This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
PC_three_145290.77 18698.89 1498.28 6896.24 198.35 23195.76 8499.58 2399.59 24
DVP-MVS++98.06 197.99 198.28 998.67 6195.39 1199.29 198.28 3694.78 4498.93 998.87 1896.04 299.86 997.45 3299.58 2399.59 24
OPU-MVS98.55 398.82 5596.86 398.25 3598.26 6996.04 299.24 12895.36 9899.59 1999.56 31
test_0728_THIRD94.78 4498.73 1898.87 1895.87 499.84 2397.45 3299.72 299.77 2
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3598.27 3995.13 2699.19 498.89 1695.54 599.85 1897.52 2899.66 1099.56 31
test_241102_ONE99.42 795.30 1798.27 3995.09 2999.19 498.81 2495.54 599.65 61
test_one_060199.32 2295.20 2098.25 4595.13 2698.48 2498.87 1895.16 7
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4297.85 11994.92 3598.73 1898.87 1895.08 899.84 2397.52 2899.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2798.29 3494.92 3598.99 798.92 1395.08 8
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16698.35 2795.16 2598.71 2098.80 2595.05 1099.89 396.70 4999.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_TWO98.27 3995.13 2698.93 998.89 1694.99 1199.85 1897.52 2899.65 1399.74 8
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 8094.25 4098.43 2298.27 3995.34 2098.11 2998.56 3394.53 1299.71 4996.57 5399.62 1799.65 17
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 697.44 1698.37 798.90 5395.86 697.27 15898.08 7795.81 997.87 4098.31 6394.26 1399.68 5797.02 4099.49 3899.57 28
SD-MVS97.41 1797.53 1197.06 7398.57 7294.46 3497.92 7598.14 6794.82 4199.01 698.55 3594.18 1497.41 33796.94 4199.64 1499.32 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1498.29 3495.55 1698.56 2297.81 10493.90 1599.65 6196.62 5099.21 7499.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS97.18 2496.84 3798.20 1499.30 2495.35 1597.12 17398.07 8293.54 9196.08 10397.69 11193.86 1699.71 4996.50 5499.39 5799.55 34
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4698.30 2698.90 1593.77 1799.68 5797.93 1699.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + MP.97.42 1697.33 1897.69 4199.25 2794.24 4198.07 5597.85 11993.72 8298.57 2198.35 5493.69 1899.40 11397.06 3999.46 4199.44 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
patch_mono-296.83 4497.44 1695.01 18199.05 3985.39 30896.98 18598.77 794.70 4897.99 3398.66 2993.61 1999.91 197.67 2499.50 3599.72 11
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 6298.25 8992.59 8997.81 9198.68 1394.93 3399.24 398.87 1893.52 2099.79 3699.32 299.21 7499.40 57
DeepPCF-MVS93.97 196.61 5697.09 2195.15 17398.09 10486.63 28496.00 26398.15 6595.43 1797.95 3598.56 3393.40 2199.36 11796.77 4599.48 3999.45 50
fmvsm_l_conf0.5_n97.65 797.75 697.34 5598.21 9592.75 8397.83 8798.73 995.04 3199.30 198.84 2393.34 2299.78 3899.32 299.13 8399.50 43
SF-MVS97.39 1897.13 1998.17 1599.02 4295.28 1998.23 3998.27 3992.37 13598.27 2798.65 3193.33 2399.72 4896.49 5599.52 3099.51 40
SMA-MVScopyleft97.35 1997.03 2798.30 899.06 3895.42 1097.94 7398.18 6090.57 20198.85 1598.94 1293.33 2399.83 2696.72 4899.68 499.63 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC97.30 2197.03 2798.11 1798.77 5695.06 2597.34 15198.04 9295.96 697.09 6197.88 9593.18 2599.71 4995.84 8299.17 7899.56 31
9.1496.75 4598.93 5097.73 9998.23 5091.28 17097.88 3798.44 4693.00 2699.65 6195.76 8499.47 40
reproduce-ours97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5395.80 1097.88 3798.98 992.91 2799.81 3097.68 2099.43 4899.67 13
our_new_method97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5395.80 1097.88 3798.98 992.91 2799.81 3097.68 2099.43 4899.67 13
mamv494.66 11696.10 6990.37 35298.01 11173.41 40096.82 19897.78 12889.95 21694.52 14397.43 13392.91 2799.09 15298.28 1499.16 8098.60 133
segment_acmp92.89 30
TSAR-MVS + GP.96.69 5396.49 5597.27 6198.31 8493.39 6296.79 20096.72 24594.17 6997.44 4797.66 11592.76 3199.33 11896.86 4497.76 14099.08 87
dcpmvs_296.37 6597.05 2594.31 22398.96 4984.11 32997.56 12497.51 16293.92 7697.43 4998.52 3792.75 3299.32 12097.32 3799.50 3599.51 40
TEST998.70 5994.19 4296.41 23398.02 9788.17 27696.03 10497.56 12692.74 3399.59 77
train_agg96.30 6795.83 7597.72 3898.70 5994.19 4296.41 23398.02 9788.58 26396.03 10497.56 12692.73 3499.59 7795.04 10499.37 6199.39 59
test_898.67 6194.06 4996.37 24098.01 10088.58 26395.98 10897.55 12892.73 3499.58 80
reproduce_model97.51 1497.51 1397.50 4998.99 4693.01 7797.79 9398.21 5195.73 1397.99 3399.03 692.63 3699.82 2897.80 1899.42 5099.67 13
CSCG96.05 7295.91 7296.46 9899.24 2890.47 17098.30 2898.57 1889.01 24693.97 15897.57 12492.62 3799.76 4194.66 11799.27 6799.15 78
HPM-MVS++copyleft97.34 2096.97 3098.47 599.08 3696.16 497.55 12897.97 10495.59 1496.61 7997.89 9392.57 3899.84 2395.95 7799.51 3399.40 57
ZD-MVS99.05 3994.59 3298.08 7789.22 23997.03 6398.10 7692.52 3999.65 6194.58 12199.31 65
PHI-MVS96.77 4796.46 6097.71 4098.40 7894.07 4898.21 4298.45 2289.86 21897.11 6098.01 8692.52 3999.69 5596.03 7599.53 2999.36 63
test_fmvsm_n_192097.55 1197.89 396.53 8898.41 7791.73 11698.01 6099.02 196.37 499.30 198.92 1392.39 4199.79 3699.16 499.46 4198.08 179
APD-MVScopyleft96.95 3496.60 5098.01 2099.03 4194.93 2797.72 10298.10 7591.50 15998.01 3298.32 6292.33 4299.58 8094.85 10999.51 3399.53 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 5596.58 5296.99 7598.46 7392.31 9896.20 25498.90 394.30 6895.86 11197.74 10992.33 4299.38 11696.04 7499.42 5099.28 68
MSLP-MVS++96.94 3597.06 2296.59 8598.72 5891.86 11497.67 10898.49 1994.66 5197.24 5498.41 4992.31 4498.94 17196.61 5199.46 4198.96 98
旧先验198.38 8193.38 6397.75 13098.09 7892.30 4599.01 9299.16 76
HFP-MVS97.14 2696.92 3397.83 2699.42 794.12 4698.52 1598.32 3093.21 10397.18 5598.29 6692.08 4699.83 2695.63 9199.59 1999.54 36
test_prior296.35 24192.80 12796.03 10497.59 12392.01 4795.01 10699.38 58
CDPH-MVS95.97 7695.38 8797.77 3398.93 5094.44 3596.35 24197.88 11286.98 30896.65 7797.89 9391.99 4899.47 10592.26 15999.46 4199.39 59
CP-MVS97.02 3196.81 4197.64 4499.33 2193.54 5998.80 898.28 3692.99 11596.45 8998.30 6591.90 4999.85 1895.61 9399.68 499.54 36
CS-MVS96.86 3997.06 2296.26 11598.16 10191.16 14899.09 397.87 11495.30 2197.06 6298.03 8391.72 5098.71 19997.10 3899.17 7898.90 108
DPM-MVS95.69 8394.92 9898.01 2098.08 10795.71 995.27 30297.62 14890.43 20595.55 12297.07 15291.72 5099.50 10289.62 21798.94 9598.82 120
XVS97.18 2496.96 3197.81 2899.38 1494.03 5098.59 1298.20 5394.85 3796.59 8198.29 6691.70 5299.80 3395.66 8699.40 5599.62 20
X-MVStestdata91.71 22389.67 28797.81 2899.38 1494.03 5098.59 1298.20 5394.85 3796.59 8132.69 42091.70 5299.80 3395.66 8699.40 5599.62 20
ZNCC-MVS96.96 3396.67 4897.85 2599.37 1694.12 4698.49 1998.18 6092.64 13196.39 9198.18 7391.61 5499.88 495.59 9699.55 2699.57 28
ACMMP_NAP97.20 2396.86 3598.23 1199.09 3495.16 2297.60 12098.19 5892.82 12697.93 3698.74 2891.60 5599.86 996.26 5899.52 3099.67 13
region2R97.07 2996.84 3797.77 3399.46 293.79 5498.52 1598.24 4793.19 10697.14 5898.34 5791.59 5699.87 795.46 9799.59 1999.64 18
test_fmvsmconf_n97.49 1597.56 997.29 5897.44 14792.37 9597.91 7698.88 495.83 898.92 1299.05 591.45 5799.80 3399.12 599.46 4199.69 12
DELS-MVS96.61 5696.38 6397.30 5797.79 12593.19 7395.96 26598.18 6095.23 2295.87 11097.65 11691.45 5799.70 5495.87 7899.44 4799.00 96
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS97.01 3296.86 3597.47 5199.09 3493.27 7097.98 6398.07 8293.75 8197.45 4698.48 4391.43 5999.59 7796.22 6199.27 6799.54 36
