-MVSNet69.27 15268.44 15071.73 17274.47 25349.39 22475.20 20378.45 17659.60 11269.16 13876.51 29851.29 10182.50 16859.86 16071.45 23383.30 190
IterMVS-LS69.22 15468.48 14671.43 18274.44 25549.40 22376.23 18177.55 19259.60 11265.85 20181.59 21151.28 10281.58 18559.87 15969.90 25783.30 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MGCFI-Net72.45 8573.34 7169.81 21777.77 18343.21 28975.84 19281.18 12459.59 11575.45 3886.64 9057.74 2877.94 25063.92 12381.90 9888.30 18
VDDNet71.81 9671.33 9573.26 14382.80 7547.60 24778.74 12075.27 22559.59 11572.94 8289.40 4841.51 21483.91 13458.75 16582.99 8288.26 19
alignmvs73.86 6773.99 6173.45 13678.20 16750.50 20478.57 12582.43 9459.40 11776.57 3286.71 8956.42 3881.23 19365.84 10881.79 9988.62 10
MVS_Test72.45 8572.46 8072.42 16074.88 24248.50 23576.28 18083.14 8659.40 11772.46 9484.68 14055.66 4281.12 19465.98 10779.66 12287.63 43
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6459.34 11979.37 1989.76 4559.84 1687.62 5076.69 2786.74 5287.68 41
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++73.77 6873.47 6874.66 9383.02 7159.29 5882.30 7481.88 10159.34 11971.59 10486.83 8345.94 16483.65 13965.09 11385.22 6581.06 239
PAPM_NR72.63 8271.80 8575.13 8581.72 8553.42 15479.91 10483.28 8259.14 12166.31 19185.90 11951.86 9486.06 8657.45 17080.62 10785.91 100
testing9164.46 23563.80 22666.47 25778.43 15940.06 31467.63 30169.59 28259.06 12263.18 24378.05 26934.05 28676.99 26748.30 24675.87 17582.37 213
save fliter86.17 3361.30 2883.98 4779.66 14759.00 123
v14868.24 17367.19 18171.40 18370.43 31347.77 24475.76 19377.03 20158.91 12467.36 16980.10 23848.60 13181.89 17860.01 15666.52 29584.53 150
TransMVSNet (Re)64.72 23064.33 22065.87 27275.22 23838.56 32874.66 21775.08 23558.90 12561.79 26582.63 18151.18 10378.07 24943.63 28955.87 35980.99 241
Anonymous20240521166.84 20365.99 20269.40 22480.19 11642.21 29871.11 27271.31 26858.80 12667.90 15586.39 10229.83 32879.65 22249.60 23678.78 13886.33 85
test250665.33 22564.61 21867.50 24579.46 13134.19 36774.43 22151.92 37458.72 12766.75 18288.05 6625.99 35780.92 20151.94 21584.25 7287.39 51
ECVR-MVScopyleft67.72 18467.51 16668.35 23879.46 13136.29 35574.79 21466.93 30258.72 12767.19 17288.05 6636.10 26781.38 18852.07 21384.25 7287.39 51
test111167.21 19167.14 18267.42 24779.24 13634.76 36273.89 23265.65 31158.71 12966.96 17787.95 6936.09 26880.53 20852.03 21483.79 7786.97 61
LCM-MVSNet-Re61.88 26461.35 25763.46 29174.58 25131.48 38061.42 34258.14 35358.71 12953.02 34879.55 24943.07 19476.80 27145.69 26877.96 14982.11 219
testing9964.05 23863.29 23566.34 25978.17 17139.76 31867.33 30668.00 29558.60 13163.03 24678.10 26832.57 31176.94 26948.22 24775.58 17982.34 214
v114470.42 12269.31 13073.76 11973.22 26550.64 19877.83 14281.43 11058.58 13269.40 13281.16 21647.53 14485.29 10964.01 12170.64 23985.34 126
TSAR-MVS + GP.74.90 5074.15 5877.17 4982.00 8158.77 7281.80 7878.57 16958.58 13274.32 5884.51 14855.94 4187.22 5567.11 9684.48 7185.52 116
BH-RMVSNet68.81 15867.42 16972.97 14680.11 11952.53 17274.26 22276.29 20958.48 13468.38 14784.20 15142.59 19883.83 13546.53 26075.91 17482.56 206
APD-MVS_3200maxsize74.96 4974.39 5676.67 5482.20 7858.24 7783.67 5183.29 8158.41 13573.71 6690.14 3345.62 16685.99 8969.64 7282.85 8885.78 104
OMC-MVS71.40 10570.60 10773.78 11776.60 21753.15 15879.74 11079.78 14458.37 13668.75 14186.45 10145.43 17380.60 20762.58 13477.73 15187.58 46
nrg03072.96 7773.01 7372.84 14975.41 23650.24 20680.02 9982.89 9058.36 13774.44 5586.73 8758.90 2480.83 20365.84 10874.46 18587.44 49
K. test v360.47 27457.11 28970.56 20273.74 26348.22 23875.10 20762.55 33358.27 13853.62 34476.31 30127.81 34381.59 18447.42 25139.18 38981.88 222
FA-MVS(test-final)69.82 13468.48 14673.84 11578.44 15850.04 21175.58 19778.99 15958.16 13967.59 16682.14 19842.66 19785.63 9656.60 17476.19 17285.84 102
MVS_111021_LR69.50 14668.78 14071.65 17578.38 16059.33 5674.82 21370.11 27758.08 14067.83 16184.68 14041.96 20576.34 28265.62 11077.54 15279.30 267
SR-MVS-dyc-post74.57 5973.90 6276.58 5783.49 6559.87 4984.29 3781.36 11358.07 14173.14 7690.07 3444.74 18085.84 9368.20 8081.76 10084.03 163
RE-MVS-def73.71 6683.49 6559.87 4984.29 3781.36 11358.07 14173.14 7690.07 3443.06 19568.20 8081.76 10084.03 163
SDMVSNet68.03 17668.10 15667.84 24277.13 20548.72 23365.32 32179.10 15658.02 14365.08 21782.55 18447.83 13873.40 29463.92 12373.92 19381.41 227
sd_testset64.46 23564.45 21964.51 28677.13 20542.25 29762.67 33572.11 26358.02 14365.08 21782.55 18441.22 21969.88 31547.32 25373.92 19381.41 227
GeoE71.01 10970.15 11773.60 13179.57 12952.17 17878.93 11878.12 18358.02 14367.76 16583.87 16152.36 8682.72 16256.90 17375.79 17685.92 99
ZD-MVS86.64 2160.38 4382.70 9257.95 14678.10 2490.06 3656.12 4088.84 2674.05 4787.00 48
EIA-MVS71.78 9770.60 10775.30 8379.85 12353.54 15077.27 15983.26 8357.92 14766.49 18679.39 25252.07 9186.69 7060.05 15579.14 13385.66 112
test_yl69.69 13769.13 13271.36 18478.37 16245.74 26374.71 21580.20 14157.91 14870.01 12183.83 16242.44 20082.87 15654.97 18979.72 11985.48 118
DCV-MVSNet69.69 13769.13 13271.36 18478.37 16245.74 26374.71 21580.20 14157.91 14870.01 12183.83 16242.44 20082.87 15654.97 18979.72 11985.48 118
dcpmvs_274.55 6075.23 4872.48 15682.34 7753.34 15577.87 13981.46 10957.80 15075.49 3786.81 8462.22 1377.75 25571.09 6782.02 9686.34 83
mvsmamba71.15 10669.54 12575.99 6677.61 19353.46 15281.95 7775.11 23157.73 15166.95 17885.96 11637.14 25987.56 5167.94 8475.49 18186.97 61
Fast-Effi-MVS+-dtu67.37 18965.33 21273.48 13572.94 27257.78 8277.47 15276.88 20257.60 15261.97 26276.85 29139.31 23280.49 21154.72 19270.28 24882.17 218
v119269.97 13168.68 14273.85 11473.19 26650.94 19177.68 14581.36 11357.51 15368.95 14080.85 22645.28 17685.33 10862.97 13270.37 24585.27 130
ACMH+57.40 1166.12 21464.06 22172.30 16277.79 18252.83 16680.39 9478.03 18457.30 15457.47 30782.55 18427.68 34484.17 12745.54 27169.78 25979.90 257
