This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6388.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 16
FOURS186.12 3660.82 3788.18 183.61 6760.87 8681.50 16
APDe-MVScopyleft80.16 880.59 678.86 2986.64 2160.02 4888.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1678.70 1388.32 3186.79 67
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test072687.75 759.07 6787.86 486.83 864.26 2984.19 791.92 564.82 8
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6787.85 585.03 3664.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND79.19 1687.82 359.11 6687.85 587.15 390.84 378.66 1590.61 1187.62 43
SED-MVS81.56 282.30 279.32 1387.77 458.90 7287.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 22
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4567.01 190.33 1273.16 5491.15 488.23 22
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7562.18 1687.60 985.83 1966.69 978.03 2690.98 1854.26 5690.06 1478.42 1989.02 2387.69 39
Skip Steuart: Steuart Systems R&D Blog.
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7262.44 6472.68 9190.50 2648.18 13487.34 5373.59 5285.71 6084.76 150
ZNCC-MVS78.82 1378.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4690.47 2853.96 6188.68 2776.48 2889.63 2087.16 57
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 2158.63 2587.24 5479.00 1290.37 1485.26 132
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1779.85 591.48 188.19 24
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 6790.50 2653.20 7288.35 3174.02 4887.05 4586.13 92
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7490.58 2349.90 11388.21 3473.78 5087.03 4686.29 89
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 7290.56 2449.80 11588.24 3374.02 4887.03 4686.32 86
MM80.20 780.28 879.99 282.19 8260.01 4986.19 1783.93 5473.19 177.08 3491.21 1757.23 3390.73 1083.35 188.12 3489.22 6
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2563.71 1289.23 2081.51 288.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTMP86.03 1917.08 425
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 7190.60 2254.85 5186.72 7177.20 2588.06 3685.74 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 3063.56 4174.29 6490.03 4152.56 7888.53 2974.79 4288.34 2986.63 74
XVS77.17 3176.56 3679.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 9890.01 4347.95 13688.01 4071.55 7086.74 5386.37 80
X-MVStestdata70.21 12867.28 17779.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 986.49 42047.95 13688.01 4071.55 7086.74 5386.37 80
3Dnovator+66.72 475.84 4974.57 5979.66 982.40 7959.92 5185.83 2286.32 1666.92 767.80 16589.24 5442.03 20689.38 1964.07 12286.50 5789.69 3
mPP-MVS76.54 3975.93 4478.34 3686.47 2663.50 385.74 2582.28 9762.90 5271.77 10290.26 3446.61 16186.55 7771.71 6885.66 6184.97 143
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SR-MVS76.13 4675.70 4777.40 5185.87 4061.20 2985.52 2782.19 9859.99 11175.10 4590.35 3147.66 14186.52 7871.64 6982.99 8384.47 156
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 9279.05 2190.30 3355.54 4588.32 3273.48 5387.03 4684.83 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPcopyleft76.02 4775.33 5178.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 12889.74 4945.43 17487.16 6072.01 6482.87 8885.14 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3084.42 4566.73 874.67 5889.38 5255.30 4689.18 2174.19 4687.34 4486.38 78
SF-MVS78.82 1379.22 1277.60 4682.88 7757.83 8484.99 3188.13 261.86 7579.16 2090.75 2057.96 2687.09 6377.08 2690.18 1587.87 32
reproduce-ours76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 119
our_new_method76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 119
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3484.85 4061.98 7473.06 8488.88 5853.72 6689.06 2368.27 8488.04 3787.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_030478.45 1878.28 1978.98 2680.73 10757.91 8384.68 3581.64 10768.35 275.77 3990.38 2953.98 5990.26 1381.30 387.68 4288.77 11
reproduce_model76.43 4176.08 4177.49 4883.47 6960.09 4784.60 3682.90 8959.65 11777.31 3091.43 1249.62 11787.24 5471.99 6583.75 7885.14 134
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3783.87 6060.37 9979.89 1889.38 5254.97 4985.58 10076.12 3184.94 6486.33 84
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS76.25 4475.98 4377.06 5380.15 12155.63 12384.51 3883.90 5763.24 4573.30 7487.27 8455.06 4886.30 8671.78 6784.58 6689.25 5
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3985.03 3666.96 577.58 2990.06 3959.47 2189.13 2278.67 1489.73 1687.03 59
SR-MVS-dyc-post74.57 6273.90 6576.58 6383.49 6759.87 5284.29 4081.36 11558.07 14873.14 8090.07 3744.74 18185.84 9468.20 8581.76 10184.03 166
RE-MVS-def73.71 6983.49 6759.87 5284.29 4081.36 11558.07 14873.14 8090.07 3743.06 19768.20 8581.76 10184.03 166
PHI-MVS75.87 4875.36 5077.41 4980.62 11255.91 11684.28 4285.78 2056.08 18773.41 7386.58 10250.94 10588.54 2870.79 7489.71 1787.79 37
HQP_MVS74.31 6573.73 6876.06 6981.41 9456.31 10584.22 4384.01 5264.52 2569.27 13686.10 11745.26 17887.21 5868.16 8780.58 11184.65 151
plane_prior284.22 4364.52 25
DeepC-MVS69.38 278.56 1778.14 2279.83 783.60 6561.62 2384.17 4586.85 663.23 4673.84 6990.25 3557.68 2989.96 1574.62 4389.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1478.75 1583.10 7284.15 4688.26 159.90 11278.57 2390.36 3057.51 3286.86 6877.39 2389.52 21
CPTT-MVS72.78 8072.08 8574.87 9084.88 5761.41 2684.15 4677.86 18955.27 20567.51 17188.08 6841.93 20881.85 18269.04 8380.01 11981.35 235
TSAR-MVS + MP.78.44 1978.28 1978.90 2784.96 5261.41 2684.03 4883.82 6359.34 12679.37 1989.76 4859.84 1687.62 5176.69 2786.74 5387.68 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
API-MVS72.17 9371.41 9374.45 10381.95 8657.22 9284.03 4880.38 14259.89 11568.40 14882.33 19449.64 11687.83 4651.87 22384.16 7578.30 279
save fliter86.17 3361.30 2883.98 5079.66 15059.00 130
SPE-MVS-test75.62 5275.31 5276.56 6480.63 11155.13 13383.88 5185.22 2962.05 7171.49 10786.03 12053.83 6386.36 8467.74 9086.91 5088.19 24
ACMMP_NAP78.77 1578.78 1478.74 3085.44 4561.04 3183.84 5285.16 3162.88 5378.10 2491.26 1652.51 7988.39 3079.34 890.52 1386.78 68
EC-MVSNet75.84 4975.87 4675.74 7578.86 14852.65 17483.73 5386.08 1763.47 4272.77 9087.25 8553.13 7387.93 4271.97 6685.57 6286.66 72
APD-MVS_3200maxsize74.96 5474.39 6176.67 6082.20 8158.24 8083.67 5483.29 8158.41 14273.71 7090.14 3645.62 16785.99 9069.64 7882.85 8985.78 103
HPM-MVS_fast74.30 6673.46 7176.80 5684.45 6059.04 6983.65 5581.05 12960.15 10870.43 11489.84 4641.09 22285.59 9967.61 9382.90 8785.77 106
plane_prior56.31 10583.58 5663.19 4880.48 114
QAPM70.05 13068.81 14173.78 11976.54 22453.43 15883.23 5783.48 7052.89 24465.90 20086.29 11141.55 21586.49 8051.01 23078.40 14781.42 229
MCST-MVS77.48 2877.45 2777.54 4786.67 2058.36 7983.22 5886.93 556.91 16874.91 5188.19 6559.15 2387.68 5073.67 5187.45 4386.57 75
EPNet73.09 7672.16 8375.90 7175.95 23256.28 10783.05 5972.39 26566.53 1065.27 21287.00 8750.40 11085.47 10562.48 13986.32 5885.94 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4683.03 6085.33 2862.86 5480.17 1790.03 4161.76 1488.95 2474.21 4588.67 2688.12 26
CSCG76.92 3376.75 3177.41 4983.96 6459.60 5482.95 6186.50 1360.78 8975.27 4384.83 14060.76 1586.56 7667.86 8987.87 4186.06 94
MP-MVS-pluss78.35 2078.46 1778.03 4084.96 5259.52 5682.93 6285.39 2762.15 6776.41 3791.51 1152.47 8186.78 7080.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6385.08 3362.57 6073.09 8389.97 4450.90 10687.48 5275.30 3686.85 5187.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVSFormer71.50 10570.38 11574.88 8978.76 15157.15 9782.79 6478.48 17651.26 26469.49 13183.22 17543.99 19083.24 14966.06 10579.37 12784.23 161