SR-MVS-dyc-post96.88 3896.80 4297.11 7099.02 4292.34 9697.98 6398.03 9493.52 9397.43 4998.51 3891.40 6099.56 8896.05 7299.26 6999.43 54
GST-MVS96.85 4196.52 5497.82 2799.36 1894.14 4598.29 2998.13 6892.72 12896.70 7398.06 8091.35 6199.86 994.83 11199.28 6699.47 49
ACMMPR97.07 2996.84 3797.79 3099.44 693.88 5298.52 1598.31 3193.21 10397.15 5798.33 6091.35 6199.86 995.63 9199.59 1999.62 20
MVSMamba_PlusPlus96.51 5996.48 5696.59 8598.07 10891.97 11198.14 4997.79 12790.43 20597.34 5297.52 12991.29 6399.19 13398.12 1599.64 1498.60 133
SPE-MVS-test96.89 3797.04 2696.45 9998.29 8591.66 12299.03 497.85 11995.84 796.90 6597.97 8991.24 6498.75 19296.92 4299.33 6398.94 101
DeepC-MVS_fast93.89 296.93 3696.64 4997.78 3198.64 6794.30 3797.41 14198.04 9294.81 4296.59 8198.37 5291.24 6499.64 6995.16 10299.52 3099.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS96.02 7395.89 7396.40 10297.16 15592.44 9397.47 13797.77 12994.55 5596.48 8694.51 28591.23 6698.92 17395.65 8998.19 12597.82 194
PGM-MVS96.81 4596.53 5397.65 4299.35 2093.53 6097.65 11198.98 292.22 13797.14 5898.44 4691.17 6799.85 1894.35 12499.46 4199.57 28
MP-MVS-pluss96.70 5196.27 6697.98 2299.23 3094.71 2996.96 18798.06 8590.67 19295.55 12298.78 2791.07 6899.86 996.58 5299.55 2699.38 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS96.86 3996.60 5097.64 4499.40 1193.44 6198.50 1898.09 7693.27 10295.95 10998.33 6091.04 6999.88 495.20 10099.57 2599.60 23
HPM-MVScopyleft96.69 5396.45 6197.40 5399.36 1893.11 7598.87 698.06 8591.17 17596.40 9097.99 8790.99 7099.58 8095.61 9399.61 1899.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
balanced_conf0396.84 4396.89 3496.68 7997.63 13692.22 10198.17 4897.82 12594.44 6198.23 2897.36 13690.97 7199.22 13097.74 1999.66 1098.61 132
APD-MVS_3200maxsize96.81 4596.71 4797.12 6999.01 4592.31 9897.98 6398.06 8593.11 11297.44 4798.55 3590.93 7299.55 9096.06 7199.25 7199.51 40
test1297.65 4298.46 7394.26 3997.66 14195.52 12590.89 7399.46 10699.25 7199.22 73
MTAPA97.08 2896.78 4397.97 2399.37 1694.42 3697.24 16098.08 7795.07 3096.11 10198.59 3290.88 7499.90 296.18 7099.50 3599.58 27
EI-MVSNet-Vis-set96.51 5996.47 5796.63 8298.24 9091.20 14396.89 19197.73 13394.74 4796.49 8598.49 4090.88 7499.58 8096.44 5698.32 12099.13 80
RE-MVS-def96.72 4699.02 4292.34 9697.98 6398.03 9493.52 9397.43 4998.51 3890.71 7696.05 7299.26 6999.43 54
EIA-MVS95.53 9095.47 8195.71 14897.06 16389.63 19297.82 8997.87 11493.57 8793.92 15995.04 25990.61 7798.95 16994.62 11998.68 10498.54 137
MP-MVScopyleft96.77 4796.45 6197.72 3899.39 1393.80 5398.41 2398.06 8593.37 9895.54 12498.34 5790.59 7899.88 494.83 11199.54 2899.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set96.34 6696.30 6596.47 9698.20 9690.93 15596.86 19397.72 13594.67 5096.16 10098.46 4490.43 7999.58 8096.23 6097.96 13398.90 108
原ACMM196.38 10598.59 6991.09 15097.89 11087.41 30095.22 12997.68 11290.25 8099.54 9287.95 25099.12 8598.49 144
HPM-MVS_fast96.51 5996.27 6697.22 6499.32 2292.74 8498.74 998.06 8590.57 20196.77 7098.35 5490.21 8199.53 9494.80 11499.63 1699.38 61
testdata95.46 16598.18 10088.90 22497.66 14182.73 36897.03 6398.07 7990.06 8298.85 18089.67 21598.98 9398.64 131
新几何197.32 5698.60 6893.59 5897.75 13081.58 37795.75 11597.85 9990.04 8399.67 5986.50 28299.13 8398.69 128
test_fmvsmconf0.1_n97.09 2797.06 2297.19 6795.67 25392.21 10297.95 7298.27 3995.78 1298.40 2599.00 789.99 8499.78 3899.06 699.41 5399.59 24
DP-MVS Recon95.68 8495.12 9697.37 5499.19 3194.19 4297.03 17798.08 7788.35 27295.09 13297.65 11689.97 8599.48 10492.08 16898.59 10998.44 152
MVS_111021_LR96.24 6996.19 6896.39 10498.23 9491.35 13696.24 25298.79 693.99 7495.80 11397.65 11689.92 8699.24 12895.87 7899.20 7698.58 135
EPP-MVSNet95.22 9895.04 9795.76 14197.49 14689.56 19698.67 1097.00 22390.69 19094.24 15097.62 12189.79 8798.81 18493.39 14496.49 17498.92 104
test_fmvsmvis_n_192096.70 5196.84 3796.31 10996.62 19491.73 11697.98 6398.30 3296.19 596.10 10298.95 1189.42 8899.76 4198.90 1099.08 8797.43 213
EC-MVSNet96.42 6296.47 5796.26 11597.01 16991.52 12898.89 597.75 13094.42 6296.64 7897.68 11289.32 8998.60 20997.45 3299.11 8698.67 130
PAPR94.18 12593.42 14496.48 9597.64 13491.42 13495.55 28797.71 13988.99 24792.34 19495.82 22189.19 9099.11 14886.14 28897.38 14998.90 108
MG-MVS95.61 8795.38 8796.31 10998.42 7690.53 16896.04 26097.48 16693.47 9595.67 11998.10 7689.17 9199.25 12791.27 18698.77 10199.13 80
PAPM_NR95.01 10294.59 10696.26 11598.89 5490.68 16597.24 16097.73 13391.80 15192.93 18496.62 18289.13 9299.14 14589.21 23097.78 13898.97 97
mvsany_test193.93 14093.98 12393.78 25394.94 29986.80 27794.62 32092.55 38588.77 26096.85 6698.49 4088.98 9398.08 25895.03 10595.62 19096.46 245
ACMMPcopyleft96.27 6895.93 7197.28 6099.24 2892.62 8798.25 3598.81 592.99 11594.56 14298.39 5088.96 9499.85 1894.57 12297.63 14199.36 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net95.95 7795.53 7897.20 6697.67 13092.98 7997.65 11198.13 6894.81 4296.61 7998.35 5488.87 9599.51 9990.36 20197.35 15199.11 84
API-MVS94.84 11194.49 11395.90 13597.90 12092.00 11097.80 9297.48 16689.19 24094.81 13696.71 16888.84 9699.17 13888.91 23798.76 10296.53 240
fmvsm_s_conf0.5_n96.85 4197.13 1996.04 12898.07 10890.28 17597.97 6998.76 894.93 3398.84 1699.06 488.80 9799.65 6199.06 698.63 10698.18 168
test22298.24 9092.21 10295.33 29797.60 14979.22 39095.25 12797.84 10188.80 9799.15 8198.72 125
Test By Simon88.73 99
pcd_1.5k_mvsjas7.39 3949.85 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42688.65 1000.00 4270.00 4260.00 4250.00 423
PS-MVSNAJss93.74 14793.51 13894.44 21493.91 33789.28 21397.75 9697.56 15892.50 13289.94 25696.54 18588.65 10098.18 24593.83 13690.90 27595.86 261
PS-MVSNAJ95.37 9295.33 8995.49 16197.35 14990.66 16695.31 29997.48 16693.85 7996.51 8495.70 23188.65 10099.65 6194.80 11498.27 12296.17 251
xiu_mvs_v2_base95.32 9495.29 9095.40 16697.22 15190.50 16995.44 29397.44 18093.70 8496.46 8896.18 20188.59 10399.53 9494.79 11697.81 13796.17 251
PLCcopyleft91.00 694.11 13293.43 14296.13 12398.58 7191.15 14996.69 21197.39 18787.29 30391.37 21996.71 16888.39 10499.52 9887.33 26997.13 16197.73 197
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet93.37 15892.67 16795.47 16495.34 27292.83 8197.17 16998.58 1792.98 12090.13 24895.80 22288.37 10597.85 29591.71 17683.93 35395.73 275
fmvsm_s_conf0.5_n_a96.75 4996.93 3296.20 12097.64 13490.72 16398.00 6198.73 994.55 5598.91 1399.08 388.22 10699.63 7098.91 998.37 11898.25 163
MM97.29 2296.98 2998.23 1198.01 11195.03 2698.07 5595.76 29497.78 197.52 4498.80 2588.09 10799.86 999.44 199.37 6199.80 1
fmvsm_s_conf0.1_n96.58 5896.77 4496.01 13296.67 19290.25 17697.91 7698.38 2394.48 5998.84 1699.14 188.06 10899.62 7198.82 1198.60 10898.15 172
PVSNet_BlendedMVS94.06 13493.92 12494.47 21298.27 8689.46 20396.73 20598.36 2490.17 21094.36 14795.24 25388.02 10999.58 8093.44 14190.72 27794.36 347
PVSNet_Blended94.87 11094.56 10895.81 14098.27 8689.46 20395.47 29298.36 2488.84 25494.36 14796.09 21188.02 10999.58 8093.44 14198.18 12698.40 155
TAPA-MVS90.10 792.30 20291.22 22095.56 15598.33 8389.60 19496.79 20097.65 14381.83 37491.52 21597.23 14487.94 11198.91 17571.31 39698.37 11898.17 171
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