diffmvspermissive70.69 11670.43 11071.46 17969.45 32848.95 22972.93 24378.46 17557.27 15571.69 10283.97 16051.48 10077.92 25270.70 6977.95 15087.53 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned68.27 17167.29 17471.21 18879.74 12553.22 15776.06 18577.46 19557.19 15666.10 19381.61 20945.37 17583.50 14245.42 27676.68 16876.91 297
thres100view90063.28 24762.41 24565.89 27177.31 20238.66 32772.65 24669.11 28957.07 15762.45 25881.03 22037.01 26379.17 23131.84 35973.25 20879.83 259
DP-MVS Recon72.15 9470.73 10676.40 5986.57 2457.99 7981.15 8882.96 8757.03 15866.78 18085.56 12644.50 18388.11 3751.77 21880.23 11683.10 199
thres600view763.30 24662.27 24666.41 25877.18 20438.87 32572.35 25369.11 28956.98 15962.37 26080.96 22237.01 26379.00 24031.43 36673.05 21281.36 230
V4268.65 16267.35 17372.56 15468.93 33450.18 20872.90 24479.47 15156.92 16069.45 13180.26 23546.29 16282.99 15064.07 11967.82 28484.53 150
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16174.91 4788.19 6259.15 2387.68 4873.67 5187.45 4286.57 76
GA-MVS65.53 22163.70 22871.02 19570.87 30848.10 23970.48 27974.40 24156.69 16264.70 22576.77 29233.66 29381.10 19555.42 18870.32 24783.87 171
v14419269.71 13668.51 14573.33 14173.10 26850.13 20977.54 15080.64 13456.65 16368.57 14480.55 22946.87 15884.96 11562.98 13169.66 26384.89 142
tfpn200view963.18 24962.18 24866.21 26376.85 21239.62 31971.96 26069.44 28556.63 16462.61 25379.83 24137.18 25679.17 23131.84 35973.25 20879.83 259
thres40063.31 24562.18 24866.72 25376.85 21239.62 31971.96 26069.44 28556.63 16462.61 25379.83 24137.18 25679.17 23131.84 35973.25 20881.36 230
GBi-Net67.21 19166.55 18669.19 22677.63 18843.33 28677.31 15577.83 18756.62 16665.04 21982.70 17841.85 20780.33 21347.18 25572.76 21583.92 168
test167.21 19166.55 18669.19 22677.63 18843.33 28677.31 15577.83 18756.62 16665.04 21982.70 17841.85 20780.33 21347.18 25572.76 21583.92 168
FMVSNet266.93 20166.31 19768.79 23377.63 18842.98 29176.11 18377.47 19356.62 16665.22 21682.17 19641.85 20780.18 21947.05 25872.72 21883.20 194
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10285.71 2256.59 16972.46 9486.76 8556.89 3487.86 4566.36 10188.91 2583.64 185
v192192069.47 14768.17 15473.36 14073.06 26950.10 21077.39 15380.56 13556.58 17068.59 14280.37 23144.72 18184.98 11362.47 13769.82 25885.00 138
FMVSNet166.70 20665.87 20369.19 22677.49 19743.33 28677.31 15577.83 18756.45 17164.60 22782.70 17838.08 24880.33 21346.08 26472.31 22383.92 168
v124069.24 15367.91 15773.25 14473.02 27149.82 21577.21 16080.54 13656.43 17268.34 14880.51 23043.33 19384.99 11162.03 14169.77 26184.95 141
testing22262.29 25961.31 25865.25 28177.87 17938.53 32968.34 29666.31 30856.37 17363.15 24577.58 28328.47 33876.18 28537.04 32876.65 16981.05 240
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8684.02 5256.32 17474.05 6188.98 5453.34 7487.92 4369.23 7688.42 2887.59 45
Vis-MVSNet (Re-imp)63.69 24263.88 22463.14 29574.75 24631.04 38171.16 27063.64 32656.32 17459.80 28484.99 13644.51 18275.46 28639.12 31780.62 10782.92 201
AdaColmapbinary69.99 13068.66 14373.97 11384.94 5457.83 8082.63 6578.71 16556.28 17664.34 22884.14 15341.57 21187.06 6346.45 26178.88 13577.02 293
PS-MVSNAJss72.24 8971.21 9775.31 8278.50 15555.93 11281.63 8082.12 9856.24 17770.02 12085.68 12547.05 15384.34 12665.27 11274.41 18885.67 111
c3_l68.33 17067.56 16270.62 20170.87 30846.21 25974.47 22078.80 16356.22 17866.19 19278.53 26651.88 9381.40 18762.08 13869.04 27284.25 157
Fast-Effi-MVS+70.28 12569.12 13473.73 12278.50 15551.50 18875.01 20879.46 15256.16 17968.59 14279.55 24953.97 6084.05 12953.34 20477.53 15385.65 113
PHI-MVS75.87 4475.36 4577.41 4680.62 10855.91 11384.28 3985.78 2056.08 18073.41 6986.58 9550.94 10888.54 2970.79 6889.71 1787.79 37
baseline163.81 24163.87 22563.62 29076.29 22236.36 35071.78 26267.29 29956.05 18164.23 23382.95 17647.11 15274.41 29147.30 25461.85 33280.10 255
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8181.26 12155.86 18274.93 4588.81 5653.70 7084.68 12075.24 3888.33 3083.65 184
test_885.40 4660.96 3481.54 8481.18 12455.86 18274.81 4988.80 5853.70 7084.45 124
bld_raw_dy_0_6474.00 6573.69 6774.93 8680.28 11050.00 21377.56 14885.20 3155.84 18472.52 9284.05 15653.90 6386.60 7267.59 9286.28 5988.18 25
FMVSNet366.32 21365.61 20868.46 23676.48 22042.34 29574.98 21077.15 20055.83 18565.04 21981.16 21639.91 22580.14 22047.18 25572.76 21582.90 203
PAPR71.72 10070.82 10474.41 10381.20 9751.17 18979.55 11483.33 7955.81 18666.93 17984.61 14450.95 10786.06 8655.79 18279.20 13186.00 96
eth_miper_zixun_eth67.63 18566.28 19871.67 17471.60 29448.33 23773.68 23677.88 18555.80 18765.91 19778.62 26447.35 15082.88 15559.45 16266.25 29683.81 173
ACMH55.70 1565.20 22763.57 23070.07 21078.07 17352.01 18379.48 11579.69 14555.75 18856.59 31380.98 22127.12 34980.94 19942.90 29771.58 23177.25 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS56.42 1265.40 22462.73 24273.40 13974.89 24152.78 16773.09 24275.13 23055.69 18958.48 30173.73 32432.86 30186.32 8450.63 22670.11 25181.10 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CL-MVSNet_self_test61.53 26760.94 26463.30 29368.95 33336.93 34667.60 30272.80 25855.67 19059.95 28176.63 29445.01 17972.22 30139.74 31562.09 33180.74 245
iter_conf0573.64 6973.08 7275.33 8178.05 17450.61 19979.76 10884.74 4355.66 19172.19 9785.10 13553.98 5987.65 4968.56 7879.69 12187.73 39
mamv474.72 5474.09 5976.61 5679.86 12253.06 16279.89 10585.13 3355.66 19172.81 8585.24 13453.83 6588.07 3867.77 8786.63 5588.71 9
TEST985.58 4361.59 2481.62 8181.26 12155.65 19374.93 4588.81 5653.70 7084.68 120
thres20062.20 26061.16 26265.34 27975.38 23739.99 31569.60 28869.29 28755.64 19461.87 26476.99 28837.07 26278.96 24131.28 36773.28 20777.06 292
pm-mvs165.24 22664.97 21666.04 26872.38 28339.40 32272.62 24875.63 21855.53 19562.35 26183.18 17447.45 14676.47 28049.06 24066.54 29482.24 215