test_djsdf69.45 15067.74 16074.58 9974.57 25754.92 13682.79 6478.48 17651.26 26465.41 20983.49 17238.37 24783.24 14966.06 10569.25 27485.56 114
ACMP63.53 672.30 9071.20 10075.59 8180.28 11457.54 8782.74 6682.84 9260.58 9365.24 21686.18 11439.25 23886.03 8966.95 10176.79 17083.22 196
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM61.98 770.80 11769.73 12574.02 11380.59 11358.59 7782.68 6782.02 10155.46 20167.18 17684.39 15338.51 24583.17 15160.65 15476.10 17780.30 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AdaColmapbinary69.99 13268.66 14573.97 11584.94 5457.83 8482.63 6878.71 16856.28 18364.34 23084.14 15641.57 21387.06 6446.45 26878.88 13777.02 299
OPM-MVS74.73 5874.25 6276.19 6880.81 10659.01 7082.60 6983.64 6663.74 3972.52 9487.49 7747.18 15285.88 9369.47 8080.78 10783.66 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PGM-MVS76.77 3776.06 4278.88 2886.14 3562.73 982.55 7083.74 6461.71 7672.45 9790.34 3248.48 13288.13 3772.32 6186.85 5185.78 103
LPG-MVS_test72.74 8171.74 8775.76 7380.22 11657.51 8982.55 7083.40 7461.32 7966.67 18687.33 8239.15 24086.59 7467.70 9177.30 16383.19 198
CANet76.46 4075.93 4478.06 3981.29 9757.53 8882.35 7283.31 8067.78 370.09 11886.34 11054.92 5088.90 2572.68 5884.55 6787.76 38
114514_t70.83 11569.56 12774.64 9686.21 3154.63 13982.34 7381.81 10448.22 30363.01 25185.83 12740.92 22487.10 6257.91 17379.79 12082.18 219
HQP-NCC80.66 10882.31 7462.10 6867.85 160
ACMP_Plane80.66 10882.31 7462.10 6867.85 160
HQP-MVS73.45 7172.80 7675.40 8280.66 10854.94 13482.31 7483.90 5762.10 6867.85 16085.54 13445.46 17286.93 6667.04 9880.35 11584.32 158
MSLP-MVS++73.77 7073.47 7074.66 9483.02 7459.29 6182.30 7781.88 10259.34 12671.59 10586.83 9045.94 16583.65 14265.09 11585.22 6381.06 242
EPP-MVSNet72.16 9571.31 9774.71 9178.68 15449.70 22082.10 7881.65 10660.40 9665.94 19885.84 12651.74 9486.37 8355.93 18579.55 12688.07 29
test_prior462.51 1482.08 79
TSAR-MVS + GP.74.90 5574.15 6377.17 5282.00 8458.77 7581.80 8078.57 17258.58 13974.32 6384.51 15155.94 4387.22 5767.11 9784.48 7185.52 115
test_prior281.75 8160.37 9975.01 4789.06 5556.22 4172.19 6288.96 24
PS-MVSNAJss72.24 9171.21 9975.31 8478.50 15755.93 11581.63 8282.12 9956.24 18470.02 12285.68 13047.05 15484.34 12965.27 11474.41 19285.67 110
TEST985.58 4361.59 2481.62 8381.26 12255.65 19774.93 4988.81 5953.70 6784.68 123
train_agg76.27 4376.15 4076.64 6285.58 4361.59 2481.62 8381.26 12255.86 18974.93 4988.81 5953.70 6784.68 12375.24 3888.33 3083.65 187
MG-MVS73.96 6873.89 6674.16 11185.65 4249.69 22281.59 8581.29 12161.45 7871.05 11088.11 6651.77 9387.73 4761.05 15183.09 8185.05 139
test_885.40 4660.96 3481.54 8681.18 12555.86 18974.81 5488.80 6153.70 6784.45 127
MAR-MVS71.51 10470.15 12075.60 8081.84 8759.39 5881.38 8782.90 8954.90 21868.08 15778.70 26447.73 13985.51 10251.68 22784.17 7481.88 225
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CDPH-MVS76.31 4275.67 4878.22 3785.35 4859.14 6581.31 8884.02 5156.32 18174.05 6588.98 5753.34 7187.92 4369.23 8288.42 2887.59 44
OpenMVScopyleft61.03 968.85 15967.56 16472.70 15674.26 26453.99 14781.21 8981.34 11952.70 24562.75 25585.55 13338.86 24384.14 13148.41 25283.01 8279.97 259
DP-MVS Recon72.15 9670.73 10876.40 6586.57 2457.99 8281.15 9082.96 8757.03 16566.78 18285.56 13144.50 18588.11 3851.77 22580.23 11883.10 202
balanced_conf0376.58 3876.55 3776.68 5981.73 8852.90 16980.94 9185.70 2361.12 8474.90 5287.17 8656.46 3888.14 3672.87 5688.03 3889.00 8
Vis-MVSNetpermissive72.18 9271.37 9574.61 9781.29 9755.41 12980.90 9278.28 18560.73 9069.23 13988.09 6744.36 18782.65 16757.68 17481.75 10385.77 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
jajsoiax68.25 17566.45 19173.66 12975.62 23655.49 12880.82 9378.51 17552.33 24964.33 23184.11 15728.28 34781.81 18463.48 13270.62 24483.67 184
mvs_tets68.18 17766.36 19773.63 13275.61 23755.35 13180.77 9478.56 17352.48 24864.27 23384.10 15827.45 35381.84 18363.45 13370.56 24683.69 183
DP-MVS65.68 22163.66 23271.75 17484.93 5556.87 10280.74 9573.16 25953.06 24159.09 30182.35 19336.79 26985.94 9232.82 36369.96 26072.45 346
3Dnovator64.47 572.49 8671.39 9475.79 7277.70 18958.99 7180.66 9683.15 8562.24 6665.46 20886.59 10142.38 20485.52 10159.59 16484.72 6582.85 207
ACMH+57.40 1166.12 21764.06 22472.30 16577.79 18552.83 17280.39 9778.03 18757.30 16157.47 31682.55 18727.68 35184.17 13045.54 27869.78 26479.90 261
sasdasda74.67 5974.98 5573.71 12678.94 14650.56 20680.23 9883.87 6060.30 10377.15 3286.56 10359.65 1782.00 17966.01 10782.12 9488.58 14
canonicalmvs74.67 5974.98 5573.71 12678.94 14650.56 20680.23 9883.87 6060.30 10377.15 3286.56 10359.65 1782.00 17966.01 10782.12 9488.58 14
IS-MVSNet71.57 10371.00 10473.27 14578.86 14845.63 27280.22 10078.69 16964.14 3566.46 18987.36 8149.30 12085.60 9850.26 23683.71 7988.59 13
Effi-MVS+-dtu69.64 14367.53 16775.95 7076.10 23062.29 1580.20 10176.06 21759.83 11665.26 21577.09 29341.56 21484.02 13560.60 15571.09 24181.53 228
nrg03072.96 7873.01 7472.84 15275.41 24150.24 21080.02 10282.89 9158.36 14474.44 6086.73 9458.90 2480.83 20665.84 11074.46 18987.44 48
Anonymous2023121169.28 15368.47 15071.73 17580.28 11447.18 25679.98 10382.37 9654.61 22267.24 17484.01 16039.43 23582.41 17455.45 19372.83 21885.62 113
DPM-MVS75.47 5375.00 5476.88 5481.38 9659.16 6279.94 10485.71 2256.59 17672.46 9586.76 9256.89 3587.86 4566.36 10388.91 2583.64 188
PVSNet_Blended_VisFu71.45 10770.39 11474.65 9582.01 8358.82 7479.93 10580.35 14355.09 21065.82 20482.16 20049.17 12382.64 16860.34 15678.62 14482.50 213
PAPM_NR72.63 8471.80 8675.13 8781.72 8953.42 15979.91 10683.28 8259.14 12866.31 19385.90 12451.86 9186.06 8757.45 17680.62 10985.91 99
LS3D64.71 23462.50 24871.34 18979.72 12855.71 12079.82 10774.72 24048.50 30056.62 32284.62 14633.59 30082.34 17529.65 38475.23 18675.97 309
UGNet68.81 16067.39 17273.06 14878.33 16654.47 14079.77 10875.40 22760.45 9563.22 24484.40 15232.71 31380.91 20551.71 22680.56 11383.81 176
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS71.78 9971.59 8872.32 16483.40 7046.38 26179.75 10971.08 27464.18 3272.80 8988.64 6242.58 20183.72 14057.41 17784.49 7086.86 64
OMC-MVS71.40 10870.60 11073.78 11976.60 22253.15 16379.74 11079.78 14758.37 14368.75 14386.45 10845.43 17480.60 21062.58 13777.73 15487.58 45
casdiffmvs_mvgpermissive76.14 4576.30 3975.66 7776.46 22651.83 19179.67 11185.08 3365.02 1975.84 3888.58 6359.42 2285.08 11172.75 5783.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
无先验79.66 11274.30 24748.40 30280.78 20853.62 20879.03 274
Effi-MVS+73.31 7472.54 7975.62 7977.87 18253.64 15379.62 11379.61 15161.63 7772.02 10082.61 18556.44 3985.97 9163.99 12579.07 13687.25 56
GDP-MVS72.64 8371.28 9876.70 5777.72 18854.22 14479.57 11484.45 4355.30 20471.38 10886.97 8839.94 22887.00 6567.02 10079.20 13288.89 9
PAPR71.72 10270.82 10674.41 10481.20 10151.17 19479.55 11583.33 7955.81 19266.93 18184.61 14750.95 10486.06 8755.79 18879.20 13286.00 95
ACMH55.70 1565.20 23063.57 23370.07 21378.07 17652.01 18979.48 11679.69 14855.75 19456.59 32380.98 22427.12 35680.94 20242.90 30571.58 23577.25 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS74.46 6473.84 6776.33 6779.27 13755.24 13279.22 11785.00 3864.97 2172.65 9279.46 25453.65 7087.87 4467.45 9582.91 8685.89 100
BP-MVS173.41 7272.25 8276.88 5476.68 21953.70 15179.15 11881.07 12860.66 9171.81 10187.39 8040.93 22387.24 5471.23 7281.29 10689.71 2
原ACMM279.02 119
GeoE71.01 11170.15 12073.60 13479.57 13152.17 18478.93 12078.12 18658.02 15067.76 16883.87 16352.36 8382.72 16556.90 17975.79 18085.92 98
UA-Net73.13 7572.93 7573.76 12183.58 6651.66 19278.75 12177.66 19367.75 472.61 9389.42 5049.82 11483.29 14853.61 20983.14 8086.32 86
VDDNet71.81 9871.33 9673.26 14682.80 7847.60 25278.74 12275.27 22959.59 12272.94 8689.40 5141.51 21683.91 13758.75 16982.99 8388.26 20