casdiffmvs_mvgpermissive95.81 8295.57 7796.51 9296.87 17491.49 12997.50 13197.56 15893.99 7495.13 13197.92 9287.89 11298.78 18795.97 7697.33 15299.26 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test94.89 10994.62 10595.68 14996.83 17989.55 19796.70 20997.17 20491.17 17595.60 12196.11 21087.87 11398.76 19193.01 15497.17 16098.72 125
UniMVSNet (Re)93.31 16092.55 17295.61 15395.39 26693.34 6697.39 14698.71 1193.14 11190.10 25294.83 26987.71 11498.03 26991.67 17983.99 35295.46 284
FC-MVSNet-test93.94 13993.57 13295.04 17995.48 26191.45 13398.12 5098.71 1193.37 9890.23 24396.70 17087.66 11597.85 29591.49 18190.39 28295.83 265
sasdasda96.02 7395.45 8297.75 3597.59 14095.15 2398.28 3097.60 14994.52 5796.27 9596.12 20687.65 11699.18 13696.20 6694.82 20598.91 105
canonicalmvs96.02 7395.45 8297.75 3597.59 14095.15 2398.28 3097.60 14994.52 5796.27 9596.12 20687.65 11699.18 13696.20 6694.82 20598.91 105
FIs94.09 13393.70 12895.27 16995.70 25192.03 10998.10 5198.68 1393.36 10090.39 24096.70 17087.63 11897.94 28692.25 16190.50 28195.84 264
CDS-MVSNet94.14 13193.54 13495.93 13496.18 22991.46 13296.33 24397.04 21988.97 24993.56 16496.51 18687.55 11997.89 29389.80 21195.95 18198.44 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MGCFI-Net95.94 7895.40 8697.56 4897.59 14094.62 3198.21 4297.57 15494.41 6396.17 9996.16 20487.54 12099.17 13896.19 6894.73 21098.91 105
MVS_030496.74 5096.31 6498.02 1996.87 17494.65 3097.58 12194.39 35496.47 397.16 5698.39 5087.53 12199.87 798.97 899.41 5399.55 34
Effi-MVS+94.93 10794.45 11596.36 10796.61 19591.47 13196.41 23397.41 18591.02 18194.50 14495.92 21587.53 12198.78 18793.89 13396.81 16598.84 119
casdiffmvspermissive95.64 8595.49 7996.08 12496.76 19090.45 17197.29 15797.44 18094.00 7395.46 12697.98 8887.52 12398.73 19595.64 9097.33 15299.08 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu95.27 9594.91 9996.38 10598.20 9690.86 15797.27 15898.25 4590.21 20994.18 15297.27 14187.48 12499.73 4593.53 13897.77 13998.55 136
fmvsm_s_conf0.1_n_a96.40 6396.47 5796.16 12295.48 26190.69 16497.91 7698.33 2994.07 7198.93 999.14 187.44 12599.61 7298.63 1398.32 12098.18 168
mvs_anonymous93.82 14493.74 12794.06 23396.44 21685.41 30695.81 27397.05 21789.85 22090.09 25396.36 19487.44 12597.75 30793.97 12996.69 17099.02 90
CANet96.39 6496.02 7097.50 4997.62 13793.38 6397.02 17997.96 10595.42 1894.86 13597.81 10487.38 12799.82 2896.88 4399.20 7699.29 66
baseline95.58 8895.42 8596.08 12496.78 18590.41 17397.16 17097.45 17693.69 8595.65 12097.85 9987.29 12898.68 20195.66 8697.25 15799.13 80
TAMVS94.01 13793.46 14095.64 15096.16 23190.45 17196.71 20896.89 23589.27 23893.46 16996.92 16087.29 12897.94 28688.70 24195.74 18698.53 138
nrg03094.05 13593.31 14696.27 11495.22 28394.59 3298.34 2597.46 17192.93 12291.21 22996.64 17587.23 13098.22 24094.99 10785.80 32495.98 260
CPTT-MVS95.57 8995.19 9296.70 7899.27 2691.48 13098.33 2698.11 7387.79 28995.17 13098.03 8387.09 13199.61 7293.51 13999.42 5099.02 90
OMC-MVS95.09 10194.70 10496.25 11898.46 7391.28 13796.43 23197.57 15492.04 14694.77 13897.96 9087.01 13299.09 15291.31 18596.77 16698.36 159
DeepC-MVS93.07 396.06 7195.66 7697.29 5897.96 11493.17 7497.30 15698.06 8593.92 7693.38 17198.66 2986.83 13399.73 4595.60 9599.22 7398.96 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-LS92.29 20391.94 19293.34 27296.25 22586.97 27596.57 22797.05 21790.67 19289.50 27294.80 27186.59 13497.64 31589.91 20886.11 32295.40 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 17392.88 15793.48 26795.77 24986.98 27496.44 22997.12 20790.66 19491.30 22397.64 11986.56 13598.05 26589.91 20890.55 27995.41 286
miper_enhance_ethall91.54 23691.01 22793.15 27995.35 27187.07 27393.97 34596.90 23386.79 31289.17 28293.43 34286.55 13697.64 31589.97 20786.93 31494.74 336
1112_ss93.37 15892.42 17996.21 11997.05 16590.99 15196.31 24596.72 24586.87 31189.83 26096.69 17286.51 13799.14 14588.12 24693.67 23198.50 142
diffmvspermissive95.25 9695.13 9495.63 15196.43 21789.34 20895.99 26497.35 19392.83 12596.31 9397.37 13586.44 13898.67 20296.26 5897.19 15998.87 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS94.71 11594.02 12296.79 7797.71 12992.05 10896.59 22497.35 19390.61 19894.64 14096.93 15786.41 13999.39 11491.20 18894.71 21198.94 101
EPNet95.20 9994.56 10897.14 6892.80 36692.68 8697.85 8494.87 34296.64 292.46 18797.80 10686.23 14099.65 6193.72 13798.62 10799.10 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 23091.13 22392.97 28595.55 25886.57 28594.47 32696.88 23687.77 29088.88 28894.01 31586.22 14197.54 32489.49 21986.93 31494.79 332
Fast-Effi-MVS+93.46 15592.75 16395.59 15496.77 18790.03 17996.81 19997.13 20688.19 27591.30 22394.27 30286.21 14298.63 20687.66 26196.46 17698.12 174
MVSFormer95.37 9295.16 9395.99 13396.34 22291.21 14198.22 4097.57 15491.42 16396.22 9797.32 13786.20 14397.92 28994.07 12799.05 8998.85 116
lupinMVS94.99 10694.56 10896.29 11396.34 22291.21 14195.83 27296.27 27388.93 25196.22 9796.88 16286.20 14398.85 18095.27 9999.05 8998.82 120
114514_t93.95 13893.06 15196.63 8299.07 3791.61 12397.46 13997.96 10577.99 39493.00 17997.57 12486.14 14599.33 11889.22 22999.15 8198.94 101
alignmvs95.87 8195.23 9197.78 3197.56 14595.19 2197.86 8197.17 20494.39 6596.47 8796.40 19285.89 14699.20 13296.21 6595.11 20198.95 100
WR-MVS_H92.00 21491.35 21193.95 24295.09 29289.47 20198.04 5898.68 1391.46 16188.34 30194.68 27685.86 14797.56 32285.77 29684.24 35094.82 327
Test_1112_low_res92.84 18491.84 19595.85 13997.04 16689.97 18595.53 28996.64 25385.38 33489.65 26695.18 25485.86 14799.10 14987.70 25793.58 23698.49 144
HY-MVS89.66 993.87 14292.95 15496.63 8297.10 15992.49 9295.64 28596.64 25389.05 24593.00 17995.79 22585.77 14999.45 10889.16 23394.35 21397.96 184
c3_l91.38 24390.89 22992.88 28995.58 25686.30 29294.68 31996.84 24088.17 27688.83 29194.23 30585.65 15097.47 33189.36 22384.63 34294.89 322
IS-MVSNet94.90 10894.52 11296.05 12797.67 13090.56 16798.44 2196.22 27693.21 10393.99 15697.74 10985.55 15198.45 22189.98 20697.86 13599.14 79
MVS91.71 22390.44 25195.51 15995.20 28591.59 12596.04 26097.45 17673.44 40487.36 32495.60 23685.42 15299.10 14985.97 29397.46 14495.83 265
VNet95.89 7995.45 8297.21 6598.07 10892.94 8097.50 13198.15 6593.87 7897.52 4497.61 12285.29 15399.53 9495.81 8395.27 19699.16 76
CNLPA94.28 12393.53 13596.52 8998.38 8192.55 9096.59 22496.88 23690.13 21391.91 20597.24 14385.21 15499.09 15287.64 26297.83 13697.92 186
F-COLMAP93.58 15192.98 15395.37 16798.40 7888.98 22297.18 16897.29 19887.75 29290.49 23897.10 15185.21 15499.50 10286.70 27996.72 16997.63 201
LCM-MVSNet-Re92.50 19192.52 17592.44 30096.82 18181.89 35596.92 18993.71 37192.41 13484.30 35894.60 28085.08 15697.03 35091.51 18097.36 15098.40 155
NR-MVSNet92.34 19991.27 21795.53 15894.95 29793.05 7697.39 14698.07 8292.65 13084.46 35695.71 22985.00 15797.77 30589.71 21383.52 35995.78 269
PAPM91.52 23790.30 25795.20 17195.30 27889.83 18993.38 36596.85 23986.26 32288.59 29595.80 22284.88 15898.15 24775.67 37895.93 18297.63 201
MAR-MVS94.22 12493.46 14096.51 9298.00 11392.19 10597.67 10897.47 16988.13 27993.00 17995.84 21984.86 15999.51 9987.99 24998.17 12797.83 193
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
jason94.84 11194.39 11796.18 12195.52 25990.93 15596.09 25896.52 26089.28 23796.01 10797.32 13784.70 16098.77 19095.15 10398.91 9798.85 116
jason: jason.