testing1162.81 25261.90 25165.54 27578.38 16040.76 31167.59 30366.78 30455.48 19660.13 27777.11 28631.67 31776.79 27245.53 27274.45 18679.06 268
ACMM61.98 770.80 11569.73 12274.02 11180.59 10958.59 7482.68 6482.02 10055.46 19767.18 17384.39 15038.51 24183.17 14860.65 15176.10 17380.30 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052969.91 13269.02 13572.56 15480.19 11647.65 24577.56 14880.99 12955.45 19869.88 12486.76 8539.24 23582.18 17454.04 19777.10 16387.85 33
tt080567.77 18367.24 17969.34 22574.87 24340.08 31377.36 15481.37 11255.31 19966.33 19084.65 14237.35 25482.55 16755.65 18572.28 22485.39 125
CPTT-MVS72.78 7972.08 8474.87 8984.88 5761.41 2684.15 4377.86 18655.27 20067.51 16888.08 6541.93 20681.85 17969.04 7780.01 11781.35 232
XVG-OURS68.76 16167.37 17172.90 14874.32 25857.22 8970.09 28478.81 16255.24 20167.79 16385.81 12436.54 26678.28 24662.04 14075.74 17783.19 195
tfpnnormal62.47 25561.63 25464.99 28374.81 24539.01 32471.22 26873.72 25055.22 20260.21 27680.09 23941.26 21876.98 26830.02 37268.09 28278.97 271
MVSMamba_pp74.64 5774.07 6076.35 6179.76 12453.09 16179.97 10185.21 2955.21 20372.81 8585.37 13353.93 6287.17 5867.93 8586.46 5788.80 7
cl____67.18 19466.26 19969.94 21270.20 31645.74 26373.30 23876.83 20455.10 20465.27 21079.57 24847.39 14880.53 20859.41 16469.22 27083.53 187
DIV-MVS_self_test67.18 19466.26 19969.94 21270.20 31645.74 26373.29 23976.83 20455.10 20465.27 21079.58 24747.38 14980.53 20859.43 16369.22 27083.54 186
PC_three_145255.09 20684.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 14
EPNet_dtu61.90 26361.97 25061.68 30372.89 27339.78 31775.85 19165.62 31255.09 20654.56 33479.36 25337.59 25167.02 32939.80 31476.95 16478.25 275
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu71.45 10470.39 11174.65 9482.01 8058.82 7179.93 10380.35 14055.09 20665.82 20282.16 19749.17 12382.64 16560.34 15378.62 14282.50 210
cl2267.47 18866.45 18870.54 20369.85 32446.49 25573.85 23377.35 19755.07 20965.51 20577.92 27347.64 14281.10 19561.58 14669.32 26684.01 165
miper_ehance_all_eth68.03 17667.24 17970.40 20570.54 31146.21 25973.98 22678.68 16755.07 20966.05 19477.80 27752.16 9081.31 19061.53 14769.32 26683.67 181
PS-MVSNAJ70.51 11969.70 12372.93 14781.52 8755.79 11674.92 21179.00 15855.04 21169.88 12478.66 26147.05 15382.19 17361.61 14479.58 12380.83 243
xiu_mvs_v2_base70.52 11869.75 12172.84 14981.21 9655.63 12075.11 20578.92 16054.92 21269.96 12379.68 24647.00 15782.09 17561.60 14579.37 12680.81 244
MAR-MVS71.51 10270.15 11775.60 7781.84 8459.39 5581.38 8582.90 8954.90 21368.08 15478.70 26047.73 13985.51 10151.68 22084.17 7481.88 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-OURS-SEG-HR68.81 15867.47 16872.82 15174.40 25656.87 9970.59 27779.04 15754.77 21466.99 17686.01 11439.57 23078.21 24762.54 13573.33 20683.37 189
testing356.54 30055.92 30258.41 32277.52 19627.93 38969.72 28756.36 36254.75 21558.63 29977.80 27720.88 37571.75 30425.31 38762.25 32975.53 307
Anonymous2023121169.28 15168.47 14871.73 17280.28 11047.18 25179.98 10082.37 9554.61 21667.24 17184.01 15839.43 23182.41 17155.45 18772.83 21485.62 114
SixPastTwentyTwo61.65 26658.80 27870.20 20875.80 22847.22 25075.59 19569.68 28054.61 21654.11 33879.26 25527.07 35082.96 15143.27 29149.79 37680.41 249
test_040263.25 24861.01 26369.96 21180.00 12054.37 13976.86 17172.02 26454.58 21858.71 29680.79 22835.00 27784.36 12526.41 38564.71 30771.15 355
tttt051767.83 18265.66 20774.33 10576.69 21450.82 19577.86 14073.99 24854.54 21964.64 22682.53 18735.06 27685.50 10255.71 18369.91 25686.67 72
BH-w/o66.85 20265.83 20469.90 21579.29 13352.46 17474.66 21776.65 20754.51 22064.85 22378.12 26745.59 16882.95 15243.26 29275.54 18074.27 323
AUN-MVS68.45 16966.41 19274.57 9979.53 13057.08 9773.93 23075.23 22754.44 22166.69 18381.85 20437.10 26182.89 15462.07 13966.84 29183.75 178
LTVRE_ROB55.42 1663.15 25061.23 26168.92 23176.57 21847.80 24259.92 35176.39 20854.35 22258.67 29782.46 18929.44 33281.49 18642.12 30171.14 23577.46 286
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf_n73.01 7672.59 7774.27 10771.28 30355.88 11478.21 13275.56 22054.31 22374.86 4887.80 7254.72 5180.23 21778.07 2178.48 14386.70 70
test_fmvsmconf0.01_n72.17 9171.50 8974.16 10967.96 34055.58 12378.06 13674.67 23854.19 22474.54 5488.23 6150.35 11380.24 21678.07 2177.46 15586.65 74
test_fmvsmconf0.1_n72.81 7872.33 8174.24 10869.89 32355.81 11578.22 13175.40 22354.17 22575.00 4488.03 6853.82 6780.23 21778.08 2078.34 14686.69 71
ETVMVS59.51 28258.81 27661.58 30577.46 19834.87 35964.94 32659.35 34854.06 22661.08 27276.67 29329.54 32971.87 30332.16 35574.07 19178.01 282
ab-mvs66.65 20766.42 19167.37 24876.17 22441.73 30270.41 28176.14 21253.99 22765.98 19583.51 16949.48 11876.24 28348.60 24373.46 20484.14 161
IU-MVS87.77 459.15 6085.53 2553.93 22884.64 379.07 1190.87 588.37 17
XVG-ACMP-BASELINE64.36 23762.23 24770.74 19972.35 28452.45 17570.80 27678.45 17653.84 22959.87 28281.10 21816.24 38279.32 22855.64 18671.76 22880.47 247
FE-MVS65.91 21663.33 23473.63 12977.36 20151.95 18572.62 24875.81 21553.70 23065.31 20878.96 25828.81 33786.39 8143.93 28573.48 20382.55 207
thisisatest053067.92 18065.78 20574.33 10576.29 22251.03 19076.89 16974.25 24553.67 23165.59 20481.76 20635.15 27585.50 10255.94 17872.47 21986.47 78
PVSNet_BlendedMVS68.56 16767.72 15971.07 19477.03 20950.57 20074.50 21981.52 10653.66 23264.22 23479.72 24549.13 12482.87 15655.82 18073.92 19379.77 262
patch_mono-269.85 13371.09 10066.16 26479.11 14154.80 13571.97 25974.31 24353.50 23370.90 10984.17 15257.63 3163.31 34366.17 10282.02 9680.38 250
EG-PatchMatch MVS64.71 23162.87 23970.22 20677.68 18553.48 15177.99 13778.82 16153.37 23456.03 31877.41 28524.75 36484.04 13046.37 26273.42 20573.14 329
DP-MVS65.68 21863.66 22971.75 17184.93 5556.87 9980.74 9273.16 25553.06 23559.09 29382.35 19036.79 26585.94 9132.82 35369.96 25572.45 337