v1070.21 12869.02 13773.81 11873.51 26950.92 19878.74 12281.39 11360.05 11066.39 19181.83 20847.58 14385.41 10862.80 13668.86 28185.09 138
CANet_DTU68.18 17767.71 16369.59 22374.83 24946.24 26378.66 12476.85 20659.60 11963.45 24282.09 20435.25 27977.41 26359.88 16178.76 14185.14 134
MVSMamba_PlusPlus75.75 5175.44 4976.67 6080.84 10553.06 16678.62 12585.13 3259.65 11771.53 10687.47 7856.92 3488.17 3572.18 6386.63 5688.80 10
v870.33 12669.28 13373.49 13773.15 27250.22 21178.62 12580.78 13560.79 8866.45 19082.11 20349.35 11984.98 11463.58 13168.71 28285.28 130
alignmvs73.86 6973.99 6473.45 13978.20 16950.50 20878.57 12782.43 9559.40 12476.57 3586.71 9656.42 4081.23 19665.84 11081.79 10088.62 12
PLCcopyleft56.13 1465.09 23163.21 24070.72 20381.04 10354.87 13778.57 12777.47 19648.51 29955.71 32981.89 20633.71 29779.71 22441.66 31470.37 24977.58 290
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n69.01 15867.36 17473.98 11472.51 28652.65 17478.54 12981.30 12060.26 10562.67 25681.62 21143.61 19284.49 12657.01 17868.70 28384.79 148
COLMAP_ROBcopyleft52.97 1761.27 27658.81 28468.64 23774.63 25552.51 17978.42 13073.30 25749.92 28150.96 36481.51 21523.06 37679.40 22931.63 37365.85 30374.01 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_a69.54 14668.74 14371.93 16872.47 28753.82 14978.25 13162.26 34649.78 28273.12 8286.21 11352.66 7776.79 27675.02 3968.88 27985.18 133
CLD-MVS73.33 7372.68 7775.29 8678.82 15053.33 16178.23 13284.79 4161.30 8170.41 11581.04 22252.41 8287.12 6164.61 12182.49 9385.41 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvsmconf0.1_n72.81 7972.33 8174.24 10969.89 33155.81 11878.22 13375.40 22754.17 23175.00 4888.03 7153.82 6480.23 22078.08 2078.34 14886.69 70
test_fmvsmconf_n73.01 7772.59 7874.27 10871.28 30955.88 11778.21 13475.56 22354.31 22974.86 5387.80 7554.72 5280.23 22078.07 2178.48 14586.70 69
casdiffmvspermissive74.80 5674.89 5774.53 10175.59 23850.37 20978.17 13585.06 3562.80 5874.40 6187.86 7357.88 2783.61 14369.46 8182.79 9089.59 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a69.32 15268.44 15271.96 16770.91 31353.78 15078.12 13662.30 34549.35 28873.20 7886.55 10551.99 8976.79 27674.83 4168.68 28485.32 128
F-COLMAP63.05 25560.87 27169.58 22576.99 21553.63 15478.12 13676.16 21347.97 30852.41 35981.61 21227.87 34978.11 25140.07 32066.66 29877.00 300
test_fmvsmconf0.01_n72.17 9371.50 9074.16 11167.96 34955.58 12678.06 13874.67 24154.19 23074.54 5988.23 6450.35 11280.24 21978.07 2177.46 15986.65 73
EG-PatchMatch MVS64.71 23462.87 24370.22 20977.68 19053.48 15777.99 13978.82 16453.37 24056.03 32877.41 29024.75 37384.04 13346.37 26973.42 20973.14 338
fmvsm_s_conf0.5_n69.58 14468.84 14071.79 17372.31 29252.90 16977.90 14062.43 34449.97 28072.85 8885.90 12452.21 8576.49 28275.75 3370.26 25485.97 96
dcpmvs_274.55 6375.23 5372.48 15982.34 8053.34 16077.87 14181.46 11157.80 15875.49 4186.81 9162.22 1377.75 25871.09 7382.02 9786.34 82
tttt051767.83 18565.66 21074.33 10676.69 21850.82 20077.86 14273.99 25254.54 22564.64 22882.53 19035.06 28185.50 10355.71 18969.91 26186.67 71
fmvsm_s_conf0.1_n69.41 15168.60 14671.83 17171.07 31152.88 17177.85 14362.44 34349.58 28572.97 8586.22 11251.68 9576.48 28375.53 3470.10 25786.14 91
v114470.42 12469.31 13273.76 12173.22 27050.64 20377.83 14481.43 11258.58 13969.40 13481.16 21947.53 14585.29 11064.01 12470.64 24385.34 127
CNLPA65.43 22564.02 22569.68 22178.73 15358.07 8177.82 14570.71 27851.49 25961.57 27483.58 17038.23 25170.82 31243.90 29370.10 25780.16 256
VDD-MVS72.50 8572.09 8473.75 12381.58 9049.69 22277.76 14677.63 19463.21 4773.21 7789.02 5642.14 20583.32 14761.72 14682.50 9288.25 21
v119269.97 13368.68 14473.85 11673.19 27150.94 19677.68 14781.36 11557.51 16068.95 14280.85 22945.28 17785.33 10962.97 13570.37 24985.27 131
v2v48270.50 12269.45 13173.66 12972.62 28250.03 21677.58 14880.51 13959.90 11269.52 13082.14 20147.53 14584.88 12065.07 11670.17 25586.09 93
WR-MVS_H67.02 20266.92 18667.33 25377.95 18137.75 34477.57 14982.11 10062.03 7362.65 25782.48 19150.57 10979.46 22842.91 30464.01 31884.79 148
Anonymous2024052969.91 13469.02 13772.56 15780.19 11947.65 25077.56 15080.99 13155.45 20269.88 12686.76 9239.24 23982.18 17754.04 20477.10 16787.85 33
v14419269.71 13868.51 14773.33 14473.10 27350.13 21377.54 15180.64 13656.65 17068.57 14680.55 23246.87 15984.96 11662.98 13469.66 26884.89 145
baseline74.61 6174.70 5874.34 10575.70 23449.99 21777.54 15184.63 4262.73 5973.98 6687.79 7657.67 3083.82 13969.49 7982.74 9189.20 7
Fast-Effi-MVS+-dtu67.37 19265.33 21573.48 13872.94 27757.78 8677.47 15376.88 20557.60 15961.97 26776.85 29739.31 23680.49 21454.72 19870.28 25382.17 221
v192192069.47 14968.17 15673.36 14373.06 27450.10 21477.39 15480.56 13756.58 17768.59 14480.37 23444.72 18284.98 11462.47 14069.82 26385.00 140
tt080567.77 18667.24 18169.34 22874.87 24840.08 32177.36 15581.37 11455.31 20366.33 19284.65 14537.35 25982.55 17055.65 19172.28 22885.39 126
GBi-Net67.21 19466.55 18969.19 22977.63 19343.33 29377.31 15677.83 19056.62 17365.04 22182.70 18141.85 20980.33 21647.18 26272.76 21983.92 171
test167.21 19466.55 18969.19 22977.63 19343.33 29377.31 15677.83 19056.62 17365.04 22182.70 18141.85 20980.33 21647.18 26272.76 21983.92 171
FMVSNet166.70 20965.87 20669.19 22977.49 20143.33 29377.31 15677.83 19056.45 17864.60 22982.70 18138.08 25380.33 21646.08 27172.31 22783.92 171
MVS_111021_HR74.02 6773.46 7175.69 7683.01 7560.63 4077.29 15978.40 18361.18 8370.58 11385.97 12254.18 5884.00 13667.52 9482.98 8582.45 214
EIA-MVS71.78 9970.60 11075.30 8579.85 12553.54 15677.27 16083.26 8357.92 15466.49 18879.39 25652.07 8886.69 7260.05 15879.14 13585.66 111
v124069.24 15567.91 15973.25 14773.02 27649.82 21877.21 16180.54 13856.43 17968.34 15080.51 23343.33 19584.99 11262.03 14469.77 26684.95 144
fmvsm_l_conf0.5_n70.99 11270.82 10671.48 18171.45 30254.40 14277.18 16270.46 28048.67 29675.17 4486.86 8953.77 6576.86 27476.33 3077.51 15883.17 201
jason69.65 14268.39 15473.43 14178.27 16856.88 10177.12 16373.71 25546.53 32469.34 13583.22 17543.37 19479.18 23364.77 11879.20 13284.23 161
jason: jason.
PAPM67.92 18366.69 18771.63 17978.09 17549.02 23177.09 16481.24 12451.04 26760.91 28083.98 16147.71 14084.99 11240.81 31779.32 13080.90 245
EI-MVSNet-Vis-set72.42 8971.59 8874.91 8878.47 15954.02 14677.05 16579.33 15765.03 1871.68 10479.35 25852.75 7684.89 11866.46 10274.23 19385.83 102
PEN-MVS66.60 21166.45 19167.04 25477.11 21136.56 35777.03 16680.42 14162.95 5062.51 26284.03 15946.69 16079.07 23944.22 28763.08 32885.51 116
FIs70.82 11671.43 9268.98 23378.33 16638.14 34076.96 16783.59 6861.02 8567.33 17386.73 9455.07 4781.64 18554.61 20179.22 13187.14 58
PS-CasMVS66.42 21566.32 19966.70 25877.60 19936.30 36276.94 16879.61 15162.36 6562.43 26483.66 16745.69 16678.37 24745.35 28463.26 32685.42 124
h-mvs3372.71 8271.49 9176.40 6581.99 8559.58 5576.92 16976.74 20960.40 9674.81 5485.95 12345.54 17085.76 9670.41 7670.61 24583.86 175
fmvsm_l_conf0.5_n_a70.50 12270.27 11771.18 19371.30 30854.09 14576.89 17069.87 28447.90 30974.37 6286.49 10653.07 7576.69 27975.41 3577.11 16682.76 208
thisisatest053067.92 18365.78 20874.33 10676.29 22751.03 19576.89 17074.25 24853.67 23765.59 20681.76 20935.15 28085.50 10355.94 18472.47 22386.47 77
test_040263.25 25261.01 26869.96 21480.00 12354.37 14376.86 17272.02 26954.58 22458.71 30480.79 23135.00 28284.36 12826.41 39664.71 31271.15 365
CP-MVSNet66.49 21466.41 19566.72 25677.67 19136.33 36076.83 17379.52 15362.45 6362.54 26083.47 17346.32 16278.37 24745.47 28263.43 32585.45 121
EI-MVSNet-UG-set71.92 9771.06 10374.52 10277.98 18053.56 15576.62 17479.16 15864.40 2771.18 10978.95 26352.19 8684.66 12565.47 11373.57 20485.32 128
RRT-MVS71.46 10670.70 10973.74 12477.76 18749.30 22876.60 17580.45 14061.25 8268.17 15384.78 14244.64 18384.90 11764.79 11777.88 15387.03 59