sss94.51 11893.80 12696.64 8097.07 16091.97 11196.32 24498.06 8588.94 25094.50 14496.78 16584.60 16199.27 12691.90 16996.02 17998.68 129
LS3D93.57 15292.61 17096.47 9697.59 14091.61 12397.67 10897.72 13585.17 33990.29 24298.34 5784.60 16199.73 4583.85 32298.27 12298.06 180
Vis-MVSNet (Re-imp)94.15 12893.88 12594.95 18897.61 13887.92 25298.10 5195.80 29392.22 13793.02 17897.45 13084.53 16397.91 29288.24 24597.97 13299.02 90
GeoE93.89 14193.28 14795.72 14796.96 17289.75 19198.24 3896.92 23289.47 23192.12 20097.21 14584.42 16498.39 22887.71 25696.50 17399.01 93
cdsmvs_eth3d_5k23.24 39030.99 3920.00 4080.00 4310.00 4330.00 41997.63 1470.00 4260.00 42796.88 16284.38 1650.00 4270.00 4260.00 4250.00 423
test_yl94.78 11394.23 11996.43 10097.74 12791.22 13996.85 19497.10 20991.23 17295.71 11696.93 15784.30 16699.31 12293.10 14795.12 19998.75 122
DCV-MVSNet94.78 11394.23 11996.43 10097.74 12791.22 13996.85 19497.10 20991.23 17295.71 11696.93 15784.30 16699.31 12293.10 14795.12 19998.75 122
CHOSEN 280x42093.12 16892.72 16694.34 22096.71 19187.27 26590.29 39497.72 13586.61 31591.34 22095.29 24784.29 16898.41 22393.25 14598.94 9597.35 218
test_fmvsmconf0.01_n96.15 7095.85 7497.03 7492.66 36991.83 11597.97 6997.84 12395.57 1597.53 4399.00 784.20 16999.76 4198.82 1199.08 8799.48 47
baseline192.82 18591.90 19395.55 15797.20 15390.77 16197.19 16794.58 34892.20 13992.36 19196.34 19584.16 17098.21 24189.20 23183.90 35697.68 200
eth_miper_zixun_eth91.02 26390.59 24792.34 30595.33 27584.35 32594.10 34296.90 23388.56 26588.84 29094.33 29784.08 17197.60 32088.77 24084.37 34995.06 311
BP-MVS195.89 7995.49 7997.08 7296.67 19293.20 7298.08 5396.32 26994.56 5496.32 9297.84 10184.07 17299.15 14296.75 4698.78 10098.90 108
PCF-MVS89.48 1191.56 23389.95 27596.36 10796.60 19692.52 9192.51 37997.26 19979.41 38988.90 28696.56 18484.04 17399.55 9077.01 37397.30 15597.01 227
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
131492.81 18692.03 18895.14 17495.33 27589.52 20096.04 26097.44 18087.72 29386.25 34295.33 24683.84 17498.79 18689.26 22797.05 16297.11 226
DP-MVS92.76 18791.51 20996.52 8998.77 5690.99 15197.38 14896.08 28282.38 37089.29 27897.87 9683.77 17599.69 5581.37 34496.69 17098.89 112
3Dnovator+91.43 495.40 9194.48 11498.16 1696.90 17395.34 1698.48 2097.87 11494.65 5288.53 29798.02 8583.69 17699.71 4993.18 14698.96 9499.44 52
h-mvs3394.15 12893.52 13796.04 12897.81 12490.22 17797.62 11997.58 15395.19 2396.74 7197.45 13083.67 17799.61 7295.85 8079.73 37698.29 162
hse-mvs293.45 15692.99 15294.81 19497.02 16888.59 23096.69 21196.47 26395.19 2396.74 7196.16 20483.67 17798.48 22095.85 8079.13 38097.35 218
AdaColmapbinary94.34 12293.68 12996.31 10998.59 6991.68 12196.59 22497.81 12689.87 21792.15 19897.06 15383.62 17999.54 9289.34 22498.07 13097.70 199
DU-MVS92.90 18092.04 18795.49 16194.95 29792.83 8197.16 17098.24 4793.02 11490.13 24895.71 22983.47 18097.85 29591.71 17683.93 35395.78 269
Baseline_NR-MVSNet91.20 25590.62 24592.95 28693.83 34088.03 24997.01 18295.12 32888.42 27089.70 26395.13 25783.47 18097.44 33489.66 21683.24 36193.37 364
miper_lstm_enhance90.50 28490.06 27291.83 31995.33 27583.74 33393.86 35196.70 24987.56 29787.79 31493.81 32383.45 18296.92 35587.39 26784.62 34394.82 327
EPNet_dtu91.71 22391.28 21692.99 28493.76 34283.71 33596.69 21195.28 31993.15 11087.02 33295.95 21483.37 18397.38 33979.46 35996.84 16497.88 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)93.52 15492.92 15595.31 16896.77 18788.54 23394.82 31696.21 27889.61 22694.20 15195.25 25283.24 18499.14 14590.01 20596.16 17898.25 163
BH-untuned92.94 17892.62 16993.92 24797.22 15186.16 29796.40 23796.25 27590.06 21489.79 26196.17 20383.19 18598.35 23187.19 27297.27 15697.24 223
TranMVSNet+NR-MVSNet92.50 19191.63 20295.14 17494.76 30892.07 10797.53 12998.11 7392.90 12489.56 26996.12 20683.16 18697.60 32089.30 22583.20 36295.75 273
CHOSEN 1792x268894.15 12893.51 13896.06 12698.27 8689.38 20695.18 30898.48 2185.60 33193.76 16297.11 15083.15 18799.61 7291.33 18498.72 10399.19 74
PMMVS92.86 18292.34 18094.42 21694.92 30086.73 28094.53 32496.38 26784.78 34694.27 14995.12 25883.13 18898.40 22491.47 18296.49 17498.12 174
Effi-MVS+-dtu93.08 17093.21 14992.68 29896.02 24083.25 33997.14 17296.72 24593.85 7991.20 23093.44 33983.08 18998.30 23591.69 17895.73 18796.50 242
v891.29 25290.53 25093.57 26494.15 33088.12 24897.34 15197.06 21688.99 24788.32 30294.26 30483.08 18998.01 27187.62 26383.92 35594.57 341
GDP-MVS95.62 8695.13 9497.09 7196.79 18493.26 7197.89 7997.83 12493.58 8696.80 6797.82 10383.06 19199.16 14094.40 12397.95 13498.87 114
DIV-MVS_self_test90.97 26690.33 25492.88 28995.36 27086.19 29694.46 32896.63 25687.82 28688.18 30894.23 30582.99 19297.53 32687.72 25485.57 32694.93 318
cl____90.96 26790.32 25592.89 28895.37 26986.21 29594.46 32896.64 25387.82 28688.15 30994.18 30882.98 19397.54 32487.70 25785.59 32594.92 320
BH-w/o92.14 21191.75 19893.31 27396.99 17185.73 30195.67 28095.69 29988.73 26189.26 28094.82 27082.97 19498.07 26285.26 30396.32 17796.13 255
v14890.99 26490.38 25392.81 29293.83 34085.80 30096.78 20296.68 25089.45 23388.75 29393.93 31982.96 19597.82 29987.83 25283.25 36094.80 330
HyFIR lowres test93.66 14992.92 15595.87 13698.24 9089.88 18894.58 32298.49 1985.06 34193.78 16195.78 22682.86 19698.67 20291.77 17495.71 18899.07 89
test_djsdf93.07 17192.76 16194.00 23793.49 35188.70 22898.22 4097.57 15491.42 16390.08 25495.55 23982.85 19797.92 28994.07 12791.58 26195.40 289
PatchmatchNetpermissive91.91 21791.35 21193.59 26295.38 26784.11 32993.15 36995.39 31289.54 22892.10 20193.68 32982.82 19898.13 24884.81 30795.32 19598.52 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs182.76 19998.45 149
xiu_mvs_v1_base_debu95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
xiu_mvs_v1_base95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
xiu_mvs_v1_base_debi95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
patchmatchnet-post90.45 37982.65 20398.10 253
V4291.58 23290.87 23093.73 25494.05 33488.50 23597.32 15496.97 22488.80 25989.71 26294.33 29782.54 20498.05 26589.01 23485.07 33694.64 340
WR-MVS92.34 19991.53 20694.77 19995.13 29090.83 15896.40 23797.98 10391.88 15089.29 27895.54 24082.50 20597.80 30189.79 21285.27 33295.69 276
tpmrst91.44 24091.32 21391.79 32295.15 28879.20 38593.42 36495.37 31488.55 26693.49 16893.67 33082.49 20698.27 23790.41 19989.34 29197.90 187
MDTV_nov1_ep13_2view70.35 40493.10 37183.88 35693.55 16582.47 20786.25 28598.38 157
XVG-OURS-SEG-HR93.86 14393.55 13394.81 19497.06 16388.53 23495.28 30097.45 17691.68 15594.08 15597.68 11282.41 20898.90 17693.84 13592.47 24696.98 228
QAPM93.45 15692.27 18296.98 7696.77 18792.62 8798.39 2498.12 7084.50 34988.27 30597.77 10782.39 20999.81 3085.40 30198.81 9998.51 141
Patchmatch-test89.42 30887.99 31593.70 25795.27 27985.11 31388.98 40294.37 35681.11 37887.10 33093.69 32782.28 21097.50 32974.37 38494.76 20798.48 146
Vis-MVSNetpermissive95.23 9794.81 10096.51 9297.18 15491.58 12698.26 3498.12 7094.38 6694.90 13498.15 7582.28 21098.92 17391.45 18398.58 11099.01 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator91.36 595.19 10094.44 11697.44 5296.56 20193.36 6598.65 1198.36 2494.12 7089.25 28198.06 8082.20 21299.77 4093.41 14399.32 6499.18 75
v1091.04 26290.23 26293.49 26694.12 33188.16 24797.32 15497.08 21288.26 27488.29 30494.22 30782.17 21397.97 27786.45 28384.12 35194.33 348
v114491.37 24590.60 24693.68 25993.89 33888.23 24396.84 19697.03 22188.37 27189.69 26494.39 29282.04 21497.98 27487.80 25385.37 32994.84 324
MVSTER93.20 16492.81 16094.37 21796.56 20189.59 19597.06 17697.12 20791.24 17191.30 22395.96 21382.02 21598.05 26593.48 14090.55 27995.47 283
CP-MVSNet91.89 21991.24 21893.82 25095.05 29388.57 23197.82 8998.19 5891.70 15488.21 30795.76 22781.96 21697.52 32887.86 25184.65 34195.37 292
Patchmatch-RL test87.38 32986.24 33290.81 34488.74 39978.40 38988.12 40793.17 37687.11 30782.17 37689.29 38881.95 21795.60 37888.64 24277.02 38498.41 154
sam_mvs81.94 218
pmmvs490.93 26889.85 27994.17 22893.34 35690.79 16094.60 32196.02 28384.62 34787.45 32095.15 25581.88 21997.45 33387.70 25787.87 30494.27 352
test_post17.58 42381.76 22098.08 258