TR-MVS66.59 21065.07 21571.17 19179.18 13849.63 22173.48 23775.20 22952.95 23667.90 15580.33 23439.81 22883.68 13843.20 29373.56 20180.20 252
ET-MVSNet_ETH3D67.96 17965.72 20674.68 9276.67 21555.62 12275.11 20574.74 23652.91 23760.03 27980.12 23733.68 29282.64 16561.86 14276.34 17085.78 104
QAPM70.05 12868.81 13973.78 11776.54 21953.43 15383.23 5483.48 7152.89 23865.90 19886.29 10441.55 21386.49 7951.01 22378.40 14581.42 226
OpenMVScopyleft61.03 968.85 15767.56 16272.70 15374.26 25953.99 14281.21 8781.34 11752.70 23962.75 25085.55 12838.86 23984.14 12848.41 24583.01 8179.97 256
pmmvs663.69 24262.82 24166.27 26270.63 31039.27 32373.13 24175.47 22252.69 24059.75 28682.30 19239.71 22977.03 26647.40 25264.35 31282.53 208
IterMVS62.79 25361.27 25967.35 24969.37 32952.04 18271.17 26968.24 29452.63 24159.82 28376.91 29037.32 25572.36 29852.80 20863.19 32277.66 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_tets68.18 17466.36 19473.63 12975.61 23255.35 12880.77 9178.56 17052.48 24264.27 23184.10 15527.45 34681.84 18063.45 13070.56 24283.69 180
jajsoiax68.25 17266.45 18873.66 12675.62 23155.49 12580.82 9078.51 17252.33 24364.33 22984.11 15428.28 34081.81 18163.48 12970.62 24083.67 181
TAMVS66.78 20565.27 21371.33 18779.16 14053.67 14673.84 23469.59 28252.32 24465.28 20981.72 20744.49 18477.40 26142.32 30078.66 14182.92 201
iter_conf05_1173.52 7072.59 7776.30 6380.93 10151.97 18478.62 12383.48 7152.20 24571.53 10585.93 11854.01 5888.55 2861.08 14885.56 6488.39 16
CDS-MVSNet66.80 20465.37 21071.10 19378.98 14353.13 16073.27 24071.07 27052.15 24664.72 22480.23 23643.56 19177.10 26445.48 27478.88 13583.05 200
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended68.59 16367.72 15971.19 18977.03 20950.57 20072.51 25181.52 10651.91 24764.22 23477.77 28049.13 12482.87 15655.82 18079.58 12380.14 254
mvs_anonymous68.03 17667.51 16669.59 22072.08 28844.57 27771.99 25875.23 22751.67 24867.06 17582.57 18354.68 5277.94 25056.56 17575.71 17886.26 91
xiu_mvs_v1_base_debu68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12577.31 15681.22 234
xiu_mvs_v1_base68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12577.31 15681.22 234
xiu_mvs_v1_base_debi68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12577.31 15681.22 234
MVSTER67.16 19665.58 20971.88 16770.37 31549.70 21770.25 28378.45 17651.52 25269.16 13880.37 23138.45 24282.50 16860.19 15471.46 23283.44 188
CNLPA65.43 22264.02 22269.68 21878.73 15158.07 7877.82 14370.71 27351.49 25361.57 26983.58 16838.23 24670.82 30743.90 28670.10 25280.16 253
原ACMM174.69 9185.39 4759.40 5483.42 7551.47 25470.27 11586.61 9348.61 13086.51 7853.85 20087.96 3978.16 276
miper_enhance_ethall67.11 19766.09 20170.17 20969.21 33145.98 26172.85 24578.41 17951.38 25565.65 20375.98 30651.17 10481.25 19160.82 15069.32 26683.29 192
MSDG61.81 26559.23 27369.55 22372.64 27652.63 17070.45 28075.81 21551.38 25553.70 34176.11 30229.52 33081.08 19737.70 32365.79 30074.93 315
test20.0353.87 32054.02 31953.41 35261.47 37428.11 38861.30 34359.21 34951.34 25752.09 35077.43 28433.29 29758.55 36329.76 37360.27 34373.58 328
MVSFormer71.50 10370.38 11274.88 8878.76 14957.15 9482.79 6178.48 17351.26 25869.49 12983.22 17243.99 18883.24 14666.06 10379.37 12684.23 158
test_djsdf69.45 14867.74 15874.58 9874.57 25254.92 13382.79 6178.48 17351.26 25865.41 20783.49 17038.37 24383.24 14666.06 10369.25 26985.56 115
dmvs_testset50.16 33751.90 32744.94 37066.49 35011.78 41061.01 34851.50 37551.17 26050.30 36267.44 36439.28 23360.29 35422.38 39057.49 35262.76 375
PAPM67.92 18066.69 18571.63 17678.09 17249.02 22777.09 16381.24 12351.04 26160.91 27383.98 15947.71 14084.99 11140.81 30879.32 12980.90 242
Syy-MVS56.00 30756.23 30055.32 33974.69 24826.44 39565.52 31657.49 35750.97 26256.52 31472.18 33139.89 22668.09 32224.20 38864.59 31071.44 351
myMVS_eth3d54.86 31654.61 31155.61 33874.69 24827.31 39265.52 31657.49 35750.97 26256.52 31472.18 33121.87 37368.09 32227.70 38064.59 31071.44 351
miper_lstm_enhance62.03 26260.88 26565.49 27766.71 34846.25 25756.29 36775.70 21750.68 26461.27 27075.48 31240.21 22468.03 32456.31 17765.25 30382.18 216
gg-mvs-nofinetune57.86 29256.43 29862.18 30172.62 27735.35 35866.57 30756.33 36350.65 26557.64 30657.10 38630.65 32076.36 28137.38 32578.88 13574.82 317
TAPA-MVS59.36 1066.60 20865.20 21470.81 19776.63 21648.75 23176.52 17680.04 14350.64 26665.24 21484.93 13739.15 23678.54 24336.77 33076.88 16585.14 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_re56.77 29956.83 29456.61 33369.23 33041.02 30758.37 35664.18 32250.59 26757.45 30871.42 33935.54 27258.94 36137.23 32667.45 28769.87 364
MVP-Stereo65.41 22363.80 22670.22 20677.62 19255.53 12476.30 17978.53 17150.59 26756.47 31678.65 26239.84 22782.68 16344.10 28472.12 22672.44 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PCF-MVS61.88 870.95 11169.49 12775.35 8077.63 18855.71 11776.04 18781.81 10350.30 26969.66 12785.40 13252.51 8284.89 11651.82 21780.24 11585.45 120
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline263.42 24461.26 26069.89 21672.55 27947.62 24671.54 26368.38 29350.11 27054.82 33075.55 31143.06 19580.96 19848.13 24867.16 29081.11 237
test-LLR58.15 29058.13 28658.22 32468.57 33544.80 27365.46 31857.92 35450.08 27155.44 32269.82 35232.62 30857.44 36749.66 23473.62 19872.41 339
test0.0.03 153.32 32553.59 32252.50 35662.81 36929.45 38459.51 35254.11 37050.08 27154.40 33674.31 32132.62 30855.92 37630.50 37063.95 31572.15 344
fmvsm_s_conf0.5_n69.58 14268.84 13871.79 17072.31 28652.90 16477.90 13862.43 33649.97 27372.85 8485.90 11952.21 8876.49 27875.75 3370.26 24985.97 97
COLMAP_ROBcopyleft52.97 1761.27 27158.81 27668.64 23474.63 25052.51 17378.42 12873.30 25349.92 27450.96 35481.51 21223.06 36779.40 22631.63 36365.85 29874.01 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_a69.54 14468.74 14171.93 16572.47 28253.82 14478.25 12962.26 33849.78 27573.12 7886.21 10652.66 8076.79 27275.02 3968.88 27485.18 132