lupinMVS69.57 14568.28 15573.44 14078.76 15157.15 9776.57 17673.29 25846.19 32769.49 13182.18 19743.99 19079.23 23264.66 11979.37 12783.93 170
TranMVSNet+NR-MVSNet70.36 12570.10 12271.17 19478.64 15542.97 29976.53 17781.16 12766.95 668.53 14785.42 13651.61 9683.07 15252.32 21769.70 26787.46 47
TAPA-MVS59.36 1066.60 21165.20 21770.81 20076.63 22148.75 23676.52 17880.04 14650.64 27265.24 21684.93 13939.15 24078.54 24636.77 34076.88 16985.14 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DTE-MVSNet65.58 22365.34 21466.31 26576.06 23134.79 37076.43 17979.38 15662.55 6161.66 27283.83 16445.60 16879.15 23741.64 31660.88 34385.00 140
anonymousdsp67.00 20364.82 22073.57 13570.09 32756.13 11076.35 18077.35 20048.43 30164.99 22480.84 23033.01 30680.34 21564.66 11967.64 29184.23 161
MVP-Stereo65.41 22663.80 22970.22 20977.62 19755.53 12776.30 18178.53 17450.59 27356.47 32678.65 26739.84 23182.68 16644.10 29172.12 23072.44 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS_Test72.45 8772.46 8072.42 16374.88 24748.50 24076.28 18283.14 8659.40 12472.46 9584.68 14355.66 4481.12 19765.98 10979.66 12387.63 42
IterMVS-LS69.22 15668.48 14871.43 18574.44 26049.40 22676.23 18377.55 19559.60 11965.85 20381.59 21451.28 9981.58 18859.87 16269.90 26283.30 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
新几何276.12 184
FMVSNet266.93 20466.31 20068.79 23677.63 19342.98 29876.11 18577.47 19656.62 17365.22 21882.17 19941.85 20980.18 22247.05 26572.72 22283.20 197
旧先验276.08 18645.32 33576.55 3665.56 34658.75 169
BH-untuned68.27 17467.29 17671.21 19179.74 12653.22 16276.06 18777.46 19857.19 16366.10 19581.61 21245.37 17683.50 14545.42 28376.68 17276.91 303
FC-MVSNet-test69.80 13770.58 11267.46 24977.61 19834.73 37376.05 18883.19 8460.84 8765.88 20286.46 10754.52 5580.76 20952.52 21678.12 14986.91 62
PCF-MVS61.88 870.95 11369.49 12975.35 8377.63 19355.71 12076.04 18981.81 10450.30 27569.66 12985.40 13752.51 7984.89 11851.82 22480.24 11785.45 121
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_NR-MVSNet71.11 10971.00 10471.44 18379.20 13944.13 28576.02 19082.60 9466.48 1168.20 15184.60 14856.82 3682.82 16354.62 19970.43 24787.36 54
UniMVSNet (Re)70.63 11970.20 11871.89 16978.55 15645.29 27575.94 19182.92 8863.68 4068.16 15483.59 16953.89 6283.49 14653.97 20571.12 24086.89 63
test_fmvsmvis_n_192070.84 11470.38 11572.22 16671.16 31055.39 13075.86 19272.21 26749.03 29273.28 7686.17 11551.83 9277.29 26675.80 3278.05 15083.98 169
EPNet_dtu61.90 26861.97 25461.68 30972.89 27839.78 32575.85 19365.62 31955.09 21054.56 34479.36 25737.59 25667.02 33839.80 32376.95 16878.25 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MGCFI-Net72.45 8773.34 7369.81 22077.77 18643.21 29675.84 19481.18 12559.59 12275.45 4286.64 9757.74 2877.94 25363.92 12681.90 9988.30 19
v14868.24 17667.19 18371.40 18670.43 32147.77 24975.76 19577.03 20458.91 13167.36 17280.10 24148.60 13181.89 18160.01 15966.52 30084.53 153
test_fmvsm_n_192071.73 10171.14 10173.50 13672.52 28556.53 10475.60 19676.16 21348.11 30577.22 3185.56 13153.10 7477.43 26274.86 4077.14 16586.55 76
SixPastTwentyTwo61.65 27158.80 28670.20 21175.80 23347.22 25575.59 19769.68 28654.61 22254.11 34879.26 25927.07 35782.96 15443.27 29949.79 38480.41 252
DELS-MVS74.76 5774.46 6075.65 7877.84 18452.25 18375.59 19784.17 4963.76 3873.15 7982.79 18059.58 2086.80 6967.24 9686.04 5987.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FA-MVS(test-final)69.82 13668.48 14873.84 11778.44 16050.04 21575.58 19978.99 16258.16 14667.59 16982.14 20142.66 19985.63 9756.60 18076.19 17685.84 101
Baseline_NR-MVSNet67.05 20167.56 16465.50 28175.65 23537.70 34675.42 20074.65 24259.90 11268.14 15583.15 17849.12 12677.20 26752.23 21869.78 26481.60 227
OpenMVS_ROBcopyleft52.78 1860.03 28358.14 29365.69 27970.47 32044.82 27775.33 20170.86 27745.04 33656.06 32776.00 31126.89 36079.65 22535.36 35267.29 29372.60 343
xiu_mvs_v1_base_debu68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
xiu_mvs_v1_base68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
xiu_mvs_v1_base_debi68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
EI-MVSNet69.27 15468.44 15271.73 17574.47 25849.39 22775.20 20578.45 17959.60 11969.16 14076.51 30551.29 9882.50 17159.86 16371.45 23783.30 193
CVMVSNet59.63 28859.14 28161.08 31774.47 25838.84 33475.20 20568.74 29731.15 39058.24 31076.51 30532.39 32068.58 32549.77 23865.84 30475.81 311
ET-MVSNet_ETH3D67.96 18265.72 20974.68 9376.67 22055.62 12575.11 20774.74 23952.91 24360.03 28780.12 24033.68 29882.64 16861.86 14576.34 17485.78 103
xiu_mvs_v2_base70.52 12069.75 12472.84 15281.21 10055.63 12375.11 20778.92 16354.92 21769.96 12579.68 24947.00 15882.09 17861.60 14879.37 12780.81 247
K. test v360.47 28057.11 29870.56 20573.74 26848.22 24375.10 20962.55 34158.27 14553.62 35476.31 30927.81 35081.59 18747.42 25839.18 39981.88 225
Fast-Effi-MVS+70.28 12769.12 13673.73 12578.50 15751.50 19375.01 21079.46 15556.16 18668.59 14479.55 25253.97 6084.05 13253.34 21177.53 15785.65 112
DU-MVS70.01 13169.53 12871.44 18378.05 17744.13 28575.01 21081.51 11064.37 2868.20 15184.52 14949.12 12682.82 16354.62 19970.43 24787.37 52
FMVSNet366.32 21665.61 21168.46 23976.48 22542.34 30274.98 21277.15 20355.83 19165.04 22181.16 21939.91 22980.14 22347.18 26272.76 21982.90 206
mvsmamba68.47 17066.56 18874.21 11079.60 12952.95 16774.94 21375.48 22552.09 25260.10 28583.27 17436.54 27084.70 12259.32 16877.69 15584.99 142
MTAPA76.90 3476.42 3878.35 3586.08 3763.57 274.92 21480.97 13265.13 1575.77 3990.88 1948.63 12986.66 7377.23 2488.17 3384.81 147
PS-MVSNAJ70.51 12169.70 12672.93 15081.52 9155.79 11974.92 21479.00 16155.04 21569.88 12678.66 26647.05 15482.19 17661.61 14779.58 12480.83 246
MVS_111021_LR69.50 14868.78 14271.65 17878.38 16259.33 5974.82 21670.11 28258.08 14767.83 16484.68 14341.96 20776.34 28665.62 11277.54 15679.30 271
ECVR-MVScopyleft67.72 18767.51 16868.35 24179.46 13336.29 36374.79 21766.93 30958.72 13467.19 17588.05 6936.10 27281.38 19152.07 22084.25 7287.39 50
test_yl69.69 13969.13 13471.36 18778.37 16445.74 26874.71 21880.20 14457.91 15570.01 12383.83 16442.44 20282.87 15954.97 19579.72 12185.48 117
DCV-MVSNet69.69 13969.13 13471.36 18778.37 16445.74 26874.71 21880.20 14457.91 15570.01 12383.83 16442.44 20282.87 15954.97 19579.72 12185.48 117
TransMVSNet (Re)64.72 23364.33 22365.87 27775.22 24338.56 33674.66 22075.08 23858.90 13261.79 27082.63 18451.18 10078.07 25243.63 29755.87 36680.99 244
BH-w/o66.85 20565.83 20769.90 21879.29 13552.46 18074.66 22076.65 21054.51 22664.85 22578.12 27245.59 16982.95 15543.26 30075.54 18474.27 332
PVSNet_BlendedMVS68.56 16967.72 16171.07 19777.03 21350.57 20474.50 22281.52 10853.66 23864.22 23679.72 24849.13 12482.87 15955.82 18673.92 19779.77 266
MonoMVSNet64.15 24163.31 23866.69 25970.51 31944.12 28774.47 22374.21 24957.81 15763.03 24976.62 30138.33 24877.31 26554.22 20360.59 34878.64 277
c3_l68.33 17367.56 16470.62 20470.87 31446.21 26474.47 22378.80 16656.22 18566.19 19478.53 27151.88 9081.40 19062.08 14169.04 27784.25 160
test250665.33 22864.61 22167.50 24879.46 13334.19 37874.43 22551.92 38458.72 13466.75 18488.05 6925.99 36580.92 20451.94 22284.25 7287.39 50
BH-RMVSNet68.81 16067.42 17172.97 14980.11 12252.53 17874.26 22676.29 21258.48 14168.38 14984.20 15442.59 20083.83 13846.53 26775.91 17882.56 209
NR-MVSNet69.54 14668.85 13971.59 18078.05 17743.81 29074.20 22780.86 13465.18 1462.76 25484.52 14952.35 8483.59 14450.96 23270.78 24287.37 52
UniMVSNet_ETH3D67.60 18967.07 18569.18 23277.39 20442.29 30374.18 22875.59 22260.37 9966.77 18386.06 11937.64 25578.93 24552.16 21973.49 20686.32 86
VPA-MVSNet69.02 15769.47 13067.69 24777.42 20341.00 31774.04 22979.68 14960.06 10969.26 13884.81 14151.06 10377.58 26054.44 20274.43 19184.48 155