XVG-OURS93.72 14893.35 14594.80 19797.07 16088.61 22994.79 31797.46 17191.97 14993.99 15697.86 9881.74 22198.88 17792.64 15892.67 24596.92 232
v2v48291.59 23090.85 23393.80 25193.87 33988.17 24696.94 18896.88 23689.54 22889.53 27094.90 26581.70 22298.02 27089.25 22885.04 33895.20 304
baseline291.63 22790.86 23193.94 24494.33 32686.32 29195.92 26791.64 39289.37 23586.94 33594.69 27581.62 22398.69 20088.64 24294.57 21296.81 235
v14419291.06 26190.28 25893.39 27093.66 34687.23 26896.83 19797.07 21487.43 29989.69 26494.28 30181.48 22498.00 27287.18 27384.92 34094.93 318
MDTV_nov1_ep1390.76 23795.22 28380.33 37193.03 37295.28 31988.14 27892.84 18593.83 32081.34 22598.08 25882.86 32794.34 214
HQP_MVS93.78 14693.43 14294.82 19296.21 22689.99 18297.74 9797.51 16294.85 3791.34 22096.64 17581.32 22698.60 20993.02 15292.23 24995.86 261
plane_prior696.10 23790.00 18081.32 226
MonoMVSNet91.92 21691.77 19692.37 30292.94 36383.11 34097.09 17595.55 30792.91 12390.85 23394.55 28281.27 22896.52 36293.01 15487.76 30597.47 212
v7n90.76 27289.86 27893.45 26993.54 34887.60 26197.70 10797.37 19088.85 25387.65 31794.08 31381.08 22998.10 25384.68 30983.79 35794.66 339
HQP2-MVS80.95 230
HQP-MVS93.19 16592.74 16494.54 21095.86 24389.33 20996.65 21597.39 18793.55 8890.14 24495.87 21780.95 23098.50 21792.13 16592.10 25495.78 269
CR-MVSNet90.82 27189.77 28393.95 24294.45 32287.19 26990.23 39595.68 30186.89 31092.40 18892.36 36080.91 23297.05 34981.09 34893.95 22797.60 206
Patchmtry88.64 31887.25 32192.78 29494.09 33286.64 28189.82 39995.68 30180.81 38287.63 31892.36 36080.91 23297.03 35078.86 36285.12 33594.67 338
v119291.07 26090.23 26293.58 26393.70 34387.82 25796.73 20597.07 21487.77 29089.58 26794.32 29980.90 23497.97 27786.52 28185.48 32794.95 314
cl2291.21 25490.56 24993.14 28096.09 23886.80 27794.41 33096.58 25987.80 28888.58 29693.99 31780.85 23597.62 31889.87 21086.93 31494.99 313
mvsmamba94.57 11794.14 12195.87 13697.03 16789.93 18797.84 8595.85 29091.34 16694.79 13796.80 16480.67 23698.81 18494.85 10998.12 12998.85 116
anonymousdsp92.16 20991.55 20593.97 24092.58 37189.55 19797.51 13097.42 18489.42 23488.40 29994.84 26880.66 23797.88 29491.87 17191.28 26794.48 342
CLD-MVS92.98 17592.53 17494.32 22196.12 23689.20 21695.28 30097.47 16992.66 12989.90 25795.62 23580.58 23898.40 22492.73 15792.40 24795.38 291
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_post192.81 37616.58 42480.53 23997.68 31186.20 286
VPA-MVSNet93.24 16292.48 17795.51 15995.70 25192.39 9497.86 8198.66 1692.30 13692.09 20295.37 24580.49 24098.40 22493.95 13085.86 32395.75 273
tpmvs89.83 30389.15 30091.89 31794.92 30080.30 37293.11 37095.46 31186.28 32188.08 31092.65 35080.44 24198.52 21681.47 34089.92 28596.84 234
PatchMatch-RL92.90 18092.02 18995.56 15598.19 9890.80 15995.27 30297.18 20287.96 28191.86 20895.68 23280.44 24198.99 16784.01 31797.54 14396.89 233
PEN-MVS91.20 25590.44 25193.48 26794.49 32087.91 25497.76 9598.18 6091.29 16787.78 31595.74 22880.35 24397.33 34185.46 30082.96 36395.19 307
Fast-Effi-MVS+-dtu92.29 20391.99 19093.21 27895.27 27985.52 30497.03 17796.63 25692.09 14489.11 28495.14 25680.33 24498.08 25887.54 26594.74 20996.03 259
MSDG91.42 24190.24 26194.96 18797.15 15788.91 22393.69 35796.32 26985.72 33086.93 33696.47 18880.24 24598.98 16880.57 35095.05 20296.98 228
v192192090.85 27090.03 27393.29 27493.55 34786.96 27696.74 20497.04 21987.36 30189.52 27194.34 29680.23 24697.97 27786.27 28485.21 33394.94 316
RPMNet88.98 31187.05 32594.77 19994.45 32287.19 26990.23 39598.03 9477.87 39692.40 18887.55 40080.17 24799.51 9968.84 40193.95 22797.60 206
ET-MVSNet_ETH3D91.49 23890.11 26795.63 15196.40 21891.57 12795.34 29693.48 37390.60 20075.58 39695.49 24280.08 24896.79 35994.25 12589.76 28798.52 139
PatchT88.87 31587.42 31993.22 27794.08 33385.10 31489.51 40094.64 34781.92 37392.36 19188.15 39680.05 24997.01 35272.43 39293.65 23297.54 209
our_test_388.78 31687.98 31691.20 33792.45 37482.53 34693.61 36195.69 29985.77 32984.88 35393.71 32579.99 25096.78 36079.47 35886.24 31994.28 351
DTE-MVSNet90.56 28089.75 28593.01 28393.95 33587.25 26697.64 11597.65 14390.74 18787.12 32795.68 23279.97 25197.00 35383.33 32381.66 36994.78 334
D2MVS91.30 25090.95 22892.35 30394.71 31285.52 30496.18 25598.21 5188.89 25286.60 33993.82 32279.92 25297.95 28589.29 22690.95 27493.56 360
TransMVSNet (Re)88.94 31287.56 31893.08 28294.35 32588.45 23797.73 9995.23 32387.47 29884.26 35995.29 24779.86 25397.33 34179.44 36074.44 39393.45 363
ACMM89.79 892.96 17692.50 17694.35 21896.30 22488.71 22797.58 12197.36 19291.40 16590.53 23796.65 17479.77 25498.75 19291.24 18791.64 25995.59 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS92.16 20991.23 21994.95 18894.75 30990.94 15497.47 13797.43 18389.14 24188.90 28696.43 19079.71 25598.24 23889.56 21887.68 30695.67 277
PS-CasMVS91.55 23490.84 23493.69 25894.96 29688.28 24097.84 8598.24 4791.46 16188.04 31195.80 22279.67 25697.48 33087.02 27684.54 34795.31 296
WB-MVSnew89.88 30089.56 29090.82 34394.57 31983.06 34195.65 28492.85 38087.86 28590.83 23494.10 31179.66 25796.88 35676.34 37494.19 21792.54 376
ab-mvs93.57 15292.55 17296.64 8097.28 15091.96 11395.40 29497.45 17689.81 22293.22 17796.28 19779.62 25899.46 10690.74 19593.11 23798.50 142
v124090.70 27689.85 27993.23 27693.51 35086.80 27796.61 22197.02 22287.16 30689.58 26794.31 30079.55 25997.98 27485.52 29985.44 32894.90 321
CostFormer91.18 25890.70 24392.62 29994.84 30581.76 35694.09 34394.43 35284.15 35292.72 18693.77 32479.43 26098.20 24290.70 19692.18 25297.90 187
CANet_DTU94.37 12193.65 13096.55 8796.46 21592.13 10696.21 25396.67 25294.38 6693.53 16797.03 15579.34 26199.71 4990.76 19498.45 11697.82 194
OPM-MVS93.28 16192.76 16194.82 19294.63 31590.77 16196.65 21597.18 20293.72 8291.68 21397.26 14279.33 26298.63 20692.13 16592.28 24895.07 310
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
JIA-IIPM88.26 32287.04 32691.91 31593.52 34981.42 35889.38 40194.38 35580.84 38190.93 23280.74 40879.22 26397.92 28982.76 33191.62 26096.38 246
SDMVSNet94.17 12693.61 13195.86 13898.09 10491.37 13597.35 15098.20 5393.18 10891.79 20997.28 13979.13 26498.93 17294.61 12092.84 24097.28 221
RRT-MVS94.51 11894.35 11894.98 18496.40 21886.55 28797.56 12497.41 18593.19 10694.93 13397.04 15479.12 26599.30 12496.19 6897.32 15499.09 86
CVMVSNet91.23 25391.75 19889.67 36095.77 24974.69 39696.44 22994.88 33985.81 32892.18 19797.64 11979.07 26695.58 37988.06 24895.86 18498.74 124
LPG-MVS_test92.94 17892.56 17194.10 23196.16 23188.26 24197.65 11197.46 17191.29 16790.12 25097.16 14779.05 26798.73 19592.25 16191.89 25795.31 296
LGP-MVS_train94.10 23196.16 23188.26 24197.46 17191.29 16790.12 25097.16 14779.05 26798.73 19592.25 16191.89 25795.31 296
test-LLR91.42 24191.19 22192.12 31094.59 31680.66 36594.29 33792.98 37891.11 17790.76 23592.37 35779.02 26998.07 26288.81 23896.74 16797.63 201
test0.0.03 189.37 30988.70 30791.41 33292.47 37385.63 30295.22 30592.70 38391.11 17786.91 33793.65 33179.02 26993.19 40178.00 36689.18 29295.41 286
ADS-MVSNet289.45 30788.59 30992.03 31295.86 24382.26 35290.93 39094.32 35983.23 36591.28 22691.81 36979.01 27195.99 36879.52 35691.39 26597.84 191
ADS-MVSNet89.89 29988.68 30893.53 26595.86 24384.89 32090.93 39095.07 33083.23 36591.28 22691.81 36979.01 27197.85 29579.52 35691.39 26597.84 191
ppachtmachnet_test88.35 32187.29 32091.53 32892.45 37483.57 33793.75 35495.97 28484.28 35085.32 35194.18 30879.00 27396.93 35475.71 37784.99 33994.10 353
OpenMVScopyleft89.19 1292.86 18291.68 20196.40 10295.34 27292.73 8598.27 3298.12 7084.86 34485.78 34597.75 10878.89 27499.74 4487.50 26698.65 10596.73 237
LTVRE_ROB88.41 1390.99 26489.92 27794.19 22796.18 22989.55 19796.31 24597.09 21187.88 28485.67 34695.91 21678.79 27598.57 21381.50 33989.98 28494.44 345
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS91.76 22290.75 23994.81 19497.00 17088.57 23196.65 21596.49 26289.63 22592.15 19896.12 20678.66 27698.50 21790.83 19279.18 37997.36 216
pm-mvs190.72 27589.65 28993.96 24194.29 32989.63 19297.79 9396.82 24189.07 24386.12 34495.48 24378.61 27797.78 30386.97 27781.67 36894.46 343