tpmvs58.47 28656.95 29263.03 29770.20 31641.21 30667.90 30067.23 30049.62 27654.73 33270.84 34334.14 28576.24 28336.64 33461.29 33671.64 347
fmvsm_s_conf0.1_n69.41 14968.60 14471.83 16871.07 30552.88 16577.85 14162.44 33549.58 27772.97 8186.22 10551.68 9876.48 27975.53 3470.10 25286.14 92
thisisatest051565.83 21763.50 23172.82 15173.75 26249.50 22271.32 26673.12 25649.39 27863.82 23676.50 30034.95 27884.84 11953.20 20675.49 18184.13 162
fmvsm_s_conf0.1_n_a69.32 15068.44 15071.96 16470.91 30753.78 14578.12 13462.30 33749.35 27973.20 7486.55 9851.99 9276.79 27274.83 4168.68 27985.32 127
HY-MVS56.14 1364.55 23463.89 22366.55 25674.73 24741.02 30769.96 28574.43 24049.29 28061.66 26780.92 22347.43 14776.68 27644.91 27971.69 22981.94 220
MIMVSNet155.17 31454.31 31657.77 32970.03 32032.01 37865.68 31464.81 31649.19 28146.75 37176.00 30325.53 36064.04 34128.65 37762.13 33077.26 290
SCA60.49 27358.38 28266.80 25274.14 26148.06 24063.35 33263.23 32949.13 28259.33 29272.10 33337.45 25274.27 29244.17 28162.57 32678.05 278
test_fmvsmvis_n_192070.84 11270.38 11272.22 16371.16 30455.39 12775.86 19072.21 26249.03 28373.28 7286.17 10851.83 9577.29 26275.80 3278.05 14883.98 166
testgi51.90 32952.37 32650.51 36260.39 38223.55 40258.42 35558.15 35249.03 28351.83 35179.21 25622.39 36855.59 37729.24 37662.64 32572.40 341
MIMVSNet57.35 29457.07 29058.22 32474.21 26037.18 34162.46 33660.88 34548.88 28555.29 32575.99 30531.68 31662.04 34831.87 35872.35 22175.43 309
gm-plane-assit71.40 30041.72 30448.85 28673.31 32682.48 17048.90 241
fmvsm_l_conf0.5_n70.99 11070.82 10471.48 17871.45 29654.40 13877.18 16170.46 27548.67 28775.17 4086.86 8253.77 6876.86 27076.33 3077.51 15483.17 198
UWE-MVS60.18 27559.78 27061.39 30877.67 18633.92 37069.04 29463.82 32448.56 28864.27 23177.64 28227.20 34870.40 31233.56 35076.24 17179.83 259
cascas65.98 21563.42 23273.64 12877.26 20352.58 17172.26 25577.21 19948.56 28861.21 27174.60 31932.57 31185.82 9450.38 22876.75 16782.52 209
PLCcopyleft56.13 1465.09 22863.21 23670.72 20081.04 9954.87 13478.57 12577.47 19348.51 29055.71 31981.89 20333.71 29179.71 22141.66 30570.37 24577.58 285
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D64.71 23162.50 24471.34 18679.72 12755.71 11779.82 10674.72 23748.50 29156.62 31284.62 14333.59 29482.34 17229.65 37475.23 18375.97 301
anonymousdsp67.00 20064.82 21773.57 13270.09 31956.13 10776.35 17877.35 19748.43 29264.99 22280.84 22733.01 29980.34 21264.66 11667.64 28684.23 158
无先验79.66 11274.30 24448.40 29380.78 20553.62 20179.03 270
114514_t70.83 11369.56 12474.64 9586.21 3154.63 13682.34 7081.81 10348.22 29463.01 24785.83 12240.92 22187.10 6157.91 16779.79 11882.18 216
tpm57.34 29558.16 28454.86 34271.80 29334.77 36167.47 30556.04 36648.20 29560.10 27876.92 28937.17 25853.41 38340.76 30965.01 30476.40 300
test_fmvsm_n_192071.73 9971.14 9973.50 13372.52 28056.53 10175.60 19476.16 21048.11 29677.22 2885.56 12653.10 7777.43 25974.86 4077.14 16186.55 77
MDA-MVSNet-bldmvs53.87 32050.81 33263.05 29666.25 35248.58 23456.93 36563.82 32448.09 29741.22 38370.48 34830.34 32368.00 32534.24 34545.92 38172.57 335
XXY-MVS60.68 27261.67 25357.70 33070.43 31338.45 33064.19 32966.47 30548.05 29863.22 24180.86 22549.28 12160.47 35245.25 27867.28 28974.19 324
F-COLMAP63.05 25160.87 26669.58 22276.99 21153.63 14878.12 13476.16 21047.97 29952.41 34981.61 20927.87 34278.11 24840.07 31166.66 29377.00 294
fmvsm_l_conf0.5_n_a70.50 12070.27 11471.18 19071.30 30254.09 14076.89 16969.87 27847.90 30074.37 5786.49 9953.07 7876.69 27575.41 3577.11 16282.76 205
Patchmatch-RL test58.16 28955.49 30566.15 26567.92 34148.89 23060.66 34951.07 37847.86 30159.36 28962.71 38034.02 28872.27 30056.41 17659.40 34577.30 288
D2MVS62.30 25860.29 26868.34 23966.46 35148.42 23665.70 31373.42 25247.71 30258.16 30375.02 31530.51 32177.71 25653.96 19971.68 23078.90 272
ANet_high41.38 35437.47 36153.11 35339.73 40724.45 40056.94 36469.69 27947.65 30326.04 39952.32 38912.44 38962.38 34721.80 39110.61 40872.49 336
CostFormer64.04 23962.51 24368.61 23571.88 29145.77 26271.30 26770.60 27447.55 30464.31 23076.61 29641.63 21079.62 22449.74 23269.00 27380.42 248
PatchmatchNetpermissive59.84 27858.24 28364.65 28573.05 27046.70 25469.42 29062.18 33947.55 30458.88 29571.96 33534.49 28269.16 31742.99 29563.60 31778.07 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_self_test55.22 31353.89 32059.21 31657.80 38727.47 39157.75 36174.32 24247.38 30650.90 35570.00 35128.45 33970.30 31340.44 31057.92 35079.87 258
ITE_SJBPF62.09 30266.16 35344.55 27864.32 32047.36 30755.31 32480.34 23319.27 37662.68 34636.29 33862.39 32879.04 269
KD-MVS_2432*160053.45 32251.50 33059.30 31362.82 36737.14 34255.33 36871.79 26647.34 30855.09 32770.52 34621.91 37170.45 31035.72 34042.97 38470.31 360
miper_refine_blended53.45 32251.50 33059.30 31362.82 36737.14 34255.33 36871.79 26647.34 30855.09 32770.52 34621.91 37170.45 31035.72 34042.97 38470.31 360
OurMVSNet-221017-061.37 27058.63 28069.61 21972.05 28948.06 24073.93 23072.51 25947.23 31054.74 33180.92 22321.49 37481.24 19248.57 24456.22 35879.53 264
tpmrst58.24 28858.70 27956.84 33266.97 34534.32 36569.57 28961.14 34447.17 31158.58 30071.60 33841.28 21760.41 35349.20 23862.84 32475.78 304
PVSNet50.76 1958.40 28757.39 28861.42 30675.53 23444.04 28161.43 34163.45 32747.04 31256.91 31073.61 32527.00 35164.76 33939.12 31772.40 22075.47 308
WB-MVSnew59.66 28059.69 27159.56 31275.19 24035.78 35769.34 29164.28 32146.88 31361.76 26675.79 30740.61 22265.20 33832.16 35571.21 23477.70 283
FMVSNet555.86 30854.93 30858.66 32171.05 30636.35 35164.18 33062.48 33446.76 31450.66 35974.73 31825.80 35864.04 34133.11 35165.57 30175.59 306
jason69.65 14068.39 15273.43 13878.27 16656.88 9877.12 16273.71 25146.53 31569.34 13383.22 17243.37 19279.18 23064.77 11579.20 13184.23 158
jason: jason.