miper_ehance_all_eth68.03 17967.24 18170.40 20870.54 31846.21 26473.98 23078.68 17055.07 21366.05 19677.80 28252.16 8781.31 19361.53 15069.32 27183.67 184
hse-mvs271.04 11069.86 12374.60 9879.58 13057.12 9973.96 23175.25 23060.40 9674.81 5481.95 20545.54 17082.90 15670.41 7666.83 29783.77 180
131464.61 23663.21 24068.80 23571.87 29847.46 25373.95 23278.39 18442.88 35759.97 28876.60 30438.11 25279.39 23054.84 19772.32 22679.55 267
MVS67.37 19266.33 19870.51 20775.46 24050.94 19673.95 23281.85 10341.57 36462.54 26078.57 27047.98 13585.47 10552.97 21482.05 9675.14 318
AUN-MVS68.45 17266.41 19574.57 10079.53 13257.08 10073.93 23475.23 23154.44 22766.69 18581.85 20737.10 26582.89 15762.07 14266.84 29683.75 181
OurMVSNet-221017-061.37 27558.63 28869.61 22272.05 29548.06 24573.93 23472.51 26447.23 31954.74 34180.92 22621.49 38381.24 19548.57 25156.22 36579.53 268
test111167.21 19467.14 18467.42 25079.24 13834.76 37273.89 23665.65 31858.71 13666.96 18087.95 7236.09 27380.53 21152.03 22183.79 7786.97 61
cl2267.47 19166.45 19170.54 20669.85 33246.49 26073.85 23777.35 20055.07 21365.51 20777.92 27847.64 14281.10 19861.58 14969.32 27184.01 168
TAMVS66.78 20865.27 21671.33 19079.16 14253.67 15273.84 23869.59 28852.32 25065.28 21181.72 21044.49 18677.40 26442.32 30878.66 14382.92 204
WR-MVS68.47 17068.47 15068.44 24080.20 11839.84 32473.75 23976.07 21664.68 2268.11 15683.63 16850.39 11179.14 23849.78 23769.66 26886.34 82
eth_miper_zixun_eth67.63 18866.28 20171.67 17771.60 30048.33 24273.68 24077.88 18855.80 19365.91 19978.62 26947.35 15182.88 15859.45 16566.25 30183.81 176
TR-MVS66.59 21365.07 21871.17 19479.18 14049.63 22473.48 24175.20 23352.95 24267.90 15880.33 23739.81 23283.68 14143.20 30173.56 20580.20 255
cl____67.18 19766.26 20269.94 21570.20 32445.74 26873.30 24276.83 20755.10 20865.27 21279.57 25147.39 14980.53 21159.41 16769.22 27583.53 190
DIV-MVS_self_test67.18 19766.26 20269.94 21570.20 32445.74 26873.29 24376.83 20755.10 20865.27 21279.58 25047.38 15080.53 21159.43 16669.22 27583.54 189
CDS-MVSNet66.80 20765.37 21371.10 19678.98 14553.13 16573.27 24471.07 27552.15 25164.72 22680.23 23943.56 19377.10 26845.48 28178.88 13783.05 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs663.69 24662.82 24566.27 26770.63 31639.27 33173.13 24575.47 22652.69 24659.75 29482.30 19539.71 23377.03 27047.40 25964.35 31782.53 211
IB-MVS56.42 1265.40 22762.73 24673.40 14274.89 24652.78 17373.09 24675.13 23455.69 19558.48 30973.73 33532.86 30886.32 8550.63 23370.11 25681.10 241
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
diffmvspermissive70.69 11870.43 11371.46 18269.45 33748.95 23472.93 24778.46 17857.27 16271.69 10383.97 16251.48 9777.92 25570.70 7577.95 15287.53 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4268.65 16467.35 17572.56 15768.93 34350.18 21272.90 24879.47 15456.92 16769.45 13380.26 23846.29 16382.99 15364.07 12267.82 28984.53 153
miper_enhance_ethall67.11 20066.09 20470.17 21269.21 34045.98 26672.85 24978.41 18251.38 26165.65 20575.98 31451.17 10181.25 19460.82 15369.32 27183.29 195
thres100view90063.28 25162.41 24965.89 27677.31 20638.66 33572.65 25069.11 29557.07 16462.45 26381.03 22337.01 26779.17 23431.84 36973.25 21279.83 263
testdata172.65 25060.50 94
FE-MVS65.91 21963.33 23773.63 13277.36 20551.95 19072.62 25275.81 21853.70 23665.31 21078.96 26228.81 34486.39 8243.93 29273.48 20782.55 210
pm-mvs165.24 22964.97 21966.04 27372.38 28939.40 33072.62 25275.63 22155.53 19962.35 26683.18 17747.45 14776.47 28449.06 24766.54 29982.24 218
test22283.14 7158.68 7672.57 25463.45 33541.78 36067.56 17086.12 11637.13 26478.73 14274.98 322
PVSNet_Blended68.59 16567.72 16171.19 19277.03 21350.57 20472.51 25581.52 10851.91 25364.22 23677.77 28549.13 12482.87 15955.82 18679.58 12480.14 257
EU-MVSNet55.61 32054.41 32359.19 32665.41 36633.42 38372.44 25671.91 27028.81 39251.27 36273.87 33424.76 37269.08 32343.04 30258.20 35675.06 319
thres600view763.30 25062.27 25066.41 26377.18 20838.87 33372.35 25769.11 29556.98 16662.37 26580.96 22537.01 26779.00 24331.43 37673.05 21681.36 233
pmmvs-eth3d58.81 29356.31 30866.30 26667.61 35152.42 18272.30 25864.76 32543.55 35054.94 33974.19 33228.95 34172.60 30243.31 29857.21 36073.88 336
cascas65.98 21863.42 23573.64 13177.26 20752.58 17772.26 25977.21 20248.56 29761.21 27774.60 32932.57 31885.82 9550.38 23576.75 17182.52 212
VPNet67.52 19068.11 15765.74 27879.18 14036.80 35572.17 26072.83 26262.04 7267.79 16685.83 12748.88 12876.60 28151.30 22872.97 21783.81 176
MS-PatchMatch62.42 26161.46 26065.31 28575.21 24452.10 18572.05 26174.05 25146.41 32557.42 31874.36 33034.35 28977.57 26145.62 27773.67 20166.26 384
mvs_anonymous68.03 17967.51 16869.59 22372.08 29444.57 28271.99 26275.23 23151.67 25467.06 17882.57 18654.68 5377.94 25356.56 18175.71 18286.26 90
patch_mono-269.85 13571.09 10266.16 26979.11 14354.80 13871.97 26374.31 24653.50 23970.90 11184.17 15557.63 3163.31 35266.17 10482.02 9780.38 253
tfpn200view963.18 25362.18 25266.21 26876.85 21639.62 32771.96 26469.44 29156.63 17162.61 25879.83 24437.18 26179.17 23431.84 36973.25 21279.83 263
thres40063.31 24962.18 25266.72 25676.85 21639.62 32771.96 26469.44 29156.63 17162.61 25879.83 24437.18 26179.17 23431.84 36973.25 21281.36 233
baseline163.81 24563.87 22863.62 29676.29 22736.36 35871.78 26667.29 30656.05 18864.23 23582.95 17947.11 15374.41 29647.30 26161.85 33780.10 258
baseline263.42 24861.26 26469.89 21972.55 28447.62 25171.54 26768.38 29950.11 27754.82 34075.55 31943.06 19780.96 20148.13 25567.16 29581.11 240
pmmvs461.48 27459.39 27967.76 24671.57 30153.86 14871.42 26865.34 32044.20 34459.46 29677.92 27835.90 27474.71 29443.87 29464.87 31174.71 328
1112_ss64.00 24463.36 23665.93 27579.28 13642.58 30171.35 26972.36 26646.41 32560.55 28277.89 28046.27 16473.28 30046.18 27069.97 25981.92 224
thisisatest051565.83 22063.50 23472.82 15473.75 26749.50 22571.32 27073.12 26149.39 28763.82 23876.50 30734.95 28384.84 12153.20 21375.49 18584.13 165
CostFormer64.04 24362.51 24768.61 23871.88 29745.77 26771.30 27170.60 27947.55 31364.31 23276.61 30341.63 21279.62 22749.74 23969.00 27880.42 251
tfpnnormal62.47 26061.63 25864.99 28874.81 25039.01 33271.22 27273.72 25455.22 20760.21 28380.09 24241.26 22076.98 27230.02 38268.09 28778.97 275
IterMVS62.79 25761.27 26367.35 25269.37 33852.04 18871.17 27368.24 30152.63 24759.82 29176.91 29637.32 26072.36 30352.80 21563.19 32777.66 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)63.69 24663.88 22763.14 30174.75 25131.04 39271.16 27463.64 33456.32 18159.80 29284.99 13844.51 18475.46 29139.12 32680.62 10982.92 204
IterMVS-SCA-FT62.49 25961.52 25965.40 28371.99 29650.80 20171.15 27569.63 28745.71 33360.61 28177.93 27737.45 25765.99 34455.67 19063.50 32479.42 269
Anonymous20240521166.84 20665.99 20569.40 22780.19 11942.21 30571.11 27671.31 27358.80 13367.90 15886.39 10929.83 33579.65 22549.60 24378.78 14086.33 84
Anonymous2024052155.30 32154.41 32357.96 33660.92 39041.73 30971.09 27771.06 27641.18 36548.65 37573.31 33716.93 38959.25 36842.54 30664.01 31872.90 340
tpm262.07 26660.10 27567.99 24472.79 27943.86 28971.05 27866.85 31043.14 35562.77 25375.39 32338.32 24980.80 20741.69 31368.88 27979.32 270
TDRefinement53.44 33450.72 34361.60 31064.31 37146.96 25770.89 27965.27 32241.78 36044.61 38877.98 27511.52 40466.36 34228.57 38851.59 37871.49 360
XVG-ACMP-BASELINE64.36 24062.23 25170.74 20272.35 29052.45 18170.80 28078.45 17953.84 23559.87 29081.10 22116.24 39279.32 23155.64 19271.76 23280.47 250
mmtdpeth60.40 28159.12 28264.27 29469.59 33448.99 23270.67 28170.06 28354.96 21662.78 25273.26 33927.00 35867.66 33158.44 17245.29 39176.16 308