PVSNet86.66 1892.24 20691.74 20093.73 25497.77 12683.69 33692.88 37496.72 24587.91 28393.00 17994.86 26778.51 27899.05 16286.53 28097.45 14898.47 147
ACMP89.59 1092.62 19092.14 18594.05 23496.40 21888.20 24497.36 14997.25 20191.52 15888.30 30396.64 17578.46 27998.72 19891.86 17291.48 26395.23 303
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BH-RMVSNet92.72 18991.97 19194.97 18697.16 15587.99 25096.15 25695.60 30490.62 19791.87 20797.15 14978.41 28098.57 21383.16 32497.60 14298.36 159
thres20092.23 20791.39 21094.75 20197.61 13889.03 22196.60 22395.09 32992.08 14593.28 17494.00 31678.39 28199.04 16581.26 34794.18 21896.19 250
MDA-MVSNet_test_wron85.87 34884.23 35290.80 34692.38 37682.57 34593.17 36795.15 32682.15 37167.65 40692.33 36378.20 28295.51 38077.33 36879.74 37594.31 350
tfpn200view992.38 19791.52 20794.95 18897.85 12289.29 21197.41 14194.88 33992.19 14193.27 17594.46 29078.17 28399.08 15581.40 34194.08 22296.48 243
thres40092.42 19591.52 20795.12 17697.85 12289.29 21197.41 14194.88 33992.19 14193.27 17594.46 29078.17 28399.08 15581.40 34194.08 22296.98 228
YYNet185.87 34884.23 35290.78 34792.38 37682.46 35093.17 36795.14 32782.12 37267.69 40492.36 36078.16 28595.50 38177.31 36979.73 37694.39 346
CL-MVSNet_self_test86.31 34185.15 34289.80 35988.83 39781.74 35793.93 34896.22 27686.67 31385.03 35290.80 37678.09 28694.50 38774.92 38171.86 39893.15 366
thres100view90092.43 19491.58 20494.98 18497.92 11889.37 20797.71 10494.66 34592.20 13993.31 17394.90 26578.06 28799.08 15581.40 34194.08 22296.48 243
thres600view792.49 19391.60 20395.18 17297.91 11989.47 20197.65 11194.66 34592.18 14393.33 17294.91 26478.06 28799.10 14981.61 33894.06 22696.98 228
tpm cat188.36 32087.21 32391.81 32195.13 29080.55 36892.58 37895.70 29774.97 40087.45 32091.96 36778.01 28998.17 24680.39 35288.74 29796.72 238
MVP-Stereo90.74 27490.08 26892.71 29693.19 35988.20 24495.86 27096.27 27386.07 32584.86 35494.76 27277.84 29097.75 30783.88 32198.01 13192.17 385
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EPMVS90.70 27689.81 28193.37 27194.73 31184.21 32793.67 35888.02 40789.50 23092.38 19093.49 33677.82 29197.78 30386.03 29292.68 24498.11 177
tfpnnormal89.70 30588.40 31193.60 26195.15 28890.10 17897.56 12498.16 6487.28 30486.16 34394.63 27977.57 29298.05 26574.48 38284.59 34592.65 373
tpm90.25 28989.74 28691.76 32593.92 33679.73 37993.98 34493.54 37288.28 27391.99 20393.25 34377.51 29397.44 33487.30 27087.94 30398.12 174
thisisatest051592.29 20391.30 21595.25 17096.60 19688.90 22494.36 33292.32 38687.92 28293.43 17094.57 28177.28 29499.00 16689.42 22295.86 18497.86 190
FMVSNet391.78 22190.69 24495.03 18096.53 20692.27 10097.02 17996.93 22889.79 22389.35 27594.65 27877.01 29597.47 33186.12 28988.82 29495.35 293
dmvs_testset81.38 36582.60 36077.73 38891.74 38051.49 42393.03 37284.21 41689.07 24378.28 39291.25 37476.97 29688.53 41156.57 41182.24 36793.16 365
TR-MVS91.48 23990.59 24794.16 22996.40 21887.33 26295.67 28095.34 31887.68 29491.46 21795.52 24176.77 29798.35 23182.85 32993.61 23496.79 236
FE-MVS92.05 21391.05 22595.08 17796.83 17987.93 25193.91 35095.70 29786.30 32094.15 15394.97 26076.59 29899.21 13184.10 31596.86 16398.09 178
tttt051792.96 17692.33 18194.87 19197.11 15887.16 27197.97 6992.09 38890.63 19693.88 16097.01 15676.50 29999.06 16190.29 20395.45 19398.38 157
RPSCF90.75 27390.86 23190.42 35196.84 17776.29 39495.61 28696.34 26883.89 35591.38 21897.87 9676.45 30098.78 18787.16 27492.23 24996.20 249
tpm289.96 29689.21 29892.23 30994.91 30281.25 35993.78 35394.42 35380.62 38491.56 21493.44 33976.44 30197.94 28685.60 29892.08 25697.49 210
thisisatest053093.03 17392.21 18495.49 16197.07 16089.11 22097.49 13692.19 38790.16 21194.09 15496.41 19176.43 30299.05 16290.38 20095.68 18998.31 161
EU-MVSNet88.72 31788.90 30588.20 37093.15 36074.21 39796.63 22094.22 36185.18 33887.32 32595.97 21276.16 30394.98 38585.27 30286.17 32095.41 286
Syy-MVS87.13 33287.02 32787.47 37395.16 28673.21 40195.00 31293.93 36788.55 26686.96 33391.99 36575.90 30494.00 39361.59 40794.11 21995.20 304
dp88.90 31488.26 31490.81 34494.58 31876.62 39292.85 37594.93 33685.12 34090.07 25593.07 34475.81 30598.12 25180.53 35187.42 31097.71 198
IterMVS-SCA-FT90.31 28689.81 28191.82 32095.52 25984.20 32894.30 33696.15 28090.61 19887.39 32394.27 30275.80 30696.44 36387.34 26886.88 31894.82 327
SCA91.84 22091.18 22293.83 24995.59 25584.95 31994.72 31895.58 30690.82 18492.25 19693.69 32775.80 30698.10 25386.20 28695.98 18098.45 149
IterMVS90.15 29489.67 28791.61 32795.48 26183.72 33494.33 33496.12 28189.99 21587.31 32694.15 31075.78 30896.27 36686.97 27786.89 31794.83 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax92.42 19591.89 19494.03 23693.33 35788.50 23597.73 9997.53 16092.00 14888.85 28996.50 18775.62 30998.11 25293.88 13491.56 26295.48 281
cascas91.20 25590.08 26894.58 20894.97 29589.16 21993.65 35997.59 15279.90 38789.40 27392.92 34775.36 31098.36 23092.14 16494.75 20896.23 247
sd_testset93.10 16992.45 17895.05 17898.09 10489.21 21596.89 19197.64 14593.18 10891.79 20997.28 13975.35 31198.65 20488.99 23592.84 24097.28 221
VPNet92.23 20791.31 21494.99 18295.56 25790.96 15397.22 16597.86 11892.96 12190.96 23196.62 18275.06 31298.20 24291.90 16983.65 35895.80 267
WB-MVS76.77 37076.63 37377.18 38985.32 40756.82 42194.53 32489.39 40382.66 36971.35 40289.18 38975.03 31388.88 40935.42 41866.79 40685.84 403
N_pmnet78.73 36978.71 37078.79 38792.80 36646.50 42694.14 34143.71 42878.61 39280.83 37991.66 37174.94 31496.36 36467.24 40284.45 34893.50 361
SSC-MVS76.05 37175.83 37476.72 39384.77 40856.22 42294.32 33588.96 40581.82 37570.52 40388.91 39074.79 31588.71 41033.69 41964.71 40985.23 404
dmvs_re90.21 29189.50 29292.35 30395.47 26485.15 31295.70 27994.37 35690.94 18388.42 29893.57 33474.63 31695.67 37682.80 33089.57 28996.22 248
mvs_tets92.31 20191.76 19793.94 24493.41 35488.29 23997.63 11797.53 16092.04 14688.76 29296.45 18974.62 31798.09 25793.91 13291.48 26395.45 285
DSMNet-mixed86.34 34086.12 33587.00 37789.88 39070.43 40394.93 31490.08 40177.97 39585.42 35092.78 34874.44 31893.96 39574.43 38395.14 19896.62 239
pmmvs589.86 30288.87 30692.82 29192.86 36486.23 29496.26 24895.39 31284.24 35187.12 32794.51 28574.27 31997.36 34087.61 26487.57 30794.86 323
OurMVSNet-221017-090.51 28390.19 26691.44 33193.41 35481.25 35996.98 18596.28 27291.68 15586.55 34096.30 19674.20 32097.98 27488.96 23687.40 31295.09 309
GBi-Net91.35 24690.27 25994.59 20496.51 20991.18 14597.50 13196.93 22888.82 25689.35 27594.51 28573.87 32197.29 34386.12 28988.82 29495.31 296
test191.35 24690.27 25994.59 20496.51 20991.18 14597.50 13196.93 22888.82 25689.35 27594.51 28573.87 32197.29 34386.12 28988.82 29495.31 296
FMVSNet291.31 24990.08 26894.99 18296.51 20992.21 10297.41 14196.95 22688.82 25688.62 29494.75 27373.87 32197.42 33685.20 30488.55 29995.35 293
COLMAP_ROBcopyleft87.81 1590.40 28589.28 29793.79 25297.95 11587.13 27296.92 18995.89 28982.83 36786.88 33897.18 14673.77 32499.29 12578.44 36493.62 23394.95 314
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_cas_vis1_n_192094.48 12094.55 11194.28 22596.78 18586.45 28997.63 11797.64 14593.32 10197.68 4298.36 5373.75 32599.08 15596.73 4799.05 8997.31 220
Anonymous2023120687.09 33386.14 33489.93 35891.22 38280.35 37096.11 25795.35 31583.57 36284.16 36093.02 34573.54 32695.61 37772.16 39386.14 32193.84 358
UGNet94.04 13693.28 14796.31 10996.85 17691.19 14497.88 8097.68 14094.40 6493.00 17996.18 20173.39 32799.61 7291.72 17598.46 11598.13 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test111193.19 16592.82 15994.30 22497.58 14484.56 32398.21 4289.02 40493.53 9294.58 14198.21 7072.69 32899.05 16293.06 15098.48 11499.28 68
ECVR-MVScopyleft93.19 16592.73 16594.57 20997.66 13285.41 30698.21 4288.23 40693.43 9694.70 13998.21 7072.57 32999.07 15993.05 15198.49 11299.25 71
Anonymous2023121190.63 27989.42 29494.27 22698.24 9089.19 21898.05 5797.89 11079.95 38688.25 30694.96 26172.56 33098.13 24889.70 21485.14 33495.49 280
WBMVS90.69 27889.99 27492.81 29296.48 21285.00 31695.21 30796.30 27189.46 23289.04 28594.05 31472.45 33197.82 29989.46 22087.41 31195.61 278
UBG91.55 23490.76 23793.94 24496.52 20885.06 31595.22 30594.54 34990.47 20491.98 20492.71 34972.02 33298.74 19488.10 24795.26 19798.01 182