MS-PatchMatch62.42 25661.46 25665.31 28075.21 23952.10 17972.05 25774.05 24746.41 31657.42 30974.36 32034.35 28477.57 25845.62 27073.67 19766.26 372
1112_ss64.00 24063.36 23365.93 27079.28 13442.58 29471.35 26572.36 26146.41 31660.55 27577.89 27546.27 16373.28 29546.18 26369.97 25481.92 221
lupinMVS69.57 14368.28 15373.44 13778.76 14957.15 9476.57 17473.29 25446.19 31869.49 12982.18 19443.99 18879.23 22964.66 11679.37 12683.93 167
testdata64.66 28481.52 8752.93 16365.29 31446.09 31973.88 6487.46 7538.08 24866.26 33453.31 20578.48 14374.78 318
UnsupCasMVSNet_eth53.16 32752.47 32555.23 34059.45 38333.39 37359.43 35369.13 28845.98 32050.35 36172.32 33029.30 33358.26 36542.02 30344.30 38274.05 325
AllTest57.08 29754.65 31064.39 28771.44 29749.03 22569.92 28667.30 29745.97 32147.16 36879.77 24317.47 37767.56 32633.65 34759.16 34676.57 298
TestCases64.39 28771.44 29749.03 22567.30 29745.97 32147.16 36879.77 24317.47 37767.56 32633.65 34759.16 34676.57 298
WTY-MVS59.75 27960.39 26757.85 32872.32 28537.83 33561.05 34764.18 32245.95 32361.91 26379.11 25747.01 15660.88 35142.50 29969.49 26574.83 316
IterMVS-SCA-FT62.49 25461.52 25565.40 27871.99 29050.80 19671.15 27169.63 28145.71 32460.61 27477.93 27237.45 25265.99 33555.67 18463.50 31979.42 265
WB-MVS43.26 34943.41 35042.83 37463.32 36610.32 41258.17 35845.20 39045.42 32540.44 38667.26 36734.01 28958.98 36011.96 40324.88 39759.20 378
旧先验276.08 18445.32 32676.55 3365.56 33758.75 165
OpenMVS_ROBcopyleft52.78 1860.03 27658.14 28565.69 27470.47 31244.82 27275.33 19970.86 27245.04 32756.06 31776.00 30326.89 35279.65 22235.36 34267.29 28872.60 334
TinyColmap54.14 31751.72 32861.40 30766.84 34741.97 29966.52 30868.51 29244.81 32842.69 38275.77 30811.66 39172.94 29631.96 35756.77 35669.27 368
MDTV_nov1_ep1357.00 29172.73 27538.26 33165.02 32564.73 31844.74 32955.46 32172.48 32932.61 31070.47 30937.47 32467.75 285
新几何170.76 19885.66 4161.13 3066.43 30644.68 33070.29 11486.64 9041.29 21675.23 28749.72 23381.75 10275.93 302
Patchmtry57.16 29656.47 29759.23 31569.17 33234.58 36462.98 33363.15 33044.53 33156.83 31174.84 31635.83 27068.71 31940.03 31260.91 33774.39 322
ppachtmachnet_test58.06 29155.38 30666.10 26769.51 32648.99 22868.01 29966.13 30944.50 33254.05 33970.74 34432.09 31572.34 29936.68 33356.71 35776.99 296
PatchT53.17 32653.44 32352.33 35768.29 33925.34 39958.21 35754.41 36944.46 33354.56 33469.05 35833.32 29660.94 35036.93 32961.76 33470.73 358
EPMVS53.96 31853.69 32154.79 34366.12 35431.96 37962.34 33849.05 38144.42 33455.54 32071.33 34130.22 32456.70 37041.65 30662.54 32775.71 305
pmmvs461.48 26959.39 27267.76 24371.57 29553.86 14371.42 26465.34 31344.20 33559.46 28877.92 27335.90 26974.71 28943.87 28764.87 30674.71 319
dp51.89 33051.60 32952.77 35568.44 33832.45 37762.36 33754.57 36844.16 33649.31 36367.91 36028.87 33656.61 37233.89 34654.89 36169.24 369
PatchMatch-RL56.25 30554.55 31261.32 30977.06 20856.07 10965.57 31554.10 37144.13 33753.49 34771.27 34225.20 36166.78 33036.52 33663.66 31661.12 376
our_test_356.49 30154.42 31362.68 29969.51 32645.48 26866.08 31161.49 34244.11 33850.73 35869.60 35533.05 29868.15 32138.38 32056.86 35474.40 321
USDC56.35 30454.24 31762.69 29864.74 35940.31 31265.05 32473.83 24943.93 33947.58 36677.71 28115.36 38575.05 28838.19 32261.81 33372.70 333
PM-MVS52.33 32850.19 33658.75 32062.10 37245.14 27165.75 31240.38 39743.60 34053.52 34572.65 3289.16 39965.87 33650.41 22754.18 36465.24 374
pmmvs-eth3d58.81 28556.31 29966.30 26167.61 34252.42 17672.30 25464.76 31743.55 34154.94 32974.19 32228.95 33472.60 29743.31 29057.21 35373.88 327
SSC-MVS41.96 35341.99 35341.90 37562.46 3719.28 41457.41 36344.32 39343.38 34238.30 39166.45 37032.67 30758.42 36410.98 40421.91 40057.99 382
new-patchmatchnet47.56 34447.73 34447.06 36558.81 3859.37 41348.78 38459.21 34943.28 34344.22 37868.66 35925.67 35957.20 36931.57 36549.35 37774.62 320
Test_1112_low_res62.32 25761.77 25264.00 28979.08 14239.53 32168.17 29770.17 27643.25 34459.03 29479.90 24044.08 18671.24 30643.79 28868.42 28081.25 233
RPMNet61.53 26758.42 28170.86 19669.96 32152.07 18065.31 32281.36 11343.20 34559.36 28970.15 35035.37 27385.47 10436.42 33764.65 30875.06 311
tpm262.07 26160.10 26967.99 24172.79 27443.86 28271.05 27466.85 30343.14 34662.77 24875.39 31338.32 24480.80 20441.69 30468.88 27479.32 266
JIA-IIPM51.56 33147.68 34563.21 29464.61 36050.73 19747.71 38658.77 35142.90 34748.46 36551.72 39024.97 36270.24 31436.06 33953.89 36568.64 370
131464.61 23363.21 23668.80 23271.87 29247.46 24873.95 22878.39 18142.88 34859.97 28076.60 29738.11 24779.39 22754.84 19172.32 22279.55 263
HyFIR lowres test65.67 21963.01 23873.67 12579.97 12155.65 11969.07 29375.52 22142.68 34963.53 23977.95 27140.43 22381.64 18246.01 26571.91 22783.73 179
CR-MVSNet59.91 27757.90 28765.96 26969.96 32152.07 18065.31 32263.15 33042.48 35059.36 28974.84 31635.83 27070.75 30845.50 27364.65 30875.06 311
test22283.14 6858.68 7372.57 25063.45 32741.78 35167.56 16786.12 10937.13 26078.73 14074.98 314
TDRefinement53.44 32450.72 33361.60 30464.31 36246.96 25270.89 27565.27 31541.78 35144.61 37777.98 27011.52 39366.36 33328.57 37851.59 37071.49 350
sss56.17 30656.57 29654.96 34166.93 34636.32 35357.94 35961.69 34141.67 35358.64 29875.32 31438.72 24056.25 37442.04 30266.19 29772.31 342
PVSNet_043.31 2047.46 34545.64 34852.92 35467.60 34344.65 27554.06 37254.64 36741.59 35446.15 37358.75 38330.99 31958.66 36232.18 35424.81 39855.46 386