XVG-OURS-SEG-HR68.81 16067.47 17072.82 15474.40 26156.87 10270.59 28279.04 16054.77 22066.99 17986.01 12139.57 23478.21 25062.54 13873.33 21083.37 192
VNet69.68 14170.19 11968.16 24379.73 12741.63 31270.53 28377.38 19960.37 9970.69 11286.63 9951.08 10277.09 26953.61 20981.69 10585.75 108
GA-MVS65.53 22463.70 23171.02 19870.87 31448.10 24470.48 28474.40 24456.69 16964.70 22776.77 29833.66 29981.10 19855.42 19470.32 25283.87 174
MSDG61.81 27059.23 28069.55 22672.64 28152.63 17670.45 28575.81 21851.38 26153.70 35176.11 31029.52 33781.08 20037.70 33365.79 30574.93 323
ab-mvs66.65 21066.42 19467.37 25176.17 22941.73 30970.41 28676.14 21553.99 23365.98 19783.51 17149.48 11876.24 28748.60 25073.46 20884.14 164
EGC-MVSNET42.47 36338.48 37154.46 35474.33 26248.73 23770.33 28751.10 3870.03 4230.18 42467.78 37513.28 39866.49 34118.91 40650.36 38248.15 403
MVSTER67.16 19965.58 21271.88 17070.37 32349.70 22070.25 28878.45 17951.52 25869.16 14080.37 23438.45 24682.50 17160.19 15771.46 23683.44 191
reproduce_monomvs62.56 25861.20 26666.62 26070.62 31744.30 28470.13 28973.13 26054.78 21961.13 27876.37 30825.63 36875.63 29058.75 16960.29 34979.93 260
XVG-OURS68.76 16367.37 17372.90 15174.32 26357.22 9270.09 29078.81 16555.24 20667.79 16685.81 12936.54 27078.28 24962.04 14375.74 18183.19 198
HY-MVS56.14 1364.55 23763.89 22666.55 26174.73 25241.02 31469.96 29174.43 24349.29 28961.66 27280.92 22647.43 14876.68 28044.91 28671.69 23381.94 223
AllTest57.08 30554.65 31964.39 29271.44 30349.03 22969.92 29267.30 30445.97 33047.16 37979.77 24617.47 38667.56 33433.65 35759.16 35376.57 304
testing356.54 30955.92 31158.41 33177.52 20027.93 40169.72 29356.36 37154.75 22158.63 30777.80 28220.88 38471.75 30925.31 39862.25 33475.53 315
thres20062.20 26561.16 26765.34 28475.38 24239.99 32369.60 29469.29 29355.64 19861.87 26976.99 29437.07 26678.96 24431.28 37773.28 21177.06 298
tpmrst58.24 29658.70 28756.84 34166.97 35434.32 37669.57 29561.14 35247.17 32058.58 30871.60 35041.28 21960.41 36249.20 24562.84 32975.78 312
PatchmatchNetpermissive59.84 28558.24 29164.65 29073.05 27546.70 25969.42 29662.18 34747.55 31358.88 30371.96 34734.49 28769.16 32242.99 30363.60 32278.07 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WB-MVSnew59.66 28759.69 27759.56 32175.19 24535.78 36769.34 29764.28 32946.88 32261.76 27175.79 31540.61 22565.20 34732.16 36571.21 23877.70 288
GG-mvs-BLEND62.34 30671.36 30737.04 35369.20 29857.33 36854.73 34265.48 38630.37 32977.82 25634.82 35374.93 18772.17 352
HyFIR lowres test65.67 22263.01 24273.67 12879.97 12455.65 12269.07 29975.52 22442.68 35863.53 24177.95 27640.43 22681.64 18546.01 27271.91 23183.73 182
UWE-MVS60.18 28259.78 27661.39 31477.67 19133.92 38169.04 30063.82 33248.56 29764.27 23377.64 28727.20 35570.40 31733.56 36076.24 17579.83 263
test_post168.67 3013.64 42132.39 32069.49 32144.17 288
testing22262.29 26461.31 26265.25 28677.87 18238.53 33768.34 30266.31 31556.37 18063.15 24877.58 28828.47 34576.18 28937.04 33876.65 17381.05 243
Test_1112_low_res62.32 26261.77 25664.00 29579.08 14439.53 32968.17 30370.17 28143.25 35359.03 30279.90 24344.08 18871.24 31143.79 29568.42 28581.25 236
tpm cat159.25 29156.95 30166.15 27072.19 29346.96 25768.09 30465.76 31740.03 37457.81 31470.56 35738.32 24974.51 29538.26 33161.50 34077.00 300
ppachtmachnet_test58.06 29955.38 31566.10 27269.51 33548.99 23268.01 30566.13 31644.50 34154.05 34970.74 35632.09 32272.34 30436.68 34356.71 36476.99 302
tpmvs58.47 29456.95 30163.03 30370.20 32441.21 31367.90 30667.23 30749.62 28454.73 34270.84 35534.14 29076.24 28736.64 34461.29 34171.64 357
testing9164.46 23863.80 22966.47 26278.43 16140.06 32267.63 30769.59 28859.06 12963.18 24678.05 27434.05 29176.99 27148.30 25375.87 17982.37 216
CL-MVSNet_self_test61.53 27260.94 26963.30 29968.95 34236.93 35467.60 30872.80 26355.67 19659.95 28976.63 30045.01 18072.22 30639.74 32462.09 33680.74 248
testing1162.81 25661.90 25565.54 28078.38 16240.76 31967.59 30966.78 31155.48 20060.13 28477.11 29231.67 32476.79 27645.53 27974.45 19079.06 272
test_vis1_n_192058.86 29259.06 28358.25 33263.76 37243.14 29767.49 31066.36 31440.22 37265.89 20171.95 34831.04 32559.75 36659.94 16064.90 31071.85 355
tpm57.34 30358.16 29254.86 35171.80 29934.77 37167.47 31156.04 37548.20 30460.10 28576.92 29537.17 26353.41 39440.76 31865.01 30976.40 306
testing9964.05 24263.29 23966.34 26478.17 17339.76 32667.33 31268.00 30258.60 13863.03 24978.10 27332.57 31876.94 27348.22 25475.58 18382.34 217
gg-mvs-nofinetune57.86 30056.43 30762.18 30772.62 28235.35 36866.57 31356.33 37250.65 27157.64 31557.10 39830.65 32776.36 28537.38 33578.88 13774.82 325
TinyColmap54.14 32751.72 33861.40 31366.84 35641.97 30666.52 31468.51 29844.81 33742.69 39375.77 31611.66 40272.94 30131.96 36756.77 36369.27 378
pmmvs556.47 31155.68 31358.86 32861.41 38436.71 35666.37 31562.75 34040.38 37153.70 35176.62 30134.56 28567.05 33740.02 32265.27 30772.83 341
CHOSEN 1792x268865.08 23262.84 24471.82 17281.49 9356.26 10866.32 31674.20 25040.53 37063.16 24778.65 26741.30 21777.80 25745.80 27474.09 19481.40 232
our_test_356.49 31054.42 32262.68 30569.51 33545.48 27366.08 31761.49 35044.11 34750.73 36869.60 36733.05 30468.15 32638.38 33056.86 36174.40 330
mvs5depth55.64 31953.81 33061.11 31659.39 39340.98 31865.89 31868.28 30050.21 27658.11 31275.42 32217.03 38867.63 33343.79 29546.21 38874.73 327
PM-MVS52.33 33850.19 34658.75 32962.10 38145.14 27665.75 31940.38 40943.60 34953.52 35572.65 3409.16 41065.87 34550.41 23454.18 37165.24 386
D2MVS62.30 26360.29 27468.34 24266.46 36048.42 24165.70 32073.42 25647.71 31158.16 31175.02 32530.51 32877.71 25953.96 20671.68 23478.90 276
MIMVSNet155.17 32454.31 32557.77 33870.03 32832.01 38965.68 32164.81 32449.19 29046.75 38276.00 31125.53 36964.04 35028.65 38762.13 33577.26 296
PatchMatch-RL56.25 31454.55 32161.32 31577.06 21256.07 11265.57 32254.10 38144.13 34653.49 35771.27 35425.20 37066.78 33936.52 34663.66 32161.12 388
Syy-MVS56.00 31656.23 30955.32 34874.69 25326.44 40765.52 32357.49 36650.97 26856.52 32472.18 34339.89 23068.09 32724.20 39964.59 31571.44 361
myMVS_eth3d54.86 32654.61 32055.61 34774.69 25327.31 40465.52 32357.49 36650.97 26856.52 32472.18 34321.87 38268.09 32727.70 39064.59 31571.44 361
test-LLR58.15 29858.13 29458.22 33368.57 34444.80 27865.46 32557.92 36350.08 27855.44 33269.82 36432.62 31557.44 37749.66 24173.62 20272.41 348
TESTMET0.1,155.28 32254.90 31856.42 34366.56 35843.67 29165.46 32556.27 37339.18 37753.83 35067.44 37624.21 37455.46 38848.04 25673.11 21570.13 372
test-mter56.42 31255.82 31258.22 33368.57 34444.80 27865.46 32557.92 36339.94 37555.44 33269.82 36421.92 37957.44 37749.66 24173.62 20272.41 348
SDMVSNet68.03 17968.10 15867.84 24577.13 20948.72 23865.32 32879.10 15958.02 15065.08 21982.55 18747.83 13873.40 29963.92 12673.92 19781.41 230
CR-MVSNet59.91 28457.90 29665.96 27469.96 32952.07 18665.31 32963.15 33842.48 35959.36 29774.84 32635.83 27570.75 31345.50 28064.65 31375.06 319
RPMNet61.53 27258.42 28970.86 19969.96 32952.07 18665.31 32981.36 11543.20 35459.36 29770.15 36235.37 27885.47 10536.42 34764.65 31375.06 319
USDC56.35 31354.24 32662.69 30464.74 36840.31 32065.05 33173.83 25343.93 34847.58 37777.71 28615.36 39575.05 29338.19 33261.81 33872.70 342
MDTV_nov1_ep1357.00 30072.73 28038.26 33965.02 33264.73 32644.74 33855.46 33172.48 34132.61 31770.47 31437.47 33467.75 290
ETVMVS59.51 29058.81 28461.58 31177.46 20234.87 36964.94 33359.35 35754.06 23261.08 27976.67 29929.54 33671.87 30832.16 36574.07 19578.01 287
CMPMVSbinary42.80 2157.81 30155.97 31063.32 29860.98 38847.38 25464.66 33469.50 29032.06 38846.83 38177.80 28229.50 33871.36 31048.68 24973.75 20071.21 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WBMVS60.54 27860.61 27260.34 31978.00 17935.95 36564.55 33564.89 32349.63 28363.39 24378.70 26433.85 29667.65 33242.10 31070.35 25177.43 292