ACMH87.59 1690.53 28189.42 29493.87 24896.21 22687.92 25297.24 16096.94 22788.45 26983.91 36696.27 19871.92 33398.62 20884.43 31289.43 29095.05 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS91.38 24390.31 25694.59 20494.65 31487.62 26094.34 33396.19 27990.73 18890.35 24193.83 32071.84 33497.96 28187.22 27193.61 23498.21 166
SixPastTwentyTwo89.15 31088.54 31090.98 33993.49 35180.28 37396.70 20994.70 34490.78 18584.15 36195.57 23771.78 33597.71 31084.63 31085.07 33694.94 316
gg-mvs-nofinetune87.82 32585.61 33794.44 21494.46 32189.27 21491.21 38984.61 41580.88 38089.89 25974.98 41171.50 33697.53 32685.75 29797.21 15896.51 241
test20.0386.14 34485.40 34088.35 36890.12 38780.06 37695.90 26995.20 32488.59 26281.29 37893.62 33271.43 33792.65 40271.26 39781.17 37192.34 379
MS-PatchMatch90.27 28889.77 28391.78 32394.33 32684.72 32295.55 28796.73 24486.17 32486.36 34195.28 24971.28 33897.80 30184.09 31698.14 12892.81 370
PVSNet_082.17 1985.46 35183.64 35490.92 34095.27 27979.49 38290.55 39395.60 30483.76 35983.00 37389.95 38371.09 33997.97 27782.75 33260.79 41395.31 296
GG-mvs-BLEND93.62 26093.69 34489.20 21692.39 38183.33 41787.98 31389.84 38571.00 34096.87 35782.08 33795.40 19494.80 330
ITE_SJBPF92.43 30195.34 27285.37 30995.92 28591.47 16087.75 31696.39 19371.00 34097.96 28182.36 33589.86 28693.97 356
IB-MVS87.33 1789.91 29788.28 31394.79 19895.26 28287.70 25995.12 31093.95 36689.35 23687.03 33192.49 35470.74 34299.19 13389.18 23281.37 37097.49 210
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
reproduce_monomvs91.30 25091.10 22491.92 31496.82 18182.48 34897.01 18297.49 16594.64 5388.35 30095.27 25070.53 34398.10 25395.20 10084.60 34495.19 307
MDA-MVSNet-bldmvs85.00 35282.95 35791.17 33893.13 36183.33 33894.56 32395.00 33284.57 34865.13 41092.65 35070.45 34495.85 37173.57 38977.49 38394.33 348
AllTest90.23 29088.98 30293.98 23897.94 11686.64 28196.51 22895.54 30885.38 33485.49 34896.77 16670.28 34599.15 14280.02 35492.87 23896.15 253
TestCases93.98 23897.94 11686.64 28195.54 30885.38 33485.49 34896.77 16670.28 34599.15 14280.02 35492.87 23896.15 253
ACMH+87.92 1490.20 29289.18 29993.25 27596.48 21286.45 28996.99 18496.68 25088.83 25584.79 35596.22 20070.16 34798.53 21584.42 31388.04 30294.77 335
test_vis1_n_192094.17 12694.58 10792.91 28797.42 14882.02 35497.83 8797.85 11994.68 4998.10 3098.49 4070.15 34899.32 12097.91 1798.82 9897.40 215
KD-MVS_self_test85.95 34684.95 34588.96 36789.55 39379.11 38695.13 30996.42 26585.91 32784.07 36490.48 37870.03 34994.82 38680.04 35372.94 39692.94 368
testing9191.90 21891.02 22694.53 21196.54 20486.55 28795.86 27095.64 30391.77 15291.89 20693.47 33869.94 35098.86 17890.23 20493.86 22998.18 168
Anonymous2024052991.98 21590.73 24195.73 14698.14 10289.40 20597.99 6297.72 13579.63 38893.54 16697.41 13469.94 35099.56 8891.04 19191.11 27098.22 165
pmmvs-eth3d86.22 34284.45 35091.53 32888.34 40187.25 26694.47 32695.01 33183.47 36379.51 38889.61 38669.75 35295.71 37483.13 32576.73 38791.64 387
mmtdpeth89.70 30588.96 30391.90 31695.84 24884.42 32497.46 13995.53 31090.27 20894.46 14690.50 37769.74 35398.95 16997.39 3669.48 40292.34 379
test_fmvs193.21 16393.53 13592.25 30896.55 20381.20 36197.40 14596.96 22590.68 19196.80 6798.04 8269.25 35498.40 22497.58 2798.50 11197.16 225
LFMVS93.60 15092.63 16896.52 8998.13 10391.27 13897.94 7393.39 37490.57 20196.29 9498.31 6369.00 35599.16 14094.18 12695.87 18399.12 83
TESTMET0.1,190.06 29589.42 29491.97 31394.41 32480.62 36794.29 33791.97 39087.28 30490.44 23992.47 35668.79 35697.67 31288.50 24496.60 17297.61 205
UWE-MVS89.91 29789.48 29391.21 33595.88 24278.23 39094.91 31590.26 40089.11 24292.35 19394.52 28468.76 35797.96 28183.95 31995.59 19197.42 214
XVG-ACMP-BASELINE90.93 26890.21 26593.09 28194.31 32885.89 29995.33 29797.26 19991.06 18089.38 27495.44 24468.61 35898.60 20989.46 22091.05 27194.79 332
testing1191.68 22690.75 23994.47 21296.53 20686.56 28695.76 27794.51 35191.10 17991.24 22893.59 33368.59 35998.86 17891.10 18994.29 21598.00 183
testing9991.62 22890.72 24294.32 22196.48 21286.11 29895.81 27394.76 34391.55 15791.75 21193.44 33968.55 36098.82 18290.43 19893.69 23098.04 181
MVS-HIRNet82.47 36281.21 36586.26 37995.38 26769.21 40688.96 40389.49 40266.28 40880.79 38074.08 41368.48 36197.39 33871.93 39495.47 19292.18 384
VDD-MVS93.82 14493.08 15096.02 13097.88 12189.96 18697.72 10295.85 29092.43 13395.86 11198.44 4668.42 36299.39 11496.31 5794.85 20398.71 127
test_040286.46 33884.79 34791.45 33095.02 29485.55 30396.29 24794.89 33880.90 37982.21 37593.97 31868.21 36397.29 34362.98 40588.68 29891.51 390
test-mter90.19 29389.54 29192.12 31094.59 31680.66 36594.29 33792.98 37887.68 29490.76 23592.37 35767.67 36498.07 26288.81 23896.74 16797.63 201
VDDNet93.05 17292.07 18696.02 13096.84 17790.39 17498.08 5395.85 29086.22 32395.79 11498.46 4467.59 36599.19 13394.92 10894.85 20398.47 147
USDC88.94 31287.83 31792.27 30794.66 31384.96 31893.86 35195.90 28787.34 30283.40 36895.56 23867.43 36698.19 24482.64 33489.67 28893.66 359
pmmvs687.81 32686.19 33392.69 29791.32 38186.30 29297.34 15196.41 26680.59 38584.05 36594.37 29467.37 36797.67 31284.75 30879.51 37894.09 355
test250691.60 22990.78 23694.04 23597.66 13283.81 33298.27 3275.53 42193.43 9695.23 12898.21 7067.21 36899.07 15993.01 15498.49 11299.25 71
KD-MVS_2432*160084.81 35482.64 35891.31 33391.07 38385.34 31091.22 38795.75 29585.56 33283.09 37190.21 38167.21 36895.89 36977.18 37162.48 41192.69 371
miper_refine_blended84.81 35482.64 35891.31 33391.07 38385.34 31091.22 38795.75 29585.56 33283.09 37190.21 38167.21 36895.89 36977.18 37162.48 41192.69 371
K. test v387.64 32886.75 33090.32 35393.02 36279.48 38396.61 22192.08 38990.66 19480.25 38594.09 31267.21 36896.65 36185.96 29480.83 37294.83 325
tt080591.09 25990.07 27194.16 22995.61 25488.31 23897.56 12496.51 26189.56 22789.17 28295.64 23467.08 37298.38 22991.07 19088.44 30095.80 267
mvs5depth86.53 33685.08 34390.87 34188.74 39982.52 34791.91 38394.23 36086.35 31987.11 32993.70 32666.52 37397.76 30681.37 34475.80 38992.31 381
CMPMVSbinary62.92 2185.62 35084.92 34687.74 37289.14 39473.12 40294.17 34096.80 24273.98 40173.65 40094.93 26366.36 37497.61 31983.95 31991.28 26792.48 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D91.34 24890.22 26494.68 20294.86 30487.86 25597.23 16497.46 17187.99 28089.90 25796.92 16066.35 37598.23 23990.30 20290.99 27397.96 184
lessismore_v090.45 35091.96 37979.09 38787.19 41080.32 38494.39 29266.31 37697.55 32384.00 31876.84 38594.70 337
ttmdpeth85.91 34784.76 34889.36 36489.14 39480.25 37495.66 28393.16 37783.77 35883.39 36995.26 25166.24 37795.26 38480.65 34975.57 39092.57 374
Anonymous20240521192.07 21290.83 23595.76 14198.19 9888.75 22697.58 12195.00 33286.00 32693.64 16397.45 13066.24 37799.53 9490.68 19792.71 24399.01 93
new-patchmatchnet83.18 36081.87 36387.11 37586.88 40575.99 39593.70 35595.18 32585.02 34277.30 39488.40 39365.99 37993.88 39674.19 38670.18 40091.47 392
FMVSNet189.88 30088.31 31294.59 20495.41 26591.18 14597.50 13196.93 22886.62 31487.41 32294.51 28565.94 38097.29 34383.04 32687.43 30995.31 296
TDRefinement86.53 33684.76 34891.85 31882.23 41484.25 32696.38 23995.35 31584.97 34384.09 36394.94 26265.76 38198.34 23484.60 31174.52 39292.97 367
ETVMVS90.52 28289.14 30194.67 20396.81 18387.85 25695.91 26893.97 36589.71 22492.34 19492.48 35565.41 38297.96 28181.37 34494.27 21698.21 166
UnsupCasMVSNet_eth85.99 34584.45 35090.62 34889.97 38982.40 35193.62 36097.37 19089.86 21878.59 39192.37 35765.25 38395.35 38382.27 33670.75 39994.10 353
LF4IMVS87.94 32487.25 32189.98 35792.38 37680.05 37794.38 33195.25 32287.59 29684.34 35794.74 27464.31 38497.66 31484.83 30687.45 30892.23 382
Anonymous2024052186.42 33985.44 33889.34 36590.33 38679.79 37896.73 20595.92 28583.71 36083.25 37091.36 37363.92 38596.01 36778.39 36585.36 33092.22 383
MIMVSNet88.50 31986.76 32993.72 25694.84 30587.77 25891.39 38594.05 36286.41 31887.99 31292.59 35363.27 38695.82 37377.44 36792.84 24097.57 208
test_fmvs1_n92.73 18892.88 15792.29 30696.08 23981.05 36297.98 6397.08 21290.72 18996.79 6998.18 7363.07 38798.45 22197.62 2698.42 11797.36 216