MVS67.37 18966.33 19570.51 20475.46 23550.94 19173.95 22881.85 10241.57 35562.54 25578.57 26547.98 13585.47 10452.97 20782.05 9575.14 310
Anonymous2024052155.30 31154.41 31457.96 32760.92 38141.73 30271.09 27371.06 27141.18 35648.65 36473.31 32616.93 37959.25 35942.54 29864.01 31372.90 331
Anonymous2023120655.10 31555.30 30754.48 34469.81 32533.94 36962.91 33462.13 34041.08 35755.18 32675.65 30932.75 30556.59 37330.32 37167.86 28372.91 330
MDA-MVSNet_test_wron50.71 33648.95 33856.00 33761.17 37641.84 30051.90 37856.45 36040.96 35844.79 37667.84 36130.04 32655.07 38036.71 33250.69 37371.11 356
YYNet150.73 33548.96 33756.03 33661.10 37741.78 30151.94 37756.44 36140.94 35944.84 37567.80 36230.08 32555.08 37936.77 33050.71 37271.22 353
dongtai34.52 36334.94 36333.26 38461.06 37816.00 40952.79 37623.78 41040.71 36039.33 39048.65 39816.91 38048.34 39112.18 40219.05 40235.44 401
CHOSEN 1792x268865.08 22962.84 24071.82 16981.49 8956.26 10566.32 31074.20 24640.53 36163.16 24478.65 26241.30 21577.80 25445.80 26774.09 19081.40 229
pmmvs556.47 30255.68 30458.86 31961.41 37536.71 34866.37 30962.75 33240.38 36253.70 34176.62 29534.56 28067.05 32840.02 31365.27 30272.83 332
test_vis1_n_192058.86 28459.06 27558.25 32363.76 36343.14 29067.49 30466.36 30740.22 36365.89 19971.95 33631.04 31859.75 35759.94 15764.90 30571.85 346
MDTV_nov1_ep13_2view25.89 39761.22 34440.10 36451.10 35332.97 30038.49 31978.61 273
tpm cat159.25 28356.95 29266.15 26572.19 28746.96 25268.09 29865.76 31040.03 36557.81 30570.56 34538.32 24474.51 29038.26 32161.50 33577.00 294
test-mter56.42 30355.82 30358.22 32468.57 33544.80 27365.46 31857.92 35439.94 36655.44 32269.82 35221.92 37057.44 36749.66 23473.62 19872.41 339
UnsupCasMVSNet_bld50.07 33848.87 33953.66 34960.97 38033.67 37157.62 36264.56 31939.47 36747.38 36764.02 37827.47 34559.32 35834.69 34443.68 38367.98 371
TESTMET0.1,155.28 31254.90 30956.42 33466.56 34943.67 28465.46 31856.27 36439.18 36853.83 34067.44 36424.21 36555.46 37848.04 24973.11 21170.13 362
ADS-MVSNet251.33 33348.76 34059.07 31866.02 35544.60 27650.90 38059.76 34736.90 36950.74 35666.18 37226.38 35363.11 34427.17 38154.76 36269.50 366
ADS-MVSNet48.48 34247.77 34350.63 36166.02 35529.92 38350.90 38050.87 38036.90 36950.74 35666.18 37226.38 35352.47 38527.17 38154.76 36269.50 366
RPSCF55.80 30954.22 31860.53 31165.13 35842.91 29364.30 32857.62 35636.84 37158.05 30482.28 19328.01 34156.24 37537.14 32758.61 34882.44 212
test_cas_vis1_n_192056.91 29856.71 29557.51 33159.13 38445.40 26963.58 33161.29 34336.24 37267.14 17471.85 33729.89 32756.69 37157.65 16963.58 31870.46 359
Patchmatch-test49.08 34048.28 34251.50 36064.40 36130.85 38245.68 39048.46 38435.60 37346.10 37472.10 33334.47 28346.37 39427.08 38360.65 34177.27 289
CHOSEN 280x42047.83 34346.36 34752.24 35967.37 34449.78 21638.91 39843.11 39535.00 37443.27 38163.30 37928.95 33449.19 39036.53 33560.80 33957.76 383
N_pmnet39.35 35840.28 35636.54 38163.76 3631.62 41849.37 3830.76 41734.62 37543.61 38066.38 37126.25 35542.57 39826.02 38651.77 36965.44 373
kuosan29.62 37030.82 36926.02 38952.99 39016.22 40851.09 37922.71 41133.91 37633.99 39340.85 39915.89 38333.11 4067.59 41018.37 40328.72 403
PMMVS53.96 31853.26 32456.04 33562.60 37050.92 19361.17 34556.09 36532.81 37753.51 34666.84 36934.04 28759.93 35644.14 28368.18 28157.27 384
CMPMVSbinary42.80 2157.81 29355.97 30163.32 29260.98 37947.38 24964.66 32769.50 28432.06 37846.83 37077.80 27729.50 33171.36 30548.68 24273.75 19671.21 354
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet59.63 28159.14 27461.08 31074.47 25338.84 32675.20 20368.74 29131.15 37958.24 30276.51 29832.39 31368.58 32049.77 23165.84 29975.81 303
FPMVS42.18 35241.11 35545.39 36758.03 38641.01 30949.50 38253.81 37230.07 38033.71 39464.03 37611.69 39052.08 38814.01 39855.11 36043.09 395
EU-MVSNet55.61 31054.41 31459.19 31765.41 35733.42 37272.44 25271.91 26528.81 38151.27 35273.87 32324.76 36369.08 31843.04 29458.20 34975.06 311
test_vis1_n49.89 33948.69 34153.50 35153.97 38837.38 34061.53 34047.33 38728.54 38259.62 28767.10 36813.52 38752.27 38649.07 23957.52 35170.84 357
test_fmvs1_n51.37 33250.35 33554.42 34652.85 39137.71 33761.16 34651.93 37328.15 38363.81 23769.73 35413.72 38653.95 38151.16 22260.65 34171.59 348
LF4IMVS42.95 35042.26 35245.04 36848.30 39832.50 37654.80 37048.49 38328.03 38440.51 38570.16 3499.24 39843.89 39731.63 36349.18 37858.72 380
test_fmvs151.32 33450.48 33453.81 34853.57 38937.51 33960.63 35051.16 37628.02 38563.62 23869.23 35716.41 38153.93 38251.01 22360.70 34069.99 363
MVS-HIRNet45.52 34644.48 34948.65 36468.49 33734.05 36859.41 35444.50 39227.03 38637.96 39250.47 39426.16 35664.10 34026.74 38459.52 34447.82 393
PMVScopyleft28.69 2236.22 36133.29 36645.02 36936.82 40935.98 35654.68 37148.74 38226.31 38721.02 40251.61 3912.88 41160.10 3559.99 40747.58 37938.99 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs344.92 34741.95 35453.86 34752.58 39343.55 28562.11 33946.90 38926.05 38840.63 38460.19 38211.08 39657.91 36631.83 36246.15 38060.11 377
test_fmvs248.69 34147.49 34652.29 35848.63 39733.06 37557.76 36048.05 38525.71 38959.76 28569.60 35511.57 39252.23 38749.45 23756.86 35471.58 349
PMMVS227.40 37125.91 37431.87 38639.46 4086.57 41531.17 40128.52 40623.96 39020.45 40348.94 3974.20 40737.94 40216.51 39519.97 40151.09 388