RPSCF55.80 31854.22 32760.53 31865.13 36742.91 30064.30 33657.62 36536.84 38158.05 31382.28 19628.01 34856.24 38537.14 33758.61 35582.44 215
XXY-MVS60.68 27761.67 25757.70 33970.43 32138.45 33864.19 33766.47 31248.05 30763.22 24480.86 22849.28 12160.47 36145.25 28567.28 29474.19 333
FMVSNet555.86 31754.93 31758.66 33071.05 31236.35 35964.18 33862.48 34246.76 32350.66 36974.73 32825.80 36664.04 35033.11 36165.57 30675.59 314
UBG59.62 28959.53 27859.89 32078.12 17435.92 36664.11 33960.81 35449.45 28661.34 27575.55 31933.05 30467.39 33638.68 32874.62 18876.35 307
test_cas_vis1_n_192056.91 30656.71 30457.51 34059.13 39445.40 27463.58 34061.29 35136.24 38267.14 17771.85 34929.89 33456.69 38157.65 17563.58 32370.46 369
SCA60.49 27958.38 29066.80 25574.14 26648.06 24563.35 34163.23 33749.13 29159.33 30072.10 34537.45 25774.27 29744.17 28862.57 33178.05 283
Patchmtry57.16 30456.47 30659.23 32469.17 34134.58 37462.98 34263.15 33844.53 34056.83 32174.84 32635.83 27568.71 32440.03 32160.91 34274.39 331
Anonymous2023120655.10 32555.30 31654.48 35369.81 33333.94 38062.91 34362.13 34841.08 36655.18 33675.65 31732.75 31256.59 38330.32 38167.86 28872.91 339
sd_testset64.46 23864.45 22264.51 29177.13 20942.25 30462.67 34472.11 26858.02 15065.08 21982.55 18741.22 22169.88 32047.32 26073.92 19781.41 230
MIMVSNet57.35 30257.07 29958.22 33374.21 26537.18 34962.46 34560.88 35348.88 29455.29 33575.99 31331.68 32362.04 35731.87 36872.35 22575.43 317
dp51.89 34051.60 33952.77 36668.44 34732.45 38862.36 34654.57 37844.16 34549.31 37467.91 37228.87 34356.61 38233.89 35654.89 36869.24 379
EPMVS53.96 32853.69 33154.79 35266.12 36331.96 39062.34 34749.05 39244.42 34355.54 33071.33 35330.22 33156.70 38041.65 31562.54 33275.71 313
pmmvs344.92 35841.95 36553.86 35652.58 40343.55 29262.11 34846.90 40126.05 39940.63 39560.19 39411.08 40757.91 37631.83 37246.15 38960.11 389
test_vis1_n49.89 34948.69 35153.50 36053.97 39837.38 34861.53 34947.33 39928.54 39359.62 29567.10 38013.52 39752.27 39749.07 24657.52 35870.84 367
PVSNet50.76 1958.40 29557.39 29761.42 31275.53 23944.04 28861.43 35063.45 33547.04 32156.91 32073.61 33627.00 35864.76 34839.12 32672.40 22475.47 316
LCM-MVSNet-Re61.88 26961.35 26163.46 29774.58 25631.48 39161.42 35158.14 36258.71 13653.02 35879.55 25243.07 19676.80 27545.69 27577.96 15182.11 222
test20.0353.87 33054.02 32853.41 36261.47 38328.11 40061.30 35259.21 35851.34 26352.09 36077.43 28933.29 30358.55 37329.76 38360.27 35073.58 337
MDTV_nov1_ep13_2view25.89 40961.22 35340.10 37351.10 36332.97 30738.49 32978.61 278
PMMVS53.96 32853.26 33456.04 34462.60 37950.92 19861.17 35456.09 37432.81 38753.51 35666.84 38134.04 29259.93 36544.14 29068.18 28657.27 396
test_fmvs1_n51.37 34250.35 34554.42 35552.85 40137.71 34561.16 35551.93 38328.15 39463.81 23969.73 36613.72 39653.95 39251.16 22960.65 34671.59 358
WTY-MVS59.75 28660.39 27357.85 33772.32 29137.83 34361.05 35664.18 33045.95 33261.91 26879.11 26147.01 15760.88 36042.50 30769.49 27074.83 324
dmvs_testset50.16 34751.90 33744.94 38266.49 35911.78 42261.01 35751.50 38551.17 26650.30 37267.44 37639.28 23760.29 36322.38 40257.49 35962.76 387
Patchmatch-RL test58.16 29755.49 31466.15 27067.92 35048.89 23560.66 35851.07 38847.86 31059.36 29762.71 39234.02 29372.27 30556.41 18259.40 35277.30 294
test_fmvs151.32 34450.48 34453.81 35753.57 39937.51 34760.63 35951.16 38628.02 39663.62 24069.23 36916.41 39153.93 39351.01 23060.70 34569.99 373
LTVRE_ROB55.42 1663.15 25461.23 26568.92 23476.57 22347.80 24759.92 36076.39 21154.35 22858.67 30582.46 19229.44 33981.49 18942.12 30971.14 23977.46 291
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test0.0.03 153.32 33553.59 33252.50 36862.81 37829.45 39559.51 36154.11 38050.08 27854.40 34674.31 33132.62 31555.92 38630.50 38063.95 32072.15 353
UnsupCasMVSNet_eth53.16 33752.47 33555.23 34959.45 39233.39 38459.43 36269.13 29445.98 32950.35 37172.32 34229.30 34058.26 37542.02 31244.30 39274.05 334
MVS-HIRNet45.52 35744.48 35948.65 37668.49 34634.05 37959.41 36344.50 40427.03 39737.96 40450.47 40626.16 36464.10 34926.74 39559.52 35147.82 405
testgi51.90 33952.37 33650.51 37460.39 39123.55 41458.42 36458.15 36149.03 29251.83 36179.21 26022.39 37755.59 38729.24 38662.64 33072.40 350
dmvs_re56.77 30856.83 30356.61 34269.23 33941.02 31458.37 36564.18 33050.59 27357.45 31771.42 35135.54 27758.94 37137.23 33667.45 29269.87 374
PatchT53.17 33653.44 33352.33 36968.29 34825.34 41158.21 36654.41 37944.46 34254.56 34469.05 37033.32 30260.94 35936.93 33961.76 33970.73 368
WB-MVS43.26 36043.41 36042.83 38663.32 37510.32 42458.17 36745.20 40245.42 33440.44 39767.26 37934.01 29458.98 37011.96 41524.88 40959.20 390
sss56.17 31556.57 30554.96 35066.93 35536.32 36157.94 36861.69 34941.67 36258.64 30675.32 32438.72 24456.25 38442.04 31166.19 30272.31 351
ttmdpeth45.56 35642.95 36153.39 36352.33 40429.15 39657.77 36948.20 39631.81 38949.86 37377.21 2918.69 41159.16 36927.31 39133.40 40671.84 356
test_fmvs248.69 35147.49 35652.29 37048.63 40833.06 38657.76 37048.05 39725.71 40059.76 29369.60 36711.57 40352.23 39849.45 24456.86 36171.58 359
KD-MVS_self_test55.22 32353.89 32959.21 32557.80 39727.47 40357.75 37174.32 24547.38 31550.90 36570.00 36328.45 34670.30 31840.44 31957.92 35779.87 262
UnsupCasMVSNet_bld50.07 34848.87 34953.66 35860.97 38933.67 38257.62 37264.56 32739.47 37647.38 37864.02 39027.47 35259.32 36734.69 35443.68 39367.98 382
mamv456.85 30758.00 29553.43 36172.46 28854.47 14057.56 37354.74 37638.81 37857.42 31879.45 25547.57 14438.70 41360.88 15253.07 37467.11 383
SSC-MVS41.96 36541.99 36441.90 38762.46 3809.28 42657.41 37444.32 40543.38 35138.30 40366.45 38232.67 31458.42 37410.98 41621.91 41257.99 394
ANet_high41.38 36637.47 37353.11 36439.73 41924.45 41256.94 37569.69 28547.65 31226.04 41152.32 40112.44 40062.38 35621.80 40310.61 42072.49 345
MDA-MVSNet-bldmvs53.87 33050.81 34263.05 30266.25 36148.58 23956.93 37663.82 33248.09 30641.22 39470.48 36030.34 33068.00 33034.24 35545.92 39072.57 344
test1234.73 3926.30 3950.02 4060.01 4290.01 43156.36 3770.00 4300.01 4240.04 4250.21 4250.01 4290.00 4250.03 4250.00 4230.04 421
miper_lstm_enhance62.03 26760.88 27065.49 28266.71 35746.25 26256.29 37875.70 22050.68 27061.27 27675.48 32140.21 22768.03 32956.31 18365.25 30882.18 219
KD-MVS_2432*160053.45 33251.50 34059.30 32262.82 37637.14 35055.33 37971.79 27147.34 31755.09 33770.52 35821.91 38070.45 31535.72 35042.97 39470.31 370
miper_refine_blended53.45 33251.50 34059.30 32262.82 37637.14 35055.33 37971.79 27147.34 31755.09 33770.52 35821.91 38070.45 31535.72 35042.97 39470.31 370
LF4IMVS42.95 36142.26 36345.04 38048.30 40932.50 38754.80 38148.49 39428.03 39540.51 39670.16 3619.24 40943.89 40831.63 37349.18 38658.72 392
PMVScopyleft28.69 2236.22 37333.29 37845.02 38136.82 42135.98 36454.68 38248.74 39326.31 39821.02 41451.61 4032.88 42360.10 3649.99 41947.58 38738.99 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVStest142.65 36239.29 36952.71 36747.26 41134.58 37454.41 38350.84 39123.35 40239.31 40274.08 33312.57 39955.09 38923.32 40028.47 40868.47 381
PVSNet_043.31 2047.46 35545.64 35852.92 36567.60 35244.65 28054.06 38454.64 37741.59 36346.15 38458.75 39530.99 32658.66 37232.18 36424.81 41055.46 398
testmvs4.52 3936.03 3960.01 4070.01 4290.00 43253.86 3850.00 4300.01 4240.04 4250.27 4240.00 4300.00 4250.04 4240.00 4230.03 422
test_fmvs344.30 35942.55 36249.55 37542.83 41327.15 40653.03 38644.93 40322.03 40853.69 35364.94 3874.21 41849.63 40047.47 25749.82 38371.88 354
APD_test137.39 37234.94 37544.72 38348.88 40733.19 38552.95 38744.00 40619.49 40927.28 41058.59 3963.18 42252.84 39518.92 40541.17 39748.14 404
dongtai34.52 37534.94 37533.26 39661.06 38716.00 42152.79 38823.78 42240.71 36939.33 40148.65 41016.91 39048.34 40212.18 41419.05 41435.44 413