FMVSNet587.29 33085.79 33691.78 32394.80 30787.28 26495.49 29195.28 31984.09 35383.85 36791.82 36862.95 38894.17 39178.48 36385.34 33193.91 357
MVStest182.38 36380.04 36789.37 36387.63 40482.83 34395.03 31193.37 37573.90 40273.50 40194.35 29562.89 38993.25 40073.80 38765.92 40892.04 386
testgi87.97 32387.21 32390.24 35492.86 36480.76 36396.67 21494.97 33491.74 15385.52 34795.83 22062.66 39094.47 38976.25 37588.36 30195.48 281
TinyColmap86.82 33585.35 34191.21 33594.91 30282.99 34293.94 34794.02 36483.58 36181.56 37794.68 27662.34 39198.13 24875.78 37687.35 31392.52 377
testing22290.31 28688.96 30394.35 21896.54 20487.29 26395.50 29093.84 36990.97 18291.75 21192.96 34662.18 39298.00 27282.86 32794.08 22297.76 196
new_pmnet82.89 36181.12 36688.18 37189.63 39180.18 37591.77 38492.57 38476.79 39875.56 39788.23 39561.22 39394.48 38871.43 39582.92 36489.87 399
OpenMVS_ROBcopyleft81.14 2084.42 35682.28 36290.83 34290.06 38884.05 33195.73 27894.04 36373.89 40380.17 38691.53 37259.15 39497.64 31566.92 40389.05 29390.80 396
test_fmvs289.77 30489.93 27689.31 36693.68 34576.37 39397.64 11595.90 28789.84 22191.49 21696.26 19958.77 39597.10 34794.65 11891.13 26994.46 343
test_vis1_n92.37 19892.26 18392.72 29594.75 30982.64 34498.02 5996.80 24291.18 17497.77 4197.93 9158.02 39698.29 23697.63 2598.21 12497.23 224
MIMVSNet184.93 35383.05 35590.56 34989.56 39284.84 32195.40 29495.35 31583.91 35480.38 38392.21 36457.23 39793.34 39970.69 39982.75 36693.50 361
EG-PatchMatch MVS87.02 33485.44 33891.76 32592.67 36885.00 31696.08 25996.45 26483.41 36479.52 38793.49 33657.10 39897.72 30979.34 36190.87 27692.56 375
UnsupCasMVSNet_bld82.13 36479.46 36990.14 35588.00 40282.47 34990.89 39296.62 25878.94 39175.61 39584.40 40656.63 39996.31 36577.30 37066.77 40791.63 388
myMVS_eth3d87.18 33186.38 33189.58 36195.16 28679.53 38095.00 31293.93 36788.55 26686.96 33391.99 36556.23 40094.00 39375.47 38094.11 21995.20 304
testing387.67 32786.88 32890.05 35696.14 23480.71 36497.10 17492.85 38090.15 21287.54 31994.55 28255.70 40194.10 39273.77 38894.10 22195.35 293
EGC-MVSNET68.77 37963.01 38586.07 38092.49 37282.24 35393.96 34690.96 3970.71 4252.62 42690.89 37553.66 40293.46 39757.25 41084.55 34682.51 406
tmp_tt51.94 38853.82 38846.29 40433.73 42845.30 42878.32 41467.24 42518.02 42150.93 41787.05 40252.99 40353.11 42370.76 39825.29 42140.46 419
test_vis1_rt86.16 34385.06 34489.46 36293.47 35380.46 36996.41 23386.61 41285.22 33779.15 38988.64 39152.41 40497.06 34893.08 14990.57 27890.87 395
pmmvs379.97 36777.50 37287.39 37482.80 41379.38 38492.70 37790.75 39970.69 40578.66 39087.47 40151.34 40593.40 39873.39 39069.65 40189.38 400
dongtai69.99 37669.33 37871.98 39788.78 39861.64 41789.86 39859.93 42775.67 39974.96 39885.45 40350.19 40681.66 41643.86 41555.27 41472.63 412
kuosan65.27 38264.66 38467.11 40083.80 40961.32 41888.53 40460.77 42668.22 40767.67 40580.52 40949.12 40770.76 42229.67 42153.64 41669.26 414
DeepMVS_CXcopyleft74.68 39690.84 38564.34 41481.61 41965.34 40967.47 40788.01 39848.60 40880.13 41862.33 40673.68 39579.58 408
mvsany_test383.59 35782.44 36187.03 37683.80 40973.82 39893.70 35590.92 39886.42 31782.51 37490.26 38046.76 40995.71 37490.82 19376.76 38691.57 389
PM-MVS83.48 35881.86 36488.31 36987.83 40377.59 39193.43 36391.75 39186.91 30980.63 38189.91 38444.42 41095.84 37285.17 30576.73 38791.50 391
test_method66.11 38164.89 38369.79 39872.62 42235.23 43065.19 41792.83 38220.35 42065.20 40988.08 39743.14 41182.70 41573.12 39163.46 41091.45 393
APD_test179.31 36877.70 37184.14 38189.11 39669.07 40792.36 38291.50 39369.07 40673.87 39992.63 35239.93 41294.32 39070.54 40080.25 37489.02 401
ambc86.56 37883.60 41170.00 40585.69 40994.97 33480.60 38288.45 39237.42 41396.84 35882.69 33375.44 39192.86 369
test_fmvs383.21 35983.02 35683.78 38286.77 40668.34 40896.76 20394.91 33786.49 31684.14 36289.48 38736.04 41491.73 40491.86 17280.77 37391.26 394
test_f80.57 36679.62 36883.41 38383.38 41267.80 41093.57 36293.72 37080.80 38377.91 39387.63 39933.40 41592.08 40387.14 27579.04 38190.34 398
Gipumacopyleft67.86 38065.41 38275.18 39592.66 36973.45 39966.50 41694.52 35053.33 41557.80 41666.07 41630.81 41689.20 40848.15 41478.88 38262.90 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS52.08 38751.31 39054.39 40372.62 42245.39 42783.84 41175.51 42241.13 41840.77 42059.65 41930.08 41773.60 42028.31 42229.90 42044.18 418
FPMVS71.27 37469.85 37675.50 39474.64 41959.03 41991.30 38691.50 39358.80 41157.92 41588.28 39429.98 41885.53 41453.43 41282.84 36581.95 407
E-PMN53.28 38552.56 38955.43 40274.43 42047.13 42583.63 41276.30 42042.23 41742.59 41962.22 41828.57 41974.40 41931.53 42031.51 41844.78 417
PMMVS270.19 37566.92 37980.01 38576.35 41865.67 41286.22 40887.58 40964.83 41062.38 41180.29 41026.78 42088.49 41263.79 40454.07 41585.88 402
ANet_high63.94 38359.58 38677.02 39061.24 42666.06 41185.66 41087.93 40878.53 39342.94 41871.04 41525.42 42180.71 41752.60 41330.83 41984.28 405
LCM-MVSNet72.55 37369.39 37782.03 38470.81 42465.42 41390.12 39794.36 35855.02 41465.88 40881.72 40724.16 42289.96 40574.32 38568.10 40590.71 397
test_vis3_rt72.73 37270.55 37579.27 38680.02 41568.13 40993.92 34974.30 42376.90 39758.99 41473.58 41420.29 42395.37 38284.16 31472.80 39774.31 411
testf169.31 37766.76 38076.94 39178.61 41661.93 41588.27 40586.11 41355.62 41259.69 41285.31 40420.19 42489.32 40657.62 40869.44 40379.58 408
APD_test269.31 37766.76 38076.94 39178.61 41661.93 41588.27 40586.11 41355.62 41259.69 41285.31 40420.19 42489.32 40657.62 40869.44 40379.58 408
PMVScopyleft53.92 2258.58 38455.40 38768.12 39951.00 42748.64 42478.86 41387.10 41146.77 41635.84 42274.28 4128.76 42686.34 41342.07 41673.91 39469.38 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 38924.57 39326.74 40573.98 42139.89 42957.88 4189.80 42912.27 42210.39 4236.97 4257.03 42736.44 42425.43 42317.39 4223.89 422
MVEpermissive50.73 2353.25 38648.81 39166.58 40165.34 42557.50 42072.49 41570.94 42440.15 41939.28 42163.51 4176.89 42873.48 42138.29 41742.38 41768.76 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12313.04 39215.66 3955.18 4064.51 4303.45 43192.50 3801.81 4312.50 4247.58 42520.15 4223.67 4292.18 4267.13 4251.07 4249.90 420
testmvs13.36 39116.33 3944.48 4075.04 4292.26 43293.18 3663.28 4302.70 4238.24 42421.66 4212.29 4302.19 4257.58 4242.96 4239.00 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.06 39310.74 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42796.69 1720.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS79.53 38075.56 379
FOURS199.55 193.34 6699.29 198.35 2794.98 3298.49 23
MSC_two_6792asdad98.86 198.67 6196.94 197.93 10899.86 997.68 2099.67 699.77 2
No_MVS98.86 198.67 6196.94 197.93 10899.86 997.68 2099.67 699.77 2
eth-test20.00 431
eth-test0.00 431
IU-MVS99.42 795.39 1197.94 10790.40 20798.94 897.41 3599.66 1099.74 8
save fliter98.91 5294.28 3897.02 17998.02 9795.35 19
test_0728_SECOND98.51 499.45 395.93 598.21 4298.28 3699.86 997.52 2899.67 699.75 6
GSMVS98.45 149
test_part299.28 2595.74 898.10 30
MTGPAbinary98.08 77
MTMP97.86 8182.03 418
gm-plane-assit93.22 35878.89 38884.82 34593.52 33598.64 20587.72 254
test9_res94.81 11399.38 5899.45 50
agg_prior293.94 13199.38 5899.50 43
agg_prior98.67 6193.79 5498.00 10195.68 11899.57 87
test_prior493.66 5796.42 232
test_prior97.23 6398.67 6192.99 7898.00 10199.41 11299.29 66
旧先验295.94 26681.66 37697.34 5298.82 18292.26 159
新几何295.79 275
无先验95.79 27597.87 11483.87 35799.65 6187.68 26098.89 112
原ACMM295.67 280
testdata299.67 5985.96 294
testdata195.26 30493.10 113
plane_prior796.21 22689.98 184
plane_prior597.51 16298.60 20993.02 15292.23 24995.86 261
plane_prior496.64 175
plane_prior390.00 18094.46 6091.34 220
plane_prior297.74 9794.85 37
plane_prior196.14 234
plane_prior89.99 18297.24 16094.06 7292.16 253
n20.00 432
nn0.00 432
door-mid91.06 396
test1197.88 112
door91.13 395
HQP5-MVS89.33 209
HQP-NCC95.86 24396.65 21593.55 8890.14 244
ACMP_Plane95.86 24396.65 21593.55 8890.14 244
BP-MVS92.13 165
HQP4-MVS90.14 24498.50 21795.78 269
HQP3-MVS97.39 18792.10 254
NP-MVS95.99 24189.81 19095.87 217
ACMMP++_ref90.30 283
ACMMP++91.02 272