Gipumacopyleft34.77 36231.91 36743.33 37262.05 37337.87 33320.39 40367.03 30123.23 39118.41 40425.84 4044.24 40562.73 34514.71 39751.32 37129.38 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis1_rt41.35 35539.45 35747.03 36646.65 40037.86 33447.76 38538.65 39823.10 39244.21 37951.22 39211.20 39544.08 39639.27 31653.02 36759.14 379
new_pmnet34.13 36434.29 36533.64 38352.63 39218.23 40744.43 39333.90 40322.81 39330.89 39653.18 38810.48 39735.72 40520.77 39239.51 38846.98 394
mvsany_test139.38 35738.16 36043.02 37349.05 39534.28 36644.16 39425.94 40822.74 39446.57 37262.21 38123.85 36641.16 40133.01 35235.91 39253.63 387
LCM-MVSNet40.30 35635.88 36253.57 35042.24 40229.15 38545.21 39260.53 34622.23 39528.02 39750.98 3933.72 40861.78 34931.22 36838.76 39069.78 365
test_fmvs344.30 34842.55 35149.55 36342.83 40127.15 39453.03 37444.93 39122.03 39653.69 34364.94 3754.21 40649.63 38947.47 25049.82 37571.88 345
APD_test137.39 36034.94 36344.72 37148.88 39633.19 37452.95 37544.00 39419.49 39727.28 39858.59 3843.18 41052.84 38418.92 39341.17 38748.14 392
mvsany_test332.62 36530.57 37038.77 37936.16 41024.20 40138.10 39920.63 41219.14 39840.36 38757.43 3855.06 40336.63 40429.59 37528.66 39655.49 385
E-PMN23.77 37222.73 37626.90 38742.02 40320.67 40442.66 39535.70 40117.43 39910.28 40925.05 4056.42 40142.39 39910.28 40614.71 40517.63 404
EMVS22.97 37321.84 37726.36 38840.20 40619.53 40641.95 39634.64 40217.09 4009.73 41022.83 4067.29 40042.22 4009.18 40813.66 40617.32 405
test_vis3_rt32.09 36630.20 37137.76 38035.36 41127.48 39040.60 39728.29 40716.69 40132.52 39540.53 4001.96 41237.40 40333.64 34942.21 38648.39 390
test_f31.86 36731.05 36834.28 38232.33 41321.86 40332.34 40030.46 40516.02 40239.78 38955.45 3874.80 40432.36 40730.61 36937.66 39148.64 389
DSMNet-mixed39.30 35938.72 35841.03 37651.22 39419.66 40545.53 39131.35 40415.83 40339.80 38867.42 36622.19 36945.13 39522.43 38952.69 36858.31 381
testf131.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39213.63 39934.56 39341.60 396
APD_test231.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39213.63 39934.56 39341.60 396
MVEpermissive17.77 2321.41 37417.77 37932.34 38534.34 41225.44 39816.11 40424.11 40911.19 40613.22 40631.92 4021.58 41330.95 40810.47 40517.03 40440.62 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft12.03 39217.97 41410.91 41110.60 4157.46 40711.07 40828.36 4033.28 40911.29 4118.01 4099.74 41013.89 406
wuyk23d13.32 37712.52 38015.71 39147.54 39926.27 39631.06 4021.98 4164.93 4085.18 4111.94 4110.45 41618.54 4106.81 41112.83 4072.33 408
test_method19.68 37518.10 37824.41 39013.68 4153.11 41712.06 40642.37 3962.00 40911.97 40736.38 4015.77 40229.35 40915.06 39623.65 39940.76 398
tmp_tt9.43 37811.14 3814.30 3932.38 4164.40 41613.62 40516.08 4140.39 41015.89 40513.06 40715.80 3845.54 41212.63 40110.46 4092.95 407
EGC-MVSNET42.47 35138.48 35954.46 34574.33 25748.73 23270.33 28251.10 3770.03 4110.18 41267.78 36313.28 38866.49 33218.91 39450.36 37448.15 391
testmvs4.52 3816.03 3840.01 3950.01 4170.00 42053.86 3730.00 4180.01 4120.04 4130.27 4120.00 4180.00 4130.04 4120.00 4110.03 410
test1234.73 3806.30 3830.02 3940.01 4170.01 41956.36 3660.00 4180.01 4120.04 4130.21 4130.01 4170.00 4130.03 4130.00 4110.04 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
cdsmvs_eth3d_5k17.50 37623.34 3750.00 3960.00 4190.00 4200.00 40778.63 1680.00 4140.00 41582.18 19449.25 1220.00 4130.00 4140.00 4110.00 411
pcd_1.5k_mvsjas3.92 3825.23 3850.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 41447.05 1530.00 4130.00 4140.00 4110.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
ab-mvs-re6.49 3798.65 3820.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 41577.89 2750.00 4180.00 4130.00 4140.00 4110.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
WAC-MVS27.31 39227.77 379
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 33
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 33
eth-test20.00 419
eth-test0.00 419
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 21
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 44
GSMVS78.05 278
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27978.05 278
sam_mvs33.43 295
ambc65.13 28263.72 36537.07 34447.66 38778.78 16454.37 33771.42 33911.24 39480.94 19945.64 26953.85 36677.38 287
MTGPAbinary80.97 130
test_post168.67 2953.64 40932.39 31369.49 31644.17 281
test_post3.55 41033.90 29066.52 331
patchmatchnet-post64.03 37634.50 28174.27 292
GG-mvs-BLEND62.34 30071.36 30137.04 34569.20 29257.33 35954.73 33265.48 37430.37 32277.82 25334.82 34374.93 18472.17 343
MTMP86.03 1917.08 413
test9_res75.28 3788.31 3283.81 173
agg_prior273.09 5587.93 4084.33 154
agg_prior85.04 5059.96 4781.04 12874.68 5284.04 130
test_prior462.51 1482.08 76
test_prior76.69 5384.20 6157.27 8884.88 4086.43 8086.38 79
新几何276.12 182
旧先验183.04 7053.15 15867.52 29687.85 7144.08 18680.76 10678.03 281
原ACMM279.02 117
testdata272.18 30246.95 259
segment_acmp54.23 56
test1277.76 4384.52 5858.41 7583.36 7872.93 8354.61 5388.05 3988.12 3586.81 67
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 177
plane_prior584.01 5387.21 5668.16 8280.58 10984.65 148
plane_prior486.10 110
plane_prior181.27 95
n20.00 418
nn0.00 418
door-mid47.19 388
lessismore_v069.91 21471.42 29947.80 24250.90 37950.39 36075.56 31027.43 34781.33 18945.91 26634.10 39580.59 246
test1183.47 73
door47.60 386
HQP5-MVS54.94 131
BP-MVS67.04 97
HQP4-MVS67.85 15786.93 6484.32 155
HQP3-MVS83.90 5880.35 113
HQP2-MVS45.46 171
NP-MVS80.98 10056.05 11085.54 129
ACMMP++_ref74.07 191
ACMMP++72.16 225
Test By Simon48.33 133