YYNet150.73 34548.96 34756.03 34561.10 38641.78 30851.94 38956.44 37040.94 36844.84 38667.80 37430.08 33255.08 39036.77 34050.71 38071.22 363
MDA-MVSNet_test_wron50.71 34648.95 34856.00 34661.17 38541.84 30751.90 39056.45 36940.96 36744.79 38767.84 37330.04 33355.07 39136.71 34250.69 38171.11 366
kuosan29.62 38230.82 38126.02 40152.99 40016.22 42051.09 39122.71 42333.91 38633.99 40540.85 41115.89 39333.11 4187.59 42218.37 41528.72 415
ADS-MVSNet251.33 34348.76 35059.07 32766.02 36444.60 28150.90 39259.76 35636.90 37950.74 36666.18 38426.38 36163.11 35327.17 39254.76 36969.50 376
ADS-MVSNet48.48 35247.77 35350.63 37366.02 36429.92 39450.90 39250.87 39036.90 37950.74 36666.18 38426.38 36152.47 39627.17 39254.76 36969.50 376
FPMVS42.18 36441.11 36645.39 37958.03 39641.01 31649.50 39453.81 38230.07 39133.71 40664.03 38811.69 40152.08 39914.01 41055.11 36743.09 407
N_pmnet39.35 37040.28 36736.54 39363.76 3721.62 43049.37 3950.76 42934.62 38543.61 39166.38 38326.25 36342.57 40926.02 39751.77 37765.44 385
new-patchmatchnet47.56 35447.73 35447.06 37758.81 3959.37 42548.78 39659.21 35843.28 35244.22 38968.66 37125.67 36757.20 37931.57 37549.35 38574.62 329
test_vis1_rt41.35 36739.45 36847.03 37846.65 41237.86 34247.76 39738.65 41023.10 40444.21 39051.22 40411.20 40644.08 40739.27 32553.02 37559.14 391
JIA-IIPM51.56 34147.68 35563.21 30064.61 36950.73 20247.71 39858.77 36042.90 35648.46 37651.72 40224.97 37170.24 31936.06 34953.89 37268.64 380
ambc65.13 28763.72 37437.07 35247.66 39978.78 16754.37 34771.42 35111.24 40580.94 20245.64 27653.85 37377.38 293
testf131.46 38028.89 38439.16 38941.99 41628.78 39846.45 40037.56 41114.28 41621.10 41248.96 4071.48 42647.11 40313.63 41134.56 40341.60 408
APD_test231.46 38028.89 38439.16 38941.99 41628.78 39846.45 40037.56 41114.28 41621.10 41248.96 4071.48 42647.11 40313.63 41134.56 40341.60 408
Patchmatch-test49.08 35048.28 35251.50 37264.40 37030.85 39345.68 40248.46 39535.60 38346.10 38572.10 34534.47 28846.37 40527.08 39460.65 34677.27 295
DSMNet-mixed39.30 37138.72 37041.03 38851.22 40519.66 41745.53 40331.35 41615.83 41539.80 39967.42 37822.19 37845.13 40622.43 40152.69 37658.31 393
LCM-MVSNet40.30 36835.88 37453.57 35942.24 41429.15 39645.21 40460.53 35522.23 40728.02 40950.98 4053.72 42061.78 35831.22 37838.76 40069.78 375
new_pmnet34.13 37634.29 37733.64 39552.63 40218.23 41944.43 40533.90 41522.81 40530.89 40853.18 40010.48 40835.72 41720.77 40439.51 39846.98 406
mvsany_test139.38 36938.16 37243.02 38549.05 40634.28 37744.16 40625.94 42022.74 40646.57 38362.21 39323.85 37541.16 41233.01 36235.91 40253.63 399
E-PMN23.77 38422.73 38826.90 39942.02 41520.67 41642.66 40735.70 41317.43 41110.28 42125.05 4176.42 41342.39 41010.28 41814.71 41717.63 416
EMVS22.97 38521.84 38926.36 40040.20 41819.53 41841.95 40834.64 41417.09 4129.73 42222.83 4187.29 41242.22 4119.18 42013.66 41817.32 417
test_vis3_rt32.09 37830.20 38337.76 39235.36 42327.48 40240.60 40928.29 41916.69 41332.52 40740.53 4121.96 42437.40 41533.64 35942.21 39648.39 402
CHOSEN 280x42047.83 35346.36 35752.24 37167.37 35349.78 21938.91 41043.11 40735.00 38443.27 39263.30 39128.95 34149.19 40136.53 34560.80 34457.76 395
mvsany_test332.62 37730.57 38238.77 39136.16 42224.20 41338.10 41120.63 42419.14 41040.36 39857.43 3975.06 41536.63 41629.59 38528.66 40755.49 397
test_f31.86 37931.05 38034.28 39432.33 42521.86 41532.34 41230.46 41716.02 41439.78 40055.45 3994.80 41632.36 41930.61 37937.66 40148.64 401
PMMVS227.40 38325.91 38631.87 39839.46 4206.57 42731.17 41328.52 41823.96 40120.45 41548.94 4094.20 41937.94 41416.51 40719.97 41351.09 400
wuyk23d13.32 38912.52 39215.71 40347.54 41026.27 40831.06 4141.98 4284.93 4205.18 4231.94 4230.45 42818.54 4226.81 42312.83 4192.33 420
Gipumacopyleft34.77 37431.91 37943.33 38462.05 38237.87 34120.39 41567.03 30823.23 40318.41 41625.84 4164.24 41762.73 35414.71 40951.32 37929.38 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive17.77 2321.41 38617.77 39132.34 39734.34 42425.44 41016.11 41624.11 42111.19 41813.22 41831.92 4141.58 42530.95 42010.47 41717.03 41640.62 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.43 39011.14 3934.30 4052.38 4284.40 42813.62 41716.08 4260.39 42215.89 41713.06 41915.80 3945.54 42412.63 41310.46 4212.95 419
test_method19.68 38718.10 39024.41 40213.68 4273.11 42912.06 41842.37 4082.00 42111.97 41936.38 4135.77 41429.35 42115.06 40823.65 41140.76 410
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
cdsmvs_eth3d_5k17.50 38823.34 3870.00 4080.00 4310.00 4320.00 41978.63 1710.00 4260.00 42782.18 19749.25 1220.00 4250.00 4260.00 4230.00 423
pcd_1.5k_mvsjas3.92 3945.23 3970.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 42647.05 1540.00 4250.00 4260.00 4230.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
ab-mvs-re6.49 3918.65 3940.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 42777.89 2800.00 4300.00 4250.00 4260.00 4230.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
WAC-MVS27.31 40427.77 389
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
PC_three_145255.09 21084.46 489.84 4666.68 589.41 1874.24 4491.38 288.42 16
No_MVS79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
test_one_060187.58 959.30 6086.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 431
eth-test0.00 431
ZD-MVS86.64 2160.38 4582.70 9357.95 15378.10 2490.06 3956.12 4288.84 2674.05 4787.00 49
IU-MVS87.77 459.15 6385.53 2653.93 23484.64 379.07 1190.87 588.37 18
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 41
test_241102_ONE87.77 458.90 7286.78 1064.20 3185.97 191.34 1566.87 390.78 7
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
GSMVS78.05 283
test_part287.58 960.47 4283.42 12
sam_mvs134.74 28478.05 283
sam_mvs33.43 301
MTGPAbinary80.97 132
test_post3.55 42233.90 29566.52 340
patchmatchnet-post64.03 38834.50 28674.27 297
gm-plane-assit71.40 30641.72 31148.85 29573.31 33782.48 17348.90 248
test9_res75.28 3788.31 3283.81 176
agg_prior273.09 5587.93 4084.33 157
agg_prior85.04 5059.96 5081.04 13074.68 5784.04 133
TestCases64.39 29271.44 30349.03 22967.30 30445.97 33047.16 37979.77 24617.47 38667.56 33433.65 35759.16 35376.57 304
test_prior76.69 5884.20 6157.27 9184.88 3986.43 8186.38 78
新几何170.76 20185.66 4161.13 3066.43 31344.68 33970.29 11686.64 9741.29 21875.23 29249.72 24081.75 10375.93 310
旧先验183.04 7353.15 16367.52 30387.85 7444.08 18880.76 10878.03 286
原ACMM174.69 9285.39 4759.40 5783.42 7351.47 26070.27 11786.61 10048.61 13086.51 7953.85 20787.96 3978.16 281
testdata272.18 30746.95 266
segment_acmp54.23 57
testdata64.66 28981.52 9152.93 16865.29 32146.09 32873.88 6887.46 7938.08 25366.26 34353.31 21278.48 14574.78 326
test1277.76 4584.52 5858.41 7883.36 7672.93 8754.61 5488.05 3988.12 3486.81 66
plane_prior781.41 9455.96 114
plane_prior681.20 10156.24 10945.26 178
plane_prior584.01 5287.21 5868.16 8780.58 11184.65 151
plane_prior486.10 117
plane_prior356.09 11163.92 3669.27 136
plane_prior181.27 99
n20.00 430
nn0.00 430
door-mid47.19 400
lessismore_v069.91 21771.42 30547.80 24750.90 38950.39 37075.56 31827.43 35481.33 19245.91 27334.10 40580.59 249
LGP-MVS_train75.76 7380.22 11657.51 8983.40 7461.32 7966.67 18687.33 8239.15 24086.59 7467.70 9177.30 16383.19 198
test1183.47 71
door47.60 398
HQP5-MVS54.94 134
BP-MVS67.04 98
HQP4-MVS67.85 16086.93 6684.32 158
HQP3-MVS83.90 5780.35 115
HQP2-MVS45.46 172
NP-MVS80.98 10456.05 11385.54 134
ACMMP++_ref74.07 195
ACMMP++72.16 229
Test By Simon48.33 133
ITE_SJBPF62.09 30866.16 36244.55 28364.32 32847.36 31655.31 33480.34 23619.27 38562.68 35536.29 34862.39 33379.04 273
DeepMVS_CXcopyleft12.03 40417.97 42610.91 42310.60 4277.46 41911.07 42028.36 4153.28 42111.29 4238.01 4219.74 42213.89